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Abstract Estimates of sediment loads in natural streams are required for a wide spectrum of water resources

engineering problems from optimal reservoir design to water quality in lakes. Suspended sediment constitutes

75–95% of the total load. The nonlinear problem of suspended sediment estimation requires a nonlinear model.

An artificial neural network (ANN) model has been developed to predict daily total suspended sediment (TSS) in

rivers. The model is constructed as a three-layer feedforward network using the back-propagation algorithm as a

training tool. The model predicts TSS rates using precipitation (P) data as input. For network training and testing

240 sets of data sets were used. The model successfully predicted daily TSS loads using the present and past 4

days precipitation data in the input vector with R 2 ¼ 0.91 and MAE ¼ 34.22 mg/L. The performance of the

model was also tested against the most recently developed non-linear black box model based upon two-

dimensional unit sediment graph theory (2D-USGT). The comparison of results revealed that the ANN has a

significantly better performance than the 2D-USGT. Investigation results revealed that the ANN model requires a

period of more than 75 d of measured P-TSS data for training the model for satisfactory TSS estimation. The

statistical parameter range (xmin 2 xmax) plays a major role for optimal partitioning of data into training and testing

sets. Both sets should have comparable values for the range parameter.

Keywords Artificial neural network; back-propagation; feedforward; parameter range; sediment graph theory;

suspended sediment

Introduction

Estimates of sediment loads in natural streams are required for the optimal design and

operation of water resources structures such as reservoir, dam and stable channel.

Furthermore, it is known that sediment affects pollutant transport causing a water quality

problem in surface water bodies. Sediment loads in rivers basically consist of bed load and

suspended sediment. According to Yang (1996), suspended sediment constitutes 75–95% of

the total load. Suspended sediment has long been identified for the transport of nutrients and

contaminants such as heavy metals and micro-organics (Cigizoglu 2004).

Due to its importance, sediment transport has been experimentally and mathematically

studied for years. Experimental studies have led to the development of numerous empirical

equations to predict sediment rates (Yang 1996). These equations, when predicting measured

data even for the same flow conditions, differ significantly from each other. This is because

each equation is developed from a particular experiment and the resulting models do not

have the universal ability to be applied to different situations (Tayfur 2003).

The mathematical studies have led to physics-based and black-box models. The physics-

based models are expressed by partial differential equations (Tayfur 2001, 2002a; Guo and

Jin 2002; Pittaluga and Seminara 2003). These are complicated models capable of providing
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spatial and temporal variations of the state variables. For these models to be effective,

detailed information on topographic and soil characteristics of a watershed, and temporal and

spatial variation of precipitation, should be available at a grid scale dictated by the numerical

mesh. Such data is rarely available. Furthermore, the assumptions in the derivation of these

equations significantly simplify the actual physical processes (Tayfur 2003). In addition, it is

likely to have convergence and stability problems in the numerical solution of these highly

non-linear equations. Hence, they, in the end, may not offer much advantage over the lumped

(black-box) models.

In the black-box models, attention is concentrated on determining catchment response to

inputs rather than on a detailed description and modelling of the catchment. In other words,

the black-box analysis is applied as an investigation of the behaviour of the catchment

system with no reference to its inner properties and the physical laws governing its processes.

That means that all the information concerning the behaviour of the catchment of interest is

represented in the input–output data set. In this direction, many studies have been carried out

(Bruce 1975; Rendon-Herrero 1978; Williams 1978). Most of these models involve the

estimation of excess precipitation and separation of base flow and are based on the

assumption that concentration varies linearly with excess rainfall. As non-linear black-box

models of catchment, functional series have been applied for runoff prediction (Amorocho

1967; Muftuoglu 1984, 1991; Xia et al. 1997). Only recently have Guldal and Muftuoglu

(2001) developed a non-linear black box model based upon two-dimensional unit sediment

graph theory for TSS prediction. The model is able to represent the overall erosive behaviour

of a catchment without requiring excess rainfall and direct runoff. The model successfully

predicted TSS using the current and antecedent precipitation. This model is proved to be

superior to existing black-box (conventional second-order functional series) models.

However, the model is based upon the assumptions that the catchment is time-invariant and

precipitation has a uniform spatial distribution.

Tayfur (2003) summarised the basic reasons behind the difficulties in all these

aforementioned modelling efforts of sediment transport. Sediment transport is a complicated

problem. There is still a lack of well defined strong correlation between sediment

concentration and a dominant variable. Due to the stochastic nature of sediment movement, it

is difficult to precisely define at what flow condition a sediment particle will begin to move. In

fluvial hydraulics, the boundary is movable and the resistance to flow is variable and there is a

lack of a reliable and consistent method for the prediction of the variation of roughness

coefficient. There is an inability to predict bed forms on a sound theoretical basis—even if the

bed form is given the form roughness still varies significantly. Sediment discharge depends on

the gradation and shape of sediment, percent of bed surface covered by coarse material,

availability of bed material for transport, variations of hydrological cycle, rate of supply of fine

material or wash load, water temperature, channel pattern and bed configuration and strength

of turbulence. Tremendous uncertainties are involved in estimating sediment loads at different

flow and sediment conditions under different hydrologic, geologic and climatic constraints.

For that reason, as an alternative to the existing models, an ANN model to estimate TSS in

natural rivers is proposed. The ANN is a black-box model capable of solving highly non-

linear complex problems. Mathematically ANNs can be viewed as a universal approximator.

They have the ability to identify a relationship from given patterns and this enables them to

solve large-scale complex problems, such as pattern recognition, non-linear modelling,

classification, association, and control. In recent years, ANNs have been applied to solve

many hydrological problems (ASCE Task Committee 2000b). With regard to sediment

transport, Tayfur (2002b) applied ANNs to predict sheet sediment bed loads from plots

having varying gradients under varying rainfall intensities. Cigizoglu (2002, 2004) applied

ANNs to estimate TSS in natural streams using flow discharge data in the input vector.
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Since Cigizoglu (2002, 2004) undertook estimation of TSS using flow discharge data this

study is limited to using only precipitation data in the input vector of the ANN model to

estimate TSS. To predict TSS via precipitation data is important. According to Sivapalan

et al. (2003), one of the main issues for hydrologists today is the prediction of the hydrologic

variables in ungauged or poorly gauged watersheds. Drainage basins in many parts of the

world are ungauged or poorly gauged and in some cases existing measurement networks are

declining (Sivapalan et al. 2003). There is an extensive network of precipitation gauges in

most parts of the world. To predict hydrologic variables through precipitation data would

therefore be very beneficial for hydrologists.

Jain and Indurthy (2003), in their comparative study, have shown that ANNs

outperformed the unit hydrograph model and statistical models of linear multiple regression

(LMR) and non-linear multiple regression (NLMR) in rainfall–runoff modelling. Similarly,

Cigizoglu (2002, 2004) has shown the superiority of ANN over LMR, NLMR,

autoregressive (AR) and sediment rating curve (SRC) models in TSS modelling. Since the

performance of ANN was tested against deterministic, statistical and stochastic models, in

this study the performance of ANNs will be tested against the non-linear black-box model

based on two-dimensional sediment graph theory of Guldal and Muftuoglu (2001).

Artificial neural network (ANN)

The hydraulic and/or hydrologic applications of ANN generally consider a three- layer

feedforward network, as shown in Figure 1. In a feedforward ANN, the input quantities (xi)

are fed into the input layer neurons that, in turn, pass them on to the hidden layer neurons (zi)

after multiplication by connection weights (vij) (Figure 1). A hidden layer neuron adds up the

weighted input received from each input neuron (xivij) and associates it with a bias (bj) (i.e.

netj ¼
P

xivij 2 bj). The result (netj) is then passed on through a non-linear transfer function

to produce an output.

The learning of ANNs is generally accomplished by the most commonly used supervised

training algorithm of the back-propagation algorithm. The objective of the back-propagation

algorithm is to find the optimal weights that would generate an output vector Y ¼ (y1, y2, . . . ,

yp) as close as possible to the target values of the output vector T ¼ (t1, t2, . . . , tp) with the

selected accuracy. The optimal weights are found by minimising a predetermined error

function (E) of the following form (ASCE Task Committee 2000a):

E ¼
P

X

p

X
ðyi 2 tiÞ

2 ð1Þ
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Figure 1 Schematic representation of a three-layer feed-forward artificial neural network
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where yi ¼ the component of an ANN output vector Y; ti ¼ the component of a target

output vector T; p ¼ the number of output neurons; and P ¼ the number of training

patterns.

In the back-propagation algorithm, the effect of the input is first passed forward through

the network to reach the output layer. After the error is computed, it is then propagated back

towards the input layer with the weights being modified. The gradient-descent method, along

with the chain rule of differentiation, is employed to modify the network weights as (ASCE

Task Committee 2000a)

DvijðnÞ ¼ 2d
›E

›vij
þ aDvijðn2 1Þ ð2Þ

where Dvij(n) and Dvij(n 2 1) ¼ the weight increments between node i and j during the nth

and (n 2 1)th pass or epoch; d ¼ the learning rate; and a ¼ the momentum factor.

The details of the theory of ANNs are given in ASCE Task Committee (2000a).

Non-linear black-box model (2D-USGT)

Guldal and Muftuoglu (2001) developed a non-linear black-box model based upon two-

dimensional unit sediment graph theory (2D-USGT) on the basis of the qualitative

description of the catchment. In their model, the output (the system’s response) is related to

input by functional equations whose parameters—called response functions—are

determined by a calibration procedure based upon the historical data. The discrete form of

the model is given as (Guldal and Muftuoglu 2001)

yn ¼
Xn

i¼1

Xn

j¼i

hi;jxixj ð3Þ

where yn ¼ sediment concentration; n ¼ number of intervals in the memory, xi ¼

effective precipitation in the ith interval; xj ¼ effective precipitation in the jth interval; and

hi,j ¼ coefficient representing the contribution rate from the ith interval under the influence

of the unit effective precipitation in the jth interval.

The set of coefficients hi,j, called the ‘response function’, can be interpreted as a family of

sediment graphs, each resulting from the unit effective precipitation in an interval under the

influence of the unit effective precipitation in an antecedent interval. This is referred to as the

2D unit sediment graph.

The modified form of Equation (3) is the special second-order functional series. The

discrete form of the modified model is expressed as (Guldal and Muftuoglu 2001)

yn ¼
Xl

i¼1

hixi þ
Xk

i¼1

Xk

j¼i

hi;jxiþlxjþl ð4Þ

where l and k ¼ the numbers of intervals in the delayed and immediate response periods

respectively; n ¼ l þ k; and hi, hi,j ¼ ordinary finite-period and 2D finite-period unit

sediment graph, respectively (i.e. hi represent the catchment response to the unit effective

rainfall in the ith interval and hi,j represent the response to the unit effective rainfall in the

(l þ j)th interval under the influence of the unit effective rainfall in the (l þ i)th interval).

The model given by Equation (4) can only be used for data generation. Nevertheless, if

there is a lag L between the effect in the final unit interval of the memory and the response,

the models representing the prediction lead time can then be applied as a predictor. For this

purpose, the models are applied repeatedly, for successive predictions or generations of TSS,

by shifting the time origin. Thus, with a new parameter of a shift counter (c), Equation (4)

can be expressed by the following form that has a generation and prediction capability
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(Guldal and Muftuoglu 2001):

ynþLþc ¼
Xl

i¼1

hixiþc þ
Xk

i¼1

Xk

j¼i

hi;jxiþlþcxjþlþc ð5Þ

The details of the 2D-USGT model can be obtained from Guldal (1997) and Guldal and

Muftuoglu (2001).

Precipitation and TSS data

The data used in this study were directly obtained from the illustrations given by Brown and

Choate (1989). The same data were used by Guldal and Muftuoglu (2001) to calibrate and

validate their model of 2D-USGT. A technical report written by Carey et al. (1988) provided

a hint that the data belong to a medium-sized catchment in the Tennessee Basin. After a few

futile attempts, it was decided not to carry out further investigation on the identity and

properties of the catchment. This is because the ANN model developed in this study does not

require the properties of the catchment.

The data contained 240 d of measured precipitation (P) and TSS data (Figures 2(a, b)).

Table 1 presents cross-correlation values between the two variables. According to Table 1,

after time lag of 4 d, the cross-correlation is close to zero. That means, after a time lag of 4 d,

there is no significant effect of P on TSS. This fact was preserved in the application of the

ANN model. For example, the input vector contained, in one of the applications of the ANN
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Figure 2 Measured data: (a) precipitation and (b) TSS
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model, P data at present (t) and at time lags t 2 1, t 2 2, t 2 3 and t 2 4 (Table 1). Table 2

presents the statistical parameters (mean,�x; standard deviation, sx; skewness coefficient, csx;

coefficient of variation, cvx; overall minimum, xmin and overall maximum, xmax) of the P-TSS

data. As seen in Table 2, both data sets have comparable low values of coefficients of

variation and skewness.

Application of ANN model

The developed ANN model was applied to estimate TSS from P data. For this purpose, many

different cases of input vectors were tried. In all these cases, the constructed network

employed a single hidden layer (Figure 1) and the sigmoid activation function (Tayfur

2002b). Due to the nature of the sigmoid function, all external input and output values before

passing them into the network were standardised by Equation (6) (Tayfur et al. 2005) as

xi ¼ 0:1 þ
0:8ðxi 2 xmini Þ

ðxmaxi 2 xmini Þ
ð6Þ

where xmaxi
and xmini

are the maximum and minimum values of the ith neuron in the input

layer for all the feed data vectors, respectively.

Equation (6) compresses all the data into the range of 0.1–0.9 to overcome problems

associated with upper-limit and lower-limit saturation. Note that, without standardisation,

large values input into an ANN would require extremely small weighting factors to be

applied and this could cause a number of problems (Dawson and Wilby 1998).

Before starting the training procedure, small random values of 21.5–1.5 for network

connection weights and 1.0 for biases were assigned. The network was successfully trained

with 20 000 iterations, and 0.04 and 0.1 values for the learning rate and momentum factor

terms, respectively.

Several cases of input vector were tried so as to find the optimal number of neurons in the

input layer. Table 3 summarises the properties of network structure for each case. The

optimal number of neurons in the hidden layer of the network (Figure 1) was obtained by the

trial and error procedure for each case. According to Table 3, the best result was obtained for

the third case where present and past 4-d values of the P data were used in the input vector.

This is consistent with the information in Table 1 stating that after a time lag of 4 d, the cross-

correlation is close to zero. In this particular case, the network had 5 input neurons, 8 hidden

neurons and 1 output neuron (Table 3).

Table 1 Cross-correlations between precipitation (P) and TSS

Time lag zero-day (t) rP,TSS,0 0.3664

Time lag one-day (t 2 1) rP,TSS,1 0.7209

Time lag two-days (t 2 2) rP,TSS,2 0.4735

Time lag three-days (t 2 3) rP,TSS,3 0.2709

Time lag four-days (t 2 4) rP,TSS,4 0.1104

Time lag five-days (t 2 5) rP,TSS,5 0.0505

Table 2 Statistical parameters of measured data (mean, �x; standard deviation, sx; skewness coefficient,

csx; coefficient of variation, cvx; overall minimum, xmin and overall maximum, xmax)

xmin xmax �x sx cvx csx

P (mm/d) 0 48.2 6.20 9.36 2.14 3.05

TSS (mg/L) 1 1500 156.03 216.46 1.39 3.24
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Several cases of data partitioning into training and testing periods were tried in order to

obtain the optimal period for training the ANN model. Table 4 presents 7 different

partitioning cases and the related error measures for each case. Tables 5 and 6 present the

statistical parameter values for the training and testing periods for each case in Table 4.

According to Table 4, minimum error is obtained for Case 6 where 150 d of data were used in

the network training. Employing more than 75 d in the training period results in satisfactory

TSS estimations (Table 4). Case 1 and Case 2 in Table 4 produced poor results. This is

because of two main reasons. First, 60 d, especially 30 d, of period is too short for the ANN

model to capture the relation between the input (P) and output (TSS) variables. Second,

though the other statistical parameter values are comparable for the training and testing

periods, the values of the parameter range (xmin 2 xmax) for the training periods in Case 1

and Case 2 are quite a bit lower than the corresponding values for the testing periods (Tables

5 and 6). According to Table 4, using 120 d of data (Case 5) or 180 d of data (Case 7) in the

training periods does not affect the performance of ANN model significantly.

Table 3 Different P input vectors to ANN model (P: precipitation; t: present time, t 2 1: time lag 1 d, . . . ., t 2 5:

time lag 5 d)

Number of neurons in layers

Input vector Input Hidden Output R 2 MAE (mg/L)

Pt, Pt21, Pt22 3 5 1 0.83 56.46

Pt, Pt21, Pt22, Pt23 4 6 1 0.90 38.42

Pt, Pt21, Pt22, Pt23, Pt24 5 8 1 0.91 34.22

Pt, Pt21, Pt22, Pt23, Pt24, Pt25 6 10 1 0.89 46.79

Table 4 Different data partitioning into training and testing periods

Training period (d) Testing period (d) R 2 MAE (mg/L)

Case 1 30 210 0.696 77.58

Case 2 60 180 0.708 70.00

Case 3 75 165 0.888 52.69

Case 4 90 150 0.904 40.30

Case 5 120 120 0.910 41.52

Case 6 150 90 0.907 34.22

Case 7 180 60 0.919 38.50

Table 5 Statistical parameters for precipitation (mm/day) for the cases in Table 4

Training period Testing period

xmin xmax �x sx cvx csx xmin xmax �x sx cvx csx

Case 1 0.0 25.9 3.35 7.12 2.13 2.53 0 48.2 4.45 9.61 2.16 3.08

Case 2 0.0 34.7 3.58 7.59 2.12 2.74 0 48.2 4.60 9.84 2.14 3.06

Case 3 0.0 44.6 4.75 9.81 2.07 2.77 0 48.2 4.45 9.57 2.15 3.05

Case 4 0.0 45.0 5.56 10.77 1.94 2.56 0 48.2 3.76 8.50 2.26 3.38

Case 5 0.0 45.0 4.93 9.94 2.02 2.96 0 48.2 3.68 8.57 2.33 3.65

Case 6 0.0 45.0 5.09 10.18 2.00 2.73 0 48.2 3.03 7.57 2.50 3.99

Case 7 0.0 45.0 4.74 9.59 2.02 2.85 0 48.2 3.05 8.38 2.75 4.13
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Figure 3(a) presents measured data versus ANN-predicted data for the case where present

and past 4-d values of P data (Table 3) were used in the input vector. In this case (Case 6 in

Tables 4, 5 and 6), 150 data sets were used for the model training and the remaining 90-d TSS

data were predicted by the ANN model. As seen in Figure 3(a), the slope of the regression

line is close to 1 and the intercept is close to 0. The coefficient of determination (R 2) is 0.91

and the mean absolute error (MAE) is 34.22 mg/L. It can be concluded that the ANN

successfully estimated the measured TSS data. Figure 3(b) also shows the trend of the

Table 6 Statistical parameters for TSS (mg/L) for the cases in Table 4

Training period Testing period

xmin xmax �x sx cvx csx xmin xmax �x sx cvx csx

Case 1 1 760 139.1 170.9 1.23 2.18 1 1500 159.1 224.5 1.41 3.24

Case 2 1 760 123.5 142.6 1.15 2.18 10 1500 167.8 237.9 1.42 3.10

Case 3 1 1420 159.5 221.9 1.39 3.21 10 1500 155.2 217.1 1.40 3.24

Case 4 1 1420 209.5 253.9 1.21 2.35 10 1500 123.9 186.5 1.51 4.32

Case 5 1 1420 179.8 229.8 1.28 2.68 10 1500 132.5 203.7 1.54 4.07

Case 6 1 1420 183.4 232.0 1.26 2.59 10 1500 116.9 190.2 1.63 5.07

Case 7 1 1420 167.9 218.4 1.30 2.77 10 1500 123.1 215.8 1.75 4.86

y = 0.81x + 15.5
R2 = 0.91
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Figure 3 (a) Measured TSS data versus ANN-predicted TSS. (b) Simulating trend of measured TSS data by the

ANN model (ANN model used present and past 4 d of precipitation in the input vector)
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simulation. As seen, the model closely captured the trend of the measured data. Only in one

observation, namely the observation on day 53 having an extreme value, did it slightly

underestimate the measured data.

Several scenarios were tried to estimate TSS from past TSS values by ANNs. The best

result was obtained when the past 6 measured TSS were used in the input vector with

R 2 ¼ 0.67. Also, in one scenario, TSS at (t 2 1) (one day lag) was added to the input vector

of the present and past 4 d of P data to estimate TSS at the present time (TSSt). It was seen

that incorporating TSS at (t 2 1) did not improve the results significantly (R 2 ¼ 0.92).

Application of 2D-USGT model

The 2D-USGT model was also applied to estimate TSS data from P data. In order to be

consistent with the ANN model, the 2D-USGT model was calibrated with the first 150 sets of

data. Then it was tested with the remaining data. Cross-correlation data in Table 1 were used

to determine the memory parameters of the model.

Figures 4(a, b) present the prediction of TSS data by the 2D-USGT model having

memories of 4 d and 1 d (linear and non-linear parts of total memory, i.e. l ¼ 4, k ¼ 1, that is

n ¼ 5 d of total memory). In other words, in this case, the model employed present and past

4 d of precipitation in the input vector. As seen in Figure 4(a), R 2 ¼ 0.73 and MAE ¼ 68.2,

as opposed to R 2 ¼ 0.91 and MAE ¼ 34.22 in the case of the ANN model (Figure 3(a)).

Also, as seen in Figure 4(b), the 2D-USGT model could not sufficiently capture the trend of

the measured data—underpredicting extreme values and overpredicting low values.
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Figure 4 (a) Measured TSS data versus 2D-USGT-predicted TSS. (b) Simulating trend of measured TSS data

by the 2D-USGT model (2D-USGT model used present and past 4 d of precipitation in the input vector)
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Concluding remarks

This study presented satisfactory predictions of daily total suspended sediment (TSS) in

natural rivers by artificial neural networks (ANNs) from precipitation (P) data. This result

has an important implication for a basin where there is a partial gauging station for

hydrological variables. One of the main issues for hydrologists today is the prediction of the

hydrologic variables in ungauged, or poorly gauged, watersheds. Drainage basins in many

parts of the world are ungauged or poorly gauged and in some cases existing measurement

networks are declining. On the other hand, there is an extensive network of precipitation

gauges in most parts of the world. Therefore, prediction of TSS through P data becomes very

beneficial for hydrologists.

Investigation results revealed that at least present and past 3 d P data should be used in the

input vector of ANN model for satisfactory TSS estimation. Cross-correlation values

between the input and output variables can shed light on finding the optimal number of input

neurons in the input layer of the ANN model.

Investigation results also revealed that, in order to obtain satisfactory TSS estimations by

the ANN model, there should be a sufficient length of data record for the training period so

that the ANN model can capture the relation between the input and output variables. In this

study, this period is found to be more than 75 d for P-TSS study. Furthermore, it is found out

that the statistical parameter values for the training and testing periods should be comparable

for successful ANN applications. In particular, in partitioning data into two periods of

training and testing, special attention should be given to the parameter range. The values of

this parameter should be comparable for the two periods. Otherwise, as is presented in this

study, ANNs would perform poorly in estimating TSS. This is consistent with the fact that

ANNs are not good extrapolators (ASCE Task Committee 2000a).

ANNs showed a greater performance in the prediction of TSS using P data in the input

vector than the non-linear black-box model based upon two-dimensional unit sediment graph

theory (2D-USGT). The constructed three-layer feedforward network makes no assumption

with regard to the hydrological processes. On the other hand, the 2D-USGT model makes

assumptions that the catchment is time-invariant and precipitation has a uniform spatial

distribution. That may be the reason for the poorer performance of the 2D-USGT model in

predicting TSS.

ANNs are black-box models that can solve non-linear complex problems, such as the

suspended sediment transport in natural streams, when provided with sufficient historical

data of the process. The ANN does not make any assumption, as opposed to deterministic,

statistical and stochastic models, on the physics of the process so as to simplify the process.

However, ANN does not reveal any explicit mathematical relation between the input and

output variables of the physical process. Hence, one is not able to gain much insight into

understanding the physics of the process. Furthermore, though ANN has a very strong

interpolation capacity, it lacks the extrapolation capability, especially for the cases for which

it is not trained. Nevertheless, as opposed to the other models, it is quite simple to construct

and train the model.

This study showed that ANNs can be successfully employed to estimate the complex non-

linear river suspended sediment process in situtations where explicit knowledge of internal

sub-process is not required. Predicting TSS loads that are required for the planing and

operation of a wide spectrum of water resources structures from precipitation data makes

ANNs a very promising planing and management modelling tool for the hydrologists.
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