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Squeezing and resonance in a generalized Caldirola-Kanai
type quantum parametric oscillator
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The evolution operator of a Caldirola-Kanai type quantum parametric oscillator with
a generalized quadratic Hamiltonian is obtained using the Wei-Norman Lie algebraic
approach, and time evolution of the eigenstates of a harmonic oscillator and Glauber
coherent states is found explicitly. Behavior of this oscillator is investigated under
the influence of the external mixed term B(t)(q̂p̂ + p̂q̂)/2, which affects the squeezing
properties of the wave packets, and linear terms D0(t)q̂, E0(t)p̂ responsible for their
displacement in time. According to this, we construct all exact quantum models with
different parameters B(t), for which the structure of the Caldirola-Kanai oscillator in
position space is preserved. Then, for each model, we obtain explicit solutions and
analyze the squeezing and displacement properties of the wave packets according to
the frequency modification by B(t) and periodic forces in the corresponding classical
equation of motion. Published by AIP Publishing. https://doi.org/10.1063/1.5002186

I. INTRODUCTION

Quantum harmonic oscillators with explicitly time-dependent Hamiltonians appear in many
physical branches such as quantum optics,1–3 quantum fluid dynamics,4 ion-traps,5 cosmology,6

quantum information,7 and quantum computation.8 The best known model of the quantum parametric
oscillator is the Caldirola-Kanai (CK) oscillator with Hamiltonian

Ĥ(t)=
e−γt

2m
p̂2 +

1
2

mω2
0eγt q̂2, (1)

having exponentially increasing mass µ(t) = meγ t , which was introduced by Caldirola9 and
Kanai10 as an attempt to describe dissipation in quantum systems.11 Since then, many dif-
ferent approaches were used to obtain exact solutions and study their properties. Well-known
methods are the Husimi ansatz,12 the path integral,13 the Lewis-Riesenfeld invariant,14 the Wei-
Norman dynamical symmetry,15 and canonical transformations to the corresponding constant
mass problem.16,17 These methods are often applied also to the generalized quadratic oscillators
and in particular to the driven Caldirola-Kanai oscillator, which is extensively studied by many
authors.18–27

In the present work, we consider a generalized Caldirola-Kanai oscillator, by adding to Eq. (1)
the mixed term B(t)(q̂p̂ + p̂q̂)/2, and the linear terms D0(t)q̂, E0(t)p̂, with time-dependent squeez-
ing parameter B(t) and displacement parameters D0(t), E0(t). Then, the evolution operator for the
generalized problem is obtained using the Wei-Norman algebraic approach,28 which allows us to
find explicitly the time-evolution of given initial states. The main goal of this work is to study the
squeezing and displacement properties of the CK-oscillator under the influence of the external terms
and the corresponding time-dependent parameters.

As known, coherent and squeezed states in quantum mechanics were discovered almost a century
ago and then rediscovered by many authors.29–38 Coherent states are known as minimum uncertainty
states for which ∆q̂=∆p̂, while squeezed states are generalization of the coherent states, which in
simplest case obey the minimum uncertainty principle, but have less uncertainty in one quadra-
ture at the expense of increased uncertainty in the other. Many of the properties of the squeezed
states (two-photon coherent states) were investigated by Yuen.39 Today, it is known that they have
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exact realization and application in many physical areas, such as quantum optics and quantum
electrodynamics.39–42

For standard harmonic oscillator (SHO), with â and â† being the annihilation and creation
operators, respectively, coherent states and squeezed states can be defined in different but equivalent
ways. One way to obtain coherent states is to apply the displacement operator D(α) = exp[αâ† � α∗â]
to the ground state. Then, squeezed coherent states can be found by applying the squeeze operator
Ŝ(z)= exp[ 1

2

(
zâ†2 − z∗â2] to the coherent states. In Ref. 43, it was shown that for SHO a simple way

of realizing the displaced and squeezed number states is to add to Ĥ0, at some moment of time, a
term of the form 1

2ω
2
1q2 − f0q, which corresponds to the displacement of the oscillator and changing

its frequency.
On the other side, when the Hamiltonian Ĥ(t) depends explicitly on time, like in Eq. (1), squeezing

affects appear naturally due to the time variable parameters.36,43–45 Moreover, for a general quadratic
oscillator, it is known that parameter B(t) effects both the squeezing and displacement properties, while
the driving linear forces and their parameters D0(t) and E0(t) contribute only to the displacement of
the wave packets.23,28,43,44 According to this, choosing periodic driving forces, resonance in coherent
states of a quantum damped oscillator was addressed long time ago in Ref. 18. Then, in Ref. 23,
coherent states of a general time-dependent harmonic oscillator were obtained using the Lewis-
Riesenfeld approach, and it was shown that displaced wave packets for the CK-oscillator in coherent
states oscillate back and forth with time about the center as for the classical oscillator. Then, many
illustrative examples including the behavior at resonance frequency were constructed. However, all
of these examples were investigated when the squeezing parameter is zero, that is, B(t) = 0. Recently,
squeezing effects due to certain non-zero parameters B(t) were discussed in Ref. 46 but using the
Heisenberg formalism.

In this work, we solve a generalized Caldirola-Kanai oscillator by the evolution operator method
and investigate the possibility to control squeezing of the wave packets and their displacement
at resonance frequency, by changing the squeezing parameter B(t), when preserving the struc-
ture of the original CK-oscillator. For this, in Sec. II, we first write the evolution operator for the
generalized CK-oscillator, and using it we obtain the wave functions, probability densities, expec-
tation values, and uncertainties. In Sec. III, we find all possible parameters B(t), for which the
corresponding classical equation in position space has constant frequency and damping. It hap-
pens that B(t) should satisfy a Riccati equation with constant coefficients, and therefore it could
be any real constant, as well as it could be a function of time. Then, for every possible B(t),
we construct the Caldirola-Kanai quantum models and study them separately. More precisely, in
Sec. III, to be able to compare all models and see the differences between them, we provide
some basic estimates for the standard Caldirola-Kanai model (B(t) = 0), and the models with
constant parameter B(t) = B0. Then, in Sec. IV, we investigate three CK-models with different
time-dependent parameters B(t). For each model, we derive the squeezing coefficient and uncertain-
ties and discuss their properties according to the frequency modification in both position space and
momentum space. In addition to this, we introduce simple sinusoidal driving forces and study the
resonance phenomena for the expectation values at time-evolved wave functions. Many illustrative
figures are constructed. Finally, Sec. V includes the brief summary and discussion of the present
results.

II. SOLUTION OF THE GENERALIZED CALDIROLA-KANAI OSCILLATOR

Consider the evolution problem for quantum harmonic oscillators

i~
∂

∂t
Ψ(q, t)= Ĥg(t)Ψ(q, t), (2)

Ψ(q, t0)=Ψ0(q), −∞< q <∞, (3)

with a general quadratic Hamiltonian

Ĥg(t)=
e−γt

2
p̂2 +

1
2
ω2

0eγt q̂2 +
B(t)

2
(q̂p̂ + p̂q̂) − eγtD(t)q̂ + e−γtE(t)p̂, (4)
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where µ(t) = meγ t , γ > 0, m = 1, is the exponentially increasing mass, B(t), D(t), E(t) are the arbitrary
real-valued parameters depending on time, and q̂= q, p̂=−i~∂/∂q. Since the Hamiltonian is a linear
combination of Heisenberg-Weyl and su(1, 1) Lie algebra generators,

Ê1 = iq, Ê2 =
∂

∂q
, Ê3 = iÎ ,

K̂− =−
i
2
∂2

∂q2
, K̂+ =

i
2

q2, K̂0 =
1
2

(q
∂

∂q
+

1
2

),

in our previous work,28 using the Wei-Norman Lie algebraic approach the evolution operator was
found as

Ûg(t, t0)= exp

(
i
~

∫ t

t0

[
−1

2µ(s)
p2

p(s) − E(s)pp(s) +
µ(s)ω2(s)

2
x2

p(s)

]
ds

)
× exp

(
ipp(t)q

)
× exp

(
−xp(t)

∂

∂q

)
× exp

(
i
µ(t)
2~

(
ẋ1(t)
x1(t)

− B(t)

)
q2

)
× exp

(
ln

�����
x1(t0)
x1(t)

�����

(
q
∂

∂q
+

1
2

))
× exp

(
i
2
~x2

1(t0)

(
x2(t)
x1(t)

)
∂2

∂q2

)
, (5)

where x1(t), x2(t) are independent homogeneous solutions of the corresponding classical equation of
motion,

ẍ + γẋ +
(
ω2

0 −
(
Ḃ + B2 + γB

))
x =D + e−γt(Ė + BE), (6)

satisfying the initial conditions x1(0) = x0 , 0, ẋ1(0) = x0B(0), and x2(0) = 0, ẋ2(0) = 1/x0, and xp(t)
is a particular solution of (6) satisfying xp(0) = 0, ẋp(0) = E(0). Also, one has the classical oscillator
in momentum space

p̈ − γṗ +
(
ω2

0 +
(
Ḃ − B2 − γB

))
p= eγt(Ḋ − BD) − ω2

0E, (7)

with independent homogeneous solutions of the form

p1(t)= eγt(ẋ1(t) − B(t)x1(t)), p2(t)= eγt (ẋ2(t) − B(t)x2(t)
)

and a particular solution pp(t)= eγt
(
ẋp(t) − B(t)xp(t) − e−γtE(t)

)
.

Knowing the evolution operator, we obtain the exact time evolution of the eigenstates and coherent
states of the harmonic oscillator.

A. Time-evolution of the eigenstates of the harmonic oscillator

First, as initial functions of the quantum problem (2) and (3), we choose the normalized
eigenstates of the standard Hamiltonian,

ϕk(q)=Nke−
ω0
2~ q2

Hk

(√
ω0

~
q

)
, (8)

where Hk(
√
ω0/~q) are Hermite polynomials, Nk = (2kk!)−1/2(ω0/π~)1/4 are normalization constants,

and eigenvalues are Ek = (~ω0) (k + 1/2), k = 0, 1, 2, . . .. Then, time-evolved wave functions are of
the form

Ψk(q, t)=Nk

√
RB(t) × exp

[
i

(
k +

1
2

)
arctan

(
−ω0x2

1(t0)

(
x2(t)
x1(t)

))]

× exp
[
−

i
2~

eγt
(
B(t) +

ṘB(t)
RB(t)

)
(q − xp(t))2 +

i
~

(eγt
(
ẋp(t) − B(t)xp(t) − e−γtE(t)

)
)q

]

× exp

[
−i
2~

∫ t

t0

eγs
[
ẋ2

p(s) − 2B(s)xp(s)ẋp(s) +
(
B2(s) − ω2

0

)
x2

p(s) − e−2γsE2(s)
]
ds

]

× exp

−

1
2

(√
ω0

~
RB(t)

(
q − xp(t)

))2
× Hk

(√
ω0

~
RB(t)

(
q − xp(t)

))
, (9)
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and probability densities become

ρk(q, t)=N2
k RB(t) exp*

,
−

(√
ω0

~
RB(t)(q − xp(t))

)2

+
-
× H2

k

(√
ω0

~
RB(t)

(
q − xp(t)

))
, (10)

where

RB(t)=

√
x0

2

x2
1(t) + (ω0x0

2x2(t))2
(11)

is the squeezing coefficient determined by x1(t), x2(t), and xp(t) is the displacement of the wave
packets. Thus, RB(t) is responsible for the amplitude and width properties of the wave packets, while
xp(t) shows how their center moves with time. We note that the squeezing coefficient RB(t) depends
on the squeezing parameter B(t) but does not depend on the external term parameters D(t) and E(t).
On the other hand, the displacement xp(t) depends on all parameters of the Hamiltonian. We note also
that Ψk(q, t) and ρk(q, t) have moving zeros due to the zeros of the Hermite polynomials. Precisely,
if τ(l)

k , l = 1, 2, . . . k, are the zeros of the Hermite polynomial Hk(ξ), i.e., Hk(τ(l)
k )= 0, then for each

k = 1, 2, 3, . . ., the motion of the zeros is given by

q(l)
k (t)=

√
~

ω0

τ(l)
k

RB(t)
+ xp(t), l = 1, 2, . . . , k. (12)

Next, it is easy to see that the expectation values at wave functions Ψk(q, t) are

〈q̂〉k(t)= xp(t), 〈p̂〉k(t)= pp(t),

and therefore the expectation values of squares of position and momentum become

〈q̂2〉k(t)= ~

(
k +

1
2

)
*
,

1

ω0R2
B(t)

+
-

+ x2
p(t),

〈p̂2〉k(t)= ~

(
k +

1
2

) (
ω0R2

B(t)

1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ B(t)

)2
+ p2

p(t).

As a result, the uncertainties for q̂ and p̂ are found as

(∆q̂)k(t)=

√
~

ω0

(
k +

1
2

)
1

RB(t)
,

(∆p̂)k(t)=

√
ω0~

(
k +

1
2

)
RB(t)

√√
1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ B(t)

)2

,

and the uncertainty product in state Ψk(q, t) becomes

(∆q̂)k(∆p̂)k(t)= ~

(
k +

1
2

)√√
1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ B(t)

)2

, k = 0, 1, 2, . . . . (13)

B. Time-evolution of coherent states

Second, as initial states for the evolution problem (2) and (3), we take the coherent states

φ0
α(q)=

(
ω0

π~

)1/4
e−

i
2~ 〈q̂〉α〈p̂〉αe

i
~ 〈p̂〉αqe−

ω0
2~ (q−〈q̂〉α )2

, (14)
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where 〈q̂〉α =
√

2~/(ω0) α1, 〈p̂〉α =
√

2ω0~ α2, α = α1 + iα2, α1, α2 are real constants. Applying the
evolution operator Ûg(t, t0), time-evolved coherent states for the generalized oscillator are found
explicitly,

Φα(q, t)=
(
ω0

π~

)1/4
RB(t) ×

√
x1(t)
x0
− i(ω0x0)x2(t)

× exp


i
~

∫ t

t0

*
,

−e−γt

2
p2

p(s) − e−γsE(s)pp(s) +
eγtω2

0

2
x2

p(s)+
-
ds



× exp

[
−iω0x2(t)R2

B(t)
(
x1(t) − i(ω0x2

0)x2(t)
)
α2 +

α2 − |α |2

2

]

× exp

(
i
~

pp(t)q

)
× exp

[
−i
2~

eγt
(
B(t) +

ṘB(t)
RB(t)

)
(q − xp(t))2

]

× exp

{
−R2

B(t)
[√

ω0

2~
(q − xp(t)) −

( x1(t)
x0
− i(ω0x0)x2(t)

)
α

]2}
, (15)

and the corresponding probability densities become

ρα(q, t)=

√
ω0

π~
× RB(t) × exp

{
−

(√
ω0

~
RB(t)(q − 〈q̂〉α(t))

)2}
, (16)

with squeezing coefficient RB(t) and displacement 〈q̂〉α(t), where expectations at Φα(q, t) are

〈q̂〉α(t)=

√
2~
ω0

(
α1

x0
x1(t) + α2(ω0x0)x2(t)

)
+ xp(t), (17)

〈p̂〉α(t)=

√
2~
ω0

(
α1

x0
p1(t) + α2(ω0x0)p2(t)

)
+ pp(t). (18)

Thus, coherent states are Gaussian wave packets, whose center follows the classical trajectory given
by 〈q̂〉α(t). Next, finding the expectation of squares

〈q̂2〉α(t) =



√
2~
ω0

(
α1

x1(t)
x0

+ α2(ω0x0)x2(t)

)
+ xp(t)



2

+
~

2ω0R2
B(t)

, (19)

〈p̂2〉α(t) =



√
2~
ω0

(
α1

x0
p1(t) + α2(ω0x0)p2(t)

)
+ pp(t)



2

+
~

2ω0


(ω0RB(t))2 +

e2γt

R2
B(t)

(
ṘB(t)
RB(t)

+ B(t)

)2
gives the uncertainties for q̂ and p̂

(∆q̂)α(t)=

√
~

2ω0

1
RB(t)

, (20)

(∆p̂)α(t)=

√
ω0~

2
RB(t)

√√
1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ B(t)

)2

. (21)

It follows that the uncertainty product at time-evolved coherent states for the generalized harmonic
oscillator is
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(∆q̂)α(∆p̂)α(t)=
~

2

√√
1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ B(t)

)2

, (22)

where clearly (∆q̂)α(∆p̂)α ≥ ~/2. Even though the uncertainties do not depend on α, we shall keep α
as a subscript indicating that we consider uncertainties at coherent states.

III. FREQUENCY MODIFICATION AND CALDIROLA-KANAI MODELS

We have seen that parameter B(t) modifies the frequency of the classical oscillator (6), and there-
fore it changes solutions x1(t), x2(t), which determine the squeezing coefficient RB(t). Thus, B(t)
has influence on the uncertainties and on the expectation values of the position and momentum
as well. Our goal is to investigate the influence of some special choices of B(t) on the behav-
ior of the quantum oscillator. For this, we recall the homogeneous classical equation in position
space,

ẍ + γẋ +
(
ω2

0 −
(
Ḃ + B2 + γB

))
x = 0. (23)

In general, an arbitrary parameter B(t) can modify the original frequency and change it essentially.
Here, to preserve the oscillator structure, we shall choose B(t) to satisfy the equation

−(Ḃ + B2 + γB)=Λ2
0, (24)

where Λ2
0 >−ω

2
0. Then, (23) takes the form

ẍ + γẋ +
(
ω2

0 + Λ2
0

)
x = 0, (25)

with ω2
0 + Λ2

0 > 0, Λ2
0 − being the frequency modification in position space, and

Ω
2
d =ω

2
0 + Λ2

0 −
γ2

4
(26)

will give the frequency Ωd of the modified damped oscillator. The corresponding homogeneous
equation for momentum is

p̈ − γṗ +
(
ω2

0 + Λ2
p(t)

)
p= 0, (27)

where Λ2
p(t)≡ Ḃ(t) − B2(t) − γB(t) is the modification of the frequency in momentum space.

Thus, the exact form of the oscillators in position and momentum space will be determined
by the Riccati equation (24), for which different types of solutions exist according to the sign of
Ω2

B =Λ
2
0 − γ

2/4. In Secs. III A, III B and Sec. IV, we investigate these possibilities separately and
study their influence on the corresponding quantum evolution problem.

A. Standard Caldirola-Kanai oscillator, B(t) = 0

To be able to compare different models, we shortly recall some results for the standard CK-model.
That is, first we consider the Hamiltonian Hg(t) given by (4), with B(t) = 0. The corresponding classical
equation of motion is

ẍ + γẋ + ω2
0x =D + e−γtĖ, (28)

where γ > 0 is the damping coefficient and ω0 > 0 is the natural frequency, that is, the frequency of
the undamped (γ = 0) oscillator. Then, according to Ω2

0 =ω
2
0 − γ

2/4, there are three possible cases,
Ω2

0 < 0, Ω2
0 = 0, Ω2

0 > 0. In this work, we shall treat explicitly only the more interesting case of weak
damping.

Underdamping case (B(t) = 0): When Ω2
0 > 0, homogeneous solutions satisfying the required

initial conditions x1(0) = x0 , 0, ẋ1(0) = 0 and x2(0) = 0, ẋ2(0) = 1/x0, are, respectively,

x1(t)= x0
ω0

Ω0
e−

γt
2 cos(Ω0t − δ0), x2(t)=

1
Ω0x0

e−
γt
2 sin(Ω0t),



082104-7 Şirin A. Büyükaşık J. Math. Phys. 59, 082104 (2018)

whereΩ0 =

√
ω2

0 − γ
2/4 is the frequency of the damped oscillator and δ0 = tan�1(γ/2Ω0) is the phase

shift. The classical oscillator in momentum space becomes

p̈ − γṗ + ω2
0p= eγtḊ − ω2

0E, (29)

with independent homogeneous solutions of the form

p1(t)=−x0
ω2

0

Ω0
eγt/2 sin(Ω0t), p2(t)=

ω0

x0Ω0
eγt/2 cos(Ω0t + δ0).

For the standard CK-oscillator, the squeezing coefficient is

R0(t)=
eγt/2√

ω2
0

Ω2
0

[
cos2(Ω0t − δ0) + sin2(Ω0t)

] , (30)

and it shows that the amplitude and width of the wave packets of the corresponding quantum oscillator
are smooth and oscillatory. We note that when the frequencyω0 increases, the amplitude of oscillations
of R0(t) decreases. Also, when γ → 0, one has (ω2

0/Ω
2
0)→ 1, δ0→ 0 so that R0(t) approaches the

critical squeezing R0(t) = eγ t /2; see Fig. 1(a). Therefore, knowing R0(t), and formulas (20) and (21)
for ∆q̂ and ∆p̂, respectively, shows us that wave packets exhibit oscillatory squeezing in position q,
which approaches zero at large times, at the expense of oscillatory spreading in momentum p; see
Fig. 2. As a result, the uncertainty product at coherent states is

(∆q̂)α(∆p̂)α(t)=
~

2

√√
1 +

ω2
0

Ω4
0

[
γ

2
[cos2(Ω0t − δ0) + sin2(Ω0t)] +

Ω0

2
[sin(2(Ω0t − δ0)) − sin(2Ω0t)]

]2
,

FIG. 1. Standard CK-model: (a) R0(t) with γ = 1 and ω0 =
√

5/2,
√

12, ~ = 1. (b) Uncertainty product (∆q̂)α(∆p̂)α(t).

FIG. 2. Standard CK-model: γ = 1 and ω0 =
√

5/2,
√

12, ~ = 1. (a) Uncertainty ∆q̂(t). (b) Uncertainty ∆p̂(t).
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which is oscillatory and bounded for all t ≥ 0, and when γ→ 0, it approaches the minimum uncertainty
∆q̂∆p̂= ~/2, as shown in Fig. 1(b).

Periodic forces and resonance (B(t) = 0): The total force in Eq. (28) is F(t) = D + e�γ tĖ, and in
general to have sinusoidal type of force, one can consider any D(t) and E(t) such that F(t) = F0 cos(ωt
+ δd), F0, ω, and δd arbitrary. For simplicity, we shall assume that D(t) = D0 cos(ωt), with D0 being
a real constant, E(t) = 0. Then, the particular solution of (28) is

xp(t)=Ahe−
γt
2 cos(Ω0t − θh) + Ap cos(ωt − δp), (31)

where Ah and θh are constants of the transient part such that xp(t) satisfies the initial conditions xp(0)
= 0, ẋp(0) = 0, and the amplitude and phase shift of the steady-state part are

Ap =
D0√

(ω2
0 − ω

2)2 + γ2ω2
, δp = tan−1

(
γω

ω2
0 − ω

2

)
. (32)

For given γ and ω0, the driving frequency ω at which the amplitude Ap(ω) takes maximum is known
as the resonance frequency. For this model, the resonance frequency ω = ωres and the corresponding
maximum amplitude are

ωres =

√
ω2

0 − γ
2/2, Ap(ωres)=

D0√
γ2(ω2

0 −
γ2

4 )
, (33)

provided that ω2
0 − γ

2/2 > 0.
In Fig. 3, we give a plot showing the time-evolution of the probability density ρ0(q, t), which

corresponds to k = 0 in (10), and α = 0 in (16). Precisely, Fig. 3(a) shows the evolution of the Gaus-
sian wave packet when xp(t) = 0, and Fig. 3(b) shows how the center of the Gaussian wave packet
oscillates according to the classical solution xp(t)= (4/

√
47) cos(

√
23/2t−tan−1

√
46) at resonance fre-

quency (transient parts are neglected in the plots). Similarly, in Fig. 4, we plot the probability density
ρk(q, t) for k = 2, given by (10), without displacement xp(t) = 0, and with the same periodic displace-
ment xp(t) as in the previous figure, but since k = 2 we observe also the trajectories of the two moving
zeros.

B. Caldirola-Kanai models with constant parameter B(t) = B0

Now, consider the generalized quantum Hamiltonian Ĥg(t), with B(t) = B0 being any real constant.
Then, for given γ and ω0 in Eq. (23), Eq. (24) gives −(B2

0 + γB0)≡Λ2
0 ≤ γ

2/4 so that the values of
Λ2

0 are restricted as −ω2
0 <Λ

2
0 ≤ γ

2/4. The case Λ2
0 > γ

2/4 corresponds to imaginary B0, which is not
allowed for a self-adjoint Hamiltonian. According to this, for the modified classical oscillator (25)
with Ω2

d given by (26), one has the following cases:

FIG. 3. Standard CK-model: probability density ρ0(q, t), γ = 1 and ω0 =
√

12, ~= 1, (a) with xp(t) = 0. (b) With periodic
xp(t) at resonance frequency ωres =

√
23/2, D0 = 2.
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FIG. 4. Standard CK-model: probability density ρk(q, t), k = 2,γ = 1 andω0 =
√

12, ~= 1, (a) with xp(t) = 0. (b) With periodic
xp(t) at resonance frequency ωres =

√
23/2, D0 = 2.

(i) Ω2
d < 0, if −ω2

0 <Λ
2
0 <−ω

2
0 + γ2/4 (overdamping);

(ii) Ω2
d = 0, if Λ2

0 =−ω
2
0 + γ2/4 (critical damping);

(iii) Ω2
d > 0, if −ω2

0 + γ2/4<Λ2
0 ≤ γ

2/4 (underdamping).

The corresponding frequency modification in momentum space is also constantΛ2
p =−B2

0−γB0,

and the momentum equation becomes p̈ − γṗ +
(
ω2

0 + Λ2
0

)
p= 0. We note that different values of

B0 can give the same Λ2
0. For example, both B0 = 0 and B0 = �γ give Λ2

0 = 0 so that classical
equations are the same, but the difference in B0 will be reflected in the initial conditions of these
equations.

For the case when the damping is weak, we shortly give the next basic estimates.
Underdamping case (B(t) = B0): When Ω2

d > 0, homogeneous solutions are

x1(t)= x0
ω0

Ωd
e−γt/2 cos(Ωd t − δ), x2(t)=

1
x0Ωd

e−γt/2 sin(Ωd t), (34)

where Ωd =

√
ω2

0 + Λ2
0 −

γ2

4 and δ = tan−1[(γ2 + B0)/Ωd]. Therefore, the squeezing coefficient
becomes

RB(t)=
eγt/2√

(ω2
0/Ω

2
d)[cos2(Ωd t − δ) + sin2(Ωd t)]

, (35)

and the uncertainty product is

(∆q̂∆p̂)α =
~

2

√√
1 +

ω2
0

Ω4
d

[
(
γ

2
+ B0)[cos2(Ωd t − δ) + sin2(Ωd t)] +

Ωd

2
[sin(2(Ωd t − δ)) − sin(2Ωd t)]

]2
.

Resonance (B(t) = B0): Let D(t) = D0 cos(ωt), E(t) = 0. Then, the particular solution is

xp(t)=Ahe−
γt
2 cos(Ωd t − θh) + Ap cos(ωt − δp), (36)

where Ah and θh are constants such that xp(t) satisfies the initial conditions xp(0) = 0, ẋp(0) = 0, and
the amplitude and phase shift of the steady-state part are

Ap =
D0√

((ω2
0 + Λ2

0) − ω2)2 + γ2ω2
, δp = tan−1

(
γω

(ω2
0 + Λ2

0) − ω2

)
. (37)
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When ω =
√
ω2

0 + Λ2
0 in (37), the amplitude as a function of γ becomes Ap(γ)=D0/

√
γ2(ω2

0 + Λ2
0).

Thus, if γ → 0, then the amplitude increases and tends to infinity for any ω2
0 and Λ2

0, which is
not surprising, since when γ → 0, the behavior becomes close to the undamped motion for which

resonance occurs at ω =
√
ω2

0 + Λ2
0.

On the other side, for given γ,ω0, andΛ2
0, the resonance frequency isωres =

√
(ω2

0 + Λ2
0) − γ2/2,

and the corresponding maximum amplitude and phase are

Ap(ωres)=
D0√

(ω2
0 + Λ2

0)γ2 −
γ4

4

, δp(ωres)= tan−1(
2ωres

γ
), (38)

provided that ω2
0 + Λ2

0 − γ
2/2 > 0. Therefore, for this model, resonance frequency exists, if for

given γ and ω0 the constant Λ2
0 satisfies both −ω2

0 + γ2/4<Λ2
0 ≤ γ

2/4 and ω2
0 + Λ2

0 − γ
2/2 > 0,

that is, if −ω2
0 + γ2/2 <Λ2

0 ≤ γ
2/4. Such Λ2

0 exists if and only if Ω2
0 =ω

2
0 − γ

2/4> 0, that is, for
the modified oscillator in the underdamping case resonance can occur only if the oscillator with
B(t) = 0 is also in the underdamping case. Now, when Λ2

0 approaches the infimum value −ω2
0 + γ2/2

from right, we have ωres → 0 and Ap(ωres)→ 2D0/γ2. The model for which Λ2
0 takes its maximum

value, that is, Λ2
0 = γ

2/4, is interesting and will be discussed in Sec. IV, as the limiting case of
Model 2.

Obviously, the qualitative behavior of the oscillator with a constant parameter B(t) = B0 is similar
to the standard CK-oscillator. However, the advantage could be that, for fixed γ and ω0, by adding a
suitable squeezing parameter B0 to the system, one can change the behavior of the original oscillator
(B0 = 0), from one case to another. For example, suppose Ω2

0 =ω
2
0 − γ

2/4= 0 so that the original
oscillator is in the critical case. Then, by adding a non-zero real constant B0 to the model, one has
Ω2

d =Λ
2
0, the sign of which will determine the case of the new oscillator.

IV. CALDIROLA-KANAI MODELS WITH TIME-VARIABLE PARAMETERS B(t)

In this section, we introduce generalized Caldirola-Kanai oscillators with time-variable param-
eters B(t). For this, we use that depending on the sign of Ω2

B =Λ
2
0 − γ

2/4, Eq. (24) also has different
types of non-constant solutions such as

(i) B(t) = �(γ/2) + Ω′B tanh(Ω′Bt � β), Ω′B =
√

(γ2/4) − Λ2
0, when −ω2

0 <Λ
2
0 < γ

2/4,

(ii) B(t) = �(γ/2) + b/(1 + bt), when Λ2
0 = γ

2/4,

(iii) B(t) = �(γ/2) � ΩB tan(ΩBt � β), ΩB =

√
Λ2

0 − (γ2/4) when Λ2
0 > γ

2/4,

and their plot is given in Fig. 5. Here, b is an arbitrary real constant and β is an arbitrary phase
shift, which we will take to be zero in order to avoid too many parameters. For these choices of B(t),
frequency modification Λ2

0 in position space is again a constant by construction, but in momentum

FIG. 5. (a) Model 1: B(t) = �(γ/2) + Ω′B tanh(Ω′Bt � β), with γ = 1, Λ2
0 = 1/8,−1/2,−1, β = 0. (b) Model 2: B(t) = �(γ/2) +

b/(1 + bt), with γ = 1 and b = 0, 1/2, 1, 3. (c) Model 3: B(t) = �(γ/2) �ΩB tan(ΩBt � β), with γ = 1, Λ2
0 = 53/4, β = 0.
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FIG. 6. Frequency modification Λ2
p(t) in momentum space. (a) Model 1, with γ = 1, Λ2

0 = 1/8,−1/2,−1. (b) Model 2, with

γ = 1 and b = 0, 1/2, 1, 3. (c) Model 3, with γ = 1, Λ2
0 = 53/4.

space frequency modification Λ2
p(t) becomes time-dependent, as shown in Fig. 6. According to this,

we study the following three models.

A. Model 1

First, we consider a generalized Caldirola-Kanai type quantum Hamiltonian Ĥg(t) given by (4),

and B(t) = �(γ/2) + Ω′B tanh(Ω′Bt), where Ω′B =
√

(γ2/4) − Λ2
0 and −ω2

0 <Λ
2
0 < γ

2/4. We note that

the range of allowed Λ2
0 here is the same as in the previous case for any real constant B0. Also, B(t)

is minimum at t = 0 with B(0) = �γ/2, and as t →∞, it increases and asymptotically approaches the

upper bound B0 =−
γ
2 +

√
γ2

4 − Λ
2
0; see Fig. 5(a). Then, we have

ẍ + γẋ + (ω2
0 + Λ2

0)x =D + e−γt(Ė + B(t)E), (39)

with Ω2
d =ω

2
0 + Λ2

0 − γ
2/4 and different possibilities, (i) Ω2

d < 0 (ii) Ω2
d = 0, and (iii) Ω2

d > 0. The
equation in momentum space becomes

p̈ − γṗ +
(
ω2

0 + Λ2
p(t)

)
p= eγt(Ḋ − B(t)D) − ω2

0E, (40)

with time-dependent frequency modification

Λ
2
p(t)=

γ2

4
+Ω

′2
B

(
1 − 2 tanh2(Ω′Bt)

)
,

which at t = 0 is Λ2
p(0)= γ2

4 + Ω
′2
B , and as t→∞, Λ2

p(t) decreases and approaches the frequency
modification in position space Λ2

0 = (γ2/4) −Ω
′2
B ; see Fig. 6(a).

Underdamping case (Model 1): If Ω2
d > 0, that is, when −ω2

0 + γ2/4<Λ2
0 < γ

2/4, homogeneous
solutions are

x1(t)= x0e−
γt
2 cos(Ωd t), x2(t)=

1
x0Ωd

e−
γt
2 sin(Ωd t), (41)

where Ωd =

√
ω2

0 + Λ2
0 − γ

2/4. Also, since B(t) is smooth, solutions in momentum space

p1(t)=−x0Ωdeγt/2
(

sin(Ωd t) + (Ω′B/Ωd) cos(Ωd t) tanh(Ω′Bt)
)
, (42)

p2(t)=
1
x0

eγt/2
(

cos(Ωd t) − (Ω′B/Ωd) sin(Ωd t) tanh(Ω′Bt)
)

(43)

are also smooth. For this model, the squeezing coefficient is

RB(t)=
eγt/2√

cos2(Ωd t) + (ω2
0/Ω

2
d) sin2(Ωd t)

,
ω2

0

Ω2
d

> 1. (44)
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Since (ω2
0/Ω

2
d)> 1, RB(t) oscillates below the limiting squeezing R0(t) = eγ t /2, and whenΛ2

0→ γ2/4,
it approaches R0(t) = eγ t /2. In other words, for given γ and ω0, when the frequency Ωd increases, the
amplitude of oscillations of RB(t) decreases, as shown in Fig. 7(a).

Then, knowing RB(t), uncertainties ∆q̂ and ∆p̂ are of the form (20), (21), and plots showing
explicitly their squeezing and spreading properties are given in Fig. 8. It follows that the corresponding
uncertainty product is

(∆q̂)α(∆p̂)α =
~

2

√√
1 +

1

ω2
0

[
Ω′B tanh(Ω′Bt)

(
cos2(Ωd t) + (

ω2
0

Ω2
d

)sin2(Ωd t)
)
− (
Ω
′2
B

2Ωd
) sin(2Ωd t)

]2
,

which becomes minimum when Λ2
0→ γ2/4, Fig. 7(b).

Resonance (Model 1): If the oscillator is in the underdamping case, and we have periodic forces
D(t) = D0 cos(ωt), E(t) = 0, then xp(t) has the same form as Eq. (36), and the resonance frequency is
given by (38). Moreover, parameters γ,ω0, andΛ2

0 satisfy the same conditions as for the underdamping
case for B(t) = B0, so the displacement of the wave packets at resonance frequency is the same. In
Fig. 9, the probability density ρ0(q, t) is plotted for xp(t) = 0 and for periodic xp(t) at resonance
frequency.

As a result, we can say that Model 1 is very similar to the model with B(t) = B0. The difference
due to the modification in momentum space is felt only at times close to the initial time t = 0, and as
t →∞, both models show essentially the same behavior.

FIG. 7. Model 1: For ω0 =
√

12,γ = 1, Λ2
0 = 0, −15/4, −31/4, Ωd =

√
47/2,

√
8 2. (a) RB(t). (b) Uncertainty product

(∆q̂)α(∆p̂)α(t).

FIG. 8. Model 1: For ω0 =
√

12,γ = 1, Λ2
0 = 0, −15/4, −31/4. Ωd =

√
47/2,

√
8, 2, Ω′B = 1/2, 2,

√
8. (a) Uncertainty ∆q̂. (b)

Uncertainty ∆p̂.
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FIG. 9. Model 1: Probability density ρ0(q, t) with γ = 1,ω0 =
√

12, Λ2
0 =−31/4, ~= 1 (a) ρ0(q, t) without displacement and

(b) ρ0(q, t) displaced by periodic xp(t) and resonance frequency ω =
√

15/2, D0 = 3.

B. Model 2

Next, we consider the general Hamiltonian Ĥg(t) given by (4) with B(t) = �(γ/2) + b/(1 + bt),
where b is an arbitrary constant. If b = 0, then B(t) = �γ/2 is constant. If b < 0, then B(t) has a
finite time singularity at t = �1/b. Otherwise, for b > 0, B(t) is maximum at t = 0 and smoothly
decreases with increasing time, asymptotically approaching the lower bound B(t) = �γ/2, Fig. 5(b).
Since �(Ḃ + B2 + γB) = γ2/4 for any real constant b, thenΛ2

0 = γ
2/4 and the frequency of the modified

damped oscillatorΩd =

√
ω2

0 + Λ2
0 −

γ2

4 becomes equal to the frequency of the undamped one, that is,

Ωd = ω0. Thus, no matter what is the sign of Ω2
0 =ω

2
0 − γ

2/4 for the original oscillator, if one adds to
the system B(t) defined here, the new oscillator always becomes in the special underdamping case,
with Ωd = ω0. The corresponding classical equation of motion is

ẍ + γẋ + (ω2
0 +

γ2

4
)x =D + e−γt(Ė + B(t)E), (45)

with homogeneous solutions

x1(t)=
x0

ω0

√
(ω2

0 + b2)e−
γt
2 cos(ω0t − δ), x2(t)=

1
ω0x0

e−
γt
2 sin(ω0t), (46)

where δ = tan�1(b/ω0), and x1(0) = x0 , 0, ẋ1(0) = (�γ/2 + b)x0; x2(0) = 0, ẋ2(0) = 1/x0. Note that
the constant b enters the homogeneous solution via the necessary condition ẋ1(0) = x0B(0) but does
not appear explicitly in Eq. (45). The equation in momentum space becomes

p̈ − γṗ +
(
ω2

0 + Λ2
p(t)

)
p= eγt(Ḋ − B(t)D) − ω2

0E, (47)

with frequency modification depending on time

Λ
2
p(t)=

γ2

4
−

2b2

(1 + bt)2
,

which is smooth for b ≥ 0 and has singularity at t = �1/b for negative b. Also, as t→∞, it approaches
the constant modification in position space, that is, Λ2

p(t)→ γ2/4, Fig. 6(b). Homogeneous solutions
of (47) are

p1(t)=−
x0

ω0

√
(ω2

0 + b2)eγt/2
(
ω0 sin(ω0t − δ) +

b
1 + bt

cos(ω0t − δ)
)
, (48)

p2(t)=
1

ω0x0
eγt/2

(
ω0 cos(ω0t) −

b
1 + bt

sin(ω0t)
)
, (49)

which could have singularity only for negative b.
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In Model 2, the squeezing coefficient takes the form

RB(t)=
e
γt
2√

(
ω2

0 +b2

ω2
0

) cos2(ω0t − δ) + sin2(ω0t)

, (50)

and since it is smooth for any constant b, probability densities are also smooth. For the limiting
case b = 0, one has RB(t)= e

γt
2 , leading to monotone squeezing of the wave packets. Otherwise, for

b, 0, the coefficient RB(t) has oscillatory behavior. Moreover, for this model, we have fixed frequency
ω0, but the amplitude of the oscillations of RB(t) can be increased arbitrarily by increasing the value
of |b|; see Fig. 10(a). Thus, knowing RB(t), uncertainties ∆q̂ and ∆p̂ are of the form (20), (21), and
their behavior for b = 0, 1, 3, 6 is shown in Fig. 11. In Fig. 12, one can see the phase-plane diagram.
The uncertainty relation is

(∆q̂)α(∆p̂)α(t)=

~

2

√√
1 +

1
4

[ (2b/ω0)
(1 + bt)

(ω2
0 + b2

ω2
0

cos2(ω0t − δ) + sin2(ω0t)
)

+
ω2

0 + b2

ω2
0

sin(2(ω0t − δ)) − sin(2ω0t)
]2

,

which is oscillatory for b , 0, and for b = 0 one has (∆q̂)α(∆p̂)α = ~/2, Fig. 10(b). Clearly, if B(t)
has singularity, it is reflected in momentum and the uncertainty product as well.

Resonance (Model 2). Let D(t) = D0 cos(ωt), and E(t) = 0 in (45). Then,

xp(t)= xh(t) + Ap cos(ωt − δp),

pp(t)= eγt
(
ẋp(t) − (−

γ

2
+

b
1 + bt

)xp(t)
)
,

FIG. 10. Model 2: ω0 =
√

12,γ = 1, and b = 0, 1, 3, 6, ~ = 1. (a) RB(t); (b) uncertainty product (∆q̂)α(∆p̂)α .

FIG. 11. Model 2: ω0 =
√

12,γ = 1, and b = 0, 1, 3, 6, ~ = 1. (a) Uncertainty ∆q̂(t). (b) Uncertainty ∆p̂(t).
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FIG. 12. Model 2: ω0 =
√

12,γ = 1, and b = 6, ~= 1. (∆q̂(t),∆p̂(t)). (a) 0 ≤ t ≤ 4. (b) 0 ≤ t ≤ 8.

where xh(t) is the transient part such that xp(t) satisfies initial conditions xp(0) = 0, ẋp(0) = 0. The
amplitude and phase shift of the steady-state part of xp(t) take the form

Ap =
D0√

((ω2
0 + γ2

4 ) − ω2)2 + γ2ω2

, δp = tan−1
(

γω

(ω2
0 + γ2

4 ) − ω2

)
so that resonance frequency and maximum amplitude for xp(t) become

ωres =

√
ω2

0 −
γ2

4
=Ω0, Ap(ωres)=

D0

ω0γ
,

provided that Ω2
0 =ω

2
0 −

γ2

4 > 0. It means that resonance in the present modified oscillator can occur
only if the original oscillator (B(t) = 0) is also in the underdamping case.

In Fig. 13, we show the probability density ρk(q, t) for k = 2, when b = 0 (a) without displacement
and (b) with displacement under a periodic force with resonance frequency. As expected, for b = 0,
we observe monotone changes in amplitude and squeezing. In Fig. 14, we plot the probability density

FIG. 13. Model 2: ω0 =
√

12,γ = 1, b= 0. Probability density ρk(q, t) for k = 2. (a) With xp = 0. (b) With periodic xp(t), and

resonance frequency ω =
√

47/2, D0 =
√

12.
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FIG. 14. Model 2: ω0 =
√

12,γ = 1, b= 6. Probability density ρ0(q, t), (a) with xp(t) = 0 and (b) with periodic xp(t) at
resonance frequency ω =

√
47/2, D0 =

√
12.

ρ0(q, t) when b = 6, without displacement and with periodic displacement at resonance frequency,
and observe the oscillatory squeezing in ∆q̂. Then, in Fig. 15, we depict the probability density
ρk(q, t) for k = 2, when b = 6.

C. Model 3

Now consider the quantum Hamiltonian Ĥg(t) given by (4) with B(t) = �(γ/2) � ΩB tan(ΩBt),

where ΩB =

√
Λ2

0 − γ
2/4 and Λ2

0 > γ
2/4. In this model, B(t) is periodic, with singularities at

t = (n − 1/2)π
)
/ΩB, n= 1, 2, . . . ., and see Fig. 5(c). The corresponding classical equation is

ẍ + γẋ + (ω2
0 + Λ2

0)x =D + e−γt(Ė + BE), (51)

whereΩ2
d =ω

2
0 +Λ2

0−γ
2/4. SinceΛ2

0−γ
2/4> 0 impliesΩ2

d > 0 for any γ andω0, the original oscillator
(B = 0) could be critically overdamped or underdamped, but the modified oscillator is always in the
underdamping case. Then, homogeneous solutions are

x1(t)= x0e−
γt
2 cos(Ωd t), x2(t)=

1
x0Ωd

e−
γt
2 sin(Ωd t), (52)

where Ωd =

√
ω2

0 + Λ2
0 − γ

2/4, and they satisfy x1(0) = x0 , 0, ẋ1(0) = �γx0/2; x2(0) = 0,

ẋ2(0) = 1/x0. Here, the equation in momentum space is

FIG. 15. Model 2: ω0 =
√

12,γ = 1, b= 6. Probability density ρk(q, t), k = 2. (a) With xp(t) = 0. (b) With periodic xp(t) at

resonance frequency ω =
√

47/2, D0 =
√

12.
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p̈ − γṗ +
(
ω2

0 + Λ2
p(t)

)
p= eγt(Ḋ − BD) − ω2

0E, (53)

where the modification of the frequency

Λ
2
p(t)=

γ2

4
−Ω2

B

(
1 + 2 tan2(ΩBt)

)
is periodic and reflects the singularities of B(t); see Fig. 6(c). It follows that solutions of (53),

p1(t)= x0Ωdeγt/2
(
− sin(Ωd t) + (ΩB/Ωd) cos(Ωd t) tan(ΩBt)

)
, (54)

p2(t)=
1
x0

eγt/2
(

cos(Ωd t) + (ΩB/Ωd) sin(Ωd t) tan(ΩBt)
)
, (55)

also have singularities at the same times as B(t), which is expected. For this model, the squeezing
coefficient becomes

RB(t)=
eγt/2√

cos2(Ωd t) + (ω2
0/Ω

2
d) sin2(Ωd t)

,
ω2

0

Ω2
d

< 1, (56)

which is smooth, and since (ω2
0/Ω

2
d)< 1, it oscillates above R0(t) = eγ t /2. When (ω2

0/Ω
2
d)→ 1, RB(t)

approaches the limiting squeezing, that is, RB(t) → eγ t /2. Moreover, for given γ and ω0, when
Λ0 increases, the frequency Ωd and the amplitude of oscillations also increase. For example, tak-
ing γ = 1,ω2

0 = 12, and then for the different values Λ2
0 = 1/4, 53/4, 209/4, one gets, respectively,

Ωd = 2
√

3, 5, 8, and this behavior of RB(t) is shown in Fig. 16(a).
Using RB(t) given by (56), uncertainties are of the form

(∆q̂)α =

√
~

2ω0

1
RB(t)

, (57)

(∆p̂)α =

√
ω0~

2
RB(t)

√√
1 +

e2γt

(ω0R2
B(t))2

(
ṘB(t)
RB(t)

+ (−(γ/2) −ΩB tan(ΩBt))

)2

,

and the uncertainty relation is explicitly found,

(∆q̂)α(∆p̂)α(t)=
~

2

√√
1 +

1

ω2
0

[
ΩB tan(ΩBt)

(
cos2(Ωd t) + (

ω2
0

Ω2
d

) sin2(Ωd t)
)
− (
Ω2

B

2Ωd
) sin(2Ωd t)

]2
.

FIG. 16. Model 3: (a) RB(t) for ω0 =
√

12, with γ = 1, and Λ0 = 1/2,
√

53/2,
√

209/2. (b) Uncertainty product ∆q̂∆p̂ at
coherent states, ω0 =

√
12,γ = 1, Λ0 =

√
209/2, Ωd = 8, ~= 1.
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For this model, the uncertainty of position (∆q̂)α is smooth and oscillatory, and approaches zero
as time increases; however, the uncertainty of momentum (∆p̂)α and the uncertainty product have
singularities at points where B(t) is singular; see Figs. 16(b) and 17.

Resonance (Model 3): Consider again the periodic forcing D(t) = D0 cos(ωt), with D0 being a
real constant, E(t) = 0. Then, a particular solution of (51) satisfying the initial conditions xp(0) = 0,
ẋp(0) = 0 is of the form

xp(t)=Ahe−
γt
2 cos(Ωd t − θh) + Ap cos(ωt − δp), (58)

with the resonance frequency and amplitude given by

ωres =

√
(ω2

0 + Λ2
0) − γ2/2, Ap(ωres)=

D0√
(ω2

0 + Λ2
0)γ2 −

γ4

4

, (59)

whereΛ2
0 > γ

2/4. Thus, resonance in this modified oscillator will always occur if the original oscillator
is in the underdamped or critical case, that is, ifω2

0−γ
2/4 ≥ 0 together with the conditionΛ2

0−γ/4> 0.
However, for this model, it is possible to have resonance even whenω2

0−γ
2/4< 0. Moreover, for fixed

γ andω0, resonance can be controlled by parameterΛ2
0. For example, sinceΛ2

0 > γ
2/4, the maximum

amplitude will increase when Λ2
0 decreases and approaches γ2/4, but it has an upper bound, that is,

Ap(ωres) < D0/ω0γ. From another side, by increasing the value ofΛ2
0, one can decrease the amplitude

Ap(ωres), at the expense of increasing the resonance frequency ωres.

Now, knowing xp(t), we have pp(t)= eγt
(
ẋp(t)+[γ/2+ΩB tan(ΩBt)]xp(t)

)
, and expectation values

at coherent states become

〈q̂〉α(t)=

√
2~
ω0

e−γt/2
(
α1 cos(Ωd t) + α2(ω0/Ωd) sin(Ωd t)

)
+ xp(t),

〈p̂〉α(t)=

√
2~
ω0

eγt/2
(
− α1

(
Ωd sin(Ωd t) −ΩB cos(Ωd) tan(ΩBt)

)
+α2ω0

(
cos(Ωd t) + (ΩB/Ωd) sin(Ωd t) tan(ΩBt)

))
+ pp(t).

Therefore, singularities of the squeezing parameter B(t) are reflected in momentum uncertainty,
uncertainty product, and expectations of momentum, but the squeezing coefficient RB(t), probability
densities, and expectations of position remain smooth. In Fig. 18(a), we plot the probability density
ρ0(q, t), and observe oscillatory squeezing of the width, much more like “breathing” of the squeezing
wave. Then, in Fig. 18(b), we show ρ0(q, t), under periodic displacement xp(t) at resonance frequency.
Finally, in Fig. 19, we show the behavior of ρk(q, t) for k = 2.

FIG. 17. Model 3: ω0 =
√

12,γ = 1, and Λ0 =
√

209/2, Ωd = 8, ~= 1. (a) Uncertainty ∆q̂. (b) Uncertainty ∆p̂.
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FIG. 18. Model 3: Probability density ρ0(q, t) with γ = 1,ω0 =
√

12, Λ0 =
√

209/2, Ωd = 8, ~= 1, (a) ρ0(q, t) with xp(t) = 0
and (b) ρ0(q, t) displaced by periodic xp(t) at resonance frequency ω =

√
255/2, D0 = 8.

FIG. 19. Model 3: Probability density ρ2(q, t) with γ = 1,ω0 =
√

12, Λ0 =
√

209/2, Ωd = 8. (a) ρ2(q, t) with xp(t) = 0 and (b)
ρ2(q, t) displaced by periodic xp(t) at resonance frequency ω =

√
255/2, D0 = 8, ~= 1.

V. SUMMARY AND DISCUSSION

We investigated the behavior of a Caldirola-Kanai quantum parametric oscillator under the
influence of the mixed term B(t)(q̂p̂+ p̂q̂)/2 and linear terms D0(t)q̂, E0(t)p̂. The squeezing parameter
B(t) modifies the frequency of the corresponding classical equation and therefore has influence on
the amplitude and squeezing properties of the wave packets. On the other hand, parameters D0(t) and
E0(t) are responsible for the displacement of the wave packets. According to this, we introduced all
possible choices of B(t) so that the classical equation in position space preserves its damped harmonic
oscillator structure with constant frequency and damping. Then, taking also sinusoidal external forces,
squeezing effects and resonance phenomena were explicitly discussed according to the frequency
modification. We found that for certain values of frequency modification, the generalized models
show the same qualitative behavior as the standard Caldirola-Kanai oscillator, but for other values we
observed rather unusual properties such as smooth probability densities with squeezing and breathing
width, at the expense of singularities in momentum.

More precisely, to have a damped harmonic oscillator with constant frequency and damping in
position space, we defined B(t) leading to constant frequency modification Λ2

0 so that the modified
frequencyΩ2

m =ω
2
0 +Λ2

0 is always positive. Then, for −ω2
0 <Λ

2
0 < γ

2/4, we discussed the model with

constant B(t) = B0 and Model 1 for which B(t)=−(γ/2) + Ω′B tanh(Ω′Bt − β), Ω′B =
√

(γ2/4) − Λ2
0.

We have seen that both of these models show essentially the same behavior as the standard Caldirola-
Kanai oscillator. However, the influence of B(t) can be used to control squeezing and resonance and
even change the type of the original oscillator as overdamped, critical or underdamped. In this work,
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we focused our attention on the cases when the damping is weak and forces are sinusoidal, but it is
obvious that the results can be easily extended to critical and overdamping cases and different types
of driving forces, when necessary.

More interesting situations appeared in Model 2 and Model 3. In Model 2, where B(t) = �(γ/2)
+ b/(1 + bt), the frequency modification is Λ2

0 = γ
2/4, for any real b. In that case, the frequency of

the modified oscillator Ωd becomes equal to the natural frequency ω0, that is, modification cancels
the effect of damping γ in the damping frequency Ωd . Therefore, the frequency of squeezing is ω0

for all b, but the amplitude of oscillations can be increased by increasing the value of |b|. Moreover,
for this model, the resonance frequency does not depend on b, and it is equal to the frequency of the

damped oscillator when B(t) = 0, that is, ωres =

√
ω2

0 − γ
2/4=Ω0.

Clearly Model 3, with B(t) = �(γ/2) � ΩB tan(ΩBt � β), ΩB =

√
Λ2

0 − (γ2/4), is different com-

paring with the previous models. In the models with B(t) = B0 and Model 1, for given γ and ω0,
the set of allowed values of Λ2

0 is bounded, and when the frequency increases, the amplitude of
oscillations decreases and approaches the critical squeezing. On the other side, Model 3 is defined
for Λ2

0 > γ
2/4. Then, for given γ and ω0, by increasing the value of Λ2

0, one can simultaneously
increase the wave amplitude and frequency of its oscillating width or get very high quality number

Q=
√
ω2

0 + Λ2
0/γ. In this model, such properties were achieved by allowing singularities in momen-

tum due to singularities in B(t), when preserving the form of the classical equation of motion. Similar
properties were discussed in Ref. 28, for generalized Hermite, Laguerre, and Jacobi type quantum
parametric oscillators. Clearly, the study of quantum models with frequency modification without
changing the structure of the oscillator can be extended to other special functions and equations.47

However, interesting problems can also appear when the frequency is essentially modified under
the influence of the squeezing parameter B(t). For example, it is possible to choose B(t) so that
the modified classical oscillator becomes of Mathieu type, for which the parametric resonance and
its influence on the quantum problem can be investigated. The problems discussed here can also
provide a basis for some other investigations on the subject, such as time-evolution of nonlinear
Madelung fluids and pole dynamics, Schrödinger-Langevin formalism for describing interactions
in non-conservative systems, and the multidimensional problems, the details of which are under
consideration.
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