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ABSTRACT

MAGNETIC EFFECT IN THE BIOLOGICAL FUNCTIONING OF

HEMOGLOBIN: DFT+QMC APPROACH WITHIN AN EFFECTIVE

MULTI-ORBITAL ANDERSON IMPURITY MODEL

Hemoglobin corresponds to O2 transportation from lungs to the tissues and ex-

hibits high-spin to low-spin transition by binding of O2 to Fe. In this thesis, we study the

electronic and magnetic properties of the deoxy and the oxy forms of the human adult

hemoglobin (HbA) to investigate the mechanism of the spin transition. We use an ef-

fective multi-orbital Anderson model and the parameters of this model are determined

by the density functional theory (DFT) calculations. Then, this model is solved by us-

ing a quantum Monte Carlo (QMC) algorithm. The DFT+QMC results show that new

electronic states named as the impurity bound states (IBS) exist in both deoxy-HbA and

oxy-HbA. We also observe that as the temperature decreases, a magnetic gap is opened at

the Fermi level for oxy-HbA. This gap arises from the Fe-O2 charge transfer. We find that

both the IBS and the opening of the magnetic gap are responsible for the spin transition in

hemoglobin. In addition, the DFT+QMC calculations show that antiferromagnetic (AF)

correlations between the Fe(3d) and the surrounding orbitals exist in both deoxy-HbA and

oxy-HbA. For deoxy-HbA, the anomalous magnetic circular dichrosim signal in the UV

region is experimental evidence for these AF correlations. In the light of these magnetic

measurements, we propose some explanations for the Bohr effect and the cooperativity

which are the fundemental functional properties of the hemoglobin. The results presented

in this thesis show that the magnetic effects play a crucial role in the funtioning of the

hemoglobin.
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ÖZET

HEMOGLOBİNİN BİYOLOJİK İŞLEVİNDEKİ MANYETİK

ETKİ:ETKİN ÇOK ORBİTALLİ ANDERSON SAFSIZLIK MODELİ

ÇERÇEVESİNDE DFT+QMC YAKLAŞIMI

Hemoglobin molekülü, akciğerlerden hücrelere O2 taşınımından sorumludur ve

O2’nin demire (Fe) bağlanmasıyla spin durumu yüksek-spinden düşük-spine geçmek-

tedir. Bu tezde, deoksi ve oksi formdaki yetişkin insan hemoglobininin (HbA) elek-

tronik ve manyetik özellikleri etkin çok-orbitalli Anderson modeli ile çalışılmıştır. Bu

modelin parametreleri yoğunluk fonksiyoneli teoremi (DFT) ile elde edilmiştir. Daha

sonra, kuantum Monte Carlo (QMC) algoritması ile bu model çözülmüştür. DFT+QMC

sonuçları deoksi-HbA ve oksi-HbA moleküllerinde safsızlık bağıl durumu (IBS) olarak

adlandırılan yeni elektronik hallerin var olduğunu göstermiştir. Ayrıca, sonuçlar, sıcaklık

düştükçe, oxy-HbA için Fermi seviyesinde bir manyetik aralığın oluştuğunu göstermekte-

dir. Bu manyetik alınganlık Fe-O2 yük geçişinden kaynaklanmaktadır. Bu tezde sunulan

spin geçiş mekanizması hem IBS’lerin varlığının hem de manyetik aralığın açılmasının

yüksek-spinden düşük-spine geçişe neden olduğunu göstermektedir. Buna ek olarak,

deoksi-HbA ve oksi-HbA moleküllerinde Fe(3d) ile çevre orbitaller arasında antiferro-

manyetik (AF) korelasyonların var olduğunu bulduk. Deoksi-HbA için, UV bölgesin-

deki anomal manyetik dikroizm sinyallerinin bu AF korelasyonlar için deneysel bir kanıt

olduğunu gösterdik. Bu manyetik ölçümler ışığında, hemoglobinin önemli fonksiyonel

özellikleri olan Bohr etkisi ve kooperativite için açıklamalar önerdik. Bu tezde sunulan

sonuçlar manyetik etkilerin hemoglobinin işleyişinde önemli rol oynadığını göstermekte-

dir.
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CHAPTER 1

INTRODUCTION

Proteins that contain transition metal atoms at their active site are called as met-

alloproteins. In metalloproteins, the metal atom is usually coordinated with nitrogen,

oxygen and sulfur atoms. These molecules play an essential role in many chemical re-

actions such as transportation of O2 and CO2 through the cells, normal functioning of

brain and nervous systems, transportation and storage of the proteins. Metalloproteins

have been studied for many years (Kepp (2017), Wang et al. (2019), Schuth et al. (2017),

Bren et al. (2015)). The researches show that the metal-binding site are responsible for

catalyzing functions of metalloproteins (Degtyarenko (2000), Reif (1992), ). On the other

hand, there are many questions that remain to be answered about the mechanism of met-

alloproteins and the role of the transition metal atom in their functioning (Schuth et al.

(2017), Bren et al. (2015)).

Hemoglobin molecule is one of the widely studied metalloprotein because of

its interesting electronic and magnetic properties (Pauling and Coryell (1936), Poulos

(2014)). This molecule is composed of 4 heme groups. Each heme group contains iron

(Fe) atom at its center and a surrounding porphyrin ring. Hemoglobin molecule is re-

sponsible for the transportation of O2 from lungs to the tissues. During this biological

process, two types of hemoglobin, which are deoxyhemoglobin and oxyhemoglobin, are

formed. Deoxyhemoglobin is the form of hemoglobin without bound oxygen while the

oxyhemoglobin is the oxygenated form of the hemoglobin. Along with having differ-

ent molecular structures, deoxy- and oxyhemoglobin have also completely different elec-

tronic and magnetic properties. It is well known that the spin state changes with respect

to structure of the hemoglobin molecule(Phillips (1980),Vojtěchovskỳ et al. (1999), Elli-

son et al. (2002)). For deoxy case, Fe atom is five-coordinated and the displacement of

Fe from the porphyrin layer is about 0.4 Å. In this form, hemoglobin has the high-spin

state. On the other hand, Fe atom is six-coordinated and it prefers in-plane position for

the oxyhemoglobin molecule. For this form, the molecule has the low-spin state (Pauling

and Coryell (1936)). Many experimental and theoretical studies have been done to reveal

the changing in the magnetic properties of the hemoglobin by binding the O2 molecule

(Pauling and Coryell (1936), Perutz et al. (1960), Lang and Marshali (1966), Treu and

Hopfield (1975), Weiss (1964), McCLURE (1960), Goddard and Olafson (1975), Scheidt
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and Reed (1981), Chen et al. (2008), Bren et al. (2015), Monod et al. (1965)).

Pauling and Coryell (Pauling and Coryell (1936)) showed that the deoxy form

of human adult hemoglobin (HbA) has a paramagnetic response with a Curie-type (1/T)

temperature dependence. On the other hand, for the oxy-HbA, the total spin of molecule

is S=0. Mössbauer experiment shows that the Fe atom in the deoxy-HbA is in a S=2 state

(Lang and Marshali (1966)). For the oxy-case, the Mössbauer experiment shows that the

magnetic moment of Fe is about 1 μB. In addition to these data, the magnetic circular

dichroism (MCD) measurements (Treu and Hopfield (1975)) for deoxy-HbA finds an

anomalous line shape for the temperature-dependent MCD spectra in UV region.

In addition to having these magnetic behaviours, hemoglobin molecules exhibit

remarkable functional properties such as Bohr effect and cooperativity. The Bohr effect is

known as the dependency of the oxygen affinity of hemoglobin on the pH of the medium

(Adairet al. (1925), Ferry and Green (1929)). On the other side, the cooperativity states

that when an O2 molecule binds to one of the heme group, the affinity to oxygen of the

remaining heme groups increases (Monod et al. (1965), Perutz et al. (1998), Yuan et al.

(2015)). The importance of these structural changes is that they increase the oxygen-

transporting efficiency of hemoglobin molecule. In other words, Bohr effect and coop-

erativity change the molecular structure to regulate the action of hemoglobin. Although

Bohr effect and cooperativity are very crucial for the functioning of hemoglobin, there are

many questions about their microscopic origin (Swietach et al. (2010), Josephy (1992)).

In this thesis, we study the electronic and magnetic properties of HbA by us-

ing an effective multi-orbital Haldane-Anderson impurity model (Haldane and Anderson

(1976)). In this model, the five Fe(3d) orbitals are taken as impurity states and the re-

maining orbitals are treated as host states. For both deoxy-HbA and oxy-HbA molecules,

we concentrate on one heme group with a Fe site. The effective Anderson Hamiltonian

includes the bare energy level of the impurity and host states, the hybridization between

them, and the electron interactions at the Fe site. In this model, both the intra- and inter-

orbital interactions are taken into account along with the ferromagnetic Hund’s coupling.

We obtain the energy levels of host and impurity states, and the hybridization matrix

elements by performing density functional theory (DFT) (Kohn and Sham (1965)) calcu-

lations for the deoxy-heme and oxy-heme clusters. In order to perform DFT calculations,

we have used the molecular coordinates of the deoxy and oxy-HbA obtained by the X-ray

measurements (Park et al. (2006)), and we did not any DFT optimizations for the coordi-

nates. Then, we perform QMC simulations using Hirsch-Fye algorithm (Hirsch and Fye

(1986)) for this constructed model. In the QMC simulations, we took the intra-orbital
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Coulomb interaction parameter U as 4 eV and the Hund’s coupling J as 0.9 eV. Within

DFT+QMC technique, we calculate the magnetic moments in the clusters, the correlations

among these moments, the magnetic susceptibilities and the charge distributions through

the clusters.

In the rest of this chapter, the molecular structure of heme clusters and their func-

tional properties, the experimental studies on them, the Haldane-Anderson model, and the

DFT+QMC technique will be explained in more detail.

1.1. Molecular structure of the hemoglobin

Figure 1.1(a) shows X-ray molecular structure of deoxy-HbA molecule obtained

from the Protein Data Bank with the keyword 2DN2. This structure was determined with

1.25 Å resolution on a crystal of deoxy-HbA at room temperature (Park et al. (2006)).

Deoxy-HbA has the four heme groups which are α1 − α2 − β1 − β2. For this molecu-

lar structure, the nearest-neighbor Fe-Fe distance are between the 34 Å and 39.5 Å. The

HbA molecule contains approximately 9700 atoms and performing calculations for this

molecule is very difficult. Hence, we reduced heme cluster obtained from the α1 group

which is shown in Fig. 1.1(b). In order to obtain this cluster, the four methyl (-CH3),

two vinly (-CH=CH2) and two propionate groups (-CH2-CH2-COO−) are truncated and

the sides of these groups are replaced by hydrogen atoms. The deoxy-heme cluster con-

tains porphyrin ring and a Fe atom located at the center. The histal histidine (HisE7) is

attached to imidazole part and the proximal histidine (HisF8) part is located at top of the

porphyrin ring. It is thought that the attachment of the proximal histidine is necessary

for the stability of O2 binding. The obtained deoxy-heme has 75 atoms and 334 electrons

(C32H30FeN10O2). For the oxy-heme cluster, we again use the X-ray molecular structure

of oxy-HbA obtained from the Protein Data Bank with the keyword 2DN1. We obtain the

truncated oxy-heme cluster from the α1 group of the oxy-HbA in the same way described

for the deoxy-heme. Figure 1.1 (c) shows the molecular structure of the oxy-heme. This

molecule has 77 atoms and 350 electrons (C32H30FeN10O4).

In deoxy-heme cluster, the displacement of Fe atom from the porphyrin layer is

about 0.4 Å. On the other hand, for the oxy-heme cluster, Fe moves to porphyrin ring

by binding O2 molecule and the electronic state of the heme changes from high-spin to

low-spin. It is shown that this stereochemical effects play a role in the understanding of

the functioning of HbA (Phillips (1980),Vojtěchovskỳ et al. (1999), Ellison et al. (2002)).

We use X-ray coordinates for the deoxy and oxy cases. Hence, this stereochemical effect
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Figure 1.1. (a) Molecular structure of deoxy-HbA, which was obtained by X-ray

diffraction at room temperature (Park et al. (2006)) (Protein Data Bank,

Keyword: 2DN2). HbA molecule contains four inequivalent heme groups,

α1−α2−β1−β2. (b) Molecular structure of the truncated α1 heme group

of deoxy-HbA (the Protein Data Bank keyword: 2DN2). This deoxy-heme

cluster (C32H30FeN10O2) contains 75 atoms and 334 electrons. (c) Molec-

ular structure of the truncated α1 heme group of oxy-HbA (the Protein

Data Bank keyword: 2DN1). This oxy-heme cluster (C32H30FeN10O4) has

77 atoms and 350 electrons.
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of O2 are already included in our model.

1.2. Magnetic properties of hemoglobin

In this section, first, we will show the experimental picture for the high-spin to

low-spin transition in the hemoglobin molecule. Here, we will also mention our mecha-

nism for the spin transition which will be discussed in Chapter 2.

Then, the important three experimental methods used to find the electronic and

magnetic properties of hemoglobin molecules will be explained. These methods are

Mössbauer spectroscopy, magnetic circular dichroism (MCD) and resonant inelastic X-

ray scattering (RIXS). The results obtained by using these techniques for hemoglobin

molecules are also given in this section.

1.2.1. Experimental picture for the spin transition of hemoglobin

As mentioned in the previous sections, the hemoglobin molecule shows different

magnetic behaviours by binding of O2 molecule to the Fe atom. While deoxyhemoglobin

has high-spin state, the spin state is 0 for the oxyhemoglobin. The mechanism of high-

spin to low-spin transition in hemoglobin has been studied for many years. However, the

debate on the mechanism is ongoing and there are many conclusions on it.

Figure 1.2 shows some experimental and theoretical results for the spin state of

Fe atom and O2 molecule in the oxyhemoglobin. Three corners of the square represent

the three models which are Pauling, Weiss and McClure-Goddard (Pauling and Coryell

(1936), Weiss (1964), McCLURE (1960)), and the fourth corner represents a model which

involves the transfer of an electron from O2 to Fe atom. Inside the square, the circulus,

squares and triangles correspond to various computational methods performed for the

oxyhemoglobin. In 1936, Pauling and Coryell (Pauling and Coryell (1936)) said that Fe

atom and O2 molecule have the singlet state. In 1964, Weiss (Weiss (1964)) suggested

that the Fe gives an electron to O2 and all have the S=1/2 spin state. According to the

McClue model (McCLURE (1960)), the Fe goes to S=1 spin state and two electrons in Fe

are shared with the O2 which has the S=1 spin state. As shown in Fig. 1.2, the conclusions

of the theoretical studies vary with respect to used computational methods.

The general experimental picture for the spin transition in hemoglobin is shown

in Fig.1.3. As seen in the left part of this figure, Fe atom is located out of plane in the
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Figure 1.2. Results on the oxy-hemoglobin molecule from the various experimental

and theoretical methods. Source:(Chen et al. (2008)).

Figure 1.3. Schematic representation of the experimental explanation for the high-spin

to low-spin transition in hemoglobin molecule.
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deoxy form. By binding of O2 molecule, the Fe atom goes into the porphyrin ring. The

right side of the Fig. 1.3 shows that the spin transition in the hemoglobin molecule. For

deoxyhemoglobin, one Fe(3d) orbital is double-occupied and the other orbitals have 1

electron. Hence, molecule has the S=2 spin state. On the other hand, for oxyhemoglobin,

the situation is very different. According to this explanation, the three Fe(3d) orbitals are

double-occupied and the remaining two orbitals are empty. Hence, the molecule has S=0

spin state. In this picture, the spin transition is explained by the occupancy of the Fe(3d)

orbitals.

The mechanism suggested in this thesis is different from the experimental picture.

In our explanation, all Fe(3d) orbitals are single-occupied for the deoxy case. On the other

hand, for the oxy case, there is one double-occupied Fe(3d) orbital and the electron num-

bers of the remaining orbitals vary between 1.2 electrons and 1.5 electrons. In contrast

to the experimental picture, we do not explain the spin transition in hemoglobin by the

occupancy of the Fe(3d) orbitals. We observe that the magnetic correlations between the

Fe(3d) electrons and the host electrons play an essential role in the high-spin to low-spin

transition. For the deoxyhemoglobin, the effective spin equals 1.60 due to ferromagnetic

Hund’s coupling between the Fe(3d)-Fe(3d) electrons. By binding O2, the spin state goes

from high-spin to low-spin due to both impurity bound states (IBS) and the opening of

magnetic gap as the temperature decreases. The IBS are magnetically correlated elec-

tronic states arising from the impurity-host hybridization and the Coulomb interaction

between the Fe(3d) orbitals. The occupancy of the IBS determines the spin state of the

molecule. For deoxy, IBS are located above the chemical potential and molecule has the

high-spin state. On the other side, IBS are located above the chemical potential for the

oxy case and the effective spin equals 0.68. In addition, for oxy case, we observe that

the effective spin decreases with temperature (T ). The charge transfer occurs between

the Fe(3d) and O2 orbitals as the T decreases and antiferromagnetic (AF) correlations

occur between these orbitals. The total magnetic moment of oxy is decreased due to these

AF correlations and the effective spin of the oxy case equals 0.10 at T = 150 K. This

mechanism will be explained in Chapter 2.

1.2.2. Mössbauer spectroscopy

The Mössbauer spectroscopy technique is a widely used to examine the valance

state of Fe, Fe2+ and Fe3+. It is also used to determine the coordination number and

the magnetic properties of the iron atom in the molecules. The Mössbauer spectroscopy
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detects the small changes in the energy levels of an atomic nucleus in response to its

environment.

Mössbauer spectroscopy for hemoglobin molecule show that the spin state of Fe

in deoxy-HbA is S=2 (Lang and Marshali (1966)). The results for the oxy-HbA shows

that the magnetic moment of Fe is about 1 μB. The DFT+QMC results on the magnetic

moments and the effective spin of deoxy and oxy hemoglobins will be compared with the

Mössbauer spectroscopy results in Chapter 2.

1.2.3. Magnetic circular dichroism spectroscopy

Magnetic circular dichroism (MCD) spectroscopy uses circularly polarized light

to study the transitions between the molecular orbitals. In the MCD spectroscopy, the left

circularly polarized (LCP) light and the right circularly polarized (RCP) light are induced

by a strong magnetic field which is oriented parallel to the direction of propagation the

measuring light beam. By measuring the differences between the LCP and RCP lights,

the number of molecular transitions in a wide range can be observed. MCD spectroscopy

is used to study the transitions which are weak to be seen in an optical absorption spectra,

paramagnetic properties of the systems and electronic structure of the materials.

In recent years, the MCD spectroscopy has been widely used for the metallopro-

phyrins . Because of the presence of the metal atom, the MCD signals are very strong for

these molecules. In the heme proteins, both the oxidation and spin states can be deter-

mined by MCD (Kirk and Peariso (2003), Mack et al. (2007), McMaster and Oganesyan

(2010), Lehnert et al. (2001)).

The MCD spectra on deoxy-HbA has a peak near 3 eV which is an anomalous line

shape and it has 1/T temperature dependency (Treu and Hopfield (1975)). The origin of

this anomalous line shape has been debated since its discovery. In this thesis, we propose

that the anomalous line shape originates from the antiferromagnetic correlations between

the Fe(3d) orbitals and the partially occupied π∗ states of the porphyrin layer. The detail

of MCD spectrum calculations and the π → π∗ transitions will be explained in Chapter

3.
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Figure 1.4. Schematic presentation of the resonant inelastic X-ray scattering method.

Source: (Ament et al. (2011))

1.2.4. Resonant inelastic X-ray scattering

Resonant inelastic X-ray scattering (RIXS) is a "phonon in-phonon out" X-ray

spectroscopy technique. In RIXS, a sample is irradiated by X-rays and the scattered X-

ray photons are observed. This technique is inelastic because the photons give energy to

the sample and leave it in an excited state. Figure 1.4 shows the schematic representation

of the RIXS process. In the initial state, a core electron is excited into the valence band.

Then, in the intermediate state, the interaction Uc between the valence hole and valence

electrons leads to excitation of a valence electron. In the final state, the core hole decays

and the system is left in an excited state. By using RIXS, intra-atomic d-d transitions, the

charge transfer excitations, orbital excitations and magnetic excitations can be examined.

Figure 2.6(a-b) shows the RIXS results on the d-d transitions for the deoxymyo-

globin (deoxyMb) and carboxymyoglobin (MbCO) (Harada et al. (2009)). Hemoglobin

and myoglobin molecules have the similar structure. Hence, the RIXS measurements

for these molecules are compatible with each other. For deoxyMb, Fig.2.6(a) shows that
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Figure 1.5. RIXS spectrum of the deoxyMb and MbCO molecules. Source: (Harada

et al. (2009))

dominant d-d transitions are located at approximately 1 eV. On the other hand, the d-d

transitions are located at 0.4 eV, 1.8 eV and 3 eV for the MbCO as seen in Fig. 2.6(b).

1.3. Bohr effect

The effect of pH on the dissociation of oxygen is known as the Bohr effect. It was

shown that the oxygen affinity of hemoglobin decreases by the increasing acidity and the

concentration of carbondioxide (Adairet al. (1925), Ferry and Green (1929)). As seen in

Fig. 1.6, when the CO2 diffuses in to the blood and then into the red blood cells, most

CO2 reacts with the water to form carbonic acid, H2CO3:

H2O + CO2 � H2CO3 (1.1)
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Figure 1.6. Schematic representation of the transportation of O2 and CO2 in red blood

cells (RBC). Source:(Kaneko et al. (2008))

This reaction occurs in the presence of the catalysts carbonic anhydrase. H2CO3 dissoci-

ates to form H+ and hydrogencarbonate, HCO3
−;

H2CO3 � H+ +HCO−
3 (1.2)

The dissociation of H2CO3 increases H+ and decreases the pH in blood. Then, H+ as-

sociates with the aminoacids of oxyhemoglobin. Oxyhemoglobin releases bound oxy-

gen and the acidity of the blood is decreased. By this reaction, CO2 molecules bind the

hemoglobin and it is transported to the lungs. This process is continues because O2 con-

tent ratio is always higher than the O2 concentration in the lungs.

The amount of the oxygen binds to hemoglobin at a time to form oxyhemoglobin

is named as percentage saturation. The percentage saturation of the hemoglobin versus

the partial pressure of oxygen (PO2) is called oxygen dissociation curve shown in Fig. 1.7.

The oxygen dissociation curve is sigmodial shape. This graph shows that there is little or

no any oxyhemoglobin at low oxygen concentration (in the body tissues). On the other

hand, there is little or no any deoxyhemoglobin at relatively high oxygen concentration

(in the lungs).
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Figure 1.7. The oxygen dissociation curve. Source:(Ferrell (2009))

pH in healthy lungs is between 7.38 and 7.42 and the pH values of the tissues is

about 7.2. Figure 1.7 shows the percentage saturation of the hemoglobin for the different

pH values. As seen in this figure, the oxygen affinity of hemoglobin decreases with de-

creasing in pH. Hence, when hemoglobin moves into a region of low pH, its tendency to

release oxygen increases. For example, transportation from the lungs with pH 7.4 and the

oxygen partial pressure of 100 torr to an muscle with pH 7.2 and oxygen partial pressure

20 torr results in a releasing of oxygen as 77% of the total carrying capacity. Figure 1.7

says that the regulation of the hemoglobin by the hydrogen ions and also by CO2 further

increases the oxygen-transporting efficiency of hemoglobin.

1.4. Cooperativity

The oxygen affinity of the hemoglobin molecule is regulated by many factors. One

of the most important regulator is the presence of oxygen.

Deoxyhemoglobin has low affinity for oxygen. When one oxygen is attached to

molecule, the second one binds more easily. This means that the affinity of the hemoglobin
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Figure 1.8. The structural changes of hemoglobin by binding of O2. Source: (Ferrell

(2009)).

molecule increases by the increase in the quantity of the oxygen bound at a given time.

In the same manner, the loss of one oxygen molecule from the oxyhemoglobin leads to

unbind the other oxygen molecule more easily, and so forth. This phenomenon is named

as cooperativity.

Cooperativity is very important for the functioning of hemoglobin. It allows car-

rying the maximum amount of oxygen from lungs to the tissues, and also it allows to

release the maximum amount of oxygen into the tissues.

Hemoglobin is an allosteric molecule. It has two different states which are named

as T-state (tense) and the R-state (relaxed). The deoxyhemoglobin is the T-state and the

oxyhemoglobin is the R-state. As the oxygen molecule binds the hemoglobin molecule,

the transition from T-state to R-state occurs.

Figure 1.8 shows the sequential model for the cooperativity. This model says that

conformational changes are seen in hemoglobin by binding the one O2 molecule. When

the next O2 molecule is bound, another conformational changes occurs for more bindings.

The experimental data shows the conformational changes in hemoglobin by bind-

ing O2 as the following:

• In deoxyhemoglobin, the Fe is bound the nitrogen atom which is in HisE8. Due to

this bond, Fe is located out of plane.

• When oxygen binds the Fe, the new bond pulls the iron into the nitrogen plane.

• The histidine residue and the alpha-helix of the hemoglobin start to move by moving

of Fe.

• Hence, resides between the alpha and beta dimers also move.

• The position of the carboxyl terminal end changes and so the favorable conditions

for the transition between the T-state and the R-state of hemoglobin created. The

new configuration is more favorable for bindig of O2.

13



1.5. Our results for the magnetic properties and the functioning of

hemoglobin

In this section, our study on the electronic and magnetic properties of hemoglobin

molecule will be summarized.

We use extended multi-orbital Haldane-Anderson impurity model to study the

electronic properties of hemoglobin molecule. The parameters of this model are ob-

tained by using density functional theory (DFT) calculations. Then, we solve this ef-

fective Anderson Hamiltonian by using a quantum Monte Carlo (QMC) technique. In

this technique, we use Hirsch-Fye QMC algorithm. In my master thesis (Mayda (2013)),

I changed single-orbital Haldane-Anderson model to the multi-orbital single impurity

Haldane-Anderson model. In this model, only the intra-orbital Coulomb interactions were

taken into account.

In this thesis, both the intra- and inter-orbital Coulomb interactions are taken into

account. The details of the Hirsch-Fye QMC algorithm for this Anderson model are given

in Appendix B.

In the following of this section, the Anderson model and the combined DFT+QMC

method will be described. In addition, our proposal for the mechanism for the functioning

of hemoglobin will summarized.

1.5.1. Extended multi-orbital Anderson impurity model

We use an effective multi-orbital Anderson model to describe the magnetic prop-

erties of HbA. In this model, the Fe(3d) orbitals of the HbA are described by the impurity

and the remaining orbitals are named as host part.

The multi-orbital single-impurity Anderson Hamiltonian (Anderson (1961), Hal-

dane and Anderson (1976)) with the intra and inter-orbital Coulomb interactions is given

by

H =
∑
m,σ

(εm − μ)c†mσcmσ +
∑
ν,σ

(εdν − μ)d†νσdνσ +
∑
m,ν,σ

(Vmνc
†
mσdνσ + V ∗

mνd
†
νσcmσ)(1.3)

+
∑
ν

Uνnν↑nν↓ +
∑

ν>ν′,σ

(
U ′nνσnν′−σ + (U ′ − J)nνσnν′σ

)
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U U′ U″ = U′–J

Figure 1.9. In the left picture, the intra-orbital Coulomb interaction U is shown. The

inter-orbital Coulomb interaction U ′ for antiparallel spins is shown in the

middle picture, whereas U ′′ is for parallel spins as seen in the right picture.

In the atomic limit U ′ = U − 2J and U ′′ = U − 3J , where J is the

ferromagnetic Hund’s coupling.

where c†mσ (cmσ) operator creates (annihilates) an electron in the m’th host state with

spin σ, d†νσ (dνσ) is the creation (annihilation) operator for a localized electron with spin

σ at the Fe(3dν) orbital, and the electron occupation operator for the Fe(3dν) orbitals is

nνσ = d†νσdνσ. Here, εm and εdν are the energies of the host and the Fe(3dν) impurity

states, respectively. The hybridization matrix element between the m’th host and the

Fe(3dν) state is Vmν . The intra-orbital Coulomb repulsion is U , while U ′ and U ′′ = U ′−J

are the Coulomb interactions between two 3d electrons in different orbitals with opposite

and parallel spins, respectively. Here J is the ferromagnetic Hund’s coupling constant. In

the case of a free atom, the relation U ′ = U − 2J holds. Finally, the chemical potential

μ is introduced since the QMC calculations are performed at finite temperatures in the

grand canonical ensemble.

We use Anderson impurity model to obtain the electronic and magnetic properties

of hemoglobin molecule. This model treats the host part and impurity part, separately.

Hence, the electronic correlations in Fe(3d) orbitals are taken into account independently

from the host part. This enables to obtain the magnetic properties of hemoglobin molecule

with a realistic model.

1.5.2. DFT+QMC approach for the Anderson impurity model

The electronic correlations in the molecules containing transition metal atoms play

an essential role to determine the electronic and magnetic properties. Since these correla-

tions are not a pertubative effect, they have to be solved exactly.

In this thesis, the electronic structure of the hemoglobin molecule is described by
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the extended multi-orbital Haldane-Anderson model explained in the Subsection 1.5.1.

The parameters of this model are obtained by the density functional theory (DFT) (Kohn

and Sham (1965)) calculations. Then, the Anderson Hamiltonian is solved by the Hirsch-

Fye (Hirsch and Fye (1986)) quantum Monte Carlo algorithm (HF-QMC). This algorithm

takes into account intra- and inter-orbital Coulomb interactions without using any ap-

proximation. Hence, the combined DFT+QMC method provides to obtain electronic and

magnetic properties of hemoglobin molecule, accurately.

1.5.3. Why do we study the hemoglobin molecule?

Hemoglobin molecules exhibit energy gaps in their spectrum and contain transition-

metal atoms. In this respect, they are similar to an entirely different class of materials

which are named as diluted magnetic semiconductors (DMS) (Ohno et al. (1992), Ohno

et al. (1996)). The DMS materials are obtained by substituting transition-metal impuri-

ties into a semiconductor host. For example, (Ga,Mn)As is obtained by substituting Mn

impurities for Ga in the GaAs semiconductor.

DMS materials have attracted much attention because of their magnetic and semi-

conducting properties. They display high Curie temperatures. In addition, an impurity

bound state, which is a sharp resonant state in the single-particle spectrum, exists 110

meV above the top of the valence band in the semiconducting gap ((Jungwirth et al.,

2007)). The impurity bound state consists of spectral weight from both the Mn impurity

and the host. Calculations performed by using the Haldane-Anderson model show that

this new electronic state is important in determining the electronic and magnetic proper-

ties of (Ga,Mn)As ((Ichimura et al., 2006), (Bulut et al., 2007), (Tomoda et al., 2009)).

In particular, long-range ferromagnetic correlations exist among Mn impurities when the

chemical potential is located between the top of the valence band and IBS. These ferro-

magnetic correlations disappear rapidly as the IBS becomes occupied by electrons. Due

to these electronic and magnetic properties, the DMS materials have potential for new

device applications (Ohno et al. (1992)) for example in spintronics ((Maekawa et al.,

2013)).

When studied within the framework of the Haldane-Anderson model (Anderson

(1961)), hemoglobin molecule and the DMS materials have similar electronic structures;

they have semiconducting energy gaps, they contain transition-metal impurities. In addi-

tion, we observe that all these different classes of materials have impurity bound states in

the electronic spectrum which control the magnetic properties.
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1.5.4. Our proposal of a magnetic mechanism for the functioning of

hemoglobin

Our proposal for the functioning of hemoglobin molecule is very different than

the experimental picture described in Section 1.2.

DFT+QMC results show that the new electronic states are names as impurity

bound states (IBS) are formed in hemoglobin molecule. The occupancy of IBS deter-

mines the magnetic properties of the molecule. For the deoxy-heme cluster, IBS are lo-

cated below the Fermi level and the molecule has the low-spin states. On the other hand,

IBS are located above the Fermi level for the oxy-heme cluster and the molecule has the

lower spin state than the deoxy-heme.

Our results show that IBS are not sufficient to obtain the low-spin state for the

oxy-heme. We see that the magnetic gap is formed by decreasing the temperature for

the oxy-heme. Fe(3d)-O2 charge transfer is seen at the low temperatures (T < 300 K)

and the antiferromagnetic correlations occur between the Fe(3d) and O2 electrons. These

AF correlations lower the total magnetic moment of the molecule and so low-spin state

is obtained for the oxy-heme cluster. The details of this mechanism will be explained in

Chapter 2.

DFT+QMC results show that both the IBS and the opening of magnetic gap are

necessary for obtaining the high-spin to low-spin transition in hemoglobin. The results

presented in this thesis show that the magnetic effects play an important role in the func-

tioning of hemoglobin molecule.

1.6. Outline

The outline of this thesis as the following; in Chapter 2, the DFT+QMC results

will be shown. In this chapter, we will show that Fe(3d) and host electrons have mag-

netic moment in both deoxy-heme and oxy-heme clusters. In addition, the susceptibility

measurements and the magnetic formations for the deoxy and oxy-heme clusters will be

presented. These results show that the deoxy-heme cluster has the Curie-type magnetic

susceptibility. In addition, we will see that the spin state of deoxy-heme is S=1.6 at 300

K. On the other hand, the spin state of oxy-heme cluster equals to S=0.68 at 300 K. For

the deoxy-heme, we see strong ferromagnetic correlations between the Fe(3d) electrons.

These ferromagnetic correlations are suppressed by the antiferromagnetic correlations be-
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tween the Fe(3d) and host electrons for the oxy-heme. Hence, the oxy-heme has lower

spin state than the deoxy-heme. In additon, magnetic measurements show that the new

electronic states named as impurity bound states (IBS) are formed both in the deoxy-

heme and oxy-heme. The location of the IBS is very important in determining the mag-

netic properties of the hemoglobin molecule. On the contrary, the IBS are not sufficient

to obtain the spin 0 state for the oxy-heme. In this section, we will show that the charge

transfer from O2 to Fe(3d) orbitals occurs by decreasing the temperature and the magnetic

gap is formed. The antiferromagnetic correlations between the O2 and Fe(3d) electrons

lead to obtain S=0 state for the oxy-heme. The DFT+QMC results presented in Chapter

2 show that both the IBS and the opening of magnetic gap are necessary for obtaining the

high-spin to low-spin transition in hemoglobin.

In Chapter 3, we will present the magnetic circular dichroism (MCD) spectra for

the deoxy-heme and we will compare it with the experimental results. The DFT+QMC

results show that the antiferromagnetic (AF) correlations occur between the Fe(3d) and

host electrons. In the MCD spectra, an anomalous line shape is seen. Our results show

that Fe(3d)-host AF correlations correspond to this line shape in MCD spectrum.

In Chapter 4, the calculated RIXS spectrum for the deoxy-heme and oxy-heme

clusters will be shown. In addition, we will compare our DFT+QMC results with the ex-

perimental RIXS spectrum. Here, the d-d transitions are obtained with these calculations.

In Chapter 5, we compare the DFT+QMC results with the X-ray absorption spec-

trum results. Here, we see that our DFT+QMC results are not good agreement with the

XAS results. We find that the spectrum obtained by DFT+QMC calculations are more

broaden than the XAS. The reason may be the U and J parameters used in the DFT+QMC

calculations.

The implications of DFT+QMC results for the functioning of hemoglobin will be

explained in Chapter 6. In this chapter, the magnetic mechanism for the Fe-O2 bindig,

the Bohr effect and the cooperativity will be explained. The DFT+QMC results find that

S=0 spin state develops in a narrow energy gap. If the chemical potential is slightly

changed, the molecule has different magnetic properties. Hence, the binding of the O2 to

Fe is affected. This mechanism may be the explanation of the origin of the Boh effect. In

addition, in this chapter, we will present two proposals for the mechanism of cooperativity.

The first one is the simple ferromagnetic bound breaking. The second one is based on the

spin non-conservancy in the binding of O2 to heme. The details of these mechanism will

be given in this chapter.

In Chapter 7, the future applications of DFT+QMC approach to the different
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molecules will be mentioned. There are many bio-inorganic molecules which have similar

electronic structures with the hemoglobin such as chlorophyll and organic light emitting

diodes (OLED’s). In the future, the DFT+QMC approach will be used to obtain the elec-

tronic and magnetic properties of these molecules.

Chapter 8 gives the conclusion of the thesis.

We have appendix chapters for explanations of the details of our results. In Ap-

pendix A, the DFT results will be presented. In this chapter, the density of states and

matrix elements of the hybridizations between the Fe(3d) and host states will be shown.

The detail of the Hirsch-Fye algorithm for the multi-orbital Anderson impurity

model will be explained in Appendix B.

In Appendix C, the determinations for the Fermi levels for the deoxy-heme and

oxy-heme clusters will be shown. In this part, we will present the calculations of the elec-

tron numbers of Fe(3d) orbitals, host orbitals and total electron number of the molecules

as a function of the chemical potentials.

In Appendix D, the competition of the Hund’s coupling with the Fe(3d)-host AF

correlations will be explained. We see that deoxy-heme has the high-spin state due to

strong Hund’s coupling between the Fe(3d) electrons. On the other hand, for the oxy-

heme, we see the AF correlations between the Fe(3d)-host electrons and these AF corre-

lations compress the Hund’s coupling. Hence, the oxy-heme has lower spin state than the

deoxy-heme. Its details will be explained in this chapter.

We observe the effect of the inter-orbital interactions on the IBS. These results

will be shown in Appendix E. Our results show that inter-orbital Coulomb interactions

are very important for the location of the IBS for the deoxy-heme. On the other hand, the

location of the IBS are not affected by the interactions for the oxy-heme.

In Appendix F, we will present the potential sources for the computational er-

rors in DFT+QMC approach. In this approach, we use the double-counting term. The

Coulomb interactions are taken into account both the DFT and QMC. In order to prevent

this double-counting, we substract the double-counting term from the energy levels of the

Fe(3d) orbitals. On the other hand, we make approximation in this substraction. Hence,

this will lead to some errors in our calculations. In addition, we will show the effect

of Δτ in our DFT+QMC calculations. We use Trotter approximation in the Hirsch-Fye

algorithm. We separate the non-interaction part and the interaction part to calculate the

partition function (the details are given in Appendix B) with the (Δτ ) error. In this chap-

ter, we will show results for the susceptibility, total Fe(3d) electron number, total electron

number and the total magnetic moment for different Δτ at different temperatures. In
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Haldane-Anderson model, we neglect the spin flip and pair hopping term. In order to see

the effect of these terms on the DFT+QMC results, we solve the Anderson Hamiltonian

with the exact diagonalization. We see that these terms may be important for the oxy-

heme and we may see the spin 0 state for oxy-heme at 300 K when we add them in the

Anderson Hamiltonian.

In Appendix G, we will present the effect of the Fe-porphyrin distance on the

magnetic properties of the deoxy-heme.
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CHAPTER 2

QUANTUM MONTE CARLO RESULTS FOR THE HEME

CLUSTERS

In this section, the QMC data on the effective Haldane-Anderson model for deoxy-

heme and oxy-heme clusters are presented. The parameters for this model is shown in

Appendix A. The QMC calculations are performed by using the Hirsch-Fye QMC algo-

rithm (Hirsch and Fye (1986)). The details of this algorithm is explained in the Appendix

B. In my master thesis, Hirsch-Fye algorithm was developed for the multi-obital case

and it includes the intra-orbital Coulomb interactions (Mayda (2013)). In this thesis, the

inter-orbital Coulomb interactions are added along with the Hund’s coupling.

Here, we find that Fe(3d) and host orbitals have magnetic moments in deoxy-heme

and oxy-heme. In addition, we see that the antiferromagnetic correlations occur between

the Fe(3d) and host states in both deoxy-heme and oxy-heme. We will show in Chapter 3

that these AF correlations in deoxy-heme is responsible for the anomalous line shape in

MCD spectrum.

In this section, we show that the impurity bound states (IBS) which are the corre-

lated electronic states are formed both in deoxy-heme and oxy-heme. The IBS are occu-

pied for deoxy-heme and they are unoccupied for the oxy-heme. The magnetic moment of

the hemoglobin is lowered by binding the O2 because the antiferromagnetic correlations

between the Fe(3d) and host states compete with the Hund’s coupling. These AF corre-

lations lower the total magnetic moment of oxy-heme. On the other hand, the effective

spin of oxy-heme equals 0.68. DFT+QMC results show that as the temperature decreases,

a magnetic gap opens at the Fermi level for oxy-heme and Fe(3d)-O2 charge transfer is

seen. In addition, AF correlations occur between the Fe(3d) and O2 states, and these AF

correlations lower the total magnetic moment and we obtain effective spin state as S=0.1.

Hence, our DFT+QMC results show that both the IBS and the opening of magnetic gap

are responsible for the high-spin to low-spin transition in hemoglobin.

Here, in particular, we have calculated the single-particle Green’s functions for

the Fe(3dν) NAO’s defined by

Gνσ(τ) = −〈Tτdνσ(τ)d
†
νσ(0)〉. (2.1)
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Similarly, the host Green’s function is defined by

Gmσ(τ) = −〈Tτcmσ(τ)c
†
mσ(0)〉. (2.2)

Here, Tτ is the usual Matsubara τ -ordering operator and dνσ(τ) = eHτdνσe
−Hτ . We

calculate the electron occupation number of Fe(3d) orbitals by using

〈nd〉 =
5∑

ν=1

∑
σ

〈d†νσdνσ〉. (2.3)

We also calculate the electron occupation number of host orbital which is defined by

〈nh〉 =
N−5∑
m=1

∑
σ

〈c†mσcmσ〉. (2.4)

The total electron number of molecule is defined by

〈nT 〉 =
5∑

ν=1

∑
σ

〈d†νσdνσ〉+
N−5∑
m=1

∑
σ

〈c†mσcmσ〉. (2.5)

In addition, we calculate the effective magnetic moments M eff
ν defined as M eff

ν =
√〈(M z

ν )
2〉

and magnetic correlations 〈M z
νM

z
ν′〉 of Fe(3dν) orbitals, where

M z
ν = d†ν↑dν↑ − d†ν↓dν↓. (2.6)

In order to understand the correlations around the Fe atom, we calculate the equal-time

magnetic correlations between the Fe(3dν) and host states 〈M z
νM

z
m〉, where

M z
m = c†m↑cm↑ − c†m↓cm↓. (2.7)

Moreover, we calculate the total Fe(3d) magnetic susceptibility χ3d and the total molecu-
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lar magnetic susceptibility χT . χ3d is defined by

χ3d(τ) = 〈TτM
z
3d(τ)M

z
3d(0)〉. (2.8)

Here, M z
3d is as M z

3d =
∑

ν(d
†
ν↑dν↑ − d†ν↓dν↓) Similarly, χT is defined by

χt(τ) = 〈TτM
z
T(τ)M

z
T(0)〉. (2.9)

Here, M z
t equals

M z
t =

∑
m

(c†m↑cm↑ − c†m↓cm↓) +
∑
ν

(d†ν↑dν↑ − d†ν↓dν↓). (2.10)

Total 3d magnetic susceptibility and total molecular magnetic susceptibility is calculated

by the Fourier transformation,

χ3d(iωm) =

∫ β

0

dτ eiωmτχ3d(τ) (2.11)

and

χt(iωm) =

∫ β

0

dτ eiωmτχt(τ). (2.12)

We present the zero-frequency magnetic susceptibilities in this thesis.

In obtaining QMC data, discrete Matsubara time step of Δτ = 0.13 eV−1 was used

for 400 K and 300 K. On the other hand, for 200 K, Δτ = 0.16 eV−1 was used and for 150

K, Δτ = 0.19 eV−1 was used. We used different Δτ values for different temperatures

values due to computation time problem. Hence, we made the measurements as a function

of Δτ for various temperatures and we extrapolated them to see the values at Δτ → 0

limit. These results will be shown in Appendix F.

The results are presented for temperature T = 150 K, T = 200 K, T = 300 K and

T = 400 K in the grand canonical ensemble.
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2.1. Magnetic moment density for the heme clusters

In this section, we show the magnetic moment density for the deoxy and oxy-heme

clusters. We obtain the effective magnetic moments of the m’th host states from

(M eff
m )2 = 〈(M z

m)
2〉, (2.13)

where

M z
m = c†m↑cm↑ − c†m↓cm↓, (2.14)

and 〈(M z
m)

2〉 is calculated with QMC simulations. While we were constructing the effec-

tive Anderson model, we obtained the following expression for the host states in terms of

natural atomic orbitals (NAO’s) and atomic orbitals;

cmσ =
∑
i

Dm,i c̃iσ, (2.15)

which leads to the operator definition

M z
m =

∑
i,j

D∗
m,iDm,j

∑
σ=±1

σ c̃†iσ c̃jσ. (2.16)

For i �= j, we obtain the following approximate expression for the effective moment of

the m’th host state M eff
m and that of the i’th atomic orbital M̃ eff

i

M eff
m ≈

∑
i

|Dm,i|2 M̃ eff
i , (2.17)

where M̃ eff
i is the effective moment of the i’th atomic orbital.

Figure 2.1 shows the total host magnetization density in the basis of the atomic or-

bitals with blue colored bubbles. In this figure, the volume of the bubbles are proportional

to the magnitute of M̃ eff
i .
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Figure 2.1. QMC results on the local magnetic-moment density M(r) are sketched

for the (a) deoxy and (b) oxy-heme clusters at T = 150 K. Here, the red

color shows the atomic orbitals which have magnetic moments pointing

up, while the blue color shows the down magnetic moments.

Figure 2.1(a) shows the magnetization density for the deoxy-heme cluster. Here,

we observe that the Fe site has up magnetic moment and it equals 4.5 μB. For deoxy,

the neighboring N sites have small magnetic moments which are also in up direction. On

the other hand, the ferromagnetic correlations between the N and Fe sites are very weak.

The C sites which are located away from the Fe site has down magnetic moment density.

Hence, Fe-C sites have the antiferromagnetic (AF) correlations. These AF correlations

originate from the partially filled π∗ host states (166’th and 167’th host states) which

consist of C(2pz) as shown in Fig. A.6. Hence, we see that the AF correlations occur

between the Fe magnetic moment and the host magnetic moment which are spread out in

the porphyrin layer in deoxy-heme.

Figure 2.1(b) shows the magnetic moment density for the oxy-heme cluster. The

magnetic moment of the Fe site is reduced with respect to the deoxy but it remains finite.

In addition, we see the strong Fe-O2 and Fe-N antiferromagnetic correlations. In the fol-

lowing section, we will see that Fe-O2 antiferromagnetic correlations are the temperature

dependent, and the magnetic moment of Fe goes to 0 as decreasing of temperature.

25



2.2. Magnetic susceptibility measurements for the heme clusters

We begin this section by presenting Fig. 2.2(a-b). Here, in Figure 2.2(a), we show

the total spin susceptibility χt and total the Fe susceptibility χFe. In Figure 2.2(b), the total

susceptibility is shown as a function of chemical potential μ for different temperatures for

oxy-heme. In Figure 2.2(a), for the deoxy-heme cluster, we see that χt increases rapidly

as T decreases. Here, the dotted blue line represents the 1/T Curie dependence. Hence,

χt displays a T dependence which is close to that of a free moment. We find that the

effective magnetic moment of the whole deoxy cluster is 4.07μB at T = 300 K, which

is reduced from that of the Fe moment which is 4.56 μB because of the Fe-porphyrin

antiferromagnetic correlations. The Fe moment exhibits a perfect Curie T dependence

however its value of 4.56 μB is smaller than 4.9 μB of an S = 2 spin.

In Figure 2.2(a) we observe that for oxy-heme χt is reduced significantly with

respect to that of the deoxy case. We also observe that there are two different temperature

regimes for χt of the oxy-heme cluster: above 300 K, χt has a Curie-type T dependence

with an effective moment of 2.1μB, while below 300 K we see that χt gets suppressed as

T decreases. We find that these two temperature regimes are both due to strong electron

correlations but have different microscopic origins, which we discuss below.

In the high-temperature regime for T > 300 K, we observe that χt of the oxy-

heme cluster is reduced with respect to χt of the deoxy-heme cluster. This is mainly due

to the collapse of the Fe magnetic moment and this is because the existence of impurity

bound states in the multi-orbital Anderson model. In the deoxy case, the impurity bound

states are occupied by electrons, while for the oxy case the impurity bound states become

unoccupied. When the impurity bound states are unoccupied by electrons, there exist an-

tiferromagnetic correlations between the Fe and the host magnetic moments, which com-

pete with the Hund’s coupling responsible for the large magnetic moment of Fe. Hence,

when the impurity bound state is unoccupied, the Fe-host antiferromagnetic correlations

cause the total magnetic moment of the cluster to decrease. This is responsible for the

drop in χt in the high-temperature regime as we go from the deoxy to the oxy case.

In the low-temperature regime for T < 300 K, χt of oxy-heme decreases as T

decreases. This decrease is shown in Fig. 2.2 (b). As shown here, as the temperature

decreases, the total magnetic susceptibility decreases and a narrow gap is opened at the

Fermi level at 150 K.

Our DFT+QMC results show that deoxy-heme cluster has the Curie type magnetic

susceptibility. We also see that the deoxy-heme has high-spin state. On the other hand,
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Figure 2.2. (a) The temperature dependence of the total and of the Fe spin suscepti-

bilities χt for the deoxy and oxy-heme clusters. Here, the dotted blue line

denotes the Curie-type 1/T temperature dependence. (b) The total mag-

netic susceptibility as a function of chemical potential μ for oxy-heme for

different temperatures. Here, the vertical black solid line represents the

Fermi level μF at T=150 K.
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the magnetic susceptibility of the oxy-heme has the different behaviours for T > 300 K

and T < 300 K. The results show that for T > 300 K, the oxy-heme has lower magnetic

moment than deoxy-heme but its spin state is not equal 0. At T < 300 K, the spin state

of oxy-heme goes to spin 0 state as seen in Fig. 2.2 (b).

We explain the high-spin to low-spin transition in hemoglobin by both the impu-

rity bound states and the opening of the magnetic gap at the Fermi level. We see that

the new electronic states which are impurity bound states (IBS) are formed both in the

deoxy-heme and oxy-heme. The IBS are located below the Fermi level for the deoxy,

and IBS are located above the Fermi level for oxy-heme. For the deoxy-heme, we see

strong ferromagnetic correlations between the Fe(3d) electrons due to Hund’s coupling.

On the other hand, when the IBS are located above the Fermi level as oxy-heme, the

antiferromagnetic (AF) correlations between the Fe(3d) and host states occur. These AF

correlations suppress the ferromagnetic correlations at Fe(3d)’s. Hence, the magnetic

moment for oxy-heme is lowered.

When we decrease the temperature, we see that a magnetic gap is formed and the

charge transfer from O2 to Fe(3d) orbitals occurs. This charge transfer leads to Fe(3d)-O2

AF correlations. The total magnetic moment for oxy-heme decreases due to these AF

correlations. Hence, the spin state of oxy-heme goes to 0.

Our DFT+QMC results show that both the IBS and Fe(3d)-O2 charge transfer are

necessary for obtaining the high-spin to low-spin transition in hemoglobin.

In the following sections, we will present the results on the formation of the IBS

for the deoxy-heme and oxy-heme. In addition, the results on the opening of magnetic

gap will be shown for the oxy-heme.

2.3. Impurity bound states

In this section, we discuss the electron occupation number 〈nν〉 for Fe(3dν) or-

bitals as a function of chemical potential μ for deoxy. Similarly, we show the square of

the magnetic moments 〈(M z
ν )

2〉 at the Fe(3dν) orbitals as a function of μ. It is possible

to obtain information on the single-particle spectral weight distribution and the local mo-

ment formation from μ dependence results. In addition, we study the magnetic moments

for host states and their magnetic correlations with the Fe(3dν) orbitals. These results

show that the new electronic states named as impurity bound states (IBS) are formed

in deoxy molecule. These electronic states are located below the Fermi level of deoxy

molecule. In addition, the antiferromagnetic (AF) correlations occur between the Fe(3d)
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Table 2.1. Electron occupation number 〈nν〉 of Fe(3dν) orbitals for deoxy-heme and

oxy-heme. For deoxy, the chemical potential μ = −2.8 eV. For oxy

molecules, μ equals −3.8 eV. Here, U = 4 eV, J = 0.9 eV and T = 300
K.

〈nν〉 xy xz yz 3z2 − r2 x2 − y2 total (〈nd〉)
deoxy 1.00 1.12 1.06 1.07 1.13 5.38
oxy 1.84 1.17 1.15 0.92 0.75 5.83

Table 2.2. For deoxy, magnetic correlation function 〈MνMν′〉 between the Fe(3dν)

orbitals, ν and ν ′, at chemical potential μ = −2.8 eV. Here, U = 4 eV,

J = 0.9 eV and T = 300 K.

〈M z
νM

z
ν′〉 xy xz yz 3z2 − r2 x2 − y2

xy 0.98 0.84 0.90 0.88 0.84
xz 0.86 0.79 0.77 0.73
yz 0.92 0.83 0.78

3z2 − r2 0.90 0.77
x2 − y2 0.86

states and host states. These correlations are disappeared by the electron fillings of IBS.

QMC results for deoxy molecule show that when IBS are located below the Fermi level

and they are occupied, the molecule has high-spin state.

In Table 2.1, we show the QMC results on the electron occupations 〈nν〉 for deoxy

and oxy-heme clusters at their chemical potentials. These results are for U = 4 eV,

J = 0.9 eV and temperature T = 300 K. Here, we observe that Fe(3dν) orbitals have

approximately 1.1 electrons in deoxy molecule. The second row of the Table 2.1 shows

the 〈nν〉 for oxy. Here, we see that the occupation of x2 − y2 is 0.75 and 3z2 − r2, xz

and yz orbitals are singly occupied. On the other hand, xy orbital has 1.84 electrons. For

oxy-heme, the occupation number of xy, xz and yz orbitals increase and the occupation

number of the remaining orbitals decrease. The last column of the Table 2.1 shows the

total electron number of the Fe(3d) orbitals, 〈nd〉. For deoxy-heme, 〈nd〉 = 5.38 which

means that Fe is in between the ferric (+3) and the ferrous (+2) states. For oxy-heme, the

total electron number of the Fe(3d) orbitals equal 5.83 at T = 300 K.

Table 2.2 shows the magnetic correlation function 〈MνMν′〉 between the Fe(3dν)

orbitals in deoxy for U = 4 eV and J = 0.9 eV. We find that ferromagnetic correlations
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Table 2.3. For oxy, magnetic correlation function 〈MνMν′〉 between the Fe(3dν) or-

bitals, ν and ν ′, at chemical potential μ = −3.8 eV. Here, U = 4 eV,

J = 0.9 eV and T = 300 K.

〈M z
νM

z
ν′〉 xy xz yz 3z2 − r2 x2 − y2

xy 0.16 0.06 0.06 0.04 0.01
xz 0.79 0.60 0.25 0.14
yz 0.81 0.25 0.14

3z2 − r2 0.62 0.08
x2 − y2 0.55

Table 2.4. For oxy, magnetic correlation function 〈MνMν′〉 between the Fe(3dν) or-

bitals, ν and ν ′, at chemical potential μ = −3.8 eV. Here, U = 4 eV,

J = 0.9 eV and T = 150 K.

〈M z
νM

z
ν′〉 xy xz yz 3z2 − r2 x2 − y2

xy 0.12 0.02 0.02 0.02 0.00
xz 0.59 -0.09 0.05 0.04
yz 0.58 0.04 0.04

3z2 − r2 0.59 0.04
x2 − y2 0.52

occur between the Fe(3dν) orbitals due to Hund’s coupling.

Table 2.3 shows the 〈MνMν′〉 at 300 K for oxy molecule. The weak ferromagnetic

correlations occur in oxy with respect to deoxy and there are no any antiferromagnetic

correlations between the Fe(3d) orbitals.

In Table 2.4, 〈MνMν′〉 at 150 K for the oxy case is represented. The comparison of

these results with the results in Table 2.3 shows that the inter-orbital correlations between

the Fe(3d) electrons decrease with the changing of temperature from 300 K to 150 K.

In Table 2.5, we compare the the total intra-orbital magnetic correlation
∑

ν〈(M z
ν )

2〉
of Fe(3d) orbitals, total inter-orbital magnetic correlation

∑
ν,ν′〈M z

νM
z
ν′〉 of Fe(3d) or-

bitals and square of the total effective magnetic moment 〈(M z
3d)

2〉 of Fe(3d) orbitals for

deoxy and oxy clusters.

The first column of Table 2.5 denotes the total intra-orbital magnetic correlations

of Fe(3d) orbitals in deoxy and oxy. Here, we observe that
∑

ν〈(M z
ν )

2〉 equals 4.50 for

deoxy and 2.90 for oxy.

The second column shows the Fe(3d) inter-orbital correlations. There are too
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Table 2.5. QMC results on the total intra-orbital magnetic correlation 〈(M z
ν )

2〉 of

Fe(3d) orbitals ,square of the total inter-orbital magnetic correlation

〈M z
νM

z
ν′〉 of Fe(3d) orbitals and square of the total effective magnetic mo-

ment 〈(M z
3d)

2〉 of Fe(3d) orbitals for deoxy and oxy. Here, 〈(M z
3d)

2〉 =∑
ν〈(M z

ν )
2〉 +∑

ν �=ν′〈M z
νM

z
ν′〉. For these results, U = 4 eV, J = 0.9 eV

and T = 300 K.

∑
ν〈(M z

ν )
2〉 ∑

ν �=ν′〈M z
νM

z
ν′〉 〈(M z

3d)
2〉

deoxy 4.50 16.20 20.70
oxy 2.90 3.30 6.20

much differences between the total 〈M z
νM

z
ν′〉 values for these molecules. The reason of

this difference is that while only ferromagnetic correlations occur between the Fe(3d)

orbitals of deoxy, only small ferromagnetic correlations occur in oxy molecule so the

correlations between the Fe(3d) orbitals equal 3.30.

In the third column of Table 2.5, the square of the total effective Fe(3d) magnetic

moment 〈(M z
3d)

2〉 are shown for deoxy and oxy clusters. Here, we see that Fe(3d) orbitals

in deoxy have high effective magnetic moment due to strong ferromagnetic correlations

between them. On the other hand, 〈(M z
3d)

2〉 value for oxy is smaller than for deoxy due

to weak ferromagnetic correlations.

The high-spin to low-spin transition by binding the O2 molecule to Fe in hemoglobin

is explained by the occupation numbers of Fe(3d) orbitals. It is said that deoxy-hemoglobin

has high-spin state because all Fe(3d) orbitals are single occupied. In this picture, t2g and

eg orbitals are not separated. On the other hand, oxy-hemoglobin molecule has low-spin

state because three eg orbitals Fe(3d) are double occupied and the t2g orbitals are empty.

This causes that Fe atom has not magnetic moments. Hence, molecule goes to low-spin

state by binding the O2 molecule.

Our explanation for high-spin to low-spin transition in hemoglobin is very differ-

ent from this picture. As shown in Table 2.1, the Fe(3d) orbitals are not doubly occupied

for deoxy and oxy. In addition, Table 2.2 and 2.3 show that all 3d orbitals have magnetic

moments in two heme clusters. The key point of our mechanism is the magnetic correla-

tions between the Fe(3d) orbitals. Table 2.5 shows that strong ferromagnetic correlations

occur in deoxy molecule due to Hund’s coupling. On the other hand, we see small fer-

romagnetic correlations between the Fe(3d) orbitals for oxy-heme. Hence, Fe in oxy has

the lowered-spin state.
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2.3.1. Impurity bound states for the deoxy-heme cluster

We begin the section by presenting the data with Figure 2.3 (a) which shows the

the occupation number 〈nν〉 for Fe(3dν) orbitals as a function of chemical potential μ.

Similarly, Figure 2.3(b) shows the square of the magnetic moments 〈(M z
ν )

2〉 at the Fe(3dν)

orbitals as a function of μ.

In Figure 2.3(a), we observe that the 〈nν〉 for all 3d orbitals increases gradually

up to μ ≈ −7 eV. For 3z2 − r2, xy, yz and xz orbitals, 〈nν〉 exhibits a small jump at

μ ≈ −6.5 eV. These orbitals are singly occupied at μ ≈ −4.5 eV. Above μ ≈ −4.5

eV, the occupations of 3z2 − r2, xy, yz and xz orbitals continue to increase and they are

doubly occupied at μ = 3 eV. 〈nν〉 for x2 − y2 orbital increase slightly until μ reaches

≈ −4 eV, where 〈nx2−y2〉 exhibits a sudden increase. This orbital has approximately 1.1

electrons in the inteval −4 eV <∼ μ <∼ 2.5 eV. Above μ = 2.5 eV, the occupation of

x2 − y2 orbital increases and it equals 1.5 electrons at μ = 3 eV.

Figure 2.3(b) shows that 〈(M z
ν )

2〉 for 3z2 − r2, xy, yz and xz orbitals increases

slightly up to μ ≈ −7 eV. For these orbitals, 〈(M z
ν )

2〉 increases suddenly at μ ≈ −6.5

eV. The magnetic moments are nearly constant for 3z2 − r2, xy, x2 − y2 and xz orbitals

in the interval −6 eV <∼ μ <∼ −3 eV. Above μ = −3 eV, these four orbitals become

doubly occupied and so 〈(M z
ν )

2〉 decrease rapidly. In a similar manner, 〈
(
M z

x2−y2

)2

〉
slightly changes up to μ ≈ −4 eV. At μ ≈ −4 eV, the magnetic moment of x2−y2 orbital

increase suddenly. In the interval −4 eV <∼ μ <∼ 2.5 eV, it is nearly constant and above

the μ = 2.5 eV, 〈
(
M z

x2−y2

)2

〉 decreases due to electron filling of orbital.

We note that the sudden increases are seen in both 〈nν〉 and 〈(M z
ν )

2〉 for 3z2 − r2,

xy, yz and xz orbitals at μ ≈ −6.5 eV and for x2 − y2 orbital at μ ≈ −4 eV. We think

that the new electronic states named as impurity bound states (IBS) are formed at these μ

points.

IBS arises from the strong hybridizations between the Fe(3dν) orbitals and some

host orbitals. These host states develop magnetic moments and the size of their mag-

netic moments depend on the electron filling of IBS. In addition, the host states, which

are strongly hybridized with Fe(3d) orbitals, are coupled antiferromagnetically to Fe(3d)

magnetic moments. These correlations vanish with the filling of the IBS. Hence, we study

the electron occupations of host states and their magnetic correlations with Fe(3d) orbitals

to define IBS.

Figure 2.4 shows occupation number 〈nm〉 and magnetic moments 〈(M z
m)

2〉 of

some host states. We discuss the results for these host states because they are strongly
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Figure 2.3. QMC results for deoxy on the Fe(3d) electron occupation number and

Fe(3d) magnetic moments. (a) Electron occupation number 〈nν〉 of the

Fe(3dν) orbitals versus the chemical potential μ. (b) Square of mag-

netic moment 〈(M z
ν )

2〉 for Fe(3dν) orbitals versus the chemical potential

μ. Here, the vertical solid line denotes the Fermi level of molecule. The

Fermi level of molecule is obtained by QMC. In addition, these results are

for U = 4 eV, J = 0.9 eV and T = 300 K.
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Figure 2.4. QMC results for deoxy on the host electron occupation number and mag-

netic moments of host states. (a) Electron occupation number of the m’th

host state 〈nm〉 versus the chemical potential μ. (b) Square of the mag-

netic moment of the m’th host state 〈(M z
m)

2〉 versus the chemical potential

μ. Here, the vertical solid line denotes the Fermi level of molecule. The

Fermi level of molecule is obtained by QMC. In addition, these results are

for U = 4 eV, J = 0.9 eV and T = 300 K.

34



hybridized with Fe(3d) orbitals as shown in Fig. A.4. The changes in 〈nm〉 as a function

of μ is shown in Fig. 2.4(a). The bare energy εm for m = 144, 145, 146, 152, 153 and

163 are −7.76 eV, −7.65 eV, −7.06 eV, −5.98 eV, −5.95 eV and −4.59 eV, respectively.

When the μ equals to εm, the sharp increases are seen in 〈nm〉. In addition, these host

states have magnetic moments at their energy values as seen in Fig. 2.4(b). At μ = −4

eV, there is a sharp increase in occupation of m = 152’nd host state. We show in Fig.

2.3 that there is also a sharp increase in the occupation and magnetic moment of x2 − y2

orbital at μ = −4 eV. When μ = −3 eV, host states have small magnetic moments. Above

this chemical potential, their magnetic moments vanish due to electron filling. Figure 2.3

shows that the IBS are filled at μ ≈ −6.5 eV and μ ≈ −4 eV. It is the important to note

that host states are nearly doubly occupied at these μ values and their magnetic moments

decrease rapidly by the filling of IBS.

In addition to these six host states, we present 〈nm〉 versus μ and 〈(M z
m)

2〉 versus μ

for m = 166 and 167 in Fig. 2.5. These host states are located near the Fermi level of de-

oxy molecule. Hence, they have contribution to the total magnetic moments of molecule.

Figure 2.5 shows that 〈nm〉 values for m = 166 and 167 are 0.21 and 0.1 at μ = −3 eV.

They have magnetic moments at this chemical potential as seen in Fig. 2.5(b). When μ

passes through their energy values, 〈nm〉 values equal 2 and their magnetic moments are

0.

Next, we discuss the magnetic correlations between the Fe(3dν) states and host

states. Figure 2.6 shows the magnetic correlation function 〈M z
νM

z
m〉 as a function of μ

for host states m = 144, 145, 146, 152, 153 and 163. These results are for U = 4 eV and

J = 0.9 eV. In Figure 2.6(a-c), we observe that 144’th, 145’th and 146’th host states have

antiferromagnetic correlations with Fe(3dν) states. These antiferromagnetic correlations

diminish rapidly at μ ≈ −6.5 eV. Similarly, we see in Fig. 2.6 (d) that 〈M z
νM

z
152〉 goes to

0 at μ ≈ −4 eV. Figure 2.6 (e) and (f) show that AF correlations between the m = 153 and

163’rd states go to 0 at μ ≈ −6.5 eV. As seen in Fig. 2.3(a), IBS are filled by electrons

at these energy values. Hence, our results show that the antiferromagnetic correlations

between the host states and Fe(3d) states diminish rapidly when the IBS are occupied.

It is the important point to note that we identify the new states located at μ ≈ −6.5

eV and μ ≈ −4 eV as IBS because of μ dependency results in Fig. 2.3, 2.4 and 2.6.

We have also studied the 〈M z
νM

z
m〉 as a function of μ for host states m = 166 and

m = 167. As seen in Fig. 2.7 (a-c), these host states have antiferromagnetic correlations

at Fermi level of deoxy molecule μ = −2.8 eV. These antiferromagnetic correlations

diminish rapidly when μ equals to bare energy values of these host states.
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Figure 2.5. QMC results for deoxy on the host electron occupation number and mag-

netic moments of host orbitals. (a) Electron occupation number of the

m’th host state 〈nm〉 versus the chemical potential μ. (b) Square of the

magnetic moment of the m’th host state 〈(M z
m)

2〉 versus the chemical po-

tential μ. Here, the vertical solid line denotes the Fermi level of molecule.

The Fermi level of molecule is obtained by QMC. In addition, these results

are for U = 4 eV, J = 0.9 eV and T = 300 K.
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Figure 2.6. QMC results for deoxy on the magnetic correlation function 〈M z
νM

z
m〉 be-

tween the m’th host state and the Fe(3dν) orbitals. (a) 〈M z
νM

z
m〉 versus the

chemical potential μ for the 144’th host state, (b) for 145’th host state, (c)

for 146’th host state, (d) for 152’nd host state, (e) for 153’rd host state and

(f) for 163’rd host state The vertical solid line denotes the Fermi level of

molecule. The Fermi level of molecule is obtained by QMC. In addition,

these results are for U = 4 eV, J = 0.9 eV and T = 300 K.
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Figure 2.7. QMC results for deoxy on the magnetic correlation function 〈M z
νM

z
m〉 be-

tween the m’th host state and the Fe(3dν) orbitals. 〈M z
νM

z
m〉 versus the

chemical potential μ (a) for 166’th host state and (b) 167’th host state. The

vertical solid line denotes the Fermi level of molecule. The Fermi level of

molecule is obtained by QMC. In addition, these results are for U = 4 eV,

J = 0.9 eV and T = 300 K.
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2.3.2. Impurity bound states for the oxy-heme cluster

In this section, we present the QMC results on 〈nν〉 as a function of chemical

potential μ and 〈(M z
ν )

2〉 as a function of μ. In addition, we show the magnetic moments

of host states and their magnetic correlations with Fe(3d) orbitals. The QMC results

for oxy molecule show that the IBS are located above the Fermi level, and so they are

unoccupied. This causes that the oxy molecule has low-spin state. AF correlations occur

between the Fe(3d) and host states. Different from the results for deoxy molecule, these

AF correlations disappear above the Fermi level by the fillings of the IBS.

Figure 2.8 (a) and (b) show the electron occupation number 〈nν〉 of the Fe(3dν)

and square of magnetic moment 〈(M z
ν )

2〉 for Fe(3dν) as a function of μ, respectively. The

occupations of xy, xz and yz orbitals change slightly up to μ ≈ −6 eV in Fig. 2.8 (a).

At μ ≈ −6 eV, these orbitals become single occupied. Above this chemical potential,

electron number of these Fe(3d) orbitals increase continuously and xy orbital becomes

doubly occupied at μ ≈ −3.8 eV and, xz and yz orbitals have 2 electrons at μ ≈ 1 eV.

Similarly, we see that 〈nν〉 change slightly up to μ ≈ −5.2 eV for 3z2 − r2 and x2 − y2

orbitals. At μ ≈ −5 eV and ≈ −1.5 eV, we see sharp increases in the occupation numbers

of these three orbitals. We think that these are the energy levels at which impurity bound

states are located. Here, the other important point is that at μ ≈ −1.5 eV, we see d-

d charge transfer. At this chemical potential, while the occupation of yz decreases, the

occupations of 3z2 − r2 and x2 − y2 orbitals increase. The IBS is located μ ≈ −1.5 eV

and the inter-orbital charge transfer exists at the location of the IBS. This will be very

important in explanation of the electronic properties of oxy molecule.

In Fig. 2.8 (b), we observe that 〈(M z
ν )

2〉 change continuously for Fe(3d) NAO’s

except x2 − y2. When the occupations of these orbitals are higher than 1 electron, their

magnetic moments start to decrease. On the other hand, in Fig. 2.8 (b), we see the sudden

increase in the magnetic moments of 3z2 − r2 and x2 − y2 orbitals at μ ≈ −5 eV and

≈ −1.5 eV as seen in their occupations. Above μ = −1 eV, the magnetic moment of

these three orbitals change slightly and μ = 3 eV, it goes to 0 due to double occupancy.

The QMC data on the host electron number 〈nm〉 versus μ are presented for the

m = 153, 154, 158, 159 and 173 host eigenstates in Fig. 2.9 (a). In this figure, we observe

that at the chemical potential μ = −3.8 eV, calculated by the QMC, these host states

are not doubly occupied. Consequently, these host states have magnetic moments when

μ = −3.8 eV and μ = −3 eV as seen in Fig. 2.9(b) for oxy.

This is the important point to note that the host states in deoxy molecule are doubly
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Figure 2.8. QMC results for oxy on the Fe(3d) electron occupation number and Fe(3d)

magnetic moments. (a) Electron occupation number 〈nν〉 of the Fe(3dν)

natural atomic orbitals versus the chemical potential μ. (b) Square of mag-

netic moment 〈(M z
ν )

2〉 for Fe(3dν) natural atomic orbitals versus the chem-

ical potential μ. Here, the vertical solid blue line shows the Fermi level for

oxy. The Fermi level of molecules is obtained by QMC. In addition, these

results are for U = 4 eV, J = 0.9 eV and T = 300 K.
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Figure 2.9. QMC results for oxy on the host electron occupation number and magnetic

moments of host orbitals. (a) Electron occupation number of the m’th host

state 〈nm〉 versus the chemical potential μ. (b) Square of the magnetic

moment of the m’th host state 〈(M z
m)

2〉 versus the chemical potential μ.

Here, the vertical solid denotes the Fermi level for oxy. The Fermi level

of molecules is obtained by QMC. In addition, these results are for U = 4
eV, J = 0.9 eV and T = 300 K.
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occupied and they do not have magnetic moment as seen in Fig. 2.4 (a) and (b). On the

other hand, host states in oxy are not doubly occupied at the chemical potential μ = −3.8

eV, and they have magnetic moments as shown in Fig. 2.9 (a) and (b). This difference

between the deoxy and oxy molecules will be crucial point to explaine the high-spin to

low-spin mechanism in hemoglobin.

Figure 2.10 (a) and (b) show 〈nm〉 and 〈(M z
m)

2〉 as a function of μ for host states

m = 174, 175 and 176. When μ equals -3.8 eV, they have no any electrons and their

magnetic moments are 0. On the other hand, they have magnetic moments at μ = −3

eV. As seen in Fig. 2.10(a), the occupation numbers of these host states are 2 when the μ

passes through their energy values. In addition, Figure 2.10(b) shows that 〈(M z
m)

2〉 values

goes to 0 at their energy values due to double occupancy.

We also calculate the magnetic correlation function 〈M z
νM

z
m〉 between the Fe(3d)

NAO’s and host states which have the strongest hybridization with the 3d orbitals. In Fig.

2.11 (a-e), we discuss 〈M z
νM

z
m〉 as a function of chemical potential μ for m = 153, 154,

158, 159 and 173.

In Fig.2.11(a-e), we observe that antiferromagnetic correlations occur between the

Fe(3d) NAO’s and host states m = 153, 154, 158, 159 and 173 at the chemical potential

of oxy μ = −3.8 eV.

It is the important point that the IBS locate at μ ≈ −5 eV and μ ≈ −1.5 eV.

Different from the deoxy, the IBS are located above the Fermi level in oxy. Moreover, we

see from the Fig.2.11 that IBS states are not occupied by electrons and antiferromagnetic

correlations occur between the Fe(3d) NAO’s and host states. This situation in oxy differs

from deoxy. We know from Fig. 2.6 that IBS locate μ ≈ −6.5 eV and −4 eV for deoxy.

This means that IBS are below the Fermi level of deoxy molecule, and IBS are occu-

pied. The different situation of occupancy of IBS in deoxy and oxy affects the magnetic

properties of hemoglobin molecule, and while deoxy has the high-spin state, oxy has the

low-spin state.

We also study the magnetic correlations between the Fe(3d) and m = 174, 175

and 176’th host states. Figure 2.12(a-c) shows that when μ equals -3.8 eV, we do not

observe any Fe(3d)-host correlations.

In addition to all results for the existence of the IBS, in Fig.2.13, we discuss the

total effective magnetic moment of the Fe(3dν) orbitals M3d, total effective magnetic mo-

ment of the host states Mh, total Fe(3d)-host correlation function 〈M z
3dM

z
h〉 and total ef-

fective magnetic moment of the molecule M eff
t for deoxy-heme and oxy-heme. In these

figures, the vertical solid blue line shows the chemical potential for oxy-heme and the
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Figure 2.10. QMC results for oxy on the host electron occupation number and magnetic

moments of host orbitals. (a) Electron occupation number of the m’th host

state 〈nm〉 versus the chemical potential μ. (b) Square of the magnetic

moment of the m’th host state 〈(M z
m)

2〉 versus the chemical potential μ.

Here, the vertical solid denotes the Fermi level for oxy. The Fermi level

of molecules is obtained by QMC. In addition, these results are for U = 4
eV, J = 0.9 eV and T = 300 K.
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Figure 2.11. QMC results for oxy on the magnetic correlation function 〈M z
νM

z
m〉 be-

tween the m’th host state and the Fe(3dν) orbitals. (a) 〈M z
νM

z
m〉 versus the

chemical potential μ for m = 153rd host state, (b) 154’th host state, (c)

158’th host state, (d) 159’th host state and (e) 173rd host state. The verti-

cal solid denotes the Fermi level for oxy. The Fermi level of molecules is

obtained by QMC. In addition, these results are for U = 4 eV, J = 0.9 eV

and T = 300 K.

44



Figure 2.12. QMC results for oxy on the magnetic correlation function 〈M z
νM

z
m〉 be-

tween the m’th host state and the Fe(3dν) orbitals. (a) 〈M z
νM

z
m〉 versus the

chemical potential μ for m = 174’th host state, (b) 175’th host state and (c)

176’th host state. The vertical solid denotes the Fermi level for oxy. The

Fermi level of molecules is obtained by QMC. In addition, these results are

for U = 4 eV, J = 0.9 eV and T = 300 K.
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solid black line shows the Fermi level for deoxy-heme.

Figure 2.13(a) shows the total effective magnetic moments of Fe(3d) orbitals as a

function of μ. Here, we see that the M3d does not change up to μ = −4 eV for deoxy. At

μ = −4 eV, we see a small jump due to IBS. M3d decreases between the −4 eV <∼ μ <∼
−3 eV. For oxy molecule, we see similar jump at μ = 1.5 eV where the IBS are located.

In Figure 2.13(b), the total magnetic moment Mh of host states are shown as a

function of μ. Here, we see that host states have magnetic moments in both deoxy and

oxy molecules. In addition, we observe in this figure that the total magnetic moments of

host states in deoxy is smaller than in and oxy.

We also study the total Fe(3d)-host magnetic correlation function 〈M z
3dM

z
h〉 for

different μ values in Fig. 2.13(c). This figure shows that deoxy has ferromagnetic corre-

lations up to μ = −3 eV. Above this chemical potential, AF correlations occur between

the Fe(3d) states due to host states located at near the chemical potential of deoxy. At

μ >∼ − 2.2 eV, ferromagnetic correlations are seen between the Fe(3d) and host states for

deoxy. On the other hand, the AF correlations are developed in oxy.

Figure 2.13(d) shows the total magnetic moments Mt as a function of μ for deoxy

and oxy. This figure shows that total magnetic moment of deoxy does not change up to

μ = −3 eV. Due to AF correlations between the Fe(3d) and host states, MT decreases

in −2.8 eV <∼ μ <∼ −2.3 eV. Above μ ≈ −2.2 eV, MT increases. The total magnetic

moments of oxy molecule decreases up to μ ≈ −3 eV. At μ = −3 eV, it has the minumum

value. For deoxy molecule, a jump exist at μ = −4 eV. Similarly, a discontinuity is seen

at μ = −1.5 eV for oxy molecule. These are the location of the IBS.

2.3.3. Inter-orbital charge transfer at IBS for oxy-heme cluster

Figure 2.14 shows the electron number of 〈nν〉 Fe(3d) ν = x2 − y2 and ν = yz

states as a function of chemical potential μ. We know from the previous section that IBS

is located above the chemical in oxy-heme. As seen in Fig. 2.14, the sudden jump at

μ ≈ −1.5 in the occupation number of x2 − y2 orbital corresponds to the IBS. At this

energy level, we also see the drop in the occupation number of yz Fe(3d) orbital.
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Figure 2.13. (a) Total Fe(3d) magnetic moment M3d versus chemical potential μ. (b)

Total host magnetic moment Mh versus μ. (c) Total Fe(3d)-host effective

magnetic correlation function 〈M z
3dM

z
h〉 versus μ. (d) Total effective mag-

netic moment Mt versus μ. The black circular represents the deoxy and

the blue square represents the oxy. Here, vertical solid blue line shows the

Fermi level of oxy-heme and the vertical solid black line shows the Fermi

level of deoxy-heme. These Fermi level values are obtained by QMC cal-

culations. In addition, these results are for U = 4 eV, J = 0.9 eV and

T = 300 K.
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Figure 2.14. Electron occupation number 〈nν〉 for the Fe(3d) orbitals ν = x2 − y2 and

ν = yz versus the chemical potential μ. Here, the blue vertical solid line

represents the Fermi level of oxy-heme.

2.3.4. Electron and magnetization density distributions of IBS in the

host

In this section, we show the electron density and magnetization density of IBS in

the host states for deoxy-heme and oxy-heme. We know from the DFT+QMC results, the

IBS is located at -4 eV for the deoxy. On the other hand, the IBS are located at -1.5 eV

and -5.5 eV for oxy-heme.

From QMC calculations, we obtain the electron density and magnetization density

of the IBS in the host eigenstates. We convert them to obtain the electron and magnetiza-

tion density distributions in terms of NAO’s.

The electron density is calculated from the

ni =
∑
m

|umi|2ΔIBS
m (2.18)
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Figure 2.15. For deoxy-heme, (Left) Electron density distribution for the host IBS.

(Right) Magnetization density distribution for the host IBS.

where

ΔIBS
m ≡ Δnm|μ=ωIBS

(2.19)

The magnetization density is calculated by

Mi =
∑
m

|umi|2ΔIBS
m (2.20)

where

ΔIBS
m ≡ ΔMm|μ=ωIBS

(2.21)

Figure 2.15 shows the electron density distribution and the magnetization density distri-

bution of the IBS at host states for deoxy-heme, respectively. We see from this figure that

the host states contribute the IBS are surrounding C and N orbitals. Here, the magneti-

zation densities of these orbitals are shown with the green color. This shows that these

states have negative magnetic moments.
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Figure 2.16. For oxy-heme, (Left) Electron density distribution for the host IBS. (Right)

Magnetization density distribution for the host IBS. These figures are for

the IBS located at -1.5 eV.

Figure 2.16 shows the the electron density distribution and the magnetization den-

sity distribution of the IBS at host states for oxy-heme, respectively. We see that the O2

states contribute the IBS which is located at -1.5 eV. Here, the magnetization density also

shows that these host states have the negative magnetic moments.

Figure 2.17 shows the the electron density distribution and the magnetization den-

sity distribution of the IBS at host states for oxy-heme, respectively. These figure shows

that O2 do not have any contribution to IBS which is located at -5.5 eV. The magnetization

density also shows that these host states have the negative magnetic moments.

2.4. Opening of a magnetic gap at the Fermi level for oxy-heme

cluster

Figure 2.18(a-b) shows the total magnetic susceptibility χt as a function of tem-

perature T and magnetic moment Mt of the oxy-heme cluster as a function of the chemical

potential μ around the Fermi level, respectively. We see that Mt gets suppressed within

∼ 0.1 eV of the Fermi level, as T is reduced. The opening of this gap as T decreases

below the crossover temperature T ∗ ≈ 300 K arises from the transfer of electrons from
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Figure 2.17. For oxy-heme, (Left) Electron density distribution for the host IBS. (Right)

Magnetization density distribution for the host IBS. These figures are for

the IBS located at -5.5 eV.

mainly the O2 to the Fe(3d) orbitals, in particular the Fe(3dxy) orbital. This is reminiscent

of the Kondo effect where a localized magnetic moment in a metallic host gets completely

screened by the formation of an antiferromagnetic screening cloud in the host around the

impurity. In that case, the metallic host develops a magnetic moment by bringing in an

electron from the boundary of the system at infinity. In the case of the oxy-heme cluster,

however, we observe that the host develops the screening moment by transfering electrons

from mainly the O2 to the Fe(3d) orbitals. In particular, a peak with half-width of ∼ 0.1

eV develops in the total Fe(3d) electron number at the Fermi level as T decreases below

300 K. We find that as T → 0, the Fe(3d) magnetic moment MFe decreases towards ∼ 1.7

μB, which is the value of a spin S = 1/2, while the total effective moment of the host Mh

increases towards this value. As T → 0, the total spin S = 0 state develops because of

the antiferromagnetic correlations between MFe and Mh.

In Figure 2.19, we observe that the total electron number has strong dependence

on temperature. The total electron number of oxy-heme is 350. As seen in this figure, the

Fermi level is shifted from -3.8 eV to -3.89 eV when the temperature goes from 300 K to

150 K. Hence, the Fermi level exhibits strong dependence on T .

Figure 2.20(a) shows the total number of electrons in the Fe(3d) orbitals 〈n3d〉
plotted as a function of the chemical potential μ at various temperatures. Here, we observe
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that a peak of width ∼ 0.2 eV develops at the Fermi level as T is lowered.

In Figure 2.20(b), the electron number of the five Fe(3dν) orbitals 〈nν〉 versus μ

is shown for T = 200 K. In addition, the dotted lines represent the electron number of

Fe(3d) orbitals at T = 400 K. Here, we see that the upper-Hubbard band of the xy orbital

is located near the Fermi level at 200 K. On the other hand, it removes from the Fermi level

as the temperature increases. The electron numbers of the xz and yz orbitals decrease and

the electron numbers of the 3z2 − r2 and x2 − y2 orbitals increase as T increases.

Figure 2.20(c) shows total magnetic moment of Fe(3d) orbitals, M3d as a function

of chemical potential μ. At low T , M3d approaches 1.65 μB.

Figure 2.20(d) shows the illustration of the wavefunctions for the m = 171’st host

state. Here, we see that this host state consists of orbitals of O2 molecules.

Figure 2.21(a-b) shows the electron number of the m = 171’st host state 〈nm〉
and the magnetic moment of the m = 171’st host state Mm as a function of chemical

potential μ. Here, we see that as the temperature decreases, the electron number of the

171’st state decreases and its magnetic moment increases. While the electron number of

the Fe(3d) orbitals increases, the electron number of the 171’th host orbital decreases as

the temperature decreses. Hence, the results show that a charge transfer occurs between

the Fe(3d) and O2 orbitals.

It is the important point that the upper-Hubbard level of the Fe(3dxy) orbital is

located near the Fermi level as seen in Fig. 2.20(b) at low temperature. When the upper-

Hubbard level of the 3dxy orbital remove from the Fermi level, we do not observe charge

transfer from O2 to Fe(3d) orbitals. Hence, we say that the S = 0 state is possible when

the upper-Hubbard level of the 3dxy orbital is located near the Fermi level.

Additional DFT+QMC results on the electronic and magnetic state of the deoxy-

heme cluster are shown in Fig. 2.22(a-c). As seen in Fig. 2.22(a), the electron numbers

of the Fe(3d) orbitals equal approximately 1. In Fig. 2.22(b), the total electron number

〈nt〉 of the deoxy-heme cluster is shown as a function of μ. Here, we observe that the 〈nt〉
does not change as the T decrease. The total magnetic moment of the deoxy-heme cluster

〈Mt〉 is represented as function of μ for different temperatures. Here, it is seen that 〈Mt〉
values are the same for various T values at Fermi level. Hence, these results show that

as the temperature changes, there are no any significant changes in the measurements for

deoxy case.

Table 2.6 shows the number of electrons in the Fe(3dν) orbitals 〈nν〉 for the deoxy

and oxy cases. In Table 2.6, for the deoxy case, we see that the electron number 〈nν〉 is

close to unity for all five of the 3d orbitals. The total number of the Fe(3d) electrons in
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Figure 2.18. (a) Total magnetic susceptibility versus temperature T . Here, the dotted

blue line denotes the Curie-type 1/T temperature dependence. (b)The total

magnetic moment Mt of the oxy-heme cluster is shown as function of μ
near the Fermi level. Here, the vertical black solid line represents the Fermi

level μF at T=150 K.
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Figure 2.19. The total electron number of the oxy-heme cluster 〈nt〉 versus μ at various

temperatures. Here, the black vertical line represents the Fermi level μF at

150 K and the blue vertical line represents the μF at 300 K.

the deoxy case is 5.38, hence Fe is closer to being in the ferric state (+3) than the ferrous

state (+2). The corresponding M eff
ν for the Fe(3d) orbitals are slightly less than 1 μB as

seen in Table 2.7.

For the oxy case, Table 2.6 shows that the electron occupation of the Fe(3dxy)

orbital increases to 1.84 at 300 K, which is close to double occupancy, however the re-

maining electron numbers remain close to unity. The QMC results show that the total

electron number is 5.83 in which case the molecule is close to being in a ferrous state.

The magnetic moment of the Fe(3dxy) orbital drops to 0.40 μB in the oxy case as seen in

Table 2.7. The remaining orbitals have moments varying between 0.7 μB and 0.9 μB.

In Table 2.6, the electron numbers of Fe(3d) orbitals are shown for 150 K. Here,

we see that as temperature decreases from 300 K to 150 K, the electron number of the xz

and yz orbitals increase about 0.2 electrons and the electron number of the xy orbital goes

from 1.84 to 1.88. On the other hand, the electron number of 3z2−r2 and x2−y2 orbitals

decrease about 0.1 electrons. The total electron number 〈n3d〉 of the Fe(3d) orbitals goes

from 5.83 to 6.07 for the oxy-heme as the T decreases.

Table 2.8 represents the magnetic moments of 3d and host states, and total mag-

netic moments of deoxy and oxy molecules. In addition, we show the Fe(3d)-host mag-

netic correlations in Table 2.8. We also discuss the total effective spin of 3d orbitals, host

orbitals and total spin of molecules. We know that strong ferromagnetic correlations oc-
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Figure 2.20. For oxy-heme, (a) The total number of electrons in the Fe(3d) orbitals 〈nd〉
plotted as a function of the chemical potential μ at various temperatures.

(b) The electron number of the five Fe(3dν) orbitals 〈nν〉 versus μ at T =
200 K. (c) Total magnetic moment of the Fe(3d) orbitals M3d versus μ. (d)

Illustration of the wave function of the m = 171’st host state. Here, the

magenta and green colors denote the positive and the negative regions. The

vertical black solid line represents the Fermi level μF at T=150 K.
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Figure 2.21. For oxy-heme, (a) Electron number of the m = 171’st host state 〈nm〉
versus μ. (b) Magnetic moment of the m = 171’st host state Mm versus μ.

Here, the vertical black solid line represents the Fermi level μF at T=150

K.
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Figure 2.22. For deoxy, (a) The number of electrons in the Fe(3dν) orbitals 〈nν〉 plotted

as a function of the chemical potential μ at T = 250K. (b) The total

number of the electrons 〈nt〉 versus μ for the deoxy-heme cluster at various

temperatures. The deoxy-heme cluster with 75 atoms has 334 electrons.

This figure shows that the Fermi level located at -2.8 eV is T independent.

(c) The total magnetic moment of the deoxy-heme cluster 〈Mt〉 versus μ at

various temperatures. The vertical black solid line denotes the Fermi level

at T = 250 K.
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Table 2.6. Electron occupation numbers 〈nν〉 of the Fe(3dν) orbitals for deoxy-heme

and oxy-heme cluster. Here, the last column shows the total electron num-

ber 〈n3d〉 of the Fe(3d) orbitals. In this table, the occupation numbers for

the oxy-heme cluster are shown for 300 K, 200 K and 150 K. For the deoxy

case, the results are only shown for 300 K. Here, U = 4 eV and J = 0.9
eV.

〈nν〉 xy xz yz 3z2 − r2 x2 − y2 total (〈n3d〉)
deoxy (300 K) 1.00 1.12 1.06 1.07 1.13 5.38
oxy (300 K) 1.84 1.17 1.15 0.92 0.75 5.83
oxy (150 K) 1.88 1.32 1.34 0.85 0.68 6.07

Table 2.7. Effective magnetic moments M eff
ν of the Fe(3dν) orbitals for the deoxy-

heme and oxy-heme cluster.In this table, the occupation numbers for the

oxy-heme cluster are shown for 300 K and 150 K. For the deoxy case, the

results are only shown for 300 K. Here, U = 4 eV and J = 0.9 eV.

M eff
ν (μB) xy xz yz 3z2 − r2 x2 − y2

deoxy (300 K) 0.99 0.93 0.96 0.95 0.93
oxy (300 K) 0.40 0.89 0.89 0.79 0.74
oxy (150 K) 0.35 0.77 0.76 0.77 0.72

cur between the Fe(3d) orbitals due to Hund’s coupling in deoxy, and so Seff
3d equals 1.83

for deoxy. On the other hand, we see weak ferromagnetic correlations between the Fe(3d)

in oxy molecule and so its spin state equals 0.85.

As seen in Table 2.8, the host states in three molecules have magnetic moments.

Mh for oxy is higher than for deoxy. The effective spin of host states are 0.23 and 0.33

for deoxy and oxy, respectively.

We also show the 〈M z
3dM

z
h〉 for all molecules. Here, it is seen that Fe-host correla-

tions are ferromagnetic in deoxy and AF in oxy molecules. These AF correlations in oxy

suppress the ferromagnetic correlations due to Hund’s coupling. Hence, this molecule has

lower spin state with respect to deoxy. As shown in Table 2.8, the effective spin of deoxy

is 1.60. On the other hand Seff
t is 0.68 for the oxy.

We see strong ferromagnetic correlations between the Fe(3dν) orbitals in deoxy.

Due to this ferromagnetic correlations, Fe atom in deoxy has the high-spin state. On the

other hand, the weak ferromagnetic correlations occur between the Fe(3d) orbitals in oxy.

Hence, this molecule has lower spin state than deoxy-heme.

In Table 2.8, we also show the results for different temperatures. As seen in Table
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Table 2.8. DFT+QMC results on the total Fe(3d) magnetic moment M3d in μB, total

effective spin of Fe(3d) electrons Seff
3d , total host magnetic moment Mh in

μB, total effective spin of host electrons Seff
h , total Fe(3d)-host effective

magnetic correlation function 〈M z
3dM

z
h〉, total effective magnetic moment

Mt in μB and total effective spin of molecule Seff
t for deoxy and oxy. In

addition, total effective spin Seff is calculated by M = 2
√
Seff(Seff + 1).

For the deoxy-case, the results are shown only for 300 K. For the oxy-case,

300 K and 150 K results are presented. Here, U = 4 eV and J = 0.9 eV.

M3d Mh 〈M z
3dM

z
h〉 Mt Seff

3d Seff
h Seff

t

deoxy (300 K) 4.56 1.06 -2.65 4.07 1.83 0.23 1.60
oxy (300 K) 2.50 1.32 -1.71 2.13 0.85 0.33 0.68
oxy (150 K) 1.65 1.50 -2.30 0.61 0.47 0.40 0.10

2.8, the total magnetic moment and the total effective spin are decreased by the decreasing

of temperature. Also, the results presented in this table show that the magnetic moment of

host states increase and the magnetic correlations between the Fe(3d) and host states are

more negative. The reason is the opening of the magnetic gap at the Fermi level and the

Fe(3d)-O2 charge transfer. The antiferromagnetic correlations between the Fe(3d) and O2

states increase and the total magnetic moment is lowered. Hence, the total spin goes to 0

for T<300 K.
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CHAPTER 3

MCD SPECTRUM OF THE DEOXY-HEME CLUSTER

The DFT+QMC results show that the antiferromagnetic (AF) correlations occur

between the Fe(3d) and porphyrin layer. The magnetic circular dichroism (MCD) data on

deoxy-HbA is the experimental evidence for this AF correlations.

The MCD intensity Δε(E) is obtained from the differences between the left-

circularly polarized (LCP) and the right-circularly polarized (RCP) light absorption. The

light propagates in an external magnetic field and the magnetic field points along the

direction of light as shown in Fig. 3.1 (a).

Treu and Hopfield showed that the MCD spectrum of deoxy-HbA has a peak near

3 eV and this peak has 1/T temperature dependence (Treu and Hopfield (1975)). The

usual temperature dependent MCD spectrum first has a dip and then a peak as the fre-

quency increases. On the other hand, in deoxy-HbA the MCD spectrum first has a peak

and then a shallow dip. The origin of this anomalous line shape has been debated since

its discovery.

The optical absorption spectrum also has a peak at the same energy called Soret

band due to π → π∗ transitions. Here, π is the bonding and π∗ is the antibonding orbitals

of the porphyrin layer.

In this thesis, we propose that the anomalous line shape of deoxy-heme originates

from the AF correlations between the Fe(3d) and partially filled π∗ states of the porphyrin

layer. The MCD signal comes from the optical transitions from the occupied π orbitals

to two partially occupied π∗ orbitals. The DFT+QMC results show that π∗
1 is half-filled

and π∗
2 is nearly empty. In addition, we see that the coupling between the π∗ orbitals and

Fe(3d) moment about 0.1 eV. This is greater than any applied magnetic field.

3.1. Our proposal for the MCD spectrum of the deoxy-heme cluster

In this section, we explain our proposal for the MCD spectrum of the deoxy-heme

cluster. For this explanation, we add a spin-orbit coupling term to impurity model. This

term acts at the Fe(3d) orbitals. While the π and π∗ states do not have a significant spin-

orbit coupling, they can gain an effective coupling through hybridization with the Fe(3d)
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Figure 3.1. (a) The magnetic polarizations of various states are sketched. (b) Feyn-

man diagram represents the absorption of left-circularly polarized (LCP)

light. (c) Feynman diagram represents the absorption of right-circularly

polarized (RCP) light.
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orbitals.

As illustrated in Fig. 3.1(a), in an applied field which is in the up direction, the Fe

spin will be polarized in the down direction, while the spin of the π∗
1 state will be along

the field. Hence, during an optical transition from the π state, it will be energetically

more favourable for the π∗
1 state to absorb a down electron. On the other hand, for the

nearly-empty π∗
2 state it will be more favorable to absorb an up electron. We note that

even though the π state does not have a spin-orbit coupling (SOC), it can gain an effective

spin-orbit coupling because of hybridization and the subsequent magnetic correlations

with the Fe(3d) orbitals which have SOC. Because of the effective SOC of the π state,

an up-spin π electron can make a transition to the empty π∗
1 state becoming a down-spin

electron upon absorbing left-circularly-polarized (LCP) light, as illustrated in Fig. 3.1(b)

as a Feynman diagram. It would not be energetically favorable for the up-spin π electron

to move to the π∗
2 state. However, upon absorbing right-circularly-polarized (RCP) light,

it would become favorable for a down-spin π electron to make a transition to the up-spin

π∗
2 state, which is illustrated in Fig. 3.1(c). Hence, it is energetically more favorable for

LCP (RCP) light absorption to cause a π → π∗
1 (π → π∗

2) transition.

The π and π∗ host states consist of the bonding and antibonding C(2pz) orbitals

and we show the wave functions of these π and π∗ states in Fig. 3.2.

While the π states do not have significant spin-orbit coupling, they can gain an

effective coupling because of antiferromagnetic correlations and hybridization with the

Fe(3d) orbitals. This process is shown in Fig. 3.3. In the top figure of Fig. 3.3, an up-spin

electron in the π state can become an up-spin 3d electron through hybridization. Because

of the spin-orbit coupling at the Fe site, this up-spin 3d electron can now flip its spin

down. Through hybridization for a second time, it then becomes a down-spin π electron.

Here, V is the hybridization matrix element between the π state and the Fe(3d) orbitals,

and λ is the spin-orbit coupling constant for the Fe(3d) orbitals. Because of this process,

an electron in a π state can gain an effective spin-orbit coupling λ′ as shown in the bottom

part of the Fig. 3.3.

Figure 3.4 illustrates our proposal for the mechanism for MCD in the Soret region.

This figure shows the left-circularly light absorption process in Soret MCD where there

is an applied magnetic field in the up direction. The left panel shows the initial state.

In this case, the Fe(3d) orbital hybridizing with the bonding π state is occupied by one

down electron, while the π state is doubly occupied. The antibonding π∗
1 state is occupied

by one up electron because of antiferromagnetic exchange coupling to the Fe(3d) spin.

In the intermediate state (middle panel), with LCP light absorption one down electron
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Figure 3.2. Host wave functions are shown in terms of the atomic orbitals. (a) Wave-

function of the π1 host state, which is a bonding 2pz orbitals of the C atoms

in the porphyrin layer. (b) and (c) Wavefunctions of the antibonding π∗
1 and

π∗
2 host states, respectively.
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V V
λ

λ'

Figure 3.3. (Top) This Feynman diagram illustrates that an electron in a bonding π
state can gain an effective spin-orbit coupling through the hybridization.

Here, and up-spin electron in the π state can become an up-spin 3d elec-

tron through hybridization. Here, V is the hybridization matrix element

between the π state and the Fe(3d) orbitals, and λ is the spin-orbit coupling

constant for the Fe(3d) orbitals. (Bottom) This Feynman diagram shows

that an electron in the π state can gain an effective spin-orbit coupling λ′.

located in the π state moves to the π∗
1 state, and the up-spin electron in the π state spin-

flips with the Fe(3d) down-spin electron through antiferromagnetic exchange. Next, the

up-spin electron in the Fe(3d) orbital flips its spin one more time because of the spin-

orbit coupling, which leads to the final state shown in the right panel. Here, the π state is

located about 3 eV below the Fermi level, and the widths of the π∗
1 and π∗

2 states are about

0.3 eV. There is a similar process where an RCP light absorption causes a transition of a

down-spin π electron in the initial state to make a transition to an up-spin π∗
2 electron in

the final state. Hence, in this scenario we are suggesting, the Soret MCD transitions are

spin and orbital selective.
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Figure 3.4. These figures illustrate the left-circularly polarized (LCP) light absorption

process in MCD for an applied magnetic field pointing in the up direction,

which is in the direction of light propagation. The left panel shows the

initial state, the middle panel is the intermediate state and the last one is

the final state.

3.2. Calculation of the MCD spectrum in UV region for deoxy-heme

cluster

According to the MCD mechanism outline above, the temperature-dependent Soret

MCD spectra arises from transitions π → π∗
1 with LCP light and π → π∗

2 with RCP light.

We note that while there are a number of bonding π states which can cause transitions

near 3 eV, the main transitions arise from one of these which we labelled as the π1 state.

This scenario leads to the following equation for the temperature-dependent MCD spectra

in the Soret region,

ΔI(E) =
∑
m

(
C1 |〈π∗

1|p|m〉|2 Aπ∗
1
(εm + E) (3.1)

− C2 |〈π∗
2|p|m〉|2 Aπ∗

2
(εm + E)

)
f(εm)(1− f(εm + E)).
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Here, m sums over the bonding π states, and εm is the energy of the m’th π state. In

addition, f(εm) is the Fermi-Dirac distribution.

The QMC data on the host states π∗
1 and π∗

2 are displayed in Fig. 3.5 (a)-(b) and

in Fig. 3.6(a-b). The spectral weights A(ω) for π∗
1 and π∗

2 have been obtained by taking

the derivative of 〈n〉, shown in Fig. 3.5 (a), with respect to μ. The single-particle spectral

weights Aπ∗
1
(ω) and Aπ∗

2
(ω) of the π∗

1 and π∗
2 states, respectively, are shown in 3.5 (b).

Clearly this is an approximate way for obtaining the spectral function since it assumes

that there is no spectral weight transfer as μ changes. Figure 3.6 (a) shows the square

of the magnetic moment 〈(M z)2〉 for the π∗
1 and π∗

2 states. Figure 3.6 (b) shows the

magnetization correlation function 〈M z
3dMm〉 between the Fe(3d) magnetic moment and

the moment of the host state m = π∗
1 and π∗

2 . Here, we clearly see the antiferromagnetic

coupling of the π∗ orbitals to the Fe(3d) moment.

In the above expression for ΔI(E) we have used the electric-dipole transition ma-

trix element |〈m′|p|m〉|2, instead of |〈m′|p−|m〉|2 or |〈m′|p+|m〉|2, where p± = px ± ipy.

This is because the optical absorption and the MCD measurements (Treu and Hopfield

(1975)) were taken using a sample in a solution, where the z-axis of the molecule will

have a random angle with the direction of the applied magnetic field. In this case, it is

necessary to perform an averaging over all directions.

We have taken the ratio C1/C2 to be 4. This reflects the strength of the magnetic

correlations of the Fe(3d) total spin to the spin of the electron placed into the π∗
1 and

π∗
2 in the final state of the optical absorption illustrated in Fig. 3.4. Since π∗

1 is already

occupied by one up-spin electron and π∗
2 is nearly empty, we expect the C1 to be larger

than C2. Instead of estimating C1/C2 microscopically, we have used this ratio as a fitting

parameter. Actually, it is the only fitting parameter we use in obtaining the spectra. We

find that the MCD curve passes through zero at 3 eV, while the experimental value for this

is 2.94 eV.

3.3. Comparison of the MCD and the optical absorption data in the

UV region for deoxy heme cluster

We have calculated the MCD spectrum for the deoxy-heme cluster based on these

orbital selective optical transitions. Here, Figures 3.7(a) and 3.7(b) present the experi-

mental and the calculated MCD spectrum for the deoxy case, respectively. In Fig. 3.7(a),

the inset figure represents the normally expected line shape of the temperature-dependent
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Figure 3.5. (a) Electron occupation 〈n〉 of the π∗
1 and π∗

2 host states plotted as a func-

tion of the chemical potential μ. Here, the Fermi level is located at μF . (b)

Single-particle spectral weight A(ω) versus ω obtained from the 〈n〉 versus

μ plot shown in (a). Here, the vertical black line represents the Fermi level,

μF.

MCD spectrum (Mason (2007)). As seen here, for the expected situation, spectrum first

has a dip and then a peak. The anomalous lines shape of the MCD spectrum of the

deoxy-HbA shows opposite behaviour with respect to expected spectrum and it has first

a peak and then a dip. We are suggesting that the anomalous line shape originates from

the antiferromagnetic coupling between the large Fe(3d) magnetic and the spin of the π∗

host states. Figure 3.7(a-b) show that the experimental MCD spectrum and the calculated

MCD spectrum is in good agreement.

In order to show the agreement with the experiment, we also calculate absorption

spectrum and we compare it with the experimental results. Figure 3.8(a) shows experi-

mental results on the optical absorption of deoxy-heme by Treu and Hopfield (Treu and
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Figure 3.6. (a) Square of the magnetic moment 〈(M z)2〉 of the π∗
1 and π∗

2 states plot-

ted as a function of the chemical potential μ. (b) Equal-time correlations

function of the Fe(3d) magnetic moment 〈M z
3dMm〉 with the moment of

the π∗
1 and π∗

2 states plotted as a function of μ. Here, the vertical black line

represents the Fermi level, μF.

Hopfield (1975)). The peak near 3 eV is named the Soret band, and it is considered to

originate from π → π∗ transitions.

We obtained an estimate of the optical absorption from the simple form

I(E) =
∑

m′,m=1

|〈m′|p|m〉|2f(εm)(1− f(εm′))δ(E − (εm′ − εm)) (3.2)

Here, m and m′ sums over the host states, and p =
∑

i (−e)ri is the operator for the

electric-dipole moment of the cluster. f(εm′) is the Fermi-Dirac distribution. For the
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energies of the host states, εm, we have used the DFT results and ignored the Coulomb

interaction effects. Since the Coulomb interactions do not drastically broaden or shift the

spectral weights for the π and π∗ states, this is a reasonable approximation for estimating

the UV optical absopriton. The results are shown as the blue bars for each transition in

Fig. 3.8(b).

Comparing the experimental data on ε(E) with this simple estimate, we see that

the dominant contribution is arising from the π1 → π∗
1 and π1 → π∗

2 transitions. If we

ignore other transitions and calculate the MCD spectra only for this case, then we obtain

the results seen in Fig.3.8 (b). Here, the solid black curve has been obtained by assuming

that the transitions to π∗
1 and π∗

2 states originate from only the π1 state.

As seen in Fig.3.5(b), the spectral weight distributions of the π∗
1 and π∗

2 states

have an overlap in energy which is about 0.2 eV. We artificially reduced the overlap of

π∗
1 and π∗

2 by moving π∗
2 higher in energy by 0.2 eV. Its result on ΔI(E)/E is shown

as the dashed red curve in Fig. 3.9, which has better resemblance to the experimental

line shape. Hence, we suggest that the anomalous Soret MCD lineshape of deoxy-HbA

can be explained based on spin-selective transitions from a bonding π state to a pair of

antibonding π∗ states where one is half-filled and the other is empty. Spin selectivity

is induced by the presence of antiferromagnetic correlations between the Fe(3d) and π∗

magnetic moments.
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Figure 3.7. (a) Experimental magnetic circular dichroism (MCD) spectra in UV region

of deoxy HbA obtained by Treu and Hopfield (Treu and Hopfield (1975))

at 8 C in a 16 Tesla applied magnetic field. The inset figure shows normally

expected line shape for the temperature-dependent MCD spectrum (Mason

(2007)). In (b), results from the calculation of the MCD spectra for the

deoxy-heme cluster are shown.
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Figure 3.8. (a) Experimental data on the frequency dependence of the optical absorp-

tion normalized by energy, ε(E)/E, for deoxy-HbA obtained by Treu and

Hopfield (Treu and Hopfield (1975)). (b) Calculated optical absorption

I(E)/E (normalized by energy) for deoxy-heme. The blue bars denote

the weights of the various π → π∗ transitions.
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Figure 3.9. Here, the black line denotes the contribution to the MCD spectra from the

π1 → π∗
1 and π1 → π∗

2 transitions. The red-dashed line denotes the same

contribution in the case where the π∗
2 state is artificially shifted by 0.2 eV

to higher energies so that there is no overlap between the π∗
1 and π∗

2 states.
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CHAPTER 4

RIXS SPECTRUM OF THE HEME CLUSTERS

In this chapter, we will present the resonant inelastic X-ray scattering (RIXS)

spectrum of the deoxy-heme and oxy-heme clusters. In addition, we will compare results

for the deoxy-heme with the RIXS spectrum of the deoxymyoglobin (deoxyMb) and re-

sults for the oxy-heme with the RIXS spectrum of the carboxymyoglobin (MbCO). We

can do this comparison because hemoglobin and myoglobin have the similar molecular

structure, and deoxyMb has the high-spin state as deoxy-heme and MbCO has the low-

spin as oxy-heme molecule. The RIXS spectrum of myoglobin molecules were obtained

by Harada et.al (Harada et al. (2009)).

In order to obtain RIXS spectrum, we calculate the single-particle spectral weight

of the Fe(3d) orbitals by taking the derivative of the total electron number of 3d orbitals

〈nd〉 calculated by using QMC with respect to the chemical potential μ.

Ad(ω) =
d

dμ
〈nd〉

∣∣∣∣
μ=ω

(4.1)

is evaluated at μ = ω and then, we calculate the spectrum by using the following equation

Idd =

∫
dω′A(ω′)A(ω′ + ω)f(ω′)(1− f(ω′ + ω)) (4.2)

where f(ω) is the Fermi-Dirac distribution:

f(ω) =
1

eβ(ω−μ) + 1
(4.3)

Here, β is the inverse of the temperature and μ is the chemical potential.
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4.1. RIXS spectrum of the deoxy-heme cluster

In this section, we show the RIXS spectrum of the deoxy-heme cluster. In addi-

tion, we compare our results with the RIXS spectrum of deoxyMb molecule (Harada et al.

(2009)).

Figure 4.1 shows the changing in the electron number 〈nν〉 of the Fe(3d) orbitals

with respect to chemical potential μ. The black vertical line represents the Fermi level

for the deoxy-heme cluster. This figure was discussed in Chapter 3. In this figure, we see

sudden increases in the occupations of the Fe(3d) states. The increase located at ≈ −4

eV corresponds to the impurity bound states. Above the Fermi level, the occupation of

the xy orbitals goes double occupancy at ≈ −2 eV. Similarly, the electron numbers of the

other 3d orbitals goes 2 at −1.5 eV, −1 eV, 4 eV. In Figure 4.1, these increasing point are

represented by the peaks. The height of the peaks are proportional to the increasing in the

occupation numbers of the orbitals. Here, we put the Fermi level at 0 point.

In Figure 4.1, we see the decreasing in the occupation number of the Fe(3d) or-

bitals at some μ values due to charge transfer between the 3d orbitals. Hence, we can not

obtain the spectral-weight graph from the 〈nν〉 versus μ graph.

In order to obtain the single-particle weight A(ω), we calculate the total Fe(3d)

electron number 〈nd〉 as a function of μ as seen in Fig. 4.2. By taking the derivative of

〈nd〉 with respect to μ, we obtain the A(ω) for the deoxy-heme cluster. We know from

the Fig. 4.1 that the peak located at ≈ −4 eV comes from the IBS. In addition, the peaks

located above the Fermi level are mainly originated from the double-occupancy of the

Fe(3d) orbitals.

In Figure 4.3, we show the RIXS spectrum obtained by the QMC calculations

for the deoxy-heme cluster and we compare it with the RIXS spectrum of the deoxyMb

(Harada et al. (2009)). As seen in this figure, the calculated spectrum has a peak at ≈ 0.9

eV. The experimental spectrum also has a peak at ≈ 1 eV. For deoxy-heme, our calculated

RIXS spectrum has similarities with the experimental results on deoxyMb.

In order to see the effect of the IBS on the transition density, we set A(ω) of IBS to

0. This new single-particle spectral weight is shown in Fig. 4.4 with the red dashed circle.

Then, we calculate the Idd from this new A(ω). In Figure 4.5, we present this transition

density with the red dashed lines and also we compare this results with the experimental

RIXS spectrum. As seen in this figure that the peak located at ≈ 0.9 eV is not originated

from the IBS. On the other hand, the peak located at 2.1 eV in Idd along with some other

low-energy weight disappear.
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Figure 4.1. (Top) For deoxy-heme, the electron occupation number of the Fe(3d) or-

bitals 〈nν〉 as a function of chemical potential μ. Here, the black solid line

shows the Fermi level of the deoxy-heme cluster. This Fermi level is ob-

tained by the DFT+QMC. (Bottom) Schematic plot of the single-particle

spectrum for the deoxy-heme. The blue line shows the Fermi level of the

molecule. This picture is obtained from the 〈nν〉 versus μ graph and the

peak locations correspond the electron increasing points. The height of

the peaks is proportional to the increase in the occupation number of the

orbitals. The peak located at ≈ −4 eV corresponds to the impurity bound

state. Here, U = 4 eV and J = 0.9 eV and temperature is T=300 K.
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Figure 4.2. For deoxy-heme cluster, (Top) total electron number of the Fe(3d) orbitals

〈nd〉 as a function of the chemical potential μ. (Bottom) The Fe(3d) single-

particle spectral weight Ad(ω) versus frequency ω. Ad(ω) is obtained by

taking the derivative of the 〈nd〉 with respect to μ. The peak located at

≈ −4 eV corresponds to the impurity bound state. The black vertical

line represents the Fermi level obtained by the QMC for the deoxy-heme

molecule. Here, U = 4 eV and J = 0.9 eV and temperature is T=300 K.
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Figure 4.3. For deoxy-heme cluster, (Top) DFT+QMC results for the RIXS spectrum

Idd. Idd is calculated from Eq.4.2. Here, these results are obtained for the

μ = −2.8 eV because it is the Fermi level for the deoxy-heme cluster. In

addition, U = 4 eV and J = 0.9 eV and temperature is T=300 K. (Bottom)

RIXS data on deoxyMb from the Harada et.al. (Harada et al. (2009)).
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Figure 4.4. For deoxy-heme molecule, (Top) the single-particle spectral weight Ad(ω)
versus frequency ω. A(ω) is obtained by taking the derivative of the 〈nd〉
with respect to μ. (Bottom) In this figure, we set the Ad(ω) to 0 for the

impurity bound state located ≈ −4 eV, which is shown by the dashed red

circle. Here, the black line represent the Fermi level obtained by the QMC

for the deoxy-heme molecule. Here, U = 4 eV and J = 0.9 eV and

temperature is T=300 K.
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Figure 4.5. For deoxy-heme cluster, (Top) the black line shows the DFT+QMC results

for the RIXS spectrum Idd. The red dashed line shows the Idd for the

case in which the spectral weight of the impurity bound state equals 0.

Here, U = 4 eV, J = 0.9 eV, μ = −2.8 eV and temperature is T=300
K. (Bottom) RIXS data on deoxyMb from the Harada et.al.(Harada et al.
(2009)).
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4.2. RIXS spectrum of the oxy-heme cluster

In this section, we show the RIXS spectrum of the oxy-heme cluster. In addi-

tion, we compare our results with the RIXS spectrum of MbCO molecule (Harada et al.

(2009)).

Figure 4.6 shows the changing 〈nν〉 of the Fe(3d) orbitals with respect to chemical

potential μ. The black vertical line represents the Fermi level for the deoxy-heme cluster.

This figure was discussed in Chapter 3. In this figure, we see sudden increases in the

occupations of the Fe(3d) states. The increase located at ≈ −5.5 eV, ≈ −1.5 eV and

≈ 1.5 eV correspond to the impurity bound states. In Figure 4.6, these increasing points

are represented by the peaks. The height of the peaks are proportional to the increasing in

the occupation numbers of the orbitals. Here, we put the Fermi level at 0 point.

In Figure 4.6, we see the decreasing in the occupation number of the Fe(3d) or-

bitals at some μ values due to charge transfer between the 3d orbitals. Hence, we can not

obtain the spectral-weight graph from the 〈nν〉 versus μ graph.

In order to obtain the single-particle weight A(ω), we calculate the total Fe(3d)

electron number 〈nd〉 as a function of μ as seen in Fig. 4.7. By taking the derivative of

〈nd〉 with respect to μ, we obtain the A(ω) for the oxy-heme cluster. We know from the

Fig. 4.6 that the peak located at at ≈ −5.5 eV, ≈ −1.5 eV and ≈ 1.5 eV come from the

IBS.

In Figure 4.8, we show the RIXS spectrum obtained by the QMC calculations for

the oxy-heme cluster and we compare it with the RIXS spectrum of the MbCO (Harada

et al. (2009)). As seen in this figure, the calculated spectrum has a peak at ≈ 0.4 eV

and ≈ 1.4 eV and at the above points. The experimental spectrum also have also peaks

≈ 0.4 eV and ≈ 1.4 eV This results show that the spectrum obtained from the DFT+QMC

results agree well with the RIXS data on MbCO. In particular, the peak positions up to 6

eV are in good agreement with the experimental data.

In order to see the effect of the IBS on the transition density, we set A(ω) of IBS to

0. This new single-particle spectral weight is shown in Fig. 4.9 with the red dashed circle.

Then, we calculate the Idd from this new A(ω). In Figure 4.10, we presents this transition

density with the red dashed lines and also we compare this results with the experimental

RIXS spectrum. As seen in this figure that the peak located at ≈ 2.4 eV and ≈ 2.8 eV in

Idd along with the some other low-energy spectral weight disappear.
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Figure 4.6. For oxy-heme, (Top) the electron occupation number of the Fe(3d) orbitals

〈nν〉 as a function of chemical potential μ. Here, the black solid line shows

the Fermi level of the deoxy-heme cluster. This Fermi level is calculated by

the DFT+QMC. (Bottom) Schematic plot of the single-particle spectrum

for the oxy-heme. The blue line shows the Fermi level of the molecule.

This picture is obtained from the 〈nν〉 versus μ graph and the peak loca-

tions correspond the electron increasing points. The height of the peaks is

proportional to the increase in the occupation number of the orbitals. The

peaks located at ≈ −1.5 eV, ≈ 2.4 eV and ≈ 2.5 eV correspond to the

impurity bound state. Here, U = 4 eV and J = 0.9 eV and temperature is

T=300 K.
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Figure 4.7. For oxy-heme cluster, (Top) total electron number of the Fe(3d) orbitals

〈nd〉 as a function of the chemical potential μ. (Bottom) The Fe(3d) single-

particle spectral weight Ad(ω) versus frequency ω. Ad(ω) is obtained by

taking the derivative of the 〈nd〉 with respect to μ. The peaks located at

≈ −1.5 eV, ≈ 2.4 eV and ≈ 2.5 eV correspond to the impurity bound state

The black vertical line represents the Fermi level obtained by the QMC for

the oxy-heme molecule. Here, U = 4 eV and J = 0.9 eV and temperature

is T=300 K.
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Figure 4.8. For oxy-heme cluster, (Top) DFT+QMC results for the RIXS spectrum Idd.

Idd is calculated from Eq.4.2. Here, the chemical potential is -3.8 eV which

is the Fermi level for the oxy-heme molecule. In addition, U = 4 eV and

J = 0.9 eV and temperature is T=300 K. (Bottom) RIXS data on MbCO

from the Harada et.al.(Harada et al. (2009)).
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Figure 4.9. For oxy-heme molecule, (Top) the single-particle spectral weight Ad(ω)
versus frequency ω. A(ω) is obtained by taking the derivative of the 〈nd〉
with respect to μ. (Bottom) In this figure, we set the Ad(ω) to 0 for the

impurity bound states located at ≈ −1.5 eV, ≈ 2.4 eV and ≈ 2.5 , which

are shown by the dashed red circle. Here, the black line represent the Fermi

level obtained by the QMC for the oxy-heme molecule. Here, U = 4 eV

and J = 0.9 eV and temperature is T=300 K.
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Figure 4.10. For oxy-heme cluster, (Top) the black line shows the DFT+QMC results

for the RIXS spectrum Idd. The red dashed line shows the Idd for the

case in which the spectral weight of the impurity bound state equals 0.

Here, U = 4 eV, J = 0.9 eV, μ = −3.8 eV and temperature is T=300
K. (Bottom) RIXS data on MbCO from the Harada et.al.(Harada et al.
(2009)).
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CHAPTER 5

XAS OF THE HEME CLUSTERS

In this section, we compare the DFT+QMC results with the X-ray absorption spec-

troscopy (XAS) data on the high-spin and low-spin hemes. XAS probes the single-particle

spectral weight Ad(ω) above the Fermi level.

For the high-spin case, we compare DFT+QMC results with the XAS measure-

ments by Aziz et al (Aziz et al. (2009)) on the deoxy-heme in solution. The Ad(ω) of this

molecule is shown in Fig. 5.1.

For the low-spin heme molecule, we make comparison with the XAS data on

[Fe(ttp)-(ImH2)Cl]2 (Hocking et al. (2007)). Ad(ω) for this low-spin molecule is shown

in Fig. 5.2. We first compare Ad(ω) with the DFT+QMC results. Then, we integrate

Ad(ω) above the Fermi level and compare this quantity for XAS and DFT+QMC.

5.1. XAS of the deoxy-heme cluster

Figure 5.3 the comparison of Ad(ω) for the high-spin heme with the deoxy-HbA.

In the experimental data, peaks are located about 1 eV and 3 eV. Here, the Fermi level is

located at 708 eV for the experimental data. The DFT+QMC results on Ad(ω) show that

a dominant peak is located about 1 eV and 3 eV. Different from the experimental results,

the spectrum of deoxy-heme is more broaden.

In Figure 5.4, 5.5 and 5.6, we compare the total Fe(3d) electron numbers obtained

from the experimental results and DFT+QMC results. Here, we calculate the electron

number for different Fermi levels because we do not exactly know the location of the

chemical potential for the experimental results.

In Fig. 5.4, we use U = 4 eV and J = 0.9 eV for the DFT+QMC calculations.

Here, we see that the change in the Fe(3d) electron numbers as a function of chemical

potential μ is similar with the experimental data for the εF = 709 eV.

For results represented in Fig. 5.5, we use U = 3 eV, J = 0.9 eV parameters

for the DFT+QMC calculations. This results are obtained at T = 1500 K. Here, we

see that the total electron number behaviour with respect to μ is very different from the

experimental results.
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Figure 5.1. The single-particle spectral weight Ad(ω) for the high-spin heme molecule.

These data are obtained from (Aziz et al. (2009))

Figure 5.2. The single-particle spectral weight Ad(ω) for the high-spin heme molecule.

These data are obtained from (Hocking et al. (2007)).
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Figure 5.3. (Top) The single-particle spectral weight Ad(ω) for the high-spin heme

molecule (Aziz et al. (2009)). Here, εF is the Fermi level for the experi-

mental data. (Bottom) Ad(ω) obtained from the DFT+QMC results for the

deoxy-heme.In DFT+QMC, U = 4 eV, J = 0.9 eV and T = 300 K.
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Figure 5.4. For deoxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from (Aziz et al.
(2009)). Here, εF shows the Fermi level for the experimental data for the

high-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for deoxy-heme. Here, the black ver-

tical line represents the Fermi level for deoxy-heme. In this calculations,

U = 4 eV, J = 0.9 eV and T = 300 K.

In Fig. 5.6, we show the DFT+QMC results for U = 3 eV, J = 0.6 eV and T =

1500 K. Here, we observe that the DFT+QMC results are similar with the experimental

results.

5.2. XAS of the oxy-heme cluster

Figure 5.7 the comparison of Ad(ω) for the low-spin heme with the oxy-HbA. In

the experimental data, peaks are located about 0 eV and 3 eV. Here, the Fermi level is

located at 706 eV for the experimental data. The DFT+QMC results on Ad(ω) show that

the spectrum is broaden and we see peaks at many energy levels.

In Figure 5.8, 5.9 and 5.10, we compare the total Fe(3d) electron numbers obtained

from the experimental results and DFT+QMC results. Here, we calculate the electron

number for different Fermi levels because we do not exactly know the location of the

chemical potential for the experimental results. These results show that the DFT+QMC

results for the oxy-heme are not compatible with the experimental results. We change the
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Figure 5.5. For deoxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from (Aziz et al.
(2009)). Here, εF shows the Fermi level for the experimental data for the

high-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for deoxy-heme. Here, the black ver-

tical line represents the Fermi level for deoxy-heme. In this calculations,

U = 3 eV, J = 0.9 eV and T = 1500 K.

interaction values and the Fermi levels for the experimental results, and we do not obtain

the similar results with the experimental data.

For both the deoxy-heme and oxy-heme, XAS data do not agree very well with the

DFT+QMC calculations. The reason may be that we do not use correct U and J values

for the heme clusters. Hence, the different interaction parameters may be used for the

comparison with the XAS data and DFT+QMC results.
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Figure 5.6. For deoxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from the (Aziz

et al. (2009)). Here, εF shows the Fermi level for the experimental data for

the high-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for deoxy-heme. Here, the black ver-

tical line represents the Fermi level for deoxy-heme. In this calculations,

U = 3 eV, J = 0.6 eV and T = 1500 K.
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Figure 5.7. The single-particle spectral weight Ad(ω) for the low-spin heme molecule

(Hocking et al. (2007)). (Bottom) Ad(ω) obtained from the DFT+QMC

results for the oxy-heme. In DFT+QMC, U = 4 eV, J = 0.9 eV and

T = 300 K.
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Figure 5.8. For oxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from (Hocking

et al. (2007)). Here, εF shows the Fermi level for the experimental data for

the low-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for oxy-heme. Here, the black vertical

line represents the Fermi level for oxy-heme. In this calculations, U = 4
eV, J = 0.9 eV and T = 300 K.
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Figure 5.9. For oxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from (Hocking

et al. (2007)). Here, εF shows the Fermi level for the experimental data for

the low-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for oxy-heme. Here, the black vertical

line represents the Fermi level for oxy-heme. In this calculations, U = 3
eV, J = 0.9 eV and T = 1500 K.
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Figure 5.10. For oxy-heme, total Fe(3d) electron numbers as a function of chemical

potential μ. The black, blue and green lines are obtained from (Hocking

et al. (2007)). Here, εF shows the Fermi level for the experimental data for

the low-spin heme. The red line shows the DFT+QMC results for the total

electron number of Fe(3d) orbitals for oxy-heme. Here, the black vertical

line represents the Fermi level for oxy-heme. In this calculations, U = 3
eV, J = 0.6 eV and T = 1500 K.
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CHAPTER 6

IMPLICATION OF THE DFT+QMC RESULTS FOR THE

FUNCTIONING OF HEMOGLOBIN

6.1. Magnetic mechanism for Fe-O2 binding

DFT+QMC results show that the magnetic moment of hemoglobin molecule is

lowered by bindig O2 molecule to Fe atom.

At temperature T = 300 K, we find that oxy-heme has effective spin S = 0.68.

When the temperature is decreased, the magnetic gap is formed and the effective spin of

molecule equals S = 0.1 at T = 150 K.

As seen in Fig. 2.19, the Fermi level is located at -3.8 eV at 300 K. On the other

hand, the Fermi level shifts from -3.8 eV to -3.89 eV as temperature is lowered. The total

electron number continuously changes as the chemical potential is changed at T = 400

K and T = 300 K. The reason is that the new electronic states are formed at these energy

levels. On the contrary, we see that total electron number is nearly constant in a narrow

energy gap at T = 200 K and T = 150 K. Figure 2.18 show the total magnetic moment Mt

of oxy-heme as a function of chemical potential μ for the different temperatures. We see

clearly that the magnetic moment of molecule decreases with formation of the magnetic

gap.

In this thesis, we propose a magnetic mechanism for the Fe-O2 bonding. Com-

bined DFT+QMC results show that the charge transfer occurs between the Fe(3d) and O2

orbitals. On the other hand, the charge transfer to 3d orbitals is an energetically costly

process due to strong Coulomb interactions. This difficulty is overcome by the location of

the upper-Hubbard level of the Fe(3dxy) orbital. Our results show that the upper-Hubbard

level of the Fe(3dxy) orbital is located very close to Fermi level. Hence, the charge trans-

fer occurs easily from the O2 to Fe(3d) orbitals, in particular Fe(3dxy) orbital and the spin

0 state is obtained in a narrow energy region. We say that the magnetic moment and the

magnetic correlations are developed by the electron transfer, and the energy of the system

is minimized in this way.
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Figure 6.1. Illustration of the change of the location of Fermi level with respect to

pH values of the environment. Here, the vertical black line represents the

Fermi level, μF. In the left picture, the Fermi level is located in the mag-

netic gap which is about 0.1 eV. In the right picture, the Fermi level moves

the out of the magnetic gap due to change in the pH of the environment.

6.2. Bohr effect

As explained in the Introduction, the Bohr effect is the effect of pH on the dis-

sociation of oxygen. When the H+ concentration increases, the pH decreases and the

hemoglobin releases O2 to the tissues. pH in the lungs is about 7.4 and in the tissues

about 7.2. The differences between the pH values of lungs and tissues enable the O2

transportation and the molecule releases O2 with a small change in the pH. In this thesis,

we propose an explanation for the functioning of Bohr effect.

In Chapter 2, we observe the change in the electron number as a function of chem-

ical potential. The change in the electron number is similar to the chnage in H+ ions in

the environment. DFT+QMC results show that the magnetic properties of hemoglobin are

easily changed by chemical potential. Hence, the changing of the pH may lead to moving

the chemical potential out side of the magnetic gap as seen in Fig. 6.1. We show that the

O2-Fe charge transfer occurs in narrow energy gap and the spin state goes to 0. This may

be mechanism for how the pH controls the oxygen affinity in the red blood cells.
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6.3. Cooperativity

Cooperativity means that the O2 affinity of hemoglobin is increased by the quan-

tity of oxygen bounds.

Pauling and Coryell (Pauling and Coryell (1936)) found that the magnetic moment

per heme equals 5.49 μB. It is known that if the molecule is in the spin 2 state, the

magnetic moment equals to 4.9 μB. Pauling and Coryell suggested that the ferromagnetic

heme-heme correlations may lead to 5.49 μB.

The total molecular susceptibility χHbA is calculated by using the Eq. 6.1. Here,

the total magnetic moment M z
HbA of the molecule is the summation of the magnetic mo-

ment of the each heme groups as in the Eq. 6.2.

χHbA =

∫ β

0

dτ〈M z
HbA(τ)M

z
HbA(0)〉 (6.1)

M z
HbA =

4∑
i

M z
heme,i (6.2)

If the Eq. 6.2 is placed in Eq. 6.1, the following equations is obtained:

〈M z
HbA(τ)M

z
HbA(0)〉 =

〈(
4∑
i

M z
heme,i(τ)

)(
4∑
j

M z
heme,j(0)

)〉
(6.3)

and the total molecular susceptibility equals to

χexp
HbA =

∫ 0

β

dτ

[
4∑

i=1

〈M z
heme,i(τ)M

z
heme,i(0)〉+

4∑
i,j=1

〈M z
heme,i(τ)M

z
heme,j(0)〉

]
(6.4)

The DFT+QMC results show that the total heme moments equals to 4.1 μB. From
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Figure 6.2. Illustration of the magnetic mechanism for cooperativity. Here, the dashed

lines represent the ferromagnetic correlations between the heme groups.

The red balls represent the Fe atoms located at the centers of hemes.

Eq. 6.4, the difference between the experimental results and our results require an av-

erage heme-heme ferromagnetic correlations, 4.3 (μB)
2. This ferromagnetic heme-heme

correlations may arise indirectly from the Fe-host AF coupling. The large number of host

sites in the AF screening cloud of Fe may lead to heme-heme ferromagnetic correlations

and this could lead to cooperativity.

In this thesis, we propose two explanations for the mechanism of cooperativity.

The first one is the simple ferromagnetic bound breaking. As seen in Fig. 6.2, when the

first O2 binds the hemoglobin, it must break 6 ferromagnetic bonds. When the second O2

binds the molecule, the 3 ferromagnetic correlations must be broken. On the other hand,

when the last O2 binds, there are no ferromagnetic correlations to be broken.

The other explanation is based on the spin non-conservancy in the binding of

O2 to heme. As known that the spin state of deoxy is 2 and the spin state of O2 is 1.

When O2 binds the molecule, the resultant oxy-heme is in S=0 spin state. This spin non-
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conservancy may limit the reaction rate. If ferromagnetic heme-heme correlations occur,

spin transfer can be possible from one heme to other. Hence, the O2 may easily binds to

Fe.
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CHAPTER 7

FUTURE STUDIES

There are many bio-inorganic molecules which have the similar electronic struc-

ture as hemoglobin molecule. Chlorophyll (Chls) is an example for these kind of molecules.

Chls are green pigments found in some bacterias and the chloroplast of algae

and plants. Chls contain a porphyrin with magnesium ion (Mg+2) in the center. They

channel energy from absorbed photons to the reaction center with the efficiency 95%

through the process of photosynthesis. In addition, they participate charge separation

and electron transfer in the reaction center. Many theoretical works have been done to

understand the electronic absorption in various Chls. However, their mechanism have not

been completely understood.

As shown in Fig. 7.1, Chl contains a Mg atom. We know that hemoglobin

molecule consists of Fe atom as metal atom. In these two molecules, the metal atoms

are located in a porphyrin layer.

Because of this structural similarity, we will use the Haldane-Anderson model to

study the electronic and magnetic properties of Chls molecule, and we will solve this

model by using DFT+QMC algorithm to understand the role of metal atom in the func-

tioning of Chl molecule.

Organo-transition metal compounds such as triplet emitters are studied by many

research group due to their usage in organic light-emitting diodes (OLEDs). Ir(ppy)3

or [Ru(bpy)3]
+2 are examples for triplet emitters. These organo-transition metal com-

pounds offer a great advantage to obtain the high efficient and low power consuming

light-emitting systems.

In the future studies, we will study the electronic properties of triplet emitters for

OLEDs applications. In particular, we will focus on what is the role of transition metal on

efficiency of OLEDs and how the functioning of OLEDs change by changing the magnetic

properties of triplet emitters.
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Figure 7.1. The left figure shows the molecular structure of hemoglobin molecule.

The right figure shows the molecular structure of chlorophyll molecule.

Chlorophyll contains Mg atom at the center of porphyrin layer.

Hemoglobin contains Fe atom at the center of porphyrin layer.
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CHAPTER 8

CONCLUSIONS

In this thesis, we study the electronic and magnetic properties of the human adult

deoxy and oxy hemes by using an extended multi-orbital Haldane-Anderson model. We

obtained the molecular structure of the hemoglobin molecules from the Protein Data

Bank. These structures were determined by X-ray measurements with the 1.25 Å res-

olution on a crystal of hemoglobin molecules at room temperature. Since the hemoglobin

molecule consists of about 9700 atoms, we perform our calculations for the reduced heme

clusters. For the Haldane-Anderson model of these clusters, we include the inter-orbital

Coulomb interactions along with the Hund’s coupling. We have calculated the model

parameters of the Anderson Hamiltonian by the DFT method. Then, we have used the

QMC technique to study electronic and magnetic properties of the hemoglobin molecule.

By using combined DFT+QMC method, we calculate the magnetic correlations and the

susceptibility of the deoxy and oxy-heme molecules.

Firstly, we calculated the magnetic moments at each Fe(3d) orbitals and the mag-

netic correlations between them. Our results show that Fe(3d) and the host electrons have

finite magnetic moments for both the deoxy-heme and oxy-heme clusters. We see ferro-

magnetic correlations between the Fe(3d) orbitals in the deoxy-heme and the molecule

has the effective spin S=1.60 at 300 K. On the other hand, Fe(3d) correlations are very

small for the oxy-heme with respect to the deoxy cluster. The reason is that for the oxy-

case, the antiferromagnetic (AF) correlations occur between the Fe(3d) electrons and host

electrons. These antiferromagnetic correlations suppress the Fe(3d) ferromagnetic cor-

relations. Hence, the effective spin of the oxy-heme decreases to 0.68 at 300 K. We

observe that the effective spin is lowered from 1.60 to 0.68 by binding of O2 due to ex-

istence of the impurity bound states (IBS). These new electronic states are formed both

in deoxy-heme and oxy-heme clusters. IBS are occupied by electrons in deoxy, while

they are unoccupied in oxy. When IBS are occupied as in the deoxy, Fe(3d) orbitals have

strong ferromagnetic correlations due to Hund’s coupling. Hence, deoxy molecule has

the high-spin state. On the other hand, when IBS are unoccupied as being in oxy, AF cor-

relations develop between the Fe(3d) and host orbitals. These AF correlations suppress

the Hund’s coupling between the Fe(3d) orbitals. Due to competition between the Hund’s

coupling and Fe(3d)-host AF correlations, oxy-heme cluster has the lower spin state than
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the deoxy-heme.

We observe that the existence of the IBS is not sufficient to obtain the low-spin

state for the oxy case. We changed the temperature from 400 K to 150 K and we calculated

the susceptibility and magnetic moments of Fe(3d) and host electrons.

For the deoxy-heme, the susceptibility shows the 1/T Curie type behaviour and

the susceptibility increases rapidly as temperature decreases. On the other hand, the sus-

ceptibility of the oxy-heme has the two different temperature regime. Above T=300 K,

the susceptibility has a Curie type dependency while below the T=300 K, wee see that

the susceptibility of the oxy-heme is suppressed as T decreases. This suppression of the

susceptibility is due to the opening of a gap in the magnetic response within a narrow

energy range of the Fermi level.

Then, for the oxy-heme cluster, we discuss the temperature dependence of the

magnetic correlations. We observe that the total electron number of Fe(3d) orbitals and

the O2 orbitals depend on the temperature. In other words, the Fermi level exhibits strong

dependence on the temperature. By decreasing the temperature, we see the electron trans-

fer from mainly O2 (2p) states to the Fe(3dxy) states. These electrons transfers lead to

negatively increase in the antiferromagnetic correlations between the Fe(3d) and host

states. In addition, the ferromagnetic correlations between the Fe(3d) states decrease

with the decreasing in the T. Due to these weak Fe(3d) ferromagnetic correlations and

the strong Fe(3d)-O2 (2p) AF correlations, the oxy-heme cluster has the low-spin state at

small temperatures.

In this thesis, we propose a magnetic mechanism for the Fe-O2 bonding. Com-

bined DFT+QMC results show that the charge transfer occurs between the Fe(3d) and O2

orbitals. On the other hand, the charge transfer to 3d orbitals is an energetically costly

process due to strong Coulomb interactions. This difficulty is overcome by the location of

the upper-Hubbard level of the Fe(3dxy) orbital. Our results show that the upper-Hubbard

level of the Fe(3dxy) orbital is located very close to Fermi level. Hence, the charge trans-

fer occurs easily from the O2 to Fe(3d) orbitals, in particular Fe(3dxy) orbital and the spin

0 state is obtained in a narrow energy region. We say that the magnetic moment and the

magnetic correlations are developed by the electron transfer, and the energy of the system

is minimized in this way. This means that Fe-O2 binding has the magnetic origin for the

oxy case.

We observe that the Fe-porphyrin layer AF correlations exist in both deoxy and

oxy-cases. The experimental evidence for this is provided by the MCD data on the deoxy-

HbA. The MCD spectra of on deoxy-HbA has a peak near 3 eV. This peak has an anoma-
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lous line shape and 1/T temperature dependency. In the same energy range, the optical

absorption has a temperature-independent peak. Our results show that the anomalous line

shape originates from the antiferromagnetic correlations between the Fe(3d) orbitals and

the partially filled π∗ states of the porphyrin layer. In DFT+QMC calculations, we find

the π∗
1 which is a nearly-half filled state and π∗

2 which is nearly empty state. In addition,

the bonding π state is located at about 3 eV. In the light of our DFT+QMC results, our

explanation for the anomalous line shape of the MCD spectrum for the deoxy-HbA as the

following: in an applied magnetic field which is the up direction, the Fe spin which is

polarized in the down direction hybridizes with the one down electron of π. Also, there

is an one up electron in the π∗
1 states due to antiferromagnetic exchange coupling with the

Fe(3d) spin. One down electron located at π state moves to the π∗
1 and the the up-spin

electron in the π state spin-flips electron through the AF coupling with the left-circularly

polarized light. In the next step, the up-spin of Fe flips again its spin because of the spin-

orbit coupling. In this case, the electron transition occurs between the π → π∗
2 states.

According to our explanation on the MCD spectrum of deoxy-HbA, the temperature-

dependent MCD spectra arises from the π → π∗
1 with the LCP and π → π∗

2 with the

RCP. In addition, our explanation says that the Soret MCD transitions are spin and orbital

selective.

In the light of the magnetic measurements presented in this thesis, we propose

some explanations for the Bohr effect and the cooperativity. These are the fundemantal

functional properties of the hemoglobin molecule because they increase the oxygen trans-

porting effiency of the molecule. DFT+QMC results find that the magnetic properties of

the molecule depend sensitively to the electron fillings. We see S=0 state in a narrow

energy gap. The out of this energy gap, the hemoglobin molecule exhibits different mag-

netic behaviours. The dependency of the magnetic properties of the hemoglobin on the

location of the chemical potential may be the mechanism for how the pH of the red blood

cells controls the oxygen affinity.

In this thesis, we propose two possible mechanisms for the cooperativity. The first

one is the simple ferromagnetic bound breaking. When the first O2 binds the hemoglobin,

it must break 6 ferromagnetic bonds. When the second O2 binds the molecule, the 3

ferromagnetic correlations must be broken. On the other hand, when the last O2 binds,

there are no ferromagnetic correlations to be broken.

The second one is based on the spin non-conservancy in the binding of O2 to heme.

As known that the spin state of deoxy is 2 and the spin state of O2 is 1. When O2 binds

the molecule, the resultant oxy-heme is in S=0 spin state. This spin non-conservancy may
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limit the reaction rate. If ferromagnetic heme-heme correlations occur, spin transfer can

be possible from one heme to other. Hence, the O2 may easily binds to Fe.

In this thesis, we compare our DFT+QMC results with the RIXS and XAS. The

d-d transitions are obtained by the RIXS. For deoxy-heme, we see that the DFT+QMC

results and the experimental RIXS are not compatible. On the other hand, the DFT+QMC

results for oxy-heme are good agreement with the experimental results. We also compare

the DFT+QMC results with the XAS. Here, we see that the spectrum for the deoxy-heme

and oxy-heme are broaden with respect to XAS. These results show that the U and J ,

and also double-counting term may affect the spectrum. In addition, the continuous-time

quantum Monte Carlo may be developed to study the RIXS and XAS spectrum of deoxy-

heme and oxy-heme molecules.

The DFT+QMC results show that the magnetic properties and the functioning

of the HbA molecule is a strongly-correlated electron problem. There are many met-

alloproteins, metalloenzymes and bioinorganic molecules which contain transition metal

atoms and have the similar molecular structure with the hemoglobin. The electronic struc-

tures of these molecules may be modeled within the same framework and their magnetic

properties and the functions may be studied by using the many-body technique which is

described in this thesis.
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APPENDIX A

PARAMETERS OF THE ANDERSON HAMILTONIAN

We obtain the one-electron parameters which are εm, εdν and Vmν for the effective

multi-orbital Haldane-Anderson model by using density functional theory (DFT) method

(Kohn and Sham (1965)). These calculations are performed for the deoxy-heme and oxy-

heme clusters which are reduced form of the human adult hemoglobin (HbA) molecule.

the molecular coordinates of these molecules are determined by the X-ray measurements

(Park et al. (2006)). In DFT calculations, we use the natural atomic orbitals (NAO’s)

instead of atomic orbitals. The reason is that the atomic orbitals do not form an orthogonal

basis. First, we express the Fock matrix in the NAO basis. We take the Fe(3dν) NAO’s

as the impurity orbitals and their energy levels as εdν’s in the Anderson Hamiltonian.

Diagonalizing the remaining part of the Fock matrix, we obtain the host eigenstates |um〉
and their energy levels εm, and, in addition, the hybridization matrix elements Vmν . This

procedure is explained in more detail in Ref. (Kandemir et al. (2016), Mayda et al.

(2017), Kandemir (2013)). The DFT calculations are carried out by using the Gaussian

program with the BP86 energy functional [BP86] and the 6-31G basis set with N = 483

basis functions for the deoxy-heme cluster and N = 501 basis functions for the oxy heme

cluster. The energy levels of the Fe(3dν) orbitals εν and of the host states εm are shown

in Fig. A.1(a) and (b). We use the parameters εm, εν and Vmν as input parameters for the

QMC simulations.

The HbA molecule has about 9700 atoms. In our calculations, we retain only 75

atoms for the deoxy-heme cluster and 77 atoms for the oxy-heme cluster as seen in Fig.

1.1(b-c). In the DFT calculation of the energy spectrum of the clusters, it is necessary to

be careful with the finite size effect arising from the boundary of the clusters. As shown in

Fig.1.1(b), the host states localized on the oxygen and the carbon sites at the boundaries

of the cluster has an energy close the Fermi level. On the other hand, if we use the larger

clusters containing 87 or 96 atoms, the distal histidine part contains more sites and the

oxygen site is not close to the boundary, and we see that the host states arising from the

boundary moves away from the Fermi level to the higher energy. Hence, we have removed

the boundary host states to control the finite size effects for the 75 atoms.
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Figure A.1. The energy levels of the host states εm and of the Fe(3d) states εν are shown

of (d) the deoxy and (e) the oxy-heme clusters. These values for εm and

εν are used in the QMC simulations of the effective Anderson model. In

the deoxy case, the bonding state π and the antibonding states π∗
1 and π∗

2

states are indicated. In the oxy case, the host state which is closest to the

Fermi level is composed of the 2p orbitals of the O2 attached to Fe. This

state, which we labelled as φO, is indicated in addition the antibonding π∗
1

and π∗
2 states. Here, μF denotes the location of the Fermi level obtained by

the QMC calculations at T = 300 K.
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A.1. Double-counting term

It is important to note that, in the DFT+QMC approach, the Coulomb interactions

U , U ′ and U ′ − J are taken into account both by the DFT and the QMC calculations.

Therefore, in order to prevent this double counting, an orbital-dependent double-counting

term μDC
ν , which is defined as

μDC
ν =

UnDFT
dν

2
+ [U ′ + (U ′ − J)]

∑
ν′ �=ν

nDFT
dν′

2
(A.1)

is substracted from the bare Fe(3dν) levels, εdν → ε̃dν = εdν−μDC
ν (Karolak (2013),Karo-

lak et al. (2010),Anisimov et al. (1991),Czyżyk and Sawatzky (1994),Kuneš et al. (2007)).

In the Anderson Hamiltonian, ε̃dν is used instead of εdν . Here, 〈nDFT
dν 〉 is the electron

number in the Fe(3dν) NAO’s obtained by the DFT calculations.

A.2. Density of states

In this part, we present the one-electron parameters calculated by DFT for deoxy

and oxy molecules. Here, total density of states D(ε) is defined by

D(ε) =
N∑

n=1

δ(ε− En), (A.2)

and host density of states is defined by

Dh(ε) =
N−5∑
n=1

δ(ε− εm). (A.3)

Figure A.2 (a) shows the total density of states D(ε) of deoxy molecule. In this figure,

the highest occupied moleculer orbital (HOMO) is located at −3.52 eV and the lowest

occupied moleculer orbital (LUMO) is located at −3.02 eV. The host density of states

Dh(ε) as a function of energy ε is indicated in Fig A.2 (b). The coloured vertical lines

show the shifted energy levels of Fe(3dν) orbitals ε̃dν . For these parameters, while ν =
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x2 − y2 is located at εν ≈ −14 eV, the other Fe(3dν) orbitals are located at εν ≈ −14.7

eV. Figure A.3 (a) shows the total density of states D(ε) of oxy molecule. In this figure,

the highest occupied molecular orbital (HOMO) is located at −4.11 eV and the lowest

occupied molecular orbital (LUMO) is located at −3.84 eV. The host density of states

Dh(ε) as a function of energy ε is indicated in Fig A.3 (b). The vertical lines show the

shifted energy levels of Fe(3dν) NAO’s ε̃dν . For these parameters, Fe(3dx2−y2) NAO’s are

located at εν ≈ −14.88 eV and the other Fe(3d) orbitals are located at ≈ −15.7 eV.

A.3. Hybridization matrix elements

The square of the hybridization matrix elements |Vmν |2 between the m’th host

states and Fe(3dν) orbitals are shown as a function of εm in Fig A.4. This figure indi-

cates that m = 144’th, 145’th, 146’th, 153’rd and 163’rd host states have the strongest

hybridization with ν = 3z2−r2 and m = 152’nd host state hybridizes most strongly with

Fe(3dx2−y2) orbital. We will see that these host orbitals have the magnetic correlations

with Fe(3d) orbitals.

In addition to these host states, the |Vmν |2 value of 165, 166 and 167’th host states

are shown in Fig. A.4 (a-b). These host states are located at near of the LUMO level

and it will be shown that m = 165, 166 and 167 also have the magnetic correlations

with the Fe(3d) orbitals. Hence, they are important to obtain the total magnetic moment

of deoxy molecule. The square of the hybridization matrix elements |Vmν |2 between the

m’th host states and Fe(3dν) NAO’s are shown as a function of εm in Fig A.5. This figure

indicates that m = 153, 154 and 173’rd host states have the strongest hybridization with

ν = 3z2 − r2. Figure A.5 (b) shows that m = 158 and 159’th host states hybridize most

strongly with Fe(3dx2−y2) NAO’s.

In addition to these host states, the |Vmν |2 value of 174, 175 and 176’th host states

are shown in Fig. A.5 (a-b). These host states are located at near of the LUMO level and

it will be shown that m = 174, 175 and 176 also have the magnetic correlations with the

Fe(3d) orbitals. Hence, they are important to obtain the total magnetic moment of oxy

molecule.
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Figure A.2. (a) Total density of states D(ε) of deoxy obtained by the DFT calculations.

(b) Density of states of the host states of the effective Haldane-Anderson

model Dh(ε). Here, energy levels of Fe(3dν) orbitals are shifted by the

double counting term, μDC
ν , which are obtained for U = 4 eV and J =

0.9 eV. The shifted Fe(3dν) energy levels ε̃dν are indicated by the colored

vertical lines. In addition, the vertical black solid and dashed lines denote

the HOMO and LUMO levels, respectively.
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Figure A.3. (a) Total density of states D(ε) of oxy molecule obtained by the DFT cal-

culations. (b) Density of states of the host states of the effective Haldane-

Anderson model Dh(ε). Here, energy levels of Fe(3dν) orbitals are shifted

by the double counting term, μDC
ν , which are obtained for U = 4 eV and

J = 0.9 eV. The shifted Fe(3dν) energy levels ε̃dν are indicated by the

colored vertical lines. In addition, the vertical black solid and dashed lines

denote the HOMO and LUMO levels, respectively.
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Figure A.4. DFT results for deoxy on the square of the hybridization matrix elements

|Vmν |2 between the Fe(3dν) natural atomic orbitals and the m’th host states

versus the host energy εm. In (a) results are shown for the 3d3z2−r2 and 3dxy
natural atomic orbitals, and in (b) for the 3dxz, 3dx2−y2 and 3dyz natural

atomic orbitals. Here, the vertical solid and dashed lines denote the values

of the HOMO and LUMO levels, respectively. We observe that m = 144,

145, 146, 152, 153 and 163’rd host states have the strongest hybridization

matrix elements.
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Figure A.5. DFT results for oxy on the square of the hybridization matrix elements

|Vmν |2 between the Fe(3dν) natural atomic orbitals and the m’th host states

versus the host energy εm. In (a) results are shown for the 3d3z2−r2 and 3dxy
natural atomic orbitals, and in (b) for the 3dxz, 3dx2−y2 and 3dyz natural

atomic orbitals. Here, the vertical solid and dashed lines denote the values

of the HOMO and LUMO levels, respectively. We observe that m = 153,

154, 158, 159 and 173’th host states have the strongest hybridization matrix

elements.
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A.4. Natural atomic orbital weight of the host eigenstates

Figure A.6(a-i) show the NAO composition |umi|2 of the m = 144, 145, 146,

152, 153, 163, 165, 166 and 167’th host states versus the label of host NAO states i for

deoxy. Here, NAO weight of the m’th host state is defined as |umi|2 = |〈φ̃i|um〉|2, where

|φ̃i〉 represents the NAO’s for the host states and |um〉 is the m’th host eigenstate. These

terms are explained in more detailed in Ref (Kandemir et al. (2016), Mayda et al. (2017),

Kandemir (2013)).

In Fig. A.6(a-b), we observe that m = 144 and 145’th states have large weight

from the NAO’s of the C sites and N sites located around the Fe atom.

Figure A.6(c-d) show that m = 146 and 152’nd states have large weight from the

NAO’s of the N sites and in Fig. A.6(e-f), we observe that m = 153 and 163’rd states

have large weight from the NAO’s of the C sites and N sites

The NAO compositions of the host states m = 153, 154, 158, 159, 173, 174 and

175 versus the label of host NAO’s i are shown in Fig. A.7 (a-g), respectively. In these

figures, we see that m = 153, 154, 158 and 159’th host states have large weight from the

NAO’s of N and C site which attach the Fe atom. On the other hand, Fig. A.7 (e) indicate

that m = 173’th host states consist of large weight only from the O atoms of the oxy

molecule. We see from Fig. A.7 (f) that m = 174’th host state consists of C and N sites.

m = 175’th host state is composed of 2px and 2py of C and O as shown in Fig A.7 (g).

Similar to m = 174’th host state, m = 176 also consists of C and N sites as seen in Fig.

A.7 (h).
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Figure A.6. Natural atomic orbital weight of the m’th host eigenstate |umi|2 of deoxy

versus the label i of the host NAO for (a) m = 144, (b) 145, (c) 146,

(d) 152, (e) 153. Here, the label of atoms in deoxy molecule is shown at

topmost.
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Figure A.7. NAO weight of the m’th host eigenstate |umi|2 of oxy versus the label i of

the host NAO for (a) m = 153, (b) 154, (c) 156, (d) 159, (e) 173, (f) 174,

(g) 175 and (h) 176. Here, the label of atoms in oxy molecule is shown at

topmost.
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APPENDIX B

QUANTUM MONTE CARLO ALGORITHM FOR THE

MULTI-ORBITAL ANDERSON MODEL WITH THE

INTER-ORBITAL COULOMB INTERACTION

In the appendix, the multi-orbital Anderson model is defined by adding inter-

orbital Coulomb interaction and the Hirsch-Fye algorithm is explained for this Anderson

model. Here, the inter-orbital interaction is included to obtain more accurate results for

our molecules and the changes in the algorithm with adding this interaction term are

expressed exhaustively.

Firstly, the algorithm is briefly described and its key steps are specified. In section

2, the multi-orbital Anderson Hamiltonian with the inter-orbital Coulomb interaction term

is shown and this Hamiltonian is divided into two parts which are the non-interacting (H0)

and the interacting part (H1).

In section 3, the impurity Green’s function G0
νν′(iωn) with the non-zero hybridiza-

tion (between the host and impurity orbitals) and zero Hubbard-Stratonovich (HS) field is

calculated by using G00
νν′(iωn) and T . G00

νν′(iωn) is the impurity Green’s function with the

zero hybridization and zero HS field. T is a term which include U , U ′ and U ′ − J terms

and it is used in H0. The detailed proof of T is explained in this chapter.

In section 4, the Hubbard-Stratonovich transformations are presented for U , U ′

and U ′ − J terms. After these transformations, the exponential form of H1 is defined by

using WU , WU ′
and WU ′−J which include HS potential terms.

Section 5 shows the initial calculation of Gσ
νν′(l, l

′) by using G0
νν′(iωn) and W .

Gσ
νν′(l, l

′) shows the Green’s functions for the non-zero hybridization and HS field and,

W contains WU , WU ′
and WU ′−J terms.

In section 6, Rσ term is described. This term is used for the spin-flip acception

and the calculation of the new configuration Green’s functions. In this chapter, firstly, the

general proof of Rσ is done. After that, Rσ is calculated for U , U ′ and U ′ − J terms.

( (Wνσ(l))
′− (Wνσ(l)) ) and Aσ which are used in the calculation of Rσ are explained for

the three interaction terms. Here, (Wνσ(l))
′ is described for the new spin configuration

and (Wνσ(l)) is described for the old one.

In section 7, the new impurity Green’s functions for U , U ′ and U ′ − J terms
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are explained. In the first two sections, the form of the new Green’s functions is shown

and (A−1
σ ) which are used in the calculation of the new Green’s functions are proved for

U , U ′ terms. Then, the last form of the new impurity Green’s functions are obtained

by replacing (A−1
σ ). As for the U ′ − J term, the form of the new Green’s function is

explained. (AU ′−J
σ )5L×5L matrix is defined and its inverse is obtained. After that, it is

shown that (AU ′−J
σ )−1

2L×2L can be used instead of (AU ′−J
σ )−1

5L×5L. Finally, the last form of

the new Green’s function are calculated by replacing (AU ′−J
σ )−1

2L×2L term.

B.1. Schematic derivation

Before embarking on a rigorous derivation of the Hirsch-Fye Quantum Monte

Carlo (HF-QMC) algorithm with the inter-orbital Coulomb interaction term, a schematic

derivation of this method is given in this section.

The Hirsch-Fye QMC algorithm is numerically exact solver for the Anderson im-

purity problem. The key steps of these algorithm are the Trotter approximation and the

Hubbard-Stratonovich transformation.

The multi-orbital Anderson model Hamiltonian with the inter-orbital interaction

term is given by

H =
∑
mσ

(εm − μ) c†mσcmσ +
∑
ν,σ

(εν − μ)nνσ

+
∑
m

∑
ν,σ

Vmν(c
†
mσdνσ + h.c.)

+
∑
ν

Unν↑nν↓

+
∑
ν>ν′

[U ′nνσnν′−σ + (U ′ − J)nνσnν′σ]. (B.1)

where c†mσ(cmσ) creates (annihilates) an electron in host state m, with spin σ, d†νσ(dνσ) is

the creation (annihilation) operator for a localized electron at the ν’th d orbital. Here, εm

and εν are the energies of the host and d impurity states, respectively, Vmν is the hybridiza-

tion matrix elements between host and impurity orbitals, μ is the chemical potential, nνσ

is the occupation number of ν’th d orbital and U is the on-site d electrons Coulomb repul-

sion. U ′ and (U ′ − J) are the Coulomb interaction between two d electrons in different

orbitals with opposite spins and parallel spins, respectively. Jνν′ is the z component of
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Hund’s coupling. The relation between U , U ′ and J is

U = U ′ + 2J. (B.2)

The partition function of this system is

Z = Tre−βĤ . (B.3)

The imaginary time interval [0, β] is discretized into L time slices for the numerical cal-

culation,

τl = lΔτ (l = 1, ...., L),

Δτ = β/L. (B.4)

With the Trotter approximation, the partition function becomes

Z = Tr
L∏
l=1

e−Δτ(Ĥ0+Ĥ1) ∼= Tr
L∏
l=1

e−ΔτĤ0e−ΔτĤ1 +O(Δτ 2). (B.5)

This is the only approximation in the determinantal QMC. Typically, one should take

Δτ ≤ √
0.25/U and therefore L ≤ β

√
4U . In Eq.(B.5), Ĥ0 and Ĥ1 represent the non-

interacting part and the interacting part of the Anderson Hamiltonian, respectively and

they are

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U

2
(nν↑ + nν↓) +

∑
ν,ν′
ν>ν′

∑
σ

[
U ′

2
(nν,σ + nν′−σ) +

U ′ − J

2
(nν,σ + nν′σ)

]
(B.6)
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and

H1 =
∑
ν

[
Unν↑nν↓ − U

2
(nν↑ + nν↓)

]
+
∑
ν,ν′
ν>ν′

∑
σ

[
U ′nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ)

]

+
∑
ν,ν′
ν>ν′

∑
σ

[
(U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ)

]
.

(B.7)

The second important step of the algorithm is the Hubbard-Stratonovich transformation.

This algorithm uses the Hubbard-Stratonovich (HS) transformation to convert the inter-

acting electron system to a non-interacting one.

The discrete Hubbard-Stratonovich transformation is defined as

e−ΔτH1 = exp
{
−Δτ

( ∑
ν

(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

+
∑
ν,ν′
ν �=ν′

∑
σ

1

2
(U ′ nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ) )

+
∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ) )

)}
, (B.8)

and by the Hubbard-Stratonovich transformation, we obtain

exp
{
−ΔτH1(l)

}
=

1

245

∑
{Sνν′,l,σ=±1}

exp
{ 5∑

ν=1

∑
σ

σ λ1S
U
ν,l nνσ +

+
5∑

ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓)

+
5∑

ν=1

5∑
ν′=1
ν′<ν

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ)

}
. (B.9)
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with

cosh(λ1) = e
1
2
ΔτU (B.10)

cosh(λ2) = e
1
2
ΔτU ′

(B.11)

cosh(λ3) = e
1
2
Δτ(U ′−J) (B.12)

With the HS field, electrons move in a fluctuating field which is defined by random set

of spin configurations. These configurations are accepted or rejected by the Monte Carlo

(MC) algorithms such as the heat-bath algorithm or the Metropolis algorithm. In this way,

the finite temperature Green’s functions are calculated.

The multi-orbital Green’s function is defined as

Gσ
νν′(τ) = −〈 Tτdνσ(τ)d

†
ν′σ(0) 〉

= − 1

Z
Tr Tτdνσ(τ)d

†
ν′σ(0) e

−βĤ . (B.13)

In the Hirsch-Fye quantum Monte Carlo algorithm, the Green’s function is defined by the

positive sign and it equals

Gσ
νν′(τ) = +〈 Tτdνσ(τ)d

†
ν′σ(0) 〉

= +
1

Z
Tr Tτdνσ(τ)d

†
ν′σ(0) e

−βĤ . (B.14)

The key steps of HFQMC are:

• Trotter approximation.

• Hubbard-Stratonovich transformation.

• Calculation of the Green’s functions.

• Monte Carlo moves for the measurements.

And the flow chart for HFQMC algorithm:

• Calculate the Green’s functions G0
νν′(l1, l2) for Vhyb �= 0 and HS field = 0.

• Choose starting HS field configurations by the random number generator.
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• Calculate the Green’s functions Gνν′(l1, l2) for Vhyb �= 0 and HS fields �= 0.

• Choose imaginary time slice and one of the impurity orbitals randomly to spin flip

and accept or reject the spin flip with respect to the heat-bath MC algorithm.

• Calculate the new Green’s functions by using the Dyson’s equation.

All details of the algorithm will be explained in the next sections.

B.2. Multi-orbital Anderson Hamiltonian with the inter-orbital

Coulomb interaction

The multi-orbital Anderson Hamiltonian with the inter-orbital Coulomb interac-

tion is

H =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U nν↑nν↓ +
∑
ν,ν′
ν>ν′

∑
σ

[U ′nν,σnν′−σ + (U ′ − J)nν,σnν′σ ] . (B.15)

U : Coulomb interaction between two electrons in the same d orbital with anti-parallel

spins,

U ′ : Coulomb interaction between two electrons in the different d orbitals with anti-

parallel spins,

(U ′ − J) : Coulomb interaction between two electrons in the different d orbitals with

paralel spins. The Hamiltonian is divided into two parts which are the non-interacting

part (H0) and the interacting part (H1),

H ≡ H0 +H1 (B.16)
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Figure B.1. The left figure indicates intra-orbital Coulomb interaction between d elec-

trons. The mid and the right figures show inter-orbital Coulomb interaction

between d electrons.

where

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U

2
(nν↑ + nν↓) +

∑
ν,ν′
ν>ν′

∑
σ

[
U ′

2
(nν,σ + nν′−σ) +

U ′ − J

2
(nν,σ + nν′σ)

]

(B.17)

and

H1 =
∑
ν

[
Unν↑nν↓ − U

2
(nν↑ + nν↓)

]
+
∑
ν,ν′
ν>ν′

∑
σ

[
U ′nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ)

]

+
∑
ν,ν′
ν>ν′

∑
σ

[
(U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ)

]
.

(B.18)

The interaction part H1 of the Hamiltonian is treated by using the Hubbard-Stratonovich

transformation in Section B.4.
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B.3. Derivation of G0

In this chapter, G0
νν′ impurity Green’s function will be calculated. For this Green’s

function, the hybridization terms between the impurity and host orbitals (Vhyb) are not zero

and the Hubbard-Stratonovich fields (Sνν′,l) are zero.

The outline of this chapter is the following :

• Firstly, G0
νν′ is derived by using G00

νν′ Green’s function. G00
νν′ is Vhyb = 0 and

Sνν′,l = 0 Green’s function.

• After that, G00
νν′ Green’s function will be derived from H00 and T. H00 Hamiltonian

does not include the hybridization term and the interaction terms. T includes U , U ′

and U ′ − J terms.

• Then, the derivation of T will be explained. T includes TU , TU ′
and TU ′−J terms

which are shown in the following sections.

B.3.1. Derivation of G0 from G00

G0
νν′(iωn) Green’s function is calculated from H0 which is

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

( (εν − μ) + T )nν,σ

where

T =
U

2
+ 2U ′ + 2(U ′ − J). (B.19)

Now, let’s derive G0
νν′(iωn) Green’s function by using the Feynman diagrams as shown at

top of the page. From this diagram, we obtain that

G0
νν′(iωn) = G00

νν′(iωn) +
∑
ν′′

∑
ν′′′

G00
νν′′(iωn)

∑
m

∑
m′

Vν′′ m G00
mm′(iωn)Vm′ ν′′′ G

0
ν′′′ ν′(iωn)

(B.20)
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In the Feynman diagram, the double lines represent G0
νν′(iωn), the single lines indicate

G00
ν ν′(iωn) and G00

mm′(iωn) and the crosses represent the hybridization term between the

host and impurity orbitals. Here, G00
νν′(iωn) and G00

mm′(iωn) Green’s functions show

Vhyb = 0 and Sνν′,l = 0 impurity and host Green’s functions, respectively. They are

calculated from H00 which is

H00 =
∑
m,σ

(εm − μ) c†mσ cmσ +
∑
ν, σ

(εν − μ)nν,σ +
∑
ν,σ

T nν,σ

(B.21)

where

T =
U

2
+ 2U ′ + 2(U ′ − J). (B.22)

The G00
νν′(iωn) and G00

mm′(iωn) Green’s functions are

G00
νν′(iωn) =

δνν′

iωn − (εν − μ+ T )
(B.23)

and

G00
mm′(iωn) =

δmm′

iωn − (εm − μ)
. (B.24)

If these Green’s functions are placed in Eq.(B.20), we can obtain

G0
νν′(iωn) = G00

νν′(iωn) (B.25)

+
∑
ν′′

∑
ν′′′

δνν′′

iωn − (εν − μ+ T )

∑
m

∑
m′

Vν′′ m
δmm′

iωn − (εm − μ)
Vm′ ν′′′ G

0
ν′′′ ν′(iωn).
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Then,

G0
νν′(iωn) = G00

νν′(iωn) (B.26)

+
∑
ν′′′

1

iωn − (εν − μ+ T )

∑
m

Vν m
1

iωn − (εm − μ)
Vmν′′′ G

0
ν′′′ ν′(iωn).

Here, the self energy is defined by

Fνν′′′(iωn) ≡
∑
m

Vν m
1

iωn − (εm − μ)
Vmν′′′ (B.27)

so

G0
νν′(iωn) = G00

νν′(iωn) +
1

iωn − (εν − μ+ T )

∑
ν′′′

Fνν′′′(iωn)G
0
ν′′′ ν′(iωn). (B.28)

When the second term at the right side goes to left side, we can obtain

G0
νν′(iωn)− 1

iωn − (εν − μ+ T )

∑
ν′′′

Fνν′′′(iωn)G
0
ν′′′ ν′(iωn) = G00

νν′(iωn) (B.29)

and

∑
ν′′′

(
δνν′′′ − 1

iωn − (εν − μ+ T )
Fνν′′′(iωn)

)
G0

ν′′′ ν′(iωn) = G00
νν′(iωn). (B.30)

Here, let’s define

Tνν′′′(iωn) ≡ δνν′′′ − 1

iωn − (εν − μ+ T )
Fνν′′′(iωn). (B.31)

Then,

∑
ν′′′

( T̃ (iωn) )νν′′′ ( G̃
0(iωn) )ν′′′ν′ = ( G̃00(iωn) )νν′ . (B.32)
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The Green’s function G0
νν′(iωn) is calculated from

( G̃0(iωn) )νν′ =
∑
ν′′′

( T̃−1(iωn) )νν′′′ ( G̃
00(iωn) )ν′′′ν′ . (B.33)

If G00
ν′′′ν′(iωn) is put in above equation, we can obtain

( G̃0(iωn) )νν′ =
∑
ν′′′

( T̃−1(iωn) )νν′′′
δν′′′ν′

iωn − (εν′′′ − μ+ T )
. (B.34)

⇒ ( G̃0(iωn) )νν′ =
( T̃−1(iωn) )νν′

iωn − (εν′ − μ+ T )
(B.35)

B.3.2. Derivation of G00
νν′(iωn) from H00 and T

H00 does not include Vhyb term and it is

H00 =
∑
m,σ

(εm − μ) c†mσ cmσ +
∑
ν, σ

(εν − μ)nν,σ +
∑
ν,σ

T nν,σ (B.36)

where

T =
U

2
+ 2U ′ + 2(U ′ − J). (B.37)

From this Hamiltonian, G00
νν′(iωn) Green’s function is written as

G00
νν′(iωn) =

δνν′

iωn − (εν − μ+ T )
. (B.38)
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This is the impurity Green’s function for Vhyb = 0 and Sνν′,l = 0. The host Green’s

function for Vhyb = 0 and Slνν′ = 0 is

G00
mm′(iωn) =

δmm′

iωn − (εm − μ)
. (B.39)

B.3.3. Derivation of T

We know that H0 is

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U

2
(nν↑ + nν↓) +

∑
ν,ν′
ν>ν′

∑
σ

[
U ′

2
(nν,σ + nν′−σ) +

U ′ − J

2
(nν,σ + nν′σ)

]
. (B.40)

I want to write a term which is
∑

ν,σ T nν,σ and T includes U , U ′ and U ′ − J terms as

∑
ν,σ

T nν,σ =
∑
ν,σ

(TU + TU ′
+ TU ′−J )nν,σ. (B.41)

Now, let’s calculate TU ,TU ′
and TU ′−J .

B.3.3.1. Calculation of TU

We have

∑
ν,σ

=
U

2
nν,σ (B.42)
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in H0 so

TU =
U

2
. (B.43)

B.3.3.2. Calculation of TU ′

As we write in the Eq.(B.15),the multi-orbital Anderson Hamiltonian is

H =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U nν↑nν↓ +
∑
ν,ν′
ν>ν′

∑
σ

[U ′nν,σnν′−σ + (U ′ − J)nν,σnν′σ ] . (B.44)

If we write the condition ν �= ν ′ instead of ν > ν ′ in the Hamiltonian, we will have such

terms which are shown in Fig 3.1 . Due to [nν,σ, nν′,−σ] = 0, n1↑ n3↓ = n3↓ n1↑, we can

write

U ′ ∑
σ

∑
ν,ν′
ν>ν′

nν,σ nν′,−σ −→ U ′

2

∑
σ

∑
ν,ν′
ν �=ν′

nν,σ nν′,−σ. (B.45)
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This term can be written as

U ′

2

∑
σ

∑
ν,ν′
ν �=ν′

nν,σ nν′,−σ =
U ′

2

( ∑
σ

∑
ν,ν′
ν �=ν′

[nν,σ nν′,−σ − 1

2
(nν,σ + nν′,−σ )]

+
∑
σ

∑
ν,ν′
ν �=ν′

1

2
(nν,σ + nν′,−σ )

)
. (B.46)

The first part at the right side goes in the interaction Hamiltonian H1 and the second part

at the right side goes in the H0. If I rewrite H0, it can be as the following

H0 −→ H̃0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U

2
(nν↑ + nν↓) +

1

2

∑
ν,ν′
ν �=ν′

∑
σ

U ′

2
(nν,σ + nν′−σ)

+
∑
ν,ν′
ν>ν′

U ′ − J

2
(nν,σ + nν′σ) . (B.47)

Here,

U ′

4

∑
ν,ν′
ν �=ν′

∑
σ

(nν,σ + nν′−σ) =
U ′

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

[(∑
σ

nν,σ

)
+
(∑

σ

nν′,−σ

) ]

=
U ′

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

generates
4 terms

(∑
σ

nν,σ

)
+

U ′

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

(∑
σ

nν′,−σ

)
.

(B.48)

The second term can be written as

U ′

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

(∑
σ

nν′,−σ

)
=

U ′

4

5∑
ν′=1

5∑
ν=1
ν �=ν′

generates
4 terms

(∑
σ

nν′,−σ

)
. (B.49)
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Then,

U ′

4

5∑
ν=1

4
(∑

σ

nν,σ

)
+

U ′

4

5∑
ν′=1

4
(∑

σ

nν′,−σ

)
= 2U ′

5∑
ν=1

∑
σ

nν,σ. (B.50)

From this equation, we can write

∑
σ

5∑
ν=1

TU ′
nν,σ =

∑
σ

5∑
ν=1

2U ′ nν,σ. (B.51)

⇒ TU ′
= 2U ′. (B.52)

B.3.3.3. Calculation of TU ′−J

As we know from Eq.(B.15), we have U ′ − J term in multi-orbital Anderson

Hamiltonian as

∑
ν,ν′
ν>ν′

∑
σ

(U ′ − J)nν,σnν′,σ. (B.53)

If we write the condition ν �= ν ′ instead of ν > ν ′, we will have such terms which are

shown in Fig 3.2 . Due to [nν,σ, nν′,σ] = 0, n1↑ n3,↑ = n3,↑ n1↑, we can write

(U ′ − J)
∑
σ

∑
ν,ν′
ν>ν′

nν,σ nν′,σ −→ U ′ − J

2

∑
σ

∑
ν,ν′
ν �=ν′

nν,σ nν′,σ. (B.54)
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This term can be written as

U ′ − J

2

∑
σ

∑
ν,ν′
ν �=ν′

nν,σ nν′,σ =

U ′ − J

2

( ∑
σ

∑
ν,ν′
ν �=ν′

[nν,σ nν′,σ − 1

2
(nν,σ + nν′,σ )] +

∑
σ

∑
ν,ν′
ν �=ν′

1

2
(nν,σ + nν′,σ )

)
.

(B.55)

The first part at the right side goes in the interaction Hamiltonian H1 and the second part

at the right side goes in the H0.

U ′ − J

2

∑
ν,ν′
ν �=ν′

∑
σ

1

2
(nν,σ + nν′σ) =

U ′ − J

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

[(∑
σ

nν,σ

)
+
(∑

σ

nν′,σ

) ]

(B.56)

Then,

U ′ − J

2

∑
ν,ν′
ν �=ν′

∑
σ

1

2
(nν,σ + nν′σ) =

U ′ − J

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

generates
4 terms

(∑
σ

nν,σ

)
+

U ′ − J

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

(∑
σ

nν′,σ

)
. (B.57)
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The second term can be written as

U ′ − J

4

5∑
ν=1

5∑
ν′=1
ν′ �=ν

(∑
σ

nν′,σ

)
=

U ′ − J

4

5∑
ν′=1

5∑
ν=1
ν �=ν′

generates
4 terms

(∑
σ

nν′,σ

)
. (B.58)

Then,

U ′ − J

4

5∑
ν=1

4
(∑

σ

nν,σ

)
+

U ′ − J

4

5∑
ν′=1

4
(∑

σ

nν′,σ

)
= 2 (U ′ − J)

5∑
ν=1

∑
σ

nν,σ.

(B.59)

From this equation, we can write

∑
σ

5∑
ν=1

TU ′−J nν,σ =
∑
σ

5∑
ν=1

2 (U ′ − J)nν,σ. (B.60)

⇒ TU ′−J = 2 (U ′ − J). (B.61)

Now, let’s write H0 with T term:

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

( (εν − μ) + T )nν,σ.

(B.62)

where

T = TU + TU ′
+ TU ′−J

=
U

2
+ 2U ′ + 2(U ′ − J).

(B.63)
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B.4. Hubbard-Stratonovich transformation

In this section, the Hubbard-Stratonovich transformation will be introduced. When

U ,U ′ and U ′−J terms are taken into account in H , this problem is very difficult. In order

to treat it, we use the Trotter decomposition and the Hubbard-Stratonovich transforma-

tion. They introduce the freedom on the imaginary time (Trotter break-up) and convert

the interaction part of H into a form where electrons become decoupled from the each

other (Hubbard-Stratonovich transformation).

The outline of this section is the following :

• Firstly, the Hubbard-Stratonovich transformation for U ,U ′ and U ′−J terms will be

introduced.

• After that, the Hubbard-Stratonovich terms will be rewritten by using WU ,WU ′
and

WU ′−J terms.

• The calculation of WU ,WU ′
and WU ′−J terms will be done.

The multi-orbital Anderson Hamiltonian was written in Eq B.15 as

H =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

(εν − μ)nν,σ

+
∑
ν

U nν↑nν↓ +
∑
ν,ν′
ν>ν′

∑
σ

[U ′nν,σnν′−σ + (U ′ − J)nν,σnν′σ ] . (B.64)

After the condition ν > ν ′ was changed to ν �= ν ′ for U ′ term in H , H0 and H1

parts were written as

H0 =
∑
m,σ

(εm − μ) c†mσcmσ +
∑
m,ν

∑
σ

Vmν (c
†
mσdνσ + h.c.) +

∑
ν,σ

( (εν − μ) + T )nν,σ

(B.65)
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where

T =
U

2
+ 2U ′ + 2(U ′ − J) (B.66)

and

H1 =
∑
ν

[
Unν↑nν↓ − U

2
(nν↑ + nν↓)

]
+

1

2

∑
ν,ν′
ν �=ν′

∑
σ

[
U ′ nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ)

]

+
∑
ν,ν′
ν>ν′

∑
σ

[
(U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ)

]
.

(B.67)

The partition function Z is

Z = Tr e−β Ĥ = Tr
L∏
l=1

e−Δτ (H0+H1) ∼= Tr
L∏
l=1

( e−ΔτH0 e−ΔτH1), (B.68)

Trotter break-up

with β = LΔτ . Now, let’s look at e−ΔτH1 term:

e−ΔτH1 = exp
{

−Δτ
( ∑

ν

(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

+
1

2

∑
ν,ν′
ν �=ν′

∑
σ

(U ′ nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ) )

+
∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ) )

) }
.

(B.69)
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Because of [nν,σ, nν′,−σ] = 0, we can write e−ΔτH1 as

e−ΔτH1 = exp
{
−Δτ

∑
ν

(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

}
× exp

{
−Δτ

∑
ν,ν′
ν �=ν′

∑
σ

1

2
(U ′ nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ) )

}

× exp
{
−Δτ

∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ) )

}
. (B.70)

Now, let’s write HU
1 (l), H

U ′
1 (l) and HU ′−J

1 (l) for fixed l:

HU
1 (l) =

∑
ν

(Unν↑nν↓ − U

2
(nν↑ + nν↓) ), (B.71)

HU ′
1 (l) =

1

2

∑
ν,ν′
ν �=ν′

∑
σ

(U ′ nν,σnν′−σ − U ′

2
(nν,σ + nν′−σ) ), (B.72)

HU ′−J
1 (l) =

∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′,σ − U ′ − J

2
(nν,σ + nν′,σ) ). (B.73)

Then

e−ΔτH1(l) = e−ΔτHU
1 (l) e−ΔτHU′

1 (l) e−ΔτHU′−J
1 (l). (B.74)

Let’s do the Hubbard-Stratonovich transformations of the above exponential terms.
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B.4.1. Hubbard-Stratonovich transformation for U term

We know that

exp
{
−ΔτHU

1 (l)
}
= exp

{
−Δτ

5∑
ν=1

(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

}
. (B.75)

When the ν summation is written explicitly, we can obtain

exp
{
−ΔτHU

1 (l)
}
= exp

{
−Δτ

[
(Un1↑n1↓ − U

2
(n1↑ + n1↓) ) + (Un2↑n2↓ − U

2
(n2↑ + n2↓) ) +

(Un3↑n3↓ − U

2
(n3↑ + n3↓) ) + (Un4↑n4↓ − U

2
(n4↑ + n4↓) ) +

(Un5↑n5↓ − U

2
(n5↑ + n5↓) )

]}
.

Because of [nν,σ, nν,σ′ ] = 0 which is proved in Appendix, we can write this term as

exp
{
−ΔτHU

1 (l)
}
= exp

{
−Δτ(Un1↑n1↓ − U

2
(n1↑ + n1↓) )

}
× exp

{
−Δτ(Un2↑n2↓ − U

2
(n2↑ + n2↓) )

}
× exp

{
−Δτ(Un3↑n3↓ − U

2
(n3↑ + n3↓) )

}
× exp

{
−Δτ(Un4↑n4↓ − U

2
(n4↑ + n4↓) )

}
× exp

{
−Δτ(Un5↑n5↓ − U

2
(n5↑ + n5↓) )

}
.

(B.76)

If the Eq (B.76) is written by ν product, the new form of this equation is

⇒ exp
{
−ΔτHU

1 (l)
}
=

5∏
ν=1

exp
{
−Δτ(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

}
. (B.77)

With the Hubbard-Stratonovich transformation :

exp
{
−ΔτHU

1 (l)
}
=

5∏
ν=1

generates
5 terms

{ 1

2

∑
{SU

νl=±1}
exp

[
λ1S

U
νl(nν↑ − nν↓)

]}
. (B.78)

144



⇒ exp
{
−ΔτHU

1 (l)
}
=

1

25

5∏
ν=1

{ ∑
{SU

νl=±1}
exp

[
λ1S

U
νl(nν↑ − nν↓)

]}
. (B.79)

For one ν term, we have two SU
νl values which are 1 and −1 so we have

SU
1l = 1 SU

1l = −1 SU
2l = 1 SU

2l = −1 SU
5l = 1 SU

5l = −1

exp
{
−ΔτHU

1 (l)
}
=

1

25

[
{exp( ) + exp( )} {exp( ) + exp( )} ..... {exp( ) + exp( )}

]
.

ν = 1 ν = 2 ν = 5

Here, we have 25 terms.

Because of [nν,σ, nν,σ′ ] = 0 , we can write this equation as

exp
{
−ΔτHU

1 (l)
}
=

1

25

[ ∑
{SU

ν,l=±1}
exp

{ 5∑
ν=1

λ1S
U
νl(nν↑ − nν↓)

}]
. (B.80)

B.4.2. Hubbard-Stratonovich transformation for U ′ term

In Section B.3.3.2, we showed the new form of U ′ term as

U ′ ∑
σ

∑
ν,ν′
ν>ν′

nν,σ nν′,−σ −→ U ′

2

∑
σ

∑
ν,ν′
ν �=ν′

nν,σ nν′,−σ. (B.81)

Now, we try to write it as

U ′ ∑
ν,ν′
ν �=ν′

nν↑ nν′↓. (B.82)
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Note that, we do not have σ summation. We should do this, because we want to ob-

tain the Hubbard-Stratonovich transformation of U ′ term like the Hubbard-Stratonovich

transformation for U term.

U ′ ∑
σ

∑
ν,ν′
ν>ν′

nν,σ nν′,−σ =
5∑

ν=1

5∑
ν′=1
ν′<ν

U ′ nν↑nν′↓ +
5∑

ν=1

5∑
ν′=1
ν′<ν

U ′ nν↓nν′↑. (B.83)

Because of [nν,σ, nν′,σ′ ] = 0 which is proved in Appendix, we can write the above equa-

tion as

U ′ ∑
σ

∑
ν,ν′
ν>ν′

nν,σ nν′,−σ =
5∑

ν=1

5∑
ν′=1
ν′<ν

U ′ nν↑nν′↓ +
5∑

ν=1

5∑
ν′=1
ν′<ν

U ′ nν′↑nν↓ (B.84)

by switching ν and ν′

⇓

=
5∑

ν=1

5∑
ν′=1
ν′<ν

U ′ nν↑nν′↓ +
5∑

ν=1

5∑
ν′=1
ν′>ν

U ′ nν↑nν′↓. (B.85)

Then,

∑
σ

∑
ν,ν′
ν>ν′

U ′ nν,σ nν′,−σ =
5∑

ν=1

5∑
ν′=1
ν′ �=ν

U ′ nν↑ nν′↓. (B.86)

This term can be written as

5∑
ν=1

5∑
ν′=1
ν′ �=ν

U ′ nν↑ nν′↓ =
( 5∑

ν=1

5∑
ν′=1
ν′ �=ν

[U ′ nν↑ nν′↓ − U ′

2
(nν↑ + nν′↓ )] +

5∑
ν=1

5∑
ν′=1
ν′ �=ν

U ′

2
(nν↑ + nν′↓ )

)
.

The first term at the right side goes to Hubbard-Stratonovich transformation and the sec-
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ond term at the right side goes in H0. Now, we have

exp
{
−ΔτHU ′

1 (l)
}
= exp

{
−Δτ

5∑
ν=1

5∑
ν′=1
ν′ �=ν

(U ′nν↑nν′↓ − U ′

2
(nν↑ + nν′↓) )

}
. (B.87)

Because of [nν,σ, nν′,σ′ ] = 0, we can write this term as

exp
{
−ΔτHU ′

1 (l)
}
=

5∏
ν,ν′=1
ν′ �=ν

exp
{
−Δτ [U ′nν↑nν′↓ − U ′

2
(nν↑ + nν′↓) ]

}
, (B.88)

and with the Hubbard-Stratonovich transformation, we can obtain

exp
{
−ΔτHU ′

1 (l)
}
=

5∏
ν,ν′=1
ν′ �=ν

generates
20 terms

{ 1

2

∑
{SU′

νν′,l}=±1

exp[λ2S
U ′
νν′,l(nν↑ − nν′↓)]

}
. (B.89)

⇒ exp
{
−ΔτHU ′

1 (l)
}
=

1

220

5∏
ν,ν′=1
ν′ �=ν

{ ∑
{SU′

νν′,l=±1}
exp[λ2S

U ′
νν′,l(nν↑ − nν′↓)]

}
. (B.90)

Here, we have 220 terms.

Because of [nν,σ, nν′,σ′ ] = 0, we can change the product form to the summation

form in the exponential and so we have

exp
{
−ΔτHU ′

1 (l)
}
=

1

220

[ ∑
{SU′

νν′,l=±1}
exp

{ 5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓)

}]
.

(B.91)
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B.4.3. Hubbard-Stratonovich transformation for U ′ − J term

We have

exp
{
−ΔτHU ′−J

1 (l)
}
= exp

{
−Δτ

∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′,σ − U ′ − J

2
(nν,σ + nν′,σ) )

}
.

(B.92)

Because of [nν,σ, nν′,σ] = 0 which is proved in Appendix, we can write Eq.(B.92) in

product from as

exp
{
−ΔτHU ′−J

1 (l)
}
=

5∏
ν,ν′=1
ν>ν′

∏
σ

exp
{
−Δτ [ (U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ) ]

}
.

(B.93)

With the Hubbard-Stratonovich transformation, we obtain

exp
{
−ΔτHU ′−J

1 (l)
}
=

5∏
ν,ν′=1
ν>ν′

∏
σ

{ 1

2

∑
{SU′−J

νν′,l,σ=±1}
exp[λ3 S

U ′−J
νν′,l,σ (nν,σ − nν′,σ)]

}
.

(B.94)

This equation can be rewritten by multipling ↑ and ↓ spins as

exp
{
−ΔτHU ′−J

1 (l)
}
=

5∏
ν,ν′=1
ν>ν′

{ 1

2

∑
{SU′−J

νν′,l,↑=±1}
exp[λ3 S

U ′−J
νν′,l,↑ (nν↑ − nν′↑)]

}

×
{ 1

2

∑
{SU′−J

νν′,l,↓=±1}
exp[λ3 S

U ′−J
νν′,l,↓ (nν↓ − nν′↓)]

}
. (B.95)
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Because of [nν,σ, nν′,σ] = 0, we can write

exp
{
−ΔτHU ′−J

1 (l)
}
=

5∏
ν,ν′=1
ν>ν′

1

22

{ ∑
{SU′−J

νν′,l,↑=±1

SU′−J
νν′,l,↓=±1}

exp[λ3 S
U ′−J
νν′,l,↑ (nν↑ − nν′↑) + λ3 S

U ′−J
νν′,l,↓ (nν↓ − nν′↓)]

}
. (B.96)

exp
{
−ΔτHU ′−J

1 (l)
}
=

5∏
ν,ν′=1
ν>ν′

1

22

{ ∑
{SU′−J

νν′,l,σ=±1}
exp

[
λ3

∑
σ

SU ′−J
νν′,l,σ (nν,σ − nν′,σ)

]}
.

(B.97)

We have 210 terms, due to
∏5

ν,ν′=1
ν>ν′

. Because of [nν,σ, nν′,σ] = 0, we can write

exp
{
−ΔτHU ′−J

1 (l)
}
=

1

220

{ ∑
{SU′−J

νν′,l,σ=±1}
exp

[∑
ν,ν′
ν>ν′

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ)

]}
.

(B.98)

B.5. Writing the Hubbard-Stratonovich transformation terms by

using W terms

We wrote e−ΔτH1(l) term as

e−ΔτH1(l) = e−ΔτHU
1 (l) e−ΔτHU′

1 (l) e−ΔτHU′−J
1 (l). (B.99)
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With the Hubbard-Stratonovich transformation of e−ΔτHU
1 (l), e−ΔτHU′

1 (l) and e−ΔτHU′−J
1 (l)

and [nν,σ, nν′,σ′ ] = 0, we can write this term as

exp
{
−ΔτH1(l)

}
=

1

245

∑
{Sνν′,l,σ=±1}

exp
{ 5∑

ν=1

∑
σ

σ λ1S
U
ν,l nν,σ +

5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓)

+
5∑

ν=1

5∑
ν′=1
ν′<ν

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ)

}
.

Here,

Sνν′,l,σ = SU
ν,l for U term (B.100)

Sνν′,l,σ = SU ′
νν′,l for U ′ term (B.101)

Sνν′,l,σ = SU ′−J
νν′,l,σ for U ′ − J term (B.102)

Now, we want to write e−ΔτH1(l) as

exp
{
−ΔτH1(l)

}
=

1

245

∑
{Sνν′,l,σ=±1}

exp
{∑

ν,σ

WU
νσ(l)nν,σ +

5∑
ν=1

[
WU ′

ν↑ (l)nν↑ +WU ′
ν↓ (l)nν↓

]

+
∑
ν,σ

WU ′−J
νσ (l)nν,σ

}
.

B.5.1. Calculation of WU
νσ(l)

We know from Section B.4.1 that

exp
{
−ΔτHU

1 (l)
}
=

1

25

( ∑
{SU

ν,l=±1}
exp

{∑
ν,σ

σ λ1S
U
ν,l nν,σ

})
. (B.103)

We try to obtain the following equation:
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exp
{
−ΔτHU

1 (l)
}
=

1

25

( ∑
{SU

ν,l=±1}
exp

{∑
ν,σ

WU
νσ(l)nν,σ

})
. (B.104)

⇒ WU
νσ(l) = σ λ1S

U
ν,l. (B.105)

Now, let’s visualize SU
ν,l:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

SU
1,l,σ 0

SU
2,l,σ

SU
3,l,σ

0 SU
4,l,σ

SU
5,l,σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

B.5.2. Calculation of WU ′
νσ (l)

After the Hubbard-Stratonovich transformation in Section B.4.2, we obtained that

exp
{
−ΔτHU ′

1 (l)
}
=

1

220

[ ∑
{SU′

νν′,l=±1}
exp

{ 5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓)

}]
.

(B.106)
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We try to obtain the following equation:

exp
{
−ΔτHU ′

1 (l)
}
=

1

220

∑
{SU′

νν′,l=±1}
exp

{ 5∑
ν=1

[
WU ′

ν↑ (l)nν↑ +WU ′
ν↓ (l)nν↓

]}
.

(B.107)

To obtain Eq.(B.107), firstly, let’s write

5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓) (B.108)

as

5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓) = λ2

5∑
ν=1

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l nν↑ − λ2

5∑
ν=1

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l nν′↓

watch for the switch of ν and ν′

⇓

= λ2

5∑
ν=1

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l nν↑ − λ2

5∑
ν′=1

5∑
ν=1
ν �=ν′

SU ′
ν′ν,l nν↓. (B.109)

we change the place of summation of ν and ν′in the second term
�

Then

5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓) = λ2

5∑
ν=1

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l nν↑ − λ2

5∑
ν=1

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l nν↓
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=
5∑

ν=1

(
λ2

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l nν↑ − λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l nν↓

)

=
5∑

ν=1

(
WU ′

ν↑ (l)nν↑ +WU ′
ν↓ (l)nν↓

)
, (B.110)

where

WU ′
ν↑ (l) = λ2

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l (B.111)

and

WU ′
ν↓ (l) = −λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l. (B.112)

Now, let’s visualize SU ′
νν′,l and SU ′

ν′ν,l terms : Let’s say ν = 3, then

WU ′
3,↑ = λ2 (S

U ′
31,l + SU ′

32,l + SU ′
34,l + SU ′

35,l). (B.113)

WU ′
3,↓ = −λ2 (S

U ′
13,l + SU ′

23,l + SU ′
43,l + SU ′

53,l). (B.114)
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B.5.3. Calculation of WU ′−J
νσ (l)

After the Hubbard-Stratonovich transformation in Section B.4.3, we obtained that

exp
{
−ΔτHU ′−J

1 (l)
}
=

1

220

{ ∑
{SU′−J

νν′,l,σ=±1}
exp

[∑
ν,ν′
ν>ν′

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ)

]}
.

(B.115)

We try to write this equation as the following:

exp
{
−ΔτHU ′−J

1 (l)
}
=

1

220

∑
{SU′−J

νν′,l,σ=±1}
exp

{ 5∑
ν=1

∑
σ

WU ′−J
νσ (l)nν,σ

}
. (B.116)

The term

∑
ν,ν′
ν>ν′

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ) (B.117)

can be written as (here, note that (νν ′) = (11) is not included)

5∑
ν=2

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ) =

5∑
ν=2

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ nν,σ −

5∑
ν=2

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ nν′,σ

watch for the switch of ν and ν′

⇓

=
5∑

ν=2

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ nν,σ −

5∑
ν′=2

ν′−1∑
ν=1

∑
σ

λ3 S
U ′−J
ν′ν,l,σ nν,σ.
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The first term in Eq.(B.118) can be rewritten as

5∑
ν=2

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ nν,σ →

5∑
ν=1

ν−1∑
ν′=1

∑
σ

λ3 S
U ′−J
νν′,l,σ nν,σ. (B.118)

The second term in Eq.(B.118) can be written as

−
5∑

ν′=2

ν′−1∑
ν=1

∑
σ

λ3 S
U ′−J
ν′ν,l,σ nν,σ = −

4∑
ν=1

5∑
ν′=ν+1

∑
σ

λ3 S
U ′−J
ν′ν,l,σ nν,σ (B.119)

and

4∑
ν=1

5∑
ν′=ν+1

→
5∑

ν=1

5∑
ν′=ν+1

. (B.120)

⇒ −
5∑

ν′=2

ν′−1∑
ν=1

∑
σ

λ3 S
U ′−J
ν′ν,l,σ nν,σ = −

5∑
ν=1

5∑
ν′=ν+1

∑
σ

λ3 S
U ′−J
ν′ν,l,σ nν,σ. (B.121)

By using the first term and the second term, we obtain

5∑
ν=2

ν−1∑
ν′=1

∑
σ

(
λ3 S

U ′−J
νν′,l,σ (nν,σ − nν′,σ)

)
=

5∑
ν=1

∑
σ

{
λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ

}
nν,σ

=
5∑

ν=1

∑
σ

WU ′−J
νσ (l)nν,σ (B.122)

where

WU ′−J
νσ (l) = λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ. (B.123)

Now, let’s visualize SU ′−J
νν′,l,σ terms :
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What have we done in this section?

• Before the Hubbard-Stratonovich transformation, we wrote exp{−ΔτH1} as

e−ΔτH1 = exp
{
−Δτ

( ∑
ν

(Unν↑nν↓ − U

2
(nν↑ + nν↓) )

+
∑
ν,ν′
ν �=ν′

1

2
(U ′ nν↑nν′↓ − U ′

2
(nν↑ + nν′↓) )

+
∑
ν,ν′
ν>ν′

∑
σ

( (U ′ − J)nν,σnν′σ − U ′ − J

2
(nν,σ + nν′σ) )

)}
.

(B.124)

• By the Hubbard-Stratonovich transformation, we wrote this equation as

exp
{
−ΔτH1(l)

}
=

1

245

∑
{Sνν′,l,σ=±1}

exp
{ 5∑

ν=1

∑
σ

σ λ1S
U
ν,l nνσ +

5∑
ν=1

5∑
ν′=1
ν′ �=ν

λ2S
U ′
νν′,l(nν↑ − nν′↓)

+
5∑

ν=1

5∑
ν′=1
ν′<ν

∑
σ

λ3 S
U ′−J
νν′,l,σ (nν,σ − nν′,σ)

}
.

(B.125)

• Finally, we wrote exp
{
− ΔτH1(l)

}
by using W s for the three interaction terms
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and it is

exp
{
−ΔτH1(l)

}
=

1

245

∑
{Sνν′,l,σ=±1}

exp
{∑

ν,σ

WU
νσ(l)nν,σ +

5∑
ν=1

[
WU ′

ν↑ (l)nν,↑ +WU ′
ν↓ (l)nν,↓

]

+
∑
ν,σ

WU ′−J
νσ (l)nν,σ

}
.

(B.126)

where

WU
νσ(l) = σ λ1S

U
ν,l, (B.127)

WU ′
ν↑ (l) = λ2

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l

WU ′
ν↓ (l) = −λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l,

(B.128)

WU ′−J
νσ (l) = λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ, (B.129)

. and

Wνσ(l) = WU
νσ(l) +WU ′

νσ (l) +WU ′−J
νσ (l). (B.130)
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B.6. Initial calculation of Gσ Green’s function from G0 and W

In this chapter, Gσ
νν′ Green’s function is calculated. This Green’s function is the

non-zero hybridization and non-zero HS field function. G0
νν′ and W are used for calcula-

tion of Gσ
νν′ . Now, let’s describe the initial form of Gσ

νν′ .

Hirsch and Fye (HIRSCH, 1986) used the following relation between the initial

Green’s function G and the new Green’s function G′ (σ omitted):

G̃′ = G̃+ (G̃− Ĩ) (eV
′−V − Ĩ) G̃′. (B.131)

V is a diagonal matrix for the Hirsch-Fye quantum Monte Carlo algorithm which

includes only the intra-orbital Coulomb interaction. Its exponential is used in the algo-

rithm and because V is diagonal matrix, eV is calculated easily. When the inter-orbital

Coulomb interaction is added, V is not diagonal matrix and the calculation of the expo-

nential of V is very diffucult. Therefore, we define W (instead of V ) term which includes

WU , WU ′
and WU ′−J and it is a diagonal matrix like V . The calculation of Gσ

νν′ does not

change too much by way of defining W .

Let’s write Eq.(B.131) as

G̃′ = G̃+ (G̃− Ĩ) (eW
′−W − Ĩ) G̃′. (B.132)

When the second term at the right side goes to left side, we obtain

G̃′ − (G̃− Ĩ) (eW
′−W − I) G̃′ = G̃. (B.133)

⇒ G̃′ = [Ĩ − (G̃− Ĩ) (eW
′−W − Ĩ)]−1 G̃ (B.134)
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Because the potential acts only at the d sites, this equation can be rewritten as

G̃′
νν′ = [Ĩ − (G̃νν′ − Ĩ) (e

∑
ν W ′

ν−
∑

ν Wν − Ĩ)]−1 G̃νν′ . (B.135)

When we calculate the initial Green’s functions G̃νν′ , the terms in Eq.(B.135)

change as

G̃′
νν′ → G̃νν′ ,

G̃νν′ → G̃0
νν′ ,

eW
′−W → eW ,

(B.136)

and so the equation of the initial Green’s function becomes

G̃νν′ = [Ĩ − (G̃0
νν′ − Ĩ) (e

∑
ν Wν − Ĩ)]−1 G̃0

νν′ . (B.137)

In the Hirsch and Fye’s paper (HIRSCH, 1986), the sign of G0
νν′ was changed and

G0
νν′ was defined by + sign. Therefore, the Green’s function is defined as

Gσ
νν′(l, l

′) = +
〈
T dνσ(l) d

†
νσ(l

′)
〉
. (B.138)

with + sign in our program.
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B.7. Calculation of the ratio of the determinants Rσ for the single

spin flip

The new Green’s functions are recalculated for the spin configurations differing

from the previous one by a single-spin flip which is illustrated as Sνν′,l → S ′
νν′,l =

−Sνν′,l. These spin configurations are generated with a probability proportional to
detθ′σ
detθσ

where θ = G−1. The probability of acceptance for the new configuration is calculated by

the heat-bath Monte Carlo algorithm and it is defined by the following relation

P (s → s′) =

∏
σ detθ

′
σ({S ′

νν′,l})∏
σ detθ

′
σ({S ′

νν′,l}) +
∏

σ detθσ({Sνν′,l}) . (B.139)

In this chapter, we proof the ratio of the determinants for the single-spin flip equal to

detAσ. The outline of this section is the following

• Firstly, the general proof of Rσ = detθ′σ
detθσ

= detAσ will be shown.

• After that, Rσ will be calculated for U , U ′ and U ′ − J terms.

• We need (Wνσ(l))
′ − (Wνσ(l)) term for U , U ′ and U ′ − J to calculate the ratio

of the determinants. Therefore, these terms will be calculated. Here, (Wνσ(l))
′

is defined for the new spin configuration and (Wνσ(l)) is defined for the old spin

configuration.

• Finally, the calculations of Aσ will be done for U , U ′ and U ′ − J terms.

B.7.1. Proof of Rσ

For a change of the Hubbard-Stratonovich (HS) field Sνν′,l,

Sνν′,l → S ′
νν′,l = −Sνν′,l. (B.140)
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The ratio of the determinants for the new and old configuration is

Rσ =
detθ′σ({S ′

νν′,l})
detθσ({Sνν′,l}) = detAσ, (B.141)

where

Ãσ = Ĩ + (Ĩ − G̃σ)(eW
′
σ−Wσ − Ĩ). (B.142)

Now, let’s prove this equation and start from the following equation (by omitting σ)

G̃′ = G̃− G̃ (e−W ′ − e−W ) G̃′

where G̃ = eW G. (B.143)

• Multiply both sides with (G̃′)−1 on the write,

Ĩ = G̃ (G̃′)−1 − G̃ (e−W ′ − e−W ). (B.144)

⇒ G̃ (G̃′)−1 = Ĩ + G̃ (e−W ′ − e−W ). (B.145)

• Since G̃ = eW G = eW θ−1, where θ = G−1, we have

(eW θ−1)[eW
′
(θ′)−1]−1 = I + eW G (e−W ′ − e−W ). (B.146)

• Here, we multiply on the left with e−W and on the right with eW
′
, which yields
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θ−1 θ′ = e−W eW
′
+G (e−W ′ − e−W ) eW

′
(B.147)

= eW
′−W +G (I − eW

′−W ) (B.148)

= eW
′−W + (G− I) (I − eW

′−W ) + I(I − eW
′−W ). (B.149)

⇒ θ−1 θ′ = I + (I −G) (eW
′−W − I). (B.150)

• Taking the determinant of the both side, we obtain

detθ′

detθ
= det

{
I + (I −G) (eW

′−W − I)︸ ︷︷ ︸
A

}
. (B.151)

Then

Rσ =
detθ′σ
detθσ

= detAσ. (B.152)

B.7.1.1. Rσ for U term

We can write from the previous part that

RU
σ = detAU

σ , (B.153)
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where

ÃU
σ = Ĩ + (Ĩ − G̃σ) (eW

U
σ

′
−WU

σ − Ĩ). (B.154)

For U term, when the single-spin flip occurs, SU
ν,l → SU

ν,l

′
= −SU

ν,l, we have

(WU
νσ(l))

′ − (WU
νσ(l)) = −2λ1σS

U
ν,l. (B.155)

Now, let’s look at the form of ÃU
σ and calculate detAU

σ .

We know from Section B.7.3.1, AU
σ has the following form and here, the black

point indicates (Aσ)
U
νl,νl and the spin is changed at (ν, l). The means of the red solid

line is that this column has the non-zero elements. detAU
νσ can be found by using the

expansion of the minors.

|AU
σ | =

k∑
i=1

(−1)i+k aij (A
U
σ )ij. (B.156)

Here, only the first minor at the right side is not zero and the other expanded minors give
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zero. If the first determinant is expanded up to spin flip point, we have

⇒ detAU
σ = (AU

σ )νl,νl. (B.157)

and we know from Section B.7.3.1 that

(AU
σ )νl,νl ≡ 1 + (1−Gσ

νν(l, l)) (e
WU

ν,l,σ

′
−WU

ν,l,σ − 1), (B.158)

and

RU
σ =

detθ′σ
detθσ

= detAU
σ . (B.159)

Then

RU
σ = 1 + (1−Gσ

νν(l, l)) (e
WU

ν,l,σ

′
−WU

ν,l,σ − 1). (B.160)

B.7.1.2. Rσ for U ′ term

We can write the following relation from Section B.7.1 that

RU ′
σ = detAU ′

σ . (B.161)
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where

ÃU ′
↑ ≡ Ĩ + (Ĩ − G̃↑) (eW

U′
↑

′
−WU′

↑ − Ĩ), (B.162)

ÃU ′
↓ ≡ Ĩ + (Ĩ − G̃↓) (eW

U′
↓

′
−WU′

↓ − Ĩ). (B.163)

For U ′ term, when the single-spin flip occurs, SU ′
νν′,l → SU ′

νν′,l

′
= −SU ′

νν′,l, we have the

relations

(WU ′
ν↑ (l))

′ − (WU ′
ν↑ (l)) = −2λ2 S

U ′
νν′,l, (B.164)

(WU ′
ν′↓(l))

′ − (WU ′
ν′↓(l)) = +2λ2 S

U ′
νν′,l. (B.165)

Now, let’s look at the form of ÃU ′
σ and calculate detAU ′

σ .

↑ spin is flipped at (ν, l) and ↓ spin is flipped at (ν ′, l) for . The form of ÃU ′
and

the detAU ′
are the same both ↑ and ↓ spin. Therefore, the matrix form of ÃU ′

and the

detAU ′
will be indicated only for the up spin. While writing their equations, instead of

(ν, l), (ν ′, l) will be used for the down spin.

We know from Section B.7.3.2, AU ′
↑ has the following form and here, the black

point indicates (AU ′
↑ )νl,νl and the spin flip occurs at (ν, l). The means of the red solid

line is that this column has the non-zero elements. detAU ′
ν↑ can be found by using the

expansion of the minors.

|AU ′
↑ | =

k∑
i=1

(−1)i+k aij (A
U ′
↑ )ij. (B.166)
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Here, only the first minor at the right side is not zero and the other expanded minors give

zero. If the first determinant is expanded up to spin flip point, we have Then,

⇒
detAU ′

↑ = (AU ′
↑ )νl,νl,

detAU ′
↓ = (AU ′

↓ )ν′l,ν′l.
(B.167)

and we know from Section B.7.3.2 that

(AU ′
↑ )νl,νl ≡ 1 + (1−G↑

νν(l, l)) (e
WU′

ν,l,↑
′
−WU′

ν,l,↑ − 1),

(AU ′
↓ )ν′l,ν′l ≡ 1 + (1−G↓

ν′ν′(l, l)) (e
WU′

ν′,l,↓
′
−WU′

ν′,l,↓ − 1),

(B.168)

and

RU ′
↑ =

detθ′↑
detθ↑

= detAU ′
↑ ,

RU ′
↓ =

detθ′↓
detθ↓

= detAU ′
↓ .

(B.169)
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Then

RU ′
↑ = 1 + (1−G↑

νν(l, l)) (e
WU′

ν,l,↑
′
−WU′

ν,l,↑ − 1),

RU
↓ = 1 + (1−G↓

ν′ν′(l, l)) (e
WU′

ν′,l,↓
′
−WU′

ν,l,↓ − 1).

(B.170)

B.7.1.3. Rσ for U ′ − J term

We can write the following relation from Section B.7.1

RU ′−J
σ = detAU ′−J

σ , (B.171)

where

ÃU ′−J
σ ≡ Ĩ + (Ĩ − G̃σ) (eW

U′−J
σ

′
−WU′−J

σ − Ĩ). (B.172)

For U ′ − J term, when the single-spin flip occurs, SU ′−J
νν′,l,σ → (SU ′−J

νν′,l,σ)
′
= −SU ′−J

νν′,l,σ, we

have

(WU ′−J
νσ (l))

′ − (WU ′−J
νσ (l)) = −2λ3S

U ′−J
νν′,l,σ,

(WU ′−J
ν′σ (l))

′ − (WU ′−J
ν′σ (l)) = 2λ3S

U ′−J
νν′,l,σ.

(B.173)

Now, let’s look at the form of ÃU ′−J
σ and calculate the detAU ′−J

σ . Here, we know that

the spin flip occurs at both (ν ′, l) and (ν, l) for spin σ and, the black points indicate

(AU ′−J
σ )ν′l,ν′l and (AU ′−J

σ )νl,νl, respectively. The means of the red solid lines is that this

column has non-zero elements. detAU ′−J
σ can be found by using the expansion of the

minors. In the below matrices, the lowermost black point on the left solid line represents

(AU ′−J
σ )νl,ν′l and the upmost black point on the right solid line represents (AU ′−J

σ )ν′l,νl.

Here, only the first minor at the right side is not zero and the other expanded minors

give zero. If the first determinant is expanded up to spin flip point, we have The last
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determinant equals below determinant:

detAU ′−J
σ =

∣∣∣∣∣• •
• •

∣∣∣∣∣ =

∣∣∣∣∣A11 A12

A21 A22

∣∣∣∣∣

where

Aσ
11 = (AU ′−J

σ )ν′l,ν′l,

Aσ
12 = (AU ′−J

σ )ν′l,νl,

Aσ
21 = (AU ′−J

σ )νl,ν′l,

Aσ
22 = (AU ′−J

σ )νl,νl.

(B.174)

⇒ RU ′−J
σ = detAU ′−J

σ = Aσ
11 A

σ
22 − Aσ

12 A
σ
21. (B.175)
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Here, these terms are

Aσ
11 = (AU ′−J

σ )ν′l,ν′l = 1 + (1−Gσ
ν′ν′(l, l)) (e

+2λ3S
U′−J
νν′,l,σ − 1), (B.176)

Aσ
22 = (AU ′−J

σ )νl,νl = 1 + (1−Gσ
νν(l, l)) (e

−2λ3S
U′−J
νν′,l,σ − 1), (B.177)

Aσ
12 = (AU ′−J

σ )ν′l,νl = −Gσ
ν′ν(l, l) (e

−2λ3S
U′−J
νν′,l,σ − 1), (B.178)

Aσ
21 = (AU ′−J

σ )νl,ν′l = −Gσ
νν′(l, l) (e

+2λ3S
U′−J
νν′,l,σ − 1). (B.179)

B.7.2. Calculation of (Wνσ(l))
′ − (Wνσ(l)) terms

In this section, the proof of (Wνσ(l))
′ − (Wνσ(l)) will be presented for U , U ′ and

U ′ − J terms.
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B.7.2.1. Calculation of (WU
νσ(l))

′ − (WU
νσ(l))

For U term, when the single-spin flip occurs, SU
ν,l → SU

ν,l

′
= −SU

ν,l. Moreover,

we know from Section B.5.1 that

(WU
νσ(l)) = σ λ1S

U
ν,l, (B.180)

(WU
νσ(l))

′ = −σ λ1S
U
ν,l. (B.181)

⇒ (WU
νσ(l))

′ − (WU
νσ(l)) = −σ λ1S

U
ν,l − σ λ1S

U
ν,l (B.182)

= −2 σ λ1S
U
ν,l. (B.183)

For σ =↑:

(WU
ν↑(l))

′ − (WU
ν↑(l)) = − 2λ1S

U
ν,l. (B.184)

For σ =↓:

(WU
ν↓(l))

′ − (WU
ν↓(l)) = +2λ1S

U
ν,l. (B.185)

B.7.2.2. Calculation of (WU ′
νσ (l))

′ − (WU ′
νσ (l))

We know from Section B.5.2 that

WU ′
ν↑ (l) = λ2

5∑
ν′=1
ν′ �=ν

SU ′
νν′,l, (B.186)
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and

WU ′
ν↓ (l) = −λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l. (B.187)

For σ =↑
For the single-spin flip, SU ′

νν′,l → (SU ′
νν′,l)

′
= −SU ′

νν′,l and

(WU ′
ν↑ (l))

′ = λ2

5∑
ν′=1
ν′ �=ν

(SU ′
νν′,l)

′, (B.188)

so

(WU ′
ν↑ (l))

′ − (WU ′
ν↑ (l)) = −λ2 S

U ′
νν′,l − λ2 S

U ′
νν′,l (B.189)

= −2λ2 S
U ′
νν′,l. (B.190)

⇒ (WU ′
ν↑ (l))

′ − (WU ′
ν↑ (l)) = −2λ2 S

U ′
νν′,l. (B.191)

Here, the important point is that the single-spin flip is seen at (ν, l) for ↑ spin.

For σ =↓
We know that

WU ′
ν↓ (l) = −λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l. (B.192)
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Now, let’s write WU ′
ν↓ (l) by using SU ′

νν′,l.

WU ′
ν↓ (l) = −λ2

5∑
ν′=1
ν′ �=ν

SU ′
ν′ν,l, (B.193)

watch for the switch of ν and ν′

⇓

WU ′
ν′↓(l) = −λ2

5∑
ν=1
ν �=ν′

SU ′
νν′,l. (B.194)

Then

(WU ′
ν′↓(l))

′ − (WU ′
ν′↓(l)) = −(−λ2 S

U ′
νν′,l)− (−λ2 S

U ′
νν′,l) (B.195)

= 2λ2 S
U ′
νν′,l. (B.196)

⇒ (WU ′
ν′↓(l))

′ − (WU ′
ν′↓(l)) = 2λ2 S

U ′
νν′,l. (B.197)

Here, the important point is that the single-spin flip is seen at (ν ′, l) for ↓ spin.

B.7.2.3. Calculation of (WU ′−J
νσ (l))′ − (WU ′−J

νσ (l))

We know from Section B.5.3 that

WU ′−J
νσ (l) = λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ. (B.198)

and here ν > ν ′.
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Single HS spin flip: SU ′−J
νν′,l,σ → (SU ′−J

νν′,l,σ)
′
= −SU ′−J

νν′,l,σ.

When the spin flips, SU ′−J
νν′,l,σ changes in both WU ′−J

νσ (l) and WU ′−J
ν′σ (l). To see this,

let’s look at an example:

• Let’s say single-spin flip at (ν = 4, l) and (ν ′ = 3, l) and we have SU ′−J
43,l,σ which

is in both WU ′−J
4σ (l) and WU ′−J

3σ (l):

WU ′−J
4σ (l) = λ3 (S

U ′−J
41,l,σ + SU ′−J

42,l,σ + SU ′−J
43,l,σ )− λ3 S

U ′−J
54,l,σ , (B.199)

WU ′−J
3σ (l) = λ3 (S

U ′−J
31,l,σ + SU ′−J

32,l,σ )− λ3 ( SU ′−J
43,l,σ + SU ′−J

53,l,σ ). (B.200)

Therefore, both WU ′−J
νσ (l) and WU ′−J

ν′σ (l) should be used. If these terms are written, they

can be

WU ′−J
νσ (l) = λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ,

WU ′−J
ν′σ (l) = λ3

ν′−1∑
ν=1

SU ′−J
ν′ν,l,σ − λ3

5∑
ν=ν′+1

SU ′−J
νν′,l,σ,

(B.201)

and ν > ν ′. We should be careful about that

• SU ′−J
νν′,l,σ term has + sign in WU ′−J

νσ (l),

• SU ′−J
νν′,l,σ term has − sign in WU ′−J

ν′σ (l).

Then

(WU ′−J
νσ (l))′ − (WU ′−J

νσ (l)) = −λ3 S
U ′−J
νν′,l,σ − λ3 S

U ′−J
νν′,l,σ = −2λ3 S

U ′−J
νν′,l,σ,

(WU ′−J
ν′σ (l))′ − (WU ′−J

ν′σ (l)) = −(−λ3 S
U ′−J
νν′,l,σ)− (−λ3 S

U ′−J
νν′,l,σ) = +2λ3 S

U ′−J
νν′,l,σ.

(B.202)

So for ν > ν ′, we obtain

(WU ′−J
νσ (l))′ − (WU ′−J

νσ (l)) = −2λ3 S
U ′−J
νν′,l,σ,

(WU ′−J
ν′σ (l))′ − (WU ′−J

ν′σ (l)) = +2λ3 S
U ′−J
νν′,l,σ.

(B.203)
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B.7.3. Calculation of Aσ terms

In this section, Aσ will be presented for U , U ′ and U ′ − J terms.

B.7.3.1. Calculation of AU
σ

After the SU
ν,l is flipped, the new impurity Green’s function is obtained from the

following relation (by omittin σ)

G̃′ = G̃+ (G̃− Ĩ) (eW
U

′
−WU − Ĩ) G̃′, (B.204)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U

′
−WU − Ĩ)]−1 G̃, (B.205)

⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U

′
−WU − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U
′
−WU − Ĩ)︸ ︷︷ ︸

ÃU

]−1 G̃. (B.206)

Here, we define that

ÃU ≡ Ĩ + (Ĩ − G̃) (eW
U

′
−WU − Ĩ). (B.207)

It is known from Section B.7.2.1 that for SU
ν,l → SU

ν,l

′
= −SU

ν,l:

(WU
νσ(l))

′ − (WU
νσ(l)) = −σ λ1S

U
ν,l − σ λ1S

U
ν,l

= −2 σ λ1S
U
ν,l.

(B.208)
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Spin changes only at (ν, l) for U term and so we can define (WU
σ

′ −WU
σ )ii1 as the follow-

ing

(WU
σ

′ −WU
σ )ii1 = δν,ν1 δl,l1 (−2 σ λ1S

U
ii ), (B.209)

where

ii1 = (ν1, l1), (B.210)

ii = ((νν), l). (B.211)

The matrix elements of (WU
σ

′ −WU
σ ) is

(WU
σ

′ −WU
σ )ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (−2 σ λ1S

U
ii ), (B.212)

where

ii2 = (ν2, l2). (B.213)

To find the matrix representation of ÃU , let’s write (eW
U
σ

′
−WU

σ − Ĩ) and (Ĩ − G̃) matrices.

The matrix representation of (WU
σ

′ −WU
σ )ii1,ii2 is This is a diagonal matrix and we know

that if a matrix is diagonal, its exponential can be performed simply by exponentiating

each of the diagonal elements. Then, (eW
U
σ

′
−WU

σ − 1)ii1,ii2 is
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⇒ (eW
U
σ

′
−WU

σ − 1)ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2σ λ1SU

ii − 1). (B.214)

Now, let’s look at matrix representation of (I −G) .

ÃU = Ĩ + (Ĩ − G̃) (eW
U

′
−WU − Ĩ). (B.215)

Here, the black point indicates (AU
σ )νl,νl and the spin flip occurs at (ν, l). The means of
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the red solid line is that this column has non-zero elements.

Then, the equation of (AU
σ )ν1l1,ν2l2 equals

(AU
σ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −Gσ)ν1l1,ν3l3 (e
WU

σ

′
−WU

σ − 1)ν3l3,ν2l2 . (B.216)

If the Eq.(B.214) is put in the above equation, we can obtain

(AU
σ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −Gσ)ν1l1,ν3l3 ( δν,ν3 δν,ν2 δl,l3 δl,l2 (e
−2σ λ1SU

ii − 1) ).

(B.217)

⇒ (AU
σ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 + δν,ν2 δl,l2 (I −Gσ)ν1l1,ν l (e

−2σ λ1SU
ii − 1). (B.218)

We know from Section B.7.1.1 that (AU
σ )νl,νl is used to calculate RU

σ and it equals

(AU
σ )νl,νl = 1 + (1−Gσ

νl,νl) (e
−2σ λ1SU

ii − 1). (B.219)

B.7.3.2. Calculation of AU ′
σ

After SU ′
ν ν′,l is flipped, the new impurity Green’s function is obtained from the

following relation (by omittin σ)

G̃′ = G̃+ (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ) G̃′, (B.220)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ)]−1 G̃, (B.221)
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⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U′ ′−WU′ − Ĩ)︸ ︷︷ ︸
ÃU′

]−1 G̃. (B.222)

Here, we define that

ÃU ′ ≡ Ĩ + (Ĩ − G̃) (eW
U′ ′−WU′ − Ĩ). (B.223)

It is known from Section B.7.2.2 that for SU ′
ν ν′,l → SU ′

ν ν′,l

′
= −SU ′

ν ν′,l:

(WU ′
ν↑ (l))

′ − (WU ′
ν↑ (l)) = −2λ2 S

U ′
νν′,l,

(WU ′
ν′↓(l))

′ − (WU ′
ν′↓(l)) = +2λ2 S

U ′
νν′,l.

(B.224)

↑ spin changes only at (ν, l) and ↓ spin changes only at (ν ′, l) for U ′ term so we can define

(WU ′
σ

′ −WU ′
σ )ii1 as the following

(WU ′
↑

′
−WU ′

↑ )ii1 = δν,ν1 δl,l1 (−2λ2S
U ′
ii ), (B.225)

(WU ′
↓

′
−WU ′

↓ )ii1 = δν′,ν1 δl,l1 (+2λ2S
U ′
ii ), (B.226)

where

ii1 = (ν1, l1), (B.227)

ii = ((νν ′), l). (B.228)

The matrix elements of (WU ′
↑

′ −WU ′
↑ ) is

(WU ′
↑

′
−WU ′

↑ )ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (−2λ2S
U ′
ii ), (B.229)

and the matrix elements of (WU ′
↓

′ −WU ′
↓ ) is

(WU ′
↓

′
−WU ′

↓ )ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (+2λ2S
U ′
ii ). (B.230)
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where

ii2 = (ν2, l2). (B.231)

To find the matrix representation of ÃU ′
, let’s write (eW

U′ ′−WU′ − Ĩ) and (Ĩ−G̃) matrices.

• Spin changes at (ν, l) for ↑ spin and at (ν ′, l) for ↓ spin.

• The form of ÃU ′
,(eW

U′ ′−WU′ − Ĩ) and (Ĩ − G̃) are the same for both ↑ and ↓
spin.

Therefore, the matrix form of ÃU ′
, the (eW

U′ ′−WU′ − Ĩ) and (Ĩ − G̃) will be

indicated only for the up spin. While writing their equations, instead of (ν, l), (ν ′, l) will

be used for the down spin.

The matrix representation of (WU ′
↑

′ −WU ′
↑ )ii1,ii2 is This is a diagonal matrix and

we know that if a matrix is a diagonal, its exponential can be performed simply by expo-

nentiating each of the diagonal elements. Then, (eW
U′
↑

′
−WU′

↑ − 1)ii1,ii2 is
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⇒
(eW

U′
↑

′
−WU′

↑ − 1)ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2λ2SU′

ii − 1),

(eW
U′
↓

′
−WU′

↓ − 1)ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (e
+2λ2SU′

ii − 1).

(B.232)

Now, let’s look at matrix representation of (I −G) .

ÃU ′
↑ = Ĩ + (Ĩ − G̃↑) (eW

U′
↑

′
−WU′

↑ − Ĩ),

ÃU ′
↓ = Ĩ + (Ĩ − G̃↓) (eW

U′
↓

′
−WU′

↓ − Ĩ).

(B.233)

Here, black point indicates (AU ′
↑ )νl,νl and the spin flip occurs at (ν, l). The means of the

red solid line is that this column has non-zero elements.

Then, the equations of (AU ′
↑ )ν1l1,ν2l2 and (AU ′

↓ )ν1l1,ν2l2 are

(AU ′
↑ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −G↑)ν1l1,ν3l3 (e
WU′

↑
′
−WU′

↑ − 1)ν3l3,ν2l2 , (B.234)
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(AU ′
↓ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −G↓)ν1l1,ν3l3 (e
WU′

↓
′
−WU′

↓ − 1)ν3l3,ν2l2 . (B.235)

If Eq.(B.232) is put in the above equations, we can obtain

(AU ′
↑ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −G↑)ν1l1,ν3l3 (δν,ν3 δν,ν2 δl,l3 δl,l2 (e
−2λ2SU′

ii − 1)).

(B.236)

⇒ (AU ′
↑ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 + δν,ν2 δl,l2 (I −G↑)ν1l1,ν l (e

−2λ2SU′
ii − 1), (B.237)

and

(AU ′
↓ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −G↓)ν1l1,ν3l3 (δν′,ν3 δν′,ν2 δl,l3 δl,l2 (e
+2λ2SU′

ii − 1)).

(B.238)

⇒ (AU ′
↓ )ν1l1,ν2l2 = δν1,ν2 δl1,l2 + δν′,ν2 δl,l2 (I −G↓)ν1l1,ν′ l (e

+2λ2SU′
ii − 1). (B.239)

We know from Section B.7.1.3 that (AU ′
↑ )νl,νl is used to calculate RU ′

↑ and (AU ′
↓ )ν′l,ν′l is

used to calculate RU ′
↓ so they equal

(AU ′
↑ )νl,νl = 1 + (1−G↑

νl,νl) (e
−2λ2SU′

ii − 1), (B.240)

and

(AU ′
↓ )ν′l,ν′l = 1 + (1−G↓

ν′l,ν′l) (e
+2λ2SU′

ii − 1). (B.241)
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B.7.3.3. Calculation of AU ′−J
σ

After SU ′−J
νν′,l,σ is flipped, the new impurity Green’s function is obtained from the

following relation (by omitting σ)

G̃′ = G̃+ (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ) G̃′, (B.242)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ)]−1 G̃, (B.243)

G̃′ = G̃+ (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U′−J
′
−WU′−J − Ĩ)︸ ︷︷ ︸

ÃU′−J

]−1 G̃.

(B.244)

Here, we define that

ÃU ′−J ≡ Ĩ + (Ĩ − G̃) (eW
U′−J

′
−WU′−J − Ĩ). (B.245)

Let’s look at (WU ′−J
′ −WU ′−J)ii1 to write ÃU ′−J .

• For U ′ − J term, spin changes at both (ν, l) and (ν ′, l).

Therefore, SU ′−J
νν′,l,σ changes in both WU ′−J

νσ and WU ′−J
ν′σ . We know from Section

B.7.2.3 that

WU ′−J
νσ (l) = λ3

ν−1∑
ν′=1

SU ′−J
νν′,l,σ − λ3

5∑
ν′=ν+1

SU ′−J
ν′ν,l,σ,

WU ′−J
ν′σ (l) = λ3

ν′−1∑
ν=1

SU ′−J
ν′ν,l,σ − λ3

5∑
ν=ν′+1

SU ′−J
νν′,l,σ ,

(B.246)
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so we have

(WU ′−J
σ

′
−WU ′−J

σ )ii1 = (−δν′,ν1 δl,l1 λ3(S
U ′−J
ii

′
− SU ′−J

ii )

+δν,ν1 δl,l1 λ3(S
U ′−J
ii

′
− SU ′−J

ii )),

(B.247)

where

ii1 = (ν1, l1), (B.248)

ii = ((νν ′), l, σ). (B.249)

SU ′−J
ii → SU ′−J

ii

′
= −SU ′−J

ii , (B.250)

(WU ′−J
σ

′
−WU ′−J

σ )ii1 = δν′,ν1 δl,l1 (+2λ3 S
U ′−J
ii ) + δν,ν1 δl,l1 (−2λ3 S

U ′−J
ii ).

(B.251)

From this equation, we can write

(WU ′−J
σ

′
−WU ′−J

σ )ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (+2λ3 S
U ′−J
ii )

+ δν,ν1 δν,ν2 δl,l1 δl,l2 (−2λ3 S
U ′−J
ii ).

(B.252)

To find the matrix representation of ÃU ′−J , let’s write (eW
U′−J
σ

′
−WU′−J

σ − Ĩ) and (Ĩ − G̃)

matrices.

The matrix representation of (WU ′−J
σ

′ −WU ′−J
σ )ii1,ii2 is
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This is a diagonal matrix and we know that if a matrix is a diagonal, its expo-

nential can be performed simply by exponentiating each of the diagonal elements. Then,

(eW
U′−J
σ

′
−WU′−J

σ − 1)ii1,ii2 is

⇒ (eW
U′−J
σ

′
−WU′−J

σ − 1)ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (e
+2λ3 S

U′−J
ii − 1)

+ δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2λ3 S

U′−J
ii − 1).

(B.253)

The matrix form of (I −G) is
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ÃU ′−J = Ĩ + (Ĩ − G̃) (eW
U′−J

′
−WU′−J − Ĩ) (B.254)
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Here, the black points indicate (AU ′−J
σ )ν′l,ν′l and (AU ′−J

σ )νl,νl, respectively. The

meaning of the red solid lines is that this column has non-zero elements.

Then, the equation of (AU ′−J
σ )ν1l,ν2l equals

(AU ′−J
σ )ν1l,ν2l = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −Gσ)ν1l1,ν3l3 (e
WU′−J

σ

′
−WU′−J

σ − 1)ν3l3,ν2l2 .

(B.255)

If Eq.(B.253) is placed in the above equation, we obtain

(AU ′−J
σ )ν1l,ν2l = δν1,ν2 δl1,l2 +

∑
ν3,l3

(I −Gσ)ν1l1,ν3l3

(
δν′,ν3 δν′,ν2 δl,l3 δl,l2 (e

+2λ3 S
U′−J
ii − 1)

+ δν,ν3 δν,ν2 δl,l3 δl,l2 (e
−2λ3 S

U′−J
ii − 1)

)
.

(B.256)

⇒ (AU ′−J
σ )ν1l,ν2l = δν1,ν2 δl1,l2 +

{
(I −Gσ)ν1l1,ν′ l δν′,ν2 δl,l2 (e

+2λ3 S
U′−J
ii − 1)

+ (I −Gσ)ν1l1,ν l δν,ν2 δl,l2 (e
−2λ3 S

U′−J
ii − 1)

}
.

(B.257)

As we will show in Section B.8.3, we need only the terms which are (AU ′−J
σ )ν′l,ν′l,

(AU ′−J
σ )νl,νl, (A

U ′−J
σ )ν′l,νl and (AU ′−J

σ )νl,ν′l. Therefore, we can use (AU ′−J
σ )2L×2L matrix

which is

(AU ′−J
σ ) =

[
(AU ′−J

σ )ν′l,ν′l (AU ′−J
σ )ν′l,νl

(AU ′−J
σ )νl,ν′l (AU ′−J

σ )νl,νl

]
=

[
Aσ

11 Aσ
12

Aσ
21 Aσ

22

]

We know that ii = ((νν ′), l, σ) and the matrix elements can be written by using Eq.(B.257):

Aσ
11 = (AU ′−J

σ )ν′l,ν′l = 1 + (1−Gσ
ν′ν′(l, l)) (e

+2λ3S
U′−J
ii − 1), (B.258)
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Aσ
22 = (AU ′−J

σ )νl,νl = 1 + (1−Gσ
νν(l, l)) (e

−2λ3S
U′−J
ii − 1), (B.259)

Aσ
12 = (AU ′−J

σ )ν′l,νl = −Gσ
ν′ν(l, l) (e

−2λ3S
U′−J
ii − 1), (B.260)

Aσ
21 = (AU ′−J

σ )νl,ν′l = −Gσ
νν′(l, l) (e

+2λ3S
U′−J
ii − 1). (B.261)

B.8. Updated Green’s functions

As we know that the new spin configuration is accepted or rejected with the prob-

ability in Hirsch-Fye quantum Monte Carlo algorithm. If the spin flip is accepted, the new

Green’s function will be calculated by using the old spin configuration Green’s function.

In this chapter, the new spin configuration Green’s function for U , U ′ and U ′ − J

terms are calculated. The outline of this section is the following:

• Firstly, the new impurity Green’s function for U term will be calculated. We will

use the (AU
σ )

−1 for this Green’s function so (AU
σ )

−1 will be obtained. After that,

the last form of the updated Green’s function for U term will be written by using

(AU
σ )

−1.

• Same steps will be used for U ′ term. The new impurity Green’s function for U ′ term

will be calculated. We will use the (AU ′
σ )−1 for this Green’s function so (AU ′

σ )−1

will be obtained. After that, the last form of updated Green’s function for U ′ term

will be written by using (AU ′
σ )−1.

• Finally, the form of the new Green’s function is explained for U ′−J term. (AU ′−J
σ )5L×5L

matrix is defined and its inverse is obtained. After that, it is shown that [(AU ′−J
σ )−1]2L×2L

can be used instead of [(AU ′−J
σ )−1]5L×5L for the calculation of the new Green’s func-

tions. Then, the last form of the new Green’s function are calculated by replacing

elements of [(AU ′−J
σ )−1]2L×2L.
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B.8.1. New impurity Green’s function for U term

After SU
ii is flipped, the new impurity Green’s function is obtained from

G̃′ = G̃+ (G̃− Ĩ) (eW
U

′
−WU − Ĩ) G̃′, (B.262)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U

′
−WU − Ĩ)]−1 G̃, (B.263)

⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U

′
−WU − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U
′
−WU − Ĩ)︸ ︷︷ ︸

ÃU

]−1 G̃. (B.264)

Here, we define that

ÃU ≡ Ĩ + (Ĩ − G̃) (eW
U

′
−WU − Ĩ). (B.265)

⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U

′
−WU − Ĩ) (ÃU)−1 G̃. (B.266)

Now, let’s write G′:

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(Gσ − I)ν1 l1,ν3 l3 (e
WU

σ

′
−WU

σ − I)ν3 l3,ν3 l3 (A
−1
σ )Uν3 l3,ν4 l4 G

σ
ν4,ν2

(l4, l2).

(B.267)
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We know from Section B.7.2.1 that

(WU
νσ(l))

′ − (WU
νσ(l)) = − 2 σλ1S

U
ii , (B.268)

and the spin flip ocuurs at (ii) = (ν, l). In Section B.7.3.1, we proved that

⇒ (eW
U
σ

′
−WU

σ − 1)ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2σ λ1SU

ii − 1). (B.269)

If we place Eq.(B.269) into Eq.(B.267), we can obtain

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(Gσ − I)ν1 l1,ν3 l3 [δν,ν3 δl,l3 (e
−2σ λ1SU

ii − 1)] [(AU
σ )

−1]ν3 l3,ν4 l4 G
σ
ν4,ν2

(l4, l2),

(B.270)

so

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(Gσ − I)ν1 l1,ν l (e
−2σ λ1SU

ii − 1) [(AU
σ )

−1]ν l,ν4 l4 G
σ
ν4,ν2

(l4, l2)

(B.271)

Now, let’s calculate (AU
σ )

−1.

B.8.1.1. Calculation of (AU
σ )

−1

The matrix form of the (AU
σ )

−1 can be illustrated as

⇒ [(AU
σ )

−1]ν l,ν l =
1

(AU
σ )ν l,ν l

. (B.272)

We need only (AU
σ )ν l,ν l term for the calculation of the updated impurity Green’s
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function. This term was calculated in Section B.7.3.1 and it equals

(AU
σ )νl,νl = 1 + (1−Gσ

νl,νl) (e
−2σ λ1SU

ii − 1). (B.273)

⇒ [(AU
σ )

−1]ν l,ν4 l4 = δν,ν4 δl,l4
1

1 + (1−Gσ
νl,νl) (e

−2σ λ1SU
ii − 1)

(B.274)

B.8.1.2. Last form of the new impurity Green’s function for U term

In Eq.(B.271), we calculated

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(Gσ − I)ν1 l1,ν l (e
−2σ λ1SU

ii − 1) [(AU
σ )

−1]ν l,ν4 l4 G
σ
ν4,ν2

(l4, l2),

(B.275)

and in Eq.(B.274), we defined

(AU
σ )

−1
ν l,ν4l4

= δν,ν4 δl,l4
1

1 + (1−Gσ
νl,νl) (e

−2σ λ1SU
ii − 1)

. (B.276)
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The new impurity Green’s function with these terms are

(Gσ
ν1,ν2

(l1, l2))
′

= Gσ
ν1,ν2

(l1, l2) +
∑
ν4,l4

(Gσ − I)ν1 l1,ν l (e
−2σ λ1SU

ii − 1)

×
(
δν,ν4 δl,l4

1

1 + (1−Gσ
νl,νl) (e

−2σ λ1SU
ii − 1)

)
Gσ

ν4,ν2
(l4, l2).

(B.277)

The new impurity Green’s function for U term equals

⇒
(Gσ

ν1,ν2
(l1, l2))

′
= Gσ

ν1,ν2
(l1, l2)

+(Gσ − I)ν1 l1,ν l (e
−2σ λ1SU

ii − 1)
1

1 + (1−Gσ
νl,νl) (e

−2σ λ1SU
ii − 1)

Gσ
ν,ν2

(l, l2).

(B.278)

In this result, Gσ
ν,ν′(l, l

′) is defined as

Gσ
ν,ν′(l, l

′) = +
〈
dν σ(l) d

†
ν′ σ(l

′)
〉

(B.279)

without − sign so we have to be careful.

B.8.2. New impurity Green’s function for U ′ term

After SU ′
ii is flipped, the new impurity Green’s function is obtained from

G̃′ = G̃+ (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ) G̃′, (B.280)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ)]−1 G̃. (B.281)
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⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U′ ′−WU′ − Ĩ)︸ ︷︷ ︸
ÃU′

]−1 G̃. (B.282)

Here, we define that

ÃU ′ ≡ Ĩ + (Ĩ − G̃) (eW
U′ ′−WU′ − Ĩ). (B.283)

⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U′ ′−WU′ − Ĩ) (AU ′

)−1 G̃. (B.284)

Now, let’s write G′:

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(Gσ − I)ν1 l1,ν3 l3 (e
WU′

σ

′
−WU′

σ − I)ν3 l3,ν3 l3 [(A
U ′
σ )−1]ν3 l3,ν4 l4 G

σ
ν4,ν2

(l4, l2).

(B.285)

We know from Section B.7.2.2 that

(WU ′
ν↑ (l))

′ − (WU ′
ν↑ (l)) = −2λ2 S

U ′
νν′,l,

(WU ′
ν′↓(l))

′ − (WU ′
ν′↓(l)) = 2λ2 S

U ′
νν′,l.

(B.286)

Here, we should be careful, because ↑ spin changes at (ν, l) and ↓ spin changes at

(ν ′, l). In Section B.7.3.2, we calculated that

⇒
(eW

U′
↑

′
−WU′

↑ − 1)ii1,ii2 = δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2λ2SU′

ii − 1),

(eW
U′
↓

′
−WU′

↓ − 1)ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (e
+2λ2SU′

ii − 1).

(B.287)

If Eq.(B.287) is placed in Eq.(B.285), the following equations can be obtained for

↑ and ↓ spins, respectively.

For σ =↑:
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(G↑
ν1,ν2

(l1, l2))
′
= G↑

ν1,ν2
(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(G↑ − I)ν1 l1,ν3 l3 [δν,ν3 δl,l3 (e
−2λ2SU′

ii − 1)] [(AU ′
↑ )−1]ν3 l3,ν4 l4 G

↑
ν4,ν2

(l4, l2),

(B.288)

so

(G↑
ν1,ν2

(l1, l2))
′
= G↑

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(G↑ − I)ν1 l1,ν l (e
−2λ2SU′

ii − 1) [(AU ′
↑ )−1]ν l,ν4 l4 G

↑
ν4,ν2

(l4, l2)

(B.289)

For σ =↓:

(G↓
ν1,ν2

(l1, l2))
′
= G↓

ν1,ν2
(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(G↓ − I)ν1 l1,ν3 l3 [δν′,ν3 δl,l3 (e
+2λ2SU′

ii − 1)] [(AU ′
↓ )−1]ν3 l3,ν4 l4 G

↓
ν4,ν2

(l4, l2),

(B.290)

so

(G↓
ν1,ν2

(l1, l2))
′
= G↓

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(G↓ − I)ν1 l1,ν′ l (e
+2λ2SU′

ii − 1) [(AU ′
↓ )−1]ν′ l,ν4 l4 G

↓
ν4,ν2

(l4, l2).

(B.291)

Now, let’s calculate (AU ′
↑ )−1 and (AU ′

↓ )−1.
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B.8.2.1. Calculation of (AU ′
σ )−1

The Green’s function form and AU ′
form are the similar for the up and the down

spin for U ′ term. The only difference is that the up spin changes at (ν, l) and the down

spin changes at (ν ′, l).

The matrix form of (AU ′
σ )−1 is represented as For σ =↑, the black point shows

(ν, l) but, for σ =↓, the black point indicatese (ν ′, l). We can say from the above matrix

representation that

⇒ [(AU ′
↑ )−1]ν l,ν l =

1

(AU ′
↑ )ν l,ν l

, (B.292)

⇒ [(AU ′
↓ )−1]ν′ l,ν′ l =

1

(AU ′
↓ )ν′ l,ν′ l

. (B.293)

We need only (AU ′
↑ )ν l,ν l and (AU ′

↓ )ν′ l,ν′ l terms for the calculation of the updated impurity

Green’s function. These terms were calculated in Section B.7.3.2 and they equal

(AU ′
↑ )νl,νl = 1 + (1−G↑

νl,νl) (e
−2λ2SU′

ii − 1), (B.294)

and

(AU ′
↓ )ν′l,ν′l = 1 + (1−G↓

ν′l,ν′l) (e
+2λ2SU′

ii − 1), (B.295)
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so

⇒ [(AU ′
↑ )−1]ν l,ν4,l4 = δν,ν4 δl,l4

1

1 + (1−G↑
νl,νl) (e

−2λ2SU′
ii − 1)

, (B.296)

and

[(AU ′
↓ )−1]ν′ l,ν4 l4 = δν′,ν4 δl,l4

1

1 + (1−G↓
ν′l,ν′l) (e

+2λ2SU′
ii − 1)

. (B.297)

B.8.2.2. Last form of the new impurity Green’s function for U ′ term

If Eq.(B.296) is placed in Eq.(B.289) and, Eq.(B.297) is placed in Eq.(B.291), the

updated Green’s functions for σ =↑ and σ =↓ can be obtained.

For σ =↑:

(G↑
ν1,ν2

(l1, l2))
′
= G↑

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(G↑ − I)ν1 l1,ν l (e
−2λ2SU′

ii − 1) [(AU ′
↑ )−1]ν l,ν4 l4 G

↑
ν4,ν2

(l4, l2),

(B.298)

and

[(AU ′
↑ )−1]ν l,ν4,l4 = δν,ν4 δl,l4

1

1 + (1−G↑
νl,νl) (e

−2λ2SU′
ii − 1)

. (B.299)
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Then, the new impurity Green’s function with these terms are

(G↑
ν1,ν2

(l1, l2))
′

= G↑
ν1,ν2

(l1, l2) +
∑
ν4,l4

(G↑ − I)ν1 l1,ν l (e
−2λ2SU′

ii − 1)

×
(
δν,ν4 δl,l4

1

1 + (1−G↑
νl,νl) (e

−2λ2SU
ii − 1)

)
G↑

ν4,ν2
(l4, l2),

(B.300)

and the last form of updated Green’s function for U ′ and σ =↑ equals

⇒
(G↑

ν1,ν2
(l1, l2))

′
= G↑

ν1,ν2
(l1, l2)

+(G↑ − I)ν1 l1,ν l (e
−2λ2SU′

ii − 1)
1

1 + (1−G↑
νl,νl) (e

−2λ2SU′
ii − 1)

G↑
ν,ν2

(l, l2).

(B.301)

In this result, G↑
ν,ν′(l, l

′) is defined as

G↑
ν,ν′(l, l

′) = +
〈
dν ↑(l) d

†
ν′ ↑(l

′)
〉

(B.302)

without − sign so we have to be careful.

For σ =↓:

(G↓
ν1,ν2

(l1, l2))
′
= G↓

ν1,ν2
(l1, l2)

+
∑
ν4,l4

(G↓ − I)ν1 l1,ν′ l (e
+2λ2SU′

ii − 1) [(AU ′
↓ )−1]ν′ l,ν4 l4 G

↓
ν4,ν2

(l4, l2),

(B.303)

and

[(AU ′
↓ )−1]ν′ l,ν4,l4 = δν′,ν4 δl,l4

1

1 + (1−G↓
ν′l,ν′l) (e

+2λ2SU′
ii − 1)

. (B.304)

196



Then, the new impurity Green’s function with these terms are

(G↓
ν1,ν2

(l1, l2))
′

= G↓
ν1,ν2

(l1, l2) +
∑
ν4,l4

(G↓ − I)ν1 l1,ν′ l (e
+2λ2SU′

ii − 1)

×
(
δν′,ν4 δl,l4

1

1 + (1−G↓
ν′l,ν′l) (e

+2λ2SU
ii − 1)

)
G↓

ν4,ν2
(l4, l2),

(B.305)

and the last form of updated Green’s function for U ′ and σ =↓ equals

(G↓
ν1,ν2

(l1, l2))
′
= G↓

ν1,ν2
(l1, l2)

+(G↓ − I)ν1 l1,ν′ l (e
+2λ2SU′

ii − 1)
1

1 + (1−G↓
ν′l,ν′l) (e

+2λ2SU′
ii − 1)

G↓
ν′,ν2(l, l2).

(B.306)

In this result, G↓
ν,ν′(l, l

′) is defined as

G↓
ν,ν′(l, l

′) = +
〈
dν ↓(l) d

†
ν′ ↓(l

′)
〉

(B.307)

without − sign so we have to be careful.

B.8.3. New impurity Green’s function for U ′ − J term

After SU ′−J
ii is flipped, the new impurity Green’s function is obtained from

G̃′ = G̃+ (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ) G̃′, (B.308)

by substituting

G̃′ = [Ĩ − (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ)]−1 G̃. (B.309)
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G̃′ = G̃+ (G̃− Ĩ) (eW
U′−J

′
−WU−J′ − Ĩ) [Ĩ − (G̃− Ĩ) (eW

U′−J
′
−WU′−J − Ĩ)︸ ︷︷ ︸

ÃU′−J

]−1 G̃.

(B.310)

Here, we define

ÃU ′−J ≡ Ĩ + (Ĩ − G̃) (eW
U′−J

′
−WU′−J − Ĩ). (B.311)

⇒ G̃′ = G̃+ (G̃− Ĩ) (eW
U′−J

′
−WU′−J − Ĩ) (AU ′−J)−1 G̃. (B.312)

Now, let’s write G′:

(Gσ
ν1,ν2

(l1, l2))
′

= Gσ
ν1,ν2

(l1, l2)

+
∑
l3,l4

∑
ν3,ν4

(Gσ − I)ν1 l1,ν3 l3 (e
WU′−J

σ

′
−WU′−J

σ − I)ν3 l3,ν3 l3

× [(AU ′−J
σ )−1]ν3 l3,ν4 l4 G

σ
ν4,ν2

(l4, l2).

(B.313)

We know from Section B.7.2.3:

(WU ′−J
νσ (l))′ − (WU ′−J

νσ (l)) = −2λ3 S
U ′−J
νν′,l,σ,

(WU ′−J
ν′σ (l))′ − (WU ′−J

ν′σ (l)) = +2λ3 S
U ′−J
νν′,l,σ.

(B.314)

For U ′ − J term, we know that the spin flip occurs at both (ν ′, l) and (ν, l), and

we proved in Section B.7.3.3 that

(eW
U′−J
σ

′
−WU′−J

σ − 1)ii1,ii2 = δν′,ν1 δν′,ν2 δl,l1 δl,l2 (e
+2λ3 S

U′−J
ii − 1)

+ δν,ν1 δν,ν2 δl,l1 δl,l2 (e
−2λ3 S

U′−J
ii − 1),

(B.315)
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where

ii = ((ν ν ′), l, σ). (B.316)

If the Eq.(B.315) is placed in Eq.(B.313), the following equation can be obtained:

(Gσ
ν1,ν2

(l1, l2))
′

= Gσ
ν1,ν2

(l1, l2) +
∑
l3,l4

∑
ν3,ν4

(Gσ − I)ν1 l1,ν3 l3

× [δν′,ν3 δl,l3 (e
+2λ3 S

U′−J
ii − 1) + δν,ν3 δl,l3 (e

−2λ3 S
U′−J
ii − 1)]

× [(AU ′−J
σ )−1]ν3 l3,ν4 l4 G

σ
ν4,ν2

(l4, l2).

(B.317)

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2) +

{
(Gσ − I)ν1 l1,ν′ l (e

+2λ3 S
U′−J
ii − 1)

×
∑
ν4,l4

[(AU ′−J
σ )−1]ν′ l,ν4 l4 G

σ
ν4,ν2

(l4, l2)

+(Gσ − I)ν1 l1,ν l (e
−2λ3 S

U′−J
ii − 1)

∑
ν4,l4

[(AU ′−J
σ )−1]ν l,ν4 l4 G

σ
ν4,ν2

(l4, l2)
}
.

(B.318)

Note that we need only [(AU ′−J
σ )−1]ν′ l,ν4 l4 and [(AU ′−J

σ )−1]ν l,ν4 l4 . All of matrix elements

of (AU ′−J
σ )−1 are not necessary.

Now, let’s calculate (AU ′−J
σ )−1.

B.8.3.1. General (AU ′−J
σ )5L×5L matrix and its inverse

We can show the matrix form of (AU ′−J
σ )−1 by using When (ν3, l3) row and (ν3, l3)
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column is multiplied, the following solution will be obtained:

a×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ b×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ a = 0

b = 0 (B.319)

Then, [(AU ′−J
σ )−1]5L×5L has the form as
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B.8.3.2. Calculation of [(AU ′−J
σ )−1]2L×2L matrix

Note that [(AU ′−J
σ )−1]5L×5L general matrix has the form The spin is flipped on

(ν ′, l) and (ν, l) and so we need only the 4 elements of [(AU ′−J
σ )−1]5L×5L which are shown

by the black bullets. Therefore, we can use the reduced [(AU ′−J
σ )−1]2L×2L which has the

form as

[(AU ′−J
σ )−1]2L×2L =

[
[(AU ′−J

σ )−1]11 [(AU ′−J
σ )−1]12

[(AU ′−J
σ )−1]21 [(AU ′−J

σ )−1]22

]

Here,

[(AU ′−J
σ )−1]11 = [(AU ′−J

σ )−1]ν′ l,ν′ l,

[(AU ′−J
σ )−1]22 = [(AU ′−J

σ )−1]ν l,ν l,

[(AU ′−J
σ )−1]12 = [(AU ′−J

σ )−1]ν′ l,ν l,

[(AU ′−J
σ )−1]21 = [(AU ′−J

σ )−1]ν l,ν′ l.

(B.320)

We can obtain the elements of [(AU ′−J
σ )−1]2L×2L matrix by using the following simple

matrix algebra:

[
(AU ′−J

σ )11 (AU ′−J
σ )12

(AU ′−J
σ )21 (AU ′−J

σ )22

] [
[(AU ′−J

σ )−1]11 [(AU ′−J
σ )−1]12

[(AU ′−J
σ )−1]21 [(AU ′−J

σ )−1]22

]
=

[
1 0

0 1

]
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⇒

(AU ′−J
σ )11 [(A

U ′−J
σ )−1]11 + (AU ′−J

σ )12 [(A
U ′−J
σ )−1]21 = 1

(AU ′−J
σ )11 [(A

U ′−J
σ )−1]12 + (AU ′−J

σ )12 [(A
U ′−J
σ )−1]22 = 0

(AU ′−J
σ )21 [(A

U ′−J
σ )−1]11 + (AU ′−J

σ )22 [(A
U ′−J
σ )−1]21 = 0

(AU ′−J
σ )21 [(A

U ′−J
σ )−1]12 + (AU ′−J

σ )22 [(A
U ′−J
σ )−1]22 = 1

(B.321)

Then

[(AU ′−J
σ )−1]ν l,ν l =

(AU ′−J
σ )ν′ l,ν′ l

(AU ′−J
σ )ν l,ν l (AU ′−J

σ )ν′ l,ν′ l − (AU ′−J
σ )ν l,ν′ l (AU ′−J

σ )ν′ l,ν l

,

(B.322)

[(AU ′−J
σ )−1]ν′ l,ν′ l =

(AU ′−J
σ )ν l,ν l

(AU ′−J
σ )ν l,ν l (AU ′−J

σ )ν′ l,ν′ l − (AU ′−J
σ )ν l,ν′ l (AU ′−J

σ )ν′ l,ν l

,

(B.323)

[(AU ′−J
σ )−1]ν l,ν′ l =

−(AU ′−J
σ )ν l,ν′ l

(AU ′−J
σ )ν l,ν l (AU ′−J

σ )ν′ l,ν′ l − (AU ′−J
σ )ν l,ν′ l (AU ′−J

σ )ν′ l,ν l

,

(B.324)

[(AU ′−J
σ )−1]ν′ l,ν l =

−(AU ′−J
σ )ν′ l,ν l

(AU ′−J
σ )ν l,ν l (AU ′−J

σ )ν′ l,ν′ l − (AU ′−J
σ )ν l,ν′ l (AU ′−J

σ )ν′ l,ν l

,

(B.325)

where

det(AU ′−J
σ ) = (AU ′−J

σ )ν l,ν l (A
U ′−J
σ )ν′ l,ν′ l − (AU ′−J

σ )ν l,ν′ l (A
U ′−J
σ )ν′ l,ν l. (B.326)
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From these results, we can write a general formula for [(AU ′−J
σ )−1]ν l,ν4 l4 and [(AU ′−J

σ )−1]ν′ l,ν4 l4:

[(AU ′−J
σ )−1]ν l,ν4 l4 = δl,l4

{
δν4,ν

(AU ′−J
σ )ν′ l,ν′ l
detAU ′−J

σ

− δν4,ν′
(AU ′−J

σ )ν l,ν′ l

detAU ′−J
σ

}
,

[(AU ′−J
σ )−1]ν′ l,ν4 l4 = δl,l4

{
δν4,ν′

(AU ′−J
σ )ν l,ν l

detAU ′−J
σ

− δν4,ν
(AU ′−J

σ )ν′ l,ν l

detAU ′−J
σ

}
.

(B.327)

Now, let’s put these equations in the updated impurity Green’s function equation.

B.8.3.3. Last form of the new impurity Green’s function for U ′ − J

term

In Section B.8.3, we found that

(Gσ
ν1,ν2

(l1, l2))
′
= Gσ

ν1,ν2
(l1, l2) +

{
(Gσ − I)ν1 l1,ν′ l (e

+2λ3 S
U′−J
ii − 1)∑

ν4,l4

[(AU ′−J
σ )−1]ν′ l,ν4 l4 G

σ
ν4,ν2

(l4, l2)

+(Gσ − I)ν1 l1,ν l (e
−2λ3 S

U′−J
ii − 1)

∑
ν4,l4

[(AU ′−J
σ )−1]ν l,ν4 l4 G

σ
ν4,ν2

(l4, l2)
}
.

(B.328)

If the expressions for [(AU ′−J
σ )−1]ν′ l,ν4 l4 and [(AU ′−J

σ )−1]ν l,ν4 l4 are placed in the above

equation, the new Green’s function can be written as Then, this equation equals
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We define that

(AU ′−J
σ )11 = (AU ′−J

σ )ν′ l,ν′ l,

(AU ′−J
σ )22 = (AU ′−J

σ )ν l,ν l,

(AU ′−J
σ )12 = (AU ′−J

σ )ν′ l,ν l,

(AU ′−J
σ )21 = (AU ′−J

σ )ν l,ν′ l,

and

det(AU ′−J
σ ) = (AU ′−J

σ )ν l,ν l (A
U ′−J
σ )ν′ l,ν′ l − (AU ′−J

σ )ν l,ν′ l (A
U ′−J
σ )ν′ l,ν l. (B.329)

Therefore, the last form of the updated Green’s function for U ′ − J terms equals

In this result, Gσ
ν,ν′(l, l

′) is defined as the following and without − sign so we have

to be careful.

Gσ
ν,ν′(l, l

′) = +
〈
dν σ(l) d

†
ν′ σ(l

′)
〉

(B.330)
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APPENDIX C

DETERMINATION OF THE FERMI LEVELS FOR THE

HEME CLUSTERS

In this section, we present the QMC data on the Fermi levels of deoxy and oxy

molecules. QMC results on the chemical potential of molecules are different than the DFT

results. The reason is that Coulomb interactions between the Fe(3d) orbitals are taken into

account without any approximation in the QMC calculations. These interactions lead to

broaden in the energy levels of the 3d states. Hence, the chemical potential for deoxy and

oxy molecules are calculated differently by QMC and DFT.

Deoxy molecule contains 334 electrons and Figure A.2 indicates that the HOMO

level of deoxy molecule is obtained at -3.53 eV by DFT calculations. Different from the

deoxy, oxy molecule have 350 electrons and Fig. A.3 shows that HOMO level is obtained

at -4.12 eV by DFT calculations.

In Fig. C.1(a), we present QMC data on the total electron occupation of the

Fe(3dν) orbitals 〈nd〉 as a function of μ for deoxy. We see that 〈nd〉 increases contin-

uosly up to μ = −4 eV. At μ = −4 eV, there is a discontinuity in 〈nd〉 and this point will

be very important to explain the spin state of the deoxy molecule. Total electron number

of Fe(3d) orbitals do not change between −4 eV <∼ μ <∼ −3 eV. Above the ≈ −3 eV, 〈nd〉
increases. The total number of the host electrons 〈nh〉 is shown in Fig. C.1(b). Here, 〈nh〉
increases up to ≈ −4 eV. 〈nd〉 does not change between the −4 eV <∼ μ <∼ −3 eV. This

is because that any host states are not located in this energy interval. 〈nh〉 increases above

the μ ≈ −3 eV by the filling of the host states. Figure C.1(c) shows the total electron

number for deoxy 〈nT〉 = 〈nd〉+ 〈nh〉 versus μ. Here, we clearly see that at μ = −2.8 eV

the total electron number 〈nT〉 = 334 corresponding to the neutral deoxy molecule. This

means that μ = −2.8 eV is the Fermi level of deoxy obtained by the QMC calculations.

At this μ value, total electron number of Fe(3d) orbitals is 〈nd〉 ≈ 5.3.

We discuss QMC data on the total electron occupation of the Fe(3dν) orbitals 〈nd〉
for oxy as a function of μ in Fig. C.2 (a). We see that 〈nd〉 increases continuously. The

total number of the host electrons 〈nh〉 is shown in Fig. C.2(b). Similar to 〈nd〉, 〈nh〉
also increases with changing μ. Figure C.2(c) shows the total electron number for oxy

〈nT〉 = 〈nd〉+ 〈nh〉 versus μ. Here, we clearly see that at μ = −3.8 eV the total electron
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number 〈nT〉 = 350 corresponding to the neutral oxy molecule. These results imply that

μ = −3.8 eV is the Fermi level for oxy molecule. At this μ value, total electron number

of Fe(3d) orbitals is 〈nd〉 ≈ 5.84.
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Figure C.1. QMC results for deoxy on the occupation numbers. (a) Total electron occu-

pation number 〈nd〉 of the Fe(3d) natural atomic orbitals versus the chem-

ical potential μ. (b) Total number of the host electrons 〈nh〉 versus μ. (c)

Total number of electrons 〈nT〉 = 〈nd〉+〈nh〉 for deoxy versus μ. Here, the

vertical solid black line denotes the Fermi level obtained by QMC. Deoxy

molecule contains 334 electrons. These results are for U = 4 eV, J = 0.9
eV and T = 300 K.
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Figure C.2. QMC results for oxy on the occupation numbers. (a) Total electron occupa-

tion number 〈nd〉 of the Fe(3d) natural atomic orbitals versus the chemical

potential μ, (b) Total number of the host electrons 〈nh〉 versus μ and (c)

Total number of electrons 〈nT〉 = 〈nd〉 + 〈nh〉 versus μ. Here, the ver-

tical solid line indicates the Fermi level obtained by QMC for oxy. Oxy

molecule contains 350 electrons. These results are for U = 4 eV, J = 0.9
eV and T = 300 K.
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APPENDIX D

COMPETITION OF THE HUND’S COUPLING WITH THE

FE(3D)-HOST ANTIFERROMAGNETIC CORRELATIONS

In this section, we explain the competition of the Hund’s coupling with the Fe(3d)-

host antiferromagnetic (AF) correlations.

In deoxy molecule, Fe(3d) orbitals have strong ferromagnetic correlations due to

Hund’s coupling. IBS are located below the chemical potential and are occupied in de-

oxy. In addition, we observe weak ferromagnetic correlations between the Fe(3d) and

the surrounding host states. Hence, deoxy molecule has the high-spin state. On the

other hand, IBS are located above the chemical potential and are not occupied in oxy

molecule. We observe that weak ferromagnetic correlations occur between the Fe(3d)

orbitals. In addition, Fe(3d)-host correlations are strongly antiferromagnetic. This causes

to obtain low-spin state for oxy with respect to deoxy. These AF correlations suppress

the ferromagnetic correlations in Fe(3d) orbitals and Hund’s coupling compete with the

Fe(3d)-host AF correlations.

Competition between the Hund’s coupling and Fe(3d)-host AF correlations will

be explained as follow. Fe(3d) orbitals have the strong ferromagnetic correlations due to

Hund’s coupling. In addition, one of these Fe(3d) orbitals has the strong hybridization

with a host orbitals as shown in Fig. A.4 for deoxy and Fig. A.5 for oxy. We know that

Fe(3d)-host system is described by the Anderson Hamiltonian in Eq. 1.4. This system has

two situation; in one of which, anti-ferromagnetic correlations occur between the Fe(3d)

and host states, and in the other, ferromagnetic correlations are seen between the Fe(3d)

and host states. The energy of the first situation is less than the second one, and the energy

differences between them equals |Vmν |2/U . When an electron in host state jumps to the

Fe(3d) orbitals which have the strongest hybridization with the host, the Hund’s coupling

at Fe(3d) site disappers. If the acquired energy, |Vmν |2/(U +J), is larger than the J in this

situation, the ferromagnetic correlations at Fe(3d) orbitals are suppressed by Fe(3d)-host

AF correlations. Hence, system goes to low-spin state.

Figure D.1 shows the competition of the Hund’s coupling and AF correlations

between the 3d orbitals and host orbitals. In these calculations for oxy, the hybridization

between the 158’th host state and the Fe(3d) orbitals ,V158,ν , are zero except V158,x2−y2 ,
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and the other hybridization elements are the same with the DFT results. We change the

(V158,x2−y2)
2 from 0 to 5 to observe the competition between the Hund’s coupling and

antiferromagnetic correlations between the Fe(3d)-host states.

Figure D.1(a) shows that the host magnetic moment increases with increasing the

hybridization. We see in Fig. D.1 (b) that the AF correlations between the 3dx2−y2 and

m = 158’th host states increases with changing hybridization. On the other hand, the

magnetic correlations between the 3d orbitals decreases with increasing hybridization as

seen in Fig. D.1(c). These results show that the hybridization between the host and 3d

orbitals lead to decrease Hund’s coupling between the 3d orbital and to increase the AF

correlations between the host and 3d orbitals. Ferromagnetic correlations occur between

the 3d orbitals due to Hund’s coupling. When the hybridization increases, Hund’s cou-

pling is suppressed by the 3d-host AF correlations.
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Figure D.1. For oxy-heme cluster, the hybridization between the 158’th host state and

the Fe(3d) orbitals ,V158,ν , are zero except V158,x2−y2 , and the other hy-

bridization elements are the same with the DFT results. (a) the square

of the total magnetic moment of 158’th host state 〈(M z
158)

2〉 versus

|V158,x2−y2 |2, in (b) the magnetic correlation function between the x2 − y2

and 158’th host state 〈M z
x2−y2M

z
158〉 versus |V158,x2−y2 |2, and in (c) the

magnetic correlation function between the 3z2 − r2 and x2 − y2 or-

bital 〈M z
3z2−r2M

z
x2−y2〉 versus the square of the hybridization between the

x2 − y2 and 158’th host state |V158,x2−y2 |2. Here, U = 4 eV, J = 0.9 eV

and T = 700 K.
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APPENDIX E

EFFECT OF THE U ′ AND J TERMS ON THE IMPURITY

BOUND STATES

In this section, we show the effect of the U ′ and U ′ − J terms on the impurity

bound states both in the deoxy molecule and oxy molecule.

Figure E.1 shows the magnetic correlation function between the Fe(3d) orbitals

and the host orbital. Here, Figure E.1 (a) show the magnetic correlations between the

Fe(3d) orbitals and m = 152 for deoxy molecule. Figure E.1 (b) shows the magnetic

correlations between the Fe(3d) orbitals and m = 158 for oxy molecule. In these results,

we take the U = 4 eV and U ′ = U ′ − J = 0 eV to observe the effect of the inter-orbital

correlations on the impurity bound states.

In Figure E.1 (a-b), we see that impurity bound states exist for deoxy and oxy

molecules even inter-orbital correlations are 0. On the other hand, the situation is different

for deoxy molecule with respect to results in which U ′ and U ′ − J do not equal 0. We

know from Fig.2.6 (b) that IBS are located below the Fermi level of deoxy, and hence

molecule has the high-spin state. However, Figure E.1 (a) shows that IBS are located

above the Fermi level for deoxy and so molecule has the low-spin state.

These results show that inter-orbital correlations are very important to observe the

high-spin to low-spin transition in hemoglobin molecule. If U ′ and U ′ − J term were not

taken into account, we could observe the IBS both in the oxy and deoxy molecules, but

deoxy molecule had the low-spin state.
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Figure E.1. (a) Fe(3d)-host magnetic correlation function 〈M z
νM

2
m=152〉 versus chemi-

cal potential μ for deoxy molecule. The black line shows the Fermi level of

deoxy-heme. (b) Fe(3d)-host magnetic correlation function 〈M z
νM

2
m=158〉

versus μ for oxy molecule. The black solid line represents the Fermi level

of oxy-heme. Here, U = 4 eV, U ′ = U ′ − J = 0 eV and T = 700 K.
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APPENDIX F

POTENTIAL SOURCES FOR THE COMPUTATIONAL

ERRORS IN DFT+QMC APPROACH

In this chapter, we will show some potential sources for the computational errors

in DFT+QMC. These are the double-counting term, Δτ error and the neglect of the pair

hopping and spin-flip terms.

F.1. Double-counting term

As mentioned in Appendix A, we substract the double-counting term from the

energy levels of Fe(3d) orbitals. The orbital dependent μDC
ν and the orbital independent

double-counting μDC terms are

μDC
ν =

UnDFT
dν

2
+ [U ′ + U ′′]

∑
ν′ �=ν

nDFT
dν′

2
(F.1)

and

μDC = (U + 4U ′ + 4U ′′)
nDFT
d

10
(F.2)

For the DFT+QMC results, we use U = 4 eV and J = 0.9 eV. These values are

for the free Fe atom. On the other hand, we do not know exactly which U and J values

are used in DFT calculations. In addition, which kind of double-counting terms is true

for our calculations. These uncertainties in double-counting term may lead some error in

DFT+QMC results.

Table F.1 and F.2 show the total Fe(3d) magnetic moment M3d, total magnetic

moment of molecule Mt, total Fe(3d) effective spin S3d and the total effective spin of

molecule St for different U , J and double counting term for deoxy-heme and oxy-heme,
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Table F.1. For deoxy-heme, total Fe(3d) magnetic moment M3d, total magnetic mo-

ment of molecule Mt, total Fe(3d) effective spin S3d and the total effective

spin of molecule St for different U , J and double counting term. Here,

temperature equals 300 K for U = 4 eV and T = 1500 K for U = 3 eV.

M3d(μb) Mt(μb) S3d St

U = 4 eV, J = 0.9 eV, μDC
ν =11.3 eV 4.55 4.08 1.83 1.60

U = 4 eV, J = 0.9 eV, μDC=13.0 eV 3.83 4.03 1.45 1.58
U = 3 eV, J = 0.6 eV, μDC=9.35 eV 3.83 4.03 1.45 1.58

Table F.2. For oxy-heme, total Fe(3d) magnetic moment M3d, total magnetic moment

of molecule Mt, total Fe(3d) effective spin S3d and the total effective spin

of molecule St for different U , J and double counting term. Here, temper-

ature equals 300 K for U = 4 eV and T = 1500 K for U = 3 eV.

M3d(μb) Mt(μb) S3d St

U = 4 eV, J = 0.9 eV, μDC
ν =11.3 eV 2.50 2.13 0.85 0.68

U = 4 eV, J = 0.9 eV, μDC=13.0 eV 1.55 0.77 0.42 0.13
U = 3 eV, J = 0.6 eV, μDC=9.35 eV 1.45 0.67 0.38 0.10

respectively. Here, it is seen that we obtain different magnetic moments and effective spin

for different parameters. These results show that DFT+QMC results are very different for

the different double-counting terms.

F.2. Δτ error

In this section, we will show the effect of the Δτ error on the results for oxy-heme

cluster.

In Hirsch-Fye algorithm, we use Trotter approximation in order to write partition

function. In DFT+QMC results, we have Δτ error due to this approximation. The tem-

perature is calculated as T−1 = Δτ L. In the low temperatures, we use big L values,

which increases the time cost of QMC simulations. In order to optimize the running time

of simulations, we have to make small changes in Δτ for different L values.

In DFT+QMC calculations, for T = 300 K, Δτ = 0.1295, for T = 200 K,
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Δτ = 0.1578 and for T = 150 K, Δτ = 0.1933. In order to see the effect of Δτ values in

DFT+QMC results, we calculate the total Fe(3d) electron number n3d, the total electron

number, total magnetic susceptibility χt and total magnetic moment Mt of molecule nt

as a function of Δτ for different temperatures. These results are shown in Fig. F.1(a-d).

Here, we extrapolate these results to see the values for Δτ → 0 because in this limit,

QMC results become exact.

Figure F.1(a) and (b) show the total 3d electrons and the total electron number of

molecule as a function of Δτ for different temperatures. We see from these results that

the electron numbers increase with decreasing of Δτ for all temperatures. For T = 300

K, 〈nd〉 goes to 5.85. On the other hand, for 200 K and 150 K, 〈nd〉 is higher than 6

electrons. The charge neutral oxy cluster has the 350 electrons. As seen in Fig. F.1(b),

when Δτ goes to 0, the electron number of oxy case equals approximately 350 for all

temperatures.

In Figure F.1(c-d), the χt and Mt are shown as a function of Δτ , respectively.

Here, we observe that χt and Mt values decrease with the decreasing in Δτ . These graphs

show that at T = 300 K, the susceptibility and the magnetic moment do not go to 0 with

decreasing in Δτ . On the contrary, for T = 200 K and T = 150 K, the susceptibility and

the magnetic moments go to 0. As mentioned in the previous chapters, the magnetic gap

is formed at low temperatures (T < 300 K). The O2-Fe(3d) charge transfer occurs and

the the spin state of the molecule goes to 0. When we look χt and Mt at the Δτ values

used for T = 200 K and T = 150 K, χt and Mt is small but they are not equal 0. These

results show that when Δτ → 0, the χt and Mt goes to 0.

Figure F.1(a-d) show that when 〈nd〉 > 6, the susceptibility and the magnetic mo-

ment of molecule equal approximation 0. This means that the spin state of molecule is

S=0.

The results presented in this section the effect of Δτ values on the DFT+QMC

results. In the light of these results, the spin state does not go 0 for T = 300 K as

Δτ → 0. On the other hand, χt and Mt go to 0 as Δτ → 0. In addition, we see that the

Δτ does not affect our conclusions.

F.3. Spin-flip and the pair-hopping terms

Our results show that oxy-heme has effective spin S = 0.65 at T = 300 K. When

the temperature is decreased, the spin state of the oxy-heme is lowered. The reason is

that the magnetic gap is formed at lower temperatures and the charge transfer between the
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Figure F.1. (a) Total number of the electrons in the cluster 〈nt〉, (b) the total electron

number in the Fe(3d) orbitals 〈n3d〉, (c) the total spin susceptibility χt,

and (d) the total magnetic moment Mt plotted as a function of Δτ for the

various values of T shown in (a). Here, Δτ is the Matsubara-time step

used in the QMC simulations. The dotted curves are the least-squares fits

to the QMC data.
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O2 to Fe(3d) orbitals occur. This charge transfer decreases the total magnetic moment of

molecule.

In DFT+QMC calculations, we ignore the spin-flip and the pair-hopping terms.

We do not know the effect of these terms on results for oxy-heme and deoxy-heme clus-

ters. In order to see the possible effect of these terms, we do exact diagonalization calcu-

lations for the deoxy and oxy-heme cluster.

The spin-flip and the pair-hopping terms are defined by

HJ ≡ J
∑
ν>ν′

(d†ν↑d
†
ν′↓dν↓dν′↑ + d†ν↑d

†
ν↓dν′↓dν′↑ + h.c.).

(F.3)

To explaine the effect of spin-flip and pair-hopping terms, we show the expecta-

tion values of total electron number of Fe(3d) orbitals and the square of the total magnetic

moment of Fe(3d) orbitals as a function of chemical potential μ in Fig. F.2 (a) and (b),

respectively. Here, the black line represents that spin-flip and pair-hopping terms (HJ )

equal 0 and the red line represents that HJ is not zero. In these calculations, the hy-

bridization between the Fe(3d) orbitals and host orbitals are set to zero. Figure F.2 (a)

shows that HJ terms do not affect the total occupation number of Fe(3d) orbitals. On the

other hand, the situation is not the same for the total magnetic moment of Fe(3d) orbitals.

As seen in Fig. F.2 (b), 〈(Md)
2〉 decreases at μ = −3 eV and μ = −11 eV with HJ term.

Hence, spin-flip and pair-hopping terms will be important to explaine the spin transition

in hemoglobin molecule.

Figure F.3 shows the exact diagonalization results for the expectation value of HJ

part of the Anderson Hamiltonian. This figure shows that the expectation value of HJ is

not zero for HJ �= 0 eV and our QMC results will be change with including the spin-flip

and pair-hopping terms.

We calculate the expectation value of HJ by using QMC. In these calculations, we

use the Green’s functions which were obtained for the Anderson Hamiltonian in Eq. 1.4.

This Hamiltonian does not include the spin-flip and pair-hopping terms. Hence, we find

the expectation value of HJ term by using the first-order approximation.

Figure F.4 shows the expectation value of 〈HJ〉 as a function of chemical potential

μ for deoxy and oxy molecules. This figure indicates that the 〈HJ〉 equals 0 for deoxy. On

the other hand, the contribution of pair-hopping and spin-flip terms change with respect

to μ for oxy.
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Figure F.2. Exact diagonalization results for (a) total electron number of Fe(3d) or-

bitals 〈nd〉 for oxy molecule versus chemical potential μ and (b) square of

the total Fe(3d) magnetic moment 〈(Md)
2〉 versus μ. The black circular

represents results for zero spin-flip and pair hopping terms, HJ = 0 eV,

and the red circular represents results for HJ = 0.9 eV. Here, U = 4 eV,

U ′′ = 1.3 eV and T = 300 K.
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Figure F.3. Exact diagonalization results for expectation value HJ 〈HJ〉 for oxy

molecule versus μ. The black circular represents results for HJ = 0 eV

and the red circular represents results for HJ = 0.9 eV. Here, U = 4 eV,

U ′′ = 1.3 eV and T = 300 K.

Figure F.4. QMC results for the expectation value of the spin-flip and pair-hopping

terms 〈HJ〉 of Anderson Hamiltonian versus μ for deoxy and oxy

molecules. The black circular represents the deoxy and the blue square

represents the oxy-heme. Here, vertical solid blue line shows the Fermi

level of oxy and the vertical black line shows the Fermi level of deoxy-

heme. These chemical potential values are obtained by QMC calculations.

These results are for U = 4 eV, J = 0.9 eV and T = 300 K.
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APPENDIX G

DEPENDENCE ON THE FE-PORPHYRIN DISTANCE FOR

DEOXY-HEME CLUSTER

In this chapter, we show the the effects of the doming of the porphyrin layer on

the electronic and magnetic properties for deoxy heme. In particular, we change the Fe-

porphyrin distance d by hand from 0.6 Å down to 0.0 Å by hand. For each value of d,

we perform the DFT calculation for the Anderson model parameters. Then we perform

QMC simulations for each DFT parameter set.

Table G.1. For different Fe-porphyrin ring distance d and square of the hybridization

between the Fe(3d) and host states W =
∑

ν

∑
m |Vmν |2 in deoxy-heme

molecule, DFT+QMC results on the total electron number of the Fe(3dν)

NAO’s 〈nd〉, total effective magnetic moment of the Fe(3dν) NAO’s, M eff
3d ,

total effective magnetic moment of the host states M eff
h , total Fe(3d)-host

magnetic correlation function 〈M z
3dM

z
h 〉, total effective magnetic moment

of the molecule M eff
T , total Fe(3d) effective spin Seff

3d , total host spin Seff
h ,

total effective spin of the molecule Seff
T . Here, effective spin is calculated

by using M eff
T = 2

√
Seff

T (Seff
T + 1). These results are for U = 4 eV, J = 0.9

eV and T = 700 K.

d(Å) W (eV)2 〈n3d〉 M eff
3d M eff

h 〈M z
3dM

z
h 〉 M eff

T Seff
3d Seff

h Seff
T

0.04 29.76 5.38 4.54 1.06 -1.17 4.40 1.82 0.22 1.76
0.10 29.58 5.37 4.51 1.08 -1.01 4.46 1.81 0.24 1.79
0.20 29.14 5.32 4.61 1.04 -0.19 4.69 1.86 0.22 1.90
0.30 28.65 5.30 4.64 1.01 0.28 4.81 1.87 0.21 1.96
0.40 28.30 5.29 4.64 0.98 0.44 4.84 1.88 0.20 1.97
0.50 28.29 5.29 4.64 0.99 0.62 4.88 1.87 0.20 1.99
0.60 29.14 5.28 4.65 1.00 0.69 4.90 1.88 0.21 2.00

In Table G.1, we see that as d decreases from 0.6 Å to 0.0 Å, the parameter W

increases from 29.14 to 29.76 due to the increase in the hybridization, as Fe approaches

the porphyrin layer. We note that during this decrease of d, the total spin ST varies only

from 2 to 1.76. Hence, we do not observe a high-spin to low-spin transition by only

varying the Fe-porphyrin distance.

The reason is that when the distance between the Fe and porphyrin layer is changed,
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the distance between the imidazole and Fe remains is not constant. Hence, we should do

our calculations for the situation in which the Fe-imidazole distance is constant and the

only variable is the distance between the Fe and the porphyrin layer.
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