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Induced gravity, metrical gravity in which gravitational constant arises from vacuum expectation value
of a heavy scalar, is known to suffer from Jordan frame vs Einstein frame ambiguity, especially in
inflationary dynamics. Induced gravity in affine geometry, as we show here, leads to an emergent metric
and gravity scale, with no Einstein-Jordan ambiguity. While gravity is induced by the vacuum expectation
value of the scalar field, nonzero vacuum energy facilitates generation of the metric. Our analysis shows
that induced gravity results in a relatively large tensor-to-scalar ratio in both metrical and affine gravity
setups. However, the fact remains that the induced affine gravity provides an ambiguity-free framework.
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I. INTRODUCTION AND MOTIVATION

Synthesizing gravitational and field-theoretic dynamics
has always been a unifying endeavor. Generating the
gravitational constant (the fundamental scale of gravity,
MPl) from field-theoretic scales is one such endeavor.
Indeed, MPl has been shown to derive from the ultraviolet
boundary ΛUV of the standard model (SM) as in [1], or
from the vacuum expectation value of a non-SM scalar field
[2]. Each option has its motivations. In the present work,
we will focus on the second option, given that various
phenomena like flavor, baryogenesis, strong CP problem
are already modeled heavy scalars. The mechanism is
based on a scalar field ϕ which directly couples to the
spacetime scalar curvature RðgÞ to have the action [2]

S ¼
Z

d4x
ffiffiffiffiffiffiffiffi
kgk

p �
1

2
ξϕ2RðgÞ − 1

2
gμν∇μϕ∇νϕ − VðϕÞ

�
;

ð1Þ

where ξ is dimensionless constant, and gμν is the metric
tensor. This action is based upon a crucial assumption: There
is no bare gravitational constant to have the Einstein-Hilbert
action. If the total energy in this system is minimized at a
nonzero field value ϕ ¼ v then, in the vacuum, the funda-
mental scale of gravity arises spontaneously

M2
Pl ¼ ξv2 ð2Þ

which must have a numerical value MPl ≈ 2.4 × 1018 GeV
for this whole mechanism to make physical sense. This
mechanism is and will be called induced gravity (IG); it is a
theory of gravity based on a scalar-tensor theory and it leads

to general relativity (GR) in the vacuum albeit with a
quantum of the scalar field [2].
Though it correctly leads to GR, the IG is far from

providing a complete picture of how the metric tensor itself
emerges. This point is important because emergence of
gravity starts with a curved metric or curvature. Indeed,
classical gravity in its germinal form is a theory of the
spacetime metric. It represents the gravitational field as
curvature effects on the meter sticks and clocks. It is this
metric elasticitywhich gives rise to gravity at large distances.
To this end, it could be interesting to see if one can generate
the metrical elasticity of space. Sakharov’s induced gravity
[1] accomplishes this via loops of matter in a curved
background. In the IG based on action (1), however, it is
postulated from the scratch to be a Lorentzian manifold so
that generation of the Einstein-Hilbert action does not mean
induction of metrical elasticity.
A dynamical origin for the metric tensor, through non-

zero vacuum energy, has already been proposed and
analyzed in the recent work [3]. There, metric tensor
and its equations of motion (gravitational field equations)
emerge through a nonzero vacuum energy. Remarkably,
nonminimal coupling dynamics in affine gravity is equiv-
alent to a minimal coupling dynamics with a modified
potential. It thus turns out that the minimal coupling case
must be equivalent to GR after inducing the metric tensor.
In the present paper, we show that the aforementioned

affine gravity can also be induced via the vacuum expect-
ation value of a scalar ϕ (as in the action (1) above). To set
the stage, we are in an affine spacetime which is endowed
with an affine connection, only. What is known are only
geodesics, with no notion of angles and lengths. These
properties start changing when matter kicks in and, as a
result, notion of potential energy crystallizes. Indeed, when
a scalar field ϕ enters the affine geometry it becomes
possible to identify its potential energy. Naturally, vacuum
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expectation value of the potential energy sets the notion of
metric tensor as the energy-momentum tensor of vacuum.
Then, the nonzero field configuration that leads to the
notion of metric induces the Planck scale through direct
coupling between the affine curvature and the scalar field.
This framework, which will be called induced affine gravity
(IAG), will be discussed in Sec. II A.
Constructing the IAG, we naturally turn to inflationary

dynamics where we put special emphasis on induced
inflation (in the language of [2]). Induced affine inflation,
as we will call it, will have the Universe undergoing a rapid
power-law expansion, starting with small field values
(ϕ ≪ v) and gracefully leaving this phase at the field value
ϕ ¼ v. In this setup, the exit is accompanied by a small
nonzero cosmological constant (the observationally
required value). A remarkable feature of this induced affine
inflation is that, in addition to the nearly scale invariant
spectrum of perturbations, it predicts a unique spectral
index due to the existence of a unique frame set by a unique
metric tensor. This feature is an important advantage
compared to the induced inflation based on action (1),
which suffers from Jordan-Einstein frame ambiguity (see
the old and recent works [4–13]). Nevertheless, here we
emphasize that, as in the induced gravity inflation, the
observable quantities, namely the spectral index and the
tensor-to-scalar ratio, are both sensitive to the nonminimal
coupling parameter and can hardly stay in the observational
bounds. This of course is not specific to the induced affine
inflation; it seems to be a generic feature of the models in
which gravity is induced by the vacuum expectation value
of a scalar field. The induced affine inflation will be
discussed in Sec. II B.
In Sec. III we conclude.

II. INDUCED AFFINE INFLATION

A. Induced gravity: Affine approach

Endowed with a symmetric connection Γλ
μν ¼ Γλ

νμ but no
metric tensor at all, affine spacetime possesses only one
single tensor structure: the curvature tensor. Then, incor-
porating the scalar field ϕ, one writes for the invariant
action

S½Γ;ϕ� ¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kM2

PlRμνðΓÞ −∇μϕ∇νϕk
q

VðϕÞ ð3Þ

where the sign kk denotes the absolute value of the
determinant of the quantities inside.
Here, general coordinate transformations of the volume

element and the determinant compensate each other to lead
to an invariant integral. The determinant in the integrand
involves a specific combination of the Ricci tensor RμνðΓÞ
and the scalar field kinetic structure ∇μϕ∇νϕ. Its specific
nature does not cause any loss of generality. The reason is
that general structure of the form M2RμνðΓÞ − c2∇μϕ∇νϕ,

with M a mass parameter and c a dimensionless constant,
reduces to that in the action (3) after rescaling with c2,
including c−4 into a redefinition of the potential energy
VðϕÞ, and finally identifying M/c with the fundamental
scale of gravityMPl. Furthermore, the minus sign in front of
c2 is by convention; it can be reversed by negating M2

Pl
everywhere in dynamical equations. These features ensure
that the action is general enough to be used for further
analysis. It was already analyzed in detail in [3].
This action provides a dynamical origin to the metric

tensor and it leads to the Einstein equations in GR with a
canonical scalar field ϕ (as studied in [3]).
Our goal in this section is to induce the fundamental

scale of gravity in the philosophy of the GR counterpart (1),
and determine the dynamics of the resulting system.
Assuming [as in (1)] that there is no bare gravitational
constant, the IAG is set by the affine action

S½Γ;ϕ� ¼
Z

d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kξϕ2RμνðΓÞ −∇μϕ∇νϕk

q
VðϕÞ ð4Þ

where ξ is a dimensionless parameter.
This action has two peculiarities. First, curvature and

scalar field both participate in the formation of the invariant
volume. Second, equation of motion of ϕ, as studied in (3),
ensures that VðϕÞ is the potential energy. (In the absence
of ϕ its meaning would be obscure), and finiteness of the
action requires that VðϕÞ ≠ 0. This everywhere-nonzero-
potential energy requirement proves important especially in
the early Universe where ϕ necessitates a nonzero potential
to have inflation completed [14–19].
In what follows, we assume that the potential VðϕÞ

attains its minimum at some energy scale v. This simply
suggests a potential energy of the form

VðϕÞ ¼ V0 þ
λ

4
ðϕ2 − v2Þ2: ð5Þ

where λ is a positive coupling constant. By construction,
the potential attains its minimum at ϕ ¼ v, and this leads to
a singular action (4). The vacuum energy, V0, important
only at small values of ϕ, can be set, if needed, to the
observed value of the cosmological constant. Its presence
ensures that a nonzero cosmological constant exists even at
the end of inflation (see Fig. 1 below). The key point is that
this vacuum energy is what ensures the presence of a metric
tensor because it possesses a nonsingular energy momen-
tum tensor.
Now, the nonminimal coupling term in the action (4)

acquires the vacuum expectation value

ξhϕ2iRμνðΓÞ; ð6Þ

from which follows the fundamental scale of gravity [as
defined in (3)]
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M2
Pl ¼ ξv2 ð7Þ

where ξ and v must have appropriate values to ensure that
MPl takes its correct value. This result, which defines the
IAG, proves that gravity can be induced through the
vacuum expectation value of the scalar. The difference
from the GR, as defined through the action (1), is that:
(1) Vacuum expectation value of the potential energy,

V0, introduces the notion of metric tensor (as
analyzed in [3])

(2) Vacuum expectation value of the scalar field, v,
introduces gravity though the coupling term in (6).

These two steps, which should reveal the main difference
between the IG and IAG, show that affine gravity has the
potential to accommodate the emergence of not only the
Planck scale (as also happens in the GR) but also the metric
tensor. This can be seen more clearly through the equations
of motion. Indeed, variation of the action (4) with respect to
Γλ
μν yields the equation of motion

∇μ

�
ξϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikKðΓ;ϕÞkp
VðϕÞ ðK−1Þαβ

�
¼ 0; ð8Þ

where we have defined for simplicity the following tensor

KμνðΓ;ϕÞ ¼ ξϕ2RμνðΓÞ −∇μϕ∇νϕ: ð9Þ

It is only after integrating the dynamical equation (8) that
the metrical properties arise. In fact, this equation imposes a
specific condition on the connection Γλ

μν such that the
invertible rank two tensor gμν which provides a solution to
Eq. (8) must satisfy

M2
ffiffiffiffiffiffiffiffi
kgk

p
ðg−1Þμν ¼ ξϕ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikKðΓ;ϕÞkp
VðϕÞ ðK−1Þμν ð10Þ

and

∇αgμν ¼ 0; ð11Þ

where M is an integration constant.
Obviously, the affine connection Γλ

μν has now reduced to
the Levi-Civita connection gΓλ

μν of the emergent metric
tensor gμν [3,20–22]

gΓλ
μν ¼

1

2
gλσð∂μgσν þ ∂νgμσ − ∂σgμνÞ: ð12Þ

It is through gμν the spacetime geometry acquires metrical
structure a posteriori. To that end, the gravitational
equations which are written in (10) take the tensorial form

ξϕ2RμνðgÞ −∇μϕ∇νϕ ¼ gμνVðϕÞ
�
M2

ξϕ2

�
ð13Þ

which can be brought to the standard form through the
Einstein tensor

ξϕ2Gμν ¼ ∇μϕ∇νϕ −
1

2
gμν∇λϕ∇λϕ

− gμνVðϕÞ
�
M2

ξϕ2

�
: ð14Þ

These field equations are different from the ones resulting
from the action (1) as can be seen from the explicit
comparison in [3]. However, in the vacuum, hϕ2i ¼ v2,
the affine theory (4) is equivalent to the metric theory (1),
and it leads to the Einstein’s field equations with cosmo-
logical constant if

M ¼
ffiffiffi
ξ

p
v ¼ MPl: ð15Þ

This can be seen from the expression (10) where the
vacuum energy VðvÞ ¼ V0 plays the pivotal role in gen-
erating the metric tensor, and it guarantees its emergence.
The last step of inducing the metric tensor from vacuum
completes the mechanism of inducing gravity. From now
on, we assume that all possible contributions to the vacuum
energy are incorporated in V0, and that they lead to the
observed cosmological constant. This means that [3]

V0 ∼m4
ν; ð16Þ

where mν is the Neutrino mass.
In conclusion, unlike the metric induced gravity (1)

where the metric structure is postulated a priori, gravity as
a metric elasticity of space is induced in a simple affine
space from the affine connection and scalar fields. This
emergence not only includes the gravitational constant but
also the metric tensor. The IAG stands therefore more
extensive than the IG.

FIG. 1. Potential energy in (5) with (solid curve) and without
(dashed curve) a nonzero vacuum energy V0. It is, by definition,
trace of the vacuum energy-momentum tensor, and hence, sets
therefore the metric tensor.
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B. Inflationary dynamics

In this section we will analyze inflationary dynamics
within the IAG model we constructed above. Now, as can
be derived from the action (4), the scalar field obeys the
equation of motion

□ϕ − V 0ðϕÞ þ ξϕRðgÞ þΨðϕÞ ¼ 0; ð17Þ

where the function Ψ is given by

ΨðϕÞ ¼
�
1 −

M2

ξϕ2

�
V 0ðϕÞ − 2

ϕ
ð∇ϕÞ2: ð18Þ

Below, we assume that the Universe is described by the
FRW metric with the scale factor aðtÞ. Then cosmological
dynamics of the inflaton ϕðx⃗; tÞ is described by

ϕ̈þ 3Hϕ̇ −
ϕ̇2

ϕ
þ ð∇⃗ϕÞ2

a2ϕ
−
∇⃗2

ϕ

a2

¼ 4M2

ξϕ3
VðϕÞ − M2

ξϕ2
V 0ðϕÞ; ð19Þ

where

H2 ¼ 1

3ξϕ2

�
ϕ̇2

2
þ M2

ξϕ2
VðϕÞ

�
ð20Þ

is the Hubble parameter. Inflation proceeds slowly if the
slow-roll conditions

ϕ̇

ϕ
≪ H; and; ϕ̇2 ≪

M2

ξϕ2
VðϕÞ ð21Þ

are satisfied. Under these conditions, the background field
evolves as

ϕ̈þ 3Hϕ̇ ≃
4M2

ξϕ3
VðϕÞ − M2

ξϕ2
V 0ðϕÞ; ð22Þ

H2 ≃
M2

3ξ2ϕ4
VðϕÞ; ð23Þ

which are solved to yield the classical background

ϕ2ðtÞ ¼ ϕ2
i � 4Mv2

ffiffiffi
λ

3

r
t; ð24Þ

aðtÞ
ai

¼
�
ϕðtÞ
ϕi

�
1/4ξ

exp

�
1

8ξv2
ðϕ2

i − ϕ2ðtÞÞ
�
; ð25Þ

where ϕi and ai are the initial values.
As in the IG, one may consider two behaviors of these

solutions depending on the inflationary scenario at hand:

(1) Chaotic inflation: This regime corresponds to initial
values ϕi ≫ v, and then, at early times the scale
factor evolves as a quasi-de sitter

aðtÞ ∝ exp

�
M
2ξ

ffiffiffi
λ

3

r
t

�
: ð26Þ

(2) Ordinary inflation: Here the field starts with values
ϕi ≪ v. In this regime, the scale factor is dominated
by a power law expansion of the form

aðtÞ ∝ t1/8ξ: ð27Þ

Here we will focus mainly on the ordinary inflation. Before
indulging in the calculation of the spectral index, it is
necessary to first write down the equations governing the
quantum fluctuation of the inflaton. Then, expanding
ϕðx⃗; tÞ as ϕðx⃗; tÞ ¼ ϕðtÞ þ δϕðx⃗; tÞ where the background
field ϕðtÞ is given by (24), it is easy to see that the
fluctuations obey the equation

δ̈ϕþ 3H ˙δϕþ k2

a2
δϕ ≃

λM2v2

ξϕ2

�
1 −

3v2

ϕ2

�
δϕ; ð28Þ

where k⃗ is the momentum component corresponding to x⃗.
Power spectrum of the scalar perturbations can be

calculated using (28). However, this may not be straight-
forward due to the presence of the term on the right-hand
side. Nevertheless, we will be interested in the case where
the term k2/a2ðtÞ dominates the term on the right-hand side
at the time of the last horizon crossing t ¼ tHC. In this case,
the equation of the fluctuations (28) is approximated by the
equation of a massless scalar field fluctuation. In fact, for
power law aðtÞ ∼ tp, the spectrum of density perturbation is
given by [23–25]

P ∝ k3−2ν; with ν ¼ 3p − 1

2ðp − 1Þ ; ð29Þ

which leads to a scalar spectral index ns of the form

ns − 1≡ d lnP
d ln k

¼ 3 − 2ν: ð30Þ

In our case, p ¼ 1/8ξ, and then

ns ¼ 1 −
16ξ

1 − 8ξ
: ð31Þ

This quantity falls in the observational range of the Planck
[26] for ξ < 2 × 10−3.
In Table I, we present the spectral index of the infla-

tionary epoch for quasipower-law expansion in a way
contrasting the IG [based on the metrical action (1)] and
the IAG, constructed in this paper. The table shows that the
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predictions of Einstein frame of metrical gravity are close
to those of the affine gravity for small ξ values (consistent
with observations [26]). They are, however, essentially
different because of the differences in scalar field dynamics
(see the discussions below). Needless to say, the IAG is free
from the Jordan-Einstein ambiguity present in the IG.
The Einstein-Jordan ambiguity in metrical gravity can be

traced back to the conformal transformations that relate the
two frames. The conformal transformation is nothing but a
field redefinition and one expects physics in the Einstein
and Jordan frames to be identical. This is true only at the
classical level, however. The reason is that quantum fluctua-
tions in the two frames refer to different metric tensors.
In fact, passage fromJordan toEinstein framemeans removal
of the direct mixing between the inflaton and the curvature
scalar (proportional to ξ) though mixings due to determinant
of the metric tensor continue to exist. In this sense, getting
to Einstein frame involves a certain mixture of the metric
and the inflaton in the Jordan frame, and dynamics of its
fluctuations tend to differ from those in the Jordan frame.
Saying differently, there arise difficulties in getting the same
result when fluctuation effects are transformed back to the
original frame. To elucidate the problem one notes that
inflaton fluctuations contribute to the intrinsic curvature
perturbation, which is the basis of the slow-roll approxima-
tion underlying the inflationary regime. It turns out that the
curvature perturbations in the Einstein (tilded) and in Jordan
(not tilded) frames are not identical

R̃≡ H̃
φ̇
δφ ≠

H

ϕ̇
δϕ: ð32Þ

This means that violation of conformal invariance for
curvature perturbations undoubtedly implies different results
in different frames. In the literature, there have been varying
proposals for overcoming the ambiguity [6,9,13,25,27,28],
with no obvious resolution yet.
In this respect, the advantage of the IAG is that it provides a

unique geometric frame (a uniquemetric). The uniqueness of
this frame stems from emergence of the metric from the
invariant action (4). The inflaton ϕ propagates in one and the
same frame with metric tensor gμν. In fact, action (4) can be
transformed to a minimal action (3) with a new scalar field φ

bymaking only a field redefinition of the form (see the earlier
studies in [3])

dφ ¼ MPlffiffiffi
ξ

p
ϕ
dϕ and U½φðϕÞ� ¼ M4

Pl

ξ2ϕ4
VðϕÞ: ð33Þ

This can also be checked directly from the gravitational field
equations (14) by applying the transformation (33). Indeed,
since metric tensor remains the same for both minimally and
nonminimally-coupled scalars, predictions of AG are pro-
tected from mixings of the scalar and tensor perturbations
arising from conformal transformation of the metric.
A unique gravitational frame ensures therefore invariance
of the intrinsic curvature perturbations as well as the unique-
ness of the spectral index (30).
The power law inflation that we have studied here is

highly illustrative to demonstrate the impossibility to get
identical spectral indices in Jordan and Einstein frames in
the IG. In fact, different powers p that correspond to the
expansion of the scale factor aðtÞ ∝ tp in different frames
lead to different forms of ν in (29) and then to different k⃗
dependencies of the spectral index ns. However, quasi de
Sitter solutions which arise generally for p → ∞ yields
identicalk dependencies in the two frames, and hence, lead to
the same ns. This is precisely the chaotic inflation scenario.
Recently, it has been shown that in pure affine gravity the

spectral index derived from slow-roll conditions of the field
φ coincides with the spectral index calculated at second
order in Einstein frame of general relativity [3]. Thus, those
earlier results combined with the ones here show that
Einstein frame may be taken to be the physical in metric
theories of gravity. Nevertheless, differences from the
standard induced gravity are clearly not negligible for
general couplings. These deviations originate from the
nonequivalence of the scalar field dynamics in the minimal
and nonminimal coupling cases [3]. In fact, in IAG the
inflaton dynamics is governed by its equation of motion
(17) which includes a nontrivial part ΨðϕÞ. This extra term
is not avoidable in the affine dynamics. It leaves its imprints
on the power law expansion (25) after solving for the
background field. While it maintains its form under field
redefinition in affine induced gravity, this power law is
altered by the conformal transformation (Einstein frame) in
metric IG, leading to an expansion law different than that
of IAG. This shows again that it is the nonequivalence of
the scalar field dynamics that causes the differences in the
predicted results.
Another interesting aspect of this power law inflation

concerns the coupling ξ. Indeed, large ξ drags the spectral
index (31) up the observed values. However, in the IAG the
power p tends to zero as ξ increases, leaving thus no trace
of the expansion (see Fig. 2).
An important and very useful parameter in every infla-

tionary model is the tensor-to-scalar ratio r, which measures
the power in tensor fluctuations with respect to that in the

TABLE I. The expansion power (in the form aðtÞ ∝ tp) and the
spectral index ns in the IG (which differs between the Einstein
and Jordan frames) and in the IAG (which is unique and free from
Jordan-Einstein ambiguity). This table should make it clear that a
gravity theory like IAG is essential to have unambiguous
description of inflation.

IG-Jordan frame IG-Einstein frame IAG

Power p 1
4ξ þ 3

2
1
8ξ þ 5

4
1
8ξ

Tilt ns 1 − 8ξ
1þ2ξ 1 − 16ξ

1þ2ξ 1 − 16ξ
1−8ξ
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scalar fluctuations. It is an indicator of the gravitational
waves generation. Production of these primordial gravita-
tional waves is not restricted to metric theories but it also
holds in the pure affine gravity [3]. It is thus important to shed
light on the tensor-to-scalar ratio in the present model. It can
be derived from the slow-roll parameter ϵ in the theory,which
reads in terms of the Hubble parameter as

ϵ ¼ −
Ḣ
H2

¼ 8ξ; ð34Þ

where we have used the scale factor given by (27).
The slow-roll parameter (34) is independent of the field

redefinition in (33), and takes therefore the same value
when calculated in terms of the slowly-rolling field φ.
Thus, the tensor-to-scalar ratio in IAG takes the form

r ¼ 16ϵ ¼ 128ξ ð35Þ
Here we must emphasize that the recent data [26] puts
stringent limits on ðns; rÞ which are difficult to satisfy with
a single nonminimal coupling ξ. In other words, both ns
and r are very sensitive to ξ, and thus, the observational
bound r < 0.12 drags ns outside the observational region.
Namely, induced gravity inflation supports mainly large
tensor-to-scalar ratio. This is not specific to the IAG; it is a
generic feature well established in the IG. More specifi-
cally, the tensor-to-scalar ratio is given by [29]

r ≃
128ξ

1þ 6ξ
; ð36Þ

which coincides with (35) for small ξ. The discrepancy
between the recent data and the predictions of induced
gravity inflation (both IG and AIG) is shown in Fig. 3,
where the spectral index is plotted as a function of the
nonminimal coupling ξ.
It is clear that our goal in this work is to construct an

ambiguity-free inflationary framework. The discrepancy
with the observational data shows that induced gravity
inflation (both IG and IAG) may be calling for multiscalar

models. Indeed, in such models nonminimal couplings and
potential landscape can lead to novel configurations bring-
ing agreement with experiment. It is worthy of noting that
nonminimally coupled multiscalars can always be reduced
to minimally coupled scalars in affine gravity [30], and this
is a new feature not found in metrical theories [31].

III. SUMMARY

In this work, we have studied induced gravity in metrical
and affine theories of gravity. In the first stage, we defined
the IG as exists in the literature, and then, we constructed
the IAG in affine geometry. We have shown that IAG turns
out to be more exhaustive in that it provides a framework in
which both metric (through the vacuum energy) and gravity
(through the scalar field in vacuum) emerge to lead to
a metrical theory. In the second stage, we have studied
inflation in the IG and IAG comparatively. We found that
IG gives different inflationary parameters in Einstein and
Jordan frames. The IG makes no unique prediction that can
be contrasted with the observations. The IAG, however,
rests on a unique frame, is thus free from Jordan-Einstein
ambiguity, agrees with observations (both spectral index
and tensor-to-scalar ratio). These differences between the
IG and IAG are clear enough to motivate the IAG as a
viable candidate to study scalar field dynamics as in, for
instance, inflation.
Our findings here can be extended to any other scalar-

tensor theory [32–34]. In theories with Jordan-Einstein
ambiguity the IAG is expected to reveal interesting physics.
The IAG can have a rich phenomenology in both cosmol-
ogy and astroparticle physics.
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FIG. 2. The power p as a function of ξ, in the IAG and IG.
Remarkably, for large ξ, exit from rapid expansion occurs only in
the IAG. The vertical line at ξ ¼ 10−3 corresponds to the
observational bound on the tensor-to-scalar ratio.

FIG. 3. The spectral index ns in the IG and IAG. It is seen that
IAG and IG-Einstein stay close to each other. However, the
results are generally inequivalent due to the difference of the
scalar field dynamics in the two theories. The bound r < 0.12,
corresponding to the vertical line at ξ ¼ 10−3, pushes the spectral
index to larger values. This discrepancy is a feature of induced
gravity inflation, may it be IG or IAG.
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