Information and Software Technology 93 (2018) 14-29

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A semi-automated approach for generating natural language
requirements documents based on business process models

@ CrossMark

Banu Aysolmaz " Henrik Leopold?, Hajo A. Reijers?, Onur Demirérs “¢

aVrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1105, 1081HV Amsterdam, The Netherlands
b Maastricht University, School of Business and Economics, PO Box 616, 6200 MD, Maastricht, The Netherlands

¢ Izmir Institute of Technology, Department of Computer Engineering, 35430, Urla, Turkey

d University of New South Wales, School of Computer Science and Engineering, Barker St, Kensington NSW 2052, Australia

ARTICLE INFO ABSTRACT

Article history:

Received 9 March 2017

Revised 6 July 2017

Accepted 18 August 2017
Available online 30 August 2017

Context: The analysis of requirements for business-related software systems is often supported by using
business process models. However, the final requirements are typically still specified in natural language.
This means that the knowledge captured in process models must be consistently transferred to the speci-
fied requirements. Possible inconsistencies between process models and requirements represent a serious
threat for the successful development of the software system and may require the repetition of process
analysis activities.

Keywords:

Requirements elicitation
Business process model
Natural language generation

Objective: The objective of this paper is to address the problem of inconsistency between process models
and natural language requirements in the context of software development.

Method: We define a semi-automated approach that consists of a process model-based procedure for
capturing execution-related data in requirements models and an algorithm that takes these models as in-
put for generating natural language requirements. We evaluated our approach in the context of a multiple
case study with three organizations and a total of 13 software development projects.

Results: We found that our approach can successfully generate well-readable requirements, which do not
only positively contribute to consistency, but also to the completeness and maintainability of require-
ments. The practical use of our approach to identify a suitable subcontractor on the market in 11 of the
13 projects further highlights the practical value of our approach.

Conclusion: Our approach provides a structured way to obtain high-quality requirements documents
from process models and to maintain textual and visual representations of requirements in a consistent
way.

© 2017 Elsevier B.V. All rights reserved.

Despite this prominent role of business process modeling for
requirements analysis, the actual specification of requirements is

1. Introduction

Business process modeling is an established method for docu-
menting, analyzing, and improving organizational operations. What
is more, it has become a widely accepted practice in software engi-
neering [1-3]. In particular for analyzing requirements of business-
related software systems business process modeling has proven to
be an effective means [4]. Process models do not only provide an
overview of the operations that must be supported by the to-be
developed software systems, but also show how these operations
are related to the different organizational roles and systems.

* Corresponding author:
E-mail addresses: b.aysolmaz@maastrichtuniversity.nl, banuays@gmail.com
(B. Aysolmaz), h.leopold@vu.nl (H. Leopold), h.a.reijers@vu.nl (H.A. Reijers),
onurdemirors@iyte.edu.tr (O. Demirors).

http://dx.doi.org/10.1016/j.infsof.2017.08.009
0950-5849/© 2017 Elsevier B.V. All rights reserved.

commonly conducted using natural language [5-8]. This means
that the knowledge captured in process models must be consis-
tently transferred to natural language requirements. On the one
hand, this is a complex and time-consuming task [9,10]. On the
other hand, updates at later stages in either the textual or the
model-based requirements come with the risk of inconsistencies
[11-13]. Such inconsistencies between the process model and the
resulting requirements represent a serious threat for the success-
ful development of the respective software system throughout the
Software Development Lifecycle (SDLC). More specifically, they may
result in a system that does not fully reflect the functionality de-
fined in the process models.

To address this problem, we propose a semi-automated ap-
proach whose final output are generated requirements documents

http://dx.doi.org/10.1016/j.infsof.2017.08.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.08.009&domain=pdf
mailto:b.aysolmaz@maastrichtuniversity.nl
mailto:banuays@gmail.com
mailto:h.leopold@vu.nl
mailto:h.a.reijers@vu.nl
mailto:onurdemirors@iyte.edu.tr
http://dx.doi.org/10.1016/j.infsof.2017.08.009

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 15

that integrate process model and execution-related data in an un-
derstandable fashion. As a result, organizations can systematically
transfer the knowledge captured in their process models to other
SDLC activities and create consistent and maintainable artifacts.
Our proposed approach consists of three main steps. In the first
step, we analyze the process models that are relevant for the sys-
tem to be developed and identify the set of automatable activi-
ties. In the second step, we capture execution-related data, such
as responsibilities, application systems, data needs, and additional
constraints in a requirements model. In the third step, we auto-
matically generate requirements documents from the created mod-
els via a template-based natural language generation algorithm.
The consistency between the processes and the requirements is by
definition guaranteed by the generation feature of the approach.
To evaluate the impact of our approach on other key character-
istics of high-quality requirements-readability, completeness and
maintainability-, we conducted a multiple case study that involved
3 different organizations and a total of 13 software development
projects. We found that the requirements documents generated
by our approach were considered to be well-readable, almost per-
fectly complete, and beneficial for improving consistency as well as
maintainability. Meeting these key requirement characteristics was
found to be essential to enhance the usability of the requirements
by domain experts, analysts, project managers, and software devel-
opers. In 11 of the projects, the generated artifacts were used for
identifying a suitable subcontractor on the market for developing
the respective systems, which confirmed the usability of the ap-
proach in practical settings.

The remainder of this paper is structured as follows. In
Section 2 we elaborate on the background of our research and
identify the research gap that we will address. In Section 3, we in-
troduce our semi-automatic approach for generating requirements
documents. In Section 4, we present and discuss the findings of
our multiple case study. In Section 5, we elaborate on the steps
required for adapting the presented approach to languages other
than English. In Section 6 we discuss the implications of our work
before concluding the paper in Section 7.

2. Background

In this section, we discuss the background of our paper. In
Section 2.1, we first clarify the relevance and the value of gener-
ating natural language requirements. In Section 2.2, we then elab-
orate on the use of process models in requirements engineering.
We close the section by pointing out what is still missing to de-
fine an approach for automatically generating high quality require-
ments from process models.

2.1. The value of requirements generation

While many would argue that models are the preferred means
to foster communication, others favor requirements in textual for-
mat. At its heart, the question about the value of generating nat-
ural language requirements relates to the debate whether textual
or visual representations are superior in terms of communication
effectiveness. Interestingly, this debate is neither new nor lim-
ited to the field of requirements engineering. The first studies ad-
dressing this controversy date back to the seventies. At this time,
psychologists empirically compared the expressive power of nat-
ural language texts with matrices, spatial maps, and tree repre-
sentations [14-17]. Later, many studies from the field of computer
science contributed to the debate. Among others, authors com-
pared the comprehension performance of code-based representa-
tions and flow diagrams [18-20]. The conclusions of these and
other works remain, however, contradictory. Some argue in favor
of text-based other argue in favor of visual representations.

A satisfying explanation for these opposing views is provided by
the Cognitive Theory of Multimedia Learning (CTML) [21], which
has been developed through more than a decade of empirical re-
search. Among others, it discusses the concept of learning prefer-
ence, which suggests that both textual and visual representations
should be presented at the same time. The rationale behind this
concept is that people with different backgrounds may simply have
different preferences and cognitive abilities. By providing both rep-
resentations, they are provided with a choice.

Transferred to the field of requirements engineering, the CTML
suggests that both models and natural language requirements
should be used for capturing and discussing requirements. In fact,
this view is supported by many researchers. For instance, Weber
and Weisbrod discuss the importance of natural language require-
ments for communication, but also highlight that the sole use of
natural language is hardly feasible for complex projects [22]. They
propose the additional use of so-called requirements management
information models (RMIs). In a similar way, Schatz et al. [23] and
Davis [24] propose to combine text-based and model-based re-
quirements. Nicolds and Toval even explicitly discuss the value of
generation in this context [25]. They argue that generation reduces
the effort and, at the same time, increases the quality and trace-
ability of the requirements.

Recognizing the potential of automatically generating natural
language requirements, we define a respective approach for pro-
cess models in this paper. To highlight what is specifically missing
to define such an approach, the next section reviews related work
on process models in the context of requirements engineering.

2.2. Process models and requirements engineering

Many authors have emphasized the important role of process
models in the context of specifying requirements of software sys-
tems [26-28]. Some authors even go so far as considering their
use as mandatory [1,3]. However, the specific role of process mod-
els differs considerably among available approaches. Table 1 gives
an overview of the most relevant works using process models in
the context of requirements engineering. As Table 1 illustrates, we
differentiate between works that use process models in a manual
and in an automated way.

The related work that discusses the manual use of process mod-
els in the context of requirements engineering can be further cat-
egorized into works that elicit textual and that elicit model-based
requirements from process models.

The main insight of the works from the first subcategory that
elicit textual requirements from process models is that process
models represent an effective way of steering the activity of re-
quirements elicitation and enhance the completeness, correctness,
and traceability of the final requirement statements [4]. Cardoso
et al. analyze the level of automation for each activity in the pro-
cess models and then define a set of textual requirements for the
activities to be automated [4]. In a similar manner, Ma and Jiang
define a set of textual requirements for each activity of a pro-
cess [7]. Mayr et al. discuss that detailed notions for requirements
should be specified based on process models and they also map
requirements in sentence form to the process models [28]. Li et al.
propose a method to link textual requirements to activities in the
process model [8]. Such links help to identify dependencies be-
tween requirements consecutively being used for discovering miss-
ing and ambiguous text-based requirements. Demirdrs et al. an-
alyze and define not only functional requirements, but also non-
functional, security, and hardware requirements based on process
models. Lastly, Monsalve et al. elaborate on the usage of process
modeling notations for eliciting and expressing user requirements
on a strategic level. They find Qualigram more helpful in this re-
spect than BPMN [30]. What all these works have in common is

16 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Table 1

Work combining process models and requirements engineering.

Approach

Authors

Manual use of process models
Elicitation of textual requirements

Requirements engineering based on business process models

Business process modeling and requirements modeling

Process-oriented information system requirements engineering
A business process-driven approach for requirements dependency analysis
Utilizing business process models for requirements elicitation

Requirements elicitation using BPM notations
Elicitation of model-based requirements

A goal-based approach on business process-driven requirements engineering
Deriving requirements from process models via the problem frames approach

Automated use of process models

Transformation of business process models to business rules

Supporting process model validation through natural language generation

Generating functional requirements from process models

Bridging the gap between business process modeling and software requirements analysis

Cardoso et al. [4]
Mayr et al. [28]

Ma and Jiang [7]

Li et al. [8]
Demiro6rs et al. [29]
Monsalve et al. [30]

Gonzélez and Diaz [31]
Cox et al. [32]

Malik and Bajwa [33]
Leopold et al. [9]
Tiiretken et al. [34]
Coskungay et al. [35]

that they exemplify how process models can support requirements
elicitation. What is more, they show that process models are also
useful for identifying gaps and problems, thus for validating re-
quirements with end users.

The second subcategory of works that elicit model-based re-
quirements from process models illustrates that process models
are also useful for deriving model-based requirements. For in-
stance, Gonzélez and Diaz suggest to build a goal model using the
activities from process models [31]. They subsequently use the goal
model to establish the use cases and their relations. However, the
specification remains on the use case diagram level and the us-
age of the suggested role and resource models in the context of
the requirements definition is left open. Cox et al. discuss that the
framing of real-world problems for capturing and classifying soft-
ware development problems is a difficult task in reality. They de-
fine a set of steps to manually develop problem frame diagrams
together with textual requirements using role activity diagrams.
Rather than being an elicitation and validation tool between do-
main experts and modelers, the problem frames approach enables
the formal analysis of requirements for verification. What both ap-
proaches have in common is that they enhance the representa-
tional capabilities of process models for requirements elicitation.
However, they do not consider automated support.

Related work on the automated use of process models in the
context of requirements engineering consider process models as
the final requirements artifact and focus on the benefits of ver-
balizing the models in the requirements elicitation and validation
phases. For instance, Leopold et al. analyze the activity labels and
the control flow of process models to automatically generate cor-
responding natural language descriptions of the models [9]. Ma-
lik and Bajwa provide a sentence generation algorithm for require-
ments using a template-based approach [33]. Though their ap-
proach does not include clear text structuring techniques, the con-
sideration of the message flow between parties is an important
feature to reveal requirements on system interactions. Tiiretken
et al. include a broader set of process elements in the generated
sentences, including roles, input and output data, events, and sys-
tems [34]. Consideration of such elements is important to be able
to express requirements that concern other aspects than control
flow. However, they rely on a certain process structure, do not
consider all execution-related aspects, and only generate rudimen-
tary sentences. The work of Coskuncay et al. specifies the need
for analyzing additional data for process automation in a sepa-
rate set of models, though it lacks a description of requirements
analysis approach and a formal generation technique. The stud-
ies in this group commonly express the need for the automation

of natural language requirement specification based on process
models.

This literature review showed that process models play an im-
portant role in the context of analyzing and representing system
requirements. What is more, it showed that first approaches con-
sidering the automated generation of requirements based on pro-
cess models have already been introduced. What is still missing is
an approach that integrates the complete set of execution-related
data and provides the user with consistent, well-readable, and also
well-maintainable requirements. Recognizing this gap, we use this
paper to propose a semi-automated approach that automatically
generates textual requirements documents based on process mod-
els and execution-related data. We will show that our approach
provides a structured way to obtain consistent requirements that
are well readable, complete, and easy to maintain.

3. Conceptual approach

In this section, we introduce our approach for the semi-
automated generation of requirements documents based on pro-
cess models. As illustrated by Fig. 1, the approach consists of two
main phases: a preparation phase and a generation phase. In the
preparation phase, we first analyze the input process model(s) and
identify automatable activities. Then, we analyze the requirements
for the automated execution of these activities and create a re-
quirements model for each of them. In the generation phase, these
requirements models are used as the input for the automated gen-
eration of the requirements documents. In the following subsec-
tions, we introduce the details of each phase and illustrate our
concepts using a running example.

3.1. Preparation phase

The starting point of the preparation phase is a set of process
models. We manually analyze each of the input process models
to identify automatable activities. Activities that can either be sup-
ported by the system to be developed or can be totally automated
are marked and added to the list of automatable activities. Unclear
cases are discussed with the respective process owners. The result
of this step is a set of automatable activities that constitute the ba-
sis for associating the underlying business processes with the re-
quirements.

To illustrate this step, consider the business process shown in
Fig. 2. It describes the evaluation of project proposals by indepen-
dent auditors (IAs) in the context of a grant program. It is depicted
using the Event Driven Process Chain (EPC) notation, a modeling

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Process
model(s)

Preparation phase

Automatable
dentification of| 2ctvities

Requirements
models

Requirements

\

17

automatable
activities

analysis

—— e —

S |- —————

4 N
I Generation phase ‘I
: i
1 |
1 1
|f Sentence Sentence Document :
:'L generation refinement organization |

]
\

/

Generated
requirements
document(s)

Fig. 1. Overview of our approach.

language widely used in industry [36]. In this paper, we use the
EPC notation as an example to illustrate our approach. Note, how-
ever, that our approach can be applied to other process modeling
notations such as the Business Process Model and Notation (BPMN)
without adaptations. The example process from Fig. 2 is triggered
when evaluations for proposals are required. The first activity is to
assign the proposals to IAs. Once the proposals have been assigned
to IAs, they are evaluated. Then, the proposal score is registered
and the evaluation status is reviewed. In case the evaluations are
not yet finished, they are evaluated by other IAs. Otherwise, the
evaluation plan is updated and a status report is prepared. Upon
closer inspection of the process model from Fig. 2, it becomes clear
that it contains four automation candidates: “Assign proposals to
IAs”, “Register proposal score”, “Update evaluation plan”, and “Prepare
IA status report”. The other activities must be performed manually
and are outside the scope of the system to be developed. These
activities are “Evaluate proposal” and “Review evaluation status”.

The second step of the preparation phase is the requirements
analysis. The main goal of this step is to specify how the activities
are to be executed. This requires the identification of execution-
related data for activities. Building on the insights from [3,37-39],
we investigate the following four execution-related aspect for each
automatable activity:

 Responsibilities: To specify the responsibilities associated with
an activity, we adopt the so-called RASCI matrix [40,41]. This
means that we do not only capture the different roles that
are involved in the execution of the activity, but also capture
their specific responsibilities, such as “carries out” or “approves”.
In conformance with the RASCI concept [42], we also capture
whether multiple roles share the specified responsibility (e.g.
whether multiple roles may “carry out” or “approve” the activ-
ity) or whether the role has the exclusive responsibility (e.g.
only that role can “carry out” or “approve” the activity).

e Data needs: As for the data needs, we specify how data entities
are used by the activity [43,44]. Therefore, we adopt the CRUDL
approach and capture manipulation operations (create, update,
delete) and usage operations (read, use, view, list).

o System interactions: During the execution of an activity, inter-
actions with multiple systems may take place. We identify both
internal applications that are to be developed as part of the sys-
tem and external applications that the system communicates
with (e.g., web services). In this way, not only internal entity
operations, but also data interface requirements are revealed.

e Execution constraints: In addition to the later three aspects, we
also capture constraints of the application system during the ex-
ecution of the considered activity. As categorized by Goedertier

and Vanthienen, possible business constraints can, for instance,
emerge from business regulations, business policies, costs and
benefits, time, information prerequisites, and technical circum-
stances [45].

Typically, the information about these aspects must be obtained
from domain experts who are part of the respective business pro-
cesses. We propose the use of the following questions to infer the
required information:

* (Q1) Who will be responsible to perform this activity and what
will be the responsibility types involved?

¢ (Q2) What are the data entities needed to execute this activity
and how are they used?

¢ (Q3) Which internal and external systems are interacted with
for the execution of this activity?

* (Q4) What constraints and rules need to be taken into account
during the execution of this activity?

Based on these questions, we elicit the relevant functional re-
quirements from the domain experts and capture the results for
each activity in a requirements model. More specifically, we use
a customized version of the so-called Function Allocation Diagram
(FAD) introduced as part of the ARIS method [36]. FADs are used to
focus on the details of an individual activity by depicting the pro-
cess elements related to that activity. For complete requirements,
we need to represent the aforementioned four execution-related
aspects in the requirements model. The FAD is a conceptual model
that allows us to do so by adding respective model elements for
the execution-related aspects. Fig. 3 shows an exemplary FAD for
the activity “Register proposal score”. It shows that the activity is
associated with three roles. The “Project Officer” and the “Evalua-
tion Committee Member” are responsible for carrying it out while
the “Independent Auditor” is responsible for its approval. Note that
the marker “+” indicates that a responsibility can be exercised by
either of the associated roles. A responsibility without a marker,
therefore, represents a responsibility that is jointly exercised by all
associated roles. The FAD also specifies the data needs of the ac-
tivity. Among others, we can see that the “Project proposal” is read
and the “Proposal status” is viewed and updated. We can also see
the two systems that are relevant for the activity —-the “Grant Man-
agement System and the “IA Registration System”- and how they are
connected with the data needs and operations. Lastly, we observe
two constraints that are associated with the two systems. They are
expressed using natural language and specify that (1) a third eval-
uation is requested in case two evaluations differ to a certain de-
gree and that (2) IAs might be dropped if they continuously submit
contradicting evaluations.

18 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Evaluation
for proposals
required

Assign
proposals to
I1As

Evaluate
proposal

I S
Register
proposal

score

I T
Review

evaluation
status

Q

Evaluations
are finished

Evaluations
are not
finished

Update Prepare 1A

evaluation

plan status report

A
D
N\

Evaluation
finished

Fig. 2. Exemplary EPC model for daily independent auditor evaluation process.

In the next section, we explain how such a requirements model
can be used for the automated generation of a requirements docu-
ment.

3.2. Requirements document generation

This section defines our approach for generating textual re-
quirements documents from the requirements models defined in
the preparation phase. In line with other natural language gen-
eration systems, we adopt the traditional pipeline concept [46].
In particular, as outlined by Fig. 1, we follow a three step proce-
dure. First, we generate the sentences from the requirements mod-
els. Then, we refine the generated sentences by aggregating them
in a way that appeals to the user. Finally, we organize the gen-
erated sentences in the context of a document structure. In the
Sections 3.2.1 through 3.2.3, we explain the details of each step.

3.2.1. Sentence generation

To adequately reflect the information captured in the require-
ments model, we generate three types of sentences. First, we gen-
erate sentences describing which roles are involved in the execu-
tion of the activity (responsibility sentences). Second, we generate

sentences specifying the usage and manipulation of the data enti-
ties (data need sentences). Third, we generate sentences describing
the constraints (constraint sentences). Note that there is no dedi-
cated sentence type for system interactions. They are either covered
by data need sentences (if the system interaction relates to a data
need) or constraint sentences.

To implement the generation of these different sentence types,
we adopt the so-called template filling approach [47]. The ratio-
nale behind this approach is to define sentence templates which
contain well-defined gaps. By filling a template with the respec-
tive information (in our case the information from a requirements
model), proper sentences are constructed in an automated fashion.
The advantages of such template filling approaches are their speed,
the consistency of the produced sentences, and the high linguistic
quality of the output. What is more, it does not require any spe-
cific knowledge related to natural language generation to adapt the
system [47]. Hence, they are often considered as a viable choice
for natural language generation [48]. Table 2 gives an overview of
the sentence templates we defined for the three sentence types.
The first three templates (R1 to R3) are used to generate sentences
about the responsibilities associated with the activity and, there-
fore, answer question Q1. The templates on data needs (D1 and D2)
serve the purpose of generating sentences with respect to ques-
tions Q2 and Q3. Lastly, the answer to the question Q4 is provided
by means of the sentences generated by template C1. The gaps in
the templates that need to be filled with information from the re-
quirements model are indicated by terms between “<” and “>".
While the terms for roles, responsibilities, entities, operations, and
systems are directly obtained from the labels of the model, the ac-
tivity is split into an action (i.e., the verb) and an object, and the
constraint is split into a condition and a consequence. Both opera-
tions can be automatically performed using available tools. Deriv-
ing action and object from activity labels is possible with the tech-
nique introduced in [49] and splitting conditional sentences can be
implemented using the Stanford Parser [50]. Note that verbs may
occur in different grammatical forms (i.e., base form, gerund, and
participle).

Algorithm 1 formalizes the steps of our template-based sen-
tence generation approach. The algorithm requires a requirements
model (e.g. an FAD) as input. As a result, it returns a list of sen-
tences.

The algorithm starts with the creation of a list s for the gener-
ated sentences (line 1). The first part of the algorithm is then con-
cerned with generating the responsibility sentences (lines 2-17).
It begins by checking whether the considered requirements model
contains roles (line 2). If that is the case, it is checked whether all
roles exclusively perform “carry out”-operations (line 3). If yes, a
responsibility sentence using template R1 is created for each role
(lines 4-7). To this end, the required information (role, action, and
object) are derived from the requirements model. If the roles also
perform other operations, a responsibility sentence using template
R2 is created for each role (lines 9-12). Since this template requires
the action in the gerund form (e.g. “defining” instead of “define”),
we use the lexical database WordNet to derive the gerund form
from the base form. In case the considered responsibility model
does not contain any roles, a responsibility sentence using tem-
plate R3 is created (lines 15-16). Instead of using a role descrip-
tion, this sentence uses the name of the main system.

The second part of the algorithm handles the generation of the
data need and constraint sentences (lines 18-34). For this purpose
each system from the requirements model is analyzed separately.
For each system, the algorithm then analyzes the respective oper-
ations that are associated with this system (lines 19-27). If a con-
sidered operation is of type “use”, a sentence using template D1 is
created (lines 20-22). For other operations than “use”, a sentence
using template D2 is created (lines 23-25). This requires the place-

Table 2

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Sentence templates for requirements generation.

19

Type No. Sentence template
Responsibility ~ R1 The <Role> shall <Action> < Object>.
R2 The <Role> shall < Responsibility > the operation of <Actiongeyng > < Object>.
R3 The <System> shall automatically <Action> < Object>.
Data need D1 While <Actiongenng > and by using the < Entity >, operations shall be performed on the < System>.
D2 While < Actiongenng >, the <Entity > shall be < Operationpqiciple > on/from the < System >.
Constraint C1 < Constraintcongition > While < Actiongenng > on the <System>, < Constraintconsequence > -
. Evaluation
Project . Independent
; Committee .
Officer Auditor
Member
carries out* carries out* approves
Register
rog osal Proposal
prop use IA score
score
iread icreate view iupdate lupdate » |A status |
4 update
Project Proposal Proposal Proposal Assigned
roposal IA score status status IA list 1A . .
prop Proposal IA Registration
’ ‘ ‘ ‘ create POS System
evaluation
Y
Grant 1A
Management list repository If the evaluations of an 1A
System - continuously do not com-
ply with the other evalua-
, N IA | tion, this is marked and
5 update i A
If the score differences of P repository the IA is dropped from
the two |As are more than the available 1A list.

15, a third 1A shall be as-
signed to the proposal.

Fig. 3. The FAD for Register proposal score activity in Daily IA Evaluation process.

ment of the participle form of that operation name. Finally, respec-
tive sentences for the constraints are generated (lines 28-33). In
case the considered system is associated with one or more con-
straints, a sentence following the template C1 is created for each
of these (lines 30-31). Once all available components from the re-
quirements model are verbalized, the list of sentences s is returned
and the algorithm has completed.

To illustrate the effect of Algorithm 1, Table 3 provides exam-
ples for sentences generated based on the requirements model
from Fig. 3.

3.2.2. Sentence refinement

In this step, we refine the generated responsibility and data
need sentences to enhance their readability. We apply one aggre-
gation technique for responsibility sentences and three aggregation
techniques for data need sentences as described below.

» Role aggregation: If the same responsibility type is applicable
for multiple roles, we merge the respective sentences. For in-
stance, instead of keeping the two sentences “The Project Offi-
cer shall register the proposal score” and “The Committee Mem-
ber shall register the proposal score”, we generate the refined
sentence “The Project Officer or the Committee shall register the
proposal score”. Note that depending on the specific connection

(as indicated by the presence of a marker), we insert the cor-
rect conjunction to express a shared or exclusive responsibil-
ity among multiple roles. In case of a marker, we respectively
insert the conjunction “or”, otherwise we insert the conjunc-
tion “and”. If more than one responsibility type is used, the
sentences are combined to include those types. For instance,
we generate “The Project Officer shall register, and the Indepen-
dent Auditor shall approve the operation of registering the project
score”.

Object aggregation: If the model contains multiple entities with
the same operations, we merge the sentences. For instance, in-
stead of keeping “While registering the proposal score, the pro-
posal status shall be updated on the Grant Management System”
and “While registering the proposal score, the assigned IA list shall
be updated on the Grant Management System”, we generate the
refined sentence “While registering the proposal score, the pro-
posal status and the assigned IA list shall be updated on the Grant
Management System”.

Operation aggregation: If the model contains multiple operations
for the same entity, we apply the same procedure as for the
object aggregation. For instance, we generate “the IA repository
shall be listed and updated” instead of discussing these aspects
in different sentences.

20 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Algorithm 1: generateSentences(RequirementsModel rm).

1: List sentences = new List();
2: if rm.getRoles() # ¢ then

3: if rm.getResponsibilities().containsOnly(“carry out”) = true then

4 for all Role r € rm.getRoles() do

5 Sentence s = fillTemplateR1(r, rm.getAction(),rm.getObject());
6: sentences.add(s);

7 end for

8 else

9 for all Role r € rm.getRoles() do

10: Sentence s = fillTemplateR2(r,transformToGerund(rm.getAction()),rm.getObject());
11: sentences.add(s);

12: end for

13: end if

14: else

15: Sentence s = fillTemplateR3(rm.getMainSystem(),rm.getAction(),rm.getObject());

16: sentences.add(s);

17: end if

18: for all System sys € rm.getSystems() do

19: for all Operation o € sys.getOperations() do

20: if 0 = “use” then

21: Sentence s = fillTemplateD1(o.getEntity(),sys,transformToParticiple(rm.getAction()));
22: sentences.add(s);

23: else

24: Sentence s = fillTemplateD2(o.getEntity(),sys,transformToGerund(rm.getAction()));
25: sentences.add(s);

26: end if

27. end for
28: if rm.getConstraints() # ¢ then

29: for all Constraint ¢ € sys.getConstraints() do
30: Sentence s = fillTemplateC1(c.getCondition(),c.getConsequence(),sys,transformToGerund(rm.getAction()));
31: sentences.add(s);
32: end for
33: end if
34: end for
35: return s;
Table 3 As a result of applying four aggregation techniques on the sen-

Exemplary sentences generated from the requirements model from Fig. 3.

Type No. Example

Responsibility R1 The Project Officer shall carry out the operation of
registering the proposal score.

R2 The Independent Auditor shall approve the operation
of registering the proposal score.

While registering the proposal score, the project
proposal shall be read from the Grant Management
System.

D2 While registering the proposal score and by using the
proposal IA score, operations shall be performed on
the IA Registration System.

If the score differences of the two IAs are more than
15 while registering the proposal score on the Grant
Management System, a third IA shall be assigned to
the proposal.

Data need D1

Constraint C1

o System aggregation: If the model contains multiple systems, we
further merge the previously refined sentences into a single
one. For instance, we merge the sentences for two systems as
“While registering the proposal score, the project proposal shall be
read on the Grant Management System, and the proposal evalu-
ation shall be created on the IA Registration System” instead of
having two different sentences for each system. This is an op-
tional refinement step and it is only applied when the require-
ments model includes a small number of entities.

tences generated in the example requirements model in Fig. 3, the
following refined sentences are obtained:

1. “The Project Officer or the Evaluation Committee Member shall
carry out, and the Independent Auditor shall approve the opera-
tion of registering the proposal score.”

2. “While registering the proposal score, the project proposal shall be
read, the proposal status shall be viewed and updated, the pro-
posal IA score shall be created, and the assigned IA list shall be
updated on the Grant Management System.”

3. “While registering the proposal score and by using the proposal IA
score, the IA repository shall be listed and updated, the IA proposal
evaluation shall be created, and the IA status shall be updated on
the IA Registration System.”

3.2.3. Structuring of the document

Upon completion of the two phases of the generation, the re-
quirements sentences need to be organized in the context of a doc-
ument. For this purpose, we assign unique IDs to the aggregated
requirements sentences. The requirements document can then be
organized in two different ways as explained below.

Process-based document. In this way of organizing the document,
we exploit the hierarchy of the considered process models to struc-
ture the document. Thus, the application of this type requires a
hierarchical organization of the process models. Table 4 illustrates

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 21

Table 4
Process-based requirements document structure.

1 <Top-level process name > Process
REQ1; < Responsibility sentence for activity 1>
REQ2; < Data need sentence for activity 1 and system 1 >
REQ3; < Data need sentence for activity 1 and system 2 >
... (all data need sentences)
REQX; < Constraint sentence for activity 1>
... (all constraint sentences)
REQ1y < Responsibility sentence for activity N >
REQ2y < Data need sentence for activity N and system 1>
REQ3y < Data need sentence for activity N and system 2 >
.. (all data need sentences)
REQXy < Constraint sentence for activity N >
... (all constraint sentences)
1.1 <First-level process name > Process
REQ1, < Responsibility sentence for activity M >
REQ2), < Data need sentence for activity M and system 1>

the resulting document structure. The first level heading is derived
from the process model on top of the process hierarchy. Then, the
requirements sentences generated for the top-level process model
are listed. Afterwards, we create a subheading for each of the pro-
cess models from the levels underneath and list the requirements
under the respective subheading. All sentences are organized in the
same way by recursively processing all models. The order of the re-
quirements for a specific process is derived from the order of the
respective activities.

System-based document. In this document style, we use the sys-
tems to be developed to organize the requirements sentences. That
is, we list the requirement sentences under the respective head-
ings of the systems. Responsibility sentences are placed under the
heading for the main system. In case this style is used, the system
aggregation technique is not applied on data need sentences in the
sentence refinement phase.

Once all these steps have been completed, users are provided
with automatically generated requirements documents, organized
in their preferred style. In the next section, we apply our semi-
automated approach in the context of a case study to demon-
strate the improvements in obtaining higher-quality requirements
in terms of key requirement characteristics.

4. Evaluation

In order to show the feasibility of our approach in practice, we
applied it in a real-world setting [51]. More specifically, we con-
ducted a multiple case study using a set of three different orga-
nizations and 13 projects with varying characteristics [52]. In this
way, we were able to improve the generalizability of the find-
ings and to demonstrate the value of our approach [53]. The over-
all goal of the evaluation is to learn whether the project teams
from our case study perceive the generated requirements docu-
ments as well-readable, complete, consistent, and easy to main-
tain. In Section 4.1, we explain the rationale for the selection of
the cases and introduce them in detail. In Section 4.2, we briefly
describe our implementation of the approach in the context of a
prototype tool. In Section 4.3, we provide details on how we con-
ducted the case study. In Section 4.4, we present the findings of
our case study. In Section 4.5, we compare the manually created
and generated requirements documents. In Section 4.6, we discuss
the limitations of our evaluation.

4.1. Overview of cases

Process modeling and requirements analysis activities are per-
formed in a wide spectrum of industry fields. This diversity re-

quired us to get involved in cases with varying characteristics.
While assembling a suitable set of cases, we considered two main
goals. First, we wanted to show the value of our approach in a
practical setting. Thus, we required one or more organizations that
were willing to perform business process and requirements anal-
ysis as part of a system development project. Second, we wanted
to compare our approach to traditional requirements engineering.
Therefore, we sought at least one organization that was interested
in applying our approach after the actual development project, al-
lowing us to retrospectively compare the results.

As a result of these considerations, we selected three case sets.
Each of these case sets consisted of a program covering multiple
projects. Projects in a program were managed by the same inte-
grator organization, which used similar principles and practices.
The integrator organization was in charge of subcontracting the
projects. Altogether, the case sets included 13 projects pertaining
to different process areas. The large number of projects allowed us
to receive comprehensive feedback and to make wide-ranging ob-
servations. Furthermore, we were able to implement the approach
in a wide variety of process areas. In line with our case selection
goals, two of the case sets represented new development projects
and one was a retrospective set. Table 5 gives an overview of the
most important characteristics of the case sets. It shows the types
of the projects belonging to each case set as well as the number
of involved process models and activities. In the paragraphs below,
we describe the details of each case set.

Case Set 1 e-Government. The e-Government case set was managed
by the leading integrator organization for e-government projects
in Turkey. The case set consists of a program comprising two
projects. The program was initiated to develop two online sys-
tems for managing all processes related to the life cycle of com-
panies (e-Company) and trademarks (e-Trademark) registered in
North Cyprus. A team of three external analysts worked on two
projects in parallel, together with three internal analysts and two
domain experts. In addition, 15 domain experts were occasionally
involved in the workshops to provide domain-specific knowledge,
but did not take part in the preparation and evaluation of the out-
puts. The internal analysts were experienced in different modeling
notations, while the domain experts had only used natural lan-
guage before and had no experience with process modeling no-
tations.

Case Set 2 Public Services. The Public Services case set was man-
aged by the Turkish Ministry of Development, the responsible in-
stitution for regional development agencies. In total, this case set
consists of nine different projects. Among others, they cover the
automation of public service processes provided by the develop-
ment agencies, such as grant programs and investment support,
but also internal processes such as human resource management.
The team included three external and four internal analysts, to-
gether with four domain experts who took part in the preparation
of the outputs, and 66 domain experts that were occasionally in-
volved in analysis activities. The domain experts were not expe-
rienced in modeling notations and the internal analysts had only
used flowcharts before.

Case Set 3 Campus System. The Campus System case set was man-
aged by the Computer Center of the Middle East Technical Uni-
versity (METU), which is the top-ranked university in Turkey. The
whole program consists of the automation of over 90 business pro-
cesses, which concern the areas of research, education, campus ser-
vices, and support. From this set, we selected two representative
projects for this evaluation (Announcement and Research Program
Management). The involved internal analysts were experienced in
BPMN and other notations. In contrast the former two cases, this

22 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Table 5
Overview of the case set characteristics.
Case set Case type Project #PM #ACT
(1) e-Government New project e-Company 18 125
e-Trademark 9 47
Total 27 172
(2) Public Services New project Auditing 4 53
Budget Management. 69 470
Archive Management 12 638
Human Resource Management 24 218
Investment 20 123
Performance Management 6 26
Program Management 8 953
Project Support 91 662
Stakeholder Management 18 729
Total 252 1782
(3) Campus System Retrospective ~ Announcement 3 25
Research Program Management 13 42
Total 16 67

Legend: #PM = Number of process models, #ACT = Number of activities

study took place shortly after the completion of the projects. With
this retrospective case set, we specifically aimed to evaluate the
completeness of the requirements generated via our approach in
comparison to the requirements already defined with traditional
approaches.

4.2. Implementation

We developed a prototype tool to facilitate the implementa-
tion of our approach in the case study. It is available as a plug-in
for the integrated development environment Eclipse and based on
the Eclipse Modeling Framework (EMF) and the Eclipse Graphical
Modeling Framework (GMF).! The tool supports the development
of process model diagrams in the EPC notation, the identification
of automatable activities, the development of related requirements
models in conformance with the exemplified FAD notation, and,
lastly, the generation of textual requirements documents in confor-
mance with the approach explained in Section 3. As all the cases
were conducted in Turkey, we implemented the generation for the
Turkish language. A snapshot of the (English) tool and the gener-
ated requirements document can be seen in Fig. 4.

4.3. Conduct of the case study

Our case study consisted of three main steps: (1) the applica-
tion of our semi-automated approach, (2) the analysis of the out-
puts, and (3) a set of feedback interviews.

The starting point of our case study was the application of our
semi-automated approach by the project teams in the context of
the cases. To make sure the teams could apply our approach in
an effective and efficient way, we provided respective training to
the teams before the start of the project. During the execution,
we mainly acted as observers on how the teams applied the ap-
proach, but were also available for questions. Upon completion of
the application and the generation of the requirements documents,
we analzyed which changes were manually applied to the docu-
ments. After the completion of all project activities, we conducted
a set of interviews with the internal and external analysts as well
as with the domain experts who were involved in the projects. We
chose interviews because they are the most prominent qualitative
data collection method for obtaining in-depth insights [53]. Con-
sidering the number of team members involved in the case sets,
interviews enabled us to develop a comprehensive understanding
of the participant’s experiences related to the use of our approach

1 The tool can be obtained from www.aysolmaz.com.

Table 6
Interviews for cases.

Case set Internal Analyst ~ External Analyst =~ Domain Expert
e-Government 2 3 2

Public Services 2 2 2

Campus System 3 1

in a practical setting. The interviews followed a semi-structured
style, taking around 45 minutes per interviewee. The interviews
covered questions about the participants’ background as well as
the evaluation of our approach including the quality of the gener-
ated requirements documents. Table 6 shows the number of inter-
viewees for each case set. We transcribed, coded, and analyzed the
interviews to maintain a chain of evidence [52]. Table 7 summa-
rizes the key figures of the case study performance. It shows the
number of workshops performed (#WS), the total analysis effort
spent (EFF), the number of requirements models developed (#RM),
and the number of requirements generated based on these mod-
els (#REQ). In the following section, we discuss the findings of our
case study.

4.4. Findings

In this section, we discuss how our semi-automated approach
for requirements generation was assessed by the project teams of
the three case sets. More specifically, we discuss how they evalu-
ated four key characteristics that have been found to contribute to
high-quality requirements [6,39,54,55]: readability, completeness,
consistency, and maintainability. We present our findings for each
key characteristic separately for domain experts and analysts.

4.4.1. Readability

The readability (sometimes also referred to as unambiguousness)
of a requirements document is one of its most important features
[54].

Overall, all four domain experts found the documents informa-
tive and understandable. The domain experts who became famil-
iar with process modeling through the training session and the
workshops found the joint presentation of the process models and
requirements sentences to further improve readability. For in-
stance, one domain expert from case set 1 stated that “Studying a
model and the related statements together helped me to easily under-
stand the requirements”. Other domain experts supported this with
similar statements. Despite the generally positive feedback, some
domain experts also mentioned aspects for improvement. For in-

http://www.aysolmaz.com

B UPROM - Grant

Qe > L

~ & Grant Management
& Application Preparation

& CFP Preparation

£, Outline| = O[] PreparelAStatusReport.fad _[¢

~ & Call for Proposal Preparation

& CFP Announcement Prepar

ject Proposal luation/Daily 1A Evaluation/Reg I

2 & 3 % $vOv ®¢ Validate Project Structure
Generate Business Process Models Report

Generate Business Process Models Report with Rules
Generate Requirements Document

Generate Size Estimation Report

Generate Analysis Models Report

Generate Process Definition Document

Generate Business Glossary

& Opening Meeting Preparati

re.fad - Eclipse Platform

File Edit Source Refactor Diagram Navigate Search Project Run Reporting Search Object Quality Measurement Copy Project 4 Add-ons Window Help

& Training Prep:
v & Call for Proposals
& Announcement of CFP
& Evaluation Committee
& Identification of IA Poc
& Opening and Informati
& Project Proposal Subm

3.1.1. Daily IA Evaluation Process
REQI. The Project Officer shall carry out the operation of assigning proposals to IAs.
REQ2]. While assigning proposals to IAs and by using the project proposal, the
proposal status and the assigned IA fist shall be updated on the Grant System.

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 23
9 BI[Avav svov @ BvaRviv|e ~ |/ 100% & & Team Sy.|
terProposalScore.fad = ol
% Palette
Reaoc-
& Symbols
bet Evaluation Independent runction
er Committee Auditor [y
el Application
T Eentity
artes out—— - ——appr W Cyster
B Constraint
= O organizationa.|
rrepte izt upe Saroup
o ungate Dlocation
- apdate
Dposition

REQ3]. While assigning proposals to As, the IA repository shall be listed and the IA
status shall be updated on the TA Registration System.

OlexternalPerson

E] PreparelAStatusRe
E] RegisterProposals
EJ UpdateEvaluation!
@ IA Proposal Assignn

REQ32. While registering the proposal score and by using the proposal IA score, the IA
repository shall be listed and updated, the IA proposal evaluation shall be created, and
the TA status shall be updated on the TA Registration System.

REQ42. If the score differences of the two IAs are more than 15 while registering the
proposal score on the Grant Management System, a third IA shall be assigned to the

@ Overall IA Evaluation

proposal.

o T_”Z':g C"""I“E“ ot [REQA1- The ighest umber of proposas assigned to an I shallbefimited o ten while Proposal | | Proposal | | Proposal | [Assigned 1A Registration Srole
ve
roject Proposal Evaluatic § ioning proposals to IAs on the Grant Management System. A | [1Ascore | | status status A lst System o
& Committee Evaluation — Improvement
e REQI2. The Project Officer or the Evaluation Commitiee Member shall carry out, and [|
~ & Daily IA Evaluation] the Independent Auditor shall approve the operation of registering the proposal score.
£ AssignProp REQ22. While the proposal score, the project proposal shall be read, the G
@ DailylAEvaluation. J| proposal status shall be viewed and updated, the proposal IA score shall be created, and Management
£ DailylAEvaluation. llthe assigned IA list shall be updated on the Grant Management System. System

REQ42. If the evaluations of an IA continuously do not comply with the other evaluation,
this is marked and the IA is dropped from the available IA list.

Fig. 4. A screenshot of the prototype tool and the generated requirements document.

Table 7
Key figures of case study conduct.
Case set Project #WS EFF #RM #REQ
(1) e-Government e-Company 10 76 82 363
e-Trademark 6 41 36 177
Total 16 117 118 540
(2) Public Services Auditing 2 10 24 61
Budget Management 28 154 339 822
Archive Management 4 28 52 110
Human Resource Management 12 46 159 336
Investment 6 36 103 218
Performance Management 14 67 18 36
Program Management 3 23 72 154
Project Support 41 148 457 1038
Stakeholder Management 27 9 54 129
Total 119 539 1278 2904
(3) Campus System Announcement 3 6 18 65
Research Program. Management 3 8 18 60
Total 6 14 36 125

Legend: #WS = Number of workshops performed, EFF = Analysis effort in person-days,
#RM = Number of requirements models, #REQ = Number of requirements sentences gen-

erated

stance, one domain expert from case set 2 stated that the fixed
structure of the sentences sometimes felt mechanical. At the same
time, however, he also pointed out that such a generation facili-
tates a standardized and mature requirements structure.

All of the analysts mentioned that the generated documents
were clear and understandable. Overall, they personally preferred
to examine the models instead of the documents, but they found
the generated documents to fit the purpose. An internal analyst
from case set 2 stated: “We needed to explain the system to various
experts and the documents certainly helped us for this”. Some ana-
lysts also suggested specific changes to enhance readability. For in-
stance, the team from case set 1 suggested to merge short respon-
sibility and data need sentences into a single sentence. The same
team also asked for removing the first part of the data need sen-
tences (“While < Actiongen,ng >"). We implemented the suggested
changes by updating the generation algorithm respectively.

Altogether, we found that our approach generated well-readable
requirements documents. In fact, all requested changes could be
implemented by straightforward adaptations of the generation al-
gorithm.

4.4.2. Completeness

The completeness of requirements is an important characteristic
because it indicates the additional effort that has to be invested
beyond the application of our approach [6].

The domain experts from case set 2 stated that the approach
supported them to “recognize whether the requirements are com-
plete”. Overall, all domain experts agreed that the final set of re-
quirements appeared complete. Besides that, they did not have fur-
ther comments on completeness.

The analysts provided further comments on completeness. One
internal analyst from case set 1, for instance, pointed out she
“would not be able to define such detailed requirements” in an-
other way. An analyst from case set 2 said that “the approach was
adequate to express what is required”. Emphasizing the support pro-
vided by the approach, analysts also mentioned that our approach
helped “to collect the functional requirements with respect to the ar-
chitectural components effectively”. Being asked for a comparison
with traditional approaches, an analyst of case set 2 indicated that
“it would be harder to make a complete set like this if we wrote down
the requirements textually in the first place”. He explained that “we

24 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

e-Company

e-Trademark

e-Government

Auditing

Budget Management

Archive Management

Human Resource Management
Investment

Performance Management
Program Management

Project Support

Stakeholder Management
Public Services
Announcement

Research Program Management
Campus System

91
90
91

99
99
98
99
80
97
97
93
96
94
97
95

0 5 10 15

Generated requirements per process model

20 0 20 40 60 80 100

Coverage of generated requirements

Fig. 5. Generated requirements per process models and requirements coverage per case.

would miss a lot of aspects of the system if we didn’t see the complete
picture by means of the models”. Another analyst from case set 2
stated that the completeness was achieved as “we were able to an-
ticipate how the system should work as a whole and see the relations
between different parts by means of the process-based requirements
analysis”.

The overall completeness of the generated requirements for
each project is illustrated in Fig. 5. On the left-hand side, we
can see the total number of requirements per process model and
project. On the right-hand side, we see the coverage of the gener-
ated requirements for each project. For example, in the e-Company
project of case set 1 about 20 requirement sentences were gener-
ated per process model and the generated requirements covered
91% of all requirements. The rest of the requirements were manu-
ally added by the analysts in case set 1 and 2. Among the manually
added requirements, none related to the process-related aspects of
the systems. Rather, they concerned general aspects which were
not directly related to the processes and included the architecture
of the system, interfaces with external systems, system-wide char-
acteristics, security and quality requirements, and software devel-
opment principles. Thus, they were not expected to be covered in
the generated requirements set. Case set 3, the retrospective case,
posed an important role to evaluate the completeness. While in
case sets 1 and 2 the requirements were developed from scratch
in the context of the programs, case set 3 included an existing re-
quirements document which was prepared in a different setting.
We used the existing requirements as a benchmark and performed
a delta analysis for the generated requirements. For this, we pre-
pared a mapping between the existing requirement statements and
the generated ones. The results showed that 95% coverage was
achieved by the approach even with respect to the requirements
already developed with traditional approaches. The unmatched re-
quirements in the existing document related to quality aspects of
the system. Moreover, six additional requirements were identified
that were not included in the existing document. Thus, the findings
of the retrospective case confirmed that a complete set of process-
related requirements can be revealed by means of our approach.

4.4.3. Consistency

Consistency is another important characteristic of a require-
ments set and refers to the absence of contradictions within the
set [55]. Our approach inherently ensures the consistency of the

models and the natural language requirements by means of the
automated generation approach.

From the domain experts we received very positive feedback
with respect to the consistency. In fact, they explicitly stated that
they did not observe any inconsistencies in the requirements.

The analysts were also very positive. They also had more spe-
cific comments on the achieved consistency. One internal analyst
from case set 1 mentioned that “especially if more than one person
works on the analysis, this approach supports you to get the same
quality of output from everybody”. Another analyst from case set 2
was initially critical about the usage of specific model elements for
modeling the requirements, but later found that “it was helpful for
ensuring quality”. Here, it should be noted that the consistency of
the generated requirements is dependent on the consistency of the
models. In this respect, although the use of the approach does not
ensure the consistency of the generated requirements, the model-
based analysis helped the analysts to avoid such problems. All ex-
ternal analysts emphasized that “updates would normally introduce
consistency problems”, but that our approach helped to “observe
cross relations and to prevent resulting inconsistencies”. Internal an-
alysts from case set 2 stated that they “were able to define the re-
quirements consistently although there were many different processes”
by means of “the holistic view and the standardized language”.

4.4.4. Maintainability

Maintainability, sometimes also referred to as modifiability, is
particularly important when it comes to changes [39]. All intervie-
wees pointed out that they found the requirements easy to main-
tain. Among others, this was found to be caused by the improved
traceability between process models and requirements.

One surprising finding was that even the domain experts, who
typically do not develop models themselves, agreed on the im-
proved maintenance. One domain expert from case set 1 stated
that he “could better understand the effects of a change”.

The analysts provided further discussions on how the main-
tainability was improved by our approach. One internal analyst
of case set 1 stated that “when a process was updated, it was
also clear which requirements need to be changed”. While we also
expected positive comments with respect to the maintainabil-
ity resulting from the automated generation, we received quite
unexpected feedback. All analysts stated that they did not find
that the approach would save time to prepare the initial require-

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 25

Table 8
Comparison of the text Structure of actual and generated requirements.
Actual Generated
Project W/S V/]S SR WR W[S V/S SR W[
Research Program Management 16.16 113 1.28 20.68 13.93 1.07 1 13.93
Announcement 1419 143 160 2277 1348 138 1 13.48

ments document. One internal analyst from case set 1 stated that,
creating the process models for the requirements generation is
time-consuming: “I would be faster with traditional methods, but
I wouldn’t be able to achieve the level of completeness”. Two ex-
ternal analysts of case set 1 and 2, as well as the internal an-
alysts of case set 2 emphasized the potential time gain for up-
dates and future development phases despite the extra time spent.
Another external analyst from case set 2 stated that “it may look
like we spent more time, but in the long run, the time spent will be
less”.

Overall, the interviews highlighted that domain experts were
mainly interested in readability. Since domain experts often strug-
gled with understanding the requirements, readability was their
major concern. The analysts, by contrast, were also interested in
the other three characteristics since they directly relate them to
time savings and the automated support they expect from our ap-
proach. The analysts provided clear statements on how the ap-
proach enabled them to produce more complete, maintainable, and
consistent requirements.

4.5. Comparison of manually created and generated requirements

The results of our case study showed that the generated re-
quirements were positively perceived with respect to the four in-
vestigated key characteristics. An open question, however, is how
exactly the manually created and generated requirements differ.
To investigate this, we made use of the retrospective use case set
Campus System. Our goal was to understand how the manually cre-
ated and the generated texts compare with respect to text struc-
ture and how they convey the requirements content.

To investigate the text structure, we computed a set of basic
sentence complexity metrics [56]:

o Average number of words per sentence (W/S)

o Average number of verbs per sentence (V/S)

o Average number of sentences per requirement (S/R)
* Average number of words per requirement (W/R)

Table 8 summarizes the results of the comparison of the text
structure. A general observation is that the generated sentences fol-
low a similar structure like the manually created sentences, as in-
dicated by similar values for the metrics W/S and V/S. This means
that our approach generates sentences that are structurally com-
parable to those created by humans. However, we also observe
some differences. Most notably, the manually created requirements
contain a higher number of sentences and words per requirement
(see S/R and W/R). This raises the question whether the manu-
ally created requirements are unnecessarily verbose or complex,
which might explain the lower readability and comprehensibil-
ity perceived by users. A detailed analysis of the manually devel-
oped requirements indeed supports this conjecture. We identified
many sentences in the manually created requirements that con-
tained nonessential and repetitive descriptions. Among others, we
found nonessential context information, redundant descriptions of
functionality, and descriptions of data attributes that were already
defined in the data dictionary.

To understand how the manually created and the generated re-
quirements convey their content, we mapped the manually cre-

ated requirements to the corresponding generated requirements.
Fig. 6 visualizes this mapping. It shows for each manually created
requirement to how many generated requirements it relates. We
observe that many of the manually created requirements relate
to more than a single generated requirement. The average num-
ber of generated requirements per manually created requirement
is 3.9 for the Research Program Management project and 2.2 for
the Announcement project. Against the background of our findings
from the text structure comparison, this is quite a surprising result.
While the manually created requirements tend to be more verbose
and, sometimes, even provide redundant information, the gener-
ated requirements document provides more details. We analyzed
the extreme cases (i.e. where a manually created requirement re-
lates to 10 generated requirements) and found that the manually
created document lacked important details with respect to respon-
sibilities and data needs.

In summary, we can say that this comparison highlighted the
value of automated requirements generation. From a structural
point of view, the generated requirements are very similar to the
manually created requirements. The generated requirements, how-
ever, use less words and do not provide redundant information.
From a content perspective, the comparison particularly illustrated
the superiority of the generated requirements in terms of com-
pleteness.

4.6. Limitations

Despite the positive results, our evaluation has to be reflected
from the perspective of some limitations. The first limitation re-
lates to the conducted interviews. While the interviews allowed us
to collect in-depth insights about the use of our approach in prac-
tice, interviews are also subjective by nature [53]. Among others,
this means that the results of interviews could have been influ-
enced by the bias of the interviewer. To avoid such a bias as far
as possible, we designed and strictly followed an interview guide-
line. Moreover, an independent researcher reviewed the interview
transcripts and confirmed the relevance of the answers with re-
spect to the interview guideline. By following this procedure, we
tried to minimize the limitations of interviews and obtain unbi-
ased and reliable results. The second limitation relates to gener-
alizability of the overall case study [52]. While we carefully col-
lected a number of differing cases, we cannot claim that the re-
sults are representative or can be generalized to other organiza-
tions. However, since the feedback from the evaluation was consis-
tently positive among the three cases, we are also confident that
the presented approach can indeed provide considerable value for
organizations.

5. Adaptation to other languages

From a conceptual perspective, the presented approach is not
bound to a specific language. However, to use our approach for
languages other than English, two main adaptations are required.

First, the templates must be translated and adapted to the tar-
get language. To illustrate the required steps, assume we would
like to adapt the system to German and Turkish (i.e. two lan-

26 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

Number of Related
Generated Requirements

1 23 456 7 8 9 10111213141516 17 1819 20 21 22
Manually Created Requirements

(a) Research Program Management

Number of Related
Generated Requirements
w

1
: LLTLELRLELERTREN]

LI e e e e e e e

1 3 5 7 9 1113151719 2123 2527 29 31 33 35 37 39 41 43 45
Manually Created Requirements

(b) Announcement

Fig. 6. Relationship between manually created and generated requirements.

guages from different language families). What is more, recon-
sider the template “The <Role> shall <Action> < Object>" and
its instantiation “The Project Officer shall carry out the operation of
registering the proposal score”. If we wish to adapt the system to
German, we need to translate this template and adapt it to the
German grammar. By replacing the word “The” with a new slot
“ < Article > " (in German the article depends on the gender of the
referenced noun), by translating “shall” into “soll”, and by switch-
ing the order of the action and the object slots, we obtain the tem-
plate “ <Article> <Role> soll <Object> <Action>". In a simi-
lar way, a respective template for Turkish can be obtained. Since
Turkish does not use articles, the article “the” is omitted and the
word order is adapted to the Turkish grammar. As a result, we
obtain the template “ <Role > < Object> < Actiongeqng > islemini
< Responsibilityye, > .".

Second, respective inflection mechanisms for the target lan-
guage have to be implemented. In case of German this means that
the correct article has to be determined based on the gender of
the noun and that the verb must be conjugated. Both aspects can
be achieved by using publicly available language processing tools
such as SimpleNLG [57]. Based on this tool and respective German
inputs for the slots, we are therefore able to generate a German
version of the sentence: “Der Projektleiter soll die Registrierung der
Angebotsbewertung vornehmen”. For Turkish, only the gerund of the
verb must be obtained. This can be achieved by looking at the last
vowel of the verb and concatenating “-ma” in case of hard vowel
sounds (e.g. a, u) and “-me” in case of soft vowel sounds (e.g. e, i)
to the end of the input verb. In this way, we are able to also gen-
erate a Turkish version of the sentence: “Proje uzmam teklif puanim
kaydetme islemini yiiriitecektir.”

These examples illustrate that the adaptation of our technique
is a one-time investment that is associated with reasonable effort.
Because tools for inflecting words are available for many languages,
only little technical knowledge about natural language generation
will be required for the adaptation.

6. Implications

The approach we presented in this paper has several implica-
tions for research and practice.

From a research perspective, our work complements existing
methods for requirements elicitation based on process models
[4,29,30] by providing an automated way to obtain requirements
documents. In contrast to existing approaches that consider auto-
mated support to elicit requirements, such as the ones proposed by
Tiiretken et al. [34] and Coskuncay et al. [35], our approach was
evaluated to generate requirements that are well-readable, com-
plete, and easy to maintain by means of the formulated require-
ments analysis and formalized natural language generation tech-

niques. The consistency is ensured via automated generation. Qur
approach also informs methods for process model validation. In
contrast to existing process model verbalization approaches [9],
our approach also considers execution-related data and, thus, al-
lows to obtain a more complete picture.

From a practical perspective, our approach helps to improve
several characteristics that contribute to high-quality requirements,
thus improving their usability. Other potential benefits for prac-
titioners include the standardization of requirements engineering
activities of analysts, enhanced testability, and improved scoping of
the project. Hence, our approach can help practitioners in achiev-
ing considerable improvements in the software development pro-
cess. While an extra effort must be spent in the initial analysis
phase, the quality of the obtained requirements might save project
teams from unnecessary repetitions in the SDLC. In the long run,
our approach may, thus, also help to reduce costs. Taking these
benefits into account, we believe our approach has the potential
to influence the way requirements elicitation is conducted in prac-
tice. In fact, two organizations from our three cases, used the gen-
erated requirements document for finding a suitable software de-
velopment subcontractor.

7. Conclusion

In this paper, we addressed the problem of inconsistencies be-
tween process models and natural language in the context of re-
quirements specification. To cope with this problem, we introduced
a semi-automated approach, which consists of two main phases. In
the manual preparation phase, users identify the automatable ac-
tivities in the input process model(s) and specify the associated re-
sponsibilities, data needs, system interactions, and execution con-
straints. The requirements model resulting from this analysis then
serves as input for a generation algorithm, which automatically
provides the user with a well-organized natural language require-
ments document.

We evaluated our approach by applying it in the context of
a multiple case study with three organizations and a total of 13
projects. We found that our approach could be successfully applied
to generate well-readable requirements that are complete, consis-
tent, well maintainable, and, most importantly, of practical value.
The interviewed analysts and domain experts pointed out that our
approach positively contributed to the completeness, consistency,
and maintainability of the requirements documents. Thus, the sys-
tematic analysis as well as the automated generation helped the
studied project teams to deliver requirements documents of higher
quality. This is emphasized by the fact that the generated require-
ments documents were used for finding a suitable software devel-
opment subcontractor in 11 of the 13 projects. Hence, we conclude
that our approach successfully addresses the problem of inconsis-

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 27

tency between process models and requirements documents, and
provides real value to organizations.

In future work, we aim to extend our approach with the
capability to automatically reflect changes of the generated re-
quirements documents in the associated requirements and process
models. In this way, the consistency between the artifacts can be
also assured if changes are applied to requirements. Another aspect
we wish to investigate is the specific impact of using the generated
requirements. In this context, we plan to apply our method with
and without the generated requirements documents. Besides that,
we also plan to apply our approach in organizations that maintain
English models. This will not only allow us to test our generation
algorithm in another language, but also to evaluate the applicabil-
ity in different cultures and settings. A final line of work we plan
is to investigate the systematic transfer of the acquired require-
ments knowledge to the following software development phases.
In this way, the benefits of the approach may also contribute to
other phases of the SDLC.

Acknowledgement

This work has been partially supported by the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sktodowska-Curie grant agreement No 660646.

References

[1] A. Gross,]. Doerr, EPC vs. UML activity diagram - two experiments examining
their usefulness for requirements engineering, in: Requir. Eng. Conf. 2009. RE
’09. 17th IEEE Int., 2009, pp. 47-56.

[2] C. Monsalve, A. Abran, A. April, Measuring software functional size from busi-
ness process models, Int. J. Softw. Eng. Knowl. Eng. 21 (03) (2011) 311-338.

[3] J. Vara, M. Fortuna, J. Sanchez, C. Werner, M. Borges, A Requirements Engi-
neering Approach for Data Modelling of Process-Aware Information Systems,
in: W. Abramowicz (Ed.), Bus. Inf. Syst. SE - 12, Lecture Notes in Business In-
formation Processing, Vol. 21, Springer Berlin Heidelberg, 2009, pp. 133-144.

[4] E.C. Cardoso, J.P.A. Almeida, G. Guizzardi, Requirements engineering based on
business process models: a case study., in: EDOCW, 2009, pp. 320-327.

[5] K. Brennan, A guide to the Business Analysis Body of Knowledge (BABOK
guide), version 2.0, 2nd edition, IIBA International Institute of Business Analy-
sis, 2009.

[6] IEEE, IEEE Recommended Practice for Software Requirements Specifications,
IEEE Std 830-1998, Technical Report, Software Engineering Standards Commit-
tee of the IEEE Computer Society, Piscataway, N.J., 1998.

[71 Q. Ma, Y. Jiang, Process-oriented information system requirements
engineering - a case study,]. Bus. Cases Appl. 10 (2014) 1-16.

[8] J. Li, R. Jeffery, KH. Fung, L. Zhu, Q. Wang, H. Zhang, X. Xu, A business process—
driven approach for requirements dependency analysis, in: Lect. Notes Comput.
Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), Vol.
7481 LNCS, 2012, pp. 200-215.

[9] H. Leopold, J. Mendling, A. Polyvyanyy, Supporting process model validation
through natural language generation, IEEE Trans. Softw. Eng. 40 (8) (2014)
818-840.

[10] A. Coskuncay, An approach for generating natural language specifications by
utilizing business process models, Middle East Technical University, 2010 Msc
thesis.

[11] T. Olsson, J. Grundy, Supporting traceability and inconsistency management
between software artefacts, in: Proc. Int. Conf. on Software Engineering and
Application, 2002.

[12] S. Winkler, J. Pilgrim, A survey of traceability in requirements engineering
and model-driven development, Software and Systems Modeling (SoSyM) 9 (4)
(2010) 529-565.

[13] H. van der Aa, H. Leopold, H.A. Reijers, Detecting inconsistencies between
process models and textual descriptions, in: H.R. Motahari-Nezhad,]. Recker,
M. Weidlich (Eds.), Bus. Process Manag. 13th Int. Conf. BPM 2015, Innsbruck,
Austria, August 31, - Sept. 3, 2015, Proc., Springer International Publishing,
Cham, 2015, pp. 90-105.

[14] R.S. Day, Alternative representations, Psychol. Learn. Motiv. 22 (1988) 261-305.

[15] J.M. Polich, S.H. Schwartz, The effect of problem size on representation in de-
ductive problem solving, Mem. Cognit. 2 (4) (1974) 683-686.

[16] S.M. Schwartz, D.L. Fattaleh, Representation in deductive problem-solving: the
matrix., J. Exp. Psychol. 95 (2) (1972) 343.

[17] P. Wright, E. Reid, Written information: some alternatives to prose for express-
ing the outcomes of complex contingencies., J. Appl. Psychol. 57 (2) (1973) 160.

[18] H.R. Ramsey, M.E. Atwood, J.R. Van Doren, Flowcharts versus program de-
sign languages: an experimental comparison, Commun. ACM 26 (6) (1983)
445-449,

[19] T.G. Moher, D. Mak, B. Blumenthal, L. Levanthal, Comparing the comprehensi-
bility of textual and graphical programs, in: Empirical Studies of Programmers:
Fifth Workshop, Ablex, Norwood, NJ, 1993, pp. 137-161.

[20] D.A. Scanlan, Structured flowcharts outperform pseudocode: an experimental
comparison, Software, IEEE 6 (5) (1989) 28-36.

[21] R.E. Mayer, Multimedia Learning, second edition, Cambridge University Press,
Cambridge, UK, 2009.

[22] M. Weber, J. Weisbrod, Requirements engineering in automotive development-
experiences and challenges, in: Requirements Engineering, 2002. Proceedings.
IEEE Joint International Conference on, IEEE, 2002, pp. 331-340.

[23] B. Schidtz, A. Fleischmann, E. Geisberger, M. Pister, et al., Model-based re-
quirements engineering with autoraid., in: GI Jahrestagung (2), Citeseer, 2005,
pp. 511-515.

[24] A. Davis, Just Enough Requirements Management: Where Software Develop-
ment Meets Marketing, Addison-Wesley, 2013.

[25] J. Nicolas, A. Toval, On the generation of requirements specifications from soft-
ware engineering models: a systematic literature review, Inf. Softw. Technol. 51
(9) (2009) 1291-1307.

[26] M. Dumas, W.V. der Aalst, A. ter Hofstede, Process-Aware Information Systems:
Bridging People and Software Through Process Technology, John Wiley & Sons,
New Jersey, 2005.

[27] M. Indulska, P. Green, J. Recker, M. Rosemann, Business Process Modeling: Per-
ceived Benefits, in: A. Laender, S. Castano, U. Dayal, F. Casati, J. Oliveira (Eds.),
Concept. Model. - ER 2009 SE - 34, Lecture Notes in Computer Science, Vol.
5829, Springer Berlin Heidelberg, 2009, pp. 458-471.

[28] H.C. Mayr, C. Kop, D. Esberger, Business Process Modeling and Requirements
Modeling, in: Digit. Soc. 2007. ICDS '07. First Int. Conf., 2007, p. 8.

[29] O. Demirors, C. Gencel, A. Tarhan, Utilizing business process models for re-
quirements elicitation, in: Euromicro Conf. 2003, 2003, pp. 1-4.

[30] C. Monsalve, A. April, A. Abran, Requirements Elicitation Using BPM Notations:
Focusing on the Strategic Level Representation, in: 10th WSEAS Int. Conf. Appl.
Comput. Appl. Comput. Sci., 2011, pp. 235-241.

[31] J.D.LV. Gonzalez,]. Diaz, Business process-driven requirements engineering: a
goal-based approach, in: Proceedings of the 8th Workshop on Business Process
Modeling, 2007, pp. 1-9.

[32] K. Cox, K.T. Phalp, SJ. Bleistein,].M. Verner, Deriving requirements from pro-
cess models via the problem frames approach, Inf. Softw. Technol. 47 (5)
(2005) 319-337.

[33] S. Malik, I.S. Bajwa, Back to origin: transformation of business process models
to business rules, in: M. La Rosa, P. Soffer (Eds.), Bus. Process Manag. Work.
BPM 2012 Int. Work. Tallinn, Est. Sept. 3, 2012. Revis. Pap., Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2013, pp. 611-622.

[34] O. Turetken, O. Su, O. Demirors, Automating software requirements generation
from business process models, in: Proc. 1st Conf. Princ. Softw. Eng., Buenos
Aires, Argentina, 2004, pp. 1-16.

[35] A. Coskuncay, B. Aysolmaz, O. Demirors, O. Bilen, I. Dogan, Bridging the gap
between business process modeling and software requirements analysis: a
case study, in: MCIS 2010 Proc., 2010, p. Paper 20.

[36] R. Davis, E. Brabander, ARIS Design Platform Getting Started with BPM,
Springer, London, 2007.

[37] T. Specht, J. Drawehn, M. Thrdnert, S. Kiithne, Modeling cooperative busi-
ness processes and transformation to a service oriented architecture, in: Proc.
Seventh IEEE Int. Conf. E-Commerce Technol., IEEE, Munich, Germany, 2005,
pp. 249-256.

[38] C.M. Chiao, V. Kunzle, M. Reichert, Integrated modeling of process- and data-
centric software systems with PHILharmonicFlows, in: Commun. Bus. Process
Softw. Model. Qual. Understandability, Maintainab. (CPSM), 2013 IEEE 1st Int.
Work., 2013, pp. 1-10.

[39] B. Berenbach, D.J. Paulish, J. Kazmeier, A. Rudorfer, Software & Systems Re-
quirements Engineering: In Practice, Vol. 29, McGraw-Hill, 2009.

[40] L. Hunnebeck, ITIL Service Design, 2nd edition, The Stationery Office, 2011.

[41] G. Hardy, Using IT governance and COBIT to deliver value with IT and respond
to legal, regulatory and compliance challenges, Inf. Secur. Tech. Rep. 11 (1)
(2006) 55-61.

[42] M.L. Smith, J. Erwin, Role and Responsibility Charting (RACI), Technical Report,
Project Management Forum (PMForum), 2005.

[43] COSMIC, The COSMIC Functional Size Measurement Method Version 4.0 Mea-
surement Manual, Technical Report, The Common Software Measurement In-
ternational Consortium (COSMIC), 2014.

[44] E. Insfran, O. Pastor, R. Wieringa, Requirements engineering-based conceptual
modelling, Requir. Eng. 7 (2) (2002) 61-72.

[45] S. Goedertier,]J. Vanthienen, Declarative process modeling with business vo-
cabulary and business rules, in: R. Meersman, Z. Tari, P. Herrero (Eds.), Move
to Meaningful Internet Syst. 2007 OTM 2007 Work. SE - 83, Lecture Notes in
Computer Science, Vol. 4805, Springer Berlin Heidelberg, 2007, pp. 603-612.

[46] E. Reiter, R. Dale, Building applied natural language generation systems, Nat.
Lang. Eng. 3 (1997) 57-87.

[47] E. Reiter, Nlg vs. templates, in: Proceedings of the 5th European Workshop on
Natural Language Generation, 1995, pp. 95-106.

[48] K.V. Deemter, M. Theune, E. Krahmer, Real vs . template-based natural lan-
guage generation: a false opposition? Comput. Linguist. 31 (2003) 15-24.

[49] H. Leopold, S. Smirnov, J. Mendling, On the refactoring of activity labels in
business process models, Inf. Syst. 37 (5) (2012) 443-459.

[50] D. Klein, C.D. Manning, Accurate unlexicalized parsing, 41st Meeting Assoc
Comput. Linguist. (2003) 423-430.

[51] 1. Benbasat, D.K. Goldstein, M. Mead, The case research strategy in studies of
information systems, MIS Q. 11 (3) (1987) 369-386.

[52] RXK. Yin, Case Study Research: Design and Methods, 3rd Edition (Applied Social
Research Methods, Vol. 5), SAGE Publications, Inc, 2002.

http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0004
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0005
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0011
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0013
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0014
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0017
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0018
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0019
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0020
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0021
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0022
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0023
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0025
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0026
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0028
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0029
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0031
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0032
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0033
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0035
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0036
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0037
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0038
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0039
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0040
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0041
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0042
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0043
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0044
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0045
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0046
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0047
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0048
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0049
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0050
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0051
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0052
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0052

28 B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29

[53] J. Recker, Scientific Research in Information Systems: A Beginner's Guide,

[56] X. Lu, Automatic analysis of syntactic complexity in second language writing,
Springer-Verlag Berlin Heidelberg, 2013. Int. J. Corpus Linguist. 15 (4) (2010) 474-496.
[54] D. Firesmith, Specifying good requirements, J. Object Technol. 2 (4) (2003) [57] M. Bollmann, Adapting simplenlg to german, in: Proceedings of the 13th Eu-
77-87.

ropean Workshop on Natural Language Generation, Association for Computa-

[55] D. Zowghi, V. Gervasi, The three cs of requirements: consistency, complete- tional Linguistics, 2011, pp. 133-138.

ness, and correctness, in: International Workshop on Requirements Engineer-

ing: Foundations for Software Quality, Essen, Germany: Essener Informatik
Beitiage, 2002, pp. 155-164.

http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0053
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0054
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0055
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0056
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0057
http://refhub.elsevier.com/S0950-5849(17)30206-9/sbref0057

B. Aysolmaz et al./Information and Software Technology 93 (2018) 14-29 29

Dr. Banu Aysolmaz is an assistant professor at the Accounting and Information Management Department, Maastricht University. She worked as a post-doctoral researcher
and a Marie Curie fellow with the Department of Computer Science at the Vrije Universiteit Amsterdam. Her research interests include business process modeling, software
engineering, process model comprehension, and visualization. She obtained her PhD in information systems from Middle East Technical University (METU), Ankara, Turkey.
Her doctoral thesis received 2014 METU year of the thesis award. She worked as a consultant in the areas of business process management and software process improvement
in many organizations in Turkey.

Dr. Henrik Leopold is an assistant professor with the Department of Computer Science at the Vrije Universiteit Amsterdam. His research interests include business process
modeling, natural language processing techniques, process model matching, and process architectures. His research has been published, among others, in Decision Support
Systems, IEEE Transactions on Software Engineering, and Information Systems. His doctoral thesis received the German Targion Award 2014 for the best dissertation in the
field of strategic information management.

Dr. Hajo A. Reijers is a full professor at Vrije Universiteit Amsterdam, where he heads the Information Management & Software Engineering group of the Computer Science
department. He is also a part-time, full professor at the Department of Mathematics & Computer Science of Eindhoven University of Technology. His expertise is in enterprise
systems, business process management, process mining, conceptual modeling, and workflow technology. Reijers has published over 150 scientific papers, chapters in edited
books, and articles in professional journals.

Dr. Onur Demirdrs is a full professor at the Department of Computer Engineering, Izmir Institute of Technology and a visiting professor at the School of Computer Science
and Engineering, NSWU. He worked as the head of the software management program at the Middle East Technical University, and lead the Software Management Research
Group and Bilgi Grubu Consultancy. His work focuses on software process improvement, software project management, software engineering education, software engineering
standards, software measurement, and organizational change management.

	A semi-automated approach for generating natural language requirements documents based on business process models
	1 Introduction
	2 Background
	2.1 The value of requirements generation
	2.2 Process models and requirements engineering

	3 Conceptual approach
	3.1 Preparation phase
	3.2 Requirements document generation
	3.2.1 Sentence generation
	3.2.2 Sentence refinement
	3.2.3 Structuring of the document

	4 Evaluation
	4.1 Overview of cases
	4.2 Implementation
	4.3 Conduct of the case study
	4.4 Findings
	4.4.1 Readability
	4.4.2 Completeness
	4.4.3 Consistency
	4.4.4 Maintainability

	4.5 Comparison of manually created and generated requirements
	4.6 Limitations

	5 Adaptation to other languages
	6 Implications
	7 Conclusion
	 Acknowledgement
	 References

