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ABSTRACT

AIRFOIL BOUNDARY-LAYER STABILITY CALCULATIONS AND TRANSITION

PREDICTION

This study involves research and understanding of airfoil laminar boundary-layer

transition based on three codes in written FORTRAN: panel code, boundary-layer code

and stability code, namely HSPM, BLP2D and STP2D. All codes were connected to

each other via inputs-outputs in the one code, called as PBS code. Firstly, the inviscid

pressure distribution was obtained using Hess-Smith panel method. Secondly, differen-

tial boundary-layer equations were solved for obtained inviscid pressure distribution from

panel code. Thirdly, stability calculation was performed using obtained boundary velocity

profiles from boundary-layer code at each streamwise stations. Finally, the onset of tran-

sition location was predicted using en method based on linear small-disturbance theory.

The PBS code was first validated on NACA 0012 and NACA 0015 airfoils making com-

parison with an experimental work in literature. After validation, three different thick air-

foils designed for wind turbine applications were analyzed in terms of lift coefficient and

transition location, namely NACA 64-618, DU91W250 and DU4050. The results were

compared with XFoil’s viscous and inviscid solutions and experimental measurements

based on infrared thermography. It was seen that amplified disturbance frequency magni-

tude, amplification starting point and choice of threshold value are key points to correctly

predict transition point for en method. Additionally, it was found that followings: First,

as airfoil thickness increases, the need of interactive boundary-layer method increases for

accurate lift coefficient; however, transition point can be still correctly predicted using in-

viscid pressure distribution. Second, at high angle of attacks and high Reynolds numbers,

laminar boundary-layer separation point can be directly taken as transition point instead

of using the en method.
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ÖZET

KANAT KESİTİ SINIR-TABAKASININ KARARLILIK HESAPLAMALARI VE
GEÇİŞ TAHMİNİ

Bu çalışma, kanat-profili laminer sınır-tabakası geçişini anlayabilmek için FOR-

TRAN dilinde yazılmış üç ayrı kod üzerine kuruludur: panel kod, sınır-tabakası kodu ve

kararlılık kodu, bu kodlar sırasıyla HSPM, BLP2D and STP2D’dir. Bu üç kod birbiriyle

girdi-çıktı ilişkisi üzerinden PBS kod olarak adlandırılan tek bir kodda bağlanmıştır. İlk

olarak, kanat-profil kesitinde Hess-Smith panel metodu kullanılarak inviskoz çözüm yapıl-

mış, ikinci olarak, elde edilen basınç dağılımı ile sınır-tabakası denklemleri çözdürülerek

viskoz çözüm yapılmıştır. Üçüncü olarak, akış doğrultusunda her bir istasyon için, elde

edilen sınır-tabakası hız profilleri kullanılarak kararlılık denklemleri çözdürülmüş ve son

olarak geçiş tahmini için doğrusal kararlılık teorisine dayanan en yöntemi kullanılmıştır.

PBS kodu öncelikle NACA 0012 ve NACA 0015 kanat-kesitleri üzerinde sınanarak, lit-

eratürdeki deneysel bir çalışma ile doğrulaması yapılmıştır. Doğrulamadan sonra, rüzgar

türbini uygulamaları için özel olarak tasarlanmış kalın üç farklı kanat-profilinin, NACA

64-618, DU91W250 ve DU4050, analizleri yapılarak kaldırma katsayısı değeleri ve geçiş

noktası tahminleri hücum açısına göre çizdirilmiştir. Sonuçlar XFoil’in viskoz ve inviskoz

çözümleri ile kızılötesi termografiye dayanan deneysel sonuçlarla kıyaslanmıştır. Doğru

bir geçiş tahmini yapabilmek için en geçiş tahmini yönteminde, amplifikasyon frekans

büyüklüğü, amplifikasyon başlama yeri ve kritik değer seçiminin geçiş noktasını belir-

lemede anahtar rol oynadığı görülmüştür. Ayrıca şu bulgular saptanmıştır: Birinci bulgu,

kanat-profil kalınlığı arttıkça, gerçekçi kaldırma katsayısı değerleri için etkileşimli sınır-

tabakası yönte-mine duyulan ihtiyacın arttığı, bununla birlikte, geçiş noktasının, inviskoz

basınç dağılımı kullanılarak bile doğru bir şekilde tahmin edilebileceğidir. İkinci bulgu,

yüksek hücum açılarında ve Reynolds sayılarında, en yöntemi kullanmak yerine, laminer

ayrılma noktasının doğrudan geçiş noktası tahmininde kullanılabileceğidir.

v



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1. PROLOGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Motivation of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3. Outline of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 2. LINEAR STABILITY THEORY AND TRANSITION . . . . . . . . . . . . . . 6

2.1. Laminar Boundary-Layer Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Fundamentals of Incompressible Stability Theory . . . . . . . . . . . . . . . . . . 12

2.3. The Orr-Sommerfeld Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1. The Solution Properties of the Orr-Sommerfeld Equation . . . . . . 20

2.3.2. Inviscid Solution of the Orr-Sommerfeld Equation. . . . . . . . . . . . . . 22

2.4. Numerical Solution of the Orr-Sommerfeld Equation . . . . . . . . . . . . . . . 27

2.5. Transition Prediction and en Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1. Transition and Prediction Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.2. en Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CHAPTER 3. APPLICATIONS OF PANEL-BL-STABILITY (PBS) CODE . . . . . . . 42

3.1. NACA 4-digit Airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1. NACA 0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.2. NACA 0015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2. Wind Turbine Airfoils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1. NACA 64-618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2. DU91W250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.3. DU4050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



CHAPTER 4. EPILOGUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2. Suggestions for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDICES

APPENDIX A. PBS CODE FLOW DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

APPENDIX B. CFD SIMULATION OF DU91W250 AIRFOIL . . . . . . . . . . . . . . . . . . . . . 65

vii



LIST OF FIGURES

Figure Page

1.1 Flow around an airfoil. Adopted fromWanthanadamkerng (2017) . . . . . . . . . . . . . . . 1

1.2 Local skin-friction distributions for various transition locations. Earlier tran-

sition means higher drag value. Results are obtained from boundary-

layer code for NACA 0012, R = 1x106, α = 2◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Drag coefficients as a function of transition point. Results are obtained from

XFOIL for NACA 0012, R = 1x106, α = 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Boundary-layer velocity vectors on the airfoil. Note that there are two dis-

tinct velocity shapes. From left to right, flow is turned from laminar to

turbulent. Results from CFD simulation for DU91W250, R = 3x106,

α = 8◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Boundary-layer velocity profiles over an airfoil. From left to right, laminar,

separated and turbulent velocity profiles. Results from boundary-layer

code for DU91W250, R = 3x106, α = 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 From Navier-Stokes equations to boundary-layer equations including viscid-

inviscid coupling. Adapted from Cebeci and Cousteix (2005) . . . . . . . . . . . . 11

2.2 Streamline sketch of perturbation waves on a flat-plate boundary-layer at zero

incidence. U(y), basic flow. U(y) + u′(y), perturbed velocity. Adopted

from Schlichting and Gersten (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Typical stability diagrams for spatial amplification theory. Adapted from Ce-

beci and Cousteix (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Stages of laminar-turbulent transition. Note that location of Rind and Rcr.

Adopted from Schlichting and Gersten (2017) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Typical neutral stability curves for viscous-inviscid stability. Adopted from

Mack (1984) and Schlichting and Gersten (2017) . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Finite-difference grid for box method. Both of h & k can be nonuniform.

yj−1/2 = 1/2(yn + yn−1) Adapted from Cebeci and Cousteix (2005) . . . . . 29

2.7 Illustration of transition point calculation for the en method. Adapted from

Cebeci and Cousteix (2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Variation of the integrated amplification rates for NACA 0012, at zero angle

of attack, R = 3x106. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



2.9 Transition point location variation with respect to its physical frequency for

different ncrit values. NACA 0015, α = 0, R = 3x106. . . . . . . . . . . . . . . . . . . . 41

3.1 PBS code short flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 NACA 0012 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Upper surface transition points at various angle of attacks for NACA 0012

at two different Reynolds numbers, compared with XFoil and Gregory

and O’Reilly (1973). Note that transition points were given by laminar

boundary-layer separation after 5 ◦ angle of attack. . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Lift coefficients at various angle of attacks for NACA 0012 at two different

Reynolds numbers, compared with XFoil and Gregory and O’Reilly

(1973) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 NACA 0015 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 Upper surface transition points for NACA 0015 atR = 3x106, compared with

XFoil result and Baek and Fuglsang (2009)’s experimental work. Note

that transition points were given by laminar boundary-layer separation

after 7 ◦ angle of attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Three different airfoils dedicated for wind turbine applications. From root

section to tip section of NREL 5 MW Rotor blade. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 NACA 64-618 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Lift coefficients and transition points as function of angle of attack for NACA

64-618, compared with XFoil and Baek and Fuglsang (2009)’s infrared

thermography measurements. Note that transition points were given by

laminar boundary-layer separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.10 DU91W250 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.11 Lift coefficients and transition points as function of angle of attack for DU91W250,

compared with XFoil and Baek and Fuglsang (2009)’s infrared ther-

mography measurements. Note that transition points were given by

laminar boundary-layer separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 DU4050 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Lift coefficients and transition points as function of angle of attack for DU4050,

compared with XFoil and Baek and Fuglsang (2009)’s infrared ther-

mography measurements. Note that transition points were given by

laminar boundary-layer separation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Modified short flow diagram for interactive method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



4.2 Wake behind airfoil. Blue dashed line indicates boundary-layer. Adapted

from XFOIL program. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 PBS code flow diagram with explained inputs-outputs boxes. . . . . . . . . . . . . . . . . . . . 61

A.2 Stability code in Simply Fortran compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 Mesh views for DU91W250, R = 3x106, α = 8◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.2 Pressure contours and velocity vectors for DU91W250, R = 3x106, α = 8◦. . . 67

x



LIST OF TABLES

Table Page

2.1 n-critical values for different turbulence intensity values as suggested by Mack

(1977)’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Known and calculated values at different points for en method. Superscript

shows that which variable belongs to which point. . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



LIST OF SYMBOLS

R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Reynolds number

δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . boundary-layer thickness

δ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . displacement thickness

θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . momentum thickness

H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shape factor

p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pressure

ue, u0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . edge-velocity

U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . free-stream velocity, laminar boundary-layer solution

c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . propagation velocity, chord length

u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . disturbance velocity, x-comp.

v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . disturbance velocity, y-comp.

α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . wave number, angle of attack

ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensionless wave frequency

ω∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dimensional wave frequency

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kinematic viscosity

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . characteristic length

Tu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . turbulence intensitiy

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . integrated amplification rate

ncrit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . treshold amplification rate

xtr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . transition location

Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pressure coefficient

Cdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . skin-friction coefficient

Cdp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . pressure drag coefficient

cf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . local skin-friction coefficient

CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . lift coefficient

CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . drag coefficient

LE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . leading edge

TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . trailing edge

xii



CHAPTER 1

PROLOGUE

1.1. Introduction

Airfoil is a cross-section of a blade and it has water drop shape. This simple

geometric shape is involved in many different applications from wind turbine rotor to

aircraft blade so airfoil design in terms of better aerodynamics becomes important. Many

phenomena happens flow around an airfoil (See Figure 1.1). Flow stagnates at the airfoil

nose, it is split to upper and lower part, it creates pressure gradients, boundary-layer

develops and grows along airfoil surface, it starts as laminar regime, but it turns somehow

turbulent flow, it may separate from the airfoil wall before turning the turbulent or it is

reattached to the wall, and it creates wake behind the airfoil. Therefore, all phenomena

must be carefully investigated and solved (if possible) for better design purposes like high

lift, low drag and delayed stall performance.

Figure 1.1. Flow around an airfoil. Adopted fromWanthanadamkerng (2017)

Actually, the flow over airfoil is governed by the Navier-Stokes equations, which

is equation of Newtonian viscous fluid motion. The most straightforward approach is to

solve directly these equations with appropriate boundary conditions. Unfortunately, there

is no exist analytical solution and it requires to solve numerically with a computer but
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this is very expensive, time-consuming and impracticable for 3D flow for engineering

purposes. Therefore, above phenomena are separately investigated. For example, one

can easily solve the equations of inviscid region to get pressure distribution, and then

can obtain boundary-layer velocity profiles solving boundary-layer equations in laminar

region. Using velocity profiles, stability equations can be solved and transition location

can be predicted based on linear stability theory.

The knowledge of the location of transition is very important in the airfoil design.

Firstly, the transition location determines the magnitude of the frictional drag because

the turbulent boundary layer has higher skin-friction than its laminar boundary-layer. As

clearly seen in Figure 1.2, local skin-friction coefficient values becomes lower as tran-

sition takes place further. For fully laminar case, the skin-friction has lowest magnitude

but the flow is separated, which leads to very high drag. Therefore, the aim in reducing

drag is to maintain laminar flow over the large portion of airfoil avoiding separation.

Figure 1.2. Local skin-friction distributions for various transition locations. Earlier

transition means higher drag value. Results are obtained from boundary-
layer code for NACA 0012, R = 1x106, α = 2◦.
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Figure 1.3 shows total drag value as a function of transition point. As transi-

tion point moves toward the trailing edge (it means delayed transition), both total and

skin-friction drag are reduced but pressure drag (or form drag) remains same. Also, as

indicated the same figure, skin-friction is mainly contributing to the total drag (for small

angle of attacks). Pressure drag becomes very large at stall region (at high angle of at-

tacks). Therefore, if one wants to reduce total drag at low angle of attacks, position of the

transition point must be controlled.

Figure 1.3. Drag coefficients as a function of transition point. Results are obtained
from XFOIL for NACA 0012, R = 1x106, α = 0◦.

Boundary-layer profiles over an airfoil can be obtained from CFD solution for

proper numerical setup. As shown in the Figure 1.4, sharp velocity changes happens

inside the boundary-layer. Red color presents free-stream and above velocities (around 88

m/s), red velocity vectors are uniform but below the some point in the normal direction,

velocity magnitude is decreased until the wall. It is zero at the wall (no-slip boundary

condition). Blue color indicates lowest velocities at very close the wall (around 5 m/s).

In stream-wise direction, from left to right, velocity profiles change in shape. On

the far left velocity profile belongs to laminar boundary-layer because of sharp parabolic

shape. On the far right shape is turbulent boundary-layer since it has flat parabolic shape.

(Also, see Figure 1.5). That’s why, turbulent boundary-layer has higher skin-friction than

laminar boundary-layer. The more results and explanation of CFD setup can be found in

the Appx. B.
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Figure 1.4. Boundary-layer velocity vectors on the airfoil. Note that there are two

distinct velocity shapes. From left to right, flow is turned from laminar

to turbulent. Results from CFD simulation for DU91W250, R = 3x106,
α = 8◦.

Figure 1.5. Boundary-layer velocity profiles over an airfoil. From left to right, lami-

nar, separated and turbulent velocity profiles. Results from boundary-layer
code for DU91W250, R = 3x106, α = 0◦.
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1.2. Motivation of The Thesis

Flat plate boundary-layer solution is a well-known simple equation in fluid me-

chanics since the flow over flat-plate (or Blasius flow) is driven by zero pressure gradient.

On the other hand, airfoil flow involves positive & negative pressure gradients. It is not

possible that airfoil flow solution is given by just a simple equation. It requires numerical

solution of boundary-layer equation. In addition, transition itself is complex phenomena.

The physics underlying on laminar-to-turbulent transition can not be still fully understood

but yet there is a very useful method to predict transition, called as en method. Therefore,

this Master’s thesis solves boundary-layer and stability equations for airfoil flow and pre-

dicts onset of transition based on en method. In a few words, the motivation of this Mas-

ter’s thesis to develop clear understanding on airfoil flow laminar boundary-layer solution

and transition prediction.

1.3. Outline of The Thesis

This Master’s thesis discusses mainly laminar boundary-layer transition on airfoil

flow in four chapters: Chapter 1 introduces basic fluid mechanics subjects with related to

airfoil flow transition. Chapter 2 provides theoretical basis of boundary-layer and stabil-

ity. It involves brief derivation of laminar boundary-layer equations, detailed derivation

of the Orr-Sommerfeld equation and its numerical solution, transition prediction meth-

ods and explanation and usage of en method. Chapter 3 presents results and discussion

of five different airfoils aerodynamics characteristics in terms of lift and transition loca-

tion. Chapter 4 concludes the thesis with findings and gives suggestions for further study.

Appendix A provides PBS (Panel-Boundary layer-Stability) code flow diagram and ex-

planation of the code. Appendix B gives CFD numerical setup of DU91W250 airfoil and

its results. The CFD simulation was just used for illustrative purposes in introduction of

Chapter 1.

5



CHAPTER 2

LINEAR STABILITY THEORY AND TRANSITION

This chapter starts with laminar boundary-layer equations derivation and related

literature review. After an introduction to the basis of incompressible linear stability the-

ory, the detailed study carried on Orr-Sommerfeld equation, which is a backbone equa-

tion for linear stability theory, presented. Derivation and some properties of the Orr-

Sommerfeld equation was discussed and the numerical scheme for eigenvalue-solution

was given. Finally, the chapter ends with brief explanation about transition prediction and

engineering transition prediction tool: the en method.

2.1. Laminar Boundary-Layer Equations

Before beginning to fundamentals of stability theory, it is very convenient to derive

two-dimensional laminar boundary-layer equations, explain the properties of the equa-

tions and give literature survey for numerical solutions. Since boundary-layer stability

calculations require the solution of the laminar-flow boundary layer, it would be very

appropriate to start derivation of the laminar boundary-layer equations.

When air flows along an airfoil surface or more generally a viscous fluid flow

past a rigid surface or fixed solid wall, the essential condition is a zero relative velocity

between fluid and wall (no-slip condition). If the viscosity is very small but it is not

negligible, the fluid velocity changes rapidly from zero to its mainstream value at a very

short distance from the wall. These narrow region adjacent to the solid surfaces, which

sharp changes of velocity occur, is called boundary layer. As a consequence of a sharp

change of the velocity, even if the viscosity itself is very small, it indicates an existence of

a large gradient of shearing stress, which produces important effects on the mainstream

flow.

It should be emphasized that the existence of a well-defined boundary-layer for

laminar flow is a sufficiently small viscosity, and therefore sufficiently large Reynolds

number but at the same time, this Reynolds number should be small enough to maintain

a laminar flow.
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The continuity and Navier-Stokes equations for a two-dimensional, incompress-

ible flow can be written as (for Cartesian coordinates x,y):

∂u

∂x
+
∂v

∂y
= 0 (2.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
(2.1c)

Eqs. (2.1) must be written as dimensionless form to obtain Reynolds number

in the equation for employing order-of-magnitude analysis. Define the non-dimensional

variables as:

x∗ =
x

L
y∗ =

x

δ
u∗ =

u

U

v∗ =
v

U

L

δ
p∗ =

p

ρU2
t∗ = t

U

L

(2.2)

where L is the horizontal characteristic length, δ is the boundary layer thickness

and U is the mainstream flow velocity.

Using Eqs. (2.2), the non-dimensional form of the Eqs. (2.1) can be obtained as:

∂u∗

∂x∗
+
∂v∗

∂y∗
= 0 (2.3a)

∂u∗

∂t∗
+ u∗

∂u∗

∂x∗
+ v∗

∂u∗

∂y∗
= −∂p

∗

∂x∗
+

ν

UL

∂2u∗

∂(x∗)2
+

ν

UL

(
L

δ

)2
∂2u∗

∂(y∗)2
(2.3b)

∂v∗

∂t∗
+ u∗

∂v∗

∂x∗
+ v∗

∂v∗

∂y∗
= −

(
L

δ

)2
∂p∗

∂y∗
+

ν

UL

∂2v∗

∂(x∗)2
+

ν

UL

(
L

δ

)2
∂2v∗

∂(y∗)2
(2.3c)

Let define Reynolds number as:

R =
UL

ν
(2.4)

Since viscous forces balance inertia and pressure gradient inside the boundary

layer, inertia and pressure terms & viscous terms should have same order in the equations.

ν

UL

(
L

δ

)2

= O(1) (2.5)

7



For convenient, (*) sign dropped from the equation and using Eq. (2.5) and using

definition of Reynolds number, Eq. (2.3) becomes:

∂u

∂x
+
∂v

∂y
= 0 (2.6a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

R

∂2u

∂x2
+
∂2u

∂y2
(2.6b)

1

R

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+

1

R2

∂2v

∂x2
+

1

R

∂2v

∂y2
(2.6c)

When Reynolds number is very large but not infinite (limit R → ∞), the Eqs.

(2.6) reduce to:

∂u

∂x
+
∂v

∂y
= 0 (2.7a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
∂2u

∂y2
(2.7b)

−∂p
∂y

= 0 (2.7c)

In terms of the dimensional variables, the boundary-layer governing equations for

two dimensional, laminar flows are:

∂u

∂x
+
∂v

∂y
= 0 (2.8a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
(2.8b)

−1

ρ

∂p

∂y
= 0 (2.8c)

The required boundary conditions are:

y = 0, u = 0 v = vw(x) (2.9a)

y = δ, u = ue(x) (2.9b)

where ue is edge-velocity, vw is a transpiration velocity, which equals to zero for

solid wall but non-zero for porous wall employing blowing or suction.
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The important remark according to Eq. (2.8c) is that pressure is constant across

the boundary layer. This is known as thin-layer approximation. Also, pressure change in

x-direction, dp/dx can be written directly related to edge-velocity absorbed into boundary

condition, ue via Bernoulli’s equation:

dp

dx
= −ρuedue

dx
(2.10)

For a two-dimensional laminar flow, the momentum equation, Eq. (2.8b) and

the continuity equation, Eq. (2.8a), are two equations for the two variables u, v but the

Navier-Stokes equations, Eqs. (2.1), are three equations for three variables u, v and p. Be-

cause of ”parabolic” nature of the boundary-layer equations, disturbances propagate only

downstream and not upstream unlike ”elliptical” two-dimensional Navier-Stokes equa-

tions with disturbances propagating upstream as well as downstream. The elimination of

pressure as a variable and disappearing of ∂2u/∂x2 term allows the change in equation

type from elliptical to parabolic, which greatly changes numerical computations.

The boundary layer equations as in (Eq. 2.8) are non-linear partial differential

equations and it requires a numerical solution. In the pre-computer era, the integral form

of boundary layer equations was given by Von Karman in his momentum integral equa-

tion. Later, Pohlhausen and Thwaites obtained an approximate solution of momentum

integral equation. This gives a quick rough answer for boundary layer growth. For a

special case, these partial differential equations can be reduced to a single ordinary differ-

ential equation, called Falkner-Skan Equation. The numerical solution of Falkner-Skan

Equation gives similarity solution and it is usually used as initial conditions for the numer-

ical solution of the boundary layer equation with an arbitrary pressure gradient. On the

other hand, for the solution of differential form, there are two numerical methods, mostly

used in literature: Crank-Nicolson Method and Keller’s Box Method. A set of partial

differential equations is reduced to a set of algebraic equations using both methods and it

involves iterative matrix solution. Using one of these methods, one can develop a specific

computer program. There are several available computer programs in the literature by

Moran (1984), Panton (1996) and Cebeci and Cousteix (2005). An extensive discussion

of laminar boundary layers may be found in the book of Rosenhead (1963). Schlichting

and Gersten (2017)’s book (modern edition) contains detailed chapters on both laminar &

turbulent boundary layers and transition.

Figure 2.1 is prepared to gain a clear overview about boundary-layer equations.
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Beginning from full time-dependent Navier Stokes equations, boundary-layer equations

are the reduction of Navier-Stokes equations after specific simplifications such as thin-

layer approximation. For 2-D, incompressible and laminar case, Fig. 2.1 is extended

with the solution of laminar boundary-layer equations. As discussed above, in the pre-

computer era, Eqs. (2.8) are integrated and ”momentum integral equation” is obtained

by Von Karman. Momentum integral equation (single ordinary differential equation) is

solved numerically by Pohlhausen and Thwaites. For the direct attempt of solving differ-

ential form, Eqs. (2.8) are firstly reduced to a single ordinary differential equation, called

the Falkner-Skan equation by similarity transformation. Since the Falkner-Skan equa-

tion is homogeneous, it can be solved comparatively easily. Using a similar procedure,

boundary-layer equations and their boundary conditions, respectively Eqs. (2.8) and Eqs.

(2.9) can be written as a single ordinary differential equation but non-homogeneous. In

computer era, different numerical methods are developed for solving the boundary-layer

equations in differential form, however, the Crank-Nicolson and Keller’s box methods are

the most convenient ones because they allow significantly larger time steps and uncondi-

tionally stable as accuracy maintained (Cebeci and Cousteix (2005)).

Additionally, although it is out of scope of this thesis, viscid-inviscid coupling

summarized as in the same Fig. 2.1. Viscid-inviscid coupling involves that flow domain

is divided to two main parts: potential flow and boundary-layer flow, and it is modeled by:

panel methods and solution of boundary-layer equations, respectively. Using interaction

methods, it combines interactively separated flow domain and it continues to solve until

a convergence is obtanied. Detailed explanation can be found in the book of Cebeci

and Cousteix (2005) and in the Master thesises by Ozgen (1994), Mersinligil (2006) and

Smith (2011). Also, there exists widely used a computer program by M. Drela and H.

Youngren for viscous-inviscid analysis and transition prediction: XFOIL 6.99 (by year

of 2013), which is interactive program for the design and analysis of subsonic isolated

airfoils. Explanation on XFOIL code can be found in Drela (1989). In the fundamental

paper of Drela and Giles (1987), ISES code, which is basis of XFOIL program, was

explained for transonic and low Reynolds number airfoils. XFOIL uses a two-equation,

integral, laminar/turbulent boundary-layer method based on dissipation closure and an

Orr-Sommerfeld-based transition prediction formulation. The viscous formulation is fully

coupled with the inviscid flow that is governed by a streamline-based Euler formulation.

Although XFOIL is an old-school program, today, it is still widely used by researchers

and designers.

10



F
ig

u
re

2
.1

.
F

ro
m

N
av

ie
r-

S
to

k
es

eq
u
at

io
n
s

to
b
o
u
n
d
ar

y
-l

ay
er

eq
u
at

io
n
s

in
cl

u
d
in

g

v
is

ci
d
-i

nv
is

ci
d

co
u
p
li

n
g
.

A
da

pt
ed

fr
om

C
eb

ec
ia

nd
C

ou
st

ei
x

(2
00

5)

11



2.2. Fundamentals of Incompressible Stability Theory

In engineering fluid flows, there are two distinct flow regimes: laminar flows and

turbulent flows. These two flow regimes show very different characteristics in terms of

velocity profiles, momentum and heat transfer. Mostly, fluid flows are turbulent rather

than laminar or it can be said that starting from laminar regime, most fluid flows some-

how turn turbulence regime at certain critical Reynolds number. The most fundamental

questions are: Why does turbulent flow exist? How can a laminar flow completely change

to a different flow regime? Under what conditions, this change is happened? How can the

location of flow regime change or namely, ”transition” be predicted? The object of sta-

bility & transition has been studied by several researcher and it still continues as a current

topic by both academic researcher and practical designers.

Let’s start with the definition of ”stability”. It depends on answer of that question:

Can a given physical state (e.g. laminar flow along an airfoil nose) withstand a exter-

nal and internal disturbances (e.g. free-stream disturbance (external), or perturbations in

boundary-layer(internal)) and the state still return to its original stand? If yes, it is stable;

if not, the physical system may be unstable. That’s exact job of the small-disturbance

stability analysis to test the laminar flow against a particular disturbance (See Fig. 2.2).

Figure 2.2. Streamline sketch of perturbation waves on a flat-plate boundary-layer at

zero incidence. U(y), basic flow. U(y)+u′(y), perturbed velocity. Adopted
from Schlichting and Gersten (2017)
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After Prandtl’s boundary-layer paper in 1904, one of the earliest investigations

about viscous theory of boundary-layer instability was given by Tollmien (1929) and

Schlicting (1933). However, small-disturbance linear stability theory received little ac-

ceptance until the experiment of Schubauer and Skramstad (1947). They have demon-

strated appearance of instability waves in a boundary-layer, which is called Tollmien-

Schlicting (TS) waves and connection with transition. After this experiment, linear the-

ory has gained popularity. In 1956, Smith and Gamberoni, and Van Ingen was separately

proposed transition prediction method based on linear stability theory as an engineering

tool,which is now called as en method. This semi-empirical transition prediction method

is still most widely used engineering approach for prediction of laminar boundary-layer

transition (Mack (1984)).

As a summary, the small-disturbance theory doesn’t predict any non-linear process

by which triggers the flow from laminar to turbulent or nature of the turbulence. Instead, it

point outs that which shapes of velocity profiles are stable or unstable, which disturbance

frequencies amplify or decay in space or time, and how the parameters affect the flow to

promote or delay the laminar-to-turbulence transition (Cebeci and Cousteix (2005)).

2.3. The Orr-Sommerfeld Equation

Stability analysis and transition prediction can be carried out using several ap-

proaches such as small-disturbance theory or utilizing the solutions of the unsteady Navier-

Stokes equations (called direct numerical simulation, DNS) or using empirical correla-

tions. However, most widely used one is small-disturbance theory for the stability anal-

ysis and en method for the transition prediction since only these are based on fast and

simple engineering calculations methods. Small-disturbance stability analysis for incom-

pressible, two-dimensional, laminar flow may be listed in following steps (White (1991)):

1) Obtain a basic solution flow, U , V and P . (in this case, the solutions of laminar

boundary-layer equations)

2) Add a disturbance, û, v̂ and p̂.

3) Find the disturbance equations. (linearize if they are non-linear)

4) Select disturbance form. (in this case, a traveling wave)

5) Find the stability equation.

6) Solve the eigenvalue problem for growth or decay rates.
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7) Obtain neutral stability curve and determine stability conditions.

Let’s start stability analysis based on small-disturbance theory. Assume that steady

solutions of Eqs. (2.8) have found: U , V and P . Define the small disturbances: û, v̂ and

p̂, superimpose on basic flow solution:

ū = U + û (2.11a)

v̄ = V + v̂ (2.11b)

p̄ = P + p̂ (2.11c)

Add the superimposed variables into Navier-Stokes equations. Substitute Eqs.

(2.11) into Eqs. (2.1):

∂(U + û)

∂x
+
∂(V + v̂)

∂y
= 0 (2.12a)

∂(U + û)

∂t
+ (U + û)

∂(U + û)

∂x
+ (V + v̂)

∂(U + û)

∂y

= −1

ρ

∂(P + p̂)

∂x
+ ν

(
∂2(U + û)

∂x2
+
∂2(U + û)

∂y2

) (2.12b)

∂(V + v̂)

∂t
+ (U + û)

∂(V + v̂)

∂x
+ (V + v̂)

∂(V + v̂)

∂y

= −1

ρ

∂(P + p̂)

∂y
+ ν

(
∂2(V + v̂)

∂x2
+
∂2(V + v̂)

∂y2

) (2.12c)

In order to simplify Eqs. (2.12), basic flow is assumed as a parallel-flow, it means

that U = U(y) and V = 0. Since the steady, basic flow itself must satisfy the Navier-

Stokes equations, with neglecting non-linear terms, Eqs. (2.12) can be written as:

∂û

∂x
+
∂v̂

∂y
= 0 (2.13a)

∂û

∂t
+ U

∂û

∂x
+ v̂

dU

dy
= −1

ρ

∂p̂

∂x
+ ν

(
∂2û

∂x2
+
∂2û

∂y2

)
(2.13b)

∂v̂

∂t
+ U

∂v̂

∂x
= −1

ρ

∂p̂

∂y
+ ν

(
∂2v̂

∂x2
+
∂2v̂

∂y2

)
(2.13c)
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Eqs (2.13) are linear disturbance equations for û, v̂ and p̂. U and dU/dy are known

values and no more than variable coefficients.

The disturbances are assumed to be a single partial perturbations (or modes) and

each mode is a wave propagating which has an amplitude varies in y-axis. Using complex

notation, the disturbances can be written as:

û = u(y) exp[i α (x− ct)] (2.14a)

v̂ = v(y) exp[i α (x− ct)] (2.14b)

p̂ = p(y) exp[i α (x− ct)] (2.14c)

where α is wave number, c is propagation speed, ω is wave frequency, ω = αc.

This disturbance wave is called as Tollmien-Schlicting wave, which is the first sign of

the laminar-flow instabilities. If Eqs. (2.14) is substituted into Eqs. (2.13) and taking

derivatives, the following linear ordinary differential equations with complex coefficients

are obtained:

iαu+ v′ = 0 (2.15a)

iαu(U − c) + U ′v′ = − i

ρ
αp+ ν(u′′ − α2u) (2.15b)

iαv(U − c) = −1

ρ
αp′ + ν(v′′ − α2v) (2.15c)

Eqs. (2.15) are two-dimensional, parallel, linear disturbances equations in terms

of wave number, α and propagation speed, c. Prime denotes differentiation with respect to

y. Before starting to manipulation of disturbances equations to find the Orr-Sommerfeld

equation, the following question may arise: Why didn’t we select disturbances as a three-

dimensional wave instead of two-dimensional wave or how do we make sure that two-

dimensional waves are sufficient to lead the instabilities for two-dimensional flow? An-

swer was given by H. Squire in 1933:

Squire’s Theorem. If a growing three-dimensional disturbance can be found at a given

Reynolds number, then a growing two-dimensional disturbance exists at a lower Reynolds
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number (Fielding (2008)).

According to Squire’s theorem, the two-dimensional disturbances are more unsta-

ble than three-dimensional disturbances (Cebeci and Cousteix (2005)) so two-dimensional

waves are the sufficient for two-dimensional flow, even if this stability analysis were car-

ried out for three-dimensional flow, two-dimensional disturbances would be well enough

for three-dimensional flow.

Eqs. (2.15) are three linear ordinary differential equations for u, v and p. Elim-

ination of u and v gives a simple equation for the disturbance pressure fluctuation. The

followings can be obtained from Eq. (2.15a):

u = − v′

iα
, u′ = −v

′′

iα
, u′′ = −v

′′′

iα
(2.16)

Insert Eq. (2.16) into Eq. (2.15b) and then multiply with −iα:

−iαv′(U − c) + iαU ′v =
α2

ρ
p− ν(v′′′ − α2v′) (2.17)

Take derivative Eq. (2.15c) with respect to y:

iαv′(U − c) + iαU ′v = −1

ρ
p′′ + ν(v′′′ − α2v′) (2.18)

Sum Eq. (2.17) and Eq. (2.18) and obtain the disturbance pressure fluctuation

equation:

p′′ − α2p = −2iαρvU ′ (2.19)

Since U ′ is zero outside of the boundary-layer, the solution of Eq. (2.19) must be

form as:

p(y) = a e−αy + b eαy (2.20)

However, the disturbance pressure should vanish at infinity, when y → ∞, p = 0,

it follows that b = 0.
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p(y) = a e−αy (2.21)

According to Eq. (2.21), the pressure fluctuation decays exponentially outside of

the boundary-layer, but it is proportional to dU/dy inside of the boundary-layer according

to Eq. (2.19).

To obtain the Orr-Sommerfeld equation, elimination of u and p from Eqs. (2.15)

requires more algebraic manipulations than obtaining disturbance pressure equation. Be-

gin with taking the derivative of Eq. (2.15b) with respect to y:

iαu′(U − c) + iαU ′u+ U ′′v + U ′v′ = − i

ρ
p′ + ν(u′′′ − α2u′) (2.22)

From Eq. (2.15c), leave p′ alone on the left side:

p′ = −iαvρ(U − c) + νρ(v′′ − α2v) (2.23)

Insert Eq. (2.23) into Eq. (2.22):

iαu′(U − c) + iαuU ′ + U ′′v + U ′v′

= −α2v(U − c)− iανv′′ + iα3vν + ν(u′′′ − α2u′)
(2.24)

Using Eq. (2.16), insert the u and higher derivatives into Eq. (2.24) and then

some algebraic manipulations, the result is the following fourth-order linear homogeneous

equation:

(U − c)(v′′ − α2v)− U ′′v +
iν

α
(v′′′′ − 2α2 + α4v) = 0 (2.25)

Eq. (2.25) is the fundamental equation for linear stability theory based on small-

disturbance theory, which is called the Orr-Sommerfeld equation derived by indepen-

dently by W.M. Orr (1907) and A. Sommerfeld (1908). Eq. (2.25) is written in terms

of v, eliminating u and p. One can obtain the Eq. (2.25) in terms of u at the expense

of relatively difficult algebra, eliminating v and p, however, the result will be the same

mathematically (White (1991)).
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The boundary conditions for the Orr-Sommerfeld equation are that the distur-

bance velocities u and v should be zero at the wall (no-slip) and at infinity (outside of

the boundary-layer). Additionally, the continuity equation, Eq. (2.15a), implies v′ = 0

for u = 0. Boundary conditions for the Orr-Sommerfeld equation are given by:

y = 0, v = 0 v′ = 0 (2.26a)

y = ∞, v = 0 v′ = 0 (2.26b)

Eq. (2.25) can be written as dimensionless form. Introduce the non-dimensional

variables defined by:

x∗ =
x

δ
y∗ =

x

δ
u∗ =

u

ue
v∗ =

v

ue
U∗ =

U

ue
p∗ =

p

ρ u2e

t∗ = t
ue
δ

R =
ueδ

ν
α∗ = αδ ω =

ω∗δ
ue

c∗ =
c

ue

(2.27)

Using Eqs. (2.27), the non-dimensional form of the Eqs. (2.25) can be obtained

as:

(v′′′′ − 2α2 + α4v) = iαR(U − c)(v′′ − α2v)− iαRU ′′v (2.28)

Eq. (2.28) is the dimensionless Orr-Sommerfeld equations in terms of y-comp. of

perturbation velocity, v. For convenience, ′′∗′′ sign dropped out. Instead of solving the

Eq. (2.28) for v, more general form for u and v can be obtained for closer insight into the

mechanism of disturbance by introducing perturbation stream function as:

ψ(x, y, t) = φ(y) exp[i α (x− ct)] (2.29)

where ψ is perturbation stream function, φ(y) is an disturbance amplitude function

and it only depends on y, since basic flow is only dependent on y-axis. The components

of perturbation velocities can be written as:

u =
∂ψ

∂y
= φ′(y) exp[i α (x− ct)] (2.30)
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v = −∂ψ
∂x

= −φ(y), exp[i α (x− ct)] iα (2.31)

Finally, the non-dimensional Orr-Sommerfeld equation in terms of v (Eq. 2.28),

can be directly written as dimensionless Orr-Sommerfeld equation in terms of amplitude

function, φ(y):

φ′′′′ − 2α2φ′′ + α4φ = iαR(U − c)(φ′′ − α2φ)− iαRU ′′φ (2.32)

with the boundary conditions as:

y = 0, φ = 0 φ′ = 0 (2.33a)

y = ∞, φ = 0 φ′ = 0 (2.33b)

Before any attempt to solve numerically the Eq. (2.32) with the boundary con-

ditions (Eq. (2.33)), it may be very useful to mention about temporal and spatial am-

plification theories and also, to discuss on some properties of the solutions of the Orr-

Sommerfeld equation. The Orr-Sommerfeld equation with its boundary conditions may

be solved using temporal or spatial amplifications theories. If α is real, and ω is taken

as complex, then the amplitude changes with time, it is called as temporal amplification

theory, in contrast, if ω is real, and α is taken as complex, then the amplitude changes

with x, it is called as spatial amplification theory. The former, Schlichting and Gersten

(2017), gave solution using temporal amplification theory, however, the later, Cebeci and

Cousteix (2005), employed spatial amplification theory. In addition to these amplification

theories, if α and ω are taken as both real, the disturbance propagates along the mean flow

with constant amplitude; if α and ω are both complex, the disturbance amplitude varies

in both time and space.

Temporal amplification theory:

The wave number, α is real, and the wave frequency, ω is complex. ω = ωr + iωi

The disturbance can be written as: ψ = φ exp[i(αx− ωrt)] exp(ωit)
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Since complex function, exp(i..), has always trigonometric function, there will be no

constant decay for values of ωr, therefore, the only term for decay remains exp(ωit).

Three distinctive cases are:

ωi < 0 damped wave in time (2.34a)

ωi = 0 neutral wave in time (2.34b)

ωi > 0 amplified wave in time (2.34c)

Spatial amplification theory:

The wave frequency, ω is real, and the wave number, α is complex. α = αr + iαi

The disturbance can be written as: ψ = φ exp[i(αrx− ωt)] exp(−αix)

Similarly, since complex function, exp(i..), has always trigonometric function, there

will be no constant decay for values of αr, therefore, the only term for decay remains

exp(−αix). Again, three distinctive cases are defined:

−αi < 0 damped wave in space (2.35a)

αi = 0 neutral wave in space (2.35b)

−αi > 0 amplified wave in space (2.35c)

From the beginning, for many years, the temporal amplification theory was used

but both theories have their own advantages. In a steady mean flow, the amplitude changes

only with distance, as independent of time so this is why the spatial theory gives the am-

plitude change in a more direct manner than the temporal theory. The temporal ampli-

fication procedure can be found in book of Schlichting and Gersten (2017). The spatial

amplification procedure was given by Cebeci and Cousteix (2005). A discussion of both

procedures may be found in the extensive report of Mack (1984). This thesis will follow

the solution of the Orr-Sommerfeld equation based on the spatial amplification theory,

since selected basic-flow is steady mean flow.
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2.3.1. The Solution Properties of the Orr-Sommerfeld Equation

The Orr-Sommerfeld equation, given by Eq. (2.32) and its boundary conditions,

given by Eqs. (2.33) has a solution with the real parts of strictly positive α and ω, and

then the solution exists only for a certain continuous but limited sequence of Reynolds

number R and the disturbance parameters α and ω (the eigenvalues). The mathematical

problem is an eigenvalue problem, and for temporal and spatial amplification theory, the

combinations of the eigenvalues are given in different functional form as:

For temporal theory: G(α, ωr, ωi, R) = 0 (2.36a)

For spatial theory: F (ω, αr, αi, R) = 0 (2.36b)

The eigenvalues of the Orr-Sommerfeld equation for the spatial amplification the-

ory are plotted in (α, R) and (ω, R) planes which describe the three cases of a disturbance

(damped, neutral or amplified) for a given Reynolds number R. Figure 2.3 shows a typi-

cal viscous stability curve in (α, R) and (ω, R) planes for spatial amplification theory. In

both graphics, the locus of αi = 0 in spatial or ωi = 0 in temporal, represents the curve

of neutral stability. The neutral stability curve separates the stable region from unstable

region. For spatial amplification theory, in stable region where αi > 0, disturbance waves

are damped, but in unstable region where αi < 0, disturbance waves are amplified and

it could indicate where the onset of laminar-to-turbulence transition starts. The point on

neutral stability curve where the Reynolds number R is smallest (tangent to curve of neu-

tral stability parallel to the α-axis or ω-axis) is very special point. Because below this

point (at values of Reynolds number less than this point), it is said that that all distur-

bances are damped or stable and no amplification is possible. The Reynolds number, as

indicated by this point, is called as the critical Reynolds number, Rcr. Although Cebeci

and Cousteix (2005) named as critical Reynolds number, Schlichting and Gersten (2017)

called as indifference Reynolds number, Rind, since Schlichting defines critical Reynolds

number in a different manner. According to Schlichting, all transition process is com-

pleted at Rcr, butRind only tells that where instability starts, and it is definitely not proper

to identify Rcr with the transition point. Figure 2.4 clearly explains this contrast. Also,

it shows all stages of laminar-turbulence transition from Tollmien-Schlichting waves (T-S
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waves) given by primary stability theory to formation of turbulence spot given by sec-

ondary stability theory. The Tollmien-Schlichting waves are defined as the most unstable

eigen-modes of the Orr-Sommerfeld equation.

Figure 2.3. Typical stability diagrams for spatial amplification theory. Adapted from
Cebeci and Cousteix (2005)

Figure 2.4. Stages of laminar-turbulent transition. Note that location of Rind and Rcr.

Adopted from Schlichting and Gersten (2017)
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2.3.2. Inviscid Solution of the Orr-Sommerfeld Equation

Experimental results have shown that the limit of stability can be expected at high

Reynolds numbers R, the Orr-Sommerfeld equation can be simplified by neglecting the

friction terms on the left-hand side. Rewriting the Eq. (2.32):

− i

αR
(φ′′′′ − 2α2φ′′ + α4φ) = (U − c)(φ′′ − α2φ)− U ′′φ (2.37)

when limit R → ∞, left-hand side in Eq. (2.37) is zero, and then the result is

inviscid perturbation equation, or also known as the Rayleigh equation:

(U − c)(φ′′ − α2φ)− U ′′φ = 0 (2.38)

Since the Rayleigh equation is only of second order differential equation, only

two boundary conditions are required, unlike fourth order Orr-Sommerfeld equation with

four boundary conditions. The boundary-conditions for inviscid perturbation equation,

Eq. (2.38), are:

y = 0, φ = 0 (2.39a)

y = ∞, φ = 0 (2.39b)

Earlier studies on stability theory mainly used the inviscid perturbation equation,

Eq. (2.38), as a starting point in the pre-computer era rather than the more complex Orr-

Sommerfeld equation. Although the important properties of the general solution of the

complete perturbation equation (Eq. (2.32)) are lost in the inviscid stability theory, it leads

to very important theorems given by Lord Rayleigh about the stability of laminar velocity

profiles.

Theorem I. Point of inflection criterion. If a velocity profile has a point of inflection (see.

Fig. 2.5) (U ′′ = 0), this profile is unstable. Point of inflection criterion is a necessary

and sufficient condition for presence of unstable waves. In practice, point of inflection

criterion has a great importance, because the existence of inflection point in velocity pro-

file is directly related to the pressure gradient of the flow. Since adverse pressure gradient
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where the pressure rises in the direction of mean flow (dP/dx > 0) has destabilize effects

and favorable pressure gradient where the pressure drops in the direction of mean flow

(dP/dx < 0) has stabilizing effects, point of inflection criterion is equivalent to the effect

of the pressure gradient of the outer flow on the stability of the boundary layer. It may

be said that, as a rule of thumb, the position of completed transition lies just behind the

position of the pressure minimum (Schlichting and Gersten (2017)).

Theorem II. Critical layer. In boundary layer profiles, the velocity of propagation for

neutral waves (ci = 0) is smaller than the maximum velocity of the mean flow. However,

if U ′′ = 0, there is at least one point, y = yc, inside the boundary-layer for neutral wave

where U − c = 0. It means that the phase velocity is equal to the mean velocity at some

point inside the flow. The layer y = yc where U = c is called the critical layer of the basic

flow. The point, yc is a singular point of the Rayleigh equation. The singularity indicates

that the effect of viscosity in the critical layer must be considered as determining the effect

of perturbation since only the effect of viscosity can handle the physically meaningless

singularity of the inviscid perturbation equation, Eq. (2.38).

As a final remark to Theorem I and II, the curvature of the velocity profile is very

important for the stability of laminar flow. Calculations of the laminar boundary-layer

profile must be done exactly not only for U(y) but also for U ′′(y).

Figure (2.5) shows two different stability diagrams for two different velocity pro-

files: viscous instability and inviscid instability. Generally, type a velocity profile belongs

to viscous instability diagram, type b velocity profile belongs to inviscid instability di-

agram. Viscous stability is the solution of the Orr-Sommerfeld equation, Eq. (2.32),

however, inviscid stability is the solution of the Rayleigh equation, Eq. (2.38). From Fig.

(2.5), following remarks can be made:

1. In inviscid stability diagram, unstable region is much larger than the region in

viscous stability diagram. It shows that the viscosity makes contribution to stability of

laminar boundary-layer.

2. At R → ∞, there still exists unstable wave-number for inviscid instability but,

in viscous stability, all waves damp out at sufficient high Reynolds number R. However,

it is known presence of turbulence flow in high Reynolds numbers. (See remark 5.)

3. In viscous stability, when Reynolds number is decreasing, unstable region get-

ting larger and larger, it means that decreasing Reynolds number, or increasing viscosity

can lead to instability. It appears that the viscosity does not only to damp out waves but
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can actually has a destabilize effect on boundary-layer. (Compare to remark 1 and 2.)

4. For inviscid stability, velocity profile with point of inflection PI is an example

of a flow of the boundary-layer in adverse pressure gradient. In inviscid stability diagram,

the region, where all disturbance waves decay (below the Rcr or Rind), is a very narrow

compared to viscous stability. This is strong validation of Theorem I. (point of inflection).

5. An introduced wave into steady boundary-layer with particular frequency will

continue directly as it propagates downstream and its wave-number changes. (ω = const.

line in viscous stability diagram) This wave will be damped out while it passes through

stable region up to RL, the first point of neutral stability, however, it will be amplified in

unstable region where between the first point of neutral stability, RL and the second point

of neutral stability, RU . If the amplified wave is reached to the point RU , again it will

be damped out in stable region. If the amplitude of wave becomes large enough before

RU , then the nonlinear processes take place and lead to transition even though the linear

theory says that it should be damped out as the wave continue to grow.

Figure 2.5. Typical neutral stability curves for viscous-inviscid stability. Adopted from
Mack (1984) and Schlichting and Gersten (2017)

As a final step before the numerical solution of the Orr-Sommerfeld equation and

its boundary conditions, the Eq. (2.32) can be written in compact form as:
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φ′′′′ − ξ21φ
′′ − ξ22(φ

′′ − ξ21φ) + ξ3φ = 0 (2.40)

by defining,

ξ21 = α2 (2.41a)

ξ22 = ξ21 + iR(αU − ω) (2.41b)

ξ3 = iRαU ′′ (2.41c)

with the boundary conditions given by Eq. (2.33). On the other hand, examination

of the Orr-Sommerfeld equation at the edge of the boundary-layer, in which y = δ, is

mathematically remarkable. Since U ′′ is zero, U becomes ue and ξ3 = 0 at the edge of

the boundary-layer, Eq. (2.40) can be reduced to:

φ′′′′ − (ξ21 + ξ22)φ
′′ + ξ21ξ

2
2 φ = 0 (2.42)

with ξ2 evaluated at y = δ. The general solution of this reduced fourth-order

ordinary differential equation is given by:

φ = A1e
−ξ1y + A2e

−ξ2y + A3e
ξ1y + A4e

ξ2y (2.43)

Because the real parts of α, ξ1 and ξ2 require strictly positive, in order to decay

boundary-layer disturbance at the edge of the boundary-layer, it is necessary that A3 and

A4 should be zero as y → δ, φ→ 0. Edge-disturbance equation is therefore reduced to:

φ = A1e
−ξ1y + A2e

−ξ2y (2.44)

Defining D ≡ d/dy, Eq. (2.42) can be expressed in different forms using factor-

ization as:

(D2 − ξ21) (D
2 − ξ22)φ = 0 (2.45a)

D2(D2 − ξ21)φ− ξ22(D
2 − ξ21)φ = 0 (2.45b)

Eqs. (2.45) implies the following boundary conditions, instead of Eqs. (2.33b):
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(D + ξ1) + (D + ξ2)φ = 0 (2.46a)

(D + ξ2) + (D2 − ξ21)φ = 0 (2.46b)

For clarity, note that the Orr-Sommerfeld equation, Eq. (2.32), and its boundary

conditions, Eq. (2.33a) and Eq. (2.46), are given by:

φ′′′′ − 2α2φ′′ + α4φ = iαR(U − c)(φ′′ − α2φ)− iαRU ′′φ (2.32)

with the boundary conditions as:

y = 0, φ = 0 φ′ = 0 (2.33a)

y = δ, (D + ξ1) + (D + ξ2) φ = 0 (2.46a)

(D + ξ2) + (D2 − ξ21) φ = 0 (2.46b)

2.4. Numerical Solution of the Orr-Sommerfeld Equation

The first solution of the Orr-Sommerfeld equation for boundary-flow was given by

Tollmien (1929) and Schlichting (1933) 20 years after the equation was derived. In pre-

computer era, this was just approximate solution. In 1960s digital computer era, thanks

to the direct solution of the primary differential equations, many researchers gave nu-

merical studies on linear stability theory for different boundary-layer flows such as three-

dimensional flow, compressible boundary-layers, unsteady boundary-layers and heated-

wall boundary-layers. The first exact numerical solution was given by Jordinson in 1970.

Detailed literature review can be found in Mack (1984).

The followed numerical solution procedure in this thesis is given by in the book of

Cebeci and Cousteix (2005). The procedure of numerical solution of the Eq. (2.32) and

and its boundary conditions, Eq. (2.33a) and Eq. (2.46), is based on Keller’s box method,

which is one of the finite-difference methods. However, there are other numerical tech-

niques to solve the Orr-Sommerfeld equation. Mack (1984) put the available numerical

methods that have been employed for the solution into three categories: finite-difference

method, spectral methods and shooting methods.
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Since the boundary-layer equation is parabolic type partial differential equation

and the Orr-Sommerfeld equation is ordinary differential equation, usually finite-difference

methods, such as Crank-Nicolson method and Keller’s box method, are used for the solu-

tion. These are known as implicit method, which is the unconditionally stable and allows

large time steps with high-order accuracy, unlike an explicit methods. The main advan-

tages of the Keller’s box method (also known as the box method), compare to Crank-

Nicolson method, are that it has second-order accuracy for both nonuniform time and

space step in expense of only slightly more arithmetic and it is capable of handling so-

lution of large numbers of coupled equations. The numerical scheme of Keller’s box

method can be summarized by the following four steps:

1. Reduce the equation to a first-order system if the equation has two or higher-order.

2. Obtain difference equations using central differences. (discretization of derivatives

with finite differences)

3. Linearize the resulting algebraic equations using Newton-Raphson method (or Newton

method) if they are nonlinear, and write them in matrix-vector form.

4. Solve the linear system (as a matrix-vector form) by the block-tridiagonal-elimination

method.

To employ the box method for formulation of numerical scheme, start with reduc-

tion of the Eq. (2.32) to a first-order system of equations. Define:

φ′ = f (2.48a)

f ′ = s+ ξ21φ (2.48b)

s′ = g (2.48c)

This four numerical variables, φ, f, s, g, are used in order to reduce a fourth-order

equation to a system of equations. The compact form of the Orr-Sommerfeld equation,

Eq. (2.40), can be written as:

g′ = ξ22s− ξ3φ (2.49)
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the boundary conditions, Eq. (2.33a), Eq. (2.46a) and Eq. (2.46b), become:

y = 0; φ = 0, f = 0 (2.50a)

y = δ; s+ (ξ1 + ξ2)f + ξ1(ξ1 + ξ2)φ = 0 (2.50b)

g + ξ2s = 0 (2.50c)

Eqs. (2.50) are new boundary condition formulas in terms of numerical variables,

φ, f, s, g. Box method allows nonuniform mesh as in Fig. 2.6. Between y0 = 0 and

yJ = δ, and each grid nodes are represented by yj , approximate finite-difference equations

can be written centering around the midpoint yj−1/2 using centered-difference derivatives

for j = 1, 2, ..., J :

Figure 2.6. Finite-difference grid for box method. Both of h & k can be nonuniform.

yj−1/2 = 1/2(yn + yn−1) Adapted from Cebeci and Cousteix (2005)

Eqs. (2.48) can be now written for finite-difference grid:

φj − φj−1 − c3(fj + fj−1) = (r1)j = 0 (2.51a)

fj − fj−1 − c3(sj + sj−1)− c1(φj − φj−1) = (r3)j−1 = 0 (2.51b)

sj − sj−1 − c3(gj + gj−1) = (r2)j = 0 (2.51c)
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gj − gj−1 − c4(sj + sj−1)− c2(φj + φj−1) = (r4)j−1 = 0 (2.51d)

where c1, c2, c3, c4 with hj−1 = yj − yj−1 are:

c3 =
hj−1

2
, c1 = ξ21c3, c2 = −(ξ3)j−1/2c3, c4 = (ξ22)j−1/2c3 (2.52)

the boundary conditions, Eq. (2.50)), can be written for j = 0 and j = J :

y = 0; φ0 = (r1)0 = 0, f0 = (r2)0 = 0 (2.53a)

y = δ; fJ + c̃3sJ + c̃1φJ = (r3)J = 0, gJ + c̃4sJ = (r4)J = 0 (2.53b)

where

c̃3 =
1

ξ1 + ξ2
, c̃1 = ξ1, c̃4 = ξ2 (2.54)

Since the Orr-Sommerfeld equation and the boundary conditions are homoge-

neous, all values of α, β, ω and R has a trivial solution φ(y) = 0. To overcome this

mathematically obstacle, the boundary condition, φ′(0) = 0 replaced by φ′′(0) = 1. Now,

the non-trivial solution can be obtained with adjusted boundary conditions, and then the

values which satisfy original boundary condition, can be searched by Newton’s method.

The wall boundary conditions, Eq. (2.53a) is replaced by:

φ0 = (r1)0 = 0, s0 = (r2)0 = 1 (2.55)

The system of equations given by Eqs. (2.51), Eq. (2.53) and Eq. (2.55) can be

written in matrix-vector form as in shown:

A�δ = �r (2.56)

where A is a matrix, δ and r are vector given by:

30



A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A0 C0

B1 A1 C1

· · ·
Bj Aj Cj

· · ·
BJ−1 AJ−1 CJ−1

Bj Aj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, δ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ0

δ1
...

δj
...

δJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0

r1
...

rj
...

rJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.57)

δj and rj are defined by:

δ =

⎡
⎢⎢⎢⎢⎢⎣
φj

sj

fj

gj

⎤
⎥⎥⎥⎥⎥⎦ , rj =

⎡
⎢⎢⎢⎢⎢⎣
r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎥⎦ (2.58)

A-matrix consists of non-scalar elements, but each element, Aj, Bj, Cj , denotes

4x4 matrices blocks (boxes) rather than scalars given by Eq. (2.60). That’s why the

method is called as Keller’s box method.

In spatial-amplification theory, α is complex, ω is real and with R, the solution

of the finite difference equations depends on four scalar parameters: αr, αi, ω and R.

Eq. (2.56) can be solved for any of two scalars with remaining two scalar fixed. This

dependence can be formulated as:

f0(αi, αr, ω, R) = 0 (2.59)

Before the detailed eigenvalue solution procedure of Eq. (2.59) is given, this

eigenvalue procedure can be summarized as:

αi = 0 (neutral stability), for a fixed R, calculate for αr and ω.

αi = 0 (neutral stability), for a fixed αr, calculate for R and ω.

αi = 0 (neutral stability), for a fixed ω, calculate for αr and R.

for a fixed ω and for a fixed R, calculate for αr and ω.
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A0 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

(c1)1 (c3)1 0 0

(c2)1 (c4)1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , Aj =

⎡
⎢⎢⎢⎢⎢⎣

1 0 −(c3)j 0

0 1 0 −(c3)j

(c1)1 (c3)1 0 0

(c2)1 (c4)1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , 1 ≤ j ≤ J − 1

AJ =

⎡
⎢⎢⎢⎢⎢⎣
1 0 −(c3)J 0

0 1 0 −(c3)J

c̃1 c̃3 1 0

0 c̃4 0 1

⎤
⎥⎥⎥⎥⎥⎦ , j = J

Bj =

⎡
⎢⎢⎢⎢⎢⎣
−1 0 −(c3)j 0

0 −1 0 −(c3)j

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , 1 ≤ j ≤ J

Cj =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

(c1)j+1 (c3)j+1 −1 0

(c2)j+1 (c4)j+1 0 0

⎤
⎥⎥⎥⎥⎥⎦ , 0 ≤ j ≤ J − 1

(2.60)

Eigenvalue Procedure:

Eq. (2.59) shows two equations for a specified value of (αi, R), with two un-

knowns (αr, ω) and the equation can be solved by Newton’s method. Superscript v shows

known iterations, superscript v + 1 shows next (unknown) iterations.

αv+1
r = αv

r + δαv
r (2.61a)

ωv+1 = ωv + δωv (2.61b)

For the fr and fi, a first-order Taylor series about αr and ω can be written for each

nonlinear equation as by taking f v+1
r = 0 and f v+1

i = 0. Subscripts of r and i, show real

and imaginary part of f . Also, subscript of 0 dropped from f0, for convenience.
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f v
r +

(
∂fr
∂αr

)v

δαv
r +

(
∂fr
∂ω

)v

δωv = 0 (2.62a)

f v
i +

(
∂fi
∂αr

)v

δαv
r +

(
∂fi
∂ω

)v

δωv = 0 (2.62b)

The solution of a set of two linear equations with two unknowns, Eq. (2.62), is

given as

δαv
r =

1

Δ0

(
f v
i

(
∂fr
∂ω

)v

− f v
r

(
∂fi
∂ω

)v)
(2.63a)

δωv =
1

Δ0

(
f v
r

(
∂fi
∂αr

)v

− f v
i

(
∂fr
∂αr

)v)
(2.63b)

where Δ0 is the determinant of the Jacobian of the system

Δ0 =

(
∂fr
∂αr

)v (
∂fi
∂ω

)v

−
(
∂fi
∂αr

)v (
∂fr
∂ω

)v

(2.63c)

Since the vector r is independent of αr and ω, in order to obtain the derivatives of

fr and fi with respect to αr and ω, differentiate Eq. (2.56):

A

(
∂δ

∂αr

)v

= −
(
∂A

∂αr

)v

δv = r (2.64a)

A

(
∂δ

∂ω

)v

= −
(
∂A

∂ω

)v

δv = r (2.64b)

Eqs. (2.64) is called as the variational equations of Eq. (2.56) with respect to αr

and ω. To evaluate derivatives of A with respect to αr and ω, differentiate Eqs. (2.51).

Differentiation with respect to αr:

(r3)j−1 = 2

(
∂c1
αr

)
φj−1/2 (2.65a)

(r4)j−1 = 2

(
∂c4
αr

)
sj−1/2 + 2

(
∂c2
αr

)
φj−1/2 (2.65b)

(r3)J = −
(
∂c̃3
αr

)
J

sJ −
(
∂c̃1
αr

)
J

φJ (2.65c)
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(r4)J = −
(
∂c̃4
αr

)
J

sJ (2.65d)

Differentiation with respect to ω:

(r3)j−1 = 0 (2.66a)

(r4)j−1 = 2

(
∂c4
ω

)
sj−1/2 (2.66b)

(r3)J = −
(
∂c̃3
ω

)
J

sJ (2.66c)

(r4)J = −
(
∂c̃4
ω

)
J

sJ (2.66d)

One cycle of loop iterates like this: If the initial guess values of αr and ω don’t

satisfy the Eq. (2.59), the new estimate values are calculated by Newton method. From

Eq. (2.64) using Eqs. (2.65) and (2.66), ∂f/∂αr and ∂f/∂ω are obtained. Then, δαr

and δω are calculated from Eqs. (2.63). The new estimate values for next iteration are

calculated using Eqs. (2.61) and checked whether Eq. (2.59) is satisfied or not. The loop

continues until the specified tolerance parameter is reached.

After calculation of αr and ω for fixed R and αi, one can formulate the numerical

set up for other eigenvalue problem such as calculation of ω and R for fixed αr. The

detailed formulation can be found in Cebeci and Cousteix (2005).

The big disadvantage of the Newton method is that the method will often diverge

if the initial guesses are not sufficiently close to true roots. The initial guesses are often

obtained from trial and error and knowledge of the modeled physical system. For airfoil

stability calculations, the initial guesses are taken from stability diagram of flat-plate so-

lution (Blasius flow). Since Blasius flow is the solution of zero pressure gradient flow,

it serves as a good starting point to estimate initial values for α and ω in the solution of

pressure gradient flow.

2.5. Transition Prediction and en Method

In this sub-chapter, transition phenomena is explained and transition prediction

methods are reviewed. Later, en method is given in detail.
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2.5.1. Transition and Prediction Methods

Transition is a complicated phenomenon that involves complex physics. It in-

cludes linear & non-linear mechanism in a wide range of scales in time and length. Tran-

sition process has linear & non-linear interactions between free-stream properties (e.g.,

external disturbances, acoustic disturbances) and boundary-layer dynamics (e.g.,velocity

profiles, instability waves).

Today, one of the most challenging engineering problem is to develop robust and

reliable transition models for practical engineering flows: wind turbine blades, turboma-

chinery blades, aircraft, space and ground vehicles. Because of incomplete understanding

of physics underlying transition process, it is impossible to include all transition mech-

anisms into such a simple model. In addition to this, transition modeling can not be

separated from turbulence and flow separation. All phenomenons are related with each

other.

The importance of transition prediction comes from practical significance in en-

gineering designs. Transition has great influence the flow characteristic, drag losses, heat

and momentum transfer. For example, in an airfoil design, it is known as a rule of thumb,

the drag coefficient is decreased by 10 % when the transition point is moved 10 % of the

chord toward the trailing edge (Baek and Fuglsang (2009)). Lower drag means lower fuel

consumption for airplanes or more power production for wind turbine. Also, the origin

of the turbulence starts with good prediction of the transition point where flow turns from

laminar to turbulent.

Before giving the methods of the transition modeling, it may be useful recall and

discuss the stages of a transition process:

Stage 1. Receptivity (generation of perturbations in boundary-layer)

Stage 2. Linear disturbance growth (T-S waves)

Stage 3. Non-linear interaction and secondary instabilities

Stage 4. Break-down to turbulence

This four stages describes transition phenomenon as a process. If all processes

happen respectively, it is called as ”natural transition”, however, transition process has

different scenarios depends on free-stream disturbances, surface roughness or boundary-

layer profile. Therefore, transition can happen without taking place Stage 2. It is called

35



as ”bypass transition.” Bypass transition occurs at larger free-stream turbulence, usually

Tu > 1%. Additionally, there is one more mode of transition called as ”separated-flow

transition”. After flow is detached from the wall, it creates region where separation bub-

ble takes place. Transition happens inside the bubble, which is known as transitional

separation bubbles. After reattachment, flow totally becomes turbulent.

Although modeling of the transition process has difficulties mention above, there

are available methods to predict transition point. According to Sheng (2017), this meth-

ods have been evolved into three main categories:

1. Analytical methods based on stability theory

• en Method

• Parabolized Stability Equations (PSE)

2. Statistical methods based on RANS equations

• Low Reynolds Number Turbulence Models

• Correlation-Based Intermittency Models

3. Transition simulation methods

• Large Eddy Simulation (LES)

• Direct Numerical Simulation (DNS)

In addition to this category, there are other prediction methods in literature: em-

pirical transition correlations. The most popular one is known as Michel’s criterion.

This empirical criteria gives transition point as an inequality equation based on Reynolds

number calculation in terms of laminar boundary-layer parameters but they are valid on

only recommended Reynolds number range.

To sum up, current existing transition prediction methods vary from simple em-

pirical correlations to expensive transition simulations. Analytical methods are based on

local, linear stability equations ( en method) or non-local, linear and non-local, non-linear

stability equations (PSE). These methods don’t say anything about full transition process

unlike direct numerical simulation, which gives all details of transition on different modes

(natural, bypass and separated) but at the same time it is very expensive tool.
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Since en method was used in this thesis for transition prediction, more detail about

this method is explained in next subchapter. For other prediction methods; more informa-

tion can be found in the book of Sheng (2017). Using RANS approaches for transition

prediction in a modern way can be found in the papers of Silisteanu and Botez (2010) and

Russo et al. (2018).

2.5.2. en Method

The en method , which is one of the analytical methods based on stability the-

ory, was first proposed independently by A.M.O. Smith and Van Ingen in 1956. In this

method, for a given pressure distribution (from external source or using panel methods),

laminar boundary-layer equations are solved and the streamwise velocity distribution u

and its second derivatives u′′ at each stations along the airfoil are obtained. Then, the sta-

bility properties of the velocity distributions are examined solving the Orr-Sommerfeld

equation. This examination gives the total growth of boundary-layer instability modes.

The basic assumption is that if the total growth exceeds some defined threshold, en, tran-

sition process starts. The value of n is generally taken in the range of 7 and 9. Extensive

discussion about en method with historical review can be found in the paper of van Ingen

(2008)

There are two major disadvantages related with en method: Firstly, the en meth-

ods consider only the linear growth of disturbances, namely T-S waves. Other nonlinear

mechanisms are empirically included into the value of n. The method mainly predicts on-

set of natural transition. While the linear phase can extend over the long scale of the chord

length, non-linear breakdown occurs very close to transition point. This can cause com-

plete failure of the en method. Secondly, there is no universal constant for the value of n.

It should be selected based on empirical knowledge. Specific flow conditions, disturbance

environment, surface roughness or wind-tunnel turbulence intensity has large effects on

value of n. For example, in the XFoil manual, it is suggested that the n-value can be

taken as 10-12 for clean wind tunnel, 9 for average wind tunnel and 4-8 for dirty wind

tunnel. Baek and Fuglsang (2009) suggests that n is usually set to 7 based on empirical

knowledge.

To overcome one of the major shortcomings of the en method, Mack (1977) pro-

posed variable n-factor methods. In this method, n-critical value is directly to the distur-
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bance level and Mack suggested this formula:

n = −8.43− 2.4ln(Tu) (2.67)

In Eq. (2.67), free-stream turbulence intensity is included into the value of n. At

least, one can select the true n value for wind tunnel experiment according to this formula.

Also, Table 2.1 is prepared based on Mack’s equation. Turbulence intensity values are

taken from some wind tunnel data and papers. Table 2.1 shows that n can be taken 8 for

a high quality wind tunnel where Tu is lower than 0.15%). For low quality or dirty wind

tunnel (Tu>0.15%), n is suggested as 6-7. Ramanujam and Ozdemir (2017) have taken

the value of 9 for their numerical works. As expected, for large turbulence intensity, n

becomes smaller, it means transition occurs very soon. For the negative value of n values,

they show that flow is fully turbulent from beginning for turbomachinery flow, i.e. fan,

compressor, turbine blade flow), it means that there is no transition point.

Table 2.1. n-critical values for different turbulence intensity values as suggested by

Mack (1977)’s equation

Fig. (2.7) explains graphically strategy of calculating the transition point with the

en method. In αr - R plane, the stability calculations begin at an x-location, x = x1. At

this point (point 1), αr and ω are computed since u′′ andR are known and the dimensional

frequency ω∗, can be calculated from Eq. (2.68). This dimensional frequency is constant

38



along line 1. At the next location x2 (point 2), similar to point 1 calculation, αr and ω are

computed for a new set of u′′ and R and the new dimensional frequency is calculated, that

is constant along line 2.

ω∗ = ω
u0
L

(2.68)

Before starting calculations for a new x-station, one more computation is per-

formed. At point 1a, dimensionless frequency ω, is first calculated based on dimensional

frequency on line 1 and characteristic velocity and length at point 2 from Eq. (2.69). Then

with the calculated ω and specified R at point 2, αi and αr are computed for point 1a.

ω = ω∗ L
u0

(2.69)

Figure 2.7. Illustration of transition point calculation for the en method. Adapted from
Cebeci and Cousteix (2005)

The similar calculations are repeated at points 3, 2b and 1b. For example, at point

1b, dimensionless frequency ω, is calculated based on dimensional frequency on line 1

and characteristic velocity and length at point 3. Then with the calculated ω and specified

39



R at point 3, αi and αr are computed for point 1b. For clarity, Table 2.2 is prepared to

show which variables are known or calculated at which points.

Table 2.2. Known and calculated values at different points for en method. Superscript
shows that which variable belongs to which point.

Above procedure continues for specified number of lines, typically 5 lines are

enough and the variation of the integrated amplification rate n, is computed along a con-

stant frequency line for specified number of lines. x0 corresponds to each value of x on

the neutral stability curve.

n = −
∫ x

x0

αidx (2.70)

The computation of integrated amplification rate is the most crucial part of the

en method. This leads to detection of the transition point. Depending on the selection

of threshold n-value, namely ncrit, transition point is predicted as shown in Fig. 2.8.

According to this figure, for the different values of n = 7, 8 and 9, transition points xtr can

be predicted as 0.46, 0.49 and 0.52, respectively. Note that selection of ncrit is arbitrary

and lower n values mean earlier starting point of the transition. Fig. 2.9 shows that

transition point variation with respect to different ncrit values and its physical frequency.

Note that higher frequency values mean earlier transition beginning.
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Figure 2.8. Variation of the integrated amplification rates for NACA 0012, at zero an-

gle of attack, R = 3x106.

Figure 2.9. Transition point location variation with respect to its physical frequency

for different ncrit values. NACA 0015, α = 0, R = 3x106.
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CHAPTER 3

APPLICATIONS OF PANEL-BL-STABILITY (PBS) CODE

In this chapter, the PBS code is applied on five different airfoils. For each airfoils,

firstly the inviscid solution is obtained by panel code, secondly boundary-layer equation

is solved for the given inviscid pressure distribution from panel code and thirdly, the

stability equation is solved for obtained boundary-layer velocity profiles and transition

point is predicted using en method. Short flow diagram of the PBS code is given Fig. 3.1.

The detailed flow diagram with all inputs-outputs can be found in the Appx A.

Figure 3.1. PBS code short flow diagram

To validate of the PBS code, two symmetrical NACA 4-digits airfoils (0012 and

0015) was used. The results are compared with Gregory and O’Reilly (1973)’s wind

tunnel measurements. After verification, the PBS code is applied on three wind turbine

airfoils. Experimental results from Baek and Fuglsang (2009)’s paper and XFoil’s results

are compared to the PBS code results.

3.1. NACA 4-digit Airfoils

NACA 4-digits airfoils are one of the most classical family of the NACA airfoils

series, designed for general aviation applications. Although 4-digit series were used or

adopted in the earlier wind turbines, today, these series are not used in modern wind tur-
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bines because of their sensitivity to surface roughness (Timmer (2009)). However, NACA

airfoils have very well documented aerodynamics data, so this makes them as a good ref-

erence airfoils to validate any numerical or experimental study. In this study, NACA

0012 and NACA 0015 airfoils were selected for verification of the PBS code. These two

relatively thin airfoils show good behavior in terms of transition and separation character-

istics since for these airfoils, transition takes place before further laminar boundary-layer

separation at low-to-moderate angle of attacks.

3.1.1. NACA 0012

NACA 0012 is a symmetrical airfoil and it has 12% maximum thickness to chord

ratio and no chamber (Fig. 3.2). The PBS code results are compared with experimen-

tal work of Gregory and O’Reilly (1973) and XFoil at 1.44x106 and 2.88x106 Reynolds

numbers (Fig. 3.3 and 3.4). Both figures give similar transition points and lift coef-

ficients despite the results are relying on different numerical methods and experimental

data. Also, in Figure 3.4, it is clearly seen that both lift coefficient values are very close al-

though PBS gives lift coefficients based on only inviscid panel method, however, XFoil’s

results are based on viscous-inviscid interactive method. Therefore, for thin airfoils, the

inviscid methods are sufficient to give accurate lift coefficients at low-to-moderate angle

of attacks (Compare with Fig. 3.13a).

Figure 3.2. NACA 0012 Airfoil
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(a) NACA 0012, R=1.44x106

(b) NACA 0012, R=2.88x106

Figure 3.3. Upper surface transition points at various angle of attacks for NACA 0012

at two different Reynolds numbers, compared with XFoil and Gregory

and O’Reilly (1973). Note that transition points were given by laminar
boundary-layer separation after 5 ◦ angle of attack.
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(a) NACA 0012, R=1.44x106

(b) NACA 0012, R=2.88x106

Figure 3.4. Lift coefficients at various angle of attacks for NACA 0012 at two different

Reynolds numbers, compared with XFoil and Gregory and O’Reilly (1973)
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3.1.2. NACA 0015

NACA 0015 is a symmetrical airfoil and it has 15% maximum thickness to chord

ratio and no chamber (Fig. 3.5). The PBS code is compared with Baek and Fuglsang

(2009)’s experimental results in the range of 0-10◦ angle of attacks at 3x106 Reynolds

numbers.

Figure 3.5. NACA 0015 Airfoil

Figure 3.6 compares transition point predictions of current study and XFoil’s re-

sults with Baek and Fuglsang (2009)’s experimental measurements based on infrared ther-

mography. It is clearly seen that the both numerical results are very close to experimental

data. It was taken same critical value, ncrit = 7, for current study and XFoil. In present

study, above 6◦ angle of attack, the transition point was predicted by laminar separation,

not the en method since the prediction of the onset of transition with en method must be

replaced with assumption that the onset of transition corresponds to the separation loca-

tion at high angle of attacks and high Reynolds numbers for such a moderate thick airfoil

(Cebeci and Cousteix (2005)).
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Figure 3.6. Upper surface transition points for NACA 0015 at R = 3x106, compared

with XFoil result and Baek and Fuglsang (2009)’s experimental work.

Note that transition points were given by laminar boundary-layer sepa-
ration after 7 ◦ angle of attack.

3.2. Wind Turbine Airfoils

Today, the seventies wind turbine dedicated airfoils are available in literature and

by blade designers. Many airfoils were experimentally verified in wind tunnels up to

Reynolds numbers of 3 to 4 million or were numerically verified in RANS simulations or

codes at Reynolds numbers higher than 4 million. Above 4 million, testing experimentally

is very expensive because of requirement of a large atmospheric, pressure and cryogenic

tunnels (Timmer (2009)). Blade designers must rely on airfoil analysis codes such as

XFoil or 2D N-S solvers (i.e. EllipSys2D) or RFOIL, which is modified version of XFoil.

In RFOIL, XFoil’s boundary-layer equations are modified for better stall performance and

to count the 3D rotating effects. RFOIL has been used since 1995. Timmer and van Rooji

(2003) summarized design of Delft University (DU) wind turbine airfoils and investigated

DU airfoils aerodynamics characteristics using XFoil and RFOIL. Application of RFOIL

on very high Reynolds numbers wind turbine rotor design can be found in the paper of

Ceyhan (2012). Studies about better drag and lift predictions using RFOIL can be found

in the papers of Ramanujam et al. (2016) and Ramanujam and Ozdemir (2017).
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Wind turbine catalogue is prepared by Bertagnolio et al. (2001) in DTU. This

extensive catalogue involves collection of experimental results from different sources and

computational results from 2D N-S solvers EllipSys2D code for 6 different airfoil families

including NACA 5-digits series, RISO-A1-xx series, FFA-W3-xxx series, NREL’s Sxxx

series, FX airfoil and DU xx-W-xxx series. As all profiles of airfoil family are given in

the catalogue, it compares numerical results with experimental data in terms of lift, drag

and skin-friction coefficients, and pressure coefficient distributions for various angle of

attacks at different Reynolds numbers.

Figure 3.7 shows contours of wind turbine dedicated airfoils, which have different

maximum thickness to chord ratio: 18%, 25% and 40%, NACA 64-618, DU91W250 and

DU4050, respectively. The first two airfoils was designed to have high lift-to-drag ratio,

which requires laminar flow up to nearly half of the chord length.

The lift coefficients and transition points from PBS code are compared with Baek

and Fuglsang (2009)’s experimental results and XFOIL results in the range of 0-10◦ angle

of attacks at 3x106 Reynolds numbers.

Figure 3.7. Three different airfoils dedicated for wind turbine applications. From root

section to tip section of NREL 5 MW Rotor blade.
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3.2.1. NACA 64-618

NACA 64-618 has been developed for aviation applications, it is also used at tip of

the wind turbine blades. Actually, this 6-digit series airfoil family has been designed for

very high lift-to-drag ratio, however, it has high drag value outside operating conditions

and shows poor stall behavior. Therefore, it is generally used at the blade tip, which have

the high speed portion of the wind turbine blade.

Figure 3.8. NACA 64-618 Airfoil

Lift coefficient and transition points are given as function of angle of attacks at 3

million Reynolds number using PBS code. In Figure 3.9, results are compared with XFoil

results and experimental measurements. For XFoil and PBS calculations, ncrit is set to 7.

In Figure 3.9a, lift coefficient values show exact matching for PBS results (blue dot) and

XFoil inviscid results (black dashed line) despite PBS panel code and XFoil’s panel code

rely on completely different method. On the other hand, there is a gap between XFoil’s

viscous lift values (red cross) and PBS inviscid lift values and this gap increases at high

angle of attacks. In Figure 3.9b, NACA 64-618 has a turning point after 5◦ angle of attack,

which has dramatic decreases in transition locations. PBS code gives good results in terms

of transition points except in the range of 5 and 7 degrees. In this range, transition location

was highly overestimated. Below 5 degree, the results are very satisfactory despite above

7 degree, they are slightly underestimated.
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(a) Lift coefficients, NACA 64-618, R=3x106

(b) Transition points, NACA 64-618, R=3x106

Figure 3.9. Lift coefficients and transition points as function of angle of attack for

NACA 64-618, compared with XFoil and Baek and Fuglsang (2009)’s in-

frared thermography measurements. Note that transition points were given
by laminar boundary-layer separation.
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3.2.2. DU91W250

The 25% thick airfoil DU91W250 was specifically designed by W.A. Timmer

for wind turbines and the validation of the airfoil was performed in the low-speed low-

turbulence wind tunnel in Delft University. The airfoil is widely used on the midsections

of the blades. It has large portion of laminar flow where peak lift coefficient of about

1.5, relatively smooth stall and insensitivity to roughness but it was found that it is very

sensitive to leading edge roughness by Baek (2008).

Figure 3.10. DU91W250 Airfoil

Similar to NACA 64-618, it can make same discussion for DU91W250 about

Figure 3.11. Although there is a distinct gap between PBS inviscid solution and XFoil

viscous solution, both both XFoil’s inviscid solution and PBS panel code give same lift

coefficients. In Figure 3.11b, DU91W250 has a turning point after 7◦ angle of attack,

which has dramatic decreases in transition location but this turning point is delayed com-

pared to NACA 64-618. Similarly, PBS code gives good results in terms of transition

points except for 8 and 9 degrees. In this angle of attacks, transition location was highly

over-predicted. However, below 8 degrees, the results are very close to experimental

measurements.
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(a) Lift coefficients, DU91W250, R=3x106

(b) Transition points, DU91W250, R=3x106

Figure 3.11. Lift coefficients and transition points as function of angle of attack for

DU91W250, compared with XFoil and Baek and Fuglsang (2009)’s in-

frared thermography measurements. Note that transition points were given
by laminar boundary-layer separation.
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3.2.3. DU4050

The very thick DU4050 airfoil has nearly cylinder shape and it is used on blade

root. The thickest airfoil of DUxx family has also different thickness variations and de-

signed in Delft University.

Figure 3.12. DU4050 Airfoil

Figure 3.13a compares lift coefficient values. Although the same discussion on

previous two airfoils is still valid on this airfoil, experimental lift coefficient values clearly

show that inviscid lift values from panel code are completely unrealistic for such a thick

airfoil. Also, XFoil slightly overestimates lift coefficients at especially above 8 degrees

angle of attack despite it uses interactive boundary-layer method. In Figure 3.13b, DU4050

has no turning point in transition location unlike NACA 64-618 and DU91W250. Transi-

tion location linearly moves towards leading edge. Again, PBS code gives good results in

terms of transition points but in the all range of angle of attacks.
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(a) Lift coefficients, DU4050, R=3x106

(b) Transition points, DU4050, R=3x106

Figure 3.13. Lift coefficients and transition points as function of angle of attack for

DU4050, compared with XFoil and Baek and Fuglsang (2009)’s infrared

thermography measurements. Note that transition points were given by
laminar boundary-layer separation.
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CHAPTER 4

EPILOGUE

4.1. Concluding Remarks

Airfoil laminar boundary-layer stability calculations were performed and transi-

tion point is predicted based on a semi-empirical method. The used method to predict

transition is called as en method and it is based on linear stability theory. This method

requires solution of stability equations and laminar boundary-layer equations. Both 2D

stability and 2D laminar boundary-layer equations in differential form with appropriate

boundary conditions were numerically solved. The required pressure distribution was

obtained from inviscid panel code based on Hess-Smith method.

Three FORTRAN codes, HSPM (panel code), BLP2D (2D boundary-layer code)

and STP2D (2D stability code) were connected to each other via inputs-outputs in the

one code, called as PBS code. PBS is the abbreviation of Panel-Boundary layer-Stability

words.

The PBS code was first validated on NACA 0012 and NACA 0015 airfoils making

comparison with numerical and experimental works in literature. It was seen that the code

was qualified for transition point prediction with many stability and boundary-layer out-

puts. It was seen that amplified disturbance frequency magnitude, amplification starting

point and choice of threshold value are key points to correctly predict transition point for

en method.

After validation, three different thick airfoils dedicated for wind turbine applica-

tions were analyzed in terms of lift coefficient and transition location, namely NACA

64-618, DU91W250 and DU4050. The results were compared with XFoil’s viscous and

inviscid solutions and experimental wind tunnel measurements.

Following results were found: First, as airfoil thickness increases, the need for

interactive boundary-layer method increases for accurate lift coefficient. However, tran-

sition point can be still correctly predicted using inviscid pressure distribution. Second,

at high angle of attacks and high Reynolds numbers, laminar boundary-layer separation
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point can be directly taken as transition point instead of using the en method.

Disadvantages of PBS code can be listed as follows: First, to give pressure (or

edge-velocity) distribution without interactive method. This leads to incorrect lift predic-

tion. Second, to make initial guess for α and ω. The initial guesses must be found logically

to obtain converged results. Guess initial values are taken by trail and error from Blasius

flow (zero pressure gradient) stability diagram depends on stability Reynolds number.

While trial and error method usually works, improper selection of α and ω results di-

verged solution.

4.2. Suggestions for Future Work

Despite author of the Master’s thesis has tried to give as far as a satisfactory work

in terms of an academic study about the subject of airfoil inviscid-viscous solution and

transition prediction based on linear stability theory, one can develop a more complete

study using this future recommendations:

• Transform FORTRAN codes to MATLAB script with all inputs-outputs to

make quicker analysis and better post-processing.

• Use one of the interactive boundary-layer methods in available literature

to obtain improved pressure distribution. This requires a loop between panel code

and boundary-layer code (Figure 4.1).

Figure 4.1. Modified short flow diagram for interactive method

• Include RFOIL analysis as well as XFOIL results to compare RFOIL’s

improvements.
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• Modify boundary conditions in stability code to study laminar flow control

using mass transfer such as blowing and suction.

• Make wake calculation to be able to predict drag coefficient. Although one

of the boundary-layer code outputs is local skin-friction coefficient along airfoil

chord, this is just one part of the total drag. Total drag, CD, is summation of skin-

friction (Cdf ) and pressure drag (Cdp).

CD = Cdf + Cdp (4.1)

As explain in the XFoil manuel, drag coefficient is obtained by applying the Squire-

Young equation at last point in the wake, not at the trailing edge (See Eq. 4.2).

All variables in the Eq. 4.2, namely momentum thickness, shape factor and edge-

velocity, come from end of the wake. Typically, the last point of the wake is taken

as 1 chord downstream as shown in Fig. 4.2.

CD = 2θ(u0/U)
H+5

2 (4.2)

Figure 4.2. Wake behind airfoil. Blue dashed line indicates boundary-layer. Adapted
from XFOIL program.
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APPENDIX A

PBS CODE FLOW DIAGRAM

PBS code is the combination of following three codes: panel code (HSPM.f),

boundary-layer code (blp2d.for) and stability code (stp2d.f). Flow diagram of the com-

bined code (PBS code) is given in Fig. A.1 and the code inputs-outputs are explained in

detail.

Figure A.1. PBS code flow diagram with explained inputs-outputs boxes.
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———————————————————————————-

HSPM.f: Hess-Smith panel code written in Fortran 77. It contains one MAIN and four

subroutines.

———————————————————————————-

degXX-Inp.txt: Panel code input file. It requires following inputs:

NODTOT - - - total number of panels

X(1) ... X(NODTOT+1) - - - x-coordinates

Y(1) ... Y(NODTOT+1) - - - y-coordinates

ALPHA - - - the angle of attack.

degXX-Out.txt: Panel code output file. It gives following outputs:

X(J) - - - panel x-coordinates

Y(J) - - - panel y-coordinates

CP(J) - - - pressure coefficient

UE(J) - - - edge-velocity

CL - - - lift coefficient

CM - - - pitch-moment coefficient

———————————————————————————-

BLP2D.for: Boundary-layer code written in Fortran 95. It contains one MAIN and seven

subroutines.

———————————————————————————-

blpXX-Inp.txt: Boundary-layer code input file. It requires following inputs:

NXT - - - The number of x-stations

NPT - - - The number of normal grid points

X(I) - - - The x-coordinate of geometry

Y(I) - - - The y-coordinate of geometry

UE(I) - - - The edge-velocity

RL - - - Reynolds number

XCTR - - - Transition location

ETAE - - - The transformed boundary layer thickness

VGP - - - The variable grid parameter

DETA(1) - - - The size of first normal grid

P2(1) - - - Initial pressure at first x-station
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blpXX-Out.txt: Boundary-layer code output file. It gives following outputs:

At each x-station:

ETA - - - Normal grid points

F - - - Dimensionless stream function

U - - - Dimensionless velocity profile

V - - - Derivative of dimensionless velocity

B - - - Turbulent BL parameter

XSEP - - - Seperation point

Summary results:

UE - - - Dimensionless velocity

DELS - - - Dimensionless displacement thickness

THETA - - - Dimensionless momentum thickness

VW - - - Dimensionless wall shear

CF - - - Local skin-friction coefficient

RTHETA - - - Reynolds number based on momentum thickness

velopXX.txt: Boundary-layer code second output file. It is used for stability code as an

input. It contains dimensionless velocity profiles at each x-station along the geometry.

———————————————————————————-

STP2D.f: Stability code written in Fortran 77. It contains one MAIN and four subrou-

tines.

———————————————————————————-

stpXX-Inp.txt: Stability code input file. It requires following inputs:

NXT - - - The number of x-station

NX0 - - - Transition search starting station

IXT - - - Number of lines. (0, compute neutral stability curve only.)

UINF - - - The free-stream velocity

BIGL - - - The reference length

RL - - - The Reynolds number based on reference length

ALFA - - - initial eigenvalue guess of wave-number

OMEGA - - -initial eigenvalue guess of wave-frequency

X(I) - - - The x-coordinate
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S(I) - - - The surface distance

UE(I) - - - The edge-velocity

stpXX-Out.txt: Stability code output file. It gives following outputs:

RX - - - The Reynolds number based on x-station

REY - - - The stability Reynolds number

At each stability line for a fixed physical frequency (ω):

PHYSICAL ALFA - - - Converged real and imaginary parts of wave-number

CLOGA - - - The integrated amplification factor

The Fortran codes are compiled in Simply Fortran 3.2 under Ubuntu 18.04 LTS

(See Fig. A.2). However, it is not requisite, one can run the codes using any suitable

Fortran compiler under any operating system.

Figure A.2. Stability code in Simply Fortran compiler
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APPENDIX B

CFD SIMULATION OF DU91W250 AIRFOIL

CFD simulation is performed for DU91W250. Free-stream velocity is 47 m/s and

angle of attack is 8◦. Based on 1 m chord length, Reynolds number is R = 3x106. The

C-type mesh is used. The distances from the computational domain boundaries to the

airfoil are 14 chord lengths from outlet and 7 chord lengths from inlet. The generated

mesh consists of 143,349 structured grid cells. First layer height at the boundary-layer

mesh is 8.2e-06 m providing wall y+ values of approximately 1.0. The Transition SST

turbulence model is employed. This four-equation turbulence model is based on the SST

k-ω model and two transport equations for the intermittency and for the transition onset

criteria.

The mesh views are presented in Figure B.1. Velocity & pressure contours are

given in Figure B.2. Explanations on figures can be found in the sub-figure caption.
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(a) General mesh view. Computational fluid domain is taken as 7 chord from inlet and 14 chord

from outlet.

(b) Boundary-layer mesh view. Close region of airfoil surface.

Figure B.1. Mesh views for DU91W250, R = 3x106, α = 8◦.
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(a) Velocity contours. Blue region below the leading edge indicates stagnation point. Note that

on the upper surface, velocities in streamwise direction are gradually decreased as boundary-layer

thickness increases, red color turns orange, yellow and green.

(b) Static pressure contours. Note that upper surface pressure values are negative, it indicates

lower pressure than free-stream. Also, upper surface pressure is recovered after some point, blue

region turns green and yellow.

Figure B.2. Pressure contours and velocity vectors for DU91W250, R = 3x106, α = 8◦.
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