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ABSTRACT

RKKY INTERACTION AND ITS CONTROL IN GRAPHENE AND
RELATED MATERIALS

Graphene got dramatic attention and lead the two-dimensional material physics
after its first successful synthesis in 2004. Its unique electronic properties contain great
potential for both scientific and technological applications. RKKY (Ruderman-Kittel-
Kasuya-Yosida) is an indirect exchange interaction mediated by conduction electrons. In
graphene, the interaction strength decay as 1/R* where R is the distance between the
magnetic moments. In the first part of this work, we calculated that applying circular
potential on a graphene sheet forms quasi-bound states in the potential region. Via these
states, the RKKY interaction is enhanced between magnetic moments on the edge of
the potential well. This can be thought of an electronic analog of the Purcell effect.
We showed that the interaction strength is even more enhanced if the Fermi level is in
resonance with the energies of the quasi-bound states.

In the second part, we considered zigzag edged hexagonal nanoflakes. It is known
that zigzag edged flakes have zero-energy edge-states. It is also known that the states with
closer energies contribute more to RKKY interaction. Thus, we calculated that there is an
enhancement between these edge-states.

In the third part, we investigated the behavior of RKKY interaction for two dimen-
sional materials with quartic dispersion. An energy dispersion is said to be quartic if it is
of the form F = a(k? — k?)? . Here, o and k.. are material dependent constants. There
are many materials exhibiting the quartic dispersion such as nitrogene, phosphorene, and
arsenene. These materials are also sharing two-dimensional hexagonal lattice structure
with graphene. What makes quartic dispersion special is that it has van-Hove singularity
in its density of states near the band-edge. RKKY interaction is sensitive to the density of
states because it depends on the number of electrons contributing spin exchange. Thus,
the larger the number of electrons, the stronger the coupling. In this part, we tuned the
Fermi level so that it lies on the DOS singularity and then we calculated the interaction
strength as a function of R. We found a slowly decaying RKKY interaction for quartic
dispersion. If the energy dispersion is pure quartic (i.e. £ = ak?), we found the inter-
action strength depends on 1/(k¢R) instead of 1/R which makes the RKKY interaction

long range for arbitrarily small Fermi level.
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OZET

GRAFEN VE BENZERI MALZEMELERDE RKKY ETKILESIMi VE
KONTROLU

2004 yilinda ilk kez basariyla sentezlenmesinin ardindan, grafene olan ilgi ciddi
bir sekilde artti ve grafen iki boyutlu malzeme fiziginin basimi ¢ekti. Kendine 6zgii
elektronik 6zellikleri hem bilimsel hem de teknolojik uygulamalar ic¢in biiyiik bir potan-
siyeldir. RKKY (Ruderman-Kittel-Kasuya-Yosida), iletim elektronlar1 araciligiyla gercek-
lesen dolayli degis tokus etkilesimidir. Etkilesim giicii grafende 1/R? ile orantilidir. Bu-
rada R manyetik momentler aras1 uzakliktir. Bu calismanin ilk kisminda grafene uygu-
lanan dairesel potansiyelin, potansiyel bolgesi igerisinde yari-bagli durumlar olusturdugu
ve bu durumlar lizerinden RKKY etkilesimin gii¢lendigi gosterilmistir. Bu siire¢ Purcell
etkisinin bir analojisi olarak diisiintilebilir. Buna ek olarak, Fermi seviyesini potansiyel
bolgesindeki yar1 bagl durumlarin enerjisi ile rezonans durumunda olmasinin etkilesim
giiclinii daha da artirdi81 gosterilmistir.

Ikinci kisimda, zigzag kenarli altigen nanopullar iizerinde RKKY etkilesimi
incelenmigtir. Zigzag kenarli nanopullarin sifir enerjili kenar durumlar1 vardir ve yakin
enerjili durumlar RKKY etkilesimine daha ¢ok katki saglar. Bu nedenle RKKY etkilesimi
bu kenar-durumlari vasitasiyla giiclenir.

Ugiincii kisimda ise RKKY etkilesimin kuartik enerji dagilimina sahip iki boyutlu
malzemelerdeki davramiglar incelenmistir. Enerji dagilmi £ = «a(k? — k?)? formunda
ise buna kuartik dagilim denir. Burada o ve k. malzemeye 0zgii sabitlerdir. Bu enerji
dagilimina uyan bir ¢ok malzeme vardir. Bunlardan bazilar1 nitrojen, fosforen, arse-
nen’dir. Bu malzemeler de tipki grafen gibi altigen orgii yapisinda ve iki boyutludur.
Kuartik dagilimi 6zel yapan, durum yogunlugunun bant sinirindaki van-Hove tekilligidir.
RKKY etkilesimi durum yogunluguna hassas bir sekilde baglidir. Bunun nedeni etkilesime
cogunlukla Fermi seviyesi civarindaki elektronlarin katkida bulunmasidir. Eger Fermi
seviyesi etrafinda ¢ok sayida elektron varsa, etkilesim giicli de buna bagh olarak ar-
tar. Bu boliimde Fermi seviyesini durum yogunlugunun tekilligine denk gelecek sekilde
ayarland ve etkilesim giiciinii [2’ye bagh olarak hesaplandi. Sonugta RKKY etkilesiminin
yavas soniimlendigini bulundu. Enerji dagiliminin saf kuartik oldugu durumda (diger bir
deyisle F = ak?), etkilesim giiciiniin 1/R ile degil 1/(kR) ile orantili oldugu bulundu.
Bu da bant sinirina yakin Fermi seviyeleri i¢cin RKKY etkilesiminin uzun erimli oldugunu

gosterir.
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CHAPTER 1

INTRODUCTION

Carbon is an essential element so that it is the root of many molecules from the
simplest ones to complex ones such as amino acids and proteins. This is because it is
highly abundant and the flexibility of carbon atoms due to their four valence electrons
allow them to form complex structures. Carbon has different allotropes like diamond,
graphite and graphene. Diamond and graphite are very well-known materials. Although
graphene is known for many years, it is first synthesized successfully in 2004 by a clever
method Novoselov et al. (2004). Graphene is a single layer material. It has a hexagonal
lattice structure (also commonly called honeycomb lattice because of the visual similari-
ties) and only carbon atoms are attached the lattice sites. Even if graphene is single layer,
it is extraordinally strong mechanically. It has very high thermal and electrical conductiv-
ity. With all these properties, it contains great applications in both science and technology
(Novoselov et al., 2012; Geim and Novoselov, 2007; Choi et al., 2010; Castro Neto et al.,
2009).

One of the greatest properties of graphene is its linear energy dispersion at the edge
of Brillouin zone. This relativistic behavior allows to be observed high-energy physics
phenomenon such as atomic collapse (Wang et al., 2013; Shytov et al., 2007) and Klein
tunneling (Katsnelson et al. (2006b)) in a solid state system. The linear dispersion is also
responsible for highly mobile electrons in graphene.

RKKY interaction is an indirect exchange interaction mediated by conduction
electrons. It is known for many years and independently found by four physicists Ru-
derman, Kittel, Kasuya and Yosida (Ruderman and Kittel, 1954; Kasuya, 1956; Yosida,
1957). In this work, RKKY interaction is investigated in various systems. The work con-
sists of three parts. Each parts emphasis on closely related but different problems. The
motivation is to find enhanced RKKY interaction by manipulating electronic and geomet-
ric properties of graphene and related two dimensional materials.

In the first part, we considered a graphene sheet under applied circular potential.
It is experimentally shown that applying circular potential on graphene forms whispering-
gallery modes in the potential region (Zhao et al., 2015). RKKY interaction is extensively
studied for pristine graphene (Kogan, 2011; Black-Schaffer, 2010b; Sherafati and Satpa-
thy, 2011; Saremi, 2007). All the researches agree on RKKY interaction decay as 1/ R3



where R is the distance between the magnetic moments. We calculated that the interaction
enhanced via these bound states confined in the potential region.

In the second part, we calculated RKKY interaction for zigzag edged hexagonal
graphene nanoflakes. There are many structure can be made out of graphene by changing
its geometry such as carbon nanotubes, nanoribbons, nanoflakes and nanowires. The
zigzag edged hexagonal graphene flakes are special because they have edge-states with
zero energy (Fujita et al., 1996; Nakada et al., 1996; Zarenia et al., 2011). We know that
RKKY interaction is sensitive to states with close energies. Thus, we expect a long range
RKKY behavior between these edge states.

In the third part, we did not consider graphene but consider other closely related
two dimensional materials such as phosphorene, arsenene and bizmuthene. These ma-
terials are two dimensional and, like graphene, they have hexagonal lattice. What make
these materials special is that they have quartic energy dispersion (Sevingli, 2017). A
dispersion is said to be quartic if it is of the form E = «(k* — k?)? where « and k. are
material dependent constants. If k. = 0, then the energy dispersion is called pure quartic.
Materials with quartic and pure quartic dispersion have strong van-Hove singularities in
their density of states. We calculated that RKKY interaction is enhanced if we tune Fermi
level on these singularities. It is because there are many states that can contribute to the

interaction.

1.1. Graphene

Graphene has hexagonal lattice structure as can be seen in the figure 1.1 .All
atomic sites are not equivalent. Thus, graphene is not a Bravais lattice. We think of a
graphene as a two interpenetrating triangular sublattices. These sublattices are called A
and B. It does not matter which sublattice is called A or B due to the symmetry. Carbon
has four valence electrons and three of them make sp? bonding with their nearest neigh-
bors. One electron remains unpaired in the p, orbital and it freely moves in graphene.

The lattice vectors are

a1 =5(3,v/3) a = 5(3,~V3) (L.1)

Here, a is the interatomic distance and it is approximately 1.42 A. As can be seen

in figure 1.1, ¢ vectors are the nearest neighbor vectors and it is often useful to work with



those vectors. The Brillouin zone and the reciprocal lattice vectors can be seen in figure

1.2. The reciprocal lattice vectors are

2 2
bi=5-(1,V3) by = 2 (1,=V3) (12)

K and K’ have a great importance which be covered in detail in section 1.1.2. K

and K points are called Dirac points and their positions in the reciprocal lattice are

2r 2w 27 2T
K: — K/ — —, 13
(36L 3\/§a) <3a 3\/§a) (1.3)

There are three K and K’ Dirac points in the Brilloin zone and the positions of

these special points in the Brioullin zone can be seen in figure 1.2.

Figure 1.1. Hexagonal lattice structure of graphene. Blue and red points show the
corresponding sublattices. a; and as are the lattice vectors and, §’s are the
nearest neighbor vectors.

There are two different directions in a hexagonal lattice. These are zigzag and arm-
chair directions as shown in figure 1.3. These direction are often essential when consid-
ering especially nanoflakes. They determines the electronic properties of nanoflakes. The
choose of the directions also determines the behavior of RKKY interaction in graphene

which is covered in detail in RKKY section.
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K
L >
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b2

Figure 1.2. The Brillouin zone and the reciprocal lattice vectors b; and by. I' is the
zone center and K and K’ points are the Dirac points.

1.1.1. Tight Binding Approximation

Many methods have been developed to calculate the electronic properties of mate-
rials (Marder, 2010; Kittel, 2004). They can be organized under two categories. One is the
free electron model/approximation. In this model, electrons are assumed to move freely
in the material like gas molecules in an empty box. The wavefunctions are the same as
the solution of the infinite square-well problem. The material plays no role but confining
the electrons. It affects only the normalization of the wavefunction. This model can be
modified to nearly-free electron model by introducing the crystal potential. In this case,
electrons do not freely move but feel weak periodic potential due to absence of atoms in
the crystal. This is, of course, more realistic than the free electron model.

The other limiting case is where electrons are localized on lattice sites. They do
not move freely but they hop one lattice site to another instead. This model is called tight-
binding model (or approximation) since the electrons are tightly bounded to lattice sites.
It is convenient to start with introducing Wannier functions. Since we are dealing with
the localized states, it is natural to consider atomic wave functions. Wannier functions
are the orthogonal set of states and they obey the Bloch’s theorem due to the translational

symmetry of lattice. Thus, Wannier functions can be written as Bloch functions. For a



Figure 1.3. Blue dashed line shows the zigzag direction and red dashed line shows the
armchair direction.

lattice site R, the Wannier function is defined as

(r|R) = wy(R,r) = \/LN Z e Rap (1) (1.4)

Here, N is the number of sites, 7 is the position in three dimension, n is the band
index, and R is the coordinate of the lattice site we are interested in. Using the definition,

one can show the orthogonality of the Wannier functions.

/drwn(R,r)w;(R’,r) = /drz%e_ik'RJ’R/'klw;k(T)wmk/(7") (1.5)

kK

1 ]_ . N
“ik-R+ Rk _
— N E N@ L 5mn6kk’ = 6mn5RR’
kK

Wannier functions are localized at R but they do not rapidly decay with R. They
also form a complete orthogonal set of states. Thus, we can write Schrodinger equation

in Wannier function basis.

H =Y |R)(R|H|R)(R| (1.6)

RR'



Here we denoted w, (R, r) by |R). Notice that the Hamiltonian only describes
the n™ band because one can easily show that the overlaps of Wannier functions between

different bands vanish. Let us write down the matrix elements explicitly.

h2V2

m

Huw = (R 1R) = [drun(®.n) (<0 400) Junrer) ()

This is where we introduced the tight binding approximation. We are neglecting
all the matrix elements unless R and R’ are the nearest neighbors. This assumption allows
only the hopping among nearest sites. Hence, only important thing that determines the
matrix elements is the distance between lattice sites R — R’. Due to the symmetry the
matrix elements involving R and R’ can be considered with one parameter t. ¢ is said
to be hopping parameter or hopping amplitude which describes the transition probability
from one site to other nearest sites. If system consists of different type of atoms, then the
hopping parameter between different atoms becomes of course different. In this case, the
summation will be slightly modified and it will contain different hopping parameter for
different nearest neighbors. However, the structure of the Hamiltonian remains the same.
The matrix elements (R| H |R) are constant and denoted by U. It is called on-site term
and it describes the required energy to put one electron at a lattice site. It gives a system
nothing but constant energy shift. The tight binding Hamiltonian can be finally written in

the following form.

Hrp =Y |R)t(R+6|+ > |R)U(R| (1.8)
Ro R

where §’s are nearest neighbor lattice vectors pointing from R. In literature, the
occupation number representation is more widely used for Hpp which can be easily writ-

ten in this form as follows:

Hrpg =t Z cle; (1.9)

<i,j>
where cz and c; are the creation and annihilation operators, respectively. What this
Hamiltonian describes is to destroy one electron from site 7 and put it at the site ¢ with the
hopping amplitude of ¢. The term under the summation < ¢, 7 > means that we are only
taking nearest sites into account. If the term were << %, j >>, then this would mean that

we are also considering second nearest sites. Then, the Hamiltonian takes the form



HTB = tl Z C}LC]‘ + tg Z C;er (110)
<i,j> <<i,G>>
Here, it should be noticed that we now have two hopping parameters ¢; and ¢,.

t1 > 1o because it is harder to hop further sites since the wave functions less likely overlap.

1.1.2. Tight Binding Description of Graphene

Tight binding description first introduced by Wallace in 1946 (Wallace, 1947;
Bena and Montambaux, 2009; Guclu et al., 2014; Saito et al., 1998; Reich et al., 2002).Valance
electrons of carbon atoms make sp? hybridization with the nearest carbon atoms and one
electron remains unpaired as mentioned in the introduction. We can describe the nature
of this unpaired electrons using tight binding method. Graphene has a honeycomb lattice
which is not a Bravais lattice. Thus, we should think of the lattice as two interpenetrat-
ing triangular sublattices. Let us name one sublattice A and the other one B. Then, the

following vectors span all real points in the lattice:

Ry = nai+mas+0b (1.11)
R = na;+mas (1.12)

Here, a; and a, are the primitive lattice vectors. n and m are integers. b is the
vector between A type and B type atom in a unit cell. We can now use Bloch’s theorem
since we have translation symmetry in the system. The wavefunction of an electron at R 4

can be written as a linear combination of p, orbitals of same sublattice.

1 |
Vi(r) = N > et (r— Ry) (1.13)
Ry
1 |
Ui (r) = N > e*Bg.(r — Rp) (1.14)
Rp

Here, N is the number of unit cells. We are assuming that the p, orbitals form
complete orthogonal set of states because we, in the beginning, assumed that p, orbitals
are very localized so that they do not have overlapping wavefunctions. The total wave-

function is the linear combination of the wave functions ¥ 4 and ¥ 5:



Uy(r) = ali(r) + BUL(r) (1.15)

All we should do is to determine « and 3 by diagonalizing the Hamiltonian.

p2
H=%+;V(T—RA)+;V(T~—RB) (1.16)

where V' (r— R) is the atomic potentials at . Then the Hamiltonian can be written

in matrix form as

H(k) = (<‘P£‘|H|%?> <\v,:*|H|w5>) (1.17)

(w|alwit) (ve|a]vE)

We could solve the Hamiltonian exactly but it will be easier if we make few as-
sumptions. First, we can assume that €4(k) = 0 because we only consider the near-
est neighbor hopping. Second, we can neglect the onsite energies which are the terms
(U| H | W3ty and (¥F| H |¥E) in the Hamiltonian. Only the off-diagonal terms sur-

vived. If we write them explicitly, we obtain

1 .
(UE| H W) = ~ D kRahn) /drgb’z‘(r — Rp)V(r — Rp)o.(r — R4)(1.18)
<Ra,Rp>
When we closely look at the integral, we can see that it is constant regardless of
the choice of R4 and Rp as long as they are nearest neighbors. Thus, we can define a

hopping parameter:

t= /drgzﬁf’;(r — Rp)V(r — Rp)o.(r — Ra) (1.19)

One can either calculate ¢ using the orbital states ¢, (r — R). However, it is easier
to use the experimental results for the nearest neighbor hopping parameter ¢ which is
approximately -2.8 eV. All is left to substitute nearest neighbor vectors R4 and Rp to get

final form of the Hamiltonian.

<\Ij;g4| H ‘\I/kB> — ¢t Z eik(RA—RB) — (G_ikb + G_ik(b_al) + 6—ik(b—a2)) (120)

<RA,Rp>
and also the other of diagonal term should of course be the Hermitian conjugate

of the expression above.



<\DE| H ‘\I’?> =t Z eik(RA—RB) =1 (eikb 4 eikz(b—al) + eik(b—ag)) (121)

<Ra,Rp>

In literature, it is common to define a function f(k) to have more compact form.
Define f(k) as follows

f(k’) = e—ikb + e—ik(b—al) + e—i(b—ag) (122)

Hence, we finally obtain the tight binding Hamiltonian for graphene as

Hk) =t (5 7% (1.23)

Now, we should find the eigenvalues and eigenfunctions of the Hamiltonian by

solving the eigenvalue equation below

a 0 f(k) a
E(k = 1.24
”(5) t(f*(k) 0 )(ﬁ) -

The eigenvalues of the Hamiltonian are

Ex (k) = |tf (k)| (1.25)

The positive energy solution corresponds to conduction band and the negative

energy solution corresponds to valence band. The corresponding eigenfunctions are

Ti(r) = \/% (; e* g (r— Ra) = eikRB%gbz(r — RB)> (1.26)

Rp

U, (r) = \/% (; Mg (r — Rp) + ; eikRBﬁj(—f))'@(r — RB)> (1.27)

As can be seen on the plot of the energy dispersion, graphene does not have a
bandgap. In Brillouin zone, there are six points named K and K’ where the conduction
and valence band touch. These points are called Dirac points. Since graphene does not
have a bandgap but the valence and conduction band touch only some points, it is con-

sidered as a semimetal. The Fermi level lies on these Dirac points and the system has a



Figure 1.4. The energy bands of graphene. The orange part is the conduction band and
the blue part is the valence band. The points where the conduction and
valence band touch are the Dirac points.

circular symmetry around these points. Because the electronic properties are determined
by the electrons near Fermi level, it is convenient to expand E/(k) around K and K’ points.

This expansion is enough to describe low-energy electrons.
We know that B = +|tf(k)| and K = (47/(3v/3a),0). Then,

f(K+q) = f(K)+ f(K)g+ ... (1.28)

where ¢ is the vector in k-space which measured from K. Keeping only first order

terms yield

3
S +q) = ~Salg. — igy) (1.29)

Let Fx(q) and be the energy eigenvalue around K point as a function of ¢. Then,

the effective Schrodinger equation can be written as

« 3 0 Qs — iq o
E(q)< "):——ta( y)( q) (1.30)
" Ba 2\ q+igg 0 Bq

10



Figure 1.5. The linear behaviour of the energy dispersion near a Dirac point.

Solving the eigenvalue equation gives the eigenstates and eigenvalues.

3
Vg(q) = §&It|\QI (1.31)

3
V() = —§a|tIIQI

Here, 15 (q), ¥} (q) are the energies of electrons moving conduction and valence

band, respectively. The correspoding eigenstates are

¢ 11
V(g = \/§<ei¢> (1.32)

oy L1
¢K(Q) - \/ﬁ(—ew)

where ¢ is the angle between ¢, and g, and it can be found by ¢ = arctan(g,/q.).

In literature, It is also a convention to write the eigenstate as

1 1
Vi(q) = 7 ( ot ) (1.33)

11



Here, « is called band index and takes values of +1 for conduction and —1 for
valence band. The upper part and lower part of the eigenstate describe the electrons
moving in different sublattices. It is logical that there is only a phase factor otherwise the
symmetry would be broken. Due to the spin-like property of the eigenstates/wavefunction,
it is called pseudo-spinor.

Define the Fermi velocity vy = 3ta/2. Then, The effective Hamiltonian then

becomes

Hy = —ivso -V (1.34)

where o is the Pauli matrix. The effective Hamiltonian plays a critical role because
it is actually the massless Dirac equation which describes the motion of relativistic parti-
cles. It allows us to observe phenomena related to special relativity such as Klein tunnel-
ing, which is covered in detail in the next section. Here, the Fermi velocity vr ~ 10%m /s
and it is 300 times slower than the speed of light. The electrons can be thought as the

analogue of light in graphene.

1.2. Dirac Equation and Klein Tunneling

Graphene has many unique properties. One of them is its linear energy dispersion
at K and K’ points. As described in the previous chapter in detail, the tight-binding
Hamiltonian takes the form of massless Dirac equation. The Dirac equation describes the
behavior of relativistic particles. Graphene is very special in that manner because one can
test high-energy physics phenomena such as atomic collapse or Klein tunneling in a solid
state system. After P.A.M. Dirac established the Hamiltonian, Oscar Klein solved the
equation for tunneling problems in 1929 (Greiner et al., 1985; Katsnelson et al., 2006a;
Allain and Fuchs, 2011; Young and Kim, 2009). There cannot be a paradox in nature of
course but the result was extremely counter-intuitive and that is why the phenomenon is
often called Klein Paradox. As will be described in detail in this chapter, particles which
come to a potential barrier passes through the barrier regardless of their energies. For
non-relativistic particles, it expected to see an exponential decay in their wavefunctions.
This unusual behavior is extremely important because it seriously affects confinements
in graphene. For the calculation of RKKY interaction under applied circular potential, it
is essential to consider what type of potential we choose. In this chapter, we will derive

Dirac equation and investigate the behavior of the solutions for potential barrier problems.

12



Schrodinger equation does not describe relativistic particles (Greiner and Brom-

ley, 2000). For a relativistic particle, Hamiltonian is

H = +\/cp? + m2ct (1.35)

here, c, p and m are the speed of light, the momentum of the particle and the mass
of the particle, respectively. The problem with this expression is that p is an operator and
square root of an operator is undefined. There are two approaches to solve this problem.
One is to expand the square-rooted term in series. This leads us to Klein-Gordon equation.
The other method was proposed by P.A.M. Dirac. He claims that we can get rid of the

square root by writing the term inside as whole square. Mathematically,

Ep* 4+ mPct = (caup, + cayp, + coup, + 6m02)2 (1.36)

All we need is to determine the matrices o, o, o, and 3 which satisfy the equa-

tion above. If we expand expression, we get

cpP+mPct = (Palpl + Falps + Falpl + BPmPct) (1.37)
+ cpapy (g, + ayoy) + cpyp. (o, + azay)
+ pap: (e + z0.) + mEpa(auf + o)

+ other cross terms

The following conditions are needed to satisfy the equation above:

=1, p*=1, {aj,a;}=0, {a,B}=0 (1.38)

where 4, j are the coordinate indices x,y, z and ¢ # j. The following matrices

meet these requirements:

13



00 01 0 0 0 i
0010 0 0 -1 0
Oy = oy = (1.39)
0100 0O 1 0 O
1 000 -1 0 0 0
0O 0 1 0 10 0 O
0 0 0 -1 01 0
o, = b= (1.40)
1 0 0 O 0 0 —1
0O -1 0 0 0 0 0 -1

These matrices can be written in short-hand notation using Pauli matrices.

<0 ai> (1 0 )
o = 8= (1.41)
o, 0 0 —I

where [ is the identity matrix and o’s are the good old Pauli matrices. Substituting
the matrices in Schrodinger equation gives us the Dirac equation in momentum basis as

follows

ov k
1 —_— .. . 2
ih i (c ; 1 ;- p; + Bmec > v (1.42)

By substituting p — ih9/0x", we can obtain the Dirac equation in position space.
For the case when m = 0 the equation 1.42 is said to be massless Dirac equation. As
described in the section Tight Binding Description of Graphene, graphene has a linear
energy dispersion near /' and K’ points therefore the electrons obeys the massless Dirac
equation. Moreover, we will work in two-dimension in the calculations because graphene
is a two dimensional material. Thus, it is required to emphasis how the Dirac equation
explicitly looks in 2D. The «a; matrices in two dimension is nothing but the Pauli spin

matrices o’s. Hence,

O
lha =

2 -
N L AN (1.43)
. +ip, —Bmc?

The Fermi velocity vy is the analogue of the speed of light c in graphene. p = hk

and the effective mass m = 0 in graphene. Then, the bare Hamiltonian becomes

14



0 ko —ik,
H = hi}f
ky+ik, 0

(1.44)

Notice that this is exactly the same Hamiltonian we found after expanding the

tight-binding Hamiltonian around Dirac points.

1.2.0.1. Probability Current for Relativistic Particles

Probability current will be useful while calculating the transition amplitude for a

potential barrier so it will be essential to derive here. The derivation of probability current

expression for relativistic particles is very similar to the non-relativistic particles’. Thus,

let us first derive for non-relativistic particles and then for relativistic particles. We first

start with writing down the Schr'l'g,%dinger’s equation:

L9 R,

Multiply the equation by ¥* from left,

ih\l/*glll — _—qu*v%lf + UV
ot 2m

Taking Hermitian conjugate of the equation 1.45, we get
0 —h

2
—ih—T* = —V2U* + V¥
! ot 2m v +

Now, we multiply the equation above by ¥ from left,

—ih\IJQ\I/* — _—hz\WQ\D* NN /AVA\ ks
ot 2m

Subtracting 1.48 from 1.46 yields,

N N S U T, 2
m(wEJr\Ifat)_%(xpvq;—\wm)

Combining the derivatives gives

(1.45)

(1.46)

(1.47)

(1.48)

(1.49)

15



eills —h? 2 2
= UV — UV 1.
ih—p 2m( \Y% VAUr) (1.50)

2
= V. (U'VY - IV
5V (1Y V)

By the continuity equation for probability current, we know that

o|w|? .
_v. 1.51
5 j (1.51)

Hence, the probability current j is obtained as

j= _—h (T*VT — VT (1.52)
2mi

Now let us follow the same procedure for relativistic particles. We should now

write Dirac equation and its Hermitian conjugate:

ov 3
: _ ;. 21 1.
ih 5 (c ;:1 a; - p; + Bmc ) (1.53)

s a\I[* : 2 *
—ih 5 (c;ai~p¢+ﬁmc>\11

Multiplying the first equation from right by U* and the second equation from left
by U gives

o ’
=0 (Y oy p, 2] .
ih 5 1 (c 2 Q; pz+6mc> (1.54)

O k
. - 2 *
—1hW T \J (—c ;:1 «; - p; + Pme ) \

Subtracting the equations above from each other yields

A L < i .
m(xpaw at)_‘l’ (c;ai-pi>\1/+\l’(62ai-pi>‘ll (1.55)

=1
After subtraction, we got rid of the mass term. Then, it is more convenient to

switch to position basis for seeing more explicitly.



L _ fey, i:a- Vi |0+ w Zgjo« Vi | o (1.56)
o 1 \&t e '

Again, by the continuity equation, we obtain the probability current for a relativis-

tic particle as follows:

Jj=c¥a¥ (1.57)

Sometimes, in literature, o is used instead of o because o’s are Pauli matrices for

two-dimension as mentioned previously. Thus, equivalently

j=c¥ oV (1.58)

1.2.1. Klein Tunneling in Graphene

In chapter 1.1.2, we have seen that in low energy limit the Hamiltonian can be

written around K and K’ points as

H = hopk - 6 = hog ( 0 ke 1ky> (1.59)
ky + ik, 0

As can easily be seen that this matrix is nothing but the Dirac matrix in two di-
mension. This fact automatically leads us Klein tunneling in graphene. This is not a
surprise because we have shown that the effective mass of electrons in graphene is zero.
This means that the electrons behave like photons and they must the obey massless Dirac
equation. Let us now consider the potential barrier problem to see Klein tunneling in
action. Suppose we have a square potential barrier as in the following figure

We can divide the problem in three zones. Zone 1 is when = < 0, zone 2 is when

0 < z < d and zone 3 is when d < x. The potential can mathematically be written as

0 if z<0
V)=1V, if 0<z<d (1.60)
0 if d<uz

17



+Energy

Zone | Zone ll Zone lll

Figure 1.6. The potential regions and corresponding linear energy dispersions.

The Hamiltonian in zone 2 will be H = hvp Hy, + Vol. We already know from

chapter 1 the eigenstates of the Hamiltonian as

U(r) = ( 1. )e”“‘ (1.61)
e

Because our potential is constant in that region, the form of the eigenstates will
remain same. Only the wave vector k£ will be modified to say ¢ = 2m+/E — V{,. And also
the wavevector along y direction is not affected by the potential since the problem has

translational symmetry along y direction. The wavefunctions can be found as for three

T 1 . 1
1/}1 _ elkyy elkml‘ < .¢> + Te—lkmx < _.¢>] (162)
i ae' —ae™’
o 1 . 1
Wy = eikyy Aelt]z( ) ) +Be—1q1< " >] (1.63)
—ae4 ae” A

N 1
V3 = tewelter [ (1.64)
ael?

regions
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Figure 1.7. Top view of the two dimensional potential barrier.

The wavefunctions must be continuous for potential boundaries x = 0 and x = d.
Applying this boundary condition will give the amplitudes of the 1)’s. A nice thing about
this condition is that we need only solve for when ¢;(0) = 15(0) and ¥o(d) = 13(d)
since the wavefunctions come with a spinor. In contrast, we should have considered the

continuity of derivatives of the wavefunctions for an ordinary material.

1 = —r+A+B (1.65)
e’ = re'? — Ae %4 4 Be 05 (1.66)
0 = —te* 4 Aelt? 4 Beiad (1.67)
0 = —teelfed — Aef4e9d 4 Bem10ap—id (1.68)

This equation can be written in matrix form.

—1 1 1 0 T 1
o —e7i0a e 0B 0 A el?
. ‘ , = (1.69)
0 elkzd e~ 4 _eld B 0
0 _ei(9A+qd) e—i(9A+qd) _6i(¢+qd) t 0
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The solution of the matrix equation is

e ib(—1 + eQid)(ei(26a+b) 4 ei(at2b) _ giba _ el
261(0a+b+2d) _ 9¢i(0atb) 4 2i(0a+b) 4 o2i(0atd) L |

(1.70)

o _261a+ib+21d _ 2€ia+ib + e2ia—|—2ib + 62ia+2ikwd + 62ib+2ikwd + 1 ( ' )

B (1 + e21()) (61u + elb)61a+21kxd (1 72)
- Qeia+ib+2id _ 2eia+ib + €2ia+2ib + 621a+2ik1d + 62ib+2ik1d + 1 '

t = — — ( - )( - ) — (1.73)
2€1a+1b+21d _ 261a+1b + 621a+21b + e21a+21k$d + e21b+21k1d + 1

The reflection coefficient 7 can be simplified as following

. (—2¢'? sin qd) (sin ¢ + sinf4) (1.74)
e 4dcos(¢ + 04) + €99 cos(¢ — 04) + 2isin(qd) .

The transmission coefficient, which we are interested in, can be found by using
T =1- \r|2 from the probability conservation. After the evaluation, we obtain the

transmission probability as

2 2
T COS.QZCOS 04 | | (1.75)
cos? ¢ cos?(qd) + sin”(qd)(1 + sin G 4 sin ¢)?

where ¢,d = —27rl\/ 1 — 2¢ + ep? cos ¢ and € is dimensionless energy scale as
e = E/Vpand | = Vpd/(2mhvy) is the dimensionless barrier width. There are several

important cases that can be extracted from the equation 1.75.

1.2.1.1. Zero Incident Angle

The angle ¢ = 0 for the electrons incoming perpendicularly to the potential bar-
rier. Thus, substituting ¢ into the equation gives 100%. This means that all the electrons
passes through the potential barrier regardless of their energy. In figure 1.8, the electrons
with different energies are transmitted 100% when ¢ = 0. This is striking and counter-
intuitive results. That is why this tunneling process is also called Klein paradox. This is
also the one of the reason that the difficulty of confining electrons in graphene. It is also

the reason of high mobility.
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Figure 1.8. The graph of the tunneling probability 7" on polar coordinates of the in-
cident angle. The black curve represents 100% transmission. Different
colors represents different energies of incoming particles (¢ = 0.2, [ = 2,
blue; ¢ = 0.4, 1 = 2, green; ¢ = 0.6, | = 2, red). As can be seen, the
transmission rate is 100% if particles come perpendicular to potential bar-
rier. The nodes appeared on different energies correspond to Fabry-Perot
resonances.

1.2.1.2. Fabry-Perot Resonances

The form of the potential can be thought as two interferences where are located at
x = 0 and x = d. This causes two scatterings from these interference which can be also
thought as a well-known Fabry-Perot interferometer. These scattering gives the nodes in
figure 1.8. For different energies, there are different number of nodes. This is because
there are larger number of wavelength can fit into the spacing between x = 0 and z = d.

This is another reason that hardens the confinement.

1.2.1.3. Critical Angle

We have defined e = F/Vj and ¢,.d = —27rl\/1 — 2¢ + €2 cos ¢. When the term

in the square root becomes less than 0, the x component of the momentum ¢, becomes
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imaginary. This is an important case because when it becomes imaginary, the plane wave

becomes evanescent. This is the case when Klein tunneling is suppressed.

evanescent waves

0.8

0.6

0.4+ 4

oscillating waves

0o0p | |

L ASS

(3]
ST &

Figure 1.9. The region plot showing the behaviour of the electron wave for the corre-
sponding energy and angle.

1 —2+€ecosgp <0 (1.76)

When this condition is met, we no longer see Klein tunneling. This will help to
confine the electrons in the circular potential well. In figure 1.9, we see the regions when
evanescent waves occur. The oscillating waves mean the plane wave of the electrons in
graphene. Figure 1.10 summarizes all the relation between energy, incident angle and

transmission rate.

1.3. Heisenberg Model

A two-electron system with spin dependency is four-state manifold since spins
can take the states: |11), [1]), [41), [{1). A two-electron system can also be represented
by spin singlet and triplet states(Ashcroft and Mermin, 1976). In this case, we should

think the electrons as a linear combination of these four states. Our aim is to construct a
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Figure 1.10. The plot of transmission probability 7" which can be seen in the color code.
Yellow parts show the region where the transmission probability is higher.

Hamiltonian which effectively describe the interaction between the spins of the electrons.
To achieve this, one must find a Hamiltonian such that its eigenstates are same as the
four-state manifold, and eigenvalues are same as the corresponding eigenstates. We know

that spin operator for each electron satisfies S* = S(S + 1)h? = 1(1 + 1)n? = 342

s2=(sl+sz)2=s%+s§+231.sz:gmsl.s2 (1.77)

We now need to calculate action of S; - S, on singlet and triplet states.

S1-So([11) = [11) = (StaSar + 1y Say + Si- - S ) (1) — 1)) (1.78)

h? h? h?

= TN = Ith+ 1 (1.79)

h? h? h?

- (Z [T+ =7 |$T>> (1.80)
h2

= 7 B =311) (1.81)
—3h?

= — (T =H1) (1.82)
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h? h? h? h? h? h?
Su-Sa([Th) + ) = 1)+ ) = T )+ 1) ) — T (1483)
h2
= T+ 1) (1.84)

We have found that the eigenvalues of S; - So, —% for singlet and % for triplet

state. Finally, we can write the spin operator as

HPn = i(Es +3E,) — (Ey — E\)S; - Sy (1.85)

where E and F; the energies of singlet and triplet states, respectively. This oper-

ator satisfies the desired properties which are H*P"(|1]) — [I1) = —3(|t]) — [{1)) and
HP™([11) + [I1) = 3(114) + [I1)). The term §(E; + 3E;) in the spin Hamiltonian can
be neglected because it gives nothing but a shift in the energy spectrum. Furthermore,
we can define energy difference between singlet and triplet state as /. Hence, the spin

Hamiltonian becomes

H®" = _JS, - S, where J = E, — E, (1.86)

One should keep in mind that a system is ferromagnetic when J > 0 and anti-
ferromagnetic when J < 0. The result can be generalized to N particle system by sum-

ming over all spins:

H™™ = — 3" J;;8;8, (1.87)
all spins
We have finally obtained the effective Hamiltonian that describes the spin interac-
tion of two particles. This Hamiltonian will be essential to formalize the RKKY interac-

tion.

1.4. RKKY

Exchange interactions can be considered under two categories (Ashcroft and Mer-
min, 1976). If electrons directly interact with each other using Coulomb interaction, then
this type of interactions are called direct exchange. This is often the case when two rel-

atively close magnetic atoms interact due to their overlapping wavefunctions. Another
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Figure 1.11. Figure (a) shows overlapping wave functions. This is an example of di-
rect exchange. Figure (b), on the other hand, shows distict wave functions
where indirect exchange interaction may occur due to the magnetic mo-
ments which freely moves in material (Ashcroft and Mermin (1976)).

exchange interaction is indirect exchange because two ions do not directly interact but
they interact with the help of conduction electrons.

In this scenario, since ions do not have overlapping wavefunctions, one ion first
directly interact with conduction electrons which freely moves in crystal and then the
conduction electrons interact with the other ion in the crystal. In the end, two ions in
the crystal effectively interact with each other. RKKY interaction lies in the second cate-
gory. This is why often stated as RKKY interaction is an indirect interaction mediated by
conduction electrons (Kittel, 1963).

The name of RKKY comes from the physicists Ruderman-Kittel-Kasuya- Yosida.
RKKY interaction describes two closely related phenomena in metals. One is the in-
direct interaction of two nuclear magnetic moments via their hyperfine interaction with
the conduction electrons, and the other is the magnetic moment of ions with again the
conduction electrons. In this thesis, we are interested in the second type of mechanism
so the interaction between nuclear moments is ignored. The second mechanism can be
thought in Heisenberg model framework as discussed in previous chapter. These spin-

spin interactions can be written as a Heisenberg type Hamiltonian as follows (Nolting and
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Ramakanth, 2009).

S;
k/.. .................................. ; ...................................
I A I, 1} I I
1+ A+ A+ 4
5 SRS 1 NS B S
o §i7L """"""""""""""""""""""" S7L """"
I 1 1l

Figure 1.12. Figure shows that two localized magnetic moments /; and /-, and a mag-
netic moment of conduction electrons .S;. In I, .S; interact with [, by ex-
changing their spins and scatter to £’ state from £ state. In /7, S; moves in
material and exchange its spin with /5. In 11, S; turns back its originial

state £ but in the end /; and /> exchange their spins.

H = Zjlill - Si A Jyls - S

(1.88)

where [’s are the localized magnetic moments and S;’s are the spin of the conduc-

tion electrons. Jy; and Jy; are the coupling constants between the magnetic moments and

the conduction electrons. RKKY theory states that, by using second order perturbation,

the Heisenberg type Hamiltonian can be effectively written as an interaction between two

localized moments with a coupling constant Jrxxy. Mathematically:

H=Y Juli-S+July-Si — Hrxxy = Y Jrxxyli - I

(1.89)

Let us now explicitly show how we obtain 1.89. Suppose that we have two mag-

netic moments placed at ; and R; and they are not directly coupled. We can write the

Hamiltonian for conduction electrons as
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H=> e(k)cl,co (1.90)

k,o

where k, o is the wavevector and spin of the conduction electrons. ¢, and CLU are
annihilation and creation operators, respectively. The interaction term (left hand side of
the equation 1.89) can be written in terms of spin operators. For simplicity assume that

coupling constants are same for two magnetic moments so Jy; = Jo; = J.

Hip = JZS e _—JZ[SZJZ —(SFI7 + 57 m} (1.91)

The spin operators can be written in terms of creation and annihilation operators.

. hoi s f

S; = §<Ci¢0m—0¢¢0i¢> (1.92)
SH = heley (1.93)
S; = hel ey (1.94)

Since c and ¢! are the annihilation and creation operators of electrons, they satisfy

the following Fermionic commutation relations:

{Cigy cjor } = {cl, ¢ N} =0 (1.95)
=) =0 (1.96)
{Ciorclo} = 610500 (1.97)

Using Fourier transformation, ¢ and ¢' can be written in momentum space

1 .
Cig = —Ze‘q'Ricqa (1.98)
VN <

1 .
T —ig-R; .}
c,. = — g e c 1.99
i /_N - qo ( )
(1.100)

The interaction term then becomes in momentum space
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Jh —ig-R; z
Hip = “oN Z Z et |:Ii <CZ+k,¢Ck,T - Cj;+k,¢ck¢)

i kg

I el o ot + Il qony| (111001

Notice that we are not including the spin-orbit coupling. Thus, we can separate
the spin and position space since they are not mixed. We now treat the interaction term as

perturbation and find the energies. From perturbation theory, the first order correction is

Eg = (0] Hin [0) (1.102)

the first order term does not contribute because

(O] I; ¢l gt 10) = 0 (1.103)
(O] I el , g crt 0) =0 (1.104)
(0] — I7cl pery 10y =0 (1.105)
0 I7c! 0) =0 1.106
(0] ch+k7¢ck,T| ) (1.106)

Hence, we should consider the second order corrections using the following ex-

pression

EY =

N2
3 0, f| Hine |A, )] (1.107)

OO
ahzon B —Ea

where A is an excited eigenstate of an unpertubed system with corresponding

energy Eg)). Define Heaviside function as follows:

1 >0
0= (1.108)
0 z<0
Then we can write
Oy = 0(ky — Ko (k — k) (1.109)

which guarantees that k£(k’) is under (above) the Fermi level. We have
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1
(k"m5| CL’TC]Q |k‘m5) — ek’k,ﬁ <m's| Sy |m5) (1.110)

1
(K'ms| el e [kms) — Oewy (il s-|ms) (1.111)

and the energy difference in the denominator of the expression becomes

EY — Eq) = e(k) — e(k) (1.112)

Finally we can write the expression as follows:

2
B = ﬁvz% = CEIPID Mt (1113)

1,5 ml,ms

X

(F1207 (mi| 52 [m) + LT (mi] s— [ms) + I (mi] s [mg) |f7) (1.114)
X (1205 (mi] s Img) + I (mi] s ms) + I; (mi| sy [ms) | f) (1.115)

We can get rid of the terms containing |m’) and | f’) using the following complete-

ness relations.

DoMI=1 > |ml) (ml] =1 (1.116)
f/ mé
‘We obtain
@ ~i(k—K')-(R;—R;) . . .
Eq 4N2§;9w (&) —e(k) (fl2i; I + I + 1707 | f)  (1.117)

The expression above can simple be written as

i(k—K")-(Ri—R;)

By = WZZGM e L) (L.118)

k,k" 1,3

As promised in the beginning, the second order energy correction above can be

thought as the eigenvalue of an effective Heisenberg type Hamiltonian:

FJRKKY _ Z JE;(KY[i - (1.119)
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where the coupling constant J is

i(k—k")-(Ri—Rj)

RKKY __
TR = 2NQZZ b T (1.120)

kK’ 1,5

Here, 6y ;s represents the occupation of states with momentum £ and %'. In this
thesis, we used ny(1 — ny ) instead where ny represents the occupation of a state with

momentum k.
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CHAPTER 2

METHODS

Along with tight binding model, we used three different techniques to calculate the
exchange interaction. Hubbard Mean Field model is used for calculating the exchange in-
teraction in the zigzag-edged graphene nanoflakes. Exact diagonalization and the integral
expansion methods are used for calculating the exchange interaction for materials with

quartic dispersion.

2.1. Hubbard Mean Field Model

Hubbard model is used to find magnetism by adding a simple term to the tight
binding model (Marder, 2010; Ashcroft and Mermin, 1976).

H=—t > (des+he)+ U niny @.1)

<ij>o

here ? is the hopping parameter and n’s are the number operators. U is a constant
and often called as Hubbard U term. U is the amount of energy acquired to add one
more electron to the atomic site. One should keep in mind that U is positive so it gives a
repulsive contribution. The mean field method is handy tool to solve an Hamiltonian like

above. We can write the number operators as follows:

nit = (nar — (nap)) + (nay) (2.2)
ny = (niy — (i) + (nay) (2.3)

We added and subtracted (n;y) ((n;)) from n; ({(n;;)). By doing this we could
interpret the term in the paranthesis as the fluctuation of number of up-spin (down-spin)
electrons from the average number of up-spin (down-spin) electrons. In the end, we
assume that this fluctuation is very small and we will get rid of some cross term. This will
ease the problem because the difficulty of the problem arises from the multiplication of
two number operators. As well-known the number operators are n = c'c and it is difficult

to deal with the multiplication of four field operators. However, one needs to be careful
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while using mean-field because if the system has large fluctuations the model will not

work at all. Then, we can write the second part of the Hamiltonian as

npni, = (Mir — (i) + (ag)) ((nay — (nag)) + (nay)) (2.4)
= (mir — (i) (nay — (i) + (nar — (nar)) (nay) (2.5)
+ (nag) (i — (nay)) + (nap) (nay) (2.6)

The trick is to assume that the deviation of n; (n;)) from (n;) ((n;))) is very
small. Thus, we can neglect the term (n;+ — (ns))(n;; — (n;y)) because the multiplication

of two small quantities is even smaller. Then we have

nipni, = (e — (ar)) (nag) + (i) (nag — (nag)) + (nap) (nag) (2.7)
= i (i) — (i) (nag) + (nag) mayp — (ag) () + (ap) (nay) - (2.8)
= it (nay) + (i) may — (nag) (nay) (2.9)

In the end, we have got rid of the multiplication of two number operators. By

substituting what we found into the Hamiltonian yields

H= =t 3 (et he) U (g (nig) + (i) niy = (nig) ng)) - 2.10)
<i,j>o i

We have terms like averages of number operators in the Hamiltonian. To calculate
them, we initially assign random spins orientation for all spins in the system. Then, we
diagonalize the Hamiltonian and calculate the respective averages and feed them into the
Hamiltonian in the next iteration. We get a convergence of these averages after many
recursive iterations. We finally obtain a Hamiltonian that will be used in the RKKY

calculations.

2.2. Exact Diagonalization

Exact diagonalization is a technique to calculate indirect exchange interaction
without using any perturbation. In this case, we start with the same tight-binding Hamil-

tonian with Heisenberg type spin-spin interaction term.
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H=—-t;) cej—ts Y. cc]+ZJwIS 2.11)

<i,J> <<L1,j>>

In this method, we think of the Hamiltonian as 2n x 2n matrix as follows.

H H
( oo > (2.12)
HiT Hi 2nx2n

H; and H| are same with our tight-binding Hamiltonian, and the off-diagonal
terms Hy, and H ; describes the coupling between spin-up and spin-down at i and ;™
lattice sites. The off-diagonal terms are really sparse. They only contain few terms. We
can obtain all the required information about the system by diagonalizing the Hamilto-
nian. RKKY interaction can be extracted from this Hamiltonian as well. We first align
the impurities in ferromagnetic configuration (FM) and so does for antiferromagnetic con-
figuration (AFM) (Black-Schaffer, 2010b; Deaven et al., 1991). The energy difference
between the configurations gives the exchange coupling J.

Let |I; I3) shows the spin state of the magnetic moments at 1 and 2. Then, suppose
that we have ferromagnetic configuration as [11) and anti-ferromagnetic configuration

|1). The corresponding energies can be found as

h? h? h? h?
S1-S M) = T W= T D+ T 11 = 7 I1) (2.13)

S1- Sz

n? h? h? h?
T = T N = = =)

Then the energy difference between ferromagnetic and anti-ferromagnetic config-
urations is 2. It is also discussed that the coupling .J is the energy difference between
the singlet and triplet configurations in Section 1.3 about Heisenberg Model J is defined
as the energy difference between the singlet and triplet states which was 2. This is ex-
actly same as the energy difference between antiferromagnetic and ferromagnetic energy
difference. One should be careful that we only considered ||1). There is one more pos-
sibility which is |1]). Thus, we should multiply the difference by 2. Finally, the indirect

exchange coupling J becomes

g E(FM)—S(AFM) (2.14)
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To sum up, we write two Hamiltonians for spin-up and spin-downs. Then finding
corresponding energies by diagonalizing the Hamiltonians. The energy difference gives

us the RKKY interaction strength J.

2.3. Integral Expansion for Quartic Dispersion Calculations

In quartic calculation part, we used four different methods to cross-check. We
used integral expansion, tight-binding, exact diagonalization and Green’s function meth-
ods. Integral expansion is the method that we only used in the calculation of quartic
dispersion. We know that, using second order perturbation, RKKY interaction can be

written as

W (RO)VT (R Ve (R)Wr(R;
J = JlJQZ QUOLT: (R)_ o (B Vi (R;) ng(1 — ng) (2.15)
k;,f/ €L (3%
1F]

where € is the energy and Wy (R;) is the wave function at R; with momentum k.
In the continuous limit, the wave function are plane waves and the effective Hamiltonian

takes the following form

i(k—k")-R1 o —i(k—K')-Ra
(2.16)

J o= I / d2kd?k' < :
€— €

We can change basis to polar coordinates and write plane waves in terms of Bessel
functions Jy(k). Define R = R; — R, and assign k := kR and k' := k'R.

_ 27125 Jo(k)Jo(K')
J = J1J2/d kd?k = (2.17)
_ —Jljg—/dk: k’/dkk )>
(2.18)

00
=0

- _JIJQ—/ dkk:’/ dk —Jo( )Jo(k’)z<%>4n

n
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—27TJ1J2 >
_ - Z

n=0

—on i dy <K |
—=>

n=0 | 0

Reassigning kR := k and k'R := k' gives

—27TJ1J2 >
J=— X

n=0

kg

/ dkk// dk ~Jo(k) Jo(K) (%)4n

ky )
/ Ak K Jo (K / dkk™ 73 Jo (k)

kiR [e's)
/ Ak K Jo (K / Ak =13 Jo (k)
0 kR

(2.19)

(2.20)

Here we have an infinite sum over n which is not practical to evaluate. Thus,

we tried the sum for different n values and found that the integral is convergent and it is

sufficient to take n = 50.

4 10[* ‘

2x10f*

—2x 14~

Jaa (@ld)Jy)
o

—4x10~*

150

200

250

(R/a)

Figure 2.1. Integral expansion in different orders. Graph shows the integral converges

as the expansion order increases.
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CHAPTER 3

RKKY INTERACTION UNDER CIRCULAR POTENTIAL

In this chapter, we first calculate the RKKY interaction for bulk graphene and then

we calculate the interaction for applied circular potential.

3.1. RKKY Interaction in Bulk Graphene

We calculate the RKKY interaction for bulk graphene. By bulk graphene, we
mean that infinite sheet of monolayer graphene. We used exact diagonalization method
mentioned in section 2. We take 22500 atoms to calculate the interaction. We used
periodic boundary condition to simulate infinite sheet. We put one magnetic moment at
center of the system and moved another moment along zigzag and armchair directions for

both same and different sublattices.

—-0.001

Jaalt

-0.01 |

-0.1 |

R/a

Figure 3.1. RKKY interaction between the magnetic moments on the same sublattices
(Ja4) in bulk graphene along zigzag direction.
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We calculated the interaction strength for each increment of movement which will
give us the interaction strength as a function of distance between the magnetic moments.
We found that the results have a great agreement with the results in literature (Black-
Schaffer, 2010a; Saremi, 2007; Black-Schaffer, 2010b; ?; Power and Ferreira, 2013). It
can be seen in figures 3.1 that the RKKY interaction for the magnetic moments located
at same sublattices J44 is ferromagnetic. The interaction strength exhibits 1/R? decay
behaviour where R is the distance between the magnetic moments. For zigzag direction,
there are oscillations in the order of lattice parameter. By using lattice Green’s function

for bulk graphene, J44 can be found as following Sherafati and Satpathy (2011)

9L Tl LAt cos[(K — K') - R]
2567t (R/a)3

Jaa = (3.1

where J; and J, coupling constants between the spin of electrons and the localized
magnetic moments; /& and K’ are the vectors indicating the Dirac points in the Brillouin
zone. The oscillations are coming from the term including cosine. For armchair direction,
the cosine term will vanish so does the oscillations. This behaviour is verified by our tight

binding model.

0.1

0.01

Juplt

0.001

R/a

Figure 3.2. RKKY interaction between the magnetic moments on the different sublat-
tices (J4p) in bulk graphene along zigzag direction.
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—0.001}

Jualt

—-0.01

-0.1 |

R/a

Figure 3.3. RKKY interaction between the magnetic moments on the same sublattices
(Ja4) 1n bulk graphene along armchair direction.

3.2. RKKY Interaction under Applied Circular Potential

In the beginning, we claimed that RKKY interaction can be enhanced via quasi-
bound states formed in an applied potential. We again used tight-binding method to test
this idea. We took 22500 atoms in this case and apply smoothly varying sigmoid potential
whose depth is the quarter of the hopping parameter. The potential is at the center of the
system and the radius is 30a where a is the distance between the carbon atoms. Because
it is not practical to plot all the atoms, figure 3.5, shows a small version of the system we
dealt with.

Sigmoid function is nothing but the well-known Fermi distribution function. In
two dimension, it takes the form of f(z) = 1/ (e"\/m + 1) We chose this potential
because it is quite similar to the two-dimensional Heaviside potential. The choice of the
potential function is extremely important because it is more physical and also one cannot
achieve confinement in the potential region due to Klein tunneling. That is the reason why
we choose smoothly varying potential. We determined radius of the potential as 30a. By
the radius, we mean that the half maximum of the potential.

In the absence of the circular potential, there are quasi bound states formed in
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0.01

Juplt

0.001

R/a

Figure 3.4. RKKY interaction between the magnetic moments on the different sublat-
tices (J4p) in bulk graphene along armchair direction.

the potential region. Those states can be seen in the local density of states graph 3.2.
Each peak corresponds to an increase in the number of states within the potential region.
Figure 3.2 and 3.2 show an confined electron mode in the potential region. The RKKY
interaction is enhanced via these confined states.

To calculate the RKKY interaction, we first fix the position of a magnetic moment
at the edge of the sigmoid potential. Then, we move other magnetic moment along the
edge and calculate the strength of RKKY interaction as a function of the angle between
them.

It would be computationally costly to map entire system therefore it is more prac-
tical to calculate the exchange energy on the edge of the potential well. However, this
cause some noise in the data which can be seen in the figure 3.2 because the confined
modes are not uniformly distributed in the potential region. Thus, the sharp changes in
the wavefunctions lying near Fermi level cause the oscillation in the RKKY interaction
calculation.

Figure 3.2 compares RKKY interaction with bulk graphene and the system we
are concerning. As the angle increase, the RKKY strength decreases for bulk graphene.
Notice that it does not decay as 1/R? because we are plotting as a function of the angle.

Blue lines represents the RKKY interaction for the sigmoid potential case and the RKKY
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—0.15¢

—0.2¢

—0.25¢

v

Figure 3.5. Because the system we used in our calculation consists of 22500 atoms,
it is not practical to show all the atoms in one figure. Thus the figure
represents the small version of the system. There is a smoothly varying
sigmoid potential in the center of the system.

interaction does not decay in this case. Even for the farthest point (where ¢ = 180°),
RKKY interaction survives.

Figure 3.2 shows the enhancement in the local density of states (LDOS). We know
that RKKY interaction is sensitive to density of states because higher DOS corresponds
to much more state that can the magnetic moments communicate upon. Thus, if we tune
Fermi level to the nearest LDOS peak, we expect even larger enhancement in RKKY.

We test the idea by slowly changing the Fermi level and we do same calculations
as mentioned previously. As can be seen in figure 3.2, for Ratio=0.58, RKKY interaction
relatively more enhanced compared to the other doped case. Here, Ratio means that the
ratio of occupied states to unoccupied states. Therefore Ratio=0.50 corresponds to neutral

case and, as the ratio increases, the Fermi level shifts upwards.
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Figure 3.6. Figure shows the behaviour of sigmoid potential.

3} Il
2
1
-15 -1 -0.5 0 0.5 1 1.5 2
Energy ()

Figure 3.7. Local density of states under absence of circular potential.
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Figure 3.8. An example of confined state in a potential region as anticipated. In this
case, this state 11275th state in the system. Yellow dots indicates higher

probability.
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00

Figure 3.9. Closer look to 11275th state. It is apparent that it has confined modes in
the potential region. Yellow dots indicate higher probability.

42



—0.05¢

—0.1¢

—0.15¢

-0.2¢

—0.25¢

\4

Figure 3.10. The magnetic moments are put on the half maximum of the sigmoid po-
tential. ¢ is the angle between these moments.

Jaa (t1J1J)

10 -7 1 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160 180
@ in degrees

Figure 3.11. The strength of RKKY interaction as a function of the angle between the
magnetic moments.
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Figure 3.12. The strength of RKKY interaction for different doping level. The interac-
tion is even more enhanced when the Fermi level matches with the energy

of the first peak of the local density of states.



CHAPTER 4

RKKY INTERACTION IN GRAPHENE HEXAGONAL
FLAKE

Bulk graphene has already many unique features mentioned previously. It has
also more features that can be obtained geometrically. When we cut graphene sheet into
zigzag edge hexagonal lattice, there forms zero-energy states at the edges (Sun et al.,
2013; Fujita et al., 1996; Nakada et al., 1996). We know that RKKY interaction is strong
between states with same or close energies from the formula 1.120. Thus, we expect
that the electrons between the edge of hexagonal flake interact more strongly since they
share the same energy. The continuum model cannot be used in this case since there is
no translational symmetry in the system. Thus, we must use tight binding approximation
here. Because there are more degeneracy, electron-electron interaction is important in this
case. Thus, we also include electron-electron interaction to our Hamiltonian by adding

Hubbard U term. The Hamiltonian of the system can be written as

H=—tY ce+UY npny+JY I+ S (4.1)

<i,j> i

This is the Hubbard model described in detail section 2.1 about Hubbard Model. :

and j are the lattice sites on the hexagonal flake and we only consider the nearest neighbor
hopping. We then used mean field approximation and obtain the Hubbard Mean Field

term as

H=-tY <c;?cj + h.c.) FU D (i () + ) o, — {mag) () + 7 D - S(4.2)

<i,j>o
Here, we recursively solve the Hamiltonian. After convergence is satisfied, we
obtain the eigenvalues and eigenstates of the system. Finally, we could calculate the in-
direct exchange interaction by simply taking the enegy difference between ferromagnetic
and antiferromagnetic configurations (i.e. E(FM)-E(AFM)).
In the figure above, we can see the eigenvalue index vs energy graph. The eigen-
value index simply shows that the energy of the corresponding eigenvalue after sorting

them with respect to energy. In the system, we have 600 atoms. This correspond to a
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Figure 4.1. Density of states of hexagonal graphene flake with N, = 10 atoms.

flake whose one edge consists of 10 atoms. We denote the number of atoms on the edge
as N;. As can be seen in the figure, there are zero energy states near eigenvalue index 300
and also states with closer energies. This zero energy states correspond to edge states.

In figure 4.2, we can see the whole system. We put one magnetic moment at the
point indicated with red circle. We calculate the indirect exchange between this point and
the rest of the points. The blue dots in this indirect exchange map shows the enhancement
near each edge as expected. The distance between the magnetic moment we put and the
edge on the opposite edge is 30a. In bulk graphene, we know that the interaction strength

decay as 1/R? therefore the interaction would be insignificant at a distance 30a for bulk

graphene.
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Figure 4.2. RKKY interaction map of hexagonal graphene flake with N, = 10 atoms.

Here, N, represents the number of atoms on each sides.
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CHAPTER 5

LONG RANGE RKKY INTERACTION IN MATERIALS
WITH QUARTIC DISPERSION

As mentioned in the introduction, graphene lead the two dimensional material
physics. There are many materials which have similar geometric structure with graphene.
Some of these materials have their own unique character which is quartic energy disper-
sion. An energy dispersion is said to be quartic if it is of the form F = «a(k* — k?)?
where « and k. are material dependent constants. If an energy dispersion is of the form
E = ak?*, then it is said to be pure quartic. There are many materials exhibiting quartic
energy dispersion such as nitrogene, arsenene, phosphorene (Sevingli, 2017; Kamal and
Ezawa, 2015). Table 5 shows some of these materials and their respective « and k. values.
All of them are two dimensional and in hexagonal structure.

The remarkable feature of these materials is that they have van-Hove singularities
in their density of states. The singularity lies next to the band-edge. Figure 5.1 shows
that the form of the quartic dispersion and its corresponding density of states for two-
dimenstional hexagonal lattice. There is also a discontinuity in DOS at the energy value
—ak?,

In this part, we start with an Hamiltonian including second order hopping. We

also add spin-spin interaction term.

H=—t; Y (cdej+he)—ts > (cej+he)=T) IS, (5.1)
i,

<i,5> <<LigL,g>>
where ¢; and cz are annihilation and creation operators; ¢; and ¢, are first and

second nearest neighbor hopping parameters, respectively. J is the coupling between

N P As Sb Bi

a (A'eV) | 1.155 | 2.887 | 3.914 | 5.518 | 8.983
k. /A 0798 0.613 | 0.474 | 0.396 | 2.258

Table 5.1. Parameters for quartic dispersion for nitrogene (N), phosphorene (P), ar-
senene (As), antimonene (Sb) and bismuthene (Bi).

48



. E Lk £ g(E)

T VAN 7 \ =
[NV v

(a) (b)

Figure 5.1. Figure (a) shows the profile of quartic dispersion. Figure (b) is the corre-
sponding density of states for two-dimension.

localized moments /; and conduction electrons S;. We first focus on first and second
terms (tight-binding terms) and find the effective dispersion relation. The general solution
of the Hamiltonian is By = +./3+ f(k) — tof (k) where f(k) = 2cos(v3kya) +
4 cos(v/3kya/2) cos(3k,a/2). Here a is the lattice constant k, and k, are the wavevectors
of corresponding directions. Here, we are considering group- VA elements therefore there

is one more extra electron per atom. This means that we are filling the upper band as well.

5.1. Quartic Dispersion

From RKKY theory, we know that the interactions between localized magnetic

moments can be written as the Heisenberg type spin-spin interaction as

E(R) = JI,- I (5.2)

where J is the exchange coupling. J can also be written in terms of spin indepen-

dent susceptibility y as

A

7=

X(R) (5.3)
Here, J; and J, are the coupling between conduction electrons and the localized
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magnetic moments. x can be written in terms of unperturbed retarded Green’s function

(Sherafati and Satpathy, 2011):

Er
x(r,r') = —%/ dE Im{G(r,7", E)G(r',r, E)} (5.4)

[e.o]

We can write the retarded Green’s function of the system as

Gl =3 "5y il (5.5)

where ¢, (r) = ¢*". Here, we do not have to consider the interaction between two
sublattices because of the system is isotropic around the gamma point in Brillouin zone.

For quartic dispersion, the Green’s function in the continuous spectrum becomes

1k Tle—lk ro
G(T’l, 7’2 27]' / dk / dk /{;2 T ]{;2 k2)2 — q4 T 5 (56)

After evaluating the integral, we obtain the Green’s function for £ > —cyk:él

G(q, ko, R) = —ﬁ [2}(0 (\/q2 - kgR) +irHDY <\/q2 n k§R>] (5.7)

and for F < —ak}

G(k, k., R) =

8k2[ (V= R)+ 8 (V27 R)| (5.8)

Here, K and Hé ) are modified Bessel function of second kind and Hankel func-
tion of first kind, respectively. Substituting the Green’s functions into the susceptibility

Equation 5.4 yields, for £ < —ak*

fi(R) = —— / - % (Ko /= R2R) —xNo(VE T RZR)) (5.9

2
8mear J_ o

< (rh(VR2+R2R)) | ak

and for £ > —ak?

£(R) = Sia/E; - [(Jo (VIZ — KZR) + Jo(\/R2 +k2R> (5.10)
x (No(VRZ+R2R) — No(\/kZ = K°R)) | dk
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Since there are two regions £ < —ak* and £ > —ak?, the susceptibility near

band-edge becomes the sum of these two susceptibility functions

X(E,R) = fi(R) + f2(R) (5.11)

The first term gives constant contribution since —ak? is constant. Here, it is dif-
ficult to analytically calculate the susceptibility function, therefore we calculate it nu-
merically for each R. We first fix o and k. values and calculate the susceptibility as a
function of R for different Fermi levels £;. We start with a Fermi level in upper part of
the Mexican hat and shift it near band edge as close as possible to catch the singularity in
the density of states. The red lines in figure 5.1 shows the Fermi level and the red arrow

indicates the direction of the shift.

Susceptibility of a Material

3 %1073 with Quartic Dispersion
—Ey = —aq,/10
ol —Ef = —aq§/1027
By = —aq; /10°
1t —Ef = —aq§/104_
O L
=
_2 L
e
4 H |
_5 I I | |
0 20 40 60 80 100

q.R

Figure 5.2. Susceptibility as a function of R

As can be seen in the figure 5.2, the Fermi level gets smaller (i.e. closer to the
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band-edge) the interaction strength is greatly enhanced. There is a competition between
k. and k. The small oscillations are on the order of 1/k. and the large oscillations which
gives fluctuations between ferromagnetic and anti-ferromagnetic behavior are on the order
of 1/k¢. For an arbitrarily small Fermi levels the indirect exchange interaction becomes

long range.

5.2. Pure Quartic Dispersion

In this section, we calculated the indirect exchange interaction both analytically
and numerically. For analytic calculation, we used retarded Green’s function. For numeri-
cal calculations we used tight-binding model with exact diagonalization, perturbation and

the integral expansion which introduced in the Methods section.

5.2.1. Analytical Calculation of Susceptibility

Pure quartic dispersion indicates when k. = 0 therefore F = ak?. We already
found the susceptibility as a function of R, k and k. in the previous chapter. We can now
either calculate the Green’s function for our pure quartic dispersion or we can simply take
k. — 0. The results will be same. The explicit calculations can be found in the appendix.

Hence, the Green’s function for pure quartic dispersion is

Gk, R) = <2KD(kR) n m%”(m)) (5.12)

 8rak?

and the corresponding susceptibility becomes

x(k, R) = —8732& /k N % [(Ko(kR) — 7No(kR)) wJo(kR)] dk (5.13)

Here, the susceptibility function Y is only function of £R which we can choose as
a dimensionless parameter and plot the graph accordingly.

In the pure quartic case, the RKKY interaction becomes long range and the range
of the interaction depends on Fermi momentum k. As seen in figure 5.3, the x-axis is k¢ R
which means that for small k¢ values, the axis stretch and we obtain slowly decaying/long
range RKKY interaction. The essential point is that £¢ can be chosen arbitrarily small.

Experimentally, this corresponds to dilute doping which can easily be realized.
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%1073 with Pure Quartic Dispersion

qrR

Figure 5.3. Figure shows the behavior of the susceptibility function of pure quartic
dispersion.

5.2.2. Tight-Binding Calculations of RKKY Interaction

We start with tight-binding Hamiltonian including second nearest neighbor hop-

ping.

H=—t; Y cej—ta Y ce=JI) IS, (5.14)

<1,7> <<L4,J>> 7
where ¢; and ¢, are the first and second nearest neighbor hopping constants. /; and
S; are the spin of the localized magnetic moment and the spin of the conduction electrons,
respectively. Pure quartic dispersion is a special case and it occurs when ¢5/t; = 1/6. We
calculated for 22500 carbon atoms and applied periodic boundary conditions. We first

found the eigenvalues and eigenfunctions by only considering tight-binding part. Figure
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5.4 shows the number of states with their corresponding energies. (a) shows the whole
spectrum and (b) is only a small potion lying near the band-edge. On band-edge, there are
more states compared to rest of the system. There cannot be a singularity in our system
since we are dealing with a finite system. However, the higher amount of states at the

band-edge mimics this singularity.
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Figure 5.4. Figure shows energies and their corresponding number of states.

We treat the spin-spin interaction term in the Hamiltonian and calculate the RKKY

interaction by using the following equation

Ui (R) Vi (R) Vi (R) Vi (R;
kok! €~
i#]

We tune the Fermi level as it lies on the singularity” and calculate the interaction.
We also used exact diagonalization and integral expansion which are covered in section
Methods in detail.

In the figures above blue lines (rkky), red lines (exact diagonalization) and yellow
line (analytic) represents the perturbative calculation, exact diagonalization and integral
expansion, respectively. Blue and yellow lines matches pretty accurately. The exact diag-

onalization results agree with the others for small r values however there are deviations

54



Energy (v
A

A

20

k(1/a)

-2 -1 1 2

Figure 5.5. Figure shows the position of the Fermi wavelengths k; = 0.18, k; = 0.256
and k¢ = 0.314 on pure quartic dispersion graph.

for large r. This is because the finite size effects because when we tune Fermi level near
band-edge, the Fermi wavelength becomes comparable with the system size. Hence, it
is more convenient to solve the problem analytically using retarded Green’s function to

avoid these finite size effects.
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tween magnetic moments r with comparison of different numerical meth-

ods for ky = 0.314 (1/a)



CHAPTER 6

CONCLUSIONS

There are three part in the thesis. In the first part, we calculated RKKY interaction
for graphene sheet under applied circular potential. We choose smoothly varying potential
to mimic a realistic external potential. We located two magnetic moments on the edge of
the potential well and calculated RKKY interaction as a function of the angle between
them while changing the position of a magnetic moment along the edge. We found that
the interaction is enhanced due to quasi bound states form in the circular potential and
it does not decay with 1/R? as in bulk graphene. Here, R is the distance between the
magnetic moments. We also tuned to the Fermi level so that it matches with the local
density of states resonance. We found that the interaction strength is enhanced more
when the Fermi level is tuned to the quasi-bound state energy.

In the second part, we calculated RKKY interaction for zigzag edged graphene
nanoflakes. It is known that zigzag edged nanoflakes have zero-edge band states. These
states are localized at the edge of the flake therefore they have higher density of states
near edges. It is also known that RKKY interaction is enhanced for the places with higher
density of states. We calculated that RKKY interaction is enhanced due to these zero-
energy band states. The RKKY interaction still remain for large distances that we could
not achieve for bulk graphene. The enhanced spin-spin correlation between these edge
states is a good candidate for spintronic applications.

In the third part, we investigated the behaviour of RKKY interaction for quartic
and pure quartic materials. We used both numerical and analytic techniques to cross-
check. We first calculated RKKY interaction perturbatively and with exact diagonaliza-
tion in tight-binding approximation. We numerically expand the perturbation expression
as well. We also found the Green’s function in the effective mass approximation and
calculate the RKKY interaction analytically in the bulk limit. We found that for quar-
tic materials the interaction is enhanced due to the van-Hove singularity near band-edge.
Unlike the ordinary two dimensional metals where RKKY interaction decays as R?, quar-
tic materials exhibit long range behavior depending on the material dependent constant
k.. For materials with pure quartic dispersion, the interaction becomes long range for

arbitrarily chosen small Fermi level.

57



REFERENCES

Allain, P. E. and J. N. Fuchs (2011, October). Klein tunneling in graphene: optics with
massless electrons. The European Physical Journal B 83(3), 301-317.

Ashcroft, N. and N. Mermin (1976). Solid State Physics. HRW international editions.
Holt, Rinehart and Winston.

Bena, C. and G. Montambaux (2009, sep). Remarks on the tight-binding model of
graphene. New Journal of Physics 11(9), 095003.

Black-Schaffer, A. M. (2010a, August). Importance of electron-electron interactions in

the RKKY coupling in graphene. Physical Review B 82(7).

Black-Schaffer, A. M. (2010b, May). Rkky coupling in graphene. Phys. Rev. B 81,
205416.

Castro Neto, A. H., F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim (2009,
Jan). The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162.

Choi, W, I. Lahiri, R. Seelaboyina, and Y. S. Kang (2010, February). Synthesis of
graphene and its applications: A review. Critical Reviews in Solid State and Materials
Sciences 35(1), 52-71.

Deaven, D. M., D. S. Rokhsar, and M. Johnson (1991, Sep). Simple theory of exchange
coupling in transition-metal magnetic multilayers. Phys. Rev. B 44, 5977-5980.

Fujita, M., K. Wakabayashi, K. Nakada, and K. Kusakabe (1996, July). Peculiar localized
state at zigzag graphite edge. Journal of the Physical Society of Japan 65(7), 1920-1923.

Geim, A. K. and K. S. Novoselov (2007, mar). The rise of graphene. Nature Materials 6,
183.

Greiner, W. and D. Bromley (2000). Relativistic Quantum Mechanics. Wave Equations.
Springer.

58



Greiner, W., B. Miiller, and J. Rafelski (1985). The klein paradox. In Quantum
Electrodynamics of Strong Fields, pp. 112-121. Springer Berlin Heidelberg.

Guclu, A., P. Potasz, and M. Korkusinski (2014). Graphene Quantum Dots. Springer.

Kamal, C. and M. Ezawa (2015, Feb). Arsenene: Two-dimensional buckled and
puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423.

Kasuya, T. (1956, 07). A Theory of Metallic Ferro- and Antiferromagnetism on Zener’s
Model. Progress of Theoretical Physics 16(1), 45-57.

Katsnelson, M. L., K. S. Novoselov, and A. K. Geim (2006a, August). Chiral tunnelling
and the klein paradox in graphene. Nature Physics 2(9), 620-625.

Katsnelson, M. L., K. S. Novoselov, and A. K. Geim (2006b). Chiral tunnelling and the
Klein paradox inA graphene. Nature Physics 2(9), 620-625.

Kittel, C. (1963). Quantum Theory of Solids. New York: Wiley.

Kittel, C. (2004). Introduction to Solid State Physics (8 ed.). Wiley.

Kogan, E. (2011, Sep). Rkky interaction in graphene. Phys. Rev. B 84, 115119.
Marder, M. (2010). Condensed Matter Physics. Wiley.

Nakada, K., M. Fujita, G. Dresselhaus, and M. S. Dresselhaus (1996, Dec). Edge state in
graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 54,
17954-17961.

Nolting, W. and A. Ramakanth (2009). Quantum Theory of Magnetism. Springer Berlin
Heidelberg.

Novoselov, K. S., A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov (2004). Electric field effect in atomically thin carbon films.
Science 306(5696), 666—669.

Novoselov, falko, V. 1., L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim (2012,

59



oct). A roadmap for graphene. Nature 490, 192.

Power, S. and M. Ferreira (2013, January). Indirect exchange and
ruderman—kittel-kasuya—yosida (RKKY) interactions in magnetically-doped graphene.
Crystals 3(1), 49-78.

Reich, S., J. Maultzsch, C. Thomsen, and P. Ordejon (2002, July). Tight-binding
description of graphene. Physical Review B 66(3).

Ruderman, M. A. and C. Kittel (1954, Oct). Indirect exchange coupling of nuclear

magnetic moments by conduction electrons. Phys. Rev. 96, 99—-102.

Saito, R., G. Dresselhaus, and M. S. Dresselhaus (1998, July). Physical Properties of
Carbon Nanotubes. Published by Imperial College Press and Distributed by World
Scientific Publishing CO.

Saremi, S. (2007, Nov). Rkky in half-filled bipartite lattices: Graphene as an example.
Phys. Rev. B 76, 184430.

Sevingli, H. (2017). Quartic Dispersion, Strong Singularity, Magnetic Instability, and
Unique Thermoelectric Properties in Two-Dimensional Hexagonal Lattices of Group-VA
Elements. Nano Letters 17(4), 2589-2595.

Sherafati, M. and S. Satpathy (2011, Apr). RkKy interaction in graphene from the lattice
green’s function. Phys. Rev. B 83, 165425.

Shytov, A. V., M. I. Katsnelson, and L. S. Levitov (2007, Dec). Atomic collapse and
quasi-rydberg states in graphene. Phys. Rev. Lett. 99, 246802.

Sun, J. H., F. M. Hu, H. K. Tang, W. Guo, and H. Q. Lin (2013, May). Indirect exchange
of magnetic impurities in zigzag graphene ribbon. Journal of Applied Physics 113(17),
17B515.

Wallace, P. R. (1947, May). The band theory of graphite. Phys. Rev. 71, 622—634.

Wang, Y., D. Wong, A. V. Shytov, V. W. Brar, S. Choi, Q. Wu, H.-Z. Tsai, W. Regan,
A. Zettl, R. K. Kawakami, S. G. Louie, L. S. Levitov, and M. F. Crommie (2013).

60



Observing atomic collapse resonances in artificial nuclei on graphene.
Science 340(6133), 734-7317.

Yosida, K. (1957, Jun). Magnetic properties of cu-mn alloys. Phys. Rev. 106, 893—898.

Young, A. F. and P. Kim (2009, February). Quantum interference and klein tunnelling in
graphene heterojunctions. Nature Physics 5(3), 222-226.

Zarenia, M., A. Chaves, G. A. Farias, and F. M. Peeters (2011, Dec). Energy levels of
triangular and hexagonal graphene quantum dots: A comparative study between the

tight-binding and dirac equation approach. Phys. Rev. B 84, 245403.

Zhao, Y., J. Wyrick, F. D. Natterer, J. F. Rodriguez-Nieva, C. Lewandowski,
K. Watanabe, T. Taniguchi, L. S. Levitov, N. B. Zhitenev, and J. A. Stroscio (2015).

Creating and probing electron whispering-gallery modes in graphene.
Science 348(6235), 672-675.

61



APPENDIX A

EXPLICIT ANALYTICAL CALCULATION OF RKKY
INTERACTION FOR MATERIALS WITH QUARTIC
DISPERSION

In this chapter, we explicitly show the calculation of Green’s function for quartic
dispersion (F = —a(k* — k?)?) and pure quartic dispersion (E = —ak?). From the

Green’s function, we also compute the susceptibility y as a function of R.

A.1. Pure Quartic Calculations

We can make an eigenstate expansion using the retarded Green’s function as fol-

lows:

¢k T2 ¢k 7“1
E A.l
Glri,m) e+ qt+id (A-)

Here, €;’s are the eigenvalues of the Hamiltonian i.e.

Hoy = erox (A.2)

and the corresponding eigenstates are

1) |
Or(r) = ( w) e (A3)

Because our system is bipartite, the eigenstate has extra pseudospin term. How-
ever, we are dealing with the interaction between same sites so we take ¢ (r) = €.
Since we have a quartic dispersion, ¢ = —ak? with o > 0. Then, the Green’s function

becomes in the continuous spectrum

1k Tle—ik-TQ
dk, dky A4
G(ri,me) = / / k;2—|—/<;2) EPVEREY: (A4)
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We can choose R = r; — ry along x-direction without loss of generality and also

redefine ¢* = ¢*a. The Green’s function then becomes

AIm
y-plane
Xiy [k +k2+5
X R Re

—iy[kE+k2-5 X

Figure A.1. The contour and the simple poles of the integral when |q| > |k,|.

1 e : o0 dk
— kx 1ka/ Y A.
G(r1,72) —(27T)2a /_OO dky e LT RE g (A.5)

N

-

I(kz)
To evaluate the integral I(k,), one must find the poles. I(k,) has six different
simple poles. For |¢| > |k,

2

kyao = V@ —k2+10=2i/@+k2—id =Li\/@>+k2E0  (A6)
kyia = V@ —k2—i0 =E£\/¢* — k2L (A.7)

For the case |q| < |k.|, the poles are:

kya2 = V@ -k +id=4i/@@+k2—id =+i/@P+Ek2+5  (ASB)
kye = V@ —k2—i6 =ik —g? %6 (A.9)
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X iyJkG+KkE+6
X iy /K2 —k2+5

—-R 0 R Re

—iy[k2-k2 -5 X
—iy K2 +k2-6 X

Figure A.2. The contour and the simple poles of the integral when |q| < |k.]|.

Lemma: Let f have a simple pole at z,, and let g be holomorphic at z,. Then,

Res.,(fg) = g(z0) Res,, f (A.10)

Since we have more than one pole, we need to use the lemma above and evaluate

the integral for the two cases, separately.

For |k,| < |q|,
I(k,) = 27i [g (i\/q2+k‘g> Res, /rza(f) (A.11)
o (VR Res_ (1)
I(k) = 2nmi i L (A.12)
2) = 2mi — .
A2/ P+ K2 A3/ — K2
L T _ i
203\ + k2 2¢°\/q? — k2
For |k.| > |ql,
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I(k,) = 2ri [g( \/m) Res, (/) (A.13)
+ g (1@) Res }

i i
I(k,) = 2mi — A.14

- (4qwm 4km> 9
— T . T (A.15)

2°\k; —¢* 2¢°\/¢* + k]

Hence, the Green’s function becomes
G(r,m) = 1t < / dk, + / dk ) eF R (k,) (A.16)
7 (2m)%a g <k ka|> gl

We can explicitly write as the following:

ef R dk,  (A.17)

a T i
- +
/—q (2(12\/ @ +k2 2¢°\/¢* — ki)

=1t dk,

o T T
+ - dk,
/q (2(12 Vk: =@ 203/ @+ K )

eisz de]

+/_q i T dk
o 22V 2@k

The integrals can be rearranged in the form:

1 e 7 dk . a 7l dky .
G R) = —— / —xe‘kIR+/ N
(g, 1) (27)%c [ —o0 2%/ @* + K2 —q 2¢°\/¢? —/’{72 ( )

el qk

o0 T . —-q T
_/ e LA | / S
¢ 2¢° VK — ¢ —o0 2¢° ki — ¢
—— ——
=i\/q?>—k2 =i\/q*—k2

Finally, we obtain very compact form as

o9 1km
G(¢.R) = — dk, + i ] (A.19)

1 eika
87‘-05q2 [\/—oo \V q2 + k% ) oo \/ q — ]{72
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After evaluating the integrals, we obtain

G(g, R) =

- <2K0(qR) + inél)(qR)) (A.20)

The result is found as the linear combination of the modified Bessel function of

second kind and Hankel function of first kind.

A.2. Quartic Calculations

We can make an eigenstate expansion using the retarded Green’s function as fol-

lows:

¢k7”2¢k7’1
A21
Glrim2) Ze+q+z§ (A2

Here, ¢;’s are the eigenvalues of the Hamiltonian i.e.

Hop = ey, (A.22)

and the corresponding eigenstates are

1
() = ( w) e’ (A.23)

Because our system is bipartite, the eigenstate has extra pseudospin term. How-
ever, we are dealing with the interaction between same sites so we take ¢ (r) = e,
Since we have a quartic dispersion, ¢ = —ak* with o > 0. Then, the Green’s function

becomes in the continuous spectrum

eik-rle—ik-rg
G(?"l, 7'2 / dk / dk k2 i 12— k2)2 — q4 T 5 (A24)

We can choose R = r; — ry along x-direction without loss of generality and also

redefine ¢* = ¢*cv. The Green’s function then becomes

1 o dk
o _ dk, eheR / y A25
(r1,72) (27)20x /Oo ‘ oo (K2 + k2 —k2)2 —q* +1i6 (A-25)

N J/

-~
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ple

and

To evaluate the integral /(k, ), one must find the poles. [(k,) has six different sim-

poles.

e There are six roots for k2 — k2 > 0;

]{5(%172) = +i/ q2 + k‘% — k‘g +4 (A26)

and

/P -k k2 —id it k2 < q?4 k2
k2345 = (A.27)

V- +k:—k2F0 it k2> ¢+ k2

um

y-plane

Xiy/kg+ k2 —k2+5

—\/kZ— k2 + K2 +i6

X

—-R ! 0 X R Re

—iy [k + K-k -8 X

Figure A.3. The contour and the simple poles of the integral when k2 > k2.

e There are also six roots for k2 — k2 < 0;

koo = V@ — k24 k2 (A.28)

+i/@? + k2 —k2—10 if k2 <q®+ k2

k2345 = (A.29)
++/—q* — k2 + k2 if k2> ¢+ k2
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y-plane

X iy k2 —kE+ k3 + 6

X iy[k2—kZ =k + 5

—R (0] R Re
—iy[k2—k2 =k} -5 X
—iy[k2—k2+ k-5 X

y
v

Figure A.4. The contour and the simple poles of the integral when k2 < k2.

Forg® > k2 — k2, (k2 > k2 — @)

I(k,) = 2ni [g (ZW) Res, /() (A.30)
+ g (—\/ ¢ — k%) Res_ qz,kg(f)]

i 1
I(k,) = 2mi -
(k) <4q2\/q2+k3 4q2\/q2—k‘%>
I(k) = — T _ i
: 2P+ K 2¢°/ @ — k3

For ¢* < kZ — k2, (ka* < k? — ¢°)
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I(k,) = 2ni [g( m) Res, /() (A31)
+ g(i\/k’%—qQ) Res, N qQ(f)}

i i
I(k,) = 2mi —
(k=) <4q2\/q2+k§ 4k%\/k%—q2>
I(k ) L m _ T
’ 2¢\/k2 —¢*  2¢*\/ ¢ + I?

Hence, the Green’s function becomes

ﬁ (/kz|>m

I(ky)e*=Tt dkx)

G(ry, 7o) = I(ky)e*=® dk, (A.32)

1 g
|z |<r/k2—q2

We can explicitly write as the following:

1 & T Tl iks R
- — 1 é*f dk, (A.33
(27)%a [/ Ve (2612 VEFE 2P/ ¢ - kg) N
_ 2 2 3
+/ V4a +k2 B T n Tl eika dkx
oo 2@+ k. 2¢°\/q* — k3
N / o T dk, |eR dk,
Nz 2q¢? k2 q> 2(]2 Y q* + k3
\/ k2

The integrals can be rearranged in the form:

1 00 1km 00 eika
G(¢, kp R) = ———— _C dk, A34
(4 ) 8mrag? [ o VG + k2 /_oo V@ — k2 ] ( )
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We should now consider two cases which are ¢ > k? and ¢* < k2. After evaluat-
ing the integrals, we obtain the Green’s function for the quartic dispersion,

for ¢* > kZ;

1

G(q.ke,R) = [2}(0 (ﬂR) +irHY (\/WRH (A.35)

87ra Srag?

and for ¢* < k2,

Gla e F) = o o [A0 (V= R) + B (VR ER)] A36)

where ¢ is modified Bessel function and Hél)’@)

are the Hankel functions of first
and second kind.
We can now calculate the magnetic susceptibility using the Green’s function for

q > ke.

X(R) = /_ Y Im{G(q, R)*} dFE (A.37)

[e.9]

If £ = —aq?, then dE = —4aq® dg. Then, we have

V) =gt [ o { s (v TeR) ie? ()

—o0 4
We know that ¢(x) is real for z > 0. Furthermore, Jo(z) and Ny(z) are real for
x > 0 therefore the Hankel function consists of real and pure imaginary parts because

Hél)(:)s) = Jo(x) + iNy(z). Using the lemma, we can write the integrand as follows

e St (Ko (V@ = RZR) — N (/@ + R2R)) )
X (WJO(\/mR)>] dg for E < ak!

S L (R = PR) + Jo(VRE+ R) )
% (No(/RZ+ 2R) = No(/RZ = ?R)) | dg for £ > ak?
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