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ABSTRACT

STABILITY ANALYSIS AND CONTROL OF STOCHASTIC POWER
SYSTEMS

Increase of the electricity generation and the growth of global electricity consumption
lead to an increase in the power fluctuations. In this dissertation, we have proposed a novel
approach by modeling these fluctuations as alpha-stable Levy processes. We have focused
on the stability analysis and control for stochastic single machine infinite bus system with an
emphasis on (1) understanding the effect of impulsive and asymmetric power fluctuations on
the rotor angle stability, and (2) developing control rule for synchronism in the presence of
Wiener and alpha-stable Levy type power fluctuations. We have investigated the basin stabil-
ity over the parameter space of mechanical power and damping parameters in the presence of
alpha-stable Levy type load fluctuations. The probabilities of returning to the stable equilib-
rium point have been calculated for different characteristic exponent and skewness parameters
of alpha-stable Levy motion to see the effect of impulsive and asymmetric load fluctuations.
It has been shown that the impulsiveness and/or asymmetry in the distributions of the load
fluctuations can cause the instability of the rotor angle. Hence, the synchronism is lost and
the rotor angle despite being stable in the sense of probability, might not be stable in the mean
square sense. Furthermore, we have studied the control of the rotor angle stability of single
machine infinite bus power system in the presence of Wiener type stochastic fluctuations by
minimizing the stochastic sensitivity function. We have also derived an analytical expression
for the rotor angle dispersion of single machine infinite bus system in the presence of alpha-
stable Levy type power fluctuations. The control rule for the minimization of the rotor angle

dispersion has been achieved.
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OZET

STOKASTIK GUC SISTEMLERININ KARARLILIK ANALIZI VE
KONTROLU

Elektrik iiretiminin artmasi ve kiiresel elektrik tiiketiminin bilyiimesi gii¢ dalgalan-
malarinda artisa yol agmaktadir. Bu tezde, bu dalgalanmalar1 alfa-kararl Levy rassal siirecler
olarak modelleyerek yeni bir yaklasim Onerildi. Stokastik tek makine sonsuz bara gii¢ sis-
temlerinde (1) diirtiisel ve asimetrik giic dalgalanmalarinin rotor ac1 kararlilif1 iizerindeki
etkisinin anlasilmasina, ve (2) Wiener ve alfa-kararli Levy tipi gii¢ dalgalanmalar1 altinda
senkronizasyon i¢in kontrol kurali gelistirilmesine 6nem verilerek kararlilik analizi ve kon-
troliine odaklanildi. Yiik dalgalanmalarinin dagilimindaki diirtiisellik ve/veya asimetrinin,
rotor agisinin kararsizligina neden olabilecegi gosterildi. Bu nedenle, senkronizasyonun kay-
biyla birlikte, rotor acis1 dagilim agisindan kararli olmasina ragmen, ortalama kare anlaminda
kararli olmayabilir. Alfa-kararli Levy tipi yiik dalgalanmalarinin varhiginda mekanik giic ve
sOniim parametrelerine bagl olarak rotor agisinin kararliliginin saglandig1 baslangi¢ kosullarinin
kiimesi bulundu. Diirtiisel ve asimetrik yiik dalgalanmalarinin etkisini incelemek i¢in farkl
karakteristik {istel ve simetri (carpiklik) parametreleri se¢ildi ve rotor agisinin kararli denge
noktasina geri donme olasiliklar1 hesaplandi. Ayrica, Wiener tipi stokastik dalgalanmalarin
varliginda rassal hassasiyet fonksiyonunu en aza indirerek, tek makineli sonsuz bara gii¢ sis-
temlerinde rotor ac1 kararliliginin kontrolii incelendi. Alfa-kararli Levy tipi giic dalgalan-
malarinin varliginda tek makineli sonsuz bara sisteminin rotor a¢1 sacilimi i¢in analitik bir

ifade cikarildi. Rotor a¢1 sacilimini en aza indirgeyen kontrol kurali elde edildi.



To the memory of my beloved father, Yasar YILMAZ
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CHAPTER 1

INTRODUCTION

Electricity is an essential resource for all aspects of modern life and as a customer
what we all expect is that the electricity should always be available when we need at any
moment. Although the local outages are usual and accustomed, what is not expected is the
massive electric power outages. Power grids are becoming increasingly larger and complex
with many connections ever expanding between neighboring systems and proper safeguards
should be taken to prevent any potential problem to spread and escalate very quickly. The
power system becomes increasingly a target to the attacks, therefore cyber security becomes
also an important issue for the energy sector.

According to the North American Electric Reliability Council (NERC) the planning

and reliable operation of the power grid should be based on the following key concepts:

1. The power generation and demand should be balanced continuously.

2. The reactive power supply and demand should be balanced to maintain scheduled volt-

ages.
3. The flow on transmission lines should be monitored continuously to avoid overheating.

4. The electric system should be kept in a stable condition- voltage and power (angle)

stability limits are set to ensure.

5. The system should be reliably operated even if in the presence of contingency due to

the loss of the most important generator or transmission facility.

Since these concepts emphasize the need for understanding stability analysis and con-
trol in power systems this chapter reviews some major blackouts occurring over the globe and
continues with the summary of the general aspects of power system stability. Further, the ro-
tational dynamic of a machine is discussed and the equivalent electrical representation of the
machine is introduced. Finally, since the stability analysis in this dissertation has been based
on the rotor angle stability, then the relation between the rotor angle and the electrical output
power and the effect of disturbance in the rotor angle on the system stability are explained in
a machine connected to a large system through transmission lines which is called as single

machine infinite bus system.



1.1. Power System Stability

The stability in power systems has been an important problem for long years (Abe
et al., 1982; Dobson and Chiang, 1989). The stability problems emerged in the early 1900s
have been concerned with the remote main generating stations. The increased use of electric
power has led to the increase of the interconnections and the complexity of power systems.
Over the years across the globe there have been many major blackouts which mainly began
with a single instability event that has led a cascading effect.

In 2003, the branches of a tree have falled to the transmission line coming from
Switzerland to Italy and after this event, the transmission lines coming from France have
been also tripped off due to the overload and then the blackout has been occurred in the whole
Italy (Corsi and Sabelli, 2004). The another major blackout has occurred on August 14, 2003.
The blackout has caused nearly 50 million people in the Midwest and Northeast United States
and Ontaria, Canada to lack access to electricity and the outage took 4 days in some parts
of the United States and more than a week in the parts of Ontario. The blackout has begun
with the loss of generation in a power station due to the loss of transmission lines and this has
led to the unbalance between the load and generation and as a consequence the power outage
has happened in the USA (Liscouski and Elliot, 2004). In 2006, in Continental Europe the
blackout has been triggered by the high wind generation in Germany. The imbalance power
between supply and demand resulted in splitting the Continental European power system into
three separate regions with significant power imbalances in each region (Maas et al., 2007).
After these major blackouts the third serious blackout in Continental Europe has occurred in
Turkey. The loss of synchronism between the Eastern and the Western subsystems of Turkey
has been initiated with the tripping of the Osmanca—Kursunlu line due to the overload. This
event has led to the Eastern and Western Turkish subsystems to separate which resulted in
the loss of synchronism with the Continental European power system (TEIAS and ENTSO-E,
2015). The most recent massive blackout which is also the largest power outage in the coun-
try’s history has occurred in March 2019 in Venezuela. As a result of the sharp decrease in
turbines rotational speed in the largest hydroelectric power plant, the power system has ex-
perienced subsequent collapses which caused the entire country to be lack of electricity for
more than a week.

CIGRE Study Committe 38 and IEEE Power System Dynamic Performance Commit-
tee have developed a report called IEEE CIGRE Joint Task Force which defines the power

system stability as:

Definition 1.1 Power system stability is the ability to regain a state of operating equilibrium

following a physical disturbance for a given initial operating condition (Kundur et al., 2004).



The power system stability is classified as rotor angle stability, frequency stability and

voltage stability depending on their physical character. The classification can be further di-

vided into subcategories as small-disturbance or large-disturbance stability depending on the

size of the disturbance and the short term or long term stability depending on the time frame

of the disturbance involved in power system (Kundur et al., 1994) as shown in Figure 1.1.

These disturbances can be resulted from such as the faults occurred in the system, the changes

in load, generator trip or the loss of transmission facility.

Power System

Small-Disturbance
Voltage Stability

Long Term

Stability
Rotor Angle Frequency Voltage
Stability Stability Stability
Small-Disturbance : - Large-Disturbance
Angle Stability Transient Stability Voltage Stability
Short Term Short Term
Short Term Long Term

Figure 1.1. Classification of power system stability (Source: (Kundur et al., 2004))

The details of power system stability shown in Figure 1.1 have been expressed as

follows:

1.1.1. Rotor Angle Stability

Definition 1.2 Rotor angle stability is the ability of interconnected machines of a power sys-

tem to remain in synchronism following a disturbance (Kundur et al., 2004).



In the steady-state, the input mechanical torque of each machine is exactly equal to
the output electrical torque of each machine in the opposite direction and the speed remains
constant. The minor oscillations of rotor angles in the power system constantly occur when
machine rotors accelerate or slow down to maintain the balance between the electrical output
power and mechanical input power.

However, the presence of disturbance in the system causes an imbalance between the
mechanical and electrical torque leading to oscillations in the rotor angle. The run of one ma-
chine temporarily faster than another machine leads to the advance of the angular position of
its rotor relative to the angular position of the slower machine. By transferring the part of the
load from the slow machine to the fast machine provides the reduction in the speed difference
and hence angular separation. Beyond a certain limit, the angular separation increases and the
power transfer decreases and this leads to the increase of the angular separation further.

In the presence of the loss of synchronism of a machine, the power system is designed
to disconnect the unstable machine from the grid to protect the power plant from physical
damage since the machines are usually the most expensive units in power system.

The rotor angle stability can be divided into categories: small-disturbance angle sta-

bility and transient stability which are described as follows:

(1) Small-disturbance angle (or steady state) stability represents the stability phenomenon
in which synchronism is maintained in power systems under sufficiently small distur-

bances.

(i) Transient stability represents the ability of the power system to maintain synchronism
when subjected to a severe transient disturbance due to the changes in load, generator

trip or the loss of transmission facility.

As shown in Figure 1.1 the time frame of interest in small signal stability and tran-
sient stability are given as short-term which are on the order 10-20 seconds and 3-5 seconds,

respectively.

1.1.2. Frequency Stability

Definition 1.3 Frequency stability is the ability of a power system to keep the frequncy steady
after a disturbance caused by significant imbalance between generation and load (Kundur

et al., 2004).

Under the stable operating conditions, interconnected power systems are required to

have the same frequency. In the presence of major disturbances the power system breaks into



separate islands and the generation in any island may substantially exceed or go beyond to the
required demand, therefore each island in the grid should maintain the balance between gen-
eration and demand. Because the imbalance between the generation and demand causes the
frequency of system to vary. When the generation exceeds demand, the system frequency in-
creases and when the generation is less than demand the frequency decreases. It is practically
accepted that frequency can deviate slightly. However significant deviations in the frequency

can cause generator turbine blades to be damaged.

1.1.3. Voltage Stability

Definition 1.4 Voltage stability is the ability of a power system to maintain the voltages in

the system within acceptable limits following a disturbance (Kundur et al., 2004).

Voltage instability or voltage collapse refers to the progressive fall in voltage until
stable operating voltages can no longer be maintained. The major reason of the progressive
drop in voltage is the imbalance of reactive power supply and demand which is caused by
such as the increase of real or reactive loads, the reach of power transfer a high level, the
generation trip or the loss of transmission facilities. If the required reactive power cannot be
supplied promptly, voltages decay and this can cause voltage instability.

There can be also a relation with the progressive decline in voltage and the rotor angle
stability. Low voltages can occur as a result of the loss of synchronism of machines due to the
out of step in rotor angles. Voltage instability is analyzed by V — Q and P — V curves which
refer to voltage relative to reactive power and power relative to voltage, respectively.

According to the V — Q analysis, under stable operating conditions the increase in
voltage requires the reactive power to increase while the decrease in voltage results in the
decrease of the reactive power requirement. However, when the voltage at bus is decreased
but the corresponding reactive power requirement begins to increase, the system becomes
unstable. The level of voltage at which stable system becomes unstable is called as the critical
voltage and the corresponding reactive power level is called as the reactive margin.

Beyond the voltage level, contingency analysis should be conducted for the voltage
stability. The real power system capability over a transmission facility is described by P — V
analysis. A high level of power transfer causes the voltage cannot maintain stable. After the
occurrence of contingency, the operating conditions determined by P — V curve are adjusted
to keep the system stable.

The voltage stability can be divided into the following subcategories:

(1) Large-disturbance voltage stability is the ability to maintain steady voltages in the pres-



ence of a large disturbance due to the faults occurring in the system, the generation trip

or, the loss of transmission facility.

(i) Small-disturbance voltage stability is the ability to keep steady voltages in the presence

of small perturbations such as incremental load changes in the system.

Voltage instability can takes gradually about a few seconds or ten minutes. The time frame

can be classified as a short-term or a long-term.

1.2. Rotor Dynamics and The Swing Equation

Based on the law of rotation, the rotational dynamics of a synchronous machine is

governed by the following equation:

d*6,,

J
dr?

=T,=T,-T, (11)

where

J denotes the total moment of inertia of the rotor masses (kg.m?)

6, is the angular displacement of the rotor w.r.t. a stationary axis (rad)
T, is the net accelerating torque (N.m)

T, is the mechanical torque supplied by the prime mover (N.m)

T, is the electrical torque (N.m)

t denotes time in seconds ().

The angular displacement of the rotor w.r.t. a stationary axis 6,, is defined as

On = Wst + 0 (1.2)

where wy,, is the synchronous speed of the machine and 6,, is the angular displacement of the
rotor from the synchronously rotating reference axis .

The time derivative of (1.2) is given as:

d6,, ds,,

S g+ 2 (13)



and the second derivative of (1.2) is as follows:

&6,  d,
drr  df

(1.4)

where the rotor angular velocity d6,,/dt equals to the synchronous speed when d6,,/dt = 0.
The rotor speed from synchronism is denoted by dé,,/dt. By substituting (1.4) in (1.2)

the following equation is obtained:

d*s,,
J =T,=T,-T,. 1.5
I (L.5)
Let
ds,,
= 1.6
w 7 (1.6)

and since the torque times angular velocity equals to the power multiplying (1.5) by w,,, then

the following equation is obtained:

d*s,,

Jwy——=P, =P, - P, 1.7
Y ae (1.7)

where P,, is the mechanical power , P, is the electrical power and P, denotes the accelerating
power due to the unbalance between P,, and P,.
The angular momentum of the rotor Jw,, is called as the inertia constant of the machine

at synchronous speed wy,, and it is denoted by M,),.

d*s,,
MmW:Pa:Pm_Pe- (1.8)

By expressing the power angle and angular speed in electrical radians and electrical
radians per second rather than mechanical radians and mechanical radians per second, the

relations are given respectively as:

5m _ Wsm
—— and w =

0= —
p/2 p/2

(1.9)



where p is the number of poles then the swing equation can be written as:

d*s
M— =P,=P,—-P,. 1.10
pr (1.10)
where the inertia coefficient
2HS mac
M = T mach (1.11)
Wy
S macn 18 the three-phase rating of the machine and
_05Jw3, (112)
B Smach ‘ .
In the presence of damping torque the swing equation takes the following form
d*s
M— =P,=P,—P,—-P 1.13
yr D (1.13)
where the damping power
1)
Pp=D— 1.14
b=D— (1.14)
and D is the damping coeflicient.
The system in (1.13) can be rewritten as the two first-order equations:
do
R — w
dt
d
Md—‘;’ - p,=P,—P,—Pp (1.15)

where ¢ is the rotor angle and w is the rotor speed deviation.

1.3. Single Machine Infinite Bus Power System

For the sake of understanding, stability analysis and control in this dissertation have

been discussed in single machine infinite bus system. Single machine infinite bus (SMIB)



power system is a system in which a machine connected to an infinite bus through a trans-

mission line as shown in Figure 1.2. The bus whose voltage and frequency remain constant is

called as the infinite bus.

E'z8 Eg20

Figure 1.2. Equivalent circuit of Single Machine Infinite Bus (SMIB) power system.

The complex internal voltage of the machine is represented by E’/¢ and the complex

infinite bus voltage is represented by Ez/0 and Xz denotes the total reactance between the

machine and infinite bus in Figure 1.2.
The classical model in power systems represents the machine in a simple but very

useful way. In the SMIB power system shown Figure. 1.2 the machine has been represented

by classical model which has two dynamic variables given in (Rogers, 2012) as:
1. the angle of the machine’s internal voltage

2. the machine’s speed deviation from synchronous speed.

The dynamics of the SMIB system are described by the following equations:

do
J— = w
dt
dw .
ME = P, — P,usind . (1.16)

The electrical power output P, transmitted to the infinite bus is given by

E'E
P, = —2sins (1.17)
XE




where the maximum power is transmitted to the infinite bus when the angle 6 = 90°; then

E'Ep

E

Pax = (1.18)

In the steady state, there is a balance between the mechanical power P,, and the elec-

trical power P, such as

P, = P, = P, siné (1.19)

and the rotor angle can be found using (1.19) as:

Py, Py
8o = sin”! ( ) OF Opax = T — sin”! (P ) . (1.20)

max max

The stability of a SMIB can be analyzed by using the power-angle curve (P,—9) shown

as in Figurel.3.

Figure 1.3. Power-Angle (P, — 6) Curve.
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In the steady state, the solutions of (1.19) represented by 6y and 6,,,, = m — dp have
been shown in Figure 1.3 which corresponds to the point A and B, respectively. Consider
a machine which delivers a constant mechanical power P,, and operates at steady-state syn-
chronous speed with a rotor angle of ¢y. In this case P,, is equal to the electrical output power
P, represented by the point A shown in Figure 1.3.

When the load is suddenly increased to a value corresponding to the point C on the
power-angle curve, the electrical power exceeds the mechanical power and hence the accel-
erating power becomes negative. This causes the rotor to slow down and the angle ¢ will
decrease to the point A but due to the inertia of rotor, the rotor angle decrease from ¢, to
the further angle corresponding to the point D. At this point mechanical power exceeds the
electrical power and the accelerating power is positive then the rotor cannot remain at syn-
chronous speed, it starts to accelerate and the rotor angle advances to the value corresponding
to the point C. In the absence of damping, the rotor oscillates in this sequence indefinitely.

However, when the operating rotor angle is d,,,, Which corresponds to the point B and
when the rotor angle is perturbed, the mechanical power exceeds the electric power which
causes the rotor to accelerate. The rotor angle increases and the electrical power decreases
further. Hence, the presence of disturbance in the rotor angle results in the continuous increase

in the rotor speed which lead to the system become unstable.

11



CHAPTER 2

STABILITY OF STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS

The stability theory of stochastic differential equations has become a very popular re-
search in applications from various fields such as engineering, physics, biological systems,
economics and finance. This chapter begins with the review of Brownian motion (Wiener
process) since the noise is generally assumed to be Gaussian in dynamical systems described
by stochastic differential equations. Then the construction of Wiener process is introduced.
Further, It6 stochastic differential equations, existence and uniqueness for the solution of Ito
stochastic differential equation, and general remarks on the solution process are discussed.
It is also possible to consider the extreme events in the dynamical systems which can be
described by alpha-stable Lévy process (a-stable Lévy process). The properties of such pro-
cesses are given and the effects of distribution parameters on the a-stable Lévy motion are
analyzed. Finally, the stability analysis in stochastic systems based on the mean square stabil-

ity are discussed.

2.1. Brownian Motion

The study of random differential equations has begun with the investigation of Brow-
nian motion which lead to the development in the theory of stochastic processes.

In 1826-27, Robert Brown observed the irregular motion of pollen particles suspended
in water and he noticed that the motions of two distinct particles appear to be independent.
This motion is referred to as Brownian motion. In the 1920’s, American mathematician Nor-
bert Wiener, studied on a mathematical theory of Brownian motion called the theory of Wiener
process.

The Brownian motion (Wiener process) can be defined in the following way (Soong,

1973):

Definition 2.1 : A real-valued stochastic process B(t) which indicates the position of a parti-

cle at time t is called a Brownian motion (Wiener process) if

1. B(t), t > 0 are continuous functions of t;

12



2. B(t) — B(s) is normally distributed having zero mean and (t — s) variance for all

t>s>0;

3. B(t) has independent increments, i.e., for any finite sequence of times 0 < t; < t, <

-+ < t,, the random variables

B(tl)’ B(tZ) - B(tl)’ T B(tn) - B(tn—l)

are independent.

2.1.1. Construction of Brownian Motion as a Random Walk

The generation of the samples of Brownian motion B(?) is given as: For a given interval
[0, T] consider amesh {t; =it :i =0, 1, ..., N} on [0, T] with fixed natural number N and 7 =
T/N.

For a given finite sequence &;, i = 1,2,--- , N of independent Gaussian variables with

mean 0 and variance 7 (i.e. & = N(0,7) ), let

B'(0) =0 ae. 2.1

and fori =1,2,--- , N compute

B'(1) = B'(ti-1) + (t — 1i-1)&; (2.2)

for t € (¢;,_1,;] The process { B"(t) : t € [0,T] } converges to the Brownian motion process
B(t) on [0,T] when T — 0.

Figure 2.1 presents four realizations of one-dimensional Brownian motion B(f) ob-
tained by computer simulation with 7 = 1 and 7 = 0.001.

Almost all sample paths of the Wiener process are continuous in time, but they are
in fact non-differentiable for time + > 0. The non-differentiability implies that there is no
velocity of the particle under observation at every instant of time.

To express the non-differentiability for fixed #, the distribution of the difference quo-

tient is given as:

%(B(t + 1) = B(1)) (2.3)

which is a Gaussian distribution with zero mean and (1/7) variance.

13
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B(t)

Figure 2.1. Four realizations (trajectories) of one-dimensional sample Brownian motion

As T — 0, this normal distribution diverges and therefore the difference quotient can-
not converge with positive probability to a finite random variable in a probabilistic sense
(Rogers, 2012).

Gaussian white noise £(7) can be symbolically expressed with the time derivative of
the Brownian motion (Wiener process)

. dB
B(1) = % = £(1) 2.4)

and conversely the Brownian motion (Wiener process) can also be symbolically expressed as

the time integral of the white noise:

B(t) = ftf(s)ds (2.5)
0

14



2.1.2. Brownian Motion in R”

A stochastic vector process B(¢) = [By(¢), By(¢), - - - , B,,(#)] is an m-dimensional Brow-

nian motion (Wiener process) if

1. each component B;(¢) is a 1-dimensional Wiener process,

2. the processes B;(f) are mutually independent .

foreachi=1,2,--- ,m.

2.2. Ito Calculus

The presence of uncertainties and randomness in the systems described by ordinary
differential equations lead to the modeling of the systems by random differential equations to
include the disturbances. Random differential equations play an important role to model and
analyze the uncertainties in the physical or natural systems.

Consider the random differential equations given as:

X() =FX@),Y0),1), teT; X)) =X, (2.6)

where X(#) € R" with components X;(¢), i = 1,2,--- ,n. The vectors F and X, are n-
dimensional vectors and the stochastic process Y() € R™.

Ito calculus analyzes a special class of random differential equations in which the
dynamical systems are driven by Brownian motion, i.e., the components of stochastic process

Y(?) in (2.6) are white Gaussian noise:

X(1) = FX(1), 1) + GX(1), )é(t) teT; X)) = Xo 2.7)

where the components of stochastic process £(f) € R™ are Gaussian white noise, the matrix
function G(X(7),t) € R™™, and X, is independent of £(7), t€ T.
Equation (2.7) can be rewritten using the formal representation given in (2.4) for the

Gaussian white noise as:

dX() = F(X(@), 1)+ GX(r), ) dB(t) teT; X(t) =X, (2.8)

15



and the stochastic integral representation is as:

X - X(t) = f F(X(s), s) ds + f G(X(s), 5)dB(s) teT; X(t) =X (2.9)

fo

where X is independent of the increment dB(¢), € T.

The first integral in the right-hand side of the (2.9) is the ordinary Riemann integral
in the mean square sense. However, the second integral in the right-hand side of the (2.9)
cannot be interpreted as a Riemann-Stieltjes integral in the mean square sense because when

the random variables Y, are defined by

Y, = ) X(6) (B = B, 1 € [t 1), (2.10)

k=1

the sum Y, does not converge in the mean square sense to a unique limit since the limit of {Y,,}
sum depends on the choice of t}(.

Therefore, the integral

ft X(s) dB(s) (2.11)

fo

does not exist as a Riemann-Stieltjes integral in the mean square sense.

Consider the second integral in the right-hand side of the (2.9) defined as

f G(X(s), s) dB(s) (2.12)

where the vector X(7) is stochastic process and B(¢) is m-dimensional Brownian motion.
This integral can be interpreted as the limit of a random sequence consisting of the
summation in the mean square sense.

When the sequence is defined as:

D GIX(t), 111 [B) = Blte1)] (2.13)

k=1

where 0 <ty <t < -+ <ty < e < T and G[X(t-1), t—1] 1is evaluated at the left-hand

endpoint of the time interval on each subinterval [f;_;, ;).
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With this interpretation (2.8) or (2.9) is called as the Ito stochastic differential equation
(SDE) .

However when the sequence is defined as
Z G [X(ti-1/2: tro12) | [B(t) — B(ti-1)] (2.14)
=1

where f;_1p = (tx + tx-1)/2 then (2.8) or (2.9) is called as the Stratonovich stochastic differ-
ential equation.

It can be concluded that depending on the interpretation of the second integral of the
right-hand side of the (2.7) as Ito sense or Stratonovich sense, (2.8) or (2.9) is called Ito or
Stratonovich differential equation, respectively.

On the other hand, the increment after the time instance #;_; given as B(#;) — B(#;—1) is
independent of X(#_;) in Ito sense but there may be dependence between the process X(f—_1/2)
and the increment B(#;) — B(#;—;) in Stratonovich sense.

The difference between the two integrals are given in (Sun, 20006) as:

G(X(s),s) ds
(2.15)

1 f’ AG(X(s), 5)
2Jy  ox

() f G(X(s),s) dB(s) — (1) f G(X(s),s) dB(s) =

where (S) represents the integral in the Stratonovich sense and (/) represents the integral in
the It6 sense, X(¢) and B(#) are one-dimensional stochastic processes and the right-hand side
of the (2.15) is a Riemann integral in the mean square sense.

In general, the term ’stochastic differential equation’ is accepted to mean the Ito
stochastic differential equation and in this dissertation we consider the Ité stochastic differen-

tial equation.

2.2.1. Existence and Uniqueness for the Solution of the Ito SDE

Consider the scalar Ité equation

X)) =Xo+ f F(X(s), s)ds + f g(X(s), s)dB(s) (2.16)

fo

where X(#)) = X, and the initial condition X is independent of dB(t), t € T = [ty, «].
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The solution process X(7) of the Ité6 SDE generated by (2.16) is Markovian. This is
an important property which has considerable techniques to obtain the solution process of 1to

equation.

Theorem 2.1 Let f(x,t) and g(x,t), t € T, be two real functions. Equation (2.16) has a

unique mean square solution if the following properties are satisfied (Soong, 1973):

1. Both functions are continuous on T X(—o00, 00) and uniformly continuous in t with respect

to x € (—00, 00).

2. For a suitable K > 0, the growth conditions

2,0 < KX +x%), g(x, 1) < K*(1+x%) (2.17)

3. For a suitable K > 0, the Lipschitz conditions

|f(x2,0) = f(x1, D) < K |x2 — xq]
lg(x2, 1) — g(x1, )| < K |xz — x1] (2.18)

The existence and uniqueness theorem can be generalized to the vector case by using the same

properties given above.

2.2.2. Ito’s Lemma

Consider the following Ito SDE which is satisfied by the n-dimensional vector stochas-

tic process X (1)

dX;(t) = F(X,1) dt + Zij X, dB(t) for i=1,2,---,n. (2.19)
k=1
Let U(X, 1) be an arbitrary function of X and 7, with continuous partial derivatives %’: , g)f ,
aX axk (k=1,---.n).
Then the differentiation of the function is as:
dUX, 1) = Z UL Z Z byj——— U Z Z G k—dBk(t) (2.20)
’é)X 2 el / anan P /
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where .
b= GiGu . 2.21)
=1

The It6’s lemma has an important application which provides to derive the moment equations
for the response of the Ito’s SDE.

When a linear It6 differential equation is considered such that

dX(t) = AX(1)dt + GdB(?) (2.22)

and by using Ité’s lemma and E [dB(#)] then the mean vector satisfies the equation

_di’[tX] - AE[X] (2.23)

and the correlation matrix is governed by the following equation

dR 1
df" = ARyx + RxxA7 + 5b (2.24)

where b = GG

2.3. Alpha-Stable Lévy Process

Wiener processes have long been provided useful tools for stochastic modeling. How-
ever, in the presence of extreme events or fluctuations that cannot be described by Gaussian
distributions, alpha-stable processes which are based on the class of impulsive and asym-
metric distributions have been introduced to model such fluctuations. Some applications for
a-stable Lévy process can be given as: seismic ground accelarations in (Grigoriu, 1986); in-
come distributions in economical models in (Mandelbrot, 1960); fatique life of machineries
in mechanics in (Frendal and Rychlick, 1992); anomalous diffusion occurring in complex dy-
namical systems in (Weiss et al., 2004); the power fluctuations in single machine infinite bus
power systems in (Y1lmaz and Savaci, 2017a,b), power grid frequency fluctuations in (Schéfer
etal., 2018) .

A stochastic process {L,(?) : t > 0} is called an a-stable Lévy motion if

1. L,(0) = 0, almost surely (a.s.);

2. L,(?) has independent and stationary increments “dL,()”;
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3. dLy(t) = Lo(t) — Ly(s) ~ So((t = 5)Y/%,8,0) forany 0<s<t< oo,

where the increments of the a-stable Lévy process dL,(t) are a-stable random variables and
their distribution which has no analytical expression is denoted by a-stable distribution S, (7,
B, ).

S« (v, B, ) is characterized by the four parameters: the shift parameter ¢ denotes the
location, vy is scale parameter, the characteristic exponent (or the index of stability) @ measures
the impulsiveness (0 < @ < 2), and the skewness parameter § measures the symmetry of the
distribution, where 5 = 0 refers to symmetric distribution, 8 < 0 to left-skewed distribution
and S > 0 to right-skewed distribution (Samorodnitsky and Taqqu, 1994; Janicki and Weron,
1993; Nikias and Shao, 1995; Applebaum, 2009).

The characteristic function of an a@-stable random variable is given by (Nikias and

Shao, 1995; Samorodnitsky and Taqqu, 1994) :

o) {exp {_O.a | [1 — jBsign(w)tan (%)] + j,uw} for a #1 (2.25)

exp {—0"" [w] [1 + j,Bsign(w)%log(lwl)] + j,uw} for a=1

where sign(w) 1s signum function. The numerical approximation of a-stable density functions
have been evaluated by the inverse Fourier transform of the characteristic functions of a-stable
distributions (Nolan, 1997) given in (2.25) as:

f(x) = 1 f ) e " p(w)dw (2.26)
27 Joo

Figure 2.2- 2.3 present the plots of stable densities for the various parameters of char-
acteristic exponent « and skewness .

It can be seen from Figure 2.2 that as the value of characteristic exponent “a” decreases
then the impulsiveness increases and hence the tails of the corresponding distributions become
heavier. The skewness of the distribution has been shown in Figure 2.3 in which the increase
in the absolute value of the S results in the more asymmetric (skewed) distribution.

Figure 2.4-2.7 show a-stable Lévy motion for a few different values of the parameter
a and S. It is seen from Figure 2.4-2.5 that the decrease in the parameter of a causes the
bigger jumps of trajectories.

Figure 2.6-2.7 present the effect of the parameter 8 on the a-stable Lévy motion. While
the skewness parameter is nonzero 8 # 0, a small deviation in the parameter of characteristic

exponent a causes the jumps of trajectories to become bigger.
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Figure 2.2. a-stable density in the case of @ € {2.0, 1.4, 0.8, 0.5}, =0, c=1, u=0.
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Figure 2.3. a-stable density in the case of @ = 0.8, g € {-1.0, 0, 0.5, 1.0}, o =1, u=0.
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Figure 2.4. Trajectories of @-stable Lévy motion inthe caseof @ = 1.7and 8 =0, o =
I, u=0.
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Figure 2.5. Trajectories of @-stable Lévy motion in the case of @ = 0.7and 8 =0, o =
I, u=0.
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Figure 2.6. Trajectories of @-stable Lévy motion inthe case of @ = 1.8 andf =1, 0 =
I, u=0.

Figure 2.7. Trajectories of @-stable Lévy motion in the case of @ = 1.9 and § =
-1, 0=1, u=0.
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Remark :

The Lévy processes include random motions whose sample paths are right-continuous
with left limits (cadlag function) and have countable random jump discontinuties occurring
at random times on a finite time interval. Therefore, the Lévy processes include Brownian
processes and the Poisson processes (to represent the large and small jumps) (Applebaum,
2009). The Gaussian noise W(t) = % is the formal derivative of Wiener process (Brownian
motion) B(¢#) (Applebaum, 2009) and the increments of the Wiener process “dB(¢)” is the
special case of a-stable Levy motion with @ = 2, B8 = 0 “ie., So(y,0,u) = N(u,2y*) "
Normal (Gaussian) distribution with mean y and variance 2y? (Samorodnitsky and Taqqu,
1994).

2.4. Stochastic Stability

Stochastic modeling plays an important role in the presence of significant uncertainty
in the systems. The stability theory of stochastic differential equations has become a very
popular research in applications from various fields such as engineering, economic systems
and biological systems. The stability phenomenon is essentially a problem of convergence
and in this subsection four modes of convergence have been defined and then based on the
mean square convergence which deal with second-order stochastic variables and stochastic
processes have been explained.

A stochastic process X(¢), t € T is called a second-order stochastic process, if, the
random variables X(#,), X(t,), - - - , X(¢,) are elements of L,-space for every set ¢, ¢, , t,.

L,-space represents the linear vector space of the random variables whose second mo-
ments are finite with the inner product, the norm and the distance defined in (Soong, 1973) as

follows: Let X; and X, are second-order random variables.

1. The inner product is defined by

E{X1, Xo} = (X1, X3). (2.27)

2. The norm is defined by

I1X1 = (X, X)'*. (2.28)

3. The distance between X; and X, is defined by

dX; ,Xo) = |IX; — Xoll. (2.29)
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A second-order stochastic process X(?) is characterized by
IX@0IP = E{X*()} <, t€T. (2.30)

Four modes of convergence of stochastic processes defined in (Soong, 1973) have been

given as follows:

Definition 2.2 A sequence of random variable’s X, converges in mean square to a random

variable X as n — oo if

lim [|X, = X[| =0 (2.31)

Definition 2.3 A sequence of random variable X, converges in probability to a random vari-
able X asn — oo if

lim P{|X, - X| > €} = 0 (2.32)

for every € > 0.

Definition 2.4 A sequence of random variable X, is said to converge almost surely to a ran-

dom variable X as n — oo if

P{lim X, = X} —1. (2.33)

n—oo

Definition 2.5 A sequence of random variable X, converges in distribution to a random vari-

able X as n — oo if their associated distribution
lim Fy, (x) = Fx(x) (2.34)

at every continuity point of Fx (x).
The relationships of four mode convergence can be listed as below:
1. Convergence in mean square implies convergence in probability.
2. Convergence almost surely implies convergence in probability.

3. Convergence in probability implies convergence in distribution.

There have been various methods to study the stability of the solutions of differential
equations. The stochastic stability concepts which are based upon convergence in mean square

criterion have been considered in the sequel.
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2.4.1. Moment Stabilities

Let us consider a system of random differential equations whose explicit solution pro-
cess is represented by X(7). The stability in the mean and stability in the mean square sense

have been defined in (Soong, 1973) as follows:

Definition 2.6 The system is said to be stable in the mean if
lim EIX(?)| < ¢ (2.35)
t—oo

where ¢ is a finite constant vector.

Definition 2.7 The system is asymptotically stable in the mean if

tlim EX® —0 (2.36)

Definition 2.8 The system is said to be mean square stable if

tlim EX®)X" ()] < C (2.37)

where C is a constant square matrix with finite elements.
Definition 2.9 The system is asymptotically mean square stable if

tlim EX0OX (1) — 0 (2.38)

where 0 is the null matrix.

2.4.2. Lyapunov Stability

The stability of stochastic systems in the Lyapunov sense have been developed by
(Bertram and Sarachik, 1959) and (Kushner, 1965) with the motivation of the Lyapunov’s
direct method for the deterministic systems.

The stochastic stability in the Lyapunov sense can be obtained as follows:

Theorem 2.2 [f there exists a Lyapunov function V(X,t) defined over the state space which

satisfies

e V(X,t) is continuous in both X and t and its first partial derivatives in these variables

exist;
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e V(0,t) =0and V(X, 1) > a||X|| for some a > 0;

o E {V(X,t)} <0

then the solution of random differential equations X(t) is stable in the norm.
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CHAPTER 3

CONTROL OF STOCHASTIC NONLINEAR
DYNAMICAL SYSTEMS

This chapter focuses on the fundamentals of stochastic control systems for both linear
and nonlinear dynamical systems subject to random perturbations. The control of stochas-
tic linear systems have been developed by (Kushner, 1967; Astrom, 1971) using the minimal
variance control. In (Kushner, 1967; Astrom, 1971) the optimal control has been also gen-
eralized as a variational problem and a control law which minimizes the defined criterion
for a given system has been found. In (Skelton et al., 1997) for linear systems a theory has
been introduced to design the feedback controller which achieves a specified response covari-
ance. In (Chung and Chang, 1994) by the techniques of stochastic linearization, the nonlinear
stochastic system have been linearized and the moment control methods have been applied for
the approximated linear system. Stochastic nonlinear systems driven by noise with unknown
variance have been stabilized in (Deng and Krstic, 1999) in which the states and tracking er-
ror converge to a neighborhood of the origin. In (Sun, 2006) the moments of the nonlinear
stochastic system have been controlled by obtaining the probability density function (pdf) of
the response. A feedback regulator to minimize the dispersions of the states near the equilib-
rium has been developed in (Bashkirtseva et al., 2017) based on a quadratic approximation of
the quasi-potential proposed in (Mil’ Shtein and Ryashko, 1995).

In this chapter, the control of stochastic nonlinear systems in the presence of Wiener-
type fluctuations have been explained using the covariance control and the work given in
(Ryashko and Bashkirtseva, 2008; Bashkirtseva et al., 2017) based on the stochastic sensitivity

analysis subject to Wiener process.

3.1. Covariance Control

Controlling the covariance for linear systems subject to Gaussian white noise pertur-
bations which has been presented in (Sun, 2006) is summarized as:

A linear time invariant system is given by

X = FX(¢) + AU(t) + GB(¢) 3.1
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where X(7) € R", U(t) € R™ and B(¥) € R”, A,F and G are matrices with proper dimensions

and the vector of Gaussian white noise process B(f) satisfies

E[B(1)]

Il
o

(3.2)

0']23 o(7)

E [B(t)BT(t + T)]

where the positive definite matrix o € RP*.

A full state feedback have been considered as:
U@) = —KccX(1) (3.3)
where K¢ is the feedback gain matrix. Then (3.1) can be written as
X = (F - AKco)X(®) + GB(?). (3.4)

Applying It6’s lemma presented in Section (2.2.2), the covariance equation of the response

X(?) have been obtained as:

d
ECXX(t) = (F - KccA)Cxx (1) + Cxx(O(F — KecA) + GogG', t>0 (3.5)

in which Cxx is the covariance matrix and in the steady state as t — oo, Cxx(c0) =0.
For this steady state response of X(#) a reference covariance matrix C, xx has been
pre-specified such that Cxx(c0) = C, xx then the following equation have been obtained to

determine the gain matrix
(F — KccA)Cxx + Crxx(F — KecA) + GogG™ = 0. (3.6)

Theorem 3.1 To guarantee the existence of the covariance control gain matrix Kcc which
satisfies (3.5), C,xx must satisfy the following condition given in (Hotz and Skelton (1987);
Skelton et al. (1997)):

(I- AAT) (FCpxx + CoxxF" + GoG") (I- AAT) = 0 (3.7)
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where A" is the Moore-Penrose inverse of A.

The set of all possible feedback gain matrices Kcc is given by

1 .
Koo = EAT (FCxx + CoxxF” + GoG") (21 - AAT) C i + ATLAATC § + (I- AAT) Z
(3.8)

where arbitrary and real L = —L" and Z is an arbitrary real matrix.

The Moore-Penrose inverse, denoted by A” is used to find the inverse of a rank defi-
cient matrix. If the matrix A € C™" is not full rank, i.e., rank(A) = r < min(m, n) then the
Moore-Penrose inverse AT = AT(AAT)™! for m < n.

Since the reference covariance matrix cannot be specified arbitrarily for a given system
the pair of the reference covariance matrix C, xx and the feedback gain matrix K¢¢ can be
found with the iterative procedure given in (Skelton et al., 1997).

When the system is nonlinear, the moments associated with the solution processes of
nonlinear differential equations of the Ité type can be established with the help of the Fokker
Planck equation (Soong, 1973).

The stochastic nonlinear dynamic system has been given in the form of Itoé equation
as in (Sun, 2006):

dX(t) = F(X(t), H)dt + G(X(t),))dB(1), t >t (3.9

where the solution process X(#) € R", the matrix function G(X(t),t) € R™", and the Wiener

process B(#) € R™ with

E[dB(1)]

0 (3.10)

E[dB0)dB(t+7)| = 2D;6(r) ij=1,2,-.m.

The corresponding Fokker-Planck equation for (3.9) is given as:

aF(X, llXo, l()) _ o0
ot RS
j=1

e [(GDG);,F| (3.11)

FiX,0F + )
ij=1

where D € R™ denotes the matrix {Di j}.
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. . . kl k kn
By using the Fokker-Planck equation (3.11) and letting (X, 1) = X' (X5’ (1) - - - X" (2)

the moments equations for i(X, f) have been obtained as:

d - oh) « n o h oh
S E X, 1) = ZE{Fja—Xj} + ) E{(GDG ), ax,-axj} + E{E} (3.12)

j=1 ij=1

Example 3.1 The moment equations h(X,t) = X* associated with a simple first-order nonlin-

ear It6 equation having F = =X + aX® and G = 1 is given as
(1) = —k(my + a my0) + Dk(k — 1)my_» (3.13)

where

m(t) = E{X*(n)}, k=12, (3.14)

It is seen from (3.13) that since the moment equations are coupled and contain of orders
higher than £, to specify the solutions of the infinite hierarchy of moment differential equations
becomes a difficult task.

However when the exact stationary pdf of the solution is obtainable then the gener-
alized covariance control for nonlinear systems has been designed using the pdf proposed in
(Sun, 2006).

A nonlinear stochastic system is given as:
X+ hX,X)=U®) + gX, X)B(t) (3.15)

where 4 and g are nonlinear functions and U = f(X;, X,; K;) is a nonlinear feedback control
with the control gains K, and the Gaussian white noise B(f) has zero mean.

A quadratic cost function as a performance measure have been defined as:
J =J+BE[U?] (3.16)
where the moment tracking performance J is as:

J =" bulmly—mp)? (3.17)

k=0
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and the target values for the jkth order moments m are represented by m’;.

The moments of the state variables are given as:

my = E [ X]X§] = f f ) px(x1, x2)dxy dxy (3.18)

where j,k=0,1,2,---.
To determine the optimal control gains the cost function J has been minimized with

respect to K such that
=0, Vi (3.19)

It is important to remark that for the control design in nonlinear systems using (3.19),
the exact stationary pdf px(x;, x;) of the response is required. However for nonlinear sys-
tems the exact pdf is generally unknown and an alternative procedure was developed in (Wo-
jtkiewicz and Bergman, 2001) to approximate the pdf of the system response by using the
maximum entropy principle.

Consider the Ito differential equation
dX;(t) = F(X,ndt + Z o (X, )dB(1) (3.20)
k=1

where X(7) is the n-th dimensional vector stochastic process.

A g-th order polynomial of the state variables have been defined as

HX) = | | x{'X8 - xg" (3.21)
k=1

where ¢ = Y;_; g« and by applying Ito’s lemma given in Section 2.2.2, the g-th order moment

equations of the system can be generated as:

= 9PF(X)

1 n
+ = bjk
2 L4 L7 X X,

dE[F(X)] _ E Z m.aF(X)

dr 70X, (5:22)

J=1

_\m
where bjk = Zl:l 00k
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The response of moments up to the qth order probability density function have been

constructed as

n

n n
= q1 .92 q
px(X) = |4 — Z AXy — E /ljkx‘,-xk — = Z /lqlq2"'qnxl x50 - X

k=1 Jik=1 q1,92, \qn=1q1+q2++qn=q
(3.23)
The coefficients of A should be chosen such that the entropy in (Sun, 2006):

H = E[-In px(x)] = - f px(X)In px(X)dx (3.24)
Rn

i1s maximized subject to the constraint

f px(X)dx = 1. (3.25)
o

Since maximum entropy principle requires the polynomial nonlinear terms and a set
of implicit closed nonlinear functions of moments to determine the approximate probability
density function then an alternative asymptotics approach can be applied to construct approx-

imate probability density function.

3.2. Stochastic Sensitivity Analysis for the Nonlinear Dynamical System

Perturbed by Wiener Process

The analysis and control by using Fokker-Planck-Kolmogorov equation is difficult
even for two-dimensional stochastic systems, therefore the alternative asymptotics approaches
such as quasi-potential have been developed in (Fredlin and Wentzell, 1984) and by solving
the corresponding Hamilton-Jacobi equation, the quasi-potential which provides the mini-
mum action related to the steady-state probability distribution can be obtained. Since this is
still a difficult task, a quadratic approximation of the quasi-potential have been proposed in
(Mil’Shtein and Ryashko, 1995) for the stability analysis.

The approximation of the quasi-potential in stability problems have been summarized

as follows:
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Consider the Ito SDE

dX = F(X)dt + eG(X)dB(t) (3.26)

where X € R", B(t) € R™ is Wiener process, € is the intensity of noise and F(X) € R" and
G(X) € R™™" are sufficiently smooth functions .

In the absence of noise (e = 0), (3.26) is assumed to have the stationary point X* (i.e.,
F(X*) = 0) and the matrix S (X) = G(X)G(X)T is positive definite.

The stationary pdf px(x) of (3.26) satisfies the following Fokker-Planck-Kolmogorov

equation

(3.27)

where b;; = [GGT];;.

Since it is a difficult task to obtain the solution of (3.27) even for 2-dimensional case,
the asymptotics for the stationary probability density of the state X, ¢(X) called as quasi-
potential are used.

The quasi-potential ¢(X) can be considered as a variational problem of the minimiza-
tion of the action functional and ¢(X) is obtained by solving the Hamilton-Jacobi equation

given as follows:

A\ 1/[0¢ op\
<F(X), 5X> + > <(9X’S(X)8X> =0 (3.28)
where the notation ( , ) represents the inner product and
d(X) =0, ¢&X)=>0. (3.29)

The first approximation of the quasi-potential in a neighborhood of the stationary point
in (Mil’Shtein and Ryashko (1995)) is written as:

N o PP . ‘
(X )>+§<(X—X ) 3 XX - X )>+0(|X—X |3). (3.30)

9¢

P(X) = ¢(X*)+<(X - X", X
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Since g—i(X*) = 0 in (3.29) and by letting V = %%(X*) in (3.30) then the quasi-

potential becomes in the form as follows:

$(X) = 1 (X) + O (IX - X°T) (3.31)

where the quadratic form ¢;(X) = (X — X*)T V(X — X*).
Replacing the ¢(X) with the quadratic form of the quasi-potential ¢;(X) in (3.28), the

Hamilton-Jacobi equation can be rewritten as:

FTV+VF +2VSV =0 (3.32)

where

_ aﬁ % " _ *\ * T *
F==—(X , S=85X)=G6X"HG" (X" (3.33)
0x; ij=1
and
V= l82—(]>(X*) (3.34)
T 20x2 ' )

The matrix W = V! corresponds to the stochastic sensitivity matrix which is a unique

solution of the Lyapunov’s equation

FW+WFT +28 =0 (3.35)

Based on this quadratic approximation, a feedback regulator to minimize the disper-
sions of the states near the equilibrium has been developed in (Bashkirtseva et al., 2017).

The control of nonlinear systems by using the stochastic sensitivity analysis has been
summarized below :

A nonlinear controlled stochastic system is given as:

X = £(X) + h(X)U + eg(X)EQD) (3.36)

where X, f(X) € R", h(X) € R™, g(X) € R™"-matrix function denotes the dependence of
disturbances on the states, &(7) € R is white Gaussian noise, € is the noise intensity and

the control input U € R is designed by the feedback regulator with noisy observations Y € R"
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U = K¥Y-X)

Y(1) X(1) + ep(X(0))n(r) (3.37)

where the equilibrium X satisfies F(X) = 0 and the feedback matrix K is (I X n)-constant
matrix, ¢(X) is the n X m-matrix function corresponding to the dependence of disturbances
on the states and n(f) € R™ is white Gaussian noise which is uncorrelated £(¢) and satisfies
E(n(®) =0, Emn" () = 6(t — 7)1 with the identity matrix .

Let X(¢) be a solution of the system (3.36) and the variable

Z(t) = lim D =X (3.38)
e—0 €

characterizes the sensitivity of the equilibrium X to random disturbances of the controlled
closed-loop system (3.36) then the first-approximation system can be described by the fol-
lowing SDE as:

Z = (F + BK)Z + BKRn + G¢ (3.39)

where
of

F=-
ox

X), B=hX), R=¢X), G=gX. (3.40)
Equation (3.39) can be rewritten in the Ito form as:
dZ = (F + BK)Zdt + BKRAW, + GdW, (3.41)

where uncorrelated W;(¢) and W,(¢) are m-dimensional Wiener processes with dW; = n(t)dt
and dW, = &(t)dt.
By applying the Ito’s rule the dynamics of the second moment V(¢) = cov(Z(t), Z(1))

has been obtained as

V =(F +BK)V + V(F + BK)" + BKO'K'BT +§ (3.42)
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in which it has a unique stationary solution W satisfying the following matrix equation
(F + BE)W + W(F + BK)" + BKO'K'B" +S =0 (3.43)

where ® = RR”, S = GG and W quantifies the deviation of the stochastic response of the
nonlinear system from the equilibrium which is called as stochastic sensitivity matrix of the

equilibrium of system in (Bashkirtseva et al., 2017).

Theorem 3.2 : For an assigned positive definite stochastic sensitivity matrix W if there exist
K such that the eigenvalues of the matrix (F + BK) lie in the left half of the complex plane then

an assigned W is called attainable matrix and satisfies the following conditions in (Bashkirt-

seva et al., 2017):

Py(FW + WFT +S)P, =0 (3.44)
WO 'W-FW-WF' -8 >0 (3.45)

where the projective matrix P, = I — BB*, the superscript “+” denotes the pseudoinversion

and > refers to the positive semi-definiteness.

Under these conditions W is a unique solution of (3.43) and the explicit expression of

the feedback coeflicient matrix K can be found in terms of W, F, B, ®, S as:

(1) If rank(B) = rank(R) = rank(G), then for any attainable matrix W then (3.43) has a

solution

K=B"(QHo - W) (3.46)
where H € R™" is an arbitrary orthogonal matrix.

(1) If rank(B) < rank(R) = rank(G) then the matrix W satisfies the following equation

P, (Q%Hop—l - qul) =0 (3.47)

and then (3.43) has a solution

K=8B" (Q%qu% - wo). (3.48)
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The minimization of the dispersions of the states can be considered as the minimiza-
tion of the quantitative cost measure J(W) = (W, Q) where Q € R™ is a positive-definite
symmetric matrix and with the constraint of matrix equation given in (3.43), then the La-

grange function L(W, K, A) with Lagrange multiplier A € R™ is given as:

LW, K, A) =W, Q) + (A, J(W, K)) (3.49)

where
IJ(W,K) = (F + BK)W + W(F + BK)" + BKO'K'B" + 8. (3.50)

The approach of stochastic sensitivity analysis explained in Section (3.2) has provided
us to develop the control rule for the rotor angle stability in stochastic SMIB system in the
Chapter 5.

38



CHAPTER 4

STABILITY ANALYSIS OF STOCHASTIC SINGLE
MACHINE INFINITE BUS POWER SYSTEM

Due to the considerable amounts of power production from high-variable sources such
as wind turbines and solar cells and the variable electricity consumptions have made synchro-
nism more important (Dobson, 2013). Some major blackouts occurring such as in the Turk-
ish power system (TEIAS and ENTSO-E, 2015) and in the Italian power system (Corsi and
Sabelli, 2004) have been triggered by the tripping of a line which results in the loss of angular
stability and hence a loss of synchronism. By the integration of renewable energy sources into
the power systems, the rotor angle stability to maintain the synchronism of the interconnected
generators would be more severe problem to accomplish. The single machine infinite bus
(SMIB) power system is convenient and practical for the understanding of stability analysis.

In (Canizares, 1995) the load level has been considered as a bifurcation parameter
and it has been observed that a small perturbation in the load beyond the bifurcation value
cause a loss of synchronism of the generator with respect to the infinite bus. The dynamic
characteristics for the SMIB system under periodic load disturbance have been studied in
(Wang et al., 2015). The SMIB power system with a synchronous generator has been modeled
by a third-order differential equation in (Ma et al., 2016) and the responses of rotor angle and
rotor speed have been investigated with the change of mechanical power and damping factor
which have been considered as the bifurcation parameters.

Besides the deterministic models given in (Canizares, 1995; Wang et al., 2015; Ma
et al., 2016), the stochastic models for the disturbances exist in the literature as: In (De Marco
and Bergen, 1987) the variations in reactive load power fluctuations have been modeled by
Wiener process and a security measure has been proposed to indicate the voltage collapse in
power systems. The power fluctuations have been modeled by Gaussian white noise in (Wei
and Luo, 2009) and the stability for such a stochastic SMIB (SSMIB) power system have been
investigated. In (Lu et al., 2015) the effects of stochastic excitations in SMIB system have
been studied by the p-moment stability of rotor angle. In (Shi et al., 2018) the wind power
and the load uncertainty in SMIB power system have been modeled by Wiener processes and
an analytical method has been proposed to estimate the probability of transient stability under

stochastic disturbances.
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In these former studies the stochastic fluctuations in electrical power systems either
at the loads or at the excitations have been considered as Brownian motion (Wiener process).
In (Yilmaz and Savaci, 2017a,b) it has been proposed that the stochastic disturbances occur-
ring in power systems could be more realistically modeled by alpha-stable (a-stable) Lévy
process compared to the modeling by Wiener process. The main motivation for our assump-
tion is that in (Weron, 2007) the stochastic model of the electricity price has been proposed
as a-stable Lévy process and in (Kruczek et al., 2017) the electricity market data have been
modeled by using the a-stable periodic autoregressive model. Since the load has been consid-
ered as one of the main factors in determining electricity prices because the sudden demand
or supply changes cause sharp spikes in electricity prices then these a-stable Lévy type fluctu-
ations have been characterized by non-Gaussian, heavy-tailed behavior defined by stable law
(Samorodnitsky and Taqqu, 1994).

In the first stage of this chapter, the stochastic fluctuations in SMIB power systems
have been modeled as Wiener and a-stable Lévy processes, respectively and the effect of
such fluctuations on the rotor angle stability have been investigated for various parameters
of characteristic exponent @ and skewness . In the second stage of this chapter, the basin
stability of SMIB power systems with a-stable Lévy type fluctuations have been investigated
over the parameter space of mechanical power and damping parameter. The probabilities
of returning to the stable equilibrium point have been calculated for different characteristic
exponent and skewness parameters of a-stable Lévy type fluctuations to see the effect of

impulsive and asymmetric load fluctuations.

4.1. Deterministic Single Machine Infinite Bus Power Systems

The deterministic swing equations in (Kundur et al., 1994) which govern the rotational

dynamics of the synchronous machine are given as

5§ = w

Mo = -Dw+P, —P, 4.1

where ¢ is the relative rotor angle of machine, w is the rotor speed with respect to the syn-
chronous reference, P, is the mechanical power, P, is the electrical power, M and D are the
inertia and the damping coefficients, respectively.

The electrical power output P, = P,,sin(d) in which the maximum output of the

machine is P, = E Ep/Xr as given in (1.17) and (1.18), respectively.
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As stated before E’/¢ is the internal voltage of machine and E3/0 is the infinite bus
voltage; X is the total reactance between the machine and infinite bus. The maximum real
power that can be transferred to the infinite bus is fixed as P,,, =1 per unit (p.u.) and by

T T
defining the state variable [X1 xz] = [5 w] then with unit inertia constant (4.1) becomes

X1 = X,

X, = —Dxy+ P, — sin(xy). “4.2)

The equilibrium points of (4.2) satisfy x; = 0 and sin(x]) = P,. By linearizing the

state equations around the equilibrium points it can be easily seen that

T T T
[xl* xz*] = [6* a)*] = [arcsin(Pm) O] (4.3)
corresponds to the stable equilibrium point (SEP) while
T T T
[xl* xg*] = [6* w*] = [n — arcsin(P,,) O] 4.4)

corresponds to the saddle point. The SEP is indicated by green circle and the saddle point is
indicated by red circle in Figures 4.2- 4.4.

There are multiple equilibria in the state space, “6 — w plane" due to the 2x periodicity
of the relative rotor angle ¢ while there is only one SEP and one saddle in the corresponding
cylindrical state space “[—m, ] X R".

The phase portraits of deterministic SMIB system shown in Figures 4.1 -4.4 have been
obtained for the inital values of “[—m, ] X [—10, 10]" with different values of the mechanical
power P,, and the damping parameter D.

It has been clearly seen from (4.4) that there are no fixed points if P, > 1 and all
trajectories converge to the unique rotating orbit as shown Figure 4.1.

The mechanical power have been kept fixed and the phase portraits of deterministic
SMIB have been obtained by varying the the value of damping parameter D relative to the
critical damping level D.. The critical damping level D, which can be obtained by using
Melnikov method given in (Guckenheimer and Holmes, 2013) has been defined as the value
satisfying the equation of homoclinic bifurcation curve P,, = 4D./n. For P,, = 0.5 the critical
damping level D, has been evaluated theoretically as 0.3927 and numerically as 0.414.

By selecting the value of the damping parameter D greater than the critical damping

level D, it has been observed that the trajectories converge to the SEP as in Figure 4.2.
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Figure 4.1. Phase portrait of deterministic SMIB system for P,, > 1.
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Figure 4.2. Phase portrait of deterministic SMIB system for D = 0.8 > D, = 0.414
and P,, = 0.5.
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Figure 4.3. Phase portrait of deterministic SMIB system for D = D, = 0.414 and P, = 0.5.
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Figure 4.4. Phase portraits of deterministic SMIB system for D = 0.36 < D, = 0.414
and P,, = 0.5.
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When the value of the damping parameter D has been chosen as equal to the critical
damping level D,, it has been observed that all the trajectories converge to the SEP sooner or
later as in Figure 4.3.

By choosing the value of the damping parameter D less than the critical damping
level D, it has been observed that the system has a SEP and a stable limit cycle as shown in
Figure 4.4 and in this bistable case depending on the initial conditions the trajectories converge
either to the SEP or to the rotating orbit (limit cycle). The case of rotating orbit is undesired
for the rotor angle stability of SMIB.

The basin of attraction can provide an understanding for the stability analysis in de-
terministic systems. The basin of attraction of each attractor corresponds to the region of all
possible initial conditions which lead to trajectories converge on that attractor. The basins of
attraction for the bistable case have been computed by using Monte Carlo method and have
been presented in Figure 4.5 in which the basin of attraction of SEP is colored in blue while

the basin of attraction of stable limit cycle is colored white.

1 0 T T T T T

(9
T
1

Rotating speed, w (rad/sec)
o

0000000000
_10 1 m AAAAAAAAAAAAAAAAAAA

—T —-21/3 —/3 0 /3 27/3 T
Rotor angle, & (rad)

Figure 4.5. Basin of attraction of the stable equilibrium point (SEP) which is colored
in blue while the basin of attraction of stable limit cycle is colored in white.
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The deterministic model of SMIB given in (4.1) is analogous to the Josephson junction

and the classical driven pendulum given in (Strogatz, 2018).

4.2. Stochastic Single Machine Infinite Bus Power Systems

In the steady state, there is a balance between the mechanical power and the electrical
power and the machine runs at a constant speed which leads to the constant relative rotor angle
(i.e., at the equilibrium point § = 0). Due to the random load change, line tripping or loss of
machine the imbalance between the mechanical power and the electrical power may result in
deviation from the rotational speed which leads to the loss of synchronism.

Under the load fluctuations of Gaussian type, (4.1) have been analyzed in (Wei and
Luo, 2009) and in (Lu et al., 2015) where the imbalance between the mechanical power and
the electrical power in the SSMIB power system given in (4.1) has been modeled by P, =
eB(t) where € is the noise intensity and B(?) is the Brownian motion (Wiener process) and
the increments of the Brownian motion dB(¢) is Gaussian random variable (Soong, 1973;
Samorodnitsky and Taqqu, 1994).

As it has been proposed in (Yi1lmaz and Savaci, 2017a,b) the imbalance between the
mechanical power and the electrical power in the SSMIB power system given in (4.5) has been
modeled by P,(f) = €L,(t) where € is the noise intensity and L,(¢) is the alpha-stable Lévy
process and the increments of the Lévy process dL, () is a-stable random variable (Samorod-
nitsky and Taqqu, 1994).

Our motivation of choosing Lévy type fluctuations is that it admits impulsive and
asymmetric fluctuations which can be modeled by a-stable random variable (Samorodnitsky
and Taqqu, 1994). Modeling the imbalance between the mechanical power and electrical
power as P;(t) = €L,(t) and considering the unit inertia constant then the dynamics of the

SSMIB can be written as

0
1

+ Py (45)

0] 3 w
W -Dw + P,, — P,

17 T
by defining the state variable [X1 x| = [(5 w] then (4.5) can be rewritten as:

dX(t) = £(t, X(2))dt + gdL, (1) 4.6)
(2, X(r) = ) 8= 4.7)
—Dx, + P, — sinx; €
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and the increments of the Lévy process dL,(t) is a-stable random variable (Samorodnitsky
and Taqqu, 1994).
The Euler-Maruyama method given in (Janicki and Weron, 1993; Kloeden and Platen,

1999) is applied to approximate the numerical solution of (4.7) as:

X, =X, + @, X))+ g A Ly 4.8)

T J—
,i

where the increment of the Lévy process is a-stable random variable ALf ; defined by AL
Lo([tie1,t]) ~ So(r'% B, u) with T = t; — t;_; have been generated by the method given in
(Janicki and Weron, 1993).

4.3. The Effect of Wiener and a-stable Lévy Power Fluctuations on the
Rotor Angle Stability

Consider the SSMIB system given in (4.5). In the sequel, the numerical solutions
of the phase portraits of generator angle and speed responses have been obtained for 1000
realizations for 7" = 200 seconds with the step size 7 = 0.01 and the noise intensity € = 0.01.
The variation of the basin of attraction of the SEP and the limit cycle under the stochastic load

fluctuations have been observed based on a single initial condition.

4.3.1. Variation of Basin of Attraction of SEP by Increasing

Impulsiveness and/or Skewness

Firstly, an initial condition has been chosen whose trajectory converges to the SEP for
the deterministic SMIB and then for this initial condition 1000 trajectories which correspond
to the realizations of stochastic SMIB have been obtained. Under the Wiener type fluctuations
in the load (o = 2, 8 = 0) all realizations of the responses of rotor angle and rotating speed
have converged to the SEP as shown in Figure 4.6 and the SEP has been observed to be stable
in the mean square sense.

Thereafter by increasing the impulsiveness and/or skewness the variation of the basin
of attraction of SEP has been analyzed. The impulsiveness at the load fluctuations has been
chosen as @ = 1.95 with 8 = 0 the rotor angle responses have converged to the SEP as shown

in Figure 4.7.
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Figure 4.6. Wiener type fluctuations in the load @ = 2.0 and g = 0.
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Figure 4.7. Lévy type fluctuations in the load with @ = 1.95 and 8 = 0.
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When the impulsiveness at the load fluctuations has been increased by choosing the
characteristic exponent @ = 1.8 while preserving the symmetry (i.e., 5 = 0) and hence the load
fluctuations have become non-Gaussian. The majority of 1000 realizations has converged to
the SEP but sudden jumps have occurred in the few of realizations of the rotor speed as shown
in Figure 4.8. These trajectories have converged to the rotating orbit (limit cycle) which
previously stated as undesired for the rotor angle stability. The SEP has been observed to be
unstable in the mean square sense and stable in the sense of probability.

The deviation from the symmetry at the load fluctuations has been provided by in-
creasing the skewness. Although the rotor angle responses have converged to the SEP for
a = 1.95, g =0 as shown in Figure 4.7 by increasing the skewness 8 = 1 few of realizations
has converged to the rotating orbit as shown in Figure 4.9.

With these obtained results it has been observed that the increase of impulsiveness
and/or the distortion of the symmetry at the load fluctuations lead to the change in the basin of
attraction of the SEP. Some of the trajectories have converged to the limit cycle and the SEP
have been observed to become unstable in the mean square sense.

This important observation is distinct from the observation in (Lu et al., 2015) which
states that under the Wiener type fluctuations at the load the SEP is stable in the mean square

sense.

4.3.2. Variation of Basin of Attraction of Limit Cycle by Increasing

Impulsiveness and/or Skewness

In the sequel, the variation of basin of attraction of limit cycle has been analyzed based
on a single initial condition by increasing impulsiveness and/or skewness. An initial condition
has been chosen such that the trajectory converges to the limit cycle for the deterministic
SMIB and then for this initial condition 1000 trajectories have obtained which correspond to
the realizations of stochastic SMIB.

The fluctuations at the load have been modeled as Wiener process (¢ = 2.0 and 8 = 0).
All of 1000 realizations have converged to the rotating orbit as shown in Figure 4.10. This
situation have caused to be the rotor angle of the system unstable both in the mean square
sense and in the sense of probability.

The random fluctuations in the load have been modeled as symmetric Lévy process
with @ = 1.8, 8 = 0. A few of the 1000 trajectories have converged to the SEP as shown in
Figure 4.11 (i.e. zoomed version of red area), the majority of trajectories have converged to
the rotating orbit (limit cycle) and hence the rotor angle is still unstable both in the sense of

probability and in the mean square sense.
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Figure 4.8. Lévy type fluctuations in the load with @ = 1.8 and 8 = 0.

Rotating speed, w (radfsec)
(=] —
R e e ame——
| |

1 1 1
0 &0 100 160 200 280
Rotar angle, & (rad)

Figure 4.9. Lévy type fluctuations in the load with @ = 1.95 and 8 = 1.
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Figure 4.11. Lévy type fluctuations in the load with @ = 1.8 and 8 = 0.
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However, with the increase of impulsiveness, the percentage of trajectories which con-
verge to the SEP for 1000 realizations has increased as shown in Table 4.1 and hence the
stability of the rotor angle improves in the sense of probability. This important observation is
distinct from the response of Wiener type fluctuations where the rotor angle is unstable in the

sense of probability which has been observed as shown in Figure 4.10.

Table 4.1. Percentage of Stochastic Trajectories Converging to the SEP.

Bl\a | 1.9 1.8 1.6 1.5 1.4 1.2

0 1.2% | 3.3% | 10.8% | 12.7% | 24.5% | 43.7%

-1 1.7% | 4.8% | 19.3% | 26.4% | 38.1% | 61.0%

With the asymmetric load fluctuations where § = —1, the percentage of trajectories
which converge to the SEP have increased with the increase of impulsiveness as shown in
Table 4.1. Therefore it has been observed that the stability of the rotor angle improves in the
sense of probability.

However, for § = 1 the trajectories have not converged to the SEP as shown in Fig-
ure 4.12, all trajectories have converged to the limit cycle. This observation has revealed that
the tendency of the distribution at the load fluctuations is important for the rotor angle stability
in the sense of probability.

For given initial condition, the trajectories converge to the limit cycle in the determin-
istic SMIB whereas in the stochastic SMIB some of these realizations have been observed
which not converge to the limit cycle but converge to the SEP for a-stable Lévy type load
fluctuations. It has been concluded that the Lévy type fluctuations in the load have provided
to change in the basin of attraction of the limit cycle. Therefore the stability of the rotor
angle in the sense of probability has been improved. This important observation is distinct
from the response of Wiener type fluctuations where the rotor angle is unstable in the sense of
probability as shown in Figure 4.10.

Since the variation of basin of attraction of SEP and limit cycle have been observed
based on a single initial condition then beyond these observations obtained from a single initial
condition, in the following subsection, a largely set of initial conditions have been considered

and hence the rotor stability have been extended in terms of basin stability.
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Figure 4.12. Lévy type fluctuations in the load witha = 1.9 and 8 = 1.

4.4. Basin Stability of Stochastic Single Machine Infinite Bus Power
System

The basin stability is a measure of the volume of the basin of attraction and it allows to
quantify the probability to converge to the equilibrium point after being subjected to perturba-
tions. The basin stability in deterministic SMIB systems has been presented in (Menck et al.,
2013, 2014) and then the Northern European power grid has been considered as a case study.
In (Ji and Kurths, 2014) the basin stability for deterministic SMIB system and four-node net-
work have been investigated. By introducing the notion of stochastic basin of attraction, the
basin stability has been generalized in (Serdukova et al., 2016) and applied to the three-well
potential perturbed by two types of noises, Brownian motion and a-stable Lévy motion.

The basin stability is a powerful method which can be applied to the many fields of
science (Leng et al., 2016). For the practical purposes, the numerical computation of the basin

stability is as follows:

(i) K points have drawn uniformly at random from [, 1] X [-10, 10] which correspond to

the K initial conditions of (6, w).
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(i) The system has been integrated long enough for these K points and 1000 random real-

izations have been carried out for each initial condition.

(i11) The number M of the initial conditions which finally reach a SEP in the presence of

disturbance has been counted.
(iv) The criteria for the basin stability has been quantified by the percentage M/K.

(v) The probability of the system returning to a SEP has been defined as the return proba-
bility.

In this part, to observe the possibility of the power system to reach the synchronous
state in the presence of disturbances which occur due to such as short circuits, load fluctuations
or renewable generations, these power fluctuations have been modeled as Wiener and a-stable
Lévy type, respectively and 400 initial conditions of (, w) have been taken from [—m, 7] X
[-10, 10] and 1000 random realizations have been carried out for each initial condition as
given in our work (Yilmaz and Savaci, 2017b). Then the system has been integrated long
enough and the percentage of the initial values converging to the SEP has been calculated.

In the case of deterministic SMIB system for different values of the mechanical power
P,, and damping D parameters the basin stability diagram have been obtained as shown in
Figure 4.13.

The colored circles represent the return probabilities which correspond to the related
mechanical power and damping parameters. It can be expressed such that for the pair of
parameters corresponding to the red circles, all trajectories converge to the SEP with the return
probability one whereas for the pair of the parameters corresponding to the blue circles, the
trajectories converge to the stable limit cycle (rotating orbit) with the return probability zero.

For the pair of mechanical and damping parameters corresponding to the yellow cir-
cles, it has been calculated that 600 of the 1000 realizations converge to the SEP. The rest of
the colored circles have also been marked with the same approach.

The pair of mechanical power and damping parameters have been chosen as P, = 0.5
and D = 0.8. In the deterministic case all trajectories have converged to the SEP as observed
in Figure 4.13.

When the power imbalance between the mechanical and electrical power has been
modeled by Brownian motion (¢ = 2,5 = 0) the return probability have been evaluated as
0.9965.

However, for various values of the characteristic exponent « and for either symmet-
ric or asymmetric a-stable Lévy type power fluctuations the return probabilities have been

evaluated and it has been observed that the return probabilities decrease with the decrease
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of characteristic exponent « (increase of impulsiveness) for either symmetric or asymmetric

a-stable Lévy motion as shown in Figure 4.14.
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Figure 4.13. Basin stability diagram for deterministic case.

For positive-skewed a-stable Lévy motion the return probability decreases with the
decrease of characteristic exponent « and then for @ = 1.2 the return probability increases.

When the mechanical power P = 0.5 and damping D = 0.2 have been selected the
return probabilities have been obtained as shown in Figure 4.15. For negative-skewed a-stable
Lévy type power fluctuations, it has been observed that the return probability increases with
the decrease of characteristic exponent a (increase of impulsiveness) and then for @ = 1.2
return probability decreases.

The basin stability diagram over the parameter space P,,—D with the changes of values
of characteristic exponent @ and skewness 8 parameters has been obtained as presented in
Figures 4.16- 4.18. It can be seen from Figures 4.16- 4.17 that asymmetric a-stable Lévy type
power fluctuations with @ = 1.7 provides a change in the basin stability diagram compared to
the deterministic basin stability diagram. The return probability increases for some specific

parameter pair value of (P,,, D) and hence the stability of the rotor angle is improved.
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Furthermore how the basin stability over parameter space changes according to the

skewness parameter S = 1 and 8 = —1 can be clearly seen from Figures 4.16- 4.17. For a =

1.2 and B = 1 the region of basin stability for SEP becomes smaller as shown in Figure 4.18.

Therefore it has been concluded that the system is not able to withstand to the perturbations.
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Figure 4.18. Basin stability diagram in the case of a-stable Lévy type power fluctuations
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CHAPTER 5

CONTROL OF STOCHASTIC SINGLE MACHINE
INFINITE BUS POWER SYSTEMS

In (Yang, 1997) H-infinity control method have been applied to find the optimal power
system stabilizer for single machine infinite bus systems in the presence of disturbance. In
(Rigatos et al., 2017) with the appropriately chosen Lyapunov function, nonlinear H-infinity
control method have been applied to the linearized model of the distributed synchronous gen-
erators subject to the variations in the mechanical torque and measurement noises. In (Mah-
mud et al., 2017) by considering the effects of measurement noises which have been modeled
as white Gaussian noises, a partial feedback linearization technique have been designed in
which the feedback linearizing control law has been proposed to decouple the noises from the
system. These noises have been incorporated during the simulation in (Mahmud et al., 2017).

In the first part of this chapter, the control of the rotor angle stability of SMIB power
systems with Wiener type stochastic fluctuations has been achieved by minimizing the stochas-
tic sensitivity function. In the second part of this chapter, an analytical expression for the rotor
angle dispersion of SMIB in the presence of impulsive and asymmetric fluctuations have been
derived. Those fluctuations have modeled by a-stable Lévy processes and the minimization

of the rotor angle dispersion has been achieved.

5.1. Controlling the Rotor Angle Stability in SMIB Power Systems by

Minimizing Stochastic Sensitivity Function

In this section, the stochastic sensitivity analysis (SSA) introduced in (Ryashko and
Bashkirtseva, 2008; Bashkirtseva et al., 2017) has been used for controlling the rotor angle
stability of SMIB power system in the presence of Wiener type power fluctuations. Depending
on the values of the ratio P,,/P,.\, the damping parameter D, the initial conditions and the
noise intensity of the stochastic fluctuations, the trajectories converge either to the SEP or to
the stable limit cycle (unique rotating orbit) as stated previously. Since the rotating orbit is
an undesired case in power systems this situation can be overcome by the control input which
is synthesized by the feedback regulator. The control rule to stabilize the stochastic SMIB

system have been derived through the stochastic sensitivity measure given in Chapter 3.
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Consider the SSMIB system given in (4.5) in which the imbalance between the me-
chanical power and the electrical power has been modeled as Wiener process P, = €B(?).
It has been assumed that the state variables ¢ and w are available for measurements and a

feedback u = k;(y, — 0) + k»(y» — @) with noisy measurements y; and y, :

0+ ecin (1) (5.1

yi(0)

2(1) w + €cona(t)

where ki, k, € R are the feedback coeflicients, c;,c, € R are the intensity of noisy measure-
ments and 771, 77, are uncorrelated white Gaussian noises.
Using the feedback regulator given in (5.1), the matrices defined in (3.40) have been

obtained as:

0 1 0 00
F = _ , B= , S = ,
=P, cos(0) —-D 1 01
c% 0
R = , K=1k k. (5.2)
0 c%

For the uncontrolled SMIB system (4.5) with Wiener type load fluctuations P, = €B(¢)

the solution of matrix equation

FW+WFT +8 =0 (5.3)

gives the stochastic sensitivity matrix W as follows:

— L 0
W = 2PpaxD cos(6) A (54)
0 L

2D

In the presence of control input by using the conditions given in (3.44)-(3.45) a para-
metric description of the set of pairs (wy;, wy,) for which the stochastic sensitivity matrix W

is attainable has been obtained through the following inequality:

2 2 2 2 2 2 2 2 272 < 2.2 2 272
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where wy; and wy, are the diagonal elements of the stochastic sensitivity matrix W.

The aim is to design a feedback regulator which minimizes the value of stochastic
sensitivity and hence to stabilize the equilibrium (9, 0).

To construct a feedback regulator which minimizes the stochastic sensitivity function,
the cost function J(W) = tr(W) = wy; + wy, has been considered.

The minimum of the cost function J, = min J(W) geometrically corresponds to the
tangent line to the border of the attainability region and the corresponding pair (w;, wy;) of
the attainable set provides the minimization of stochastic sensitivity function.

For this minimal attainable value of the pair (wy;, w,,), the optimization problem can
be directly solved without using the Lagrange function given in (3.49) for lower order dimen-
sions and the coefficients of the optimal regulator coefficients have been found such that

W2

ki = ——= 4 P, cos(0) (5.6)
Wi

and the coefficient k, satisfies the following equation:

2
I3 + 2wy (ks — D) + c%( Y2 P cos(5)) +1=0 (5.7)
wii

which indeed implies that k, should be as k, < D.

The designed feedback regulator given by (5.6)-(5.7) for controlling nonlinear stochas-
tic SMIB power system has been based on the linearization of nonlinear stochastic system
around its equilibrium point. These designed coeflicients k; and k, have been verified through

the simulations of the nonlinear stochastic SMIB system written in the It6 form:

dX(t) = F(t,X(0)dt + G dB(z) (5.8)

where the state variable X = [§ w]’, the uncorrelated incremental Wiener process dB =

[dBV dB® dB®]T and

w

|—Dw + P, — sin(0) + k(6 — 0) + khw

F(1, X(®)

G = (5.9)

0 0 0]

€ €kic; €kyoy
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The numerical solution of (5.8) can be approximated by using the Euler-Maruyama

method (Kloeden and Platen, 1999) as

X, =X, , + F(ti_1, X(1:-1))T + GAB? (5.10)

where the increment of the Wiener process defined by AB(TI) = B(t)— B(t,.)) with[ = 1,2,3is
Gaussian random variable N(O,7) and t; = it fori =0, 1,--- ,n.

In the sequel, the parameters £ = 1.0 p.u, V = 1.0 p.u and X7 = 1.0 p.u have been
chosen and the stochastic sensitivity analysis have been carried out for different parameters
of the mechanical power P,, and damping coefficient D. The initial conditions of 6(0) and
w(0) have been selected as 100 evenly spaced points in the interval of [, ] and [-10, 10],
respectively.

Consider the values of mechanical power P,, = 1 p.u and the damping coeflicient
D = 0.2 puand ¢; = ¢; = c. In this case the SEP and the saddle point coalesce in a saddle-

node bifurcation of fixed point 6 = 1.5708, @ = 0.

10 —

Rotating speed (radfs)
L}

A0 1 A 1 1 1 1 1 1 1 1 1
20 0] 20 40 =0 20 100 120 140 180 120 200

Rotor angle (rad)

Figure 5.1. Phase portrait of rotor angle ¢ vs. rotating speed w of deterministic (€ = 0)
for the initial conditions 6(0), w(0) in the interval of [—x, 7] and [—10, 10].
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For the uncontrolled deterministic system (4.5) (i.e., u = 0,e = 0) it has been ob-
served that all trajectories converge to a stable limit cycle (unique rotating orbit) as shown
in Figure 5.1. Since for any initial condition the trajectories converge to the unique rotating
orbit, the initial point has been kept to be as 6(0) = 1, w(0) = 1 to give a clear visualization
of the response in the presence of power fluctuations.

The phase portraits of the stochastic responses over 1000 realizations have been shown
in Figure 5.2 where the noise intensity € = 0.001. It has been seen from Figure 5.2 that
the system has large-amplitude oscillations and it has been calculated that the uncontrolled

stochastic SMIB power system (4.5) has w;; = 2.5 and w,, = 2.5 by using (5.4).

Rotating speed (rad/s)

] 1 1 1 1 1 1 1 1 1
0] 20 40 50 20 100 120 140 180 180 200

Rotar angle (rad)

Figure 5.2. Phase portrait of rotor angle ¢ vs. rotating speed w of stochastic uncon-
trolled SMIB power system (e = 0.001) for 6(0) = 1, w(0) = 1.

The attainability domains for the pairs (w;;, w,,) of the stochastic sensitivity matrix W
for the different intensity values of the noisy measurement “c” have been obtained as shown
in Figures 5.3-5.6. The blue region corresponds to the values of (wy;,w,,) for which the
stochastic sensitivity matrix W is attainable.

As itis seen from Figures 5.3-5.6 that the increase of ¢ results in the contraction of the

attainability region.
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Figure 5.3. Attainability region of the stochastic sensitivity matrix W for P, = 1,
D = 0.2 and the intensity of noisy measurement ¢ = 0.2.

251

0.5r

11

Figure 5.4. Attainability region of the stochastic sensitivity matrix W for P, = 1,
D = 0.2 and the intensity of noisy measurement ¢ = 0.5.
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Figure 5.5. Attainability region of the stochastic sensitivity matrix W for P, = 1,
D = 0.2 and the intensity of noisy measurement ¢ = 0.8.
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Figure 5.6. Attainability region of the stochastic sensitivity matrix W for P, = 1,
D = 0.2 and the intensity of noisy measurement ¢ = 1.0.



Having obtained the attainability region for the pairs of (wy;, wy,) of the stochastic
sensitivity matrix W, the optimal regulator coefficients which minimize the cost function
J(W) = wy; + wy, has been calculated as given in Table 5.1.

It has been seen that even if the feedback contains high noisy measurements (i.e. for
high c¢ values) the optimal regulator coeflicients k; and k, can be obtained and the increase
of the intensity of noisy measurements causes the optimal regulator coefficients k; and k, to

become larger.

Table 5.1. Optimal parameters of stochastic sensitivity matrix and the optimal regu-
lator coeflicients.

c Wi W) ki ky

0.2 0.07 0.25 -3.5714 -14.8708
05 04 064 -1.60 -6.037
0.8 089 1.15 -1.2921 -4.1931
1.0 1.38 1.45 -1.0507 -3.3543

Using these optimal regulator coefficients obtained as in Table 5.1 the dynamical be-
havior of the nonlinear system (5.8) have been numerically analyzed over 1000 realizations
with the initial condition 6(0) = 1 and w(0) = 1.

The sample mean and 95% confidence interval for the mean have been computed over
1000 realizations. The 95% confidence intervals have been determined by the 2.5% and 97.5%
percentiles of the simulated trajectories which correspond to the lower and upper bounds of
the confidence interval, respectively.

The time series of the rotor angle ¢ with the variations of ¢ have been shown in Fig-
ures 5.7-5.10 in which the results have showed that the rotating orbit behavior disappears and
the trajectories converge to the SEP even if the feedback contains high noisy observations. It
has been also observed that the increase in noisy measurements in feedback regulator have

resulted in the increase of the width of confidence intervals.
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Figure 5.7. The stochastic rotor angle responses over 1000 trajectories (black) with
optimal regulators, 95% confidence interval (red), empirical mean (green)
for noise intensity with ¢ = 0.2.
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Figure 5.8. The stochastic rotor angle responses over 1000 trajectories (black) with
optimal regulators, 95% confidence interval (red), empirical mean (green)
for noise intensity with ¢ = 0.5.
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Figure 5.9. The stochastic rotor angle responses over 1000 trajectories (black) with
optimal regulators, 95% confidence interval (red), empirical mean (green)
for noise intensity with ¢ = 0.8.
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Figure 5.10. The stochastic rotor angle responses over 1000 trajectories (black) with
optimal regulators, 95% confidence interval (red), empirical mean (green)
for noise intensity with ¢ = 1.0.
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Consider the values of P,, = 0.5 p.u and D = 0.2 p.u in which the SEP is located at
0 = 0.5236, @ = 0 with 27 periodicity. The basin of attraction of deterministic and uncon-
trolled system of (5.8) has been shown in Figure 5.11. In this case the trajectories converge
either to the stable equilibrium point with 27 periodicity or a stable limit cycle (rotating orbit)

depending on the initial conditions as stated previously.

1 l:l 1 I I 1 I I I 1 1

Rotating speed (radfs)
1

10 20 30 40 50 B 70 20
Rotar angle (rad)

Figure 5.11. Phase portrait of rotor angle ¢ vs. rotating speed w of the deterministic and
uncontrolled system for P,, = 0.5.

The initial conditions have been chosen such that the trajectories converge to the limit
cycle which is undesired for rotor angle stability. The stochastic sensitivity for the uncon-
trolled system of (5.8) has been calculated as w;; = 2.8868 and w,, = 2.5. The designed
feedback regulator which minimizes the value of the stochastic sensitivity stabilizes the equi-
librium (0, 0).

With the feedback regulator which includes noisy observations, the attainability do-

mains for the pair (wy;, wy,) have been obtained as shown in Figures 5.12-5.15.
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Figure 5.12. Attainability region of the stochastic sensitivity matrix W for P,, = 0.5,
D = 0.2 and the intensity of noisy measurement ¢ = 0.2.

0.5¢

Figure 5.13. Attainability region of the stochastic sensitivity matrix W for P,, = 0.5,
D = 0.2 and the intensity of noisy measurement ¢ = 0.5.
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Figure 5.14. Attainability region of the stochastic sensitivity matrix W for P,, = 0.5,
D = 0.2 and the intensity of noisy measurement ¢ = 0.8.
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Figure 5.15. Attainability region of the stochastic sensitivity matrix W for P,, = 0.5,
D = 0.2 and the intensity of noisy measurement ¢ = 1.0.



The optimal regulator coefficients have been obtained by minimizing the cost function

which implies the minimization of the dispersion of the states from the equilibria as shown in

Table 5.2.

As it is seen from Table 5.2 that the stochastic sensitivity of equilibria (6, w) has been

minimized by the optimal regulators even if high noisy observations are present (i.e., ¢ = 1.0).

Table 5.2. Optimal parameters of stochastic sensitivity matrix and the optimal regu-

lator coefficients.

c w11 \ %) ki ky
0.2 0.07 022 -2.2768 -13.1311
0.5 029 0.57 -1.0995 -5.3614
0.8 0.61 0.88 -0.5766 -3.1378
1.0 0.83 1.1 -0.4593 -2.5075
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Figure 5.16. The stochastic rotor angle responses over 1000 trajectories with optimal
regulators for P,, = 0.5, D = 0.2 and the intensity of noise measurements

c=0.5.
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Figure 5.17. The stochastic rotor angle responses over 1000 trajectories with optimal
regulators for noise intensity ¢ = 1.0.

By using the optimal regulator parameters given in Table 5.2, the system (5.8) has
been numerically analyzed over 1000 trajectories and the basin of attraction of the rotor angle
0 and rotating speed w with the variations of the intensity of noisy measurements ¢ have been
shown in Figures 5.16 and 5.17, respectively in which the SEP is indicated by red point.

As it can be seen from Figure 5.17, by the optimal regulators the responses of SMIB
power systems can be stabilized even in the presence of high noisy obervations in feedback
regulator.

It has been also verified that using the optimal regulator parameters calculated the-
oretically, the control of the stochastic nonlinear SMIB power system has been numerically

achieved for different values of mechanical power and damping parameters.

5.2. Controlling the Rotor Angle Stability in SMIB Power Systems with

a-stable Lévy type power fluctuations

In this section, stochastic power fluctuations in SMIB systems have been modeled as
a-stable Lévy process to characterize the impulsive and asymmetric fluctuations proposed as

in (Yilmaz and Savaci, 2017a,b). Then the expression of the rotor angle dispersion of SMIB

72



with Lévy type fluctuations analytically has been derived based on the study presented in
(Grigoriu, 1995b) which uses the integral representations of alpha-stable processes (Samorod-
nitsky and Taqqu, 1994) and the control of the rotor angle stability has been also developed
for the first time in the literature by minimizing the dispersion of this deviation (Savaci and
Yilmaz, 2019).

As it was studied in (Yi1lmaz and Savaci, 2017a,b; Savaci and Yilmaz, 2019) the im-
balance between the mechanical power input and the electrical power output in the SMIB
power system given in (4.5) has been modeled by P, (¢) = €L,(t) where € is the noise intensity
and L,(¢) is the alpha-stable Lévy process and the increments of the Lévy process dL,() is
a-stable random variable (Samorodnitsky and Taqqu, 1994).

An a-stable process with the integral representation (Samorodnitsky and Taqqu, 1994):

{(Y(1),t €T} i {fsf(t,y)M(dy)),t € T} (5.11)

can be interpreted as a linear combination of independent a-stable variables M(dy) with coef-
ficients f(¢,y) satisfying some mild conditions (Grigoriu, 1995b).
The random measure in (5.11) have the Lebesque control measure m(dy) = dy then

the integral representation of {L,(¢),t > 0} is as:

Lot) = fo M(dy) = fo Loy M(dy) 5.12)

where 1o, 1s the indicator function of set (0, 7).
The response X(¢) of a linear system to an a-stable input Y () is written in (Grigoriu,
1995b,a) as:

X(t):fg(t, $)dLy(s) (5.13)
s

in which
g(t,s) = f h(t,y)f(y, s)ds, t>0, (5.14)
0

and A(z) is the unit impulse response function of the linear system.
Then the response X(7) is an a-stable process with the scale in (Grigoriu, 1995b) is as

follows:
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1/a
o(t) = lf; lg(t, S)I"m(ds)] . (5.15)

Consider the following linearized stochastic SMIB system with the feedback regulator
u=k1(5—5)+k2(w—6)):

5| 0 1
) ki — cosé k,—D

where P; = €L,(t) represents a-stable Lévy type power fluctuations.

0

w

0
1

+| |PL (5.16)

The deviation of the rotor angle of the system (5.16) from the SEP (6, @) has been

given as:

X() =6(1) -6 (5.17)

The control objective is to design a state feedback by minimizing the deviation of
the response (6, w) from the SEP (8, @) which implies the minimization of the dispersion
parameter of the response X(¢) within the minimum time settling down to the SEP (9, @).

In the sequel, the dispersion of SMIB with a-stable Lévy power fluctuations have been
obtained based on the approach in (Grigoriu, 1995b) where the response of the linear system
subject to the alpha-stable input has been obtained.

The dispersion parameter of the response X(#) which corresponds to the scale param-
eter at power @ have been obtained using (5.14) in which the unit impulse response of a

linearized SMIB system (5.16) is as follows:

1
h(t,y) = ZeO-5<’<2—D><'—>’>smu(z -y) (5.18)
with
i} ky — D)2
A= \/c056 —ky - % (5.19)
and
fQ,8) = € Lgy)(s). (5.20)
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then from (5.15) the scale parameter at @ has been derived as:

a !
o) = ;— f |e%2% P2 sin(12)|" dz. (5.21)
0

The mechanical power P,, = 1.0 p.u and the damping parameter D = 0.2 p.u have been
kept as fixed and the stochastic power fluctuations have been modeled as symmetric a-stable
Lévy process.

By using (5.21) the dispersion o(#)* has been calculated for the range of kj,k, €
[-10 — 1] with the noise intensity € = 0.001.

Considering the criteria of the minimum of o*(t) and shorter settling time, the coeffi-

cients of feedback regulators have been evaluated as in Table. 5.3.

Table 5.3. The optimal regulator coefficients for P,, = 1.0 p.u.

a tmin(s) kl kZ
20 1.09% -8 -3
1.9 1.6261 -4 -3
1.8 1.8284 -3 -2
1.7 23677 -2 -2
1.6 4.0264 -2 -1
1.5 4.1763 -2 -1
1.4 43901 -2 -1

As it has been seen from Table. 5.3 the time required to settle down to the equilibria
increases with the decrease of characteristic exponent (i.e., the increase of impulsiveness).
However, the control of the stabilization has been achieved by smaller amplitude of feedback
regulator coefficients with the increase of impulsiveness.

The values of o*(t,,;;) obtained as the value of o*(f) corresponding to the minimum
settling time 7,,;,, have been presented in Figure 5.18 with the variation of the characteristic ex-
ponent «. It has been observed that the time required to settle down to the equilibria increases
with the decrease of characteristic exponent.

By using the optimal regulator coefficients obtained in Table. 5.3 the numerical solu-
tions have been approximated by the Euler-Maruyama method (4.8) given in (Kloeden and
Platen, 1999; Janicki and Weron, 1993).
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Figure 5.18. The values of the dispersion o versus to the minimum settling time with
the variation of the characteristic exponent a.

The numerical responses of rotor angle and rotating speed of nonlinear stochastic
SMIB power system realizations have been obtained over 1000 as shown in Figures 5.19-
5.20 in the presence of a-stable Lévy type power fluctuations with @ = 1.5.

It has been observed from Figures 5.19-5.20 that the responses over 1000 realizations
in the presence of a-stable Lévy type power fluctuations have been stabilized and the trajec-
tories of the rotor angle and the rotating speed have been converged to the SEP with much
narrower confidence interval compared to the Wiener process.

When the mechanical power have been chosen as P, = 0.5 p.u and the damping
parameter D = 0.2 p.u by using (5.21) the coefficients of the feedback regulators have been
found as k; = -2 and k, = —2 and the minimum settling time t,,;, = 1.8639 seconds for the
stochastic power fluctuations of @-stable Lévy process type with @ = 1.8 and 8 = 0.

The numerical responses of rotor angle and rotating speed of nonlinear SMIB system
have been obtained over 1000 realizations for the 100 initial values of (6, w) from [—x, 7] X

[-10, 10] as shown in Figure 5.21.
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Figure 5.19. The stochastic responses of rotor angle of SMIB subject to a-stable Lévy
type power fluctuations with @ = 1.5, 8 = 0 over 1000 realizations in the
presence of optimal regulator.
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Figure 5.20. The stochastic responses of rotor speed of SMIB subject to a-stable Lévy
process with @ = 1.5, 8 = 0 over 1000 realizations in the presence of
optimal regulator.



It is clearly seen that by the designed control rule the rotor angle ¢ and the rotating
speed w have been stabilized even in the presence of impulsive a-stable Lévy type fluctuations

and by such a feedback controller the basin of attraction have also been enlarged.

Rotating speed (rad/s)
()
T

Rotor angle (rad)

Figure 5.21. Phase portrait of the stochastic response of SMIB under a—stable Lévy
noise with & = 1.8.
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CHAPTER 6

CONCLUSIONS

In this dissertation, we have made progress on addressing the following questions: (1)
What are effects of a-stable Lévy fluctuations on the stability? 2) How should control rule be
designed to achieve the synchronism in the presence of either Wiener or a-stable Lévy type
power fluctuations?

More specifically, we have investigated the effects of a-stable Lévy type load fluctu-
ations on the rotor angle stability in single machine infinite bus power system for different
values of characteristic exponent and skewness parameters and derived the coefficients of the
optimal feedback regulator to stabilize the single machine infinite bus power system in the
presence of Wiener and a-stable Lévy type fluctuations. It has been observed that the aparting
from the Gaussianity in distributions of load fluctuations either by increasing impulsiveness
and/or distorting symmetry cause the instability of rotor angle in the mean square sense for
the basin of attraction of synchronous state. However for the basin of attraction of limit cy-
cle, the results show that Lévy type fluctuations improve the stability of rotor angle in the
sense of probability. For some parameter pair of mechanical power and damping, the return
probability decreases with the decrease of characteristic exponent (increase of impulsiveness)
hence it becomes more difficult to converge to the synchronous state. The synchronous state’s
stability deteriorates when characteristic exponent decreases. However for some specific pa-
rameter pair value of mechanical power and damping, the return probability can be improved
by injecting the stochasticity into the loads.

The coeflicients of the optimal feedback regulator to stabilize the system have been de-
rived in the presence of stochastic fluctuations modeled by Wiener process and a-stable Lévy
process. The control of the stability of single machine infinite bus power system with Wiener
type power fluctuations have been studied by minimizing the stochastic sensitivity function.
An expression has been derived for the rotor angle dispersion of the linearized stochastic
SMIB and by selecting feedback gains, this dispersion has been numerically minimized. The
stabilization of the rotor angle and rotating speed for nonlinear stochastic SMIB have been
verified by the designed optimal regulators.

In the presence of a-stable Lévy type power fluctuations, the proposed control rule
has provided the stabilization of the responses of rotor angle and the rotating speed with
narrower confidence interval and smaller gain constants compared to the Wiener type power

fluctuations.
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