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Abstract: It has been found that the dynamical behavior
of many complex physical systems can be properly
described by nonlinear DDEs. However, in the related
literature, research focusing on such equations with
rational nonlinearity is rare. Hence, the present study
makes an attempt to fill the existing gap. To this end,
we consider two distinct DDEs with rational nonlinearity.
We observed that the model equations assume three
kinds of traveling wave solutions; hyperbolic, trigono-
metric and rational including kink-type solitary waves
and singular periodic solutions. Our discussion is based
on the auxiliary equation method.
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ence equation, auxiliary equation method

PACS® (2010). 05.45.Yv, 04.20.Jb, 02.30.Jr

1 Introduction

Nonlinearity is everywhere around us. Consequently,
nonlinear sciences have emerged in a variety of disci-
plines such as physical, biological, chemical, econom-
ical, social and engineering, and in particular, nonlinear
differential-difference equations (DDEs) or lattice equa-
tions. The fundamental challenges of nonlinear science
are those of description and prediction. Based on the
observation of a certain phenomena, we wish to know
how to describe what we see now and how to determine
the later behavior. Nonlinear DDEs are important mod-
els for scientists and engineers in attacking problems
involving the description and prediction of the behavior
of complex physical systems. Nonlinear DDEs are con-
sidered to be hybrid systems because the spatial vari-
able n is discrete while the time t is usually kept
continuous. As a result of intense and ingenious
research, many integrable nonlinear DDEs have been
developed since the original work of Fermi, Pasta and

Ulam [1]. For instance, the Volterra lattice equation, the
Toda lattice equation, the Ablowitz–Ladik lattice equa-
tion, the discrete sine-Gordon equation, the discrete
(modified) KdV equation, the Suris lattice and so forth
[2]. These are just a few examples enough to exhibit the
variety and complexity of lattice equations. The men-
tioned equations are mostly in the form _un =
P un− 1, un, un+ 1ð Þ where P is a polynomial function of its
arguments and the dependent variable un is assumed to
be a function u n, tð Þ of a lattice variable n 2 Z. Although
many particular equations of this general class have
appeared in the literature, there are very few systematic
accounts available for nonlinear DDEs with rational
nonlinearity [3, 4]:

_un =R un− 1, un, un+ 1ð Þ, (1)

where R is a rational function of its arguments, n 2 Z,
unðtÞ= uðn, tÞ is the displacement of the nth particle
from the equilibrium position. This fact forces us to
devote this study to the following DDEs with rational
nonlinearity [5, 6]:

_un =
un− 1 − un+ 1

1− un− 1 + un+ 1
, (2)

_un =
2 un− 1 − un+ 1ð Þu2n 1− u2n

� �
un− 1 + unð Þ un + un+ 1ð Þ . (3)

Equation (2) is related to Volterra equation. The aim of
this work is to obtain exact solutions of eqs (2) and (3)
which may be of physical interest and complement the
existing literature. The existence of a special class of
explicit solutions called traveling waves is one of the
most fundamental questions regarding nonlinear DDEs.
A soliton, which was first discovered in 1834 by Russell
[7], is a special traveling wave that after a collision with
another soliton eventually emerges unscathed. Solitary
solutions of DDEs have caught much attention due to
the fact that discrete spacetime may be the most radical
and logical viewpoint of reality [8].

The rest of this study is organized as follows. In Section 2,
we first describe the algorithm nonlinear DDEs.
Subsequently, in Sections 3 and 4, we apply the method to
the eqs (2) and (3) to search for exact travelingwave solutions.
Finally, some concluding remarks are given in Section 5.

*Corresponding author: İsmail Aslan, Department of Mathematics,
İzmir Institute of Technology, Urla, İzmir 35430, Turkey,
E-mail: ismailaslan@iyte.edu.tr

IJNSNS 2016; 17(5): 243–248

Brought to you by | University of Waterloo
Authenticated

Download Date | 2/12/20 7:37 AM



2 The auxiliary equation method
for DDEs

Let us consider a system of M nonlinear DDEs in the
form [9]

Ω
�
un+ p1ðxÞ, . . . ,un +pk ðxÞ, . . . ,u′n+ p1ðxÞ, . . . ,

u′n +pk ðxÞ, . . . ,uðrÞ
n+p1

ðxÞ, . . . ,uðrÞ
n+ pk

ðxÞ�=0, (4)

where the dependent variable un have M components ui,n
and so do its shifts; the continuous variable x has
N components xi; the discrete variable n has Q components
nj; the k shift vectors pi 2 ZQ; and uðrÞðxÞ denotes the
collection of mixed derivative terms of order r. We search
exact solutionsof eq. (4)bymeansof thewave transformation

un+ ps xð Þ=Un+ps
ξnð Þ, ξn =

XQ
i= 1

dini +
XN
j= 1

cjxj + ζ ,

ðs= 1, 2, . . . , kÞ
(5)

where the coefficients c1, c2, . . . , cN ,d1,d2, . . . ,dQ and the
phase ζ are all constants. Then, eq. (4) reduces to a
system of DDEs

Ω
�
Un+p1ðξnÞ, . . . ,Un+pk

ðξnÞ, . . . ,U′n+p1
ðξnÞ, . . . ,

U′n+pk
ðξnÞ, . . . ,UðrÞ

n+p1
ðξnÞ, . . . ,UðrÞ

n+pk
ðξnÞÞ=0.

(6)

According to the simplest equation method, we expand
the solutions UnðξnÞ of eq. (6) in a finite series form

UnðξnÞ=
Xm
l=0

Al
ψ′ðξnÞ
ψðξnÞ

� �l

, Al = const., Am ≠0, (7)

where m is a positive integer which is determined by
balancing the highest order nonlinear term(s) and the
highest-order derivative term(s) in eq. (6) and the func-
tion ψðξnÞ is a solution of the auxiliary equation

ψ′′ðξnÞ+ μψðξnÞ=0, (8)

where μ is an arbitrary parameter and prime denotes
derivative with respect to ξn. Then, we have the shift
formula

ψ′ðξn ±ps
Þ

ψðξn ±ps
Þ =

ψ′ðξnÞ
ψðξnÞ ± ε

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 f

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 ’s

� �

1 ± 2ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p ψ′ðξnÞ
ψðξnÞ f

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 ’s

� � , (9)

where ε 2 0, ± 1f g, δ 2 0, 4f g, ’s = ps1d1 + ps2d2 + � � � +
psQdQ, psj is the jth component of the shift vector ps, and

f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2

’s

 !
=

tanh
ffiffiffiffiffiffiffi
− μp

’s
� �

, if ε= 1, δ=0, μ < 0
tan

ffiffiffiμp
’s

� �
, if ε= − 1, δ=0, μ > 0

’s, if ε=0, δ= 4, μ=0

8><
>:

(10)

In addition, we have the uniform shift function

Un ±ps
ðξnÞ=

Xm
l=0

Al

ψ′ðξnÞ
ψðξnÞ ± ε

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 f

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 ’s

� �

1 ± 2ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p ψ′ðξnÞ
ψðξnÞ f

ffiffiffiffiffiffiffiffiffiffi
δ− 4εμ

p
2 ’s

� �
0
BB@

1
CCA

l

, Am ≠0.

(11)

Moreover, by means of eq. (7), the degree of UnðξnÞ is
defined as D Un ξnð Þ½ �=m from which the degree of other
expressions, such as

D UðrÞ
n ξnð Þ

h i
=m+ r, D UðrÞ

n ξnð Þ
� �β	 


= β m+ rð Þ,

D UnðξnÞð Þα UðrÞ
n ξnð Þ

� �β	 

= αm+ β m+ rð Þ,

can be obtained. Then, balancing the highest-order deri-
vative term and the highest order nonlinear term(s) in
UnðξnÞ as in the continuous case, the degree m of eqs (7)
and (11) can be easily determined from eq. (6). The lead-
ing terms of Un ±ps

ðps ≠0Þwill not have any effect on the

balancing procedure since the term Un ±ps
can be consid-

ered as being of degree zero in ψ′ðξnÞ
ψðξnÞ . Inserting eqs (7) and

(11) together with eq. (8) into eq. (6), equating the coeffi-

cients of ψ′ðξnÞ
ψðξnÞ
� �l

l=0, 1, 2, . . .ð Þ to zero, we obtain a sys-

tem of nonlinear algebraic equations from which the
unspecified constants Al, di, cj and μ can be explicitly
determined. Finally, substituting these results into (7)
will lead to different kinds of exact traveling wave solu-
tions for eq. (4).

3 Traveling waves of eq. (2)

By means of the wave transformation

un =Un ξnð Þ, ξn = dn+ kt + χ, (12)

where d and k are real parameters to be specified, while χ
denotes the phase shift, eq. (2) changes to the equation

kUn
′ 1−Un− 1 +Un+ 1ð Þ− Un− 1 −Un+ 1ð Þ=0, (13)

where prime denotes ordinary derivative with respect to
the new independent variable ξ n. Then, we assume that
eq. (13) has a solution in the form
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Un =A0 +A1
ψ′
ψ

� �
, A1 ≠0 (14)

where ψ=ψðξ nÞ is a solution of eq. (8), while A0 and A1

remains arbitrary to be determined later on. Now, the
solutions can be discussed in three cases as follows.

3.1 Hyperbolic solutions

In case μ < 0, depending upon eq. (11), we get the shift
formula

Un ± 1 =A0 +A1

ψ′
ψ ±

ffiffiffiffiffiffiffi
− μp

tanh d
ffiffiffiffiffiffiffi
− μp� �

1 ± 1ffiffiffiffiffi
− μ

p ψ′
ψ

� �
tanh d

ffiffiffiffiffiffiffi
− μp� �

0
@

1
A. (15)

Then, substituting eqs (14) and (15) combined with eq. (8)
into eq. (13), clearing the denominator, setting the coeffi-

cients of ψ′
ψ

� �l
l=0, 2, 4ð Þ to zero, we arrive at a system of

nonlinear algebraic equations for A0, A1, d, k and μ. It is
observed that a solution of the resulting system is

A0 =A0,A1 = −
tanh d

ffiffiffiffiffiffiffi
− μp� �

2
ffiffiffiffiffiffiffi
− μp , k = −

sinh 2d
ffiffiffiffiffiffiffi
− μp� �

ffiffiffiffiffiffiffi
− μp ,

(16)

which gives raise a hyperbolic function solution to eq. (2)
in the form

un tð Þ=A0 −
1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ
C1sinh

ffiffiffiffiffiffiffi
− μp ξ n

� �
+C2cosh

ffiffiffiffiffiffiffi
− μp ξn

� �
C1cosh

ffiffiffiffiffiffiffi
− μp ξn

� �
+C2sinh

ffiffiffiffiffiffiffi
− μp ξn

� �
 !

,
(17)

where ξ n =dn−
sinh 2d

ffiffiffiffiffi
− μ

pð Þffiffiffiffiffi
− μ

p t + χ, while A0, d, χ, μ < 0ð Þ, C1

and C2 remain arbitrary.

3.2 Trigonometric solutions

In case μ > 0, based on eq. (11), the following shift
formula:

Un ± 1 =A0 +A1

ψ′
ψ ∓ ffiffiffiμp

tan d
ffiffiffiμp� �

1 ± 1ffiffi
μ

p ψ′
ψ

� �
tan d

ffiffiffiμp� �
0
@

1
A (18)

is obtained. Then substituting eqs (14) and (18) coupled
with eq. (8) into eq. (13), clearing the denominator, set-

ting the coefficients of ψ′
ψ

� �l
l=0, 2, 4ð Þ to zero, one

obtains a system of nonlinear algebraic equations for
A0, A1, d, k and μ. A solution of the resulting system is

A0 =A0, A1 = −
tan d

ffiffiffiμp� �
2
ffiffiffiμp , k = −

sin 2d
ffiffiffiμp� �

ffiffiffiμp , (19)

which provides a trigonometric function solution to
eq. (2) in the form

un tð Þ=A0 −
1
2
tan d

ffiffiffi
μ

pð Þ −C1 sin
ffiffiffiμp ξ n

� �
+C2cos

ffiffiffiμp ξ n
� �

C1cos
ffiffiffiμp ξ n

� �
+C2sin

ffiffiffiμp ξ n
� �

 !
,

(20)

where ξ n =dn−
sin 2d

ffiffi
μ

pð Þffiffi
μ

p t + χ, while A0, d, χ, μ > 0ð Þ, C1

and C2 remain arbitrary.

3.3 Rational solutions

In case μ=0, in view of eq. (11), the following shift
formula

Un ± 1 =A0 +A1

ψ′
ψ

1 ± ψ′
ψ

� �
d

0
@

1
A (21)

is obtained. Then substituting eqs (14) and (21) along with
eq. (8) into eq. (13), clearing the denominator, setting the

coefficients of ψ′
ψ

� �l
l= 2, 4ð Þ to zero, results in a system of

nonlinear algebraic equations for A0, A1, dand k. A solu-
tion set of the resulting system is found to be

A0 =A0, A1 =d, k = − 2d, (22)

which yields a rational function solution to eq. (2) in
the form

un tð Þ=A0 +d
C1

C1 +C2ðdn− 2dt + χÞ
� �

, (23)

where A0, d, χ, C1 and C2 remain arbitrary.

4 Traveling waves of eq. (3)

As before, the wave transformation

un =Un ξnð Þ, ξn = dn+ kt + χ, (24)

where d and k are real parameters to be specified, while χ
denotes the phase shift, takes eq. (3) into the form

kUn
′ Un− 1 +Unð Þ Un +Un+ 1ð Þ− 2 Un− 1 −Un+ 1ð ÞU2

n 1−U2
n

� �
=0,

(25)

where prime denotes ordinary derivative with respect to
the new independent variable ξ n. Following the same
procedure, we search for special solutions of eq. (25) in
the form

İ. Aslan: Traveling Waves 245

Brought to you by | University of Waterloo
Authenticated

Download Date | 2/12/20 7:37 AM



Un =A0 +A1
ψ′
ψ

� �
, A1 ≠0, (26)

where ψ=ψðξ nÞ is a solution of eq. (8), while A0 and A1

are arbitrary constants to be found. From now on, some
details will be omitted for the sake of brevity since the
procedure is similar to that of Section 3.

4.1 Hyperbolic solutions

In case μ < 0, substituting eq. (26) and Un ± 1 along with eq.
(8) into eq. (25), clearing the denominator, setting the

coefficients of ψ′
ψ

� �l
l=0, 1, . . . , 6ð Þ to zero, we derive a

system of nonlinear algebraic equations for A0, A1, d, k
and μ. From the obtained algebraic system, we get the
solutions

A0 = −
1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ, A1 = ±
tanh d

ffiffiffiffiffiffiffi
− μp� �

2
ffiffiffiffiffiffiffi
− μp ,

k = −
tanh d

ffiffiffiffiffiffiffi
− μp� �

ffiffiffiffiffiffiffi
− μp ;

(27)

A0 =
1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ, A1 = ±
tanh d

ffiffiffiffiffiffiffi
− μp� �

2
ffiffiffiffiffiffiffi
− μp ,

k = −
tanh d

ffiffiffiffiffiffiffi
− μp� �

ffiffiffiffiffiffiffi
− μp .

(28)

Here and then, we order the signs will be in a vertical
manner. Setting the parameter values eqs (27) and (28)
into the expression (26), some solutions of eq. (3) in terms
of hyperbolic functions can be constructed like

un tð Þ = −
1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ ± 1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ
C1 sinh

ffiffiffiffiffiffiffi
− μp ξ n

� �
+C2 cosh

ffiffiffiffiffiffiffi
− μp ξ n

� �
C1 cosh

ffiffiffiffiffiffiffi
− μp ξn

� �
+C2 sinh

ffiffiffiffiffiffiffi
− μp ξ n

� �
 !

,
(29)

un tð Þ= 1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ ± 1
2
tanh d

ffiffiffiffiffiffiffi
− μ

pð Þ
C1 sinh

ffiffiffiffiffiffiffi
− μp ξ n

� �
+C2 cosh

ffiffiffiffiffiffiffi
− μp ξn

� �
C1 cosh

ffiffiffiffiffiffiffi
− μp ξ n

� �
+C2 sinh

ffiffiffiffiffiffiffi
− μp ξn

� �
 !

,
(30)

where ξn =dn−
tanh d

ffiffiffiffiffi
− μ

pð Þffiffiffiffiffi
− μ

p t + χ, while d, χ, μ < 0ð Þ, C1 and
C2 remain arbitrary.

4.2 Trigonometric solutions

In case μ > 0, substituting eq. (26) and Un ± 1 together
with eq. (8) into eq. (25), clearing the denominator,

setting the coefficients of ψ′
ψ

� �l
l=0, 1, . . . , 6ð Þ to zero,

we derive a system of nonlinear algebraic equations
for A0, A1, d, k and μ. Solving the resulting system, we
get the solution sets

A0 = ∓ 1
2
i tan d

ffiffiffi
μ

pð Þ, A1 = −
tan d

ffiffiffiμp� �
2
ffiffiffiμp , k = −

tan d
ffiffiffiμp� �

ffiffiffiμp ,

(31)

A0 = ∓ 1
2
i tan d

ffiffiffi
μ

pð Þ, A1 =
tan d

ffiffiffiμp� �
2
ffiffiffiμp , k = −

tan d
ffiffiffiμp� �

ffiffiffiμp .

(32)

Setting the parameter values eqs (31) and (32) into the
expression (26), some solutions of eq. (3) in terms of
trigonometric functions can be constructed such as

un tð Þ= ∓ 1
2
i tan d

ffiffiffi
μ

pð Þ

−
1
2
tan d

ffiffiffi
μ

pð Þ −C1 sin
ffiffiffiμp ξ n

� �
+C2 cos

ffiffiffiμp ξn
� �

C1 cos
ffiffiffiμp ξ n

� �
+C2 sin

ffiffiffiμp ξ n
� �

 !
,

(33)

un tð Þ= ∓ 1
2
i tan d

ffiffiffi
μ

pð Þ

+
1
2
tan d

ffiffiffi
μ

pð Þ −C1 sin
ffiffiffiμp ξ n

� �
+C2 cos

ffiffiffiμp ξn
� �

C1 cos
ffiffiffiμp ξ n

� �
+C2 sin

ffiffiffiμp ξ n
� �

 !
,

(34)

where ξn =dn−
tan d

ffiffi
μ

pð Þffiffi
μ

p t + χ, while d, χ, μ > 0ð Þ, C1 and C2

remain arbitrary.

4.3 Rational solutions

In case μ =0, substituting eq. (26) and Un ± 1 together with
eq. (8) into eq. (25), clearing the denominator, setting the

coefficients of ψ′
ψ

� �l
l= 2, 3, . . . , 6ð Þ to zero, we derive a

system of nonlinear algebraic equations for A0, A1, d
and k. The resulting system gives the solution

A0 = 0, A1 = ±
d
2
, k = − 2d, (35)

Inserting the parameter values eq. (35) into eq. (26), we
arrive at a rational function solution of eq. (3) such as

un tð Þ= ±
d
2

C1

C1 +C2 dn− 2dt + χð Þ
� �

, (36)

where d, χ, C1 and C2 remain arbitrary.

Remark 1. We observe a kink-type solitary wave solution
and a singular traveling wave solution if we set “μ= − 1,
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C1 ≠0 and C2 = 0” or “μ= − 1, C1 = 0 and C2 ≠0”, respec-
tively, in the solution (17), which are

un tð Þ=A0 −
1
2
tanh dð Þ tanh dn− sinh 2dð Þt + χð Þ, (37)

un tð Þ =A0 −
1
2
tanh dð Þ coth dn− sinh 2dð Þt + χð Þ, (38)

where A0, d and χ remain arbitrary (see Figures 1 and 2).
Similarly, by setting “μ = 1, C1 ≠0 and C2 = 0” or

“μ= 1, C1 = 0 and C2 ≠0”, respectively, one can extract

the following formal periodic wave solutions from the
solution (20)

un tð Þ=A0 +
1
2
tan dð Þ tan dn− sin 2dð Þt + χð Þ, (39)

un tð Þ=A0 −
1
2
tan dð Þ cot dn− sin 2dð Þt + χð Þ, (40)

where A0, d and χ remain arbitrary.

Figure 2: A profile of the singular traveling wave solution (38) with A0 = χ =0 and d= 1: (a) − 10 ≤ t ≤ 10, n=0, ± 1, ± 2, . . . , ± 10;
(b) − 10 ≤ t ≤ 10, n= − 10; (c) − 10 ≤ t ≤ 10, n=0; (d) − 10 ≤ t ≤ 10, n= 10; (e) t =0, n=0, ± 1, ± 2, . . . , ± 10; (f) t = 1, n=0, ± 1, ± 2, . . . , ± 10.

Figure 1: A profile of the kink-type solitary wave solution (37) with A0 = χ =0 and d= 1: (a) − 10 ≤ t ≤ 10, n=0, ± 1, ± 2, . . . , ± 10;
(b) − 10 ≤ t ≤ 10, n= − 10; (c) − 10 ≤ t ≤ 10, n=0; (d) − 10 ≤ t ≤ 10, n= 10; (e) t =0, n=0, ± 1, ± 2, . . . , ± 10; (f) t = 1, n=0, ± 1, ± 2, . . . , ± 10.
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Remark 2. Obviously, like in Section 3, setting special
values to the arbitrary parameters in eqs (29) and (30)
leads to kink-type solitary wave and singular traveling
wave solutions.

6 Conclusion

While traveling waves is most fully developed for PDEs,
these solutions also occur in a number of other types of
equations such as nonlinear DDEs. The applications of
DDEs permeate all branches of physical sciences. A great
deal of study has been devoted to such equations in the
related literature. In this study, we primarily focused on
DDEs with rational nonlinearity because of their rare
treatment. Using one of the existing powerful methods,
namely, the auxiliary equation method, we have ana-
lyzed two DDEs with rational nonlinearity for solitary
and periodic wave solutions. Our approach led to rational
solutions for both equations. We verified our results by
simulation as well.
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