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It was aimed to compare three spectroscopic methods in determination of adulteration of cold pressed pome-
granate seed oils (PSOs) with sunflower oil in this research. UV-visible, mid-infrared and fluorescence spectra of
pure and adulterated pomegranate oils (1-50%, v/v) were collected and data were analyzed with multivariate
statistical analysis techniques. According to orthogonal partial least square discriminant analysis, best differ-
entiation between pure and mixed samples was obtained with mid-infrared spectroscopy having 100% success
rate. Fluorescence and UV-visible spectroscopy also provided good discrimination between samples with 96 and

88% successful classification rates, respectively. As a result of partial least square regression analysis, detection
limits for mid-infrared, UV-visible and fluorescence spectroscopies are determined as > 1, 5 and 10% in order.
Since all spectroscopic methods provided detection of mixtures of cold pressed PSOs with sunflower oil at low
concentrations they could serve as easy to use and rapid techniques in control laboratories.

1. Introduction

Pomegranate fruit is cultivated in global scale with the highest
production in Mediterranean areas [1]. As a by-product of pomegranate
fruit, pomegranate oil is produced from the seeds. This precious oil is
considered as a good source of certain pharmaceutical and nu-
traceutical compounds [2]. There are various reports about the oil
content of pomegranate seeds and literature indicates values between
4.4 and 24.1% [3,4]. Pomegranate seed oil (PSO) is quite valuable
owing to its unique fatty acid composition, which is very rich in terms
polyunsaturated fatty acids, particularly punicic acid (18:3 cis 9, trans
11, cis 13) as an isomer of conjugated linolenic acid [5]. Punicic acid
composition of PSO varies approximately between 55 and 85% [6,7].
This oil is also a very good source of various bioactive compounds such
as tocopherols, phytosterols and squalene [3,8,9]. Many studies about
the health effects of PSO indicate that this oil has various health ben-
efits including antidiabetic, antiobesity, antiproliferative and antic-
arcinogenic effects originating mainly from pucinic acid along with
other health promoting compounds [6]. These findings indicate that
seed oils, especially PSO, could be used as functional ingredients not
only in the food industry, but also in pharmaceutical and cosmetic fields
[7].

As an economically valuable product, PSO has been subjected to
mixing with cheaper and/or lower quality oils. Rapid, minimum waste
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generating with minimum sample preparation characteristics are de-
sirable properties of spectroscopic methods for authentication studies of
food and pharmaceutical products. There are several examples of the
use of various spectroscopic methods such as infrared, nuclear magnetic
resonance (NMR), Raman and fluorescence techniques in the adul-
teration detection of various types of high economic value oils [10-12].
Analysis of the spectral data with multivariate statistical techniques
generally provide successful results with the condition that the data set
has as many samples as possible covering the entire space of possible
sample compositions. Although PSO is a very good target of adultera-
tion due to its high price in the market, there is no study in the lit-
erature regarding the authentication of this product by any spectro-
scopic methods. The studies related with PSO are limited to
determination of physicochemical properties [2,7] as well as health
benefits of this oil [6] without any authenticity concern.

It was aimed to compare the performances of three different spec-
troscopic methods (UV-visible, mid-infrared and fluorescence) for de-
tection of mixtures of cold pressed PSO and sunflower oil by the eva-
luation of spectral data with multivariate statistical analysis techniques
in this study.
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2. Materials and methods
2.1. Oil samples and mixtures

Fifteen cold pressed PSOs were obtained from trusted producers. As
an adulterant, sunflower oil, was obtained from the local market.
Sunflower oil was chosen as an adulterant due to its ease of availability
in most parts of the world, its low price and ease of mixing with po-
megranate oil without introducing any noticeable flavor. Seven of the
randomly chosen pure PSO were blended with sunflower oil at 1, 5, 10,
15, 20, 30, 40 and 50% (v/v) ratio; as a result, a total of 56 adulterated
samples were prepared. Eight pure PSOs not included in the mixture set
were independently used in the statistical models to test the capability
of each model.

2.2. Free fatty acid content

Percent free fatty acid was determined by titration with KOH and
calculated in terms of pucinic acid for PSO and oleic acid for sunflower
oil according to a method from European Official Methods of Analysis
[13]. The analyses were repeated two times.

2.3. Fatty acid profile

Fatty acid profiles of PSO and sunflower oil were determined with
gas chromatographic (GC) analyses. Prior to chromatographic analyses,
an esterification procedure was performed, and samples were injected
into a GC device (Agilent 6890, Agilent Technologies, Santa Clara, CA,
USA) with an auto-sampler (Agilent 7863 & FID) and a split/splitless
(1:50) injector. HP-88 capillary column (Agilent, USA) with dimensions
of 100 m*0.25 mm ID*0.2 pm was used, and the same experimental
conditions were applied as in a previous study [14]. Results were cal-
culated as percentages of corresponding fatty acid methyl esters with
duplicate runs for each sample. The results comprise individual fatty
acid profiles of PSOs as well as total saturated fatty acids (SFAs), total
monounsaturated fatty acids (MUFAs), and total polyunsaturated fatty
acids (PUFAs) contents.

2.4. UV-visible spectroscopy

UV-visible (UV-vis) range (200-800 nm) spectra of all samples
were obtained with a UV-vis spectrophotometer (Shimadzu UV-2450
Spectrophotometer, Kyoto, Japan) with respect to an air background.
Absorbance mode measurement parameters were 2.0 nm of sampling
interval and slit width of 1 nm, recorded by fast scanning in a semi-
micro type polystyrene cuvette with a 10 mm light path. Measurements
were repeated twice for each oil.

2.5. Mid-infrared spectroscopy

After obtaining a background spectrum of air, mid-infrared (mid-IR)
spectra of all samples were collected in the range of 4000-650 cm ™!
with ZnSe-ATR attachment of Fourier transform infrared (FTIR) spec-
trometer (Spectrum 100 FTIR spectrometer, Perkin Elmer Inc.,
Waltham, MA, USA) having a DTGS detector. 64 scans of each spectrum
with a resolution of 4 cm ™! and scan speed of 1 cm/s were taken in two
replicates. Between each run ATR crystal was cleaned with organic
solvents and then dried with nitrogen.

2.6. Fluorescence spectroscopy

A fluorescence spectrometer (LS-55, PerkinElmer Inc., Waltham,
MA, USA) having a pulsed xenon lamp was used in the collection of
fluorescence spectra. Measurement parameters for the best resolution
with optimal signal-to-noise ratio were slit width of 10 and 20 nm for
excitation and emission, respectively and data interval for scan and
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integration time were 0.5 nm and 0.12 s, respectively.

Emission spectra (300-800 nm) were collected for each excitation
wavelengths (320, 330, 340, and 350 nm) with quartz cell and mea-
surements were repeated two times. The sample cell was cleaned with
hexane under the flow of nitrogen between each run. Trial and error
method was applied to select the optimal excitation wavelength to
construct statistical models. Therefore, excitation at 340 nm was found
as the most successful wavelength and all emission spectra excited at
340 nm were used in model building.

2.7. Statistical analysis

SIMCA 14.1 software (Umetrics, Umed, Sweden) was used in both
classification and prediction studies. Whole ranges of UV-vis
(200-800 nm), FTIR (4000-650 cm ~ 1) and fluorescence (300-800 nm)
spectroscopic methods were analyzed individually and compared with
each other in terms of their success in differentiation of pure PSO
samples from adulterated ones and also in prediction of adulteration
level of all these samples (pure and adulterated). Firstly, main pre-
processing methods such as mean-centering and unit variance scaling as
well as the most appropriate pre-treatment techniques as second deri-
vative (SD), wavelet denoising techniques (WDTs) in combination with
SD (WDTs:SD) and orthogonal signal correction (OSC) were applied in
the development of the specific statistical models to remove any noise
of the averaged data. SD of the spectroscopic data was based on moving
quadratic sub-models of 15 data point long with a distance of 1 ex-
cluding the edge effects. As a WDTs, Daubechies-10 was selected at the
99.5% confidence interval. Mean-centering and unit variance scaling
were applied to all spectroscopic data.

All the pre-treated data set of each spectroscopic technique used in
both classification and prediction purposes was randomly divided into
calibration and validation sets comprising 2/3 and 1/3 number of the
data set, respectively. The number of latent variables (LVs) used in
construction of calibration data sets was optimized by internal valida-
tion (cross validation) in the form of leave-one-out cross validation
(LOO-CV) in order to avoid over and/or under fitting of the model [15].

For the classification purposes, orthogonal partial least square-dis-
criminant analysis (OPLS-DA) was used as a chemometric tool to reveal
the separation of adulterated and pure PSO samples by using pre-
treated data. In the OPLS-DA, a correlation model was built from two
main matrix block consisting a defined X matrix (spectral data) and an
artificially constructed dummy Y matrix (variable vector defined as
class 1 for pure (non-adulterated) and as class 2 for adulterated sam-
ples) [16]. Outcome of the OPLS-DA analysis was interpreted with
classification tables revealing correct classification rate (%CC). %CC
was calculated manually if any examined sample from a known oil class
(as adulterated or non-adulterated) have a prediction value between 0.5
and 1.5; otherwise, it was considered as a misclassification [17]. Other
performance parameters were calculated by the SIMCA software auto-
matically such as the LVs, coefficient of determination for calibration
(R2,), coefficient of determination for cross validation (R%,) of each
classification model.

Prediction studies of varying level of adulteration between O and
50% in volume base were conducted by partial least squares (PLS) re-
gression. PLS regression stands for correlating spectroscopic data of all
the studied samples including adulterated and non-adulterated (X ma-
trix) with the level of adulterated (1-50%) and non-adulterated (0%)
PSO samples (Y matrix) [18]. Quantification ability of PLS models was
inspected with various statistical parameters such as R%,, R, Rgred, for
external validation, root mean square error of calibration (RMSEC),
root mean square error of cross-validation (RMSECV), root mean square
error of prediction (RMSEP), residual predictive deviation (RPD), and
the slope. Robust quantification models could only be obtained with
high regression coefficient > 0.90 indicating excellent predictions
[19]. A slope value in the range of 0.9-1.1 and RPD value higher than
3.0 show a very reliable prediction model [19]. On the other hand,
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Table 1
Chemical parameters of pure pomegranate seed oil samples.

Sample FFA' (C16:0> C18:0° C18:1n9¢* C18:22n6c® C€20:0° C18.3n3” (€20:3n6° C20:4n6° C18:3'° (18:3''! (C18:3'2 SFAs'®> MUFAs!'* PUFAs'®
PSO(A) 3.30 274 2.07 4.50 4.67 0.46 0.72 0.10 0.32 69.45 10.42 4.07 5.33 4.50 89.76
PSO(B) 0.70 252 1.88 4.06 4.14 0.42 0.68 0.08 0.31 79.44 5.60 0.54 4.87 4.06 90.80
PSO(C) 0.58 276 2.19 5.26 5.40 0.41 0.59 0.09 0.27 81.12 1.45 0.12 5.41 5.26 89.04
PSO(D) 200 2.66 2.00 4.27 4.40 0.43 0.69 0.09 0.29 74.84 7.80 2.22 5.14 4.27 90.32
PSO(E) 1.94 279 2.22 5.00 5.12 0.42 0.63 0.09 0.22 76.52 5.21 1.74 5.48 5.00 89.52
PSO(F) 153 271 2.09 4.65 4.74 0.44 0.67 0.08 0.25 76.64 6.03 1.66 5.28 4.65 90.07
PSO(G) 3.43 275 2.06 5.31 6.96 0.46 0.63 0.11 0.36 72.34 7.36 1.63 5.32 5.31 89.38
PSO(H) 0.64 2.64 2.03 4.66 4.77 0.42 0.64 0.09 0.29 80.28 3.53 0.33 5.14 4.66 89.92
PSO)  3.37 275 2.06 4.90 5.82 0.46 0.67 0.10 0.34 70.89 8.89 2.85 5.32 4.90 89.57
PSO(J) 207 2.64 1.97 4.68 5.55 0.44 0.66 0.10 0.34 75.89 6.48 1.08 5.09 4.68 90.09
PSO(K) 2.01 276 2.12 5.28 6.18 0.43 0.61 0.10 0.31 76.73 4.41 0.88 5.36 5.28 89.21
PSO(L) 272 271 2.03 4.79 5.68 0.44 0.66 0.10 0.32 73.59 7.58 1.93 5.23 4.79 89.85
PSO(M) 269 277 2.14 5.15 6.04 0.44 0.63 0.10 0.29 74.43 6.28 1.69 5.40 5.15 89.45
PSO(N) 248 273 2.07 4.98 5.85 0.45 0.65 0.09 0.30 74.49 6.69 1.65 5.30 4.98 89.72
PSO(0) 2.04 270 2.05 4.98 5.86 0.44 0.63 0.10 0.33 76.31 5.44 0.98 5.23 4.98 89.65
Average 210 271 2.07 4.83 5.41 0.44 0.65 0.09 0.30 75.53 6.21 1.56 5.26 4.83 89.76
SD 091  0.07 0.08 0.36 0.74 0.02 0.03 0.01 0.04 3.15 2.10 0.98 0.15 0.36 0.43
Min 0.58 2.52 1.88 4.06 4.14 0.41 0.59 0.08 0.22 69.45 1.45 0.12 4.87 4.06 89.04
Max 3.43 279 2.22 5.31 6.96 0.46 0.72 0.11 0.36 81.12 10.42 4.07 5.48 5.31 90.80

!Free fatty acid, 2palmitic acid, >stearic acid, “oleic acid, ®linoleic acid, ®arachidic acid, “linolenic acid, ®cis 8,11,14-eicosatrienoic acid, ®arachidonic acid, °punicic

acid, 'a-eleostearic acid, '*catalpic acid, '3saturated fatty acids, “monounsaturated fatty acids,

Spolyunsaturated fatty acids.

Table 2
Statistical parameters of OPLS-DA calibration and validation models of pure and adulterated pomegranate seed oil samples.
Model Number of samples UV-vis FTIR Fluorescence
Pre-treatment: SD, LVs: 1 + 5 Pre-treatment: SD, LVs: 1 + 2 Pre-treatment: WDTs:SD, LVs: 1 + 5
RZ,:0.87, R%,: 0.19 RZ,: 0.96, R%,: 0.51 RZ,: 0.96, R%,: 0.58
Pure Adulterated %CC Pure Adulterated %CC Pure Adulterated %CC
Calibration
Pure 10 10 0 100 10 0 100 10 0 100
Adulterated 37 0 37 100 0 37 100 0 37 100
Total 47 10 37 100 10 37 100 10 37 100
Validation
Pure 5 4 1 80 5 0 100 4 1 80
Adulterated 19 2 17 89 0 19 100 0 19 100
Total 24 6 18 88 5 19 100 4 20 96

SD: second derivative, WDTs: SD combination of wavelet denoising techniques and second derivative, LVs: latent variables, R%,: regression coefficient for cali-
bration, RZ,: regression coefficient for cross validation, %CC: average correct classification rate.

there are no exact ranges for the error values because they are depen-
dent on the range and magnitude of the reference value to be predicted.
Instead, comparably low and close error values of calibration (RMSEC),
cross validation (RMSECV) and external validation (RMSEP) are ex-
pected for a good model [14]. All these parameters except RPD were
included in the statistical software. RPD is a comprehensive value to
reveal the prediction ability of the corresponding model in terms of the
ratio of standard deviation of predicted values to RMSEP values [15].
The RPD values were calculated manually as shown in the literature
[20].

3. Results and discussion

Free fatty acid values and fatty acid profiles of pomegranate oils
were determined to obtain information about the characteristics of the
oils analyzed and the ranges of these parameters for pure PSOs are
shown in Table 1. Free fatty acid values of the pure samples range
between 0.58 and 3.43%. A study in the literature reported values be-
tween 1.80 and 4.38% for free fatty acid content of cold pressed PSOs
from two different countries [1]. Punicic acid is the most common fatty
acid of the oil samples followed by a-eleostearic and linolenic acid and
pucinic acid content varies between 69.45 and 81.12% for the pure oils.
Ranges for total MUFAs and PUFAs are 4.06-5.31% and 89.04-90.80%,
respectively (Table 1). These ranges are mostly in agreement with the

values in the literature [1,3,4,7,9]. Quantitative differences could be
attributed to growing location [21] as well as inter-varietal differences
of PSO samples [22]. Some chemical characteristics of sunflower oil
used as an adulterant were also measured. Free fatty acid value of
sunflower oil was determined as 0.08% and major fatty acids of the
sunflower oil were found as palmitic (6.36%), stearic (3.43%), oleic
(30.93%) and linoleic acids (57.92%), and total SFA, MUFA, and PUFA
contents were 10.81%, 31.11% and 58.08%, respectively. Oleic and
linoleic acid contents of sunflower oil were much higher than PSOs
whereas PUFA content of PSOs was higher compared to sunflower oil.
In addition, the characteristic fatty acid compounds of PSOs such as
pucinic acid was not found in the sunflower oil. These significant dif-
ferences in fatty acid composition could also be used as markers in
adulteration detection and they are also highly correlated with the
spectral differences of the studied oils as will be discussed in the next
parts.

Spectra of 71 samples (15 pure and 56 adulterated) were collected
using three spectroscopic methods, UV-vis, mid-IR and fluorescence.
These spectral data were analyzed with multivariate statistical analysis
techniques, OPLS-DA and PLS for classification and prediction pur-
poses, respectively. Statistical parameters of constructed models for
each spectroscopic approach are listed in Table 2 for classification and
Table 3 for prediction. Different pre-treatments are applied to spectral
data and only the results of the best transformations are provided.
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Table 3

Statistical parameters of PLS regression models for prediction of pomegranate seed oil adulteration by spectroscopic methods.
Method Pre-treatment LVs R? L. R? .. R? pred. RMSEC RMSECV RMSEP RPD Slope
UV-vis SD 5 0.98 0.93 0.98 2.29 4.94 2.78 5.94 0.98
FTIR SD 3 0.99 0.99 0.99 0.57 1.51 1.42 12.48 0.99
Fluorescence 0sc 4 0.96 0.94 0.96 3.19 4.48 3.59 4.77 0.96

SD: second derivative, OSC: orthogonal signal correction, LVs: latent variables, RZ,;: regression coefficient for calibration, R%,: regression coefficient for cross
validation, Rﬁred_: regression coefficient for prediction (external val.), RMSEC: root mean square error of calibration, RMSECV: root mean square error of cross-
validation, RMSEP: root mean square error of prediction, RPD: residual predictive deviation.
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Fig. 1. a) UV-visible spectra of pure and adulterated pomegranate seed oils; b)
OPLS-DA score plot constructed with UV-visible spectral data (@1: pure and ll
2: adulterated pomegranate seed oil samples); ¢) PLS regression plot of pre-
dicted vs actual adulteration concentration for UV-visible spectroscopy.

Validation

Every model has a calibration set containing 47 samples and a valida-
tion set of 24 oils.

3.1. UV-visible spectroscopy

Averaged raw UV-visible spectra of pure and adulterated samples
are provided in Fig. 1a. Major changes in the absorbance values of
adulterated samples with respect to pure oils are in 300-540 nm region
(Fig. 1a). While peaks in 300-400 nm region are associated with
polyphenolic compounds, absorptions at 430-460 nm correspond to
carotenoids [23]. As can be seen from the Fig. 1a, there is a clear de-
creasing trend in absorbance values with increasing adulteration con-
centration. Therefore, any differentiation with respect to adulteration
could be associated with the absorbance values in these regions for
UV-visible spectroscopy. There are various reports in the literature
showing the high phenolic and carotenoid contents of PSO [3,8,9].
Moreover, PSOs have been proposed as a more effective alternative to
synthetic antioxidants to protect plant-based oils against oxidation
[24].

Pre-treatment of UV-visible spectra with SD provided the best re-
sults for classification model and OPLS-DA model generated after this
transformation have 1 predictive and 5 orthogonal components
(Table 2). According to the score plot of this model (Fig. 1b), pure and
adulterated samples are clearly separated from each other with respect
to LV1 as being in the left and right side of the score plot, respectively
except one sample having 1% adulterant. Correct classification table
(Table 2) indicates that 100% of all samples in calibration set are cor-
rectly classified within their group while 88% success rate (1 pure oil is
misclassified as adulterated out of 5 samples and 2 adulterated samples
are wrongly classified as pure out of 19 samples) is obtained for ex-
ternal validation. In multivariate statistical analysis, variable im-
portance in projection (VIP) scores > 1 indicate the significance of
variables under investigation. VIP values of OPLS-DA of UV-vis spectral
data confirmed that 300-400 nm (polyphenols) and 400-500 nm
(carotenoids) are the most significant regions which caused separation
of the samples.

UV-vis spectral data is also evaluated with PLS regression to con-
struct a correlation between actual and predicted percentages of mixing
in order to see quantification ability of the corresponding model.
Statistical parameters of PLS regression model are provided in Table 3
and regression plot is shown in Fig. 1c. The best pre-treatment for PLS
model is SD and this model is constructed with 5 LVs having the lowest
R? of 0.93. RPD value of 5.94 is an indication of a robust model along
with slope (0.98) close to 1. In addition, RMSE values (2.29-4.94%) are
low enough and close to each other (Table 3). Examination of PLS re-
gression plot indicated that detection of adulteration > 5% could be
possible with the use of UV-vis spectroscopy (Fig. 1c). Although it is a
very economical and easy to use technique, UV-vis spectroscopy is not
as common as other spectroscopic methods in detection of adulteration
of cold pressed oils and has never been used for authentication of PSO
before. Among the few studies in this area, UV-vis spectra also provided
good separation between fresh and fresh-old olive oil mixtures [25].
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Fig. 2. a) Mid-IR spectra of pure and adulterated pomegranate seed oils; b)
OPLS-DA score plot constructed with mid-IR spectral data (@1: pure and H2:
adulterated pomegranate seed oil samples); c¢) PLS regression plot of predicted
vs actual adulteration concentration for mid-IR spectroscopy.

Validation

3.2. Mid-IR spectroscopy

Differences in the peaks of pure and adulterated samples are at
around 2924 cm™!, 2852 cm ™!, 1723 cm ™!, as well as fingerprint
region (1464-983 cm™') and 723 cm™' (Fig. 2a) of mid-IR wave-
number ranges. Pure samples showed higher absorption at some of
these wavelengths because of different chemical characteristics of PSO
samples compared to adulterant, sunflower oil. First, due to refining
process sunflower oil does not contain considerable amounts of free
fatty acids whereas cold pressed PSO samples do. At 1723 cm ™' an
observable peak exists based on stretching of C = O groups correlated
with free fatty acids [17] and this peak shows decreasing trend with
increasing adulterant level. In addition, absorbances at the fingerprint
region (1464-983 cm™ 1) and around 722 cm ™! of the PSO samples
were found higher compared to adulterated samples due to fact that
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these particular wavenumbers are associated with polyphenols and
tocopherols [26]. On the other hand, there is a positive correlation
between increasing adulterant level and the absorbances at around
2924 and 2852 cm~! based on symmetrical and asymmetrical
stretching vibrations of CH,, respectively [25].

Mid-IR data are analyzed to differentiate pure and mixed samples
with OPLS-DA (Table 2). Score plot of OPLS-DA model is shown in
Fig. 2b and this plot indicates a very good separation between pure and
mixed oils with respect to the first LV explaining 37% of the total
variance. Correct classification table also confirms this observation
(Table 2). According to this table, all of the samples in both calibration
and external validation sets are classified in their own group with 100%
success rate. The most significant wavelengths in discrimination of pure
and adulterated samples are explained with VIP values. The highest VIP
values are obtained at fingerprint region as well as 2924 and
2852 cm ™! along with the major peak at around 1743 cm ™",

PLS regression model constructed using SD of mid-IR spectral data
with 3 LVs have R? values of 0.99 and low and close RMSE values
(Table 3). Slope of the regression line, 0.99, is close to 1 and RPD value
(12.48) is quite high confirming excellent prediction ability (Table 3).
Therefore, it could be concluded that a robust and accurate model is
obtained. As PLS regression plot indicates, detection of mixtures of PSO
with sunflower oil is possible above 1% level (Fig. 2c), which is a quite
satisfactory threshold value for an adulteration study. As in our study,
mid-IR spectroscopy has been a quite successful technique regarding
the determination of adulteration of different types of cold pressed oils
such as sesame, black cumin and avocado oils with low detection levels
[27-29]. To the best of our knowledge, there is not any comparable
PSO adulteration and/or characterization study using FTIR analysis in
the literature.

3.3. Fluorescence spectroscopy

Fluorescence spectroscopic profiles of pure and adulterated oils are
presented in Fig. 3a. 350-700 nm range is the region where major
differences between mixed and pure samples are observed visually.
250-400 nm region are mostly associated with a-tocopherol and phe-
nolic compounds while 400-600 nm part of the spectra is attributed to
carotenoids along with fatty acid oxidation products [30,31]. The
fluorescent intensity in the 400-600 nm range correlates positively with
the increasing mixture levels due to more oxidative fluorophore com-
pounds of these samples.

OPLS-DA of fluorescence spectral profile resulted a model with 1
predictive and 5 orthogonal components. OPLS-DA score plot indicates
a good differentiation between pure and adulterated oils (Fig. 3b). Only
one of the samples having 1% sunflower oil is on the line of the first LV.
Other samples in two groups are well separated with respect to the first
LV explaining 42% of the total variance. Model placed 100% of the
samples in the calibration set to the right class while 96% success rate
was obtained in the external validation set due to the misplacement of 1
pure sample to the adulterated class (Table 2). VIP values indicated that
350-600 nm range and minor peak around 670 nm are responsible for
differentiation.

Four component PLS regression model of fluorescence spectral data
pre-processed with OSC have R? values = 0.94 (Table 3). RMSE values
are in 3.19-4.48% range which are higher compared to mid-IR PLS
model but closer to UV-vis model; however, these values are still in
acceptable range. PLS model for fluorescence data have the lowest RPD
value (4.77) compared to UV-vis (5.94) and mid-IR (12.48) models
(Table 3); nevertheless, this RPD is high enough for a robust model.
Evaluation of PLS regression plot (Fig. 3c) reveals that determination of
addition of sunflower oil to PSO at higher than 10% level could be
possible with this analysis. Fluorescence spectroscopy has also various
applications in detection of mixtures of cold pressed oils with cheaper
oils [27,32]. As opposed to this study, synchronous fluorescence spec-
troscopy provided better results compared to mid-IR spectroscopy in



0. Uncu, et al.

1209

Fluorescence intensity
s @ = 3
5 g8 8 8
: : : :

~
S
1

04

201+ T r T T r T T T T

300 350 400 450 500 550 600 650 700 750
Wavelength (nm)

—Pure -=+1% (V/v) *++5% (v/v) =*+10% (v/v) ==+ 15% (v/v) — 20% (v/v) — 30% (v/v) — 40% (v/v) -~ 50% (v/v)

(a)
301
201
u
10 ‘.:. ° o ;I
o
2
104
-l
-20] PN [ ]
| |
-30-] n
-40
| |
-20 -15 -10 -5 0 5 10 15
w1
'Y H
(b)
70
g 60 *
5 @
S 50 H
c
S a0 'Y
] $
5 $
£ 30
= L
T
® 20 ‘
° 1 v
3 -
510 e & e
5 ‘3N T 1
o S
a 0 |
gv 10 20 30 40 50 60
-10

Actual adulteration vol. (%)

# Calibration Validation

(c)

Fig. 3. a) Fluorescence spectra of pure and adulterated pomegranate seed oils;
b) OPLS-DA score plot constructed with fluorescence spectral data (@1: pure
and W2: adulterated pomegranate seed oil samples); c¢) PLS regression plot of
predicted vs actual adulteration concentration for fluorescence spectroscopy.

detection of adulteration of black cumin oil with soybean oil with a
detection limit of 5% [27]. However, fluorescence spectroscopy has not
been used in any study related with the authentication of PSO before.

4. Conclusions

Mid-IR spectroscopy provided the best results regarding the de-
termination of mixing of cold pressed PSO with sunflower oil. Mid-IR
spectroscopy presents a holistic approach which has contributions from
all constituents of the samples. However, statistical models based on
UV-vis spectroscopy depends mostly on pigment profiles of the sam-
ples. Although mid-IR spectroscopy has the lowest detection limit
UV-vis and fluorescence spectroscopy techniques still allow determi-
nation of mixing at low levels. Therefore, all 3 methods could be used as
an authentication tool for cold pressed PSOs.
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