
Information and Software Technology 93 (2018) 14–29

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A semi-automated approach for generating natural language

requirements documents based on business process models

Banu Aysolmaz

a , b , ∗, Henrik Leopold

a , Hajo A. Reijers a , Onur Demirörs c , d

a Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands
b Maastricht University, School of Business and Economics, PO Box 616, 6200 MD, Maastricht, The Netherlands
c Izmir Institute of Technology, Department of Computer Engineering, 35430, Urla, Turkey
d University of New South Wales, School of Computer Science and Engineering, Barker St, Kensington NSW 2052, Australia

a r t i c l e i n f o

Article history:

Received 9 March 2017

Revised 6 July 2017

Accepted 18 August 2017

Available online 30 August 2017

Keywords:

Requirements elicitation

Business process model

Natural language generation

a b s t r a c t

Context: The analysis of requirements for business-related software systems is often supported by using

business process models. However, the final requirements are typically still specified in natural language.

This means that the knowledge captured in process models must be consistently transferred to the speci-

fied requirements. Possible inconsistencies between process models and requirements represent a serious

threat for the successful development of the software system and may require the repetition of process

analysis activities.

Objective: The objective of this paper is to address the problem of inconsistency between process models

and natural language requirements in the context of software development.

Method: We define a semi-automated approach that consists of a process model-based procedure for

capturing execution-related data in requirements models and an algorithm that takes these models as in-

put for generating natural language requirements. We evaluated our approach in the context of a multiple

case study with three organizations and a total of 13 software development projects.

Results: We found that our approach can successfully generate well-readable requirements, which do not

only positively contribute to consistency, but also to the completeness and maintainability of require-

ments. The practical use of our approach to identify a suitable subcontractor on the market in 11 of the

13 projects further highlights the practical value of our approach.

Conclusion: Our approach provides a structured way to obtain high-quality requirements documents

from process models and to maintain textual and visual representations of requirements in a consistent

way.

© 2017 Elsevier B.V. All rights reserved.

r

c

t

t

h

o

m

[

r

f
1. Introduction

Business process modeling is an established method for docu-

menting, analyzing, and improving organizational operations. What

is more, it has become a widely accepted practice in software engi-

neering [1–3] . In particular for analyzing requirements of business-

related software systems business process modeling has proven to

be an effective means [4] . Process models do not only provide an

overview of the operations that must be supported by the to-be

developed software systems, but also show how these operations

are related to the different organizational roles and systems.
∗ Corresponding author:

E-mail addresses: b.aysolmaz@maastrichtuniversity.nl , banuays@gmail.com

(B. Aysolmaz), h.leopold@vu.nl (H. Leopold), h.a.reijers@vu.nl (H.A. Reijers),

onurdemirors@iyte.edu.tr (O. Demirörs).

S

r

fi

p

http://dx.doi.org/10.1016/j.infsof.2017.08.009

0950-5849/© 2017 Elsevier B.V. All rights reserved.
Despite this prominent role of business process modeling for

equirements analysis, the actual specification of requirements is

ommonly conducted using natural language [5–8] . This means

hat the knowledge captured in process models must be consis-

ently transferred to natural language requirements. On the one

and, this is a complex and time-consuming task [9,10] . On the

ther hand, updates at later stages in either the textual or the

odel-based requirements come with the risk of inconsistencies

11–13] . Such inconsistencies between the process model and the

esulting requirements represent a serious threat for the success-

ul development of the respective software system throughout the

oftware Development Lifecycle (SDLC). More specifically, they may

esult in a system that does not fully reflect the functionality de-

ned in the process models.

To address this problem, we propose a semi-automated ap-

roach whose final output are generated requirements documents

http://dx.doi.org/10.1016/j.infsof.2017.08.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.08.009&domain=pdf
mailto:b.aysolmaz@maastrichtuniversity.nl
mailto:banuays@gmail.com
mailto:h.leopold@vu.nl
mailto:h.a.reijers@vu.nl
mailto:onurdemirors@iyte.edu.tr
http://dx.doi.org/10.1016/j.infsof.2017.08.009

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 15

t

d

t

S

O

s

t

t

a

c

m

e

T

d

T

i

m

3

p

b

f

m

f

b

o

i

t

p

S

i

t

d

o

r

t

b

2

S

a

o

W

fi

m

2

t

m

u

o

e

i

d

p

u

s

s

p

t

o

o

t

h

s

e

s

c

d

r

s

s

t

a

m

n

p

i

D

q

g

t

a

l

c

t

o

2

m

t

u

e

a

t

d

a

e

e

r

e

m

q

a

e

c

a

d

c

s

r

p

p

t

i

a

f

m

m

o

s
hat integrate process model and execution-related data in an un-

erstandable fashion. As a result, organizations can systematically

ransfer the knowledge captured in their process models to other

DLC activities and create consistent and maintainable artifacts.

ur proposed approach consists of three main steps. In the first

tep, we analyze the process models that are relevant for the sys-

em to be developed and identify the set of automatable activi-

ies. In the second step, we capture execution-related data, such

s responsibilities, application systems, data needs, and additional

onstraints in a requirements model. In the third step, we auto-

atically generate requirements documents from the created mod-

ls via a template-based natural language generation algorithm.

he consistency between the processes and the requirements is by

efinition guaranteed by the generation feature of the approach.

o evaluate the impact of our approach on other key character-

stics of high-quality requirements–readability, completeness and

aintainability–, we conducted a multiple case study that involved

 different organizations and a total of 13 software development

rojects. We found that the requirements documents generated

y our approach were considered to be well-readable, almost per-

ectly complete, and beneficial for improving consistency as well as

aintainability. Meeting these key requirement characteristics was

ound to be essential to enhance the usability of the requirements

y domain experts, analysts, project managers, and software devel-

pers. In 11 of the projects, the generated artifacts were used for

dentifying a suitable subcontractor on the market for developing

he respective systems, which confirmed the usability of the ap-

roach in practical settings.

The remainder of this paper is structured as follows. In

ection 2 we elaborate on the background of our research and

dentify the research gap that we will address. In Section 3 , we in-

roduce our semi-automatic approach for generating requirements

ocuments. In Section 4 , we present and discuss the findings of

ur multiple case study. In Section 5 , we elaborate on the steps

equired for adapting the presented approach to languages other

han English. In Section 6 we discuss the implications of our work

efore concluding the paper in Section 7 .

. Background

In this section, we discuss the background of our paper. In

ection 2.1 , we first clarify the relevance and the value of gener-

ting natural language requirements. In Section 2.2 , we then elab-

rate on the use of process models in requirements engineering.

e close the section by pointing out what is still missing to de-

ne an approach for automatically generating high quality require-

ents from process models.

.1. The value of requirements generation

While many would argue that models are the preferred means

o foster communication, others favor requirements in textual for-

at. At its heart, the question about the value of generating nat-

ral language requirements relates to the debate whether textual

r visual representations are superior in terms of communication

ffectiveness. Interestingly, this debate is neither new nor lim-

ted to the field of requirements engineering. The first studies ad-

ressing this controversy date back to the seventies. At this time,

sychologists empirically compared the expressive power of nat-

ral language texts with matrices, spatial maps, and tree repre-

entations [14–17] . Later, many studies from the field of computer

cience contributed to the debate. Among others, authors com-

ared the comprehension performance of code-based representa-

ions and flow diagrams [18–20] . The conclusions of these and

ther works remain, however, contradictory. Some argue in favor

f text-based other argue in favor of visual representations.
A satisfying explanation for these opposing views is provided by

he Cognitive Theory of Multimedia Learning (CTML) [21] , which

as been developed through more than a decade of empirical re-

earch. Among others, it discusses the concept of learning prefer-

nce , which suggests that both textual and visual representations

hould be presented at the same time. The rationale behind this

oncept is that people with different backgrounds may simply have

ifferent preferences and cognitive abilities. By providing both rep-

esentations, they are provided with a choice.

Transferred to the field of requirements engineering, the CTML

uggests that both models and natural language requirements

hould be used for capturing and discussing requirements. In fact,

his view is supported by many researchers. For instance, Weber

nd Weisbrod discuss the importance of natural language require-

ents for communication, but also highlight that the sole use of

atural language is hardly feasible for complex projects [22] . They

ropose the additional use of so-called requirements management

nformation models (RMIs). In a similar way, Schatz et al. [23] and

avis [24] propose to combine text-based and model-based re-

uirements. Nicolás and Toval even explicitly discuss the value of

eneration in this context [25] . They argue that generation reduces

he effort and, at the same time, increases the quality and trace-

bility of the requirements.

Recognizing the potential of automatically generating natural

anguage requirements, we define a respective approach for pro-

ess models in this paper. To highlight what is specifically missing

o define such an approach, the next section reviews related work

n process models in the context of requirements engineering.

.2. Process models and requirements engineering

Many authors have emphasized the important role of process

odels in the context of specifying requirements of software sys-

ems [26–28] . Some authors even go so far as considering their

se as mandatory [1,3] . However, the specific role of process mod-

ls differs considerably among available approaches. Table 1 gives

n overview of the most relevant works using process models in

he context of requirements engineering. As Table 1 illustrates, we

ifferentiate between works that use process models in a manual

nd in an automated way.

The related work that discusses the manual use of process mod-

ls in the context of requirements engineering can be further cat-

gorized into works that elicit textual and that elicit model-based

equirements from process models.

The main insight of the works from the first subcategory that

licit textual requirements from process models is that process

odels represent an effective way of steering the activity of re-

uirements elicitation and enhance the completeness, correctness,

nd traceability of the final requirement statements [4] . Cardoso

t al. analyze the level of automation for each activity in the pro-

ess models and then define a set of textual requirements for the

ctivities to be automated [4] . In a similar manner, Ma and Jiang

efine a set of textual requirements for each activity of a pro-

ess [7] . Mayr et al. discuss that detailed notions for requirements

hould be specified based on process models and they also map

equirements in sentence form to the process models [28] . Li et al.

ropose a method to link textual requirements to activities in the

rocess model [8] . Such links help to identify dependencies be-

ween requirements consecutively being used for discovering miss-

ng and ambiguous text-based requirements. Demirörs et al. an-

lyze and define not only functional requirements, but also non-

unctional, security, and hardware requirements based on process

odels. Lastly, Monsalve et al. elaborate on the usage of process

odeling notations for eliciting and expressing user requirements

n a strategic level. They find Qualigram more helpful in this re-

pect than BPMN [30] . What all these works have in common is

16 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Table 1

Work combining process models and requirements engineering.

Approach Authors

Manual use of process models

Elicitation of textual requirements

Requirements engineering based on business process models Cardoso et al. [4]

Business process modeling and requirements modeling Mayr et al. [28]

Process-oriented information system requirements engineering Ma and Jiang [7]

A business process-driven approach for requirements dependency analysis Li et al. [8]

Utilizing business process models for requirements elicitation Demirörs et al. [29]

Requirements elicitation using BPM notations Monsalve et al. [30]

Elicitation of model-based requirements

A goal-based approach on business process-driven requirements engineering González and Díaz [31]

Deriving requirements from process models via the problem frames approach Cox et al. [32]

Automated use of process models

Transformation of business process models to business rules Malik and Bajwa [33]

Supporting process model validation through natural language generation Leopold et al. [9]

Generating functional requirements from process models Türetken et al. [34]

Bridging the gap between business process modeling and software requirements analysis Co ̧s kunçay et al. [35]

o

m

p

r

s

c

a

d

w

p

g

e

p

a

3

a

c

m

p

i

f

q

r

e

t

c

3

m

t

p

a

c

o

s

q

F

d
that they exemplify how process models can support requirements

elicitation. What is more, they show that process models are also

useful for identifying gaps and problems, thus for validating re-

quirements with end users.

The second subcategory of works that elicit model-based re-

quirements from process models illustrates that process models

are also useful for deriving model-based requirements. For in-

stance, González and Díaz suggest to build a goal model using the

activities from process models [31] . They subsequently use the goal

model to establish the use cases and their relations. However, the

specification remains on the use case diagram level and the us-

age of the suggested role and resource models in the context of

the requirements definition is left open. Cox et al. discuss that the

framing of real-world problems for capturing and classifying soft-

ware development problems is a difficult task in reality. They de-

fine a set of steps to manually develop problem frame diagrams

together with textual requirements using role activity diagrams.

Rather than being an elicitation and validation tool between do-

main experts and modelers, the problem frames approach enables

the formal analysis of requirements for verification. What both ap-

proaches have in common is that they enhance the representa-

tional capabilities of process models for requirements elicitation.

However, they do not consider automated support.

Related work on the automated use of process models in the

context of requirements engineering consider process models as

the final requirements artifact and focus on the benefits of ver-

balizing the models in the requirements elicitation and validation

phases. For instance, Leopold et al. analyze the activity labels and

the control flow of process models to automatically generate cor-

responding natural language descriptions of the models [9] . Ma-

lik and Bajwa provide a sentence generation algorithm for require-

ments using a template-based approach [33] . Though their ap-

proach does not include clear text structuring techniques, the con-

sideration of the message flow between parties is an important

feature to reveal requirements on system interactions. Türetken

et al. include a broader set of process elements in the generated

sentences, including roles, input and output data, events, and sys-

tems [34] . Consideration of such elements is important to be able

to express requirements that concern other aspects than control

flow. However, they rely on a certain process structure, do not

consider all execution-related aspects, and only generate rudimen-

tary sentences. The work of Co ̧s kunçay et al. specifies the need

for analyzing additional data for process automation in a sepa-

rate set of models, though it lacks a description of requirements

analysis approach and a formal generation technique. The stud-

ies in this group commonly express the need for the automation
 u
f natural language requirement specification based on process

odels.

This literature review showed that process models play an im-

ortant role in the context of analyzing and representing system

equirements. What is more, it showed that first approaches con-

idering the automated generation of requirements based on pro-

ess models have already been introduced. What is still missing is

n approach that integrates the complete set of execution-related

ata and provides the user with consistent, well-readable, and also

ell-maintainable requirements. Recognizing this gap, we use this

aper to propose a semi-automated approach that automatically

enerates textual requirements documents based on process mod-

ls and execution-related data. We will show that our approach

rovides a structured way to obtain consistent requirements that

re well readable, complete, and easy to maintain.

. Conceptual approach

In this section, we introduce our approach for the semi-

utomated generation of requirements documents based on pro-

ess models. As illustrated by Fig. 1 , the approach consists of two

ain phases: a preparation phase and a generation phase. In the

reparation phase, we first analyze the input process model(s) and

dentify automatable activities. Then, we analyze the requirements

or the automated execution of these activities and create a re-

uirements model for each of them. In the generation phase, these

equirements models are used as the input for the automated gen-

ration of the requirements documents. In the following subsec-

ions, we introduce the details of each phase and illustrate our

oncepts using a running example.

.1. Preparation phase

The starting point of the preparation phase is a set of process

odels. We manually analyze each of the input process models

o identify automatable activities . Activities that can either be sup-

orted by the system to be developed or can be totally automated

re marked and added to the list of automatable activities. Unclear

ases are discussed with the respective process owners. The result

f this step is a set of automatable activities that constitute the ba-

is for associating the underlying business processes with the re-

uirements.

To illustrate this step, consider the business process shown in

ig. 2 . It describes the evaluation of project proposals by indepen-

ent auditors (IAs) in the context of a grant program. It is depicted

sing the Event Driven Process Chain (EPC) notation, a modeling

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 17

Process

model(s)

Identification of

automatable

activities

Requirements

analysis

Sentence

generation

Preparation phase Generation phase

Automatable

activities

Requirements

models

Document

organization

Generated

requirements

document(s)

Sentence

refinement

Fig. 1. Overview of our approach.

l

E

e

n

w

w

a

t

a

n

e

c

t

I

I

a

a

a

a

r

w

a

f

c

r

q

e

a

(

f

c

w

a

t

t

t

a

t

t

t

e

t

a

t

a

t

a

c

t

e

u

g

c

anguage widely used in industry [36] . In this paper, we use the

PC notation as an example to illustrate our approach. Note, how-

ver, that our approach can be applied to other process modeling

otations such as the Business Process Model and Notation (BPMN)

ithout adaptations. The example process from Fig. 2 is triggered

hen evaluations for proposals are required. The first activity is to

ssign the proposals to IAs. Once the proposals have been assigned

o IAs, they are evaluated. Then, the proposal score is registered

nd the evaluation status is reviewed. In case the evaluations are

ot yet finished, they are evaluated by other IAs. Otherwise, the

valuation plan is updated and a status report is prepared. Upon

loser inspection of the process model from Fig. 2 , it becomes clear

hat it contains four automation candidates: “Assign proposals to

As ”, “Register proposal score ”, “Update evaluation plan ”, and “Prepare

A status report ”. The other activities must be performed manually

nd are outside the scope of the system to be developed. These

ctivities are “Evaluate proposal ” and “Review evaluation status ”.

The second step of the preparation phase is the requirements

nalysis . The main goal of this step is to specify how the activities

re to be executed. This requires the identification of execution-

elated data for activities. Building on the insights from [3,37–39] ,

e investigate the following four execution-related aspect for each

utomatable activity:

• Responsibilities : To specify the responsibilities associated with

an activity, we adopt the so-called RASCI matrix [40,41] . This

means that we do not only capture the different roles that

are involved in the execution of the activity, but also capture

their specific responsibilities, such as “carries out ” or “approves ”.

In conformance with the RASCI concept [42] , we also capture

whether multiple roles share the specified responsibility (e.g.

whether multiple roles may “carry out ” or “approve ” the activ-

ity) or whether the role has the exclusive responsibility (e.g.

only that role can “carry out ” or “approve ” the activity).
• Data needs : As for the data needs, we specify how data entities

are used by the activity [43,44] . Therefore, we adopt the CRUDL

approach and capture manipulation operations (create, update,

delete) and usage operations (read, use, view, list).
• System interactions : During the execution of an activity, inter-

actions with multiple systems may take place. We identify both

internal applications that are to be developed as part of the sys-

tem and external applications that the system communicates

with (e.g., web services). In this way, not only internal entity

operations, but also data interface requirements are revealed.
• Execution constraints : In addition to the later three aspects, we

also capture constraints of the application system during the ex-

ecution of the considered activity. As categorized by Goedertier
and Vanthienen, possible business constraints can, for instance,

emerge from business regulations, business policies, costs and

benefits, time, information prerequisites, and technical circum-

stances [45] .

Typically, the information about these aspects must be obtained

rom domain experts who are part of the respective business pro-

esses. We propose the use of the following questions to infer the

equired information:

• (Q1) Who will be responsible to perform this activity and what

will be the responsibility types involved?
• (Q2) What are the data entities needed to execute this activity

and how are they used?
• (Q3) Which internal and external systems are interacted with

for the execution of this activity?
• (Q4) What constraints and rules need to be taken into account

during the execution of this activity?

Based on these questions, we elicit the relevant functional re-

uirements from the domain experts and capture the results for

ach activity in a requirements model. More specifically, we use

 customized version of the so-called Function Allocation Diagram

FAD) introduced as part of the ARIS method [36] . FADs are used to

ocus on the details of an individual activity by depicting the pro-

ess elements related to that activity. For complete requirements,

e need to represent the aforementioned four execution-related

spects in the requirements model. The FAD is a conceptual model

hat allows us to do so by adding respective model elements for

he execution-related aspects. Fig. 3 shows an exemplary FAD for

he activity “Register proposal score ”. It shows that the activity is

ssociated with three roles. The “Project Officer ” and the “Evalua-

ion Committee Member ” are responsible for carrying it out while

he “Independent Auditor ” is responsible for its approval. Note that

he marker “+” indicates that a responsibility can be exercised by

ither of the associated roles. A responsibility without a marker,

herefore, represents a responsibility that is jointly exercised by all

ssociated roles. The FAD also specifies the data needs of the ac-

ivity. Among others, we can see that the “Project proposal ” is read

nd the “Proposal status ” is viewed and updated. We can also see

he two systems that are relevant for the activity –the “Grant Man-

gement System and the “IA Registration System ”– and how they are

onnected with the data needs and operations. Lastly, we observe

wo constraints that are associated with the two systems. They are

xpressed using natural language and specify that (1) a third eval-

ation is requested in case two evaluations differ to a certain de-

ree and that (2) IAs might be dropped if they continuously submit

ontradicting evaluations.

18 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Evaluation
for proposals

required

Evaluate
proposal

Assign
proposals to

IAs

Register
proposal

score

Evaluations
are not
finished

Evaluations
are finished

Update
evaluation

plan

Prepare IA
status report

Evaluation
finished

Review
evaluation

status

Fig. 2. Exemplary EPC model for daily independent auditor evaluation process.

s

t

t

c

b

n

w

n

c

t

m

T

t

q

c

s

f

t

T

a

f

s

t

b

t

q

W

s

t

c

t

i

n

i

o

p

t

m

t

a

c

I

c

r

r

(

o

p

R

t

w

f

d

p

t

d

e

F

a

s

c

u
In the next section, we explain how such a requirements model

can be used for the automated generation of a requirements docu-

ment.

3.2. Requirements document generation

This section defines our approach for generating textual re-

quirements documents from the requirements models defined in

the preparation phase. In line with other natural language gen-

eration systems, we adopt the traditional pipeline concept [46] .

In particular, as outlined by Fig. 1 , we follow a three step proce-

dure. First, we generate the sentences from the requirements mod-

els. Then, we refine the generated sentences by aggregating them

in a way that appeals to the user. Finally, we organize the gen-

erated sentences in the context of a document structure. In the

Sections 3.2.1 through 3.2.3 , we explain the details of each step.

3.2.1. Sentence generation

To adequately reflect the information captured in the require-

ments model, we generate three types of sentences. First, we gen-

erate sentences describing which roles are involved in the execu-

tion of the activity (responsibility sentences). Second, we generate
entences specifying the usage and manipulation of the data enti-

ies (data need sentences). Third, we generate sentences describing

he constraints (constraint sentences). Note that there is no dedi-

ated sentence type for system interactions . They are either covered

y data need sentences (if the system interaction relates to a data

eed) or constraint sentences.

To implement the generation of these different sentence types,

e adopt the so-called template filling approach [47] . The ratio-

ale behind this approach is to define sentence templates which

ontain well-defined gaps. By filling a template with the respec-

ive information (in our case the information from a requirements

odel), proper sentences are constructed in an automated fashion.

he advantages of such template filling approaches are their speed,

he consistency of the produced sentences, and the high linguistic

uality of the output. What is more, it does not require any spe-

ific knowledge related to natural language generation to adapt the

ystem [47] . Hence, they are often considered as a viable choice

or natural language generation [48] . Table 2 gives an overview of

he sentence templates we defined for the three sentence types.

he first three templates (R1 to R3) are used to generate sentences

bout the responsibilities associated with the activity and, there-

ore, answer question Q1. The templates on data needs (D1 and D2)

erve the purpose of generating sentences with respect to ques-

ions Q2 and Q3. Lastly, the answer to the question Q4 is provided

y means of the sentences generated by template C1. The gaps in

he templates that need to be filled with information from the re-

uirements model are indicated by terms between “ < ” and “ > ”.

hile the terms for roles, responsibilities, entities, operations, and

ystems are directly obtained from the labels of the model, the ac-

ivity is split into an action (i.e., the verb) and an object, and the

onstraint is split into a condition and a consequence. Both opera-

ions can be automatically performed using available tools. Deriv-

ng action and object from activity labels is possible with the tech-

ique introduced in [49] and splitting conditional sentences can be

mplemented using the Stanford Parser [50] . Note that verbs may

ccur in different grammatical forms (i.e., base form, gerund, and

articiple).

Algorithm 1 formalizes the steps of our template-based sen-

ence generation approach. The algorithm requires a requirements

odel (e.g. an FAD) as input. As a result, it returns a list of sen-

ences.

The algorithm starts with the creation of a list s for the gener-

ted sentences (line 1). The first part of the algorithm is then con-

erned with generating the responsibility sentences (lines 2–17).

t begins by checking whether the considered requirements model

ontains roles (line 2). If that is the case, it is checked whether all

oles exclusively perform “carry out ”-operations (line 3). If yes, a

esponsibility sentence using template R1 is created for each role

lines 4–7). To this end, the required information (role, action, and

bject) are derived from the requirements model. If the roles also

erform other operations, a responsibility sentence using template

2 is created for each role (lines 9–12). Since this template requires

he action in the gerund form (e.g. “defining ” instead of “define ”),

e use the lexical database WordNet to derive the gerund form

rom the base form. In case the considered responsibility model

oes not contain any roles, a responsibility sentence using tem-

late R3 is created (lines 15–16). Instead of using a role descrip-

ion, this sentence uses the name of the main system.

The second part of the algorithm handles the generation of the

ata need and constraint sentences (lines 18–34). For this purpose

ach system from the requirements model is analyzed separately.

or each system, the algorithm then analyzes the respective oper-

tions that are associated with this system (lines 19–27). If a con-

idered operation is of type “use ”, a sentence using template D1 is

reated (lines 20–22). For other operations than “use ”, a sentence

sing template D2 is created (lines 23–25). This requires the place-

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 19

Table 2

Sentence templates for requirements generation.

Type No. Sentence template

Responsibility R1 The < Role > shall < Action > < Object > .

R2 The < Role > shall < Responsibility > the operation of < Action Gerund > < Object > .

R3 The < System > shall automatically < Action > < Object > .

Data need D1 While < Action Gerund > and by using the < Entity > , operations shall be performed on the < System > .

D2 While < Action Gerund > , the < Entity > shall be < Operation Participle > on/from the < System > .

Constraint C1 < Constraint Condition > while < Action Gerund > on the < System > , < Constraint Consequence > .

Register

proposal

score

Project

Officer

Evaluation

Committee

Member

Independent

Auditor

carries out+ carries out+ approves

Project

proposal

Proposal

IA score

Proposal

status

Proposal

status

Assigned

IA list

read create view update update

Grant

Management

System

IA Registration

System

Proposal

IA score

IA status

IA

Proposal

evaluation

IA

repository

IA

repository

use

update

create

list

update
If the score differences of

the two IAs are more than

15, a third IA shall be as-

signed to the proposal.

If the evaluations of an IA

continuously do not com-

ply with the other evalua-

tion, this is marked and

the IA is dropped from

the available IA list.

Fig. 3. The FAD for Register proposal score activity in Daily IA Evaluation process.

m

t

c

s

o

q

a

p

f

3

n

g

t

ent of the participle form of that operation name. Finally, respec-

ive sentences for the constraints are generated (lines 28–33). In

ase the considered system is associated with one or more con-

traints, a sentence following the template C1 is created for each

f these (lines 30–31). Once all available components from the re-

uirements model are verbalized, the list of sentences s is returned

nd the algorithm has completed.

To illustrate the effect of Algorithm 1, Table 3 provides exam-

les for sentences generated based on the requirements model

rom Fig. 3 .

.2.2. Sentence refinement

In this step, we refine the generated responsibility and data

eed sentences to enhance their readability. We apply one aggre-

ation technique for responsibility sentences and three aggregation

echniques for data need sentences as described below.

• Role aggregation : If the same responsibility type is applicable

for multiple roles, we merge the respective sentences. For in-

stance, instead of keeping the two sentences “The Project Offi-

cer shall register the proposal score ” and “The Committee Mem-

ber shall register the proposal score ”, we generate the refined

sentence “The Project Officer or the Committee shall register the

proposal score ”. Note that depending on the specific connection
(as indicated by the presence of a marker), we insert the cor-

rect conjunction to express a shared or exclusive responsibil-

ity among multiple roles. In case of a marker, we respectively

insert the conjunction “or ”, otherwise we insert the conjunc-

tion “and ”. If more than one responsibility type is used, the

sentences are combined to include those types. For instance,

we generate “The Project Officer shall register, and the Indepen-

dent Auditor shall approve the operation of registering the project

score ”.
• Object aggregation : If the model contains multiple entities with

the same operations, we merge the sentences. For instance, in-

stead of keeping “While registering the proposal score, the pro-

posal status shall be updated on the Grant Management System ”

and “While registering the proposal score, the assigned IA list shall

be updated on the Grant Management System ”, we generate the

refined sentence “While registering the proposal score, the pro-

posal status and the assigned IA list shall be updated on the Grant

Management System ”.
• Operation aggregation : If the model contains multiple operations

for the same entity, we apply the same procedure as for the

object aggregation. For instance, we generate “the IA repository

shall be listed and updated ” instead of discussing these aspects

in different sentences.

20 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Algorithm 1: generateSentences(RequirementsModel rm).

1: List sentences = new List();

2: if rm .getRoles() � = ∅ then

3: if rm .getResponsibilities().containsOnly(“carry out”) = true then

4: for all Role r ∈ rm .getRoles() do

5: Sentence s = fillTemplateR1(r, r m .getAction(), r m .getObject());

6: sentences .add(s);

7: end for

8: else

9: for all Role r ∈ rm .getRoles() do

10: Sentence s = fillTemplateR2(r,transformToGerund(rm .getAction()), rm .getObject());

11: sentences .add(s);

12: end for

13: end if

14: else

15: Sentence s = fillTemplateR3(rm .getMainSystem(), rm .getAction(), rm .getObject());

16: sentences .add(s);

17: end if

18: for all System sys ∈ rm .getSystems() do

19: for all Operation o ∈ sys .getOperations() do

20: if o = “use” then

21: Sentence s = fillTemplateD1(o.getEntity(), sys ,transformToParticiple(rm .getAction()));

22: sentences .add(s);

23: else

24: Sentence s = fillTemplateD2(o.getEntity(), sys ,transformToGerund(rm .getAction()));

25: sentences .add(s);

26: end if

27: end for

28: if rm .getConstraints() � = ∅ then

29: for all Constraint c ∈ sys .getConstraints() do

30: Sentence s = fillTemplateC1(c.getCondition(), c.getConsequence(), sys ,transformToGerund(rm .getAction()));

31: sentences .add(s);

32: end for

33: end if

34: end for

35: return s ;

Table 3

Exemplary sentences generated from the requirements model from Fig. 3 .

Type No. Example

Responsibility R1 The Project Officer shall carry out the operation of

registering the proposal score.

R2 The Independent Auditor shall approve the operation

of registering the proposal score.

Data need D1 While registering the proposal score, the project

proposal shall be read from the Grant Management

System.

D2 While registering the proposal score and by using the

proposal IA score, operations shall be performed on

the IA Registration System.

Constraint C1 If the score differences of the two IAs are more than

15 while registering the proposal score on the Grant

Management System, a third IA shall be assigned to

the proposal.

t

f

3

q

u

r

o

P

w

t
• System aggregation : If the model contains multiple systems, we

further merge the previously refined sentences into a single

one. For instance, we merge the sentences for two systems as

“While registering the proposal score, the project proposal shall be

read on the Grant Management System, and the proposal evalu-

ation shall be created on the IA Registration System ” instead of

having two different sentences for each system. This is an op-

tional refinement step and it is only applied when the require-
ments model includes a small number of entities. h
As a result of applying four aggregation techniques on the sen-

ences generated in the example requirements model in Fig. 3 , the

ollowing refined sentences are obtained:

1. “The Project Officer or the Evaluation Committee Member shall

carry out, and the Independent Auditor shall approve the opera-

tion of registering the proposal score. ”

2. “While registering the proposal score, the project proposal shall be

read, the proposal status shall be viewed and updated, the pro-

posal IA score shall be created, and the assigned IA list shall be

updated on the Grant Management System. ”

3. “While registering the proposal score and by using the proposal IA

score, the IA repository shall be listed and updated, the IA proposal

evaluation shall be created, and the IA status shall be updated on

the IA Registration System. ”

.2.3. Structuring of the document

Upon completion of the two phases of the generation, the re-

uirements sentences need to be organized in the context of a doc-

ment. For this purpose, we assign unique IDs to the aggregated

equirements sentences. The requirements document can then be

rganized in two different ways as explained below.

rocess-based document. In this way of organizing the document,

e exploit the hierarchy of the considered process models to struc-

ure the document. Thus, the application of this type requires a

ierarchical organization of the process models. Table 4 illustrates

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 21

Table 4

Process-based requirements document structure.

1 < Top-level process name > Process

REQ1 1 < Responsibility sentence for activity 1 >

REQ2 1 < Data need sentence for activity 1 and system 1 >

REQ3 1 < Data need sentence for activity 1 and system 2 >

... (all data need sentences)

REQX 1 < Constraint sentence for activity 1 >

... (all constraint sentences)

REQ1 N < Responsibility sentence for activity N >

REQ2 N < Data need sentence for activity N and system 1 >

REQ3 N < Data need sentence for activity N and system 2 >

.. (all data need sentences)

REQX N < Constraint sentence for activity N >

... (all constraint sentences)

1.1 < First-level process name > Process

REQ1 M < Responsibility sentence for activity M >

REQ2 M < Data need sentence for activity M and system 1 >

...

t

f

r

a

c

u

s

q

r

S

t

i

i

h

a

s

w

i

a

s

i

4

a

d

n

w

i

a

f

m

t

t

d

p

d

o

a

t

4

f

q

W

g

p

w

y

t

T

i

l

E

p

g

T

p

t

t

s

i

g

a

m

o

o

w

C

b

i

p

t

p

N

p

d

i

b

p

n

g

t

C

a

s

c

a

m

b

T

g

o

v

r

u

C

a

v

w

c

v

p

M

B
he resulting document structure. The first level heading is derived

rom the process model on top of the process hierarchy. Then, the

equirements sentences generated for the top-level process model

re listed. Afterwards, we create a subheading for each of the pro-

ess models from the levels underneath and list the requirements

nder the respective subheading. All sentences are organized in the

ame way by recursively processing all models. The order of the re-

uirements for a specific process is derived from the order of the

espective activities.

ystem-based document. In this document style, we use the sys-

ems to be developed to organize the requirements sentences. That

s, we list the requirement sentences under the respective head-

ngs of the systems. Responsibility sentences are placed under the

eading for the main system. In case this style is used, the system

ggregation technique is not applied on data need sentences in the

entence refinement phase.

Once all these steps have been completed, users are provided

ith automatically generated requirements documents, organized

n their preferred style. In the next section, we apply our semi-

utomated approach in the context of a case study to demon-

trate the improvements in obtaining higher-quality requirements

n terms of key requirement characteristics.

. Evaluation

In order to show the feasibility of our approach in practice, we

pplied it in a real-world setting [51] . More specifically, we con-

ucted a multiple case study using a set of three different orga-

izations and 13 projects with varying characteristics [52] . In this

ay, we were able to improve the generalizability of the find-

ngs and to demonstrate the value of our approach [53] . The over-

ll goal of the evaluation is to learn whether the project teams

rom our case study perceive the generated requirements docu-

ents as well-readable, complete, consistent, and easy to main-

ain. In Section 4.1 , we explain the rationale for the selection of

he cases and introduce them in detail. In Section 4.2 , we briefly

escribe our implementation of the approach in the context of a

rototype tool. In Section 4.3 , we provide details on how we con-

ucted the case study. In Section 4.4 , we present the findings of

ur case study. In Section 4.5 , we compare the manually created

nd generated requirements documents. In Section 4.6 , we discuss

he limitations of our evaluation.

.1. Overview of cases

Process modeling and requirements analysis activities are per-

ormed in a wide spectrum of industry fields. This diversity re-
uired us to get involved in cases with varying characteristics.

hile assembling a suitable set of cases, we considered two main

oals. First, we wanted to show the value of our approach in a

ractical setting. Thus, we required one or more organizations that

ere willing to perform business process and requirements anal-

sis as part of a system development project. Second, we wanted

o compare our approach to traditional requirements engineering.

herefore, we sought at least one organization that was interested

n applying our approach after the actual development project, al-

owing us to retrospectively compare the results.

As a result of these considerations, we selected three case sets .

ach of these case sets consisted of a program covering multiple

rojects. Projects in a program were managed by the same inte-

rator organization, which used similar principles and practices.

he integrator organization was in charge of subcontracting the

rojects. Altogether, the case sets included 13 projects pertaining

o different process areas. The large number of projects allowed us

o receive comprehensive feedback and to make wide-ranging ob-

ervations. Furthermore, we were able to implement the approach

n a wide variety of process areas. In line with our case selection

oals, two of the case sets represented new development projects

nd one was a retrospective set. Table 5 gives an overview of the

ost important characteristics of the case sets. It shows the types

f the projects belonging to each case set as well as the number

f involved process models and activities. In the paragraphs below,

e describe the details of each case set.

ase Set 1 e-Government. The e-Government case set was managed

y the leading integrator organization for e-government projects

n Turkey. The case set consists of a program comprising two

rojects. The program was initiated to develop two online sys-

ems for managing all processes related to the life cycle of com-

anies (e-Company) and trademarks (e-Trademark) registered in

orth Cyprus. A team of three external analysts worked on two

rojects in parallel, together with three internal analysts and two

omain experts. In addition, 15 domain experts were occasionally

nvolved in the workshops to provide domain-specific knowledge,

ut did not take part in the preparation and evaluation of the out-

uts. The internal analysts were experienced in different modeling

otations, while the domain experts had only used natural lan-

uage before and had no experience with process modeling no-

ations.

ase Set 2 Public Services. The Public Services case set was man-

ged by the Turkish Ministry of Development, the responsible in-

titution for regional development agencies. In total, this case set

onsists of nine different projects. Among others, they cover the

utomation of public service processes provided by the develop-

ent agencies, such as grant programs and investment support,

ut also internal processes such as human resource management.

he team included three external and four internal analysts, to-

ether with four domain experts who took part in the preparation

f the outputs, and 66 domain experts that were occasionally in-

olved in analysis activities. The domain experts were not expe-

ienced in modeling notations and the internal analysts had only

sed flowcharts before.

ase Set 3 Campus System. The Campus System case set was man-

ged by the Computer Center of the Middle East Technical Uni-

ersity (METU), which is the top-ranked university in Turkey. The

hole program consists of the automation of over 90 business pro-

esses, which concern the areas of research, education, campus ser-

ices, and support. From this set, we selected two representative

rojects for this evaluation (Announcement and Research Program

anagement). The involved internal analysts were experienced in

PMN and other notations. In contrast the former two cases, this

22 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Table 5

Overview of the case set characteristics.

Case set Case type Project #PM #ACT

(1) e-Government New project e-Company 18 125

e-Trademark 9 47

Total 27 172

(2) Public Services New project Auditing 4 53

Budget Management. 69 470

Archive Management 12 638

Human Resource Management 24 218

Investment 20 123

Performance Management 6 26

Program Management 8 953

Project Support 91 662

Stakeholder Management 18 729

Total 252 1782

(3) Campus System Retrospective Announcement 3 25

Research Program Management 13 42

Total 16 67

Legend: #PM = Number of process models, #ACT = Number of activities

Table 6

Interviews for cases.

Case set Internal Analyst External Analyst Domain Expert

e-Government 2 3 2

Public Services 2 2 2

Campus System 3 1

i

s

c

t

a

v

i

r

n

s

a

e

c

4

f

t

a

h

c

k

4

o

[

t

i

w

r

s

m
study took place shortly after the completion of the projects. With

this retrospective case set, we specifically aimed to evaluate the

completeness of the requirements generated via our approach in

comparison to the requirements already defined with traditional

approaches.

4.2. Implementation

We developed a prototype tool to facilitate the implementa-

tion of our approach in the case study. It is available as a plug-in

for the integrated development environment Eclipse and based on

the Eclipse Modeling Framework (EMF) and the Eclipse Graphical

Modeling Framework (GMF). 1 The tool supports the development

of process model diagrams in the EPC notation, the identification

of automatable activities, the development of related requirements

models in conformance with the exemplified FAD notation, and,

lastly, the generation of textual requirements documents in confor-

mance with the approach explained in Section 3 . As all the cases

were conducted in Turkey, we implemented the generation for the

Turkish language. A snapshot of the (English) tool and the gener-

ated requirements document can be seen in Fig. 4 .

4.3. Conduct of the case study

Our case study consisted of three main steps: (1) the applica-

tion of our semi-automated approach, (2) the analysis of the out-

puts, and (3) a set of feedback interviews.

The starting point of our case study was the application of our

semi-automated approach by the project teams in the context of

the cases. To make sure the teams could apply our approach in

an effective and efficient way, we provided respective training to

the teams before the start of the project. During the execution,

we mainly acted as observers on how the teams applied the ap-

proach, but were also available for questions. Upon completion of

the application and the generation of the requirements documents,

we analzyed which changes were manually applied to the docu-

ments. After the completion of all project activities, we conducted

a set of interviews with the internal and external analysts as well

as with the domain experts who were involved in the projects. We

chose interviews because they are the most prominent qualitative

data collection method for obtaining in-depth insights [53] . Con-

sidering the number of team members involved in the case sets,

interviews enabled us to develop a comprehensive understanding

of the participant’s experiences related to the use of our approach
1 The tool can be obtained from www.aysolmaz.com .

s

s

d
n a practical setting. The interviews followed a semi-structured

tyle, taking around 45 minutes per interviewee. The interviews

overed questions about the participants’ background as well as

he evaluation of our approach including the quality of the gener-

ted requirements documents. Table 6 shows the number of inter-

iewees for each case set. We transcribed, coded, and analyzed the

nterviews to maintain a chain of evidence [52] . Table 7 summa-

izes the key figures of the case study performance. It shows the

umber of workshops performed (#WS), the total analysis effort

pent (EFF), the number of requirements models developed (#RM),

nd the number of requirements generated based on these mod-

ls (#REQ). In the following section, we discuss the findings of our

ase study.

.4. Findings

In this section, we discuss how our semi-automated approach

or requirements generation was assessed by the project teams of

he three case sets. More specifically, we discuss how they evalu-

ted four key characteristics that have been found to contribute to

igh-quality requirements [6,39,54,55] : readability, completeness,

onsistency, and maintainability. We present our findings for each

ey characteristic separately for domain experts and analysts.

.4.1. Readability

The readability (sometimes also referred to as unambiguousness)

f a requirements document is one of its most important features

54] .

Overall, all four domain experts found the documents informa-

ive and understandable. The domain experts who became famil-

ar with process modeling through the training session and the

orkshops found the joint presentation of the process models and

equirements sentences to further improve readability. For in-

tance, one domain expert from case set 1 stated that “Studying a

odel and the related statements together helped me to easily under-

tand the requirements ”. Other domain experts supported this with

imilar statements. Despite the generally positive feedback, some

omain experts also mentioned aspects for improvement. For in-

http://www.aysolmaz.com

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 23

Fig. 4. A screenshot of the prototype tool and the generated requirements document.

Table 7

Key figures of case study conduct.

Case set Project #WS EFF #RM #REQ

(1) e-Government e-Company 10 76 82 363

e-Trademark 6 41 36 177

Total 16 117 118 540

(2) Public Services Auditing 2 10 24 61

Budget Management 28 154 339 822

Archive Management 4 28 52 110

Human Resource Management 12 46 159 336

Investment 6 36 103 218

Performance Management 14 67 18 36

Program Management 3 23 72 154

Project Support 41 148 457 1038

Stakeholder Management 27 9 54 129

Total 119 539 1278 2904

(3) Campus System Announcement 3 6 18 65

Research Program. Management 3 8 18 60

Total 6 14 36 125

Legend: #WS = Number of workshops performed, EFF = Analysis effort in person-days,

#RM = Number of requirements models, #REQ = Number of requirements sentences gen-

erated

s

s

t

t

w

t

t

f

e

l

s

s

t

t

c

r

i

g

4

b

b

s

p

q

t

i

“

o

a

v

h

c

w

“

t
tance, one domain expert from case set 2 stated that the fixed

tructure of the sentences sometimes felt mechanical. At the same

ime, however, he also pointed out that such a generation facili-

ates a standardized and mature requirements structure.

All of the analysts mentioned that the generated documents

ere clear and understandable. Overall, they personally preferred

o examine the models instead of the documents, but they found

he generated documents to fit the purpose. An internal analyst

rom case set 2 stated: “We needed to explain the system to various

xperts and the documents certainly helped us for this ”. Some ana-

ysts also suggested specific changes to enhance readability. For in-

tance, the team from case set 1 suggested to merge short respon-

ibility and data need sentences into a single sentence. The same

eam also asked for removing the first part of the data need sen-

ences (“While < Action Gerund > ”). We implemented the suggested

hanges by updating the generation algorithm respectively.

Altogether, we found that our approach generated well-readable

equirements documents. In fact, all requested changes could be

mplemented by straightforward adaptations of the generation al-

orithm.
.4.2. Completeness

The completeness of requirements is an important characteristic

ecause it indicates the additional effort that has to be invested

eyond the application of our approach [6] .

The domain experts from case set 2 stated that the approach

upported them to “recognize whether the requirements are com-

lete ”. Overall, all domain experts agreed that the final set of re-

uirements appeared complete. Besides that, they did not have fur-

her comments on completeness.

The analysts provided further comments on completeness. One

nternal analyst from case set 1, for instance, pointed out she

would not be able to define such detailed requirements ” in an-

ther way. An analyst from case set 2 said that “the approach was

dequate to express what is required ”. Emphasizing the support pro-

ided by the approach, analysts also mentioned that our approach

elped “to collect the functional requirements with respect to the ar-

hitectural components effectively ”. Being asked for a comparison

ith traditional approaches, an analyst of case set 2 indicated that

it would be harder to make a complete set like this if we wrote down

he requirements textually in the first place ”. He explained that “we

24 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Fig. 5. Generated requirements per process models and requirements coverage per case.

m

a

w

t

c

f

w

q

w

m

e

t

m

e

b

t

c

c

a

q

b

4

p

w

t

t

t

p

t

t

o

a

e

i

u

t
would miss a lot of aspects of the system if we didn’t see the complete

picture by means of the models ”. Another analyst from case set 2

stated that the completeness was achieved as “we were able to an-

ticipate how the system should work as a whole and see the relations

between different parts by means of the process-based requirements

analysis ”.

The overall completeness of the generated requirements for

each project is illustrated in Fig. 5 . On the left-hand side, we

can see the total number of requirements per process model and

project. On the right-hand side, we see the coverage of the gener-

ated requirements for each project. For example, in the e-Company

project of case set 1 about 20 requirement sentences were gener-

ated per process model and the generated requirements covered

91% of all requirements. The rest of the requirements were manu-

ally added by the analysts in case set 1 and 2. Among the manually

added requirements, none related to the process-related aspects of

the systems. Rather, they concerned general aspects which were

not directly related to the processes and included the architecture

of the system, interfaces with external systems, system-wide char-

acteristics, security and quality requirements, and software devel-

opment principles. Thus, they were not expected to be covered in

the generated requirements set. Case set 3, the retrospective case,

posed an important role to evaluate the completeness. While in

case sets 1 and 2 the requirements were developed from scratch

in the context of the programs, case set 3 included an existing re-

quirements document which was prepared in a different setting.

We used the existing requirements as a benchmark and performed

a delta analysis for the generated requirements. For this, we pre-

pared a mapping between the existing requirement statements and

the generated ones. The results showed that 95% coverage was

achieved by the approach even with respect to the requirements

already developed with traditional approaches. The unmatched re-

quirements in the existing document related to quality aspects of

the system. Moreover, six additional requirements were identified

that were not included in the existing document. Thus, the findings

of the retrospective case confirmed that a complete set of process-

related requirements can be revealed by means of our approach.

4.4.3. Consistency

Consistency is another important characteristic of a require-

ments set and refers to the absence of contradictions within the

set [55] . Our approach inherently ensures the consistency of the
odels and the natural language requirements by means of the

utomated generation approach.

From the domain experts we received very positive feedback

ith respect to the consistency. In fact, they explicitly stated that

hey did not observe any inconsistencies in the requirements.

The analysts were also very positive. They also had more spe-

ific comments on the achieved consistency. One internal analyst

rom case set 1 mentioned that “especially if more than one person

orks on the analysis, this approach supports you to get the same

uality of output from everybody ”. Another analyst from case set 2

as initially critical about the usage of specific model elements for

odeling the requirements, but later found that “it was helpful for

nsuring quality ”. Here, it should be noted that the consistency of

he generated requirements is dependent on the consistency of the

odels. In this respect, although the use of the approach does not

nsure the consistency of the generated requirements, the model-

ased analysis helped the analysts to avoid such problems. All ex-

ernal analysts emphasized that “updates would normally introduce

onsistency problems ”, but that our approach helped to “observe

ross relations and to prevent resulting inconsistencies ”. Internal an-

lysts from case set 2 stated that they “were able to define the re-

uirements consistently although there were many different processes ”

y means of “the holistic view and the standardized language ”.

.4.4. Maintainability

Maintainability, sometimes also referred to as modifiability , is

articularly important when it comes to changes [39] . All intervie-

ees pointed out that they found the requirements easy to main-

ain. Among others, this was found to be caused by the improved

raceability between process models and requirements.

One surprising finding was that even the domain experts , who

ypically do not develop models themselves, agreed on the im-

roved maintenance. One domain expert from case set 1 stated

hat he “could better understand the effects of a change ”.

The analysts provided further discussions on how the main-

ainability was improved by our approach. One internal analyst

f case set 1 stated that “when a process was updated, it was

lso clear which requirements need to be changed ”. While we also

xpected positive comments with respect to the maintainabil-

ty resulting from the automated generation, we received quite

nexpected feedback. All analysts stated that they did not find

hat the approach would save time to prepare the initial require-

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 25

Table 8

Comparison of the text Structure of actual and generated requirements.

Actual Generated

Project W/S V/S S/R W/R W/S V/S S/R W/R

Research Program Management 16.16 1.13 1.28 20.68 13.93 1.07 1 13.93

Announcement 14.19 1.43 1.60 22.77 13.48 1.38 1 13.48

m

c

t

I

t

a

d

A

l

l

m

g

m

t

t

p

p

c

4

q

v

e

T

C

a

t

s

s

l

d

t

p

s

c

(

a

w

i

o

m

t

f

f

d

q

a

F

r

o

t

b

i

t

f

W

a

a

t

l

c

s

v

p

m

e

F

t

p

4

f

l

t

t

t

e

a

l

t

s

t

a

a

l

s

t

t

t

o

5

b

l

g

l
ents document. One internal analyst from case set 1 stated that,

reating the process models for the requirements generation is

ime-consuming: “I would be faster with traditional methods, but

 wouldn’t be able to achieve the level of completeness ”. Two ex-

ernal analysts of case set 1 and 2, as well as the internal an-

lysts of case set 2 emphasized the potential time gain for up-

ates and future development phases despite the extra time spent.

nother external analyst from case set 2 stated that “it may look

ike we spent more time, but in the long run, the time spent will be

ess ”.

Overall, the interviews highlighted that domain experts were

ainly interested in readability. Since domain experts often strug-

led with understanding the requirements, readability was their

ajor concern. The analysts, by contrast, were also interested in

he other three characteristics since they directly relate them to

ime savings and the automated support they expect from our ap-

roach. The analysts provided clear statements on how the ap-

roach enabled them to produce more complete, maintainable, and

onsistent requirements.

.5. Comparison of manually created and generated requirements

The results of our case study showed that the generated re-

uirements were positively perceived with respect to the four in-

estigated key characteristics. An open question, however, is how

xactly the manually created and generated requirements differ.

o investigate this, we made use of the retrospective use case set

ampus System . Our goal was to understand how the manually cre-

ted and the generated texts compare with respect to text struc-

ure and how they convey the requirements content.

To investigate the text structure , we computed a set of basic

entence complexity metrics [56] :

• Average number of words per sentence (W/S)
• Average number of verbs per sentence (V/S)
• Average number of sentences per requirement (S/R)
• Average number of words per requirement (W/R)

Table 8 summarizes the results of the comparison of the text

tructure . A general observation is that the generated sentences fol-

ow a similar structure like the manually created sentences, as in-

icated by similar values for the metrics W/S and V/S . This means

hat our approach generates sentences that are structurally com-

arable to those created by humans. However, we also observe

ome differences. Most notably, the manually created requirements

ontain a higher number of sentences and words per requirement

see S/R and W/R). This raises the question whether the manu-

lly created requirements are unnecessarily verbose or complex,

hich might explain the lower readability and comprehensibil-

ty perceived by users. A detailed analysis of the manually devel-

ped requirements indeed supports this conjecture. We identified

any sentences in the manually created requirements that con-

ained nonessential and repetitive descriptions. Among others, we

ound nonessential context information, redundant descriptions of

unctionality, and descriptions of data attributes that were already

efined in the data dictionary.

To understand how the manually created and the generated re-

uirements convey their content, we mapped the manually cre-
ted requirements to the corresponding generated requirements.

ig. 6 visualizes this mapping. It shows for each manually created

equirement to how many generated requirements it relates. We

bserve that many of the manually created requirements relate

o more than a single generated requirement. The average num-

er of generated requirements per manually created requirement

s 3.9 for the Research Program Management project and 2.2 for

he Announcement project. Against the background of our findings

rom the text structure comparison, this is quite a surprising result.

hile the manually created requirements tend to be more verbose

nd, sometimes, even provide redundant information, the gener-

ted requirements document provides more details. We analyzed

he extreme cases (i.e. where a manually created requirement re-

ates to 10 generated requirements) and found that the manually

reated document lacked important details with respect to respon-

ibilities and data needs.

In summary, we can say that this comparison highlighted the

alue of automated requirements generation. From a structural

oint of view, the generated requirements are very similar to the

anually created requirements. The generated requirements, how-

ver, use less words and do not provide redundant information.

rom a content perspective, the comparison particularly illustrated

he superiority of the generated requirements in terms of com-

leteness.

.6. Limitations

Despite the positive results, our evaluation has to be reflected

rom the perspective of some limitations. The first limitation re-

ates to the conducted interviews . While the interviews allowed us

o collect in-depth insights about the use of our approach in prac-

ice, interviews are also subjective by nature [53] . Among others,

his means that the results of interviews could have been influ-

nced by the bias of the interviewer. To avoid such a bias as far

s possible, we designed and strictly followed an interview guide-

ine. Moreover, an independent researcher reviewed the interview

ranscripts and confirmed the relevance of the answers with re-

pect to the interview guideline. By following this procedure, we

ried to minimize the limitations of interviews and obtain unbi-

sed and reliable results. The second limitation relates to gener-

lizability of the overall case study [52] . While we carefully col-

ected a number of differing cases, we cannot claim that the re-

ults are representative or can be generalized to other organiza-

ions. However, since the feedback from the evaluation was consis-

ently positive among the three cases, we are also confident that

he presented approach can indeed provide considerable value for

rganizations.

. Adaptation to other languages

From a conceptual perspective, the presented approach is not

ound to a specific language. However, to use our approach for

anguages other than English, two main adaptations are required.

First, the templates must be translated and adapted to the tar-

et language. To illustrate the required steps, assume we would

ike to adapt the system to German and Turkish (i.e. two lan-

26 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

Fig. 6. Relationship between manually created and generated requirements.

n

a

c

o

l

s

t

t

a

t

i

c

p

t

o

b

t

t

e

v

7

t

q

a

t

t

s

s

s

p

m

a

p

t

t

T

a

a

t

s

q

m

o

t
guages from different language families). What is more, recon-

sider the template “The < Role > shall < Action > < Object > ” and

its instantiation “The Project Officer shall carry out the operation of

registering the proposal score ”. If we wish to adapt the system to

German, we need to translate this template and adapt it to the

German grammar. By replacing the word “The ” with a new slot

“ < Article > ” (in German the article depends on the gender of the

referenced noun), by translating “shall ” into “soll ”, and by switch-

ing the order of the action and the object slots, we obtain the tem-

plate “ < Article > < Role > soll < Object > < Action > ”. In a simi-

lar way, a respective template for Turkish can be obtained. Since

Turkish does not use articles, the article “the ” is omitted and the

word order is adapted to the Turkish grammar. As a result, we

obtain the template “ < Role > < Object > < Action Gerund > i ̧s lemini

< Responsibility Verb > .”.

Second, respective inflection mechanisms for the target lan-

guage have to be implemented. In case of German this means that

the correct article has to be determined based on the gender of

the noun and that the verb must be conjugated. Both aspects can

be achieved by using publicly available language processing tools

such as SimpleNLG [57] . Based on this tool and respective German

inputs for the slots, we are therefore able to generate a German

version of the sentence: “Der Projektleiter soll die Registrierung der

Angebotsbewertung vornehmen ”. For Turkish, only the gerund of the

verb must be obtained. This can be achieved by looking at the last

vowel of the verb and concatenating “-ma ” in case of hard vowel

sounds (e.g. a, u) and “-me ” in case of soft vowel sounds (e.g. e, ü)

to the end of the input verb. In this way, we are able to also gen-

erate a Turkish version of the sentence: “Proje uzmanı teklif puanını

kaydetme i ̧s lemini yürütecektir. ”

These examples illustrate that the adaptation of our technique

is a one-time investment that is associated with reasonable effort.

Because tools for inflecting words are available for many languages,

only little technical knowledge about natural language generation

will be required for the adaptation.

6. Implications

The approach we presented in this paper has several implica-

tions for research and practice.

From a research perspective, our work complements existing

methods for requirements elicitation based on process models

[4,29,30] by providing an automated way to obtain requirements

documents. In contrast to existing approaches that consider auto-

mated support to elicit requirements, such as the ones proposed by

Türetken et al. [34] and Co ̧s kunçay et al. [35] , our approach was

evaluated to generate requirements that are well-readable, com-

plete, and easy to maintain by means of the formulated require-

ments analysis and formalized natural language generation tech-
iques. The consistency is ensured via automated generation. Our

pproach also informs methods for process model validation. In

ontrast to existing process model verbalization approaches [9] ,

ur approach also considers execution-related data and, thus, al-

ows to obtain a more complete picture.

From a practical perspective, our approach helps to improve

everal characteristics that contribute to high-quality requirements,

hus improving their usability. Other potential benefits for prac-

itioners include the standardization of requirements engineering

ctivities of analysts, enhanced testability, and improved scoping of

he project. Hence, our approach can help practitioners in achiev-

ng considerable improvements in the software development pro-

ess. While an extra effort must be spent in the initial analysis

hase, the quality of the obtained requirements might save project

eams from unnecessary repetitions in the SDLC. In the long run,

ur approach may, thus, also help to reduce costs. Taking these

enefits into account, we believe our approach has the potential

o influence the way requirements elicitation is conducted in prac-

ice. In fact, two organizations from our three cases, used the gen-

rated requirements document for finding a suitable software de-

elopment subcontractor.

. Conclusion

In this paper, we addressed the problem of inconsistencies be-

ween process models and natural language in the context of re-

uirements specification. To cope with this problem, we introduced

 semi-automated approach, which consists of two main phases. In

he manual preparation phase, users identify the automatable ac-

ivities in the input process model(s) and specify the associated re-

ponsibilities, data needs, system interactions, and execution con-

traints. The requirements model resulting from this analysis then

erves as input for a generation algorithm, which automatically

rovides the user with a well-organized natural language require-

ents document.

We evaluated our approach by applying it in the context of

 multiple case study with three organizations and a total of 13

rojects. We found that our approach could be successfully applied

o generate well-readable requirements that are complete, consis-

ent, well maintainable, and, most importantly, of practical value.

he interviewed analysts and domain experts pointed out that our

pproach positively contributed to the completeness, consistency,

nd maintainability of the requirements documents. Thus, the sys-

ematic analysis as well as the automated generation helped the

tudied project teams to deliver requirements documents of higher

uality. This is emphasized by the fact that the generated require-

ents documents were used for finding a suitable software devel-

pment subcontractor in 11 of the 13 projects. Hence, we conclude

hat our approach successfully addresses the problem of inconsis-

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 27

t

p

c

q

m

a

w

r

a

w

E

a

i

i

m

I

o

A

H

S

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
ency between process models and requirements documents, and

rovides real value to organizations.

In future work, we aim to extend our approach with the

apability to automatically reflect changes of the generated re-

uirements documents in the associated requirements and process

odels. In this way, the consistency between the artifacts can be

lso assured if changes are applied to requirements. Another aspect

e wish to investigate is the specific impact of using the generated

equirements. In this context, we plan to apply our method with

nd without the generated requirements documents. Besides that,

e also plan to apply our approach in organizations that maintain

nglish models. This will not only allow us to test our generation

lgorithm in another language, but also to evaluate the applicabil-

ty in different cultures and settings. A final line of work we plan

s to investigate the systematic transfer of the acquired require-

ents knowledge to the following software development phases.

n this way, the benefits of the approach may also contribute to

ther phases of the SDLC.

cknowledgement

This work has been partially supported by the European Union’s

orizon 2020 research and innovation programme under the Marie

kłodowska-Curie grant agreement No 6 60 646.

eferences

[1] A. Gross , J. Doerr , EPC vs. UML activity diagram - two experiments examining

their usefulness for requirements engineering, in: Requir. Eng. Conf. 2009. RE
’09. 17th IEEE Int., 2009, pp. 47–56 .

[2] C. Monsalve , A. Abran , A. April , Measuring software functional size from busi-

ness process models, Int. J. Softw. Eng. Knowl. Eng. 21 (03) (2011) 311–338 .
[3] J. Vara , M. Fortuna , J. Sánchez , C. Werner , M. Borges , A Requirements Engi-

neering Approach for Data Modelling of Process-Aware Information Systems,
in: W. Abramowicz (Ed.), Bus. Inf. Syst. SE - 12, Lecture Notes in Business In-

formation Processing, Vol. 21, Springer Berlin Heidelberg, 2009, pp. 133–144 .
[4] E.C. Cardoso , J.P.A. Almeida , G. Guizzardi , Requirements engineering based on

business process models: a case study., in: EDOCW, 2009, pp. 320–327 .

[5] K. Brennan , A guide to the Business Analysis Body of Knowledge (BABOK
guide), version 2.0, 2nd edition, IIBA International Institute of Business Analy-

sis, 2009 .
[6] IEEE , IEEE Recommended Practice for Software Requirements Specifications,

IEEE Std 830–1998, Technical Report, Software Engineering Standards Commit-
tee of the IEEE Computer Society, Piscataway, N.J., 1998 .

[7] Q. Ma , Y. Jiang , Process-oriented information system requirements

engineering - a case study, J. Bus. Cases Appl. 10 (2014) 1–16 .
[8] J. Li , R. Jeffery , K.H. Fung , L. Zhu , Q. Wang , H. Zhang , X. Xu , A business process–

driven approach for requirements dependency analysis, in: Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol.

7481 LNCS, 2012, pp. 200–215 .
[9] H. Leopold , J. Mendling , A. Polyvyanyy , Supporting process model validation

through natural language generation, IEEE Trans. Softw. Eng. 40 (8) (2014)

818–840 .
[10] A. Coskuncay , An approach for generating natural language specifications by

utilizing business process models, Middle East Technical University, 2010 Msc
thesis .

[11] T. Olsson , J. Grundy , Supporting traceability and inconsistency management
between software artefacts, in: Proc. Int. Conf. on Software Engineering and

Application, 2002 .

[12] S. Winkler , J. Pilgrim , A survey of traceability in requirements engineering
and model-driven development, Software and Systems Modeling (SoSyM) 9 (4)

(2010) 529–565 .
[13] H. van der Aa , H. Leopold , H.A. Reijers , Detecting inconsistencies between

process models and textual descriptions, in: H.R. Motahari-Nezhad, J. Recker,
M. Weidlich (Eds.), Bus. Process Manag. 13th Int. Conf. BPM 2015, Innsbruck,

Austria, August 31, – Sept. 3, 2015, Proc., Springer International Publishing,

Cham, 2015, pp. 90–105 .
[14] R.S. Day , Alternative representations, Psychol. Learn. Motiv. 22 (1988) 261–305 .

[15] J.M. Polich , S.H. Schwartz , The effect of problem size on representation in de-
ductive problem solving, Mem. Cognit. 2 (4) (1974) 6 83–6 86 .

[16] S.M. Schwartz , D.L. Fattaleh , Representation in deductive problem-solving: the
matrix., J. Exp. Psychol. 95 (2) (1972) 343 .

[17] P. Wright , F. Reid , Written information: some alternatives to prose for express-
ing the outcomes of complex contingencies., J. Appl. Psychol. 57 (2) (1973) 160 .

[18] H.R. Ramsey , M.E. Atwood , J.R. Van Doren , Flowcharts versus program de-

sign languages: an experimental comparison, Commun. ACM 26 (6) (1983)
4 45–4 49 .

[19] T.G. Moher , D. Mak , B. Blumenthal , L. Levanthal , Comparing the comprehensi-
bility of textual and graphical programs, in: Empirical Studies of Programmers:

Fifth Workshop, Ablex, Norwood, NJ, 1993, pp. 137–161 .
20] D.A. Scanlan , Structured flowcharts outperform pseudocode: an experimental
comparison, Software, IEEE 6 (5) (1989) 28–36 .

[21] R.E. Mayer , Multimedia Learning, second edition, Cambridge University Press,
Cambridge, UK, 2009 .

22] M. Weber , J. Weisbrod , Requirements engineering in automotive development–
experiences and challenges, in: Requirements Engineering, 2002. Proceedings.

IEEE Joint International Conference on, IEEE, 2002, pp. 331–340 .
23] B. Schätz , A. Fleischmann , E. Geisberger , M. Pister , et al. , Model-based re-

quirements engineering with autoraid., in: GI Jahrestagung (2), Citeseer, 2005,

pp. 511–515 .
[24] A. Davis , Just Enough Requirements Management: Where Software Develop-

ment Meets Marketing, Addison-Wesley, 2013 .
25] J. Nicolás , A. Toval , On the generation of requirements specifications from soft-

ware engineering models: a systematic literature review, Inf. Softw. Technol. 51
(9) (2009) 1291–1307 .

26] M. Dumas , W.V. der Aalst , A. ter Hofstede , Process-Aware Information Systems:

Bridging People and Software Through Process Technology, John Wiley & Sons,
New Jersey, 2005 .

[27] M. Indulska , P. Green , J. Recker , M. Rosemann , Business Process Modeling: Per-
ceived Benefits, in: A. Laender, S. Castano, U. Dayal, F. Casati, J. Oliveira (Eds.),

Concept. Model. - ER 2009 SE - 34, Lecture Notes in Computer Science, Vol.
5829, Springer Berlin Heidelberg, 2009, pp. 458–471 .

28] H.C. Mayr , C. Kop , D. Esberger , Business Process Modeling and Requirements

Modeling, in: Digit. Soc. 2007. ICDS ’07. First Int. Conf., 2007, p. 8 .
29] O. Demirors , Ç. Gencel , A. Tarhan , Utilizing business process models for re-

quirements elicitation, in: Euromicro Conf. 20 03, 20 03, pp. 1–4 .
30] C. Monsalve , A. April , A. Abran , Requirements Elicitation Using BPM Notations:

Focusing on the Strategic Level Representation, in: 10th WSEAS Int. Conf. Appl.
Comput. Appl. Comput. Sci., 2011, pp. 235–241 .

[31] J.D.l.V. González , J. Díaz , Business process-driven requirements engineering: a

goal-based approach, in: Proceedings of the 8th Workshop on Business Process
Modeling, 2007, pp. 1–9 .

32] K. Cox , K.T. Phalp , S.J. Bleistein , J.M. Verner , Deriving requirements from pro-
cess models via the problem frames approach, Inf. Softw. Technol. 47 (5)

(2005) 319–337 .
[33] S. Malik , I.S. Bajwa , Back to origin: transformation of business process models

to business rules, in: M. La Rosa, P. Soffer (Eds.), Bus. Process Manag. Work.

BPM 2012 Int. Work. Tallinn, Est. Sept. 3, 2012. Revis. Pap., Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013, pp. 611–622 .

34] O. Turetken , O. Su , O. Demirors , Automating software requirements generation
from business process models, in: Proc. 1st Conf. Princ. Softw. Eng., Buenos

Aires, Argentina, 2004, pp. 1–16 .
[35] A. Coskuncay , B. Aysolmaz , O. Demirors , O. Bilen , I. Dogan , Bridging the gap

between business process modeling and software requirements analysis: a

case study, in: MCIS 2010 Proc., 2010, p. Paper 20 .
36] R. Davis , E. Brabander , ARIS Design Platform Getting Started with BPM,

Springer, London, 2007 .
[37] T. Specht , J. Drawehn , M. Thränert , S. Kühne , Modeling cooperative busi-

ness processes and transformation to a service oriented architecture, in: Proc.
Seventh IEEE Int. Conf. E-Commerce Technol., IEEE, Munich, Germany, 2005,

pp. 249–256 .
38] C.M. Chiao , V. Kunzle , M. Reichert , Integrated modeling of process- and data–

centric software systems with PHILharmonicFlows, in: Commun. Bus. Process

Softw. Model. Qual. Understandability, Maintainab. (CPSM), 2013 IEEE 1st Int.
Work., 2013, pp. 1–10 .

39] B. Berenbach , D.J. Paulish , J. Kazmeier , A. Rudorfer , Software & Systems Re-
quirements Engineering: In Practice, Vol. 29, McGraw-Hill, 2009 .

40] L. Hunnebeck , ITIL Service Design, 2nd edition, The Stationery Office, 2011 .
[41] G. Hardy , Using IT governance and COBIT to deliver value with IT and respond

to legal, regulatory and compliance challenges, Inf. Secur. Tech. Rep. 11 (1)

(2006) 55–61 .
42] M.L. Smith , J. Erwin , Role and Responsibility Charting (RACI), Technical Report,

Project Management Forum (PMForum), 2005 .
43] COSMIC , The COSMIC Functional Size Measurement Method Version 4.0 Mea-

surement Manual, Technical Report, The Common Software Measurement In-
ternational Consortium (COSMIC), 2014 .

44] E. Insfrán , O. Pastor , R. Wieringa , Requirements engineering-based conceptual

modelling, Requir. Eng. 7 (2) (2002) 61–72 .
45] S. Goedertier , J. Vanthienen , Declarative process modeling with business vo-

cabulary and business rules, in: R. Meersman, Z. Tari, P. Herrero (Eds.), Move
to Meaningful Internet Syst. 2007 OTM 2007 Work. SE - 83, Lecture Notes in

Computer Science, Vol. 4805, Springer Berlin Heidelberg, 2007, pp. 603–612 .
46] E. Reiter , R. Dale , Building applied natural language generation systems, Nat.

Lang. Eng. 3 (1997) 57–87 .

[47] E. Reiter , Nlg vs. templates, in: Proceedings of the 5th European Workshop on
Natural Language Generation, 1995, pp. 95–106 .

48] K.V. Deemter , M. Theune , E. Krahmer , Real vs . template-based natural lan-
guage generation: a false opposition? Comput. Linguist. 31 (2003) 15–24 .

49] H. Leopold , S. Smirnov , J. Mendling , On the refactoring of activity labels in
business process models, Inf. Syst. 37 (5) (2012) 443–459 .

50] D. Klein , C.D. Manning , Accurate unlexicalized parsing, 41st Meeting Assoc

Comput. Linguist. (2003) 423–430 .
[51] I. Benbasat , D.K. Goldstein , M. Mead , The case research strategy in studies of

information systems, MIS Q. 11 (3) (1987) 369–386 .
52] R.K. Yin , Case Study Research: Design and Methods, 3rd Edition (Applied Social

Research Methods, Vol. 5), SAGE Publications, Inc, 2002 .

http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0052

28 B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29

[53] J. Recker , Scientific Research in Information Systems: A Beginner’s Guide,
Springer-Verlag Berlin Heidelberg, 2013 .

[54] D. Firesmith , Specifying good requirements, J. Object Technol. 2 (4) (2003)
77–87 .

[55] D. Zowghi , V. Gervasi , The three cs of requirements: consistency, complete-
ness, and correctness, in: International Workshop on Requirements Engineer-

ing: Foundations for Software Quality, Essen, Germany: Essener Informatik
Beitiage, 2002, pp. 155–164 .
[56] X. Lu , Automatic analysis of syntactic complexity in second language writing,
Int. J. Corpus Linguist. 15 (4) (2010) 474–496 .

[57] M. Bollmann , Adapting simplenlg to german, in: Proceedings of the 13th Eu-
ropean Workshop on Natural Language Generation, Association for Computa-

tional Linguistics, 2011, pp. 133–138 .

http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0057

B. Aysolmaz et al. / Information and Software Technology 93 (2018) 14–29 29

D anagement Department, Maastricht University. She worked as a post-doctoral researcher
a iversiteit Amsterdam. Her research interests include business process modeling, software

e D in information systems from Middle East Technical University (METU), Ankara, Turkey.
H nsultant in the areas of business process management and software process improvement

i

D ence at the Vrije Universiteit Amsterdam. His research interests include business process
m ocess architectures. His research has been published, among others, in Decision Support

S doctoral thesis received the German Targion Award 2014 for the best dissertation in the
fi

D ds the Information Management & Software Engineering group of the Computer Science

d & Computer Science of Eindhoven University of Technology. His expertise is in enterprise
s workflow technology. Reijers has published over 150 scientific papers, chapters in edited

b

D Izmir Institute of Technology and a visiting professor at the School of Computer Science

a am at the Middle East Technical University, and lead the Software Management Research
G ent, software project management, software engineering education, software engineering

s

r. Banu Aysolmaz is an assistant professor at the Accounting and Information M
nd a Marie Curie fellow with the Department of Computer Science at the Vrije Un

ngineering, process model comprehension, and visualization. She obtained her Ph
er doctoral thesis received 2014 METU year of the thesis award. She worked as a co

n many organizations in Turkey.

r. Henrik Leopold is an assistant professor with the Department of Computer Sci
odeling, natural language processing techniques, process model matching, and pr

ystems, IEEE Transactions on Software Engineering, and Information Systems. His
eld of strategic information management.

r. Hajo A. Reijers is a full professor at Vrije Universiteit Amsterdam, where he hea

epartment. He is also a part-time, full professor at the Department of Mathematics
ystems, business process management, process mining, conceptual modeling, and

ooks, and articles in professional journals.

r. Onur Demirörs is a full professor at the Department of Computer Engineering,

nd Engineering, NSWU. He worked as the head of the software management progr
roup and Bilgi Grubu Consultancy. His work focuses on software process improvem

tandards, software measurement, and organizational change management.

	A semi-automated approach for generating natural language requirements documents based on business process models
	1 Introduction
	2 Background
	2.1 The value of requirements generation
	2.2 Process models and requirements engineering

	3 Conceptual approach
	3.1 Preparation phase
	3.2 Requirements document generation
	3.2.1 Sentence generation
	3.2.2 Sentence refinement
	3.2.3 Structuring of the document

	4 Evaluation
	4.1 Overview of cases
	4.2 Implementation
	4.3 Conduct of the case study
	4.4 Findings
	4.4.1 Readability
	4.4.2 Completeness
	4.4.3 Consistency
	4.4.4 Maintainability

	4.5 Comparison of manually created and generated requirements
	4.6 Limitations

	5 Adaptation to other languages
	6 Implications
	7 Conclusion
	 Acknowledgement
	 References

