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We propose a new integral equation formulation to characterize and com-
pute transmission eigenvalues in electromagnetic scattering. As opposed to the
approach that was recently developed by Cakoni, Haddar and Meng (2015)
which relies on a two-by-two system of boundary integral equations, our anal-
ysis is based on only one integral equation in terms of the electric-to-magnetic
boundary trace operator that results in a simplification of the theory and in a
considerable reduction of computational costs. We establish Fredholm proper-
ties of the integral operators and their analytic dependence on the wave number.
Further, we use the numerical algorithm for analytic nonlinear eigenvalue prob-
lems that was recently proposed by Beyn (2012) for the numerical computation
of the transmission eigenvalues via this new integral equation.
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1 INTRODUCTION

The transmission eigenvalue problem for Maxwell's equation arises in scattering theory for time-harmonic electromag-
netic waves in inhomogeneous media. If n denotes the refractive index of an inhomogeneous medium with support
D ∈ R3 in electromagnetic scattering, the transmission eigenvalue problem is formulated as finding k ∈ C for which the
homogeneous problem

curl curl E − k2nE = 0 in D, (1)
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curl curl E0 − k2E0 = 0 in D, (2)

𝜈 × E = 𝜈 × E0 on 𝜕D, (3)

𝜈 × curl E = 𝜈 × curl E0 on 𝜕D (4)

has nontrivial solutions E,E0 ∈ L2(D). Here, we assume that D is bounded and has a connected complement R3∖D with
sufficiently smooth boundary 𝜕D and 𝜈 denotes the outward unit normal vector.

Transmission eigenvalues can be seen as the extension of the concept of resonant frequencies for impenetrable objects
to the case of penetrable media. They are related to nonscattering frequencies. If E = Ei +Es is the total field for scattering
of an incident field Ei such that Es = 0 everywhere, then E and E0 = Ei solve (1)-(4). Conversely, if (1)-(4) has a nontrivial
solution E,E0, and E0 can be extended outside D as a solution to curlcurl E0−k2E0 = 0, and this extension E0 is considered
as the incident field, then the corresponding scattered field is Es = 0.

The transmission eigenvalue problem is a nonlinear and non-self-adjoint eigenvalue problem that is not covered by
the standard theory of eigenvalue problems for elliptic equations, and as such in recent years, its analysis has been an
attractive subject of investigation. For existence of transmission eigenvalues for the Maxwell equations, we refer to Cakoni
et al1,2 and to numerical computations via finite element methods to Monk and Sun.3

In this paper, we extend the boundary integral equation approach that we developed in Cakoni and Kress4 for the trans-
mission eigenvalue problem for the Helmholtz equation in the case of a constant refractive index. Boundary integral
equation methods were first used in the context of transmission eigenvalues for the Helmholtz problem by Cossonnière
and Haddar.5,6 In their work, they used Green's representation formula to derive a system of two linear boundary integral
equations that are equivalent to the transmission eigenvalue problem and depend nonlinearly on the eigenvalue param-
eter k. Using parts of the analysis in Cossonnière and Haddar,5,6 we were able to develop a new formulation that leads
to only one linear boundary integral equation in terms of a Dirichlet-to-Neumann operator and used it also for numer-
ical computations of transmission eigenvalues (see Cakoni and Kress4). The analysis in Cossonnière and Haddar5,6 was
extended by Cakoni et al7 to the transmission eigenvalue problem for the Maxwell equations leading again to a system
of two linear integral equations. It is the purpose of this paper to extend our approach from Cakoni and Kress4 to again
obtain a formulation with only one integral equation.

Assuming that n > 0 with n ≠ 1 is constant, the main idea is to derive an integral equation from a characterization of
the transmission eigenvalues in terms of the electric-to-magnetic boundary trace operator k,n. For any field E defined in
D, throughout the paper, we denote by

𝛾E ∶= 𝜈 × (E × 𝜈)
the tangential trace of E on 𝜕D. Then, k,n is defined by

k,n ∶ c → 𝛾 curl E, (5)

where E is the unique solution to
curl curl E − k2nE = 0 in D, (6)

𝜈 × E = c on 𝜕D, (7)
assuming that k2 is not an eigenvalue for this problem. We further assume that k2 is also not an eigenvalue for the case
when n = 1 and, for ease of notation, set kn ∶= k

√
n and write k = k,1 and kn = k,n. Then, k is a transmission

eigenvalue if and only if the kernel of the operator

A(k) ∶= k −kn (8)

is nontrivial. To get rid of the restriction on k2 not to be an eigenvalue for (6)-(7), we will find it necessary to modify the
boundary condition (7) into a nonlocal impedance condition to be specified later on. Before we do that, we need to discuss
the appropriate trace spaces for solutions of the transmission eigenvalue problem and provide further preparations.

2 OPERATORS AND TRACE SPACES

To represent the electric-to-magnetic boundary trace operator in terms of integral operators, we need to introduce the
single-layer potential k defined by

(k𝜓) (x) ∶= 2∫𝜕D
𝜓(y)Φk(x, y) ds(y), x ∈ R

3∖𝜕D, (9)
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in terms of the fundamental solution

Φk(x, y) =
1

4𝜋
eik|x−y||x − y| , x ≠ y. (10)

The factor 2 in the definition of k later on avoids the occurrence of a factor 1∕2 in our representations of the operator
A(k). It is known (see, eg, McLean8, Theorem 7.2) that if 𝜕D is C2,1-smooth, the linear operator k ∶ Hs− 1

2 (𝜕D) → Hs+1(D) is
bounded for −1 ≤ s ≤ 2. We define the restriction of k and of its normal derivative to the boundary 𝜕D by

(Sk𝜓)(x) ∶= 2∫𝜕D
𝜓(y)Φ(x, y) ds(y), x ∈ 𝜕D, (11)

(K′
k𝜓)(x) ∶= 2∫𝜕D

𝜓(y) 𝜕
𝜕𝜈x

Φ(x, y) ds(y), x ∈ 𝜕D. (12)

Then, by the trace theorem,

Sk ∶ Hs− 1
2 (𝜕D) → Hs+ 1

2 (𝜕D), (13)

K′
k ∶ Hs− 1

2 (𝜕D) → Hs− 1
2 (𝜕D) (14)

are bounded for −1 ≤ s ≤ 2.
To discuss the two basic electromagnetic boundary integral operators, we define the space

Hs
t (𝜕D) ∶=

{
a ∈ Hs(𝜕D) ∶ 𝜈 · a = 0

}
of tangential fields, and as in Colton and Kress,9, Chapter 6 we introduce the operators

(Mka)(x) ∶= 2∫D
𝜈(x) × curlx {Φk(x, y)a(y)} ds(y), x ∈ 𝜕D (15)

and

(Nka)(x) ∶= 2𝛾curl curl∫D
Φk(x, y)a(y) ds(y), x ∈ 𝜕D. (16)

The definition of Nk differs slightly from the one in Colton and Kress.9 The operator Mk is a pseudo-differential operator

of order −1, it maps H
s− 1

2
t (𝜕D) compactly into itself, and Nk is a pseudo-differential operator of order 1, it maps H

s− 1
2

t (𝜕D)

into H
s− 3

2
t (𝜕D) for 0 ≤ s ≤ 2 (see Colton and Kress9).

The solutions to the transmission eigenvalue problem belong to L2
curl2 (D), where

L2
curl2 (D) ∶=

{
E ∈ L2(D) ∶ curl curl E ∈ L2(D), div E = 0

}
is equipped with the norm

||E||2L2
curl2

(D) = ||E||2L2(D) + ||curl curl E||2L2(D).

Therefore, we need to discuss both their traces

𝛾E ∈ H
− 1

2
t (𝜕D) and 𝛾 curl E ∈ H

− 3
2

t (𝜕D).

For E ∈ L2
curl2 (D), in view of the second vector Green integral theorem (see Colton and Kress9, p. 190), its trace 𝛾E ∈ H

− 1
2

t (𝜕D)
is defined by duality

⟨𝛾E, f ⟩
H

− 1
2

t (𝜕D),H
1
2

t (𝜕D)
= ∫D

(E · curl curl F − F · curl curl E) dx,
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where F ∈ H2(D) is such that div F = 0 in D and 𝜈×𝛾F = 0 and 𝛾 curl F = −f on 𝜕D. Similarly, the trace 𝛾 curl E ∈ H
− 3

2
t (𝜕D)

is defined

⟨𝛾 curl E, f ⟩
H

− 3
2

t (𝜕D),H
3
2

t (𝜕D)
= ∫D

(E · curl curl F − F · curl curl E) dx,

where F ∈ H2(D) is chosen such that div F = 0 in D and 𝜈 × 𝛾F = f and 𝛾 curl F = 0 on 𝜕D.
For these definitions of the traces, we require a lifting result due to Haddar,10 which ensures that for given fields a ∈

H
3
2

t (𝜕D) and b ∈ H
1
2

t (𝜕D), there exist F ∈ H2(D) such that div F = 0 in D and 𝜈 × 𝛾F = a and 𝛾 curl F = b on 𝜕D. In
Haddar,10 the existence of G ∈ H2(D) satisfying 𝜈 × 𝛾G = a and 𝛾 curl G = b on 𝜕D is established. By the Helmholtz
decomposition, we have G = curl A + grad u with A,u ∈ H3(D). Then, with the unique harmonic function v ∈ H3(D)
satisfying v = u on 𝜕D, the field F = curl A + grad v has the required properties.

Obviously,ka satisfies the vector Helmholtz equation in D, and the operator curl k ∶ H− 1
2 (𝜕D) → L2

curl2(D) is bounded.

By a duality argument, it is possible to extend the vector jump relations on 𝜕D to the case of densities a ∈ H
− 1

2
t (𝜕D).

Lemma 2.1. The field E = curl ka with density a ∈ H
− 1

2
t (𝜕D) has boundary traces

𝜈 × 𝛾E± = Mka ∓ a ∈ H
− 1

2
t (𝜕D) (17)

and

𝛾 curl E = Nka ∈ H− 3
2 (𝜕D). (18)

3 VECTOR POTENTIAL THEORY REVISITED

Before we proceed with the closer investigation of the transmission eigenvalue problem, we provide a regularity property
from vector potential theory that we will be use in our further analysis. This section follows Martensen11, p. 252 and puts
some classical facts on harmonic vector fields into a contemporary Sobolev space framework. R.K. was particularly pleased
to work this out since he became familiar with the topic during his early times in mathematics almost 50 years ago as a
PhD student and postdoctoral researcher with Erich Martensen in Darmstadt.

For m = 0, 1, … , we introduce the spaces of divergence free vector fields

Hm,0(D) ∶=
{

F ∈ Hm(D) ∶ div F = 0
}
.

Then, for m = 0, 1, given F ∈ Hm,0(D), we define a harmonic function u ∈ Hm+1(D) as the single-layer potential

u(x) ∶= ∫𝜕D
Φ0(x, y) 𝜈(y) · F(y) ds(y), x ∈ D, (19)

and a harmonic function v ∈ Hm+1
loc (R3∖D̄) as the unique solution to the exterior Neumann problem

𝜕v
𝜕𝜈

= 𝜕u
𝜕𝜈

on 𝜕D (20)

vanishing at infinity. Then, we consider the field

A(x) ∶= ∫D
Φ0(x, y)F(y) dy + ∫𝜕D

Φ0(x, y) [u(y) − v(y)] 𝜈(y) ds(y) (21)

for x ∈ D and the operator V ∶ F → A.
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Lemma 3.1. The operator V is bounded from Hm,0(D) into Hm+2,0(D).

Proof. The mapping of F into the volume potential in (21) is bounded from Hm(D) into Hm+2(D). By the trace theorem,
the mapping of F into the potential u is bounded from Hm(D) into Hm+1(D), and the mapping of u into the boundary
trace of v is bounded from Hm+1(D) into Hm+ 1

2 (𝜕D). Finally, the mapping from (u|𝜕D − v|𝜕D) to the single-layer potential
in (21) is bounded from Hm+ 1

2 (𝜕D) into Hm+2. Hence, the boundedness of V from Hm(D) into Hm+2(D) follows.
It remains to show that div A = 0 in D. Taking the divergence in (21), interchanging differentiation and integration

and using div F = 0 yields

div A(x) = −∫D
divy[Φ0(x, y)F(y)] dy − ∫𝜕D

[u(y) − v(y)]
𝜕Φ0(x, y)
𝜕𝜈(y)

ds(y)

for x ∈ D. By the Gauss divergence theorem and (19), it follows

div A(x) = −u(x) − ∫𝜕D
[u(y) − v(y)]

𝜕Φ0(x, y)
𝜕𝜈(y)

ds(y), x ∈ D.

Finally, the boundary condition (20) and Green's integral formula for harmonic functions imply div A = 0 in D.

Assume now that we are given fields F ∈ Hm,0(D) and g ∈ H
m+ 3

2
t (𝜕D). Then, the field H0 = curl V(F) ∈ Hm+1,0(D)

satisfies

curl H0 = F, div H0 = 0 in D

because of curl H0 = curl curl A = −ΔA + grad div A = F. Now, we consider the Neumann problem for a harmonic
function w ∈ Hm+2(D) with boundary condition

𝜕w
𝜕𝜈

= 𝜈 · H0 + Div g on 𝜕D (22)

and normalization ∫
𝜕Dw ds = 0. Note that the right hand side in (22) belongs to Hm+ 1

2 (𝜕D), and in view of the Gauss
divergence theorem, it satisfies the solvability condition

∫𝜕D
[𝜈 · H0 + Div g] ds = 0.

Then,

H ∶= H0 − grad w

satisfies

curl H = F, div H = 0 in D

and the boundary condition

𝜈 · H = −Div g on 𝜕D. (23)

The mapping (H0, g) → w is bounded from Hm+1(D)×H
m+ 3

2
t (𝜕D) into Hm+2(D). Therefore, in turn, the mapping (F, g) → H

is bounded from Hm(D) × H
m+ 3

2
t (𝜕D) into Hm+1(D).

The field E0 = curl V(H) ∈ Hm+2,0(D) in turn now satisfies

curl E0 = H, div E0 = 0 in D.

The mapping H → E0 is bounded from Hm+1,0(D) into Hm+2,0(D). We consider the Dirichlet boundary value problem for
a harmonic field E1, that is, curl E1 = 0 and div E1 = 0 in D with tangential component

𝜈 × E1 = 𝜈 × E0 − g on 𝜕D.
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From (23) and curl E0 = 0, we observe that

Div [𝜈 × E0 − g] = 0. (24)

We seek the solution in the form

E1(x) = curl∫𝜕D
Φ0(x, y)a(y) ds(y), x ∈ D,

with density a ∈ H
m+ 3

2
t (𝜕D). The boundary condition is satisfied provided a solves the integral equation

M0a − a = 2𝜈 × E0 − 2g. (25)

For a simply connected domain D, the operator M0 − I is injective in the Hölder space C0,𝛼
t (𝜕D) (see Colton and

Kress12, Theorem 5.4). Using the Fredholm alternative in dual systems, it can be seen that M0 − I is also injective in H
m+ 3

2
t (𝜕D)

(see Kress13, Theorem 4.20). By the Riesz theory, injectivity of M0− I now implies bijectivity with a bounded inverse (M0− I)−1.
We refrain from presenting the technical details required to show solvability of (25) by using the quotient space with
respect to the kernel of M − I in the case of multiply connected domains D.

Taking the surface divergence of (25) leads to the homogeneous equation (see Colton and Kress9, Theorem 6.17)

K′
0Div a + Div a = 0.

From this, it follows that the single-layer potential with density Diva is constant in D (see Kress13, Theorem 6.21). Therefore,
we have

curl E1(x) = grad div∫𝜕D
Φ0(x, ·)a ds = grad∫𝜕D

Φ0(x, ·)Div a ds = 0

for x ∈ D. Because of the boundedness of (M0 − I)−1 on H
m+ 3

2
t (𝜕D), the mapping taking (E0, g) into E1 is bounded from

Hm+2,0(D) × H
m+ 3

2
t (𝜕D) into Hm+2,0(D).

Then,

E ∶= E0 − E1 ∈ Hm+2,0(D) (26)

satisfies

curl curl E = F, divE = 0 in D (27)

and the boundary condition

𝜈 × E = g on 𝜕D. (28)

The total mapping (F, g) → E from Hm,0(D) × H
m+ 3

2
t (𝜕D) into Hm+2,0(D) is bounded. Using the vector Green integral

theorem, it can be shown that the solution E ∈ Hm+2,0(D) to (27)-(28) is unique.
We can summarize this into the following theorem (compare Theorem 1.3 in Taylor14, p. 305).

Theorem 3.2. The unique solution E ∈ Hm,0(D) of curl curl E = F satisfying 𝜈 × E = g on 𝜕D with F ∈ Hm,0(D) and

g ∈ H
m+ 3

2
t (𝜕D) belongs to Hm+2,0(D), and the linear mapping taking (F, g) into E is bounded from Hm,0(D) × H

m+ 3
2

t (𝜕D)
into Hm+2,0(D) for m = 0, 1.

We require a further regularity result that we base on the vector Green formula for divergence free vector fields

E(x) = ∫D
Φ0(x, ·)curl curl E dy + grad∫𝜕D

Φ0(x, ·) 𝜈 · E ds − curl∫𝜕D
Φ0(x, ·) 𝜈 × E ds

− ∫𝜕D
Φ0(x, ·) 𝜈 × curl E ds

(29)
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for x ∈ D. This representation formula can be viewed as a limit of the Stratton-Chu formula for Maxwell's equations
and a proof for smooth functions can be found, for example, in Kress.15 It can be seen to be valid for E ∈ L2

curl2 (D) with

the boundary values interpreted in the sense of the traces 𝛾E ∈ H
− 1

2
t (𝜕D) and 𝛾 curl E ∈ H

− 3
2

t (𝜕D) as introduced in the

previous section. Since for divergence free E ∈ L2
curl2(D), we have ΔE ∈ L2(D), the trace 𝜈 · E ∈ H

− 1
2

t (𝜕D) also is well
defined (see Cakoni and Kress4). We will use (29) to establish the following regularity properties.

Theorem 3.3. For each E ∈ L2
curl2(D), we can estimate

||𝛾curl E||
H− 3

2 (𝜕D)
≤ C

[||𝜈 × 𝛾E||
H− 1

2 (𝜕D)
+ ||curl curl E||L2(D)

]
(30)

for some C > 0 depending only on D.

Proof. We introduce the volume potential

W(x) ∶= 2∫D
Φ0(x, ·)curl curl E dy, x ∈ D,

and, with the aid of Lemma 2.1, take the trace of the curl in (29) to obtain the integral equation

a + M0a = 𝛾 curl W − 𝜈 × N0 (𝜈 × E) (31)

for a ∶= 𝜈 × 𝛾 curl E. Analogous to M0 − I, for a simply connected domain D, the operator M0 + I is injective in the

Hölder space C0,𝛼
t (𝜕D). Arguing as in the proof of the previous theorem, we obtain solvability of (31) in H

− 3
2

t (𝜕D) with
a bounded inverse (I + M0)−1. Then, in view of the boundedness of the volume potential from L2(D) into H2(D) and

the boundedness of N0 from H
− 1

2
t (𝜕D) into H

− 3
2

t (𝜕D), estimating the right-hand side of (31), we complete the proof.

Lemma 3.4. Each E ∈ L2
curl2 (D) with trace 𝛾E ∈ H

3
2

t (𝜕D) on 𝜕D is in H2,0(D).

Proof. For given E ∈ L2
curl2 (D), denote by Ẽ ∈ H2,0(D), the unique solution of curl curl Ẽ = curl curl E in D with

𝜈 × 𝛾Ẽ = 𝜈 × E on 𝜕D from Theorem 3.2 and consider the difference E0 = E − Ẽ. Then, by the definition of the trace
𝛾E0, we have that ∫DE0 · curl curl F dx = 0 for any F ∈ H2,0(D) with 𝛾F = 0 on 𝜕D. Inserting the unique solution
F ∈ H2,0(D) of curl curl F = E0 with 𝛾F = 0 on 𝜕D gives E0 = 0, that is, E = Ẽ ∈ H2,0(D).

4 A NONLOCAL IMPEDANCE CONDITION

Now, we are ready to consider the impedance problem

curl curl E − k2nE = 0 in D (32)

with the nonlocal boundary condition

𝜈 × E − i𝜂𝛾S3
0𝛾 curl E = c on 𝜕D (33)

for E ∈ L2
curl2 (D) where c ∈ H

− 1
2

t (𝜕D) is given. Here, S0 is the single-layer operator for the Laplace case, and 𝜂 ≥ 0 is a
parameter that we introduce to include the perfect conductor boundary condition as the special case 𝜂 = 0. The nonlocal
boundary condition has no physical meaning but helps us to circumvent some regularity issues. For this reason, the
analysis presented below remains valid after replacing the compact operator S0 by any positive definite pseudo-differential
operator of order −1.

Theorem 4.1. The impedance boundary value problem (32)-(33) has a unique solution.

Proof. To show uniqueness, assume that E solves the impedance problem for c = 0. From the homogeneous boundary

condition (33) and the fact that 𝛾S3
0 ∶ H

− 3
2

t (𝜕D) → H
3
2

t (𝜕D), we observe that
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𝜈 × E = i𝜂𝛾 S3
0𝛾 curl E ∈ H

3
2

t (𝜕D).

Therefore, by Theorem 3.2 with m = 0 in combination with Lemma 3.4, we have E ∈ H2(D). Then from the first
vector Green integral theorem (see Colton and Kress9, p. 190), using the positive definiteness of S0, we obtain that

∫D

{|curl E|2 − k2|E|2} dx = i∫𝜕D
𝛾S

3
2
0 𝛾 curl E · 𝛾S

3
2
0 𝛾 curl E ds,

whence 𝛾 curl E = 0 on 𝜕D follows. Then, the boundary condition (33) implies 𝜈 × E = 0 on 𝜕D and from the
Stratton-Chu formula (see Colton and Kress9), we deduce that E = 0 in D.

We seek the solution in the form

E = curl ka (34)

with density a ∈ H
− 1

2
t (𝜕D). Clearly, E satisfies the differential equation (32) and belongs to L2

curl2 (D). In view of (17)
and (18), the boundary condition (33) is satisfied provided a solves the integral equation

(−I + Mk − i𝜂𝛾S3
0Nk)a = 2c. (35)

Injectivity of

Qk ∶= −I + Mk − i𝜂𝛾S3
0Nk

is a consequence of the uniqueness for the impedance problem, which implies that E defined by (34) for a solution a
of Qka = 0 vanishes E = 0 in D. Then, (18) yields 𝜈×E+ = 0 on 𝜕D and from this uniqueness for the perfect conductor
exterior boundary value problem implies that E = 0 in R3∖D. Finally, from this and (17), we obtain a = 0. As noted

above, Mk ∶ H
− 1

2
t (𝜕D) → H

− 1
2

t (𝜕D) is compact and Nk ∶ H
− 1

2
t (𝜕D) → H

− 3
2

t (𝜕D) is bounded. As consequence of the

latter, 𝛾S3
0Nk ∶ H

− 1
2

t (𝜕D) → H
3
2

t (𝜕D) is bounded and therefore 𝛾S3
0Nk ∶ H

− 1
2

t (𝜕D) → H
− 1

2
t (𝜕D) is compact. By the Riesz

theory, injectivity of Qk implies bijectivity and boundedness of Q−1
k .

We will also need the impedance boundary value problem for purely imaginary k = i and 𝜂 = i. In this case, we have
the boundary condition

𝜈 × E + 𝛾S3
0𝛾 curl E = c on 𝜕D (36)

and obtain uniqueness and existence along the same lines.
The solution to the nonlocal impedance problem defines an impedance-to-magnetic boundary trace operator by

k,n ∶ c → 𝛾 curl E (37)

where E is the unique solution to (32)-(33). We set kn ∶= k
√

n and write k = k,1 and kn = k,n. Obviously, k is a
transmission eigenvalue if and only if the kernel of the operator

B(k, 𝜂) ∶= k − kn (38)

is nontrivial. From the proof of Theorem 4.1, we observe that

k = NkQ−1
k

and the difference of this operators corresponding to k and kn is given by

B(k, 𝜂) = NkQ−1
k − Nkn Q−1

kn
.
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5 THE TRANSMISSION EIGENVALUE PROBLEM

We now are ready for our investigation of the transmission eigenvalue problem.

Lemma 5.1. The linear operators

a → curl kQ−1
k a − curl kn Q−1

kn
a (39)

from H
− 1

2
t (𝜕D) into H2(D) and B(k, 𝜂) ∶ H

− 1
2

t (𝜕D) → H
1
2

t (𝜕D) are bounded.

Proof. By definition, B(k)a is the tangential trace on the boundary 𝜕D of the curl of

E ∶= curl kQ−1
k a − curl kn Q−1

kn
a, a ∈ H

− 1
2

t (𝜕D).

By Lemma 2.1, we have 𝛾 curl E = NkQ−1
k a − Nkn Q−1

kn
a with the mapping a → 𝛾 curl E bounded form H

− 1
2

t (𝜕D) into

H
− 3

2
t (𝜕D). From

curl curl E = k2 curl kQ−1
k a − k2

n curl kn Q−1
kn

a (40)

we observe that E ∈ L2
curl2(D) and, clearly, E satisfies the boundary condition

𝜈 × E − i𝜂𝛾S3
0𝛾 curl E = 0 on 𝜕D, (41)

whence 𝜈 × 𝛾E ∈ H
3
2

t (𝜕D) follows with the mapping a → 𝜈 × E bounded from H
− 1

2
t (𝜕D) into H

3
2

t (𝜕D). Therefore, from
Lemma 3.4 and Theorem 3.2 with m = 0, the statement of the theorem follows.

Theorem 5.2. Let 𝜅 > 0 and 𝜅n ∶= 𝜅
√

n. Then,

(𝜅2
n − 𝜅2)B (i𝜅, i) ∶ H

− 1
2

t (𝜕D) → H
1
2

t (𝜕D)

is coercive, ie,

(𝜅2
n − 𝜅2)⟨B (i𝜅, i)a, a⟩

H
1
2

t (𝜕D),H
− 1

2
t (𝜕D)

≥ C||a||2
H

− 1
2

t (𝜕D)

for all a ∈ H
− 1

2
t (𝜕D) and some C > 0.

Proof. For E ∈ H2(D) with div E = 0, we transform

E · (curl curl + 𝜅2)(curl curl + 𝜅2
n)E − curl curl E · curl curl E − (𝜅2 + 𝜅2

n) curl E · curl E − 𝜅2𝜅2
n E · E

= −E · Δcurl curl E + ΔE · curl curl E − (𝜅2 + 𝜅2
n) div[E × curl E].

From this, by the vector Green theorem (see Colton and Kress9, p.190) and the Gauss divergence theorem, we obtain

∫D
E · (curl curl + 𝜅2)(curl curl + 𝜅2

n)E dx − ∫D

[|curl curl E|2 + (𝜅2 + 𝜅2
n) |curl E|2 + 𝜅2𝜅2

n |E|2] dx

= ∫𝜕D

{
𝜈 × curlE · curl curl E − 𝜈 × E · [curl ΔE + (𝜅2 + 𝜅2

n) curl E]
}

ds.
(42)

Now, for a ∈ H
− 1

2
t (𝜕D), we define
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E ∶= curl i𝜅Q−1
i𝜅 a − curl i𝜅n Q−1

i𝜅n
a.

By the preceding Lemma 5.1 we have that E ∈ H2(D). Then, we find

(curl curl + 𝜅2)(curl curl + 𝜅2
n)E = 0 (43)

and

curl curl E = −𝜅2 curli𝜅Q−1
i𝜅 a + 𝜅2

n curli𝜅n Q−1
i𝜅n

a. (44)

Therefore, we have the boundary conditions

𝜈 × E + 𝛾S3
0𝛾 curl E = 0, 𝛾 curl E = B(i𝜅, i)a on 𝜕D (45)

and

𝜈 × curl curl E + 𝛾S3
0𝛾 curl curl curl E = −(𝜅2 − 𝜅2

n)a on 𝜕D. (46)

We use them to obtain that

𝜈 × curl E · curl curl E − 𝜈 × E · [curl ΔE + (𝜅2 + 𝜅2
n) curl E

= (𝜅2 − 𝜅2
n)a · B(i𝜅, i)a + 𝛾 curl E · 𝛾S3

0𝛾 curl curl curl E

− 𝛾S3
0𝛾curl E · 𝛾 curl curl curl E + (𝜅2 + 𝜅2

n) 𝛾S3
0𝛾 curl E · 𝛾 curl E

on 𝜕D. From this and (42) and (45), using the self adjointness of S0, it follows that

− ∫D

[|curl curl E|2 + (𝜅2 + 𝜅2
n) |curl E|2 + 𝜅2𝜅2

n |E|2] dx

= ∫𝜕D

[
(𝜅2 − 𝜅2

n) aB(i𝜅, i)a + (𝜅2 + 𝜅2
n) 𝛾S

3
2
0 𝛾 curl E · 𝛾S

3
2
0 𝛾 curl E

]
ds,

whence

(𝜅2
n − 𝜅2)∫𝜕D

aB(i𝜅, i)a ds ≥ ∫D

[|curl curl E|2 + 𝜅2𝜅2
n |E|2] dx (47)

follows.
Straightforward computation show that

[curl curl]2E = F(E)

where

F(E) ∶= (𝜅2 + 𝜅2
n) curl curl E − 𝜅2𝜅2

nE.

From this and (46), applying Theorem 3.3 to curl curl E and using the trace theorem and the boundedness of S0, we
obtain

||a||
H− 1

2 (𝜕D)
≤ c∫D

[|curl curl E|2 + 𝜅2𝜅2
n |E|2] dx. (48)

Combining (47) and (48) completes the proof.

Theorem 5.3. The operator

B(k, 𝜂) +
k2 − k2

n|k|2 − |kn|2 B(i|k|, i) ∶ H
− 1

2
t (𝜕D) → H

− 1
2

t (𝜕D)

is compact.
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Proof. For a ∈ H
− 1

2
t (𝜕D), we define

E0 ∶= curl kQ−1
k a − curl kn Q−1

kn
a

and

Ei ∶= curl i|k|Q−1
i|k|a − curl i|kn|Q−1

i|kn|a
and let

E ∶= E0 +
k2 − k2

n|k|2 − |kn|2 Ei.

Then, E ∈ H2(D) by Lemma 5.1 and E satisfies the boundary conditions (see Equation 45)

𝜈 × E + 𝛾S3
0𝛾 curl E = (i + 1)𝛾S3

0𝛾 curl E0 (49)

and

𝜈 × curl curl E + 𝛾S3
0𝛾 curl curl curl E = (i + 1)𝛾S3

0𝛾 curl curl curl E0 (50)

on 𝜕D. Furthermore, it is straightforward to check that

[curl curl]2E = F(E0,Ei), (51)

where

F(E0,Ei) ∶= −k2k2
nE0 − (k2 + k2

n) curl curl E0 −
k2 − k2

n|k|2 − |kn|2 [|k|2|kn|2Ei − (|k|2 + |kn|2) curl curl Ei
]

(52)

belongs to L2(D) by Lemma 5.1 and the map a → F is bounded from H
− 1

2
t (𝜕D) into L2(D).

From (44), we see that the mappings taking a into 𝛾S3
0𝛾 curl3E and into 𝛾S3

0𝛾 curl3E0 are bounded from H
− 1

2
t (𝜕D)

into H
3
2

t (𝜕D). Therefore, applying Theorem 3.2 with m = 0, together with Lemma 3.4, for curl curl E, we obtain that

curl curl E ∈ H2(D) with the mapping a → curl curl E bounded from H
− 1

2
t (𝜕D) into H2(D). By Lemma 5.1, the map-

pings taking a into 𝛾S3
0𝛾 curl E and into 𝛾S3

0𝛾 curl E0 are bounded from H
− 1

2
t (𝜕D) into H

5
2

t (𝜕D). Therefore, applying
Theorem 3.2 now for E (with m = 1 and curl curl E ∈ H1(D)) then in turn shows that E ∈ H3(D) with the mapping

a → E being bounded from H
− 1

2
t (𝜕D) into H3(D). Therefore, the mapping a → 𝛾 curl E is bounded from H

− 1
2

t (𝜕D) into
H

3
2 (𝜕D). Now, noting that

𝛾 curl E = B(k, 𝜂) +
k2 − k2

n|k|2 − |kn|2 B(i|k|, i),
the statement of the theorem follows from the compact embedding of H

3
2

t (𝜕D) into H
1
2

t (𝜕D).

In summary, Theorems 5.2 and 5.3 imply the following result, from which in particular, we can reestablish the well
known discreteness (see for example, Cakoni et al1) of the transmission eigenvalues for the special case of a constant
refractive index. Analyticity in the theorem follows from the analyticity of the kernels of the integral operators with respect
to the wave number k.

Theorem 5.4. B(k; 𝜂) ∶ H
− 1

2
t (𝜕D) → H

− 1
2

t (𝜕D) is a Fredholm operator with index zero and analytic in
{k ∈ C ∶ Re(k) > 0 and Im(k) ≥ 0}.

Let us denote by E the set of all positive k such that k2 or k2
n is a Maxwell eigenvalue for a perfect conductor D. Then,

A(k) is defined for k ∈ C∖E. Then, setting 𝜂 = 0, Theorem 5.4 contains the following result as a special case.
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Corollary 5.5. A(k) ∶ H
− 1

2
t (𝜕D) → H

− 1
2

t (𝜕D) is a Fredholm operator with index zero and analytic in C∖E.

6 NUMERICAL EXAMPLES

In this final section, we will illustrate the use of our integral equation formulation for the numerical computation of
electromagnetic interior transmission eigenvalues. Analytically derived transmission eigenvalues for a ball due to Monk
and Sun3 and numerical results by Kleefeld16 based on a boundary element collocation method for a two-by-two boundary
integral equation formulation are used as benchmarks.

In our case, the nonlinear operator B(k, 𝜂) given by (38) is discretized using the spectrally accurate method that was
proposed by Ganesh and Hawkins17 for solving the magnetic field integral equation and extended to the electric field
integral equation by Le Louër.18 We then apply Beyn algorithm19 for the solution of nonlinear eigenvalue problems for
large-sized matrices that are analytic with respect to the eigenvalue parameter.

The spectral method is based on a spherical parametrization of the simply connected boundary 𝜕D so that the integral
operators are transported onto the unit sphere S2 by means of the bicontinuous invertible Piola transform of the boundary
parametrization (see Ivanyshyn et al20, Equation (2.8)). The operator Nk differs slightly from the operator Ck in Le Louër18 but
can be retrieved through the properties of the Piola transform (see Ivanyshyn et al20, Equation (3.2)). For any nsph ∈ N, the

parametrized versions of the integral operators Mk and Nk both defined on H
− 1

2
t (S2) are then projected onto the space of

dimension m = 2(nsph + 1)2 − 2 spanned by the orthonormal tangential vector spherical harmonics

1√
𝓁(𝓁 + 1)

∇S2 Y𝓁,j and 1√
𝓁(𝓁 + 1)

CurlS2 Y𝓁,j, 1 ≤ 𝓁 ≤ nsph, |j| ≤ 𝓁,

of degree less than or equal to nsph (see Colton and Kress9, Equation (6.60)). Here, in the numerical examples, we chose nsph =
20, that is, m = 882.

We recall that the single-layer operator S0 used in the analysis of the two previous sections can be replaced by any
positive definite compact operator of order −1. As alternative, we chose the operator given by

Λ = CurlS2(−ΔS2)−
3
2 CurlS2 − ∇S2(−ΔS2 )−

3
2 Div S2

in terms of the surface curl and divergence. Its discretization is given by the diagonal matrix

Λm =
(

Dm 0
0 Dm

)
with Dm = diag

⎛⎜⎜⎜⎜⎜⎝
1√

𝓁(𝓁 + 1)
, … ,

1√
𝓁(𝓁 + 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(2𝓁+1) times

⎞⎟⎟⎟⎟⎟⎠
1≤𝓁≤nsph

,

and, as compared to S0, it reduces the computational costs of the m × m matrix setup of the operator B(k, 𝜂) in Beyn's
algorithm.

For the contour integral in Beyn's method (see Cakoni and Kress4 and Beyn19), we chose ellipses

𝜕Ω =
{

kmax + kmin

2
+ kmax − kmin

2
cos t + i𝛽 sin t ∶ t ∈ [0, 2𝜋]

}

and used 128 quadrature points in the composite trapezoidal rule. Here, (kmin, kmax) is the interval in which we are search-
ing for the transmission eigenvalues and 𝛽 = 0.01 corresponds to the minor axis of the ellipse that is chosen rather small.
The tolerance in Beyn's algorithm is chosen 10−12. We consider only the case n > 1, the transmission eigenvalues for n < 1
can be computed directly by the relation k(1∕n) =

√
n k(n) (see also Cakoni and Kress4).

In the first example, we tested the proposed method for domains with known real interior transmission eigenvalues
and consider the unit ball and a peanut shaped domain with the parametrization
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As refractive index, we chose both n = 4 and n = 16. From Table 1, it can be seen that the eigenvalues and their
multiplicities as given in the brackets coincide with those in Monk and Sun3 for n = 16 and in Kleefeld16 for n = 4.

In the next example, we consider transmission eigenvalues for ellipsoids

z(𝜃, 𝜙) = (sin 𝜃 cos𝜙, sin 𝜃 sin𝜙,C cos 𝜃)

for various choices for the axis C (see Figure 1).
According to Theorem 2.5 in Monk and Sun,3 the first transmission eigenvalue k1,D for a domain D lies in the interval

k1,n

r2
≤ k1,D ≤ k1,n

r1
, (53)

where k1 is the smallest transmission eigenvalue for the unit ball and a given refractive index n; r1 is the radius of the
largest ball Br1 such that Br1 ⊂ D, and r2 is the radius of the smallest ball Br2 such that D ⊂ Br2 . Hence, the transmission
eigenvalues for a unit ball computed in Table 1 can be used for choosing the interval (kmin, kmax) in Beyn's algorithm.

TABLE 1 Benchmark interior
transmission eigenvalues

n = 16 n = 4
Unit Ball Unit Ball Peanut

1.1654 [3] 3.1415 [3] 2.9966 [2]
1.4608 [3] 3.4928 [5] 3.0393 [2]
1.4751 [5] 3.5928 [3] 3.3624 [1]
1.7640 [5] 3.6924 [5] 3.4172 [1]
1.7774 [7] 3.9026 [7] 3.5150 [1]

FIGURE 1 Ellipsoids [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 Bean-shaped domains [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Transmission eigenvalues for ellipsoids
n = 4 n = 16
C = 0.8 C = 0.5 C = 0.3 C = 0.8 C = 0.5 C = 0.3

3.3364 [1] 4.2885 [1] 5.8344 [1] 1.2340 [1] 1.5009 [1] 2.1395 [1]
3.4080 [2] 4.3422 [1] 5.8593 [2] 1.2989 [2] 1.7311 [2] 2.2301 [2]
3.7002 [2] 4.3836 [2] 6.0630 [2] 1.5222 [2] 1.8272 [2] 2.4517 [2]
3.7553 [1] 4.4479 [2] 6.2544 [2] 1.5472 [1] 1.9483 [1] 2.7021 [2]
3.7687 [2] 4.5405 [2] 6.5506 [2] 1.5778 [2] 2.0042 [2] 2.8619 [2]

TABLE 3 Transmission eigenvalues for bean-shaped domain
n = 4 n = 16
𝝐 = 0.1 𝝐 = 0.2 𝝐 = 0.3 𝝐 = 0.1 𝝐 = 0.2 𝝐 = 0.3

3.6204 [1] 3.7326 [1] 4.2940 [1] 1.4010 [1] 1.4726 [1] 1.5729 [1]
3.6483 [1] 3.8266 [1] 4.3705 [1] 1.4106 [1] 1.5022 [1] 1.5843 [1]
3.8692 [1] 3.9356 [1] 4.9770 [1] 1.4407 [1] 1.5030 [1] 1.6219 [1]
3.9110 [1] 3.9407 [1] 5.1771 [1] 1.6206 [1] 1.6591 [1] 1.7295 [1]
4.0046 [1] 4.1786 [1] 5.7341 [1] 1.6300 [1] 1.6997 [1] 1.7948 [1]

In the last example, we present transmission eigenvalues for bean-shaped domains with parametrization

z(𝜃, 𝜙) = (a(𝜃) sin 𝜃 cos𝜙, a(𝜃) sin 𝜃 sin𝜙 − 𝜖 cos(𝜋 cos 𝜃), cos 𝜃),

where a(𝜃) =
√

0.64(1 − 𝜖 cos(𝜋 cos 𝜃)) and 𝜖 > 0 (see Figure 2).
Tables 2 and 3 illustrate the dependence of the eigenvalues on the refractive index and the geometry, ie, a smaller

refractive index or squeezing the domain both lead to an increase of the transmission eigenvalues in agreement with (53).
The imaginary part of all computed eigenvalues is less than 10−8 except for the bean-shaped domain with 𝜖 = 0.3,

where the imaginary part is less than 10−6. This is due to the concave shape of the domain, the accuracy can be increased
by increasing the discretization parameters nsph.

Analogous to the two dimensional case,4 the computational cost of the proposed method is about only one-half of that
for the two-by-two systems presented in Cakoni et al7 and Kleefeld.16 This is significant because of the large dimension
of the matrices and the vector valued equations.
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