
Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

Application of a software agility assessment model – AgilityMod in the field

Özden Özcan-Topa,⁎, Onur Demirorsb,c

a Dundalk Institute of Technology, RSRC, and Lero, Dundalk, Ireland
bDepartment of Computer Engineering, Izmir Institute of Technology, İzmir, Turkey
c School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

A R T I C L E I N F O

Keywords:
Agile software development
Agility assessment
Reference model
AgilityMod

A B S T R A C T

Adoption of agile values and principles and transformation of organizations towards agility are not easy and
straightforward. Misinterpretation of agile principles and values, and adoption of partial solutions with few agile
practices instead of holistic approaches prevent organizations to obtain full benefits of agile methods. We de-
veloped the Software Agility Assessment Reference Model (AgilityMod) for the appraisal of software projects
from agility perspective and to provide guidance on specifying gaps on the road towards agility (agile maturity).
The meta-model of AgilityMod was defined in relation with the ISO/IEC 15504-Process Assessment Model.
AgilityMod was developed in an iterative and incremental manner by running successive case studies and getting
opinions of experts for the evaluation and improvement of the Model. The multiple case study that we present
here in detail included the implementation of the Model in eight software development companies. The results of
this case study were evaluated by the case study participants. According to the significant majority of the case
study participants, AgilityMod achieves its purpose.

1. Introduction

The foundations of agile methods and the underlying reasons be-
hind agility comes from the values and principles defined in Agile
Manifesto [1]. Widely utilized agile methods have been developed since
the publication of the Agile Manifesto in 2001. eXtreme Programming
(XP) [2], Scrum [3], Feature Driven Development [4] and Crystal
methods [5] can be named among the pioneers of agile methods.
However, adopting agile methods is not easy or straightforward [6]. As
the values and principles in the manifesto provide a general perspective
for agility, the derived assumptions bring limitations in agile software
development [7]. The majority of agile methods have a descriptive
nature which also leads to misinterpretations that sometimes cause to
use agile as an excuse for being undisciplined [8]. Based on Schwaber's
report (2007), Laanti et al. [9] states that “Agile adopters are often not
aware of what agile adoption really means and how broad a change is re-
quired”. The 1000-participant-survey performed by Laanti et al. [9]
highlights mainly the following challenges in the agile adoption: i)
Achieving the right balance between being adaptive and predictive, ii)
achieving consistency while being flexible, iii) losing the bigger picture
while working at the iteration level.

To manage adaptation challenges, software organizations seek as-
sistance in practice [10]. One form of such assistance can be supplied by

means of structured assessment models or frameworks. Application of
structured assessment models can enable identifying where projects
stand in terms of agility, and by doing so, depict which areas need
improvement. Such an approach for improvement can provide to the
point interpretation of agile principles stated in the Agile Manifesto for
the specific organizations, and enable more efficient adaptation of agile
practices. However, it should also be noted that the ultimate goal for
adopting agile methods for an organization should not be “being agile”,
but finding ways to improve performance, code quality, customer and
employee satisfaction through the implementation of agile methods/
practices.

We developed the Software Agility Assessment Reference Model
(AgilityMod) [11] to assess agility levels of software projects. The
Model provides guidance in identifying the state of projects with re-
spect to agility, and depicts improvement opportunities in relation with
the agile practices. The meta-model of AgilityMod was defined utilizing
the principles defined in ISO/IEC 15504-Process Assessment Model
(PAM) [12].

In this paper, we present the results of the application of AgilityMod
in eight software development organizations. We aimed to answer two
research questions: RQ1: How suitable is the Software Assessment
Agility Reference Model to be used for identifying software aspects’
agility, identifying the agility gaps, and providing roadmaps for

https://doi.org/10.1016/j.csi.2018.07.002
Received 5 October 2017; Received in revised form 12 July 2018; Accepted 13 July 2018

⁎ Corresponding author.
E-mail addresses: ozden.ozcantop@dkit.ie (Ö. Özcan-Top), onurdemirors@iyte.edu.tr (O. Demirors).

Computer Standards & Interfaces 62 (2019) 1–16

Available online 18 July 2018
0920-5489/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2018.07.002
https://doi.org/10.1016/j.csi.2018.07.002
mailto:ozden.ozcantop@dkit.ie
mailto:onurdemirors@iyte.edu.tr
https://doi.org/10.1016/j.csi.2018.07.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2018.07.002&domain=pdf


improving in agility in a software project? RQ2: What are the strengths
and weaknesses of AgilityMod?

The cases that we applied the Model included projects from dif-
ferent domains such as technical media, durable consumer goods, ERP
solutions, multimedia solutions and e-governance solutions. The as-
sessed projects’ team sizes ranged between six employees to 45 em-
ployees. The shortest iteration length for the cases was seven days while
the longest one was 45 days. In four of the eight cases, distributed
software development environments were established. In three of the
cases, the development was maintained with internal customers.

After the conduction of each case study, we developed detailed as-
sessment reports indicating the agility gaps, successful practices ob-
served in the cases, and the improvement suggestions. We shared these
reports with the organizations and presented the results to the assess-
ment teams and the managers of the organizations. After and/or during
each presentation, we discussed the results with the attendees.
Following each presentation, we asked participants to fill in the ques-
tionnaire we provided which were designed to understand the cap-
ability/success of the Model to achieve its purpose. Overall, we ob-
tained feedback from 20 people.

The rest of the paper is structured as follows: In Section 2, we
provide the background that leads us to work on this topic and the
studies that we performed to evaluate existing agile maturity/assess-
ment models, tools and surveys. In Section 3, we provide the research
method used in the study. In Section 4, we describe AgilityMod. In
Section 5, we present the multiple case study in detail with the solutions
we provided to mitigate the validity threats. We also discuss the cap-
ability and the validity of AgilityMod based on the defined criteria. In
Section 6, we present the conclusions and future work.

2. Related research

The section starts with background information explaining the
agility definition and agile adoption challenges. In Section 2.2 and
Section 2.3, we provide a review on agility assessment/agile maturity
models, tools and surveys. We also discuss the applicability of process
maturity models SPICE [13] and CMMI [14] within the context of agile
organizations. However, we left out the agile integrated (hybrid)
models in the literature review. The purpose of the hybrid models (such
as agile integrated MDevSPICE [15]) is to fulfill specific requirements
using agile software development practices. These models do not intend
to assess the agility of software projects specifically, but, assess the
conformance to regulatory requirements and /or improve software
quality/safety with agile integration.

2.1. Background

AgilityMod aims to assess the “agility” of software projects. Boehm
and Turner [16] define agility as being innovative, and flexible and
adaptive to new environments. Conboy and Fitzgerald's [17] compre-
hensive review on many disciplines for agility revealed that the agility
concept was first introduced in the manufacturing domain in 1991 by a
group of researchers at the Iacocca Institute in Lehigh University. In this
study (2004), Conboy and Fitzgerald define the agility as “the continual
readiness of an entity to rapidly or inherently, proactively or reactively,
embrace change, through high quality, simplistic, economical compo-
nents and relationships with its environment”. Erickson et al. [18] de-
scribe the agility as follows: “agility means to strip away as much of the
heaviness, commonly associated with the traditional software-devel-
opment methodologies, as possible to promote quick response to
changing environments, changes in user requirements, accelerated
project deadlines and the like”. In 2009, Conboy develops a definition
of agility by reviewing the literature across a number of disciplines. His
definition of agility is: “the continual readiness of an information sys-
tems development method to rapidly or inherently create change,

proactively or reactively embrace change, and learn from change while
contributing to perceived customer value (economy, quality, and sim-
plicity), through its collective components and relationships with its
environment”. We define agility in our model as the capability of the
practices of a software project in achieving the agile principles defined
in the Agile Manifesto.

Agile software development methods are adopted by software
communities as they are perceived as solutions for the problems such as
missing deadlines, exceeding budgets, delivering final products that do
not meet the needs of customer [19]. Laanti et al. [9] performed a
survey study to understand the perception of the impacts of agile
transformation when it is deployed in a very large software develop-
ment environment. The survey was performed in Nokia company with
more than 1000 participants in 2010. 24% of the participants thought
that process tailoring and process improvement were the areas that they
experienced most challenges. Requirements management, iterative
planning and effort management were other top three perceived chal-
lenges. The results show that despite observing challenges, 60% of the
survey responders wanted to stay in an agile mode of working, while
only 9% wanted to go back to traditional working methods. However,
31% of respondents did not see any difference or did not have a clear
opinion. It was also stated that long experience with non-agile devel-
opment negatively affects certain opinions of agile development. This is
a significant finding that might be the root cause of the issues related to
cultural changes required in agile adoption.

Based on the 12th VersionOne [20] state-of-agile survey results
published in 2018, 84% of respondents stated that their organization
was at or below a “still maturing” agility level. Compared to the 11th
state-of-agile survey [21], a decrease was seen in respondents citing
“organizational culture at odds with agile values” and “lack of busi-
ness/customer/product owner availability” as challenges for adopting
and scaling agile. However, increases were observed on the “frag-
mented tooling”, “inconsistent processes across teams” and “general
resistance to change” challenges. Not all survey studies which were
performed by commercial companies, follow a scientific rigor. We also
accept that there might be bias on the surveys’ results, as they were
filled out mostly by agile practitioners. However, we believe that large-
participant surveys can still be used along with other scientific studies,
as they point out the challenges regarding the agile software develop-
ment and adoption from practitioners’ point of view.

Ambler explored the five most common software development
methods: Lean, Agile, Iterative, Ad-Hoc, and Traditional, in the 2013 IT
Project Success Rates Survey [22]. The survey was performed with 173
participants. The Lean approach was found as the most successful one
among other strategies for the delivery of products and meeting pro-
jects’ success criteria. The Iterative and Agile approaches followed this
with a 5% percentage decrease. What noticeable in these results was
that Agile and Iterative approaches have approximately the identical
results with 64–65% success, 28–30% challenge and 6–7% failure rates.

As mentioned in the 10th State of Agile Report performed by
Ambler [23], organizational culture continues to dominate the top causes
of failed agile projects. Lack of management support for cultural agile
transition was reported by 38% of the participants. It was stated that
the concerns on required cultural change increased from 44% in 2014
to 55% in 2015. The increase might also be explained with the increase
of agile adoption in organizations. Pre-existing rigid/waterfall framework
and not having enough personnel with agile experience were two salient
ones among the barriers for further agile adoption. These two barriers
also show the importance of guideline use with alternative agile
adaptation options.

Ambler stated in his book [19] that there are increasing numbers of
project failures associated with agile strategies. He also mentioned that
agile and iterative projects produced similar statistical results in terms
of quality, success in deliveries, and return on investment in 2008 and
2011 IT Project Success surveys [19]. Both failure stories and identical

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

2



success rates of agile and iterative software development projects pro-
vide insight that organizations do not get full benefit from agile soft-
ware development methods.

2.2. Agile maturity/Assessment models

Structured approaches such as maturity/capability/assessment
models aim to assist the transition of organizations towards a specific
direction by enabling to capture the status and by identifying the gaps
between the current state and the desired state.

In [24], we performed a multiple case study in a software organi-
zation to evaluate the capabilities of the existing agile maturity/as-
sessment models based on six criteria. The defined criteria were mainly
associated with the study of Maier et al. [25] on development of or-
ganizational maturity grids. They reviewed a wide range of maturity
and capability models and suggested a roadmap to develop maturity
grids with specific decision points. For criteria selection, we adopted
these decision points in our study along with our experiences on soft-
ware process improvement [26,27]. Table 1 below lists the referenced
decision points (i.e. audience, aim, scope, etc.), the criteria we used,
and their descriptions.

In order to identify the models to be included in the evaluation, we
performed a search on the IEEE Explorer, Web of Science, and
SpringerLink research platforms, and also on Google Scholar. We listed
the models found in these research platforms in Table 2. During the
search, we observed that the models published with assessment purpose
extensively use the “maturity” keyword. Among nine models found, the

first five models were decided to be included in the scope of the study
with the following inclusion criteria:

(1) Description of the model should have been given to enable detailed
analysis.

(2) The study should have been published in conference proceedings or
journals, which is an indicator of academic perspective of the
model.

The first five models were implemented in the multiple case study
research format in a small-sized software development company at
which agile practices have been applied for about 1.5 years. The details
of this evaluation were provided in [24]. Briefly, among all evaluated
models/frameworks, Agile Adoption Framework (M3) obtained the best
assessment results. However, none of these models satisfied all of the
expected criteria. They are needed to be improved in terms of com-
pleteness, definitions of agility levels, and objectivity criteria. One of
the most prominent difficulty of the models was that their coverage of
the software development life cycle. They usually cover part of the life
cycle. For instance, M1 lacks agile practices to cover configuration
management and change management processes. Similarly, there are
no practices for testing and configuration management in M2. The so-
lutions provided by M3 does not cover all of the agile principles. The
second critical problem is related with the depth of the description. A
good assessment model should achieve a good balance while defining
the underlying reference model. At one hand it has to be detailed en-
ough to enable reliable, reproducible assessments with its components,
and on the other hand, it has to be abstract enough to enable different
agile methods to be covered. The defined attributes in an assessment
model provide guidance to the practitioners and are essential for im-
provement. M1, M3 and M4 are not detailed enough to provide reliable
and reproducible assessments. In M1, M2, M4 and M5, the maturity/
agility level descriptions are not detailed enough to conduct a complete
assessment and to use the assessment results for guidance in process
improvement.

Several models have been developed after we have performed the
case study presented here. Scaled Agile Framework for Enterprise
(SAFe) [35] is a model developed based upon agile and lean principles
to be utilized for adopting agile and lean practices in large enterprises.
In 2015, a maturity model for SAFe (SAFe MM) has been developed
[36]. The SAFe MM was built upon the AAF (M3) of Sidky. The purpose
of the SAFe MM is to assist organizations in adopting the SAFe model
through stages of maturation paths. Thus, it could achieve the “fitness

Table 1
The criteria used in evaluation of existing models.

Decision points from Maier et al. [25] Evaluation criteria and their description

Audience: Define expected users of the model
Aim: Define the aim of the model

Fitness for Purpose: An agile maturity/assessment model should be developed with the
purpose of assessing agile process capability and assisting organizations in software
process improvement.

Scope: Clarify the scope. Is it generic or domain-specific?
Select Process Areas (Content): An effective assessment should be based on an
underpinning conceptual framework, generated from (traceable) principles of good
practice. Selection process (areas) that yield conceptualizations of the field.

Completeness: An agile maturity / assessment model should address all or a subset of
major engineering and management processes within a software development life cycle.
It should include process related definitions, goals, practices or process success
indicators which enable assessment of the agile processes.

Define Success Criteria: Success criteria need to be determined at the outset and
manifest in the form of high-level and specific requirements.

Objectivity: Verifiable results must be produced. The judgment of the assessor should be
at a minimum level.
Correctness: All model elements must be compatible with agile principles. Descriptions,
goals and work products should correctly present the related process or process area.
Consistency: An agile maturity model/framework should be internally consistent. There
shouldn't be logical or temporal conflicts between two specified model elements.

Select Maturity Levels (Rating Scale): Define a set of maturity levels. Definition of Agile Levels: An agile maturity/assessment model should provide
definitions of agile levels which enumerate the different degrees of agility. Those
maturity levels could be interpreted intuitively and should be designed to complement
each other.

Validation: Test the populated grid for validity and relevance.
Verification: Evaluate the developed grid against the success criteria and
requirements defined.

Verified and Validated: An agile maturity / assessment model should be verified and
validated. This criterion is included in the updated version.

Table 2
Agile maturity models found in the research platforms.

ID of the
model

Name of the model Model owner

M1 Agile Maturity Model [28] Patel and Ramachandran
M2 Scrum Maturity Model [29] Yin
M3 Agile Adoption Framework [8] Sidky
M4 Benefield's Model [30] Benefield
M5 Agile Scaling Model [19] Ambler
M6 Agile Maturity Model [31] Humble and Russel
M7 Simple Life Cycle Agile Maturity

Model [32]
Malic

M8 Agile Maturity Model [33] Proulx
M9 Agile Maturity Model [34] Jayaraj

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

3



for purpose” criterion for adopting the SAFe model. The defined ma-
turity levels of the Model depend on predictable models of agile
adoption in an organization. These levels and the suggested practices
for each level have been evaluated by the developers of the model in a
large-scale software development organization. The assessment results
provided guidance on which areas to focus in terms of adopting the
SAFe. An objective evaluation of agility levels and the fitness of the
practices suggested for each level require further case studies to be
performed. However, this model is significant to introduce agile ma-
turity initiatives for large scale software development organizations.

The Agile Compass model which was developed by Fontana et al.
[37] in 2015, aims to identify the position of the software development
teams on the road to agile maturity, based on seven outcome categories.
These categories are: Practices learning, team conduct, pace of deliveries,
features disclosure, software product, customer relationship and organiza-
tional support. This approach measures the progress of the team in each
of these categories, which can be thought as levels. It was evaluated and
validated based on the interviews performed with nine agile software
development teams by Fontana et al. The progress in each category was
determined using a checklist. Based on a high-level analysis, Agile
Compass achieves the fitness for purpose, agility levels, verification and
validation criteria. However, we couldn't access neither the links of the
checklist and model provided in [38] as they were broken. Therefore,
we weren't able to find enough evidence to evaluate the correctness,
completeness, objectivity and consistency criteria.

2.3. Agility assessment tools and surveys

In [39], we evaluated agility assessment tools with a multiple case
study. As the purpose of the study was to evaluate if current agility
assessment tools were sufficient to meet the expected criteria, we ex-
cluded the text-based checklists, questionnaires, and frameworks. We
found 37 assessment tools that partially automate the assessment pro-
cess after the literature review. Among them, 11 tools that were listed
in Table 3 were open source. The criteria we used for the evaluation
included (a) coverage, (b) availability, (c) guidance capability, (d) as-
sessment recording, (e) automated reporting, (f) comparability, (g)
different modes of usage, (h) different scopes and (i) extensibility.

The tool that is able to meet the most of the criteria, was the
Comparative Agility, with completely satisfying seven (a, b, c, d, e, f,
and i) out of nine criteria. However, some tools proved themselves
useful for special contexts. For example, Depth of Kanban is useful for
assessing Kanban implementations, Enterprise Agility Maturity Matrix
is useful for agile transformations. Agile Health Dashboard is useful for
monitoring capability of agile teams on sprint basis, and IBM DevOps

Practices Self-Assessment is useful to adopt a predefined agile adoption
path. Among those tools GSPA: A Generic Software Process Assessment
Tool (T10) was developed using AgilityMod, CMMI and ISO 15504
models.

The results of this case study showed that none of the current agility
assessment tools was able to meet all of the criteria. The majority of the
tools use a set of agile practices to indicate the level of agility. While
these practices are crucial for specific implementations of agile
methods, the mere absence or presence of these practices is not suffi-
cient to indicate the success of the adopted agile method. In addition to
that, majority of the tools do not provide an indication of agility levels
or the possible improvement areas towards agility.

In addition to the models and tools, we evaluated eight widely used
and most frequently referenced agile maturity assessment surveys by
means of a case study [40]. The criteria used, which were determined
with an exploratory case study, were Comprehensiveness, Fitness for
Purpose, Discriminativeness, Objectivity, Conciseness, Generalizability,
and Suitability for Multiple Assessment. The results showed that none
of the agile maturity self-assessment surveys has fully satisfied the de-
fined criteria. Especially, there was no survey meeting the expectations
fully in terms of comprehensiveness, fitness for purpose and suitability
for multiple assessment.

Schweigert et al. performed a study to compile current available
maturity models [41,42]. They evaluated if a commonly accepted agile
maturity model exists, and how the mapping of such a model to Cap-
ability Maturity Model Integration (CMMI), ISO/IEC 15504 Part 2 and
Part 5 would be. Among 40 maturity models, they included 30 models
to the scope of the study. They grouped the models into three: those
were using a leveling structure similar to CMMI leveling, those were not
having a leveling structure at all and those did not use explicit levels. In
the end, they emphasized the gap of a scientific research on this topic
and the fact that none of the models fulfills the requirements of ISO/IEC
15504 Part2, performing an assessment.

In 2012, Schweigert et al. conducted a survey to identify what an
Agile Maturity Model (AMM) would deliver to its users with 67 parti-
cipants [43]. According to the results of the survey, most of the parti-
cipants think that an AMM should measure the perfect implementation
of agile practices and organizational support for implementation of
them. Another significant result was that more than 65% of participants
think that an AMM should distinguish technical, project and organi-
zational level processes and allow individual improvement of each
process rather than a simple binary result that the organization is agile
or not.

Several other studies in the literature evaluated the applicability of
process maturity models, SPICE and CMMI within the context of agile
organizations [44–50]. The results showed that although in principle
these models are not totally incompatible there are inherent difficulties
that cause major difficulties in practical applications. The systematic
review performed by Silva et al. [51] lists 81 studies, which use agile
methods with CMMI. In this review, they conclude that agile methods
have been used by companies to reduce the efforts to reach CMMI Level
2, 3 and 5. Although the companies reached the targeted CMMI levels
with agile implementation, agile methods alone were not sufficient to
obtain the desired maturity and additional practices were necessary to
implement. In another systematic review study, Torrecilla-Salinas et al.
[52] evaluated the feasibility of using agile methods to achieve a cer-
tain maturity level of the CMMI-DEV for an organization developing
Web systems. As stated by McMahon [53] the purpose of agile in-
tegration in CMMI is to provide alternatives to traditional approaches to
implement CMMI practices that also help process improvement. In
2013, we also evaluated applicability of CMMI and agile software de-
velopment methods with the evidences from the literature. The purpose
of this study was to discuss the myths, which limit the use of these two

Table 3
Agility assessment tools included in the case study.

ID of the
tool

Name of the tool Owner

T1 Agile Enterprise Survey Storm Consulting
T2 Agile Health Dashboard Len Legastee
T3 Agile Journey Index Bill Kerbs
T4 Agile Process Assessment Tool Info Tech Research Group
T5 Agile Self-Assessment Cape Project Management
T6 Agility Questionnaire Marcel Britsch
T7 Comparative Agility Mike Cohn and Kenny Rubin
T8 Depth of Kanban Christophe Achouiantz
T9 Enterprise Agility Maturity Matrix Eliassen Group
T10 GSPA: A Generic Software Process

Assessment Tool
Ozan Raşit Yürüm

T11 IBM DevOps Practices Self-Assessment IBM

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

4



approaches together by providing counter examples from the literature
[54]. We identified artifacts from agile environments that could be
could be used as evidences in the CMMI appraisals. We found common
grounds, but also inherent application difficulties.

Common results of the studies depict that there are no commonly
accepted agile assessment or agile maturity model in the software
community. These results directed us to develop a well-structured
agility assessment model, which is consistent with the agile values and
principles, to provide a complete guidance on agility adoption covering
the whole software development life cycle.

3. Research method

Becker et al. [55] evaluated the design approaches of a large
number of maturity models developed in Information Technologies (IT)
and stated that “the procedures and methods that led to these models have
only been documented very sketchily”. They developed a generally ap-
plicable model to develop maturity models for IT management using
Hevner's [56] design science approach. Their model includes the fol-
lowing stages [55]: A1: Problem definition and identification of pro-
blem relevance; A2: Comparison of existing models; A3: Determination
of development strategy; A4: Iterative maturity model development;
A5: Selection of the different forms that the targeted communication of
the maturity model can take (document-based check-lists, manuals or
software tool supported models); A6: Making the maturity model ac-
cessible to defined user groups; and A7: Evaluation to understand
whether the maturity model provides the projected benefits and an
improved solution for the defined problem.

AgilityMod is an innovative problem-solving artefact and was de-
veloped in conformance to the stages presented above. At the A1-A2-A4
and A7 stages, we used qualitative research methods. Creswell [57]
states that in qualitative research, researchers collect data in the natural
settings through the overview of the documents, observing the beha-
viour or interviewing the participants. Data can be collected from
multiple sources and the research process flows from forth to back and
back to forth until a comprehensive model is developed [57]. Examples
of qualitative research methods include “action research, case study
research, ethnography and grounded theory” [58]. Yin [59] describes
the case study method as “an empirical inquiry that investigates a
contemporary phenomenon within its real-life context especially when
the boundaries between phenomenon and context are not clearly evi-
dent”. Maier [25] and Hevner [56] state that the case study is one of the
design evaluation approaches and can be used to validate the models in
the field. Rohloff [60] and Becker [55] used case studies to validate
their maturity models. Single and multiple case studies have been the
main component of our research to state the research problem at hand
by evaluating existing models, and to evaluate the applicability of the
versions of AgilityMod in real-life settings. These case studies showed
exploratory, explanatory and improving characteristics based on the
Robson's research methodology classification schema [61]. It was stated
by Becker et al. that the case study is a valid method to illustrate ap-
plicability of developed models [55].

Below, we provided a list of the steps in our research associated with
the relevant stages discussed above. The followed steps are also given in
Fig. 1.

(1) Problem identification (refers to A1 and A2):
a) A literature review on current agile maturity/assessment

models.
b) Evaluation of the selected agile maturity models’ applicability,

strengths and weaknesses with a multiple case study in a
software organization (the 1st Case Study-was described in
Section 2.1 and was published in [24]).

(2) Development of the solution (refers to A3 and A4):
a) Development of the aspect dimension of AgilityMod based on the

findings of the 1st case study and the literature on agile software

development methods.
b) Development of agility dimension of AgilityMod by exploring the

stages of organizations in agile adoption. At this stage, we re-
leased AgilityMod v1.0.

(3) Refinements of the solution (refers to A4 and A7):
a) 1st Refinement: Evaluation of the applicability of AgilityMod

v1.0 and discovery of the improvement opportunities on the
Model through a single case study performed in a software
development organization (the 2nd Case Study- Upgrade to
AgilityMod v2.0) [62].

b) 2nd Refinement: Review of AgilityMod v2.0 by agile practi-
tioners, getting detailed feedbacks from them and the refinement
of the Model. (Upgrade to AgilityMod v3.0).

(4) Validation of the solution (refers to A7):
Application of the Model in 8 software organizations by means of a
multiple case study. The case study included formal process as-
sessments based on AgilityMod v3.0 through semi-structured in-
terviews and evaluation of the project artefacts. Presentation of
assessment results to the assessment participants and receiving
feedback from the participants.
In this paper, we focus on the results of the cases studies of this
stage. Accordingly, Section 5 includes detailed explanations on how
the multiple case study was designed, conducted and analyzed.

(5) Improving Reliability (refers to A7):
Implementation of the Model in three software organizations by the
assessment team members who had not participated in the devel-
opment of the Model.

4. The model: AgilityMod

AgilityMod's meta-model is defined in accordance to the ISO/IEC
15504-Process Assessment Model (PAM) [12,13]. The purpose of using
ISO/IEC 15504′s meta-model is to create a common basis for per-
forming assessments of agility, providing a better guidance with stan-
dard model elements and presenting the assessment results using a
common rating scale.

Even though AgilityMod has inherited the ISO/IEC 155041 struc-
ture, it has its own characteristics for the name of the dimensions as
well as the underlying characteristics. AgilityMod defines the Aspect
and the Agility dimensions for the Process and Capability dimensions,
respectively. A brief description of the dimension elements and the
underlying logic are given below. For a detailed information on Agili-
tyMod please see [11].

4.1. Aspect dimension elements

4.1.1. Aspect
Formal process layers of traditional software development are in-

tertwined to each other in agile software development. It is difficult to
specify boundaries of agile processes due to continuity. Aspects, which
are the modularization of agile processes and practices are integrated
under meaningful and agile compatible abstract definitions. They are
sets of interrelated and interacting activities. Four aspects were defined
in AgilityMod to cover the software development life cycle: Exploration,
Construction, Transition, and Management. The Aspects, which also refer
to the group of phases in software development, were inspired from the
Ambler and Line's Disciplined Agile Delivery (DAD) method [19]. The
activities in DAD are handled in three categories: Inspection,

1 The definition of ISO/IEC 15504’s model elements differ from the
AgilityMod's Model elements. Based on ISO/IEC 15504-Part1, we provide the
definitions of two main elements: Process: A process transform inputs into
outputs with sets of interrelated or interacting activities. Practice: A practice is
“an activity that contributes to the purpose or outcomes of a process or en-
hances the capability of a process.”

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

5



Construction and Transition. Although all management-type activities
are followed within these three categories in DAD, we defined Man-
agement as a separate aspect as its treatment requires a focus on a dif-
ferent knowledge area. Four aspects in AgilityMod are explained briefly
below.

4.1.1.1. Exploration. The purpose of the Exploration Aspect is to
understand the customer/user needs, and to transform these needs
into artefacts that initiate communication for elaborating them during
the construction, and to manage the changes in these artefacts.

4.1.1.2. Construction. The Construction Aspect includes the
architecture, design, coding and unit testing activities. The purpose of
the Construction Aspect is to develop a high-quality software solution
that is ready to be deployed.

4.1.1.3. Transition. The purpose of the Transition Aspect is, to establish
and maintain reliable and repeatable build, integration and deployment
practices to keep the application in a working state during the
development, to obtain feedback about the problems in the process,
to make the whole process visible to software development team
members and other stakeholders such as customers, and to shorten
the response time to changes.

4.1.1.4. Management. The purpose of Management Aspect is to
identify, establish and track activities and resources necessary to
develop a product. (From agile perspective, the purpose of the
Management Aspect is to perform planning and tracking activities
continuously and estimating collaboratively to achieve efficiency, and
to perform these practices as value adding activities to the project life
cycle.) Although the usage of measures by Agile teams are

Fig. 1. Followed research steps and their outputs.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

6



controversial, the measures (such as Velocity) and estimations (such as
Story Points) are parts of Agile methods, and field studies show that
agile organizations use measures effectively [63]. Therefore, the
management aspect includes measurement related practices as well.

4.1.2. Purpose statement
Purpose statements define the functional objectives of aspects.

4.1.3. Outcome
Outcomes are the expected observable results of the aspect perfor-

mance. Aspect practices are associated with outcome statements. After
defining the purposes of each aspect, we defined the Outcomes of the
aspects in line with the purpose statements. The purposes provide
general definitions for an aspect; however, the Outcomes provide ob-
servable results for the aspects, and guides us to understand what needs
to be achieved.

4.1.4. Aspect practice (AP)
Aspect practices are activities or activity groups that contributes to

achievement of an aspect purpose and outcome. An activity is some-
thing done or, just state of doing something. Each aspect practice is
associated with one or more of the outcomes. AgilityMod is a reference
model which can be used for any agile method. Therefore, the aspect
practices are defined from a generic perspective. An example of the AP
is “E.AP1: Capture the customer and user needs”. The Agile
Elaborations (AE) describe how standard software development prac-
tices can be applied from an agility perspective. At this stage, we as-
sociated the agile practices of Scrum, XP, DAD, Agile Modelling and
Kanban with APs to identify AEs.

4.1.5. Example work products
Example work products are outputs that can be produced at the end

of the successful achievement of an aspect or agility attribute.

4.1.6. Fallacies
Fallacies describe the wrong implementations of agile practices and

misinterpretations that need to be avoided.

4.2. AgilityMod agility dimension elements

4.2.1. Agility level (AL)
Agility Levels describe a rational way of progressing through im-

provement of the agility of any aspect. Four agility levels are described

for an Aspect: Level 0: Not Implemented, Level 1: Ad-Hoc, Level 2:
Lean, Level 3: Effective. These levels are displayed in Fig. 2. Agility
Levels (AL) were initially defined using a common-sense approach
based on our earlier research studies [27,64,65] and our experience in
implementing the software process improvement models together with
Bilgi Grubu Ltd. Sti.2 [26]. Then, we iteratively updated the model
based on the feedback from the case studies and using the opinions of
the experts. We reflected the findings to adjust the levels and associated
practices for each agility level.

At Level 0, the aspect practices are either “not achieved” or “par-
tially achieved”. At Level 1 (Ad-Hoc), the fundamental development
activities such as requirements development, design, coding, integra-
tion, testing, and deployment are performed consistently. At Level 1,
there are transition attempts towards agility in software projects by
exploring the agile practices with trial and discard. Although, the
Aspect practices are implemented and Aspect purposes are achieved at
Level 1 (this is the main difference from Level:0); there would be in-
consistencies in implementing agile practices in projects, which prevent
the teams to obtain the benefits of agile approaches. For instance,
iterative and incremental development is one of the main agile prac-
tices. But, we don't expect software development teams to maintain
consistency in performing such practices at Level 1. The Ad-Hoc level
should be a temporary stage in agile adoption which is characterized as
an undisciplined software development environment partially using
agile practices. The counter evidences listed in [11] are the main signs
of Ad-Hoc implementation. The name of Level 2, “Lean” was inspired
from the following agile principle: "Simplicity–the art of maximizing the
amount of work not done–is essential [1]." The Aspects at Level 2 are
characterized with two attributes: “Iterative” and “Simple”. An Aspect
at the Lean level means that utilizing agile practices, it is optimized to
deliver working software. At Level 2, work products are developed
iteratively so that frequent feedback are provided to and obtained from
the customer to improve the product capabilities, to identify bottle-
necks and problematic areas, and to surface assumptions related to the
product. The “Simple” attribute eliminates non-value-added processes
and technical activities, and also achieves a balance between adaptive
and predictive works. Technical improvements are present at Level 2
and above. At Level 3, each aspect is performed to achieve delivering
value with high productivity and low defects by employing agile en-
gineering practices and using agile tools to support a continuously

Fig. 2. Agility Levels in AgilityMod.

2 www.bg.com.tr.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

7

http://www.bg.com.tr


improving environment. Although the experimentation on agile prac-
tices starts for “learning and improvement” at Level 1, it is not struc-
tured and continuous. At Level 2, we eliminate any kind of activity that
does not add value, but cause waste in software development process.
At Level 3, the software development teams achieve continuous im-
provement by themselves without guidance of external coaches.

4.2.2. Aspect attribute (AA)
Aspect attribute is an indicator of the aspect performance. It defines

the characteristic of the aspect. They are applicable to all aspect prac-
tices. All of the aspect attributes were directly derived from the agile
manifesto and its 12 agile principles, by combining the related princi-
ples together. At the 1st Level (Ad-Hoc), the aspect attribute is “Perform
aspect practices”. At the 2ndLevel (Lean), the aspect attributes are
“Iterative and Simple”. At the 3rd Level (Effective), the aspect practices
are “Technically Excellent and Learning”. The mapping between the as-
pect attributes and the agile principles are given in [11]. The full model
is given in [11,66].

4.2.3. Generic agility practice (GAP)
Generic agility practices are the activities or activity groups that

contributes to and support achievement of aspect attributes. We pro-
vide the aspect attributes and generic agility practices related to each
agility level in Table 4.

4.2.4. Generic work product (GWP)
Generic work products are expected evidences as a result of

achievement of an aspect attribute. GWPs are limited with the given list
in the Model and can be extended based on working environments.

4.2.5. Generic people & resources (GPR)
Generic resource is a kind of resource (equipment, software, hard-

ware, facility, funding, etc.) that is utilized in the conduct of an aspect
or agility attribute. As the primary driver of agile software development
are humans rather than tools and processes, we separated “people”
from the other resources which are also essential but, second order
influencers behind success.

5. Application of the model

We performed a multiple case study to investigate if the proposed
model can be utilized for agility assessment of software projects, and if
it can provide roadmaps to improve their agility. We defined the fol-
lowing Research Questions (RQ) in accordance with the objectives:

RQ1: How suitable is AgilityMod for identifying software aspects’
agility, identifying agility gaps, and providing roadmaps for im-
proving agility in a software project?
RQ2: What are the strengths and weaknesses of AgilityMod?

5.1. Design of the case study

The case study was planned to include the following activities:

(a) Preparation: Development of the assessment questions, the data
collection templates to be used in the assessment, and the survey
questions that will be used after findings’ presentation.

(b) Case Selection and Planning: Interacting with candidate case orga-
nizations, deciding on assessment dates and participants with the
agreed organizations.
We planned to perform case studies in eight different organizations
to increase the generalizability (external validity) of the study. For
the selection of the organizations, we aimed to observe all patterns
at the aspect and agility dimensions of AgilityMod. Therefore, we
selected cases which are at different stages of agile adoption.

(c) Assessments and Data Collection: Performing the assessments and
data collection via semi-structured interviews and observing direct
evidences per project.
We planned to conduct formal assessments (gap analysis) through
semi-structured interviews with process owners and evaluate direct
evidences per project. People from different roles were planned to
be involved in the interviews to obtain tacit knowledge directly
from practitioners. These roles were planned to include at least one
product owner, one business analyst, one developer, one config-
uration manager and one tester. Besides interviews, direct evi-
dences such as product/sprint backlogs, daily stand-up meetings,
tools used, metrics collected were also planned to be analyzed.

(d) Analysis: Developing findings reports by analyzing the notes taken
during interviews and voice records for each case.

(e) Validation of the Findings: Discussing the findings with interviewees
to obtain their feedback on the assessment results and revising the
reports accordingly.

5.2. Case study conduct

We applied the model in eight projects from eight organizations.
The information about the projects and the organizations are sum-
marized in Table 5. The domains that we applied the Model are tech-
nical media, durable consumer goods, ERP solutions, multimedia so-
lutions and e-governance solutions. The team sizes of the assessed
projects ranged between six employees to 45 employees. In projects #1,
#4, and #8, there was no external customer, the teams specified and
analyzed the product requirements by themselves. In projects, #2, #5,
#6, and #7, the external customers, who were working in different
locations, provided the specifications to the teams via the product
owners. In project #3, both internal and external customers specified
the requirements. For customers located in different offices, the project
teams established various solutions to improve communication such as
frequent teleconferencing, customer-side face to face meetings, and
maintaining communication matrices for monitoring the efficiency of

Table 4
Aspect attributes of each agility level and generic agility practices.

Agility level Aspect attribute Generic agility practice

L1: Ad-Hoc 1.1 Performing Aspect Practices 1.1.1 Perform aspect practices
L2: Lean 2.1 Iterative 2.1.1 Develop work products in an iterative and incremental way

2.1.2 Communicate effectively
2.2 Simple 2.2.1 Balance the predictive work and adaptive work

2.2.2 Employ minimally sufficient ceremony
L3: Effective 3.1 Technically Excellent 3.1.1 Incorporate agile engineering methods/practices to the aspect practices

3.1.2 Integrate tools to aspects to improve the productivity
3.2 Learning 3.2.1 Support collaborative work and shared responsibility

3.2.2 Adopt agile leadership styles and adjust the behaviors towards mistakes of people
3.2.3 Encourage people in the organization to participate in learning, teaching and improvement
3.2.4 Collect measures to support learning and improvement

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

8



the communication. In the 10th row of Table 5, where we provided the
information on usage of continuous integration, we used the “Applied”
label to indicate that a CI system was established for the project,
whereas we used the label “Initiated” for the cases that the main steps
such as defining the strategy, having trainings on CI, and evaluating
alternative CI tools were initiated in the project.

After the conduct of each case study, we developed detailed as-
sessment reports indicating the agility gaps and successful practices
observed in the cases. We shared these reports with the related case
organizations. In addition, we presented the results to the assessment
teams, as well as the managers and CEOs of some of the organizations.
The presentations covered the assessment findings, agility levels of
aspects, and improvement suggestions. After or during each presenta-
tion, we discussed the results with the attendees.

Below we present each case briefly.

Case #1: Organization 1 is one of the leading media companies in
Turkey with its millions of visitors in various internet platforms. We
selected Organization 1, as they are in an agile adoption process for
2 years and we expected to observe the applicability of AgilityMod
in a company that recently applied concepts of agility. The organi-
zation mainly performs maintenance activities for its released pro-
ducts. We assessed one of the ongoing projects, Project #1, which
includes both new development and maintenance requirements. The
project (and the product) #1 is an online video platform which has
millions of unique visitors and video views in a month. The project
team includes nine software developers, two graphical user interface
designers, one tester, two business intelligence analysts and eight
content providers. In the scope of this case study, we assessed as-
pects of Project #1 through interviews and evaluation of the project
artefacts. The assessment was performed by one of the authors. The
overall assessment including observing the project artifacts took
three hours performed with two project managers, and the software
team leader. For this case, the evaluation included a sample of user
stories written for the project, the KanBan board, a sample of the
found defects, and the collected metrics.
Case #2: Organization 2 is a government IT organization that de-
velops e-government software for various government agencies.
Project #2 is an e-government project providing solutions to a
ministry department which has 40 non-profit organizations located
in different cities of Turkey and serving to millions of Turkish citi-
zens. The team includes 21 employees divided into four teams which
report to a project manager and an assistant project manager. Three
of these teams works on development of software modules, and one
team deals with system infrastructure. The overall assessment was
performed in three hours. The assessment included an interview
with the technical leader of the infrastructure team, who had for-
merly worked as a developer and has knowledge about project's
processes. Following the interview, we observed the tools set used
for issue tracking, document management, code management, ver-
sion control, code review and continuous integration and evaluated
a sample of epics and user stories, baselined documents, and defect
and risk records.
Case #3: Organization 3 serves over one million end users and
thousands of companies with ERP solutions. In the scope of this
assessment, we evaluated the aspects of an ERP product developed
on Windows infrastructure. The project team, which was divided
into two teams, includes one product owner, one scrum master, one
business analyst, five testers and eleven developers. The assessment
was performed with the scrum master, the product development
manager and the product owner over skype. The overall assessment
and observation of the project artifacts took four hours. We went
through the product and sprint backlogs, analyzed the way that the
user stories were described and their approach for issue tracking.
The assessment findings were presented to the product development
manager, test team manager, software development director of theTa

bl
e
5

D
em

og
ra
ph

ic
s
of

th
e
ca
se
s.

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

C
as
e
6

C
as
e
7

C
as
e
8

O
rg
an

iz
at
io
n'
s
B
us

in
es
s

D
om

ai
n

Te
ch

-m
ed

ia
co

m
pa

ny
G
ov

er
nm

en
t
IT

or
ga

ni
za
ti
on

ER
P
so
lu
ti
on

s
co

m
pa

ny
V
ar
io
us

co
m
m
un

ic
at
io
n

sy
st
em

s
So

ft
w
ar
e
an

d
In
te
rn
et

Se
cu

ri
ty

C
lo
ud

an
d
m
ul
ti
m
ed

ia
so
lu
ti
on

s
So

lu
ti
on

pr
ov

id
er

in
Te

lc
o
an

d
Fi
na

nc
e

se
ct
or

D
ur
ab

le
co

ns
um

er
go

od
s
in
du

st
ry

Pr
oj
ec

t/
Te

am
Si
ze

22
fu
ll-
ti
m
e

23
fu
ll-
ti
m
e

19
fu
ll-
ti
m
e

7
fu
ll-
ti
m
e,

3
pa

rt
-t
im

e
24

fu
ll
ti
m
e

45
fu
ll
ti
m
e

6
fu
ll
ti
m
e

3
pa

rt
ti
m
e,

1
fu
ll
ti
m
e

Pr
oj
ec

t
D
om

ai
n

M
ul
ti
m
ed

ia
Se

rv
ic
es

Sy
st
em

M
an

ag
em

en
t

In
fo
rm

at
io
n
Sy

st
em

En
te
rp
ri
se

D
ec
is
io
n

Su
pp

or
t
Sy

st
em

U
nk

no
w
n

D
ig
it
al

A
dv

er
ti
se
m
en

t
O
pe

ra
ti
on

s
Pl
at
fo
rm

V
oi
ce

an
d
V
is
ua

l
C
om

m
un

ic
at
io
n
Sy

st
em

O
nl
in
e
Se

lf
-C
ar
e

Po
rt
al

In
te
rn
al

Pr
oj
ec
t

M
an

ag
em

en
t
Po

rt
al

Te
am

Lo
ca

ti
on

Lo
ca
l

Lo
ca
l

Lo
ca
l

Lo
ca
l

Lo
ca
l

Lo
ca
l

Lo
ca
l

Lo
ca
l

C
us

to
m
er

Lo
ca

ti
on

In
te
rn
al

de
ve

lo
pm

en
t,

no
di
re
ct

cu
st
om

er
Ex

te
rn
al
,
in

an
ot
he

r
lo
ca
ti
on

Bo
th

In
te
rn
al

an
d

Ex
te
rn
al

In
te
rn
al

de
ve

lo
pm

en
t,
no

di
re
ct

cu
st
om

er
,C

O
TS

pr
od

uc
t

Ex
te
rn
al
,
in

an
ot
he

r
co

un
tr
y

Ex
te
rn
al
,i
n
an

ot
he

r
lo
ca
ti
on

Ex
te
rn
al
,
in

an
ot
he

r
lo
ca
ti
on

Bo
th

In
te
rn
al

an
d

Ex
te
rn
al

Pr
og

ra
m
m
in
g
La

ng
ua

ge
PH

P
J2

EE
,F

le
x

Pa
sc
al

PH
P

PH
P,

Ja
va

Ph
yt
on

,
C
as
sa
nd

ra
Ja
va

,C
+
+
,C

,J
av

a
Sc
ri
pt
,H

TM
L5

Ja
va

R
ea
dm

ir
e

C
us

to
m
er

C
om

m
un

ic
at
io
n

M
ea

ns
Fa

ce
-t
o-
fa
ce

e-
m
ai
l,
ph

on
e,

fa
ce

to
fa
ce

Em
ai
l,
ph

on
e
ov

er
pa

rt
ne

rs
,o

ve
r
su
pp

or
t

po
rt
al
,f
ac
e
to

fa
ce

Fa
ce
-t
o-
fa
ce

Te
le
-c
on

fe
re
nc

e
Te

le
-C
on

fe
re
nc

e,
e-
m
ai
l

Fa
ce
-t
o-
fa
ce
,p

ho
ne

,
e-
m
ai
l

Fa
ce

to
fa
ce
,T

el
e-

C
on

fe
re
nc

e,
e-
m
ai
l,

ph
on

e
It
er
at
io
n
C
yc

le
Ti
m
e
an

d
C
on

si
st
en

cy
7
to

10
da

ys
C
on

si
st
en

t
30

da
ys

C
on

si
st
en

t
45

da
ys

C
on

si
st
en

t
(7

w
ee
ks
)

15
da

ys
to

30
da

ys
N
o

co
ns
is
te
nc

y
3
w
ee
ks
,C

on
si
st
en

t
3
w
ee
ks
,
N
o
co

ns
is
te
nc

y
3
w
ee
ks
,N

o
co

ns
is
te
nc

y
4
w
ee
ks
,C

on
si
st
en

t

A
pp

ro
xi
m
at
e
C
od

e
C
ov

er
ag

e
Pe

rc
en

ta
ge

N
on

e
V
ar
ie
s
ba

se
d
on

m
od

ul
es
,
54

.5
%

on
av

er
ag

e

C
od

e
co

ve
ra
ge

ov
er

au
to
m
at
ed

te
st
s
23

%
N
on

e
A
pp

ro
xi
m
at
el
y
%
10

N
on

e
N
on

e
N
on

e

U
sa
ge

of
C
on

ti
nu

ou
s

In
te
gr
at
io
n

N
on

e
A
pp

lie
d

N
on

e
N
on

e
In
it
ia
te
d

In
it
ia
te
d

In
it
ia
te
d

N
on

e

Ty
pe

of
A
gr
ee

m
en

t
w
it
h

C
us

to
m
er

N
on

e
Fi
xe
d
Sc
he

du
le

an
d

Pr
ic
e
C
on

tr
ac
t

N
on

e
N
on

e
N
on

e
Fi
xe
d
Sc
he

du
le

an
d
Pr
ic
e

C
on

tr
ac
t

Fi
xe
d
Sc
he

du
le

an
d

Pr
ic
e
C
on

tr
ac
t

N
on

e

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

9



organization, product owner, scrum master, and a tester in a face-to-
face meeting.
Case #4: Organization 4 is a solution provider for information and
communication technologies in local and global markets. Due to
security requirements, the scope of the assessed project was kept
confidential. The project #4 includes four software developers, one
test engineer, one product manager and three part-time business
analysts. There is no specific project manager in the project. Because
of high confidentiality in the project, we were not able to observe
the project artefacts, but performed a face-to-face interview in a
three-hour time with the product manager, the software team
leader, and the test engineer, one by one.
Case #5: Organization 5 works on internet security field. They de-
velop products with the purpose of securing information on internet,
securing websites, e-commerce applications and personal compu-
ters. It's is an international company, doing business in several
countries, with its millions of end users, and thousands of business
partners. The product #5 is a digital advertisement sharing plat-
form. It is in use, and new versions of the product are being de-
ployed continuously. The purpose of the project is to ensure the
security of the advertisements, and deliver harmless and focused
advertisements to end users. The project includes 24 employees.
There are four testers and thirteen developers, which are grouped
into three teams. One program manager, one architect, and three
scrum masters serve for the whole team. Apart from these members,
there are two product managers, which can be thought as product
owners, living in USA and Turkey. We assessed aspects of the project
through interviews and direct observation of the evidences. The
assessment was performed in 3-hour time with the configuration
manager and the quality assurance manager, who is also the scrum
master. The interview was performed simultaneous to the project
artefact’ demonstration, which included going through the product
and sprint backlogs, a sample of stories, a tool-based agile board,
and the defect tracking approach.
Case #6: Organization 6 develops products in the field of informa-
tion and communications technologies. The project #6 that we as-
sessed, enables voice and visual communication via web browsers.
The project team includes 45 people divided into six scrum teams.
The product owner and the customer are based in USA. The product
owner joins meetings via teleconferencing. The team includes de-
velopers, testers, scrum masters, and architects. The architects also
work as business analysts. In USA, there are two solution architects,
who are in communication with the product owner. On top all scrum
teams, there is a technical project manager. The overall assessment
including going through the project artifacts was performed in 4-
hour time with the quality manager, the test manager, the solution
architect, and the technical project manager. After the interviews,
we went through the tools used for requirements and issue man-
agement, product and sprint backlogs, and a software design
document.
Case #7: Organization 7 is a solution provider in telecommunication
and finance sectors. It is a small sized, innovative company, in
which agile methods have been in use since 2010. The product #7 is
used to manage the services between a service provider and the li-
censed operators, based on the regulations mandated by Information
and Communications Technologies Authority in Turkey. It is an
ongoing project. New features are being developed and the

maintenance of the old features is performed at the same time. The
project team includes one product owner, one scrum master, three
software developers, and one quality assurance engineer. We per-
formed the assessment with the scrum master, the test and config-
uration engineer and the senior software developer in 4-hour time.
We were not able to go through any project artifacts in this case.
Case #8: Organization 8 is one of the biggest organizations in dur-
able consumer goods industry in Turkey. We assessed project #8
which is a project management portal to be used by all divisions of
the company. The assessment took four hours in total and the in-
terviews were performed with the whole team, which included the
product owner, the project manager, the software developer, and
the configuration manager. We went through the product and sprint
backlogs, a sample of stories, bugs, tasks, software requirements,
and design documents.

5.3. Results

We presented the case study results in two sub-sections: First, we
analyzed how successful is the Model in terms of achieving its purpose
(RQ1). Second, we presented the issues related to structure of the
Model, and how the model can be improved (RQ2).

5.3.1. Analysis of the model's applicability (RQ1)
The teams of the assessed projects deliver working software in dif-

ferent iteration durations. In the agile manifesto, one of the principles is
"Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale" [1]. The
importance of fast feedback is emphasized in [67] as follows: “This fast
feedback enables teams to quickly prune unfavorable product paths or de-
velopment approaches before they compound a bad decision with many
follow-on decisions that are coupled to the bad decision”. The shortest
iteration length was in the Project #1 with 7 days and the longest
iteration length belonged to the Project #3 with 45 days. The length of
the iteration is an indicator how fast the feedback has been obtained.

In all eight case studies, we evaluated the projects’ agility for all
aspects of the Model: Exploration, Construction, Transition and
Management. Fig. 3 and Fig. 4 below give the colored schemas of the
assessment ratings for Case #1 and Case #2 as samples. These figures
enable capturing the assessment results at a glance and show where to
direct focus in terms of the problematic areas (the detailed assessment
results were provided in the technical report [68]). Each column in the
Figures refers to the practices of AgilityMod for three levels of agility.
The colors and the numbers in each cell refer to the achieved levels of
these practices. We used a four-level scale to express the achievement of
the aspect attributes: “Not Achieved (0-Red), Partially Achieved (1-
Yellow), Largely Achieved (2-Orange) and Fully Achieved (3-Green)
and Not Applicable ((-)- White)”. For an agility level to be reached, all
of the practices should be largely or fully achieved at that level. Based
on this rule, the exploration aspect of Case 1 is at Level 1: Ad-Hoc Level.
Because it had a partially achieved (1-yellow) generic agility practice
(Simple-GP 2.2.2) at Level 2. As a comparison, the agility level of all
aspects of Case 2 are at Level 3, as all of its practices were either rated
as Largely Achieved or Fully Achieved. The achieved agility levels of
each aspect for Case 1 and Case 2 can be found on Fig. 5.

One of the rationales for selecting the cases was to observe a rating
for each agility level for each aspect, as this would be the indicator of

Fig. 3. Rating of Each Practice of Case 1.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

10



the logical agility leveling. We presented the distribution of the
achieved agility levels for aspects of all eight cases in Fig. 6. We also
included the results of the first exploratory case study: Case #0 to the
Figure as the assessed project in this case enabled us to observe the
lower agility levels of different aspects.

As can be seen in Fig. 6, we were able to observe the occurrence of
the agility levels for all of the aspects except for Level 0 of the Ex-
ploration aspect and Level 1 of the Management aspect. Observation of
most of the agility levels for each aspect shows us the capability of
AgilityMod in specifying and representing diversities between the

Fig. 4. Rating of Each Practice of Case 2.

Fig. 5. Achieved Agility Levels of the Aspects for Case 1 and Case 2.

Fig. 6. Distribution of the achieved agility levels.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

11



agility levels. This also has been achieved by the broad perspective of
the case projects in terms of agile adoption.

The assessment findings were delivered to the assessment team
members in the form of assessment reports. Following the findings
presentations and discussions, the capability of AgilityMod in achieving
its purpose in terms of identifying agility gaps and depicting new im-
provement opportunities were evaluated by the case study participants.
At the end of each presentation, we asked the participants to fill in the
questionnaire given in Table 6. All the questions except for the last one
in the questionnaire were designed as open-ended questions. The pur-
pose of the last question was to understand the capability/success of the
Model to uncover the issues which were unknown to the teams.

After the findings presentation, we asked the case study participants
to provide a rating for the fifth question from four scale levels: “Not
Achieved (NA), Partially Achieved (PA), Largely Achieved (LA) and
Fully Achieved (FA)”. Some of the instances were not rated (NR) by
some of the participants, as these aspects were not their primary work
area and/or they did not feel comfortable in making an objective
judgment. These ratings were important for us to understand to what
extent we could meet the expectations of the participants in terms of the
presented findings and improvement opportunities for their projects.

For eight cases, we obtained feedback from 20 people overall (3, 1,
2, 3, 3, 4, 2, and 2 participants from Case 1 to Case 8, respectively).
They rated the achievement of each aspect from their own perspectives.
Summary of the ratings are given below:

• Exploration Aspect: 14/20 fully achieved, 3/20 largely achieved and
3 not rated

• Construction Aspect: 14/20 fully achieved, 3/20 largely achieved
and 3 not rated

• Transition Aspect: 14/20 fully achieved, 5/20 largely achieved and
1 not rated

• Management Aspect: 15/20 fully achieved, 1/20 largely achieved
and 4 not rated

When we took out the “not rated” instances, we had 69 instances in
total. From a general perspective, 57 instances over 69 instances were
rated as fully achieved, 12 instances over 69 instances were rated as
largely achieved. These results indicate that AgilityMod based agility
assessment is successful in finding agility issues and revealing agility
improvement opportunities in software development projects. At the
same time, the model itself has some improvement opportunities as
well.

The participants think that the issues provided in the reports cov-
ered both previously discovered and undiscovered improvement items
from an agile perspective. Their comments indicate that AgilityMod
achieves to reveal the unnoticed problems in the software projects. The
project manager of Case 1 said that “the results are very beneficial for us to
discover our potential for improvement. The suggestions that were given in
terms of the construction and the transition aspects had the highest influence
for us.” The software team leader of Case 2 rated the Transition Aspect
at the Largely Achieved Level. He called attention to the need of ob-
taining feedback from the customers and end users after the delivery of
a software product. He mentioned that even if the software has

delivered successfully, there might be issues related to the hardware
systems and the network and the end product might be perceived as of
poor quality because of such issues. He stated that the assessment needs
to be extended to analyse the processes of the maintenance phase to
monitor the released software. Similarly, the software verification
manager of Case 6 thinks that AgilityMod needs to question the prac-
tices after software deployment since these are highly correlated with
software quality.

The software product development manager of Case 3 mentioned
that the presentation covered all the gaps related to their agile pro-
cesses. He mentioned that they need to invest on the problems related
to developers’ testing approach, code integration, the need of devel-
opers’ and testers’ work in a collaborative environment and doing more
investment on code refactoring and automated tests.

The participants of Case 4 specified that they did not notice the
following issues before our assessment and presentation: Improving
agility awareness of the project team through agile trainings, estab-
lishing dependencies among requirements, establishing a measurement
and monitoring infrastructure, managing risks, prioritization of backlog
items and estimation of requirements items.

The participants of Case 5 were working on establishing an agile
software development culture for 15 months and they had already
analysed what their next improvements should be. They mentioned that
the assessment results were fully compatible with their own findings.
We suggested improvements on technical debt management and ad-
vised taking external agile adoption trainings. They decided to update
their plans based on these suggestions.

In order to evaluate the usefulness of the leveled approach for im-
provement, we asked the assessment participants if they would prefer to
apply improvement suggestions for each agility stage in the order we
specified. The answers we obtained varied. In Case 1, Case 2, Case 4,
Case 5, Case 6 and Case 7, the participants agreed on applying the
improvement suggestions in the order we specified. However, in Case 3
and Case 8, most participants mentioned that they would not need an
order for implementing the suggestions, since they thought the sug-
gestions were independent from each other. Although, these results
show independence of the aspects from each other, the evaluation of
the effectiveness of the roadmaps provided require follow-up assess-
ments which were not part of this research.

5.3.2. Findings related to the structure of the model (RQ2)
When we evaluated the Model in terms of its components and

components descriptions, the following issues emerged during the
conduct of the case study:

One of the aims of developing AgilityMod was to minimize the
subjective judgment for agility assessment and to identify false agile
adaptations. With this purpose, we defined the “Agile Elaborations” for
the aspect practices and described the exemplar outcomes that can be
observed after successful achievement of generic agility practices
(GAP). However, during the conduct of the 1st case study, we observed
that the “communicate effectively” GAP in the “Iterative” attribute and
the “align with agile values and principles” GAP in the “Management”
aspect, require talking to whole teams of the projects rather than an
assessment group. We couldn't have the chance to talk with all of the

Table 6
Questions in validation questionnaire.

No Questions

1) What is your role in the organization? Could you please describe your background and experiences on agile software development?
2) Does the report/presentation cover all the improvement areas that you notice about the organization's agile processes? If not, what are the missing ones?
3) Which of the findings and improvement suggestions presented in the report/presentation have you noticed before? Which of them were new to you?
4) Does the agility improvement path that is presented to you in the assessment report sound reasonable? Would you prefer the same improvement path? What would be your

priorities?
5) To what extent the presented findings and improvement opportunities in your projects overlap with the issues you have already known in your project? Please select the

scale that applies from partially achieved to fully achieved level.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

12



project team members for these specific practices, however, we ex-
tended our question set to be able to understand different ways of
communication in projects, and detect communication problems. For
other practices, we resolved this problem by asking the same questions
to different roles in the project to observe variances in agile perception.

One of the attributes of the 3rd agility level is the “Learning” attri-
bute. In the scope of the “Learning” attribute, we assess how the aspects
serve for the purpose of organizational learning and improvement. We
aimed to capture the evidences for collaborative work and shared re-
sponsibility in the conduct of aspect practices, agile leadership styles,
and encouraging people in the organization to participate in learning,
teaching and improvement. What we observe in the multiple case study
was that, if collaborative work or self-organization was established in a
project, it was not just valid for one specific aspect, but valid for the
other aspects as well. Therefore, when an evidence was observed during
the assessment of an aspect through an agility practice, there was al-
most no need to question the same agility practice for the remaining
aspects as the answer remains to be pretty much the same. In some
cases, there might be significant differences in the answers of the 4th
agility practice of the learning attribute which is “collecting measures
to support learning and improvement”. We mention this situation as an
issue to be considered, because the improvement suggestions repeat
itself in the assessment reports.

It was observed that the positive and negative evidences for agility
attributes at the 2nd level may also be the evidences for some of the
agility practices at the 3rd level. For example, to employ minimally
sufficient ceremony in any kind of activity, we expect aspects to be
evaluated regularly for elimination of the redundancies and non-value-
added activities. The activities eliminated might be related to technical
or process related issues. On the other hand, the purpose of the learning
attribute at the 3rd level is to learn from past experiences, and achieve
continuous improvement, which also requires performing regular ret-
rospective analysis and taking action. These actions would also require
elimination of technical and process related issues. Therefore, the
components at the 2nd and the 3rd level may trigger each other, and
there may not be clear cut distinctions between these components.

Even if we updated the Model based on the results of the exploratory
case study in terms of resolving the overlaps in definitions, during the
conduct of the multiple case study we observed that the “Balance the
predictive work and adaptive work” generic agility practice, the “Make
the artifacts visible to everyone” aspect practice in Exploration aspect,
and the “Make the progress visible” aspect practice in Transition aspect
overlap. Accordingly, we updated the Model v3.0 by removing visibility
emphasis from the generic agility practices and updated the case re-
ports accordingly.

In the 1st version of AgilityMod, there was a 5th Aspect called the
“Culture”. We removed this aspect from the aspect dimension after the
exploratory case study, as its practices overlapped with the “Learning”
attribute practices and the “Management” aspect practices. In order to
cover the unique practices of culture aspect, we extended other attri-
butes or aspect practices in the Model. During the conduct of the
multiple case study, we evaluated if the coverage of the Culture aspect
has been fully achieved with the extensions. We have not observed any
gaps in the coverage of removed Culture Aspect, as the cultural ele-
ments and practices that need to be considered at the project level are
covered under the "Learning" Attribute and the "Management" Aspect.
The Generic Practices (GP), “GP 3.2.1 Support collaborative work and
shared responsibility” and “GP 3.2.2 Adopt agile leadership styles and
adjust the behaviours towards mistakes of people” support cultural
change in the model at project level. On the other hand, having agility
at the organizational level requires not only scaling the software de-
velopment practices but also changing or adjusting non-IT departments’
work approach. Such a scaling would require significant cultural shifts
because of the possible organizational structural changes and political
challenges. In that case, the “culture” itself can be a standalone aspect.

5.4. Mitigation of threats to validity

The case study approach uses qualitative data and provides solu-
tions in its own context. As a result, some validity concerns might arise
in the case study research. We performed the following actions to
prevent any threats that could affect the internal, construct and external
validity and reliability.

5.4.1. Internal validity
A threat to internal validity is asking diverse questions to partici-

pants related to aspect practices during the interviews and getting the
answers from them at different granularity levels. In order to prevent
this as much as possible, we developed a detailed question set related to
each aspect and generic agility practice at the case study design phase.

5.4.2. Construct validity
We perceived two construct validity threats. In the case study, we

evaluated the aspects both with conducting interviews and observing
the evidences in the form of documents (available records of execution
such as plans, stories, e-mails). It is hard to manage the question and
answer process in an interview and take notes simultaneously. In order
to overcome this challenge, we recorded the assessment process in 7 of
the 8 cases, and decoded the records by listening them. For the one that
we couldn't record (Case #3), the assessment was performed by two
assessors: one took notes while the other one asked questions and
managed the assessment process.

The case study analysis phase includes objective evaluation of the
results. Each practice has to be rated in an objective way. In order to
prevent subjectivity threat as much as possible, we defined possible
answers and types of the evidences for aspect practices. We used the
four-point ordinal scale of ISO/IEC 15504 to rate the practices, which
has one of the values “Not Achieved”, “Partially Achieved”, “Largely
Achieved” and “Fully Achieved” .

5.4.3. External validity
To improve the generalizability of the results, we selected the cases

from different business domains which are listed in Table 5. We have
not observed any difference or difficulty for the application of the
model in these domains.

To be able to observe different agility levels for each aspect, we
selected the cases based on agile adoption duration in the company. The
cases cover experience on agile software development in the companies
from one year to five years.

As AgilityMod has been designed being independent of any specific
agile software development method, we aimed to observe applicability
of it at different settings. Scrum was the major agile software devel-
opment method preferred for the management of the projects we as-
sessed. Other methods or practices such as continuous integration and
test-driven development were accompanying Scrum to ensure a full
software development life cycle coverage in the companies. This al-
lowed us to observe applicability of AgilityMod on other methods other
than Scrum.

5.4.4. Reliability
The Model has been evaluated in eight software development

companies by one of the developers of the Model as described above. As
relevant to reliability, we were concerned with to what extent the
success of the Model is dependent on the specific researchers. The
Model has been implemented in three other software development
companies (different from the ones presented here) in the guidance of
another researcher, who has not been involved in the development of
the Model [69]. These assessments were performed by the assessment
teams established within the companies using the AssessAgility tool
which was developed to improve the efficiency of the assessments [70].
They evaluated the capability of AgilityMod's in identifying agility gaps
and revealing new improvement opportunities for each aspect based on

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

13



a rating scales: not achieved (NA), partially achieved (PA), largely
achieved (LA) and fully achieved (FA) levels.

A total of six team members from three companies were involved in
the assessments. They found the aspect findings successful in finding
agility related issues, and found the provided solutions helpful for im-
provement. Among these ratings 19 over 24 instances were FA, two of
them were LA and three of them were Not Rated. These assessments,
enabled us to observe that the Model can be easily applied by others
and the success of findings do not dependent of the involvement of the
developers of the Model.

5.5. Discussion

The endeavor to develop an agility assessment model commenced
with the case study, we identified capabilities of existing agility as-
sessment/agile maturity models [24]. In the light of the findings of this
case study, we defined the requirements of AgilityMod and developed
the Model in an iterative and incremental way. The stages of the Model
were conformant to the requirements defined by Becker et al. [55].

We discuss the capability and the validity of AgilityMod based on
the criteria defined for developing maturity models by Maier et al. [25]
in Table 7.

6. Conclusions

In this study, we presented the Software Agility Assessment
Reference Model, AgilityMod, developed for the assessment of software
projects from an agility perspective.

It has been developed based on an accepted assessment structure:
ISO/IEC 15504, which enables identification of agility issues in a sys-
tematic way. It proposes its own components which are characteristic to
the agile software development domain such as agility levels, agility
practices, resources and outputs. The agility levels and the practices
associated with these levels show major variations in the literature.
AgilityMod is developed as a practical approach for agility assessment
with the feedback obtained in the field by means of successive iterations

for a set of case studies. It is detailed enough to be applied consistently
and abstract enough to enable different implementation methodologies
to be covered. It takes years such models to get mature. We foresee that
the Model will be improved through the practitioners’ experiences in
the field.

AgilityMod have unique attributes which improves its usability and
capability with respect to similar models developed previously. We can
assess agility of a project in terms of four aspects instead of checking
compatibility to some agile practices.

The Model v3.0 was implemented in eleven software development
organizations. This paper provided details of the multiple case study
included eight cases. In these cases, we observed that the organizations
have challenges on the following issues: Establishing effective com-
munication channels when there is no on-site customer, having custo-
mer's commitment, achieving an optimum level for the granularity le-
vels of user stories, enabling the growth of product backlog at a
constant pace so that development flow can be maintained, ineffective
retrospective and review meetings, ability to manage technical debt,
identification of the dependencies among design elements for change
management.

In order to evaluate the researcher impact on the assessments, it was
also implemented in three different software development organiza-
tions in the guidance of another researcher who was not involved in the
development of the Model. This case study had also high success rates
in terms of finding the agility issues and providing improvement sug-
gestions. More importantly these improvement suggestions were pro-
vided using the Model by the assessment team members who were es-
tablished within the software companies and had no information prior
to the implementation of the Model.

In this paper, we have not proposed an assessment method de-
scribing the selection procedures of the assessed projects/products, the
structure of the appraisal team or the coverage criteria of the organi-
zational units. Such an assessment approach is saved for future work.

Another future work would be observation of the projects assessed
to see if provided improvement suggestions lead to changes in organi-
zations in terms of adopting agile software development. The current

Table 7
Evaluation of the capability and the validity of AgilityMod based on the defined criteria.

Criteria Analysis the model

Audience of the Model: Define the expected users of the
Model.

The audience of the Model is agile software development practitioners and coaches. The model was used for agility
assessment by assessment teams established within the companies. The assessment teams, the members of which
had no knowledge on the model prior to the assessment, included an assessment team leader, software developers,
and business analysts. The assessment team leaders guided the interview process.

Aim of Model: Define the aim of the Model which can be
either of improvement or benchmarking.

AgilityMod was developed with the aim of assessing agility (agile maturity) levels of software projects and
providing guidance in identifying the improvement opportunities regarding agile software development projects in
a structured way. The model was implemented in eight organizations by one of the authors of this paper. Twenty
participants rated the success of the Model in finding the agility issues and revealing the agility improvement
opportunities in software development projects. Significant majority of the participants found the Model successful
in achieving its purpose.
The Model was also implemented in three more organizations by external assessors to improve its reliability. The
case study participants evaluated the Model's success in identifying agility gaps and revealing new improvement
opportunities for each aspect. Among the ratings given by the case study participants, 19 out of 24 instances were
fully achieved, two of them were largely achieved and three of them were not rated.

Scope: Define the scope of the model which can be generic
or domain specific.

AgilityMod is a generic model that can be used in the assessment of software projects with a variety of agile
methods in different application domains. Fontana et al. [38] also pointed out that highly customized agile
maturity models for specific contexts limit their effective utilization by software development teams, since agile
development do not usually rely on standard processes.

Process Areas: Define process areas so that they are
mutually exclusive and collectively exhaustive

AgilityMod defines four aspects, which provide whole software development life cycle coverage along with the
aspect practices.

Maturity Levels The Agility dimension provides a mapping of the agility practices with the agile principles. This ensures the
achievement of the agile principles and as such the agile values published in the agile manifesto. The agility levels
provide the directions towards agility in a manner that they can be introduced and established in the organization.

Verification and Validation: Verification of the Model was performed by the field experts. It was validated in the field through multiple case
studies including 11 cases (counting in three cases which were performed by another researcher independently –
described in Section 5.4.D)

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

14



structure of AgilityMod provides guidance in assessing the agility of
software projects rather than the organizational agility. The future
versions of the Model can be extended to provide guidance in assessing
and achieving organizational agility, as organizational transformation
dynamics would vary from transformations at project scale.

Acknowledgement

This research has been partially supported by Scientific and
Technological Research Council of Turkey (TÜBİTAK), grant number
113E528 and has also been partially supported by the Science
Foundation Ireland under a co-funding initiative by the Irish
Government and European Regional Development Fund through Lero -
the Irish Software Research Centre (http://www.lero.ie) grants 10/CE/
I1855 & 13/RC/2094.

We would like to thank Onat Ege Adalı for conducting the addi-
tional three case studies which ensured the reliability of the Model.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.csi.2018.07.002.

References

[1] Agile Manifesto, 2001. Available: www.agilemanifesto.org.
[2] K. Beck, Embracing change with extreme programming, Computer 32 (10) (1999)

70–77.
[3] K. Schwaber, Scrum development process, Business Object Design and

Implementation, Springer, 1997, pp. 117–134.
[4] S.R. Palmer, M. Felsing, A Practical Guide to Feature-Driven Development, Pearson

Education, 2001.
[5] A. Cockburn, Crystal clear: A Human-Powered Methodology For Small Teams,

Addison-Wesley Professional, 2004.
[6] K. Schwaber, Agile Project Management With Scrum, Microsoft press Redmond,

2004.
[7] D. Turk, R. France, and B. Rumpe, Assumptions Underlying Agile Software

Development Processes, arXiv:1409.6610, 2014.
[8] A. Sidky, A Structured Approach to Adopting Agile Practices: The agile Adoption

Framework, Virginia Polytechnic Institute and State University, 2007.
[9] M. Laanti, O. Salo, P. Abrahamsson, Agile methods rapidly replacing traditional

methods at Nokia: a survey of opinions on agile transformation, Inf. Softw. Technol.
53 (3) (2011) 276–290.

[10] A. Elssamadisy, Agile Adoption Patterns: A Roadmap to Organizational Success,
Addison-Wesley Professional, 2008.

[11] Ö.Özcan Top, Agilitymod: a software agility reference model for agility assessment,
PhD, Information Systems, Middle East Technical University, Ankara,
20142550702031401099.

[12] ISO/IEC 15504-2:2003 Information Technology – Process Assessment – Part 2:
Performing an Assessment, 2003.

[13] ISO/IEC 15504-5:2012 Information Technology – Process Assessment – Part 5: An
Exemplar Software Life Cycle Process Assessment Model, 2012.

[14] Capability Maturity Model Integration (CMMI) for Development, Version 1.3, CMMI
Product Team, CMU/SEI-2010-TR-033, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 2010, p. 468.

[15] Ö. Özcan‐Top, F. McCaffery, A hybrid assessment approach for medical device
software development companies, J. Softw.: Evol. Process (2017).

[16] B. Boehm, R. Turner, Balancing Agility and Discipline: Evaluating and Integrating
Agile and Plan-Driven Methods, IEEE, 2004, pp. 718–719.

[17] K. Conboy, B. Fitzgerald, Toward a conceptual framework of agile methods: a study
of agility in different disciplines, Proceedings of the 2004 ACM Workshop on
Interdisciplinary Software Engineering Research, ACM, 2004, pp. 37–44.

[18] J. Erickson, K. Lyytinen, K. Siau, Agile modeling, agile software development, and
extreme programming: the state of research, J. Database Manag. 16 (4) (2005)
88–100.

[19] S.W. Ambler, M. Lines, Disciplined Agile Delivery: A Practitioner's Guide to Agile
Software Delivery in the Enterprise, IBM Press, 2012.

[20] VersionOne, The 12th Annual State of Agiletm Report, Available: http://
stateofagile.versionone.com.

[21] VersionOne. (2017, 24/04/2017). The 11th State of Agiletm Report. Available:
http://stateofagile.versionone.com/.

[22] S. Ambler. (2013, 24/04/2017). IT Project Success Rates Survey Results. Available:
http://www.ambysoft.com/surveys/success2013.html.

[23] VersionOne. (2016, 24/04/2017). The 10th Annual State of Agiletm Report.
Available: https://explore.versionone.com/state-of-agile/versionone-10th-annual-
state-of-agile-report-2.

[24] Ö.Özcan Top, O. Demirörs, Assessment of agile maturity models: a multiple case
study, Software Process Improvement and Capability Determination, Bremen,

Germany 349 Springer, Berlin Heidelberg, 2013, pp. 130–141.
[25] A.M. Maier, J. Moultrie, P.J. Clarkson, Assessing organizational capabilities: re-

viewing and guiding the development of maturity grids, IEEE Trans. Eng. Manag. 59
(1) (2012) 138–159.

[26] B. Aysolmaz, O. Demirörs, A detailed software process improvement methodology:
BG-SPI, European Conference on Software Process Improvement, Springer, 2011,
pp. 97–108.

[27] A. Tarhan, O. Demirors, Apply quantitative management now, IEEE Softw. 29 (3)
(2012) 77–85.

[28] C. Patel, M. Ramachandran, Agile Maturity Model (AMM): a software process im-
provement framework for agile software development practices, Int. J. Softw. Eng.
2 (1) (2009) 3–28.

[29] A. Yin, S. Figueiredo, M. Mira da Silva, Scrum Maturity Model: validation for IT
organizations’ roadmap to develop software centered on the client role, ICSEA
2011, The Sixth International Conference on Software Engineering Advances, 2011,
pp. 20–29.

[30] R. Benefield, Seven dimensions of agile maturity in the global enterprise: a case
study, System Sciences (HICSS), 2010 43rd Hawaii International Conference on,
IEEE, 2010, pp. 1–7.

[31] J. Humble and R. Russell, ``The Agile Maturity Model Applied to Building and
Releasing Software.

[32] N. Malic, Simple Life Cycle Agile Maturity Model, ed.
[33] M. Proulx, Yet Another Agile Maturity Model (AMM)– The 5 Levels of Maturity,

(2010) Available: http://analytical-mind.com/2010/07/12/yet-another-agile-
maturity-model-the-5-levels-of-maturity/.

[34] S. Jayaraj, The Agile Maturity Model, (2007) Available: http://
whattodowearelikethatonly.blogspot.com/2008/08/agile-maturity-model.html.

[35] D. Leffingwell, SAFe® 4.0 Reference Guide: Scaled Agile Framework® For Lean
Software and Systems Engineering, Addison-Wesley Professional, 2016.

[36] I. Stojanov, O. Turetken, J.J. Trienekens, A maturity model for scaling agile de-
velopment, Software Engineering and Advanced Applications (SEAA), 2015 41st

Euromicro Conference on, IEEE, 2015, pp. 446–453.
[37] R.M. Fontana, V. Meyer, S. Reinehr, A. Malucelli, Progressive outcomes: a frame-

work for maturing in agile software development, J. Syst. Softw. 102 (2015)
88–108.

[38] R.M. Fontana, S. Reinehr, A. Malucelli, Agile compass: a tool for identifying ma-
turity in agile software-development teams, IEEE Softw. 32 (6) (2015) 20–23.

[39] O.E. Adalı, Ö. Özcan-Top, O. Demirörs, Evaluation of agility assessment tools: a
multiple case study, International Conference on Software Process Improvement
and Capability Determination, Springer, 2016, pp. 135–149.

[40] O.R. Yürüm, O. Demirörs, Agile maturity self-assessment surveys: a case study,
Software Engineering and Advanced Applications (SEAA), 2017 43rd Euromicro
Conference on, IEEE, 2017, pp. 392–399.

[41] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, M. Biro, Agile Maturity
model: a synopsis as a first step to synthesis, Systems, Software and Services Process
Improvement, Springer, 2013, pp. 214–227.

[42] T. Schweigert, D. Vohwinkel, M. Korsaa, R. Nevalainen, M. Biro, Agile maturity
model: analysing agile maturity characteristics from the SPICE perspective, J.
Softw.: Evol. Process (2013).

[43] T. Schweigert, R. Nevalainen, D. Vohwinkel, M. Korsaa, M. Biro, Agile maturity
model: oxymoron or the next level of understanding, Software Process
Improvement and Capability Determination, Springer, 2012, pp. 289–294.

[44] F. McCaffery, M. Pikkarainen, I. Richardson, Ahaa–agile, hybrid assessment method
for automotive, safety critical smes, Proceedings of the 30th international
Conference on Software Engineering, ACM, 2008, pp. 551–560.

[45] C. Bianco, Agile and SPICE capability levels, Software Process Improvement and
Capability Determination, Springer, 2011, pp. 181–185.

[46] A. Omran, AGILE CMMI from SMEs perspective, Information and Communication
Technologies: From Theory to Applications, 2008. ICTTA 2008. 3rd International
Conference on, IEEE, 2008, pp. 1–8.

[47] R. Turner, A. Jain, Agile meets CMMI: culture clash or common cause? Extreme
Programming and Agile Methods—XP/Agile Universe 2002, 2002, pp. 153–165.

[48] T. Kovacheva, N. Todorov, Optimizing software development process: a case study
for integrated Agile-CMMI process model, EUROCON-International Conference on
Computer as a Tool (EUROCON), IEEE, 2011, pp. 1–2.

[49] J. Sutherland, C.R. Jakobsen, K. Johnson, Scrum and CMMI level 5: the magic
potion for code warriors, Hawaii International Conference on System Sciences,
Proceedings of the 41st Annual, IEEE, 2008466-466.

[50] J. Wäyrynen, M. Bodén, G. Boström, Security engineering and eXtreme program-
ming: an impossible marriage, Conference on Extreme Programming and Agile
Methods, Springer, 2004, pp. 117–128.

[51] F.S. Silva, et al., Using CMMI together with agile software development: a sys-
tematic review, Inf. Softw. Technol. 58 (2015) 20–43.

[52] C. Torrecilla-Salinas, J. Sedeño, M. Escalona, M. Mejías, Agile, web engineering and
capability maturity model integration: a systematic literature review, Inf. Softw.
Technol. 71 (2016) 92–107.

[53] P.E. McMahon, Integrating CMMI and Agile Development: Case Studies and Proven
Techniques For Faster Performance Improvement, Addison-Wesley Professional,
2010.

[54] Ö. Özcan-Top and O. Demirörs, CMMI ve Çevik Yazılım Geliştirme Yöntemlerinin
Birlikte Uygulanabilirliği, in Ulusal Yazılım Mühendisliği Sempozyumu, 2013:
CEUR Workshop Proceedings, İzmir, Türkiye.

[55] J. Becker, R. Knackstedt, J. Pöppelbuß, Developing maturity models for IT man-
agement, Bus. Inf. Syst. Eng. 1 (3) (2009) 213–222.

[56] A. Hevner, S. Chatterjee, Design science research in information systems, Design
Research in Information Systems, Springer, 2010, pp. 9–22.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

15

http://www.lero.ie
https://doi.org/10.1016/j.csi.2018.07.002
http://www.agilemanifesto.org
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0002
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0002
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0003
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0003
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0004
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0004
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0005
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0005
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0006
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0006
http://arxiv.org/abs/arXiv:1409.6610
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0007
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0007
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0008
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0009
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0009
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0010
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0010
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0010
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0012
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0012
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0013
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0013
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0014
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0014
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0014
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0015
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0016
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0016
http://stateofagile.versionone.com
http://stateofagile.versionone.com
http://stateofagile.versionone.com/
http://www.ambysoft.com/surveys/success2013.html
https://explore.versionone.com/state-of-agile/versionone-10th-annual-state-of-agile-report-2
https://explore.versionone.com/state-of-agile/versionone-10th-annual-state-of-agile-report-2
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0018
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0018
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0018
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0019
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0020
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0021
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0021
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0022
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0022
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0022
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0023
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0023
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0023
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0023
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0024
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0024
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0024
http://analytical-mind.com/2010/07/12/yet-another-agile-maturity-model-the-5-levels-of-maturity/
http://analytical-mind.com/2010/07/12/yet-another-agile-maturity-model-the-5-levels-of-maturity/
http://whattodowearelikethatonly.blogspot.com/2008/08/agile-maturity-model.html
http://whattodowearelikethatonly.blogspot.com/2008/08/agile-maturity-model.html
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0027
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0027
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0028
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0028
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0028
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0029
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0029
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0029
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0030
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0031
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0031
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0031
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0032
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0032
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0032
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0033
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0033
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0033
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0034
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0035
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0035
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0035
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0036
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0036
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0036
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0037
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0037
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0038
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0039
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0040
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0040
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0040
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0041
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0042
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0042
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0042
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0043
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0044
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0044
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0044
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0045
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0045
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0045
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0046
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0046
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0047
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0047


[57] J.W. Creswell, Research design: Qualitative, Quantitative, and Mixed Methods
Approaches, Sage Publications, Inc, 2009.

[58] T. Dybå, R. Prikladnicki, K. Rönkkö, C. Seaman, J. Sillito, Qualitative research in
software engineering, Empir. Softw. Eng. 16 (4) (2011) 425–429.

[59] R.K. Yin, Case Study Research: Design and Methods, Sage publications, 2014.
[60] M. Rohloff, Case study and maturity model for business process management im-

plementation, International Conference on Business Process Management, Springer,
2009, pp. 128–142.

[61] C. Robson, Real World Research, 2nd Edition, Blackwell Publishing, Malden, 2002.
[62] Ö.Özcan Top, O. Demirors, Assessing software agility: an exploratory case study,

Software Process Improvement and Capability Determination 477 Springer, Vilnius,
2014, pp. 202–213.

[63] M. Salmanoğlu, A. Coşkunçay, A. YILDIZ, O. Demirörs, An exploratory case study
for assessing the measurement capability of an agile organization, Softw. Qual. Prof.
20 (2) (2018).

[64] A. Uskarcı, O. Demirörs, Do staged maturity models result in organization-wide
continuous process improvement? Insight from employees, Comput. Stand.
Interfaces 52 (2017) 25–40.

[65] A. Uskarcı, O. Demirörs, A case study on employee perceptions of organization wide
continuous process improvement activities, International Conference on Software
Process Improvement and Capability Determination, Springer, 2012, pp. 26–37.

[66] Ö. Özcan Top, AgilityMod: Software Agility Assessment Reference Model v3.0,
Informatics Institute, METU/II-TR-2014-392014.

[67] K.S. Rubin, Essential Scrum: A Practical Guide to the Most Popular Agile Process,
Addison-Wesley Professional, 2012.

[68] Ö.Özcan Top, AgilityMod: Software Agility Assessment Reference Model v3.0
Application: Case Study Results, Informatics Institute, 2014 METU/II-TR-2014-40.

[69] O.E. Adalı, Assess Agility: Agility Assessment Approach Supported With an
Automated Web Based Agility Assessment Tool, MSc., Information Systems, Middle
East Technical University, 20172550702031700218.

[70] O.E. Adali, Ö.Ö. Top, O. Demirörs, Assessment of agility in software organizations
with a web-based agility assessment tool, Software Engineering and Advanced
Applications (SEAA), 2017 43rd Euromicro Conference on, IEEE, 2017, pp. 88–95.

Özden Özcan-Top is a post-doctoral researcher at the
Regulated Software Research Centre, Dundalk Institute of
Technology, Ireland. She received her Master's and PhD
degrees from Middle East Technical University, Informatics
Institute, Information Systems program, Turkey. She has
been working as a researcher in the areas of software pro-
ject management, software process improvement, software
measurement and benchmarking since 2007. She worked as
a quality specialist at a private software development
company and managed the CMMI-Dev based process im-
provement program for 2,5 years. Her current research in-
terests focus on medical device software development
standards and adoption of agile software development

methods in highly regulated environments.

Onur Demirörs has joined University of New South Wales
as a visiting professor. He is a professor of the Computer
Engineering Department at Izmir Institute of Technology
and the strategy director of Bilgi Grubu Ltd. He took his
Ph.D. degree in Computer Science from Southern Methodist
University. His research focuses on process modeling and
improvement, business process management, software
measurement, software engineering standards, and organi-
zational change management. He leaded major research
projects on developing process improvement and modeling
techniques for SMEs, on establishing and implementing
business process modeling approaches for large scale or-
ganizations and on establishing measurement infra-

structures for software organizations. He worked as a consultant for over 20 companies to
improve their processes, to establish their measurement infrastructures and to create
organizational knowledge structures.

Ö. Özcan-Top, O. Demirors Computer Standards & Interfaces 62 (2019) 1–16

16

http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0048
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0049
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0049
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0050
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0051
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0051
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0051
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0052
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0053
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0053
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0053
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0054
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0054
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0054
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0055
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0055
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0055
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0056
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0056
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0056
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0057
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0057
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0058
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0058
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0059
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0059
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0059
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0060
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0060
http://refhub.elsevier.com/S0920-5489(17)30361-6/sbref0060

	Application of a software agility assessment model – AgilityMod in the field
	Introduction
	Related research
	Background
	Agile maturity/Assessment models
	Agility assessment tools and surveys

	Research method
	The model: AgilityMod
	Aspect dimension elements
	Aspect
	Exploration
	Construction
	Transition
	Management
	Purpose statement
	Outcome
	Aspect practice (AP)
	Example work products
	Fallacies

	AgilityMod agility dimension elements
	Agility level (AL)
	Aspect attribute (AA)
	Generic agility practice (GAP)
	Generic work product (GWP)
	Generic people &#x0026; resources (GPR)


	Application of the model
	Design of the case study
	Case study conduct
	Results
	Analysis of the model's applicability (RQ1)
	Findings related to the structure of the model (RQ2)

	Mitigation of threats to validity
	Internal validity
	Construct validity
	External validity
	Reliability

	Discussion

	Conclusions
	Acknowledgement
	Supplementary materials
	References




