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ABSTRACT

THREE-PHOTON ELECTROMAGNETICALLY INDUCED
TRANSPARENCY IN RYDBERG ATOMS

Electromagnetically Induced Transparency (EIT) is a quantum coherence phe-
nomenon, in which an atomic medium is rendered transperent via destructive interference
of excitation pathways. EIT was first observed in a three-level lambda scheme where a
modified optical response is achieved by the interference of light field induced atomic
state coherences at the resonance of transition. An EIT system also produces important
optical effects including giant Kerr non-linearity and slow light. Rydberg-EIT media have
been used to study optical properties of atomic media, non-linear optical effects and to
gain better understanding on interacting many-body systems due to the controllable in-
teractions of Rydberg atoms. Recently EIT in a four-level ladder scheme was realized
experimentally in a dressed-state manner with Cs atomic vapor, in which a strong dress-
ing field allows for a transparency window to be opened for probe field. Rydberg EIT
has potential applications in terahertz regime, electrometry, metrology and quantum in-
formation science, but extensive studies on four-level Rydberg EIT schemes are scarce.
In this thesis; three-photon EIT in a cold atomic ensemble that has a ladder type excita-
tion scheme, in which the highest energy state is a Rydberg state is investigated. Atom-
light interactions of a four-level ladder system is developed for non-interacting case, then
extended to many-body case. Starting with the steady-state solutions without atomic in-
teractions, Rydberg EIT system is analyzed using mean-field and rate equation methods,
though due to inadequate computing power and lack of time we could not finalize the
rate equation method. To understand effects of Rydberg-Rydberg interactions on these
systems in detail, two-body case is investigated with mean-field method. Afterwards, to
achieve more realistic results, a self-consistent mean-field method for larger systems is
developed. It is observed that as the van der Waals interaction energy increases, Rydberg
blockade becomes more prominent. Therefore induced transparency weakens, broadens
and shifts away from the resonance as expected. This means that, controllable interac-
tions in a Rydberg EIT medium enables to control and modify the optical response of the

atomic medium.
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OZET

RYDBERG ATOMLARINDA UC-FOTON UYARIMLI
ELEKTROMANYETIK OLARAK INDUKLENMIS SEFFAFLIK

Elektromanyetik olarak indiiklenmis seffaflik (EIT), opak bir atomik ortamin,
uyarim yollarinin yikici girisime ugramasi ile seffaflasgtig1 bir kuantum esuyumluluk olay1-
dir. EIT ilk kez, ii¢ seviyeli lambda sisteminde gozlenmistir. Atomik ortamin optik tep-
kisinin degisime ugradigi bu sistemde seffaflik, 151k alaninin etkisiyle indiiklenmis atomik
esuyumluluklarinin gecis rezonansinda yikici girisimi ile elde edilmistir. EIT sistemleri
ile, dogrusal olmayan biiyiik Kerr etkileri ve yavas 1sik gibi onemli etkiler gozlenmistir.
Rydberg EIT ortami, atomik sistemlerin optik 6zelliklerini, dogrusal olmayan optik etk-
ileri ¢alismak icin ve Rydberg atomlarinin kontrol edilebilir etkilesimleri sayesinde etk-
ilesimli cok atom sistemlerini daha iyi anlamak i¢in kullanilmistir. Yakin ge¢miste, Ryd-
berg EIT, Cs atomik buharinda, dort seviyeli basamak sistemi ile deneysel olarak goster-
ilmigtir. Bu sistemde gii¢lii giydirme alani, prob alani icin seffaflik penceresi agilmasini
saglamistir. Rydberg EIT terahertz rejiminde, elektrometride, metrolojide ve kuantum
bilgi bilimlerinde potansiyel uygulamalar vaat etmektedir ancak dort diizeyli Rydberg
EIT sistemlerinde genis kapsamli ¢calismalar nadirdir. Bu tezde; soguk atomlarda ii¢-foton
uyarimli basamak Rydberg EIT sistemi incelenmistir. Atom-1s1k etkilesimleri, etkilesim-
siz dort seviyeli basamak sistemleri icin gelistirilmistir ve sonra etkilesimli ¢ok atomlu
sistemler icin genigletilmistir. Baslangicta, atomik etkilesimler olmayan sistemler icin
duragan durum c¢oziimleri elde edilmistir. Daha sonra Rydberg atom etkilesimleri olan
sistemler i¢in ortalama alan ve oran denklemleri yontemleri kullanilarak Rydberg EIT or-
tam1 ¢alisilmistir. Ancak islem giicii ve zaman yetersizliginden dolay1 oran denklemleri
yontemi sonuca ulastirillamamistir. Rydberg EIT sistemlerinde, Rydberg-Rydberg etk-
ilesimlerini incelemek icin, Oncelikle basit bir durum olan etkilesimli iki atom durumu
ortalama alan yontemi kullamilmistir. Daha sonra, biiyiik sistemler icin daha gercekg¢i
sonuglar elde etme hedefiyle, kendi i¢inde tutarli ortalama alan yontemi gelistirilmistir.
van der Waals etkilesimlerinin kuvveti arttik¢a, Rydberg blokaj mekanizmasi etkisini art-
tirmig ve elektromanyetik olarak indiiklenmis seffaflik rezonanstan kayarak etkisini yi-
tirmistir. Bu, Ryberg EIT ortamlarindaki kontrol edilebilir Rydberg etkilesimlerinin, or-

tamin optik tepkisinin kontrollii bir sekilde degistirilebilmesini sagladig: goriilmiistiir.
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CHAPTER 1

INTRODUCTION

Electromagnetically Induced Transparency (EIT) is a quantum coherence phe-
nomenon, in which an opaque medium becomes transparent via interference of different
excitation pathways. The simplest case of atom-light interaction is that of a two level atom
and a driving field, when the driving field is on resonance with the transition, absorption
maximum is observed, accompanied by Rabi oscillations, in which the atomic population
oscillates between ground state and excited state (Gerry and Knight, 2004). But when a
strong coupling field is introduced to the system, EIT is observed. Two-level atom ab-
sorption maximum and EIT in a three-level lambda system, on resonance can be seen
in Figure 1.1. When the coupling field is stronger than the probe field, probability am-
plitudes of the transitions interfere destructively with one another, inducing transparency
for the probe light (Harris et al., 1990). This can be understood via dressed-state picture
and formation of a dark-state. EIT was first predicted in 1990 (Harris et al., 1990) and
one year later demonstrated as a proof of concept in a three-level lambda scheme with Sr
vapor (Boller et al., 1991).

As the absorptive features of the medium is altered by EIT, refractive features of
the medium are modified as well (Fleischhauer et al., 1992). While the medium becomes
transparent for the probe light, refractive index for the probe light undergoes a steep dis-
persion, which in turn slows the group velocity of light and this effect is demonstrated
extensively (Budker et al., 1999; Kash et al., 1999; Hau et al., 1999). Light speed of
17 ms~! was observed on an ultra-cold Na gas (Hau et al., 1999) and even light speed
down to 8 ms~—! was observed on Rb vapor (Budker et al., 1999). Further studies on group
velocity reduction by EIT mechanism, revealed that light pulses can be halted for a few
miliseconds, by momentary turning off of the coupling light, transferring the information
on the halted pulse to the atomic medium and when the coupling light is back on, light
pulse is restored with the previous information (Phillips et al., 2001; Liu et al., 2001).
Another important realization of the slow light phenomenon is the promising application

of quantum memories for light. This was first proposed in 2000 with the realization of



reversible group velocity reduction in dark-state polaritons. A dark-state polariton is light
field and atomic excitation couple. Reversible reduction in group velocity of dark-state
polaritons in EIT configuration can be utilized to store and transfer information (Fleis-
chhauer and Lukin, 2000; Lukin, 2003; Simon et al., 2010). Furthermore, building on
the utility that comes with EIT for realization of quantum memories, EIT is also used for
generation and storage of single photons with the intention of quantum communication
between quantum memories (Eisaman et al., 2005; Chaneliere et al., 2005).

Kerr effect is the change of refractive index by application of an electric field
(LL.D., 1875). Kerr non-linearity is the similar type of modification in the dispersive fea-
tures in third order susceptibility (Boyd, 2008). EIT scheme also allows a resonantly en-
hanced Kerr non-linearity (Harris et al., 1990; Hakuta et al., 1991), which has potential for
applications in quantum information science via quantum gates (Schmidt and Imamoglu,
1996). In four-level Rubidium atoms, large Kerr non-linearity with diminishing linear
susceptibility was shown using an EIT scheme (Kang and Zhu, 2003). Strong optical
nonlinearity was also shown in a three-level Rydberg EIT scheme (Firstenberg et al.,
2016).

Experimental demonstration of EIT with Rydberg atoms for coherent optical de-
tection have been shown in 2007 (Mohapatra et al., 2007). Atoms which have high prin-
cipal quantum number (n > 10) are called Rydberg atoms. Detailed information on
Rydberg atom properties and applications is given in Section 1.3. Before experimental
realization, Rydberg EIT was first proposed in order to realize a photonic phase gate,
making use of the long-range interactions between Rydberg atoms and slow light features
of EIT media (Friedler et al., 2005). Rydberg EIT also enabled spectroscopy of Rydberg
states (Mauger et al., 2007). Rydberg EIT scheme can also be used for locking the laser
frequency to a transition, by probing the EIT signal (P. Abel et al., 2009). Rydberg state
depopulation due to Rydberg-Rydberg interactions was demonstrated using Rydberg EIT
scheme (Weatherill et al., 2008). Atom-light interactions have shown to be controllable
via electric fields using dark state polaritons in a Rydberg EIT scheme (Bason et al., 2008).
Enhanced electro-optic effect, which is the modification of index of refraction via electric
fields, was realized using a ladder Rydberg EIT scheme (Mohapatra et al., 2008). More
recently, Rydberg EIT in a four-level ladder scheme was demonstrated with Cs atomic

vapor cell (Carr et al., 2012). Moreover dressed-state EIT for a four-level ladder scheme



with Rydberg atoms shown to be promising for light storage (Sibali¢ et al., 2016).
Rydberg EIT scheme has promising applications in metrology, quantum computa-
tion (Firstenberg et al., 2016), electrometry (Mohapatra et al., 2008; Sedlacek et al., 2012)
and in terahertz applications such as terahertz frequency signal storage (Bhushan et al.,
2018) and terahertz detector (Wade et al., 2018). Four-level Rydberg EIT systems might
have potential applications in THz sensing and imaging, Rydberg spectroscopy, nonlinear
optical effects and optical response of atomic media due to the nature of Rydberg atoms
combined with EIT. Three-photon excitation scheme also allows for cheaper experimental
setups, because of the availability of inexpensive high-power infrared diode lasers. Al-
though subject of Rydberg EIT is studied for more than a decade, comprehensive work on
four-level Rydberg EIT systems are rare. Therefore in this thesis, cold atomic Rydberg
EIT in a four-level ladder scheme is studied. Rydberg atom interactions and Rydberg
blockade effects on EIT behavior is analyzed. In Section 1.1, basic concepts of EIT are
provided for a three-level lambda scheme, including Hamiltonian for a lambda system
and discussion of resulting dark state. Following that in Section 1.2, optical properties of
the atomic medium are discussed. Connection of linear susceptibility to absorption and
refractive index through atomic coherence is provided. Next, in Section 1.3, basics and
general properties of Rydberg atoms are presented with van der Waals interactions and the
Rydberg blockade effect. In Chapter 2, treatment and evolution of open quantum systems
are introduced, followed by the atom-light interactions in a four-level ladder system. After
the derivation of equations of motion for a non-interacting system of atoms, case for inter-
acting Rydberg atoms is considered. In Chapter 3, mean-field approach for an interacting
system is presented, starting with simplest case of two-body interactions. Interaction ef-
fects and blockade effects on optical properties of the medium are discussed as well as on
ground state and Rydberg state populations. Following on the two-body case, mean-field
approximation is extended for larger systems by employing a self-consistent method. Just
as in the two-body case, interaction and blockade effects are analyzed on ground state,
Rydberg state populations and on optical properties of the system. Following the mean-
field approach, in Chapter 4, rate equation method is presented for interacting systems,
where the rates of change of populations are used to extract the optical properties and un-
derstand the behavior of the system. Unfortunately, results for rate equation method could

not be obtained due to inadequacy of time and computing power. Finally in Chapter 5,



summary of this thesis and a brief conclusion are provided.

1.1. Electromagnetically Induced Transparency

In order to better understand EIT mechanism, dressed state picture must be in-
troduced. Here we will analyze briefly the dark state formation in a three-level lambda

system. Hamiltonian of an atom interacting with light can be written as:

H=~H,+ Hy . (1.1)

Here H, is the atomic Hamiltonian which contains state energies and atom-light
Hamiltonian Hs;, = d.E, involving atom-light interaction energies. Within dipole ap-
proximation, which facilitate the atom-light interaction and within rotating wave approxi-
mation (RWA), which eliminate rapidly oscillating terms (Allen and H Eberly, 1987), the

Hamiltonian of an atom in a three-level Lambda scheme as in Figure 1.1 is given as:

0 0 2
H==h|0 —(A -4y 2 | . (1.2)

In this system; transition to excited state |3) from ground state |1) is performed
with probe light with Rabi frequency 24, transition to excited state from ground state
|2) is performed by coupling light with Rabi frequency €2s. A; and A, are detunings,
which represent the difference between the transition frequency and field’s frequency.
Spontaneous decay rates of the state |3) are represented with I'; and I'; to ground states |1)
and |2), respectively. Strong coupling light creates two dressed states and the destructive
interference of the probability amplitudes of those transitions causes a modified opacity
for the probe light. Following calculations will be performed under the assumption of both
light sources being resonantly coupled to the excited state (A; = A, = 0). Eigenvalues

of the three-level lambda system Hamiltonian are:

)\0 =0 N (138.)
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and the eigenstates corresponding to these eigenvalues are :
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1 04
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B V2 \/912+922 \/ QZ .

Ao is the eigenvalue that corresponds to zero energy state, which is called dark-
state and this state |\o) has zero contribution from bare state |3), meaning if the atom
is in state |)\g) possibility of excitation to state |3) is non-existent and since there is no
excitation to bare state |3), there will be no radiative decay. Building on this, when the
weak probe and strong coupling limit is considered; €2; < €25, dressed states are modified

as follows:

Doy = 1) (1.5)
|A+>—7<\2> 3) . (1.5b)
|A_>=%<|2>+|3>> | (1.50)

In the weak probe limit, ground state of the atom becomes the dark-state. There is
no contribution from bare states |2) and |3), therefore incident probe light is not absorbed
and hence transparency is induced.

In Figure 1.1 comparison of the absorption and refractive index of a three-level
lambda system and a two-level system with respect to probe light field detuning is shown.
Only difference between the two systems is a coupling light. Blue line represents the two-

level system and red line represents the three-level system. In the two-level case when the



probe field is on resonance with the transition, absorption maximum is observed, but in the
three-level case absorption diminishes completely on resonance. In the three-level case,
energy difference between the dressed-states is A\, — A = A2, and the absorption spectra
shows two absorption peaks symmetric around resonance. Separation between two peaks
is hf)y. The three-level lambda scheme gives rise to Autler-Townes splitting as well as
EIT, separation of dressed-state absorption peaks is called Autler-Townes splitting (Autler
and Townes, 1955; Cohen-Tannoudji, 1998). Both effects produce similar absorption
spectra and it is often hard to differentiate between them (Abi-Salloum, 2010). Refractive
index of the media is also altered for the probe light, with the EIT mechanism. A steep
dispersion curve is introduced in a three-level system, causing group velocity for the probe

light to decrease.

BaaN =-=Two-Level
——Three-Level

Absorptiom

—_
o
o
o
o
N

(1)

> 0.99998

Refrative Index

Figure 1.1. (Left) Three-level lambda scheme. (Right - top) Absorption of the
medium for the probe field with respect to different probe field detunings.
(Right - bottom) Refractive Index of the medium for the probe field with
respect to different probe field detunings. Addition of another transition,

allows the medium to become transparent for the probe field on resonance.

1.2. Optical Response

In order to understand the optical response of a medium to a light field we need to
start from the atomic polarization induced by the light field. Induced atomic polarization

by a light field in a medium can be expressed in terms of electric field strength and electric



susceptibility as a power expansion (Boyd, 2008):

P=¢ [\VE+xPE*+x¥WES+.] . (1.6)

Here ¢ is the permittivity of free space and F is the electric field strength. y() is
the linear electric susceptibility and it describes the linear optical response of the medium.
x? and y® are the second and third order electric susceptibilities, which describe the
non-linear optical response of the medium. Since we are interested in absorption and
refractive index, linear optical response term x ") suffices. Induced polarization can also

be expressed in terms of expectation value of electric dipole moment:

P=N<ci> , (1.7)

where N is the number density, d is the transition dipole operator. When consid-
ering three-level lambda scheme; induced polarization includes both probe and coupling
light fields’ contribution, therefore transition dipole operator includes both transitions. In-
duced polarization for an atomic medium in a three-level lambda scheme can be written

as:

P = N [di3ps1 + daspsz + c.c] (1.8)

where d;3 and dy3 are the transition dipole moments of |1) — |3) and |2) — |3)
transitions and ps;, po3 are off diagonal density matrix elements or in other words atomic
coherences. Since we are interested in probe light optical properties we consider only
|1) — |3) transition. Following on that, linear susceptibility for probe light can be written

as:

_ 2Nd;5°
X TR,

Imaginary part of this linear susceptibility is directly proportional to the absorp-

P31 - (1.9)

tion coefficient, therefore transmission for a light field can be acquired from the linear
electric susceptibility for that light. Absorption coefficient can be written in terms of

linear susceptibility as (Jackson, 1999):

a =k Im|x] , (1.10)
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where £ is the wavenumber for the probe light and it is defined as: & =
The relation between transmission of the medium and absorption coefficient is given by
Beer-Lambert law:

T =elo = e7thimbd (1.11)

where [ is the length of the medium. Real part of the linear susceptibility is related
to an optical property as well. Refractive index of the medium for the light field can be

obtained from the real part of linear susceptibility as (Jackson, 1999):

n=+/1+ Re[x] . (1.12)

1.3. Rydberg Atoms

Rydberg atom is an atom which have at least one electron excited to a high prin-
cipal quantum number n. Rydberg atoms have exaggarated properties such as large size,
large dipole moment, long radiative lifetime and extreme sensitivity to electric fields (Gal-
lagher, 1994). For instance atomic radius is given by n2ag, where aq is the Bohr radius
(ap = 0.53 A), therefore a Rydberg atom with n = 100, has a diameter of 1.06 pm, so it
is possible to say that Rydberg atoms can be macroscopic in size. Large sizes of Rydberg
atoms, mean that the distance of the Rydberg state electron to the positive core is very
large and this causes a very large dipole moment. Dipole moment scales with principal
quantum number as n?. Due to large dipole moment very strong interactions between
Rydberg atoms are observed. Rydberg atoms also have very long radiative lifetimes, scal-
ing with principal quantum number as n3. Table 1.1 shows some of the scaling laws for
Rydberg states (Gallagher, 1994).

Rydberg atoms can be created by optical excitation, by means of two-photon ex-
citation where two lasers are employed for exciting atoms from the ground state to a Ry-
dberg state (Gallagher, 1994). Due to Rydberg atoms’ high sensitivity to electric fields,
Rydberg atoms can be detected by ionization, but this is a destructive process in which
the Rydberg state is lost when ionized. With the utility of EIT mechanism configurated to

include Rydberg states brought up the non-destructive detection and optical spectroscopy



Property n dependence
Binding Energy n=?2
Orbital Radius n?
Dipole Moment n?
Radiative Lifetime n?
Polarizability n’

Table 1.1. Scaling laws of Rydberg state properties with principal quantum number.

of Rydberg states (Mohapatra et al., 2007; Thoumany et al., 2009). Moreover, with Ryd-
berg EIT systems interaction enhanced imaging applications are possible. Exploiting the
strong interactions of Rydberg atoms in an EIT configuration cause blockade effect, it is
possible to image the Rydberg atoms non-destructively (Giinter et al., 2012; Giinter et al.,
2013; Gavryusev et al., 2016).

Interactions between Rydberg atoms can be of dipolar nature or van der Waals
nature. Type of Rydberg-Rydberg interaction depends on the inter-atomic distance. Long-
range (several pm) Rydberg-Rydberg interactions are in the van der Waals form. Dipolar

Rydberg-Rydberg interaction energy is given by:

Cs

[ri = ®

Vij = (1.13)

Case regarded in this thesis are Rydberg atom interactions in van der Waals form

and van der Waals interaction energy is given by:

Cs

|ri — )%

Vi = (1.14)

where Cg is the van der Waals coefficient and |r; — ;] is the distance between "

and ;' atoms. Cg scales with n as n'! (Singer et al., 2005). This means that despite the
long inter atomic distances, Rydberg atoms interact very strongly with respect to ground
state atoms. For instance, two Cesium atoms at n = 70 and separated with a distance of

r = 5 pm produce an interaction energy of 237 MHz. The laser Rabi frequencies utilized



for EIT applications are generally in the range of several tens of MHz and when compared
with the Rydberg-Rydberg interaction energies, it is easy to see how strong the interaction
is.

Such strong interactions, shift the Rydberg state energy so drastically that, it be-
comes less probable to excite another atom to a Rydberg state at the same time. An atom
excited to a Rydberg state, produces a sphere of influence due to the interaction deter-
mined by n and blockade radius r,. Within this volume of %71’7“2, it is not possible to
excite another atom to a Rydberg state during the lifetime of that Rydberg state. This ef-
fect is called Rydberg blockade (Lukin et al., 2001). Rydberg blockade is characterized by
rp, and it is determined by the laser’ s Rabi frequency € that facilitates the transition to the
Rydberg state. When the interaction energy exceeds €2, further excitations are blocked.
Therefore it is convenient to define the blockade radius at transition resonance as:

o/ |Csl

=\ — . 1.1
T O (1.15)

As an example of how the interaction energy and blockade radius increases with
n is shown in Table 1.2 of an ensemble of interacting Cesium atoms separated with an
average distance of 5 pm and with a Rydberg laser Rabi frequency 2 = 27 x 0.5 MHz
on resonance. It is possible to see the magnitude of the van der Waals interaction and
the respective blockade radii. Therefore it is possible to isolate a Rydberg atom in a very
large volume by facilitating the van der Waals interactions.

The Rydberg blockade effect is especially important since it allows for isolating
a single excitation to a Rydberg state, therefore enabling Rydberg atoms to be used for
studies in quantum many-body physics and quantum information science. Excitation sup-
pression was observed in ultra cold Rydberg atoms due to the blockade effect caused by
van der Waals interactions (Tong et al., 2004). Effect of Rydberg atom density on van
der Waals interactions and blockade was also studied (Singer et al., 2004). In order to
observe Rydberg atom interactions spectroscopically, microwave fields are used to probe
the Rydberg state (Afrousheh et al., 2004). Using the blockade mechanism, nature of
probability distributions of number of Rydberg excitations in cold ensembles is studied
as well (Liebisch et al., 2005). A promising quantum gate application results due to
the tunable interactions and blockade of Rydberg atoms (Vogt et al., 2006). It was also

demonstrated that, Rydberg blockade can be modulated by applied electric fields due to
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V(MHz)

(i)

100

90

80

70

60

50

40

15835.0

4652.0

1164.4

237.8260

37.1568

4.0026

0.2472

20.7036

16.8805

13.4007

10.2838

7.5472

5.2060

3.2731

Table 1.2. van der Waals interaction energies and blockade radii for an ensemble of
Cs atoms with an average inter-atomic distance of 5 pm and with a Ryd-
berg transition field Rabi frequency of €2 = 27 x 0.5 MHz on resonance.
It is clearly seen that the interaction is very strong and even climbing up to

15 GHz at n = 100 with a blockade radius of r, = 20.7036 um.

the induced dipole moment by the field (Vogt et al., 2007). Resonant energy transfer

resulting from the Rydberg blockade effect, causing an atom in a volume to excite and

simultaneously de-excite another atom in a different volume was demonstrated experi-

mentally (van Ditzhuijzen et al., 2008). Rydberg blockade effects were studied in cold

Rubidium atoms with a two-photon excitation scheme (Heidemann et al., 2007) as well

as in two-body systems (Urban et al., 2009; Gaétan et al., 2009).

There are vast number of potential applications that result from the nature of Ry-

dberg atoms such as quantum gates and interaction enhanced imaging. Introduction of

Rydberg atoms to EIT configurations allow for the enhancement of non-linear optical ef-
fects, but non-linear optical effects are beyond the scope of this thesis. In the next Chapter,

theoretical description of a four-level atom-field system will be examined in detail.
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CHAPTER 2

THEORY

In this Chapter; EIT mechanism in a four-level ladder scheme will be analyzed
as an open system. In Section 2.1, analysis is carried out for a system of non-interacting
atoms, after that Rydberg-Rydberg interactions will be considered for a Rydberg EIT
system in a semi-classical manner. Firstly, bare Hamiltonian and classical light fields
will be defined, followed by the atom-light interaction Hamiltonian derivation. Later,
Lindblad superoperator, which includes coupling to environment by radiative decays will
be defined. Then Optical Bloch Equations (OBEs) will be solved for steady state probe
coherence and analyzed in conjunction with dressed state eigenvalues. Afterwards in

Section 2.1.1, system of interacting four-level Rydberg atoms will be considered.
2.1. Three-Photon Electromagnetically Induced Transparency

A system which couples to the environment by dissipation is an open system and
open systems evolve with Master Equation (Barnett and Radmore, 2002). Irreversible
loss of energy by means of spontaneous emission or radiative decay of excitation requires
an open system treatment. EIT with a three-photon excitation scheme, which is the main
focus of this thesis, is an open system and requires density matrix formalism and master
equation approach. In order to account for the coupling to the environment Lindblad
superoperator is used. It includes information on the rate of relaxation and which states
are coupled by that decay. Lindblad superoperator can also include laser linewidths, but in
scope of this thesis only radiative decays are considered. Master Equation for an N-body

system is given as:

O = S UH P+ L™ @.1)

(N) is the N-body density matrix, A is the Planck’s constant, H is the total

Here; p

Hamiltonian and £[p(™)] is the Lindblad superoperator. In first part of the Theory Chapter,

12



we consider the case in which atoms do not interact with one another and later in Rydberg
EIT section interacting atoms case is analyzed. For a system where atomic interaction is
non-existent, N-body density matrix reduces to single particle density matrix and Master

equation can be written as:

1

h

Resulting equations of motion for non-interacting scenario is regarded as Opti-

p [H, p] + L] - (2.2)

cal Bloch Equations (OBEs) (Bloch, 1946). In order to acquire OBEs we start with the
description of three-photon excitation scheme. In three-photon ladder scheme, atoms in
ground state are excited to a subsequent higher energy state via three distinct light fields.
States are coupled only by their respective light fields and any other means of transition
is not allowed. A level schematic can be seen on Figure 2.1. Ground state is labeled as
|1) and the three following excited states are |2), |3) and |4). Excitation to higher energy
states are accomplished via light fields represented with their respective Rabi frequencies,
4, )y and Q3. Difference between transition frequency and the frequency of the light
fields are called detunings, which are shown with A;, A, and A3. Spontaneous decay

rates of the states |2),

3) and |4) are represented with I'y, I'y and I's, respectively.

g [ reenenenanes

14)
Qs I3
A .....‘l;. EEEEEEEND
2 13)
LY 12)
n
0,
1)

Figure 2.1. Three-photon excitation or four-level ladder scheme. Excitations, |1) —
12),
with Rabi frequencies; €24, {2, and )3, respectively. Excited states |4), |3)

2) — |3), |3) — |4) are accomplished with three different light fields

and |2) have spontaneous decay rates of I's, I'; and I';, respectively.
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Hamiltonian for a four-level scheme is composed of three parts; bare Hamiltonian
H A which contains energies of the atomic states, atom-light interaction Hamiltonian H AL

and interactions between atoms V':

H=H;+Hy +V . (2.3)

At first, non-interacting case is analyzed, therefore we considered V' = 0 case.
Later, in Section 2.1.1, Rydberg-Rydberg interactions are considered and in that Section,
V is replaced with V;; for clarity, since pairwise interactions between " and ;' atoms
are taken into account.

Bare states are defined in vector form as:

(2.4)

o O = O
oS = O O
_ o o O

Bare Hamiltonian is comprised of the sum of atomic state energies and can be

written as:

Hy = Ei|1) (1] + B [2) (2] + B3 [3) (3] + Eq 4) (4] (2.5)

For clarity and easier description we choose our ground state energy to be zero,

E; = 0, then excited state energies are:

EQ = hw1 s (26&)
E3 = h(wl + IUQ) s (26b)
E4 = h(wl + wo + wg) s (260)

with wy, w9, w3 being transition frequencies of the states. Then classical light

fields are defined with real and complex parts:

14



1. . .
Ei(r,t) = ei7 [E;eitar—wint) 4 gremitkrwi D] (2.7)

Here; e; is the unit polarization vector, &; and £ are the field amplitudes, k; are the
wavenumbers and w;, frequency of the light fields, with 7 = 1, 2, 3. Following that, within
dipole approximation atom-light interaction Hamiltonian is defined as the dot product of
dipole moment and electric field:

~

H, =—-dE |, (2.8)

here d is the dipole moment. In a more explicit form, atom-light interaction

Hamiltonian can be written as:

Hap =dyp Ei(r, ) ([1) 2 + 12) (1]) + das.Ea(r, 1) (2) (3| + 13) (2])
e Ey(r, 1) (13) (4] +14) (3]) (2.9)

here d;; are transition dipole moment between i and j'" states and it is defined as
d;; = (i d |;), with dipole operator, d = —ef, e being the electric charge and # being the
position operator. Combining bare Hamiltonian and atom-light interaction Hamiltonian

gives the full Hamiltonian. In the matrix form:

0 dlg.El(r, t) 0 0

A di E(r,t hw dos.Eo(r, ¢ 0

= 12 1( ) 1 23 2( ) . (210)
0 dgg.EQ(I’, t) h(w1 + IUQ) d34.E3<I‘, t)
0 0 (134.]33(1'7 t) h(w1 + wo + w3)

Next, rotating wave approximation (RWA) is required and in order to proceed with
RWA transformation to a rotating frame is necessary. Rotating frame Hamiltonian can be
acquired by a unitary transformation as:
oU

H =UHU — z’hUTE . 2.11)

Unitary transformation operator U is chosen to be:
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1 0 0 0

N 0 e twirt 0 0

U= (2.12)
0 0 e~ i(wir+war)t 0
0 0 0 e—HwiLtwar+wsL)t

After carrying out the matrix algebra in Eqn. (2.11), we acquired the rotating

frame Hamiltonian:

0 dlg.El(l‘,t)e_iwlLt 0 0
]—:[’ o d12.E1(I‘,t)eiw1Lt —hA1 d23.E2(1‘,t)677’vw2Lt 0 2 13
- iwort _ —iwgrt ( . )
0 ng.EQ(I‘,t)e 2L h(A1+A2) d34.E3(I‘,t)€ 3L )
0 0 dss.Es(r,t)etWstt  —A(A1+Ax+A3)

Here, we defined the detunings as A; = w;, — w; with i = 1,2,3 and they
represent the difference between transition frequency and light field frequency. Following
that the next step 1s to apply RWA, which is eliminating rapidly oscillating terms. In order
to determine the rapidly oscillating terms, field vectors need to be written explicitly as

follows:

d12.E1 (I',t)e_zwlLt _ d12.61§ [8lez(kir—w1Lt) + gike—z(klr—wlLt)} e—zwlLt 7

' 1 i(kir— * _—1 r
dip By (r,t)e ! = diz.er5 [Ereitr—2mLt)  gremillar)]
X g* —ikir
de'El(rj)eizwlLt =dz.€; 162 (2.14)

Here rapidly oscillating term is e~**“'z and it can be neglected so we are left with
Eqn. (2.14). Same straightforward cancellation is performed for every transition dipole

moment and field product terms and Hamiltonian within RWA becomes:

0 dlg_;’l Ere~ikur 0 0
[A{, _ h d122';1e1 Eleiklr —Aq dzgﬁe2 g;e—z‘kgr 0 (2 15)
0 dQéj}LLeQ Es eikgr —A1—As dijélﬁe:j ggefik:;r ? ¢
0 0 7d3§ﬁe3 ggeik?)r —A1—Ax—A3
. . . . d;;.e; e .
in which real and complex Rabi frequencies are defined as (; = “2&;e™ ", with

1 = 1,2, 3. If we assume that the Rabi frequencies are real, {2; = €27 , then final form of

the Hamiltonian in matrix form is written as:
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0o & 0 0
Q Q
., U RN i, 0
H=n|?2 0 2 0 (2.16)
0 £ —A-A L
0 0 L —Ap — Ay — Ay

After obtaining the Hamiltonian for the system, now we need to define density
matrix and dissipation terms for equations of motion. Since the system has four atomic
states, single particle density matrix can be written as a 4x4 matrix, in which the diagonal
elements represent the state populations and off-diagonal elements represent the coher-

ences,

P11 P12 P13 P14

)= P21 P22 P23 P24 . 2.17)
P31 P32 P33 P34
P41 P42 P43 P44

Lindblad superoperator, which decribes the dissipation of the system to the envi-

ronment in the most general form is given as:

3
1 1
_ T_ 7T I
Llp] = ; Ty {Lkak sDiLep = 5pLiLi| (2.18)
where, Ly = 619, Ly = 93 and L3 = 734, with 6, = |4) (j| being the atomic tran-
sition operators. Since the three-photon excitation scheme includes three decay channels

I'y, 'y, I'3 there are three terms in Lindblad superoperator:

Lp] = Lor[p] + Laa[p] + Laslp] (2.19a)
p2 =52 0 0
p21 P23 P24
-5 TP —5 —5
Lolp) =Ty | 2 S (2.19b)
0o 22 0 0

2
0 -2 0 0

2
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0 0 -2 9
0 pss  —2 0
£32 [p] - FQ P31 P32 i P34 ’
-5 % s o5
0 0 L
o 0 0 -
o 0 0 -
Lazlp] =T
0 0 P44 —p%
L ey

(2.19¢)

(2.19d)

Following that, the resulting equations of motion or OBEs from Eqn. (2.2) for a

four-level ladder scheme, are as follows:

d )

oy = =0 - r

dtﬁn 54 (p12 — pa1) + Tipaz

d ) 1

apm = —591 (P12 - P21) + 592 (P23 - ,032) + P2P33 - 111P22

d ) 1

aﬁ% = —592 (P23 — p32) + 593 (p3a — pag) + Lspag — Dapss

4. __iq (931 — paz) — T

dt P44 = 5 3\P34 — P43 3P44

d 7 1 Iy

Zpip = =0 - —Qaprs — iD1 P12 — —

dt,012 B 1 (pn 022) + 5 2P13 — 1A1P12 9 P12

d 7 7 1 Iy

— = -0 -0 — -0 — (A A - —

P13 = 5l + 5 2Pz = 58k e i(Ar + Ag)p1s 5 P13

d 7 ) I's

— = —Qap13 — =12 — (A A A. - —

dtp14 5 3013 5 1p24 — (A1 + Ao + As)p1a 5 P14

d i i 3 . (I'y +Ty)
= oz = =0 — ps) — =0 28 g — ilgpay — 2
dt P23 9 2 (P22 ,033) 9 113 +1 9 P24 — 12023 9 P23
d 7 ) 1 ) (F1 + Fg)
= pog = =Qapaz — =Qopgs — = pra — i(Dg + Ag)pay — ———2
o P24 5 3023 5 234 5 1914 — 1(Ag 4+ Ag)pas 5 P24
d i i , (Ty +T3)

g = =0 — pas) — =Qopay — iAgpyy — —2 3

di P34 5 3 (/)33 ,044) 5 2024 — 1A3034 5 P34

with the condition,

P11+ pao + P33+ paa =0 .

(2.20a)
(2.20b)
(2.20¢)
(2.20d)
(2.20¢)
(2.20f)
(2.20g)
(2.20h)
(2.20i)

(2.20j)

(2.21)

We first analyzed the optical response of the atomic medium for the steady state

case. In steady state, system does not evolve in time or mathematically, time derivatives

in Eqn. (2.20) are zero. In order to observe the optical response of the system, OBEs are

solved for probe coherence p;, for steady state.



Figure 2.2 shows the graph of imaginary part and real part of probe coherence p;-
with respect to detuning of the probe field A, for a four-level ladder scheme. Parameters
used are taken from the article (Sibali¢ et al., 2016). Rabi frequencies of the light fields
are: )y = 27w x 0.1 MHz, 2, = 27 x 8 MHz, 23 = 27 x 0.5 MHz. Atomic state decay
rates are: ['s = 0 MHz, I'y = I'; = 27 x 1 MHz. Light field detunings are: A, = 0 MHz,
Az = —2m x 4 MHz. In the top part of the Figure, imaginary part of probe coherence
with respect to probe detuning is shown. Narrow EIT feature can be observed at three-
photon resonance A; + As + Az = 0. The absorptive peak observed at A; = —27 x 4
MHz is the absorption of one of the dressed states formed by the strong dressing field
(2 and it is due to Autler-Townes splitting. The other absorption peak caused by Autler-
Townes splitting is at three-photon resonance A; = —27 x 4 MHz, but an EIT window
occurs there, meaning the other dressed state is transparent for the probe field. In other
words, with the four-level ladder system and with a strong dressing field €25, a dark state
forms at three-photon resonance and the dark state results in a transparency window for
the probe field. Bottom part of Figure 2.2 shows the dispersive properties for the probe
field with respect to probe detuning. At the three-photon resonance, a steep dispersion
curve is observed, this causes the group velocity of light to reduce. MATLAB script used
in production of this figure is provided in Section A.1.

Figure 2.3 shows the comparison of eigenvalues of the system and imaginary part
of probe coherence with respect to probe field detuning. Top part of Figure 2.3 shows the
eigenvalues of system Hamiltonian in Eqn. (2.16) with respect to probe detuning. Middle
part shows imaginary part of probe coherence with respect to probe detuning, it is the
zoomed in version of Figure 2.2 around three-photon resonance where the EIT behavior is
observed. Black horizontal dashed line is y = 0 line and it indicates the zero eigenvalues.
Grey vertical lines indicate the points where avoided crossings occur. Avoided crossings
signify excitations and for excitation to occur photons are needed to be absorbed. These
avoided crossings correspond exactly to the two absorption peaks around EIT. Moreover,
at the region around three-photon resonance A; = 27 x 4 MHz, eigenvalue A3 is zero. A
zero eigenvalue means a dark-state is formed and no absorption for the probe field should

be present. Therefore at three-photon resonance induced transparency is observed.
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Figure 2.2. (Top) Imaginary part and (Bottom) real part of probe coherence, with
respect to detuning of the probe field for a four-level ladder system in
steady state. The dip occuring at the three-photon resonance frequency
A1 = 27 X 4 represents the vanishing of absorption in the medium. At the
frequency where EIT is observed, steep dispersion curve or rapid change
in refractive index is observed (Sibalié et al., 2016). Other parameters are

provided in text.
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Figure 2.3. (Top) Eigenvalues for the system Hamiltonian of four-level scheme with
respect to probe field detuning. (Middle) Imaginary part of probe coher-
ence with respect to probe field detuning. (Bottom) Zoomed in avoided
eigenvalue crossings. Grey vertical lines indicate avoided crossing fre-
quencies. Avoided crossings correspond exactly to the absorption maxima.
A dark-state or zero eigenvalue corresponds to the EIT window that occurs
around three-photon resonance A; = 27 x 4 MHz. Parameters are the

same as in Figure 2.2
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2.1.1. Electromagnetically Induced Transparency with Interacting

Rydberg Atoms

In Rydberg EIT, the highest state in four-level ladder scheme shown in Figure
2.1 is a Rydberg state. With a Rydberg state included in the scheme, Rydberg atom
interaction effects on EIT features of the system can be studied, since Rydberg blockade
affects excitation to Rydberg state, therefore changing the optical response (Weatherill
et al., 2008). Rydberg atom interactions are considered in the form of van der Waals

interactions. Recalling the many body master equation in Eqn. (2.1) with Hamiltonian as

in Eqn. (2.3), van der Waals interaction term is in V;; = form. In the interaction

|7"z J|6
terms, pairwise interactions are considered between i and ;%" atoms and |r; — ;] is the
distance between i*" and j** atoms.

For a system composed of four levels, many-body equations of motion become:

%/)51) 2591 (sz) /721) + 111/)22 (2.22a)
d i i i i i i
@p(za) - 59 (pB — b, )> + 292 (p23 P ) +Tapl) — Tupl) (2.22b)
d ] Z 2 (] Z 7
Zol) =— 20 (pég,) s ) + 5% <p34 - pgg) 4 Tapl) — Tppl) (2.22¢)
d 7 Z 2 7 2
@pii =— 3% (p:(yf - piﬁ) Tspf) (2.22d)
d g 1 i i i i . INING
o) =50 (o) = o)) + 520l — il — SHol) (2.22¢)
Lo o0 1 L@ Lo 0 Ay + Ay — 120 (2.226)
qrP13 Tl o 72P12 T 534 Pas 1 2)P13 — 5 P13 :
d o 1@ 1 I's i
%Pgi :EQBPB 291P24 —i(Ar+ Ag + AB)P( - 7:014 +1 Z V;JP14]24 (2.22¢)
i#]
d @ 1 i Qs ~ (I +1)
%P(z?)) 59 ( P22 — p§s3> - _Ql pis i+ 7:054 ZAYYD) () Tpés) (2.22h)
d 7 Z 7 Z 7 i . I3 F +F i .
o8 = 0of) — S0nf] — Sk (8 Al - I o
dt 2 2 2
+1 Z Vij /)24 44
i#j
d @ 1 : i Iy +T3) @ .
%PLEA) 2593 (ng) ,0514) - —sz § — iAspl) (72>P§,4) (2.22))
+1 Z Vij P34 44
i#]

Here pgﬁj 397 are two-body density matrices and subscripts «, 3, #, v are atomic
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states. Rabi frequencies and detunings for an many-body system may vary among atoms,
but we assumed that, Rabi frequencies and detunings are exactly the same for each and
every atom, QZ@ = (); and Agi) = A,. Coherences, which involve the 4" state or Rydberg
state, are modified with the inclusion of two-body density matrix terms. Without any
interaction present in the system, these terms will disappear and many-body equations of
motion will reduce to single particle OBEs as in Eqn. (2.2). In order to solve many-body
equations of motion, two-body density matrices are needed. But equations of motion of
two-body density matrices involve three-body density matrices and equations of motion of
three-body density matrices involve four-body density matrices and this type of hierarchy
persists. Therefore it is impossible to exactly solve a system of equations such as this one
(Schempp et al., 2010). There are possible approaches to account for interacting many-
body case. One of the possible solutions to this problem is the mean-field approach, where
two-body density matrices are approximated to product of single-body density matrices
and correlations are neglected. There are a number of studies which employ the mean-
field method in Rydberg EIT scenarios (Tong et al., 2004; Weimer et al., 2008; Chotia
et al., 2008). One other possibility of truncating this hierarchy is reduced density matrix
approach (Sevingli et al., 2011; Schempp et al., 2010). Rate equation model is also used
to analyze many-body Rydberg schemes. In this model, many-body equations of motion
are transformed to rate equations for population, followed by Monte-Carlo sampling to
solve the problem (Ates et al., 2006, 2007; Lesanovsky et al., 2010; Sevingli et al., 2011;
Ates et al., 2011). In this thesis, in order to overcome this problem we tried two different
methods. In the first one, we used mean-field method in which we reduce the two-body
density matrices to single-body density matrices by pgﬁj LW = pg%pgv) . Here o, 3, 6, v are
the atomic states and ¢, j are indices that represent different atoms. As a second method,
we used rate equation model.

In the next chapter, mean-field method is explained in detail, followed by appli-
cation to the simplest case of two-body system. Later, self-consistent mean-field method

for larger systems is developed and results are presented.
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CHAPTER 3

MEAN-FIELD APPROACH

In this chapter mean-field approach is used firstly, for a very simple case of two
identical interacting atoms. Two-body case is considered because of its simplicity which
allows for a more in-depth analysis of Rydberg interaction effects. In the two-body
case, only factors affecting the interaction strength are inter-atomic distance and principal
quantum number, therefore this case enables a more controlled observation of Rydberg-
Rydberg interaction effects. Following that, we increased the complexity by increasing
the number of atoms in the system and in order to achieve more realistic results by in-

creasing accuracy of the solution, we employed a self-consistent mean-field algorithm.
3.1. Mean-Field Approximation

As discussed earlier, it is not possible to exactly evaluate the equations of motion
of two-body density matrices, since they involve three-body density matrices and equa-
tions of motion of three-body density matrices involve four-body density matrices and so
on, therefore we used the mean-field approach in order to truncate the hierarchy of density
matrices. With the mean-field method, it is possible to write two-body density matrices
as a product of single-body density matrices. This simplification of many-body density
matrices make the problem solvable. Under mean-field approximation, two-body density
matrices can be written as:

Puil, = Pusps) (3.1)

Here atomic states are represented by subscripts; «, /3, 8, 7. Superscripts ¢ and
j refer to different atoms which are interacting. Equations of motion are modified due
to van der Waals interaction within mean-field approximation and below Equation (3.2)
shows only 3 out of 6 equations that are modifed, since the other 3 equations are simply

the conjugates of shown equations ,0523 = <pg%> = ,0(52
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3.1.1. Two-Body System

The most simple case to understand EIT effects with mean-field approach is to
apply it to an interacting two-body system. In this case, the atomic positions are irrelevant
and only quantities affecting the interaction between them are; principle quantum number
and inter-atomic distance.

We consider a case of two interacting cesium atoms, with the state configuration:
6512 — 6P3/2 — 7512 — nlP. After we obtain equations of motion for the system,
we used MATLAB to solve this system of equations for steady state. But firstly, we
needed to check the time evolution of populations and imaginary and real parts of probe
coherence in order to find out how long it takes for the system to evolve and reach a steady
state. Time it takes for the system to reach steady state determines at what time value the
software will solve the coupled differential equations, therefore it affects the computation
time as well as the accuracy of the solution.

Figure 3.1 shows the time evolution of ground state and Rydberg state populations,
imaginary part and real part of probe coherence p;» for a two-body system with inter-
atomic distance of 5 pm. It is clear that, for this case system reaches to a steady state
at 10 ps. System parameters (in units of MHz) used to obtain time evolution Figure 3.1
are: n = 60,r =5 um, 2y = 27 x 0.1, Qy = 27 x §, 23 = 27 x 1, 'y = 27 x 5.39,
Iy =27 x 331,13 =0,A; =27 x4, Ay =0, A3 = —27 x 4. We preferred to check

the steady state time at three-photon resonance A; + As + Az = 0 since EIT effect is
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prominent at three-photon resonance. We chose I's = 0, because radiative lifetime of the

Rydberg state is three orders of magnitude higher than radiative lifetimes of 63/, and

7512 states, since radiative lifetime scales with n as ns.
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Figure 3.1. Evolution of ground state, Rydberg state populations and imaginary and
real parts of probe coherence p;o with respect to time. Time evolution for
three-photon resonance A; = 27 x 4 MHz is shown because EIT window
is observed at three-photon resonance. Other parameters are provided in

text.

Distance between two atoms are chosen to be r = 5 um, since at n = 60, blockade
radius is 7, = 5.31 pm, meaning that atoms are inside the blockade region. Table 3.1
shows blockade radii and van der Waals interaction energies for different n calculated
using the same parameters as in Figure 3.1. This table is different than Table 1.3, since
we did not assume resonance condition here. When there is a detuning blockade radius in

Eqn. 1.15 is no longer valid. With the presence of a detuning on coupling field, blockade

| 1Cs]
ry = , 3.3
b s, (3.3)

is the effective Rabi frequency and it is defined as Q3_,, = /€25 + A3.

radius is modified as follows:

here (23,
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n | V(MHz) | ry(um)

100 | 15835.0 | 14.56

90 | 4652.0 11.87

80 1164.4 9.43

70 | 237.8260 | 7.23

60 | 37.1568 5.31

50 | 4.0026 3.66

Table 3.1. van der Waals interaction energies and blockade radii for two interacting

Cs atoms for different n. Other parameters are provided in text.

After analyzing time evolution, imaginary and real parts of probe coherence are
calculated with respect to probe field detuning at different principal quantum numbers
while keeping the inter-atomic distance constant, in order to observe the effect of van
der Waals interaction on EIT. Ground state and Rydberg state populations with respect
to probe detuning were also calculated as well. Moreover we performed another calcu-
lation to see the effect of inter-atomic distance on EIT. As the atoms get closer to one
another, van der Waals interaction increases and disrupts the EIT effect. For distance
calculations, principal quantum number kept constant at n = 60. Ground state, Ryd-
berg state populations, imaginary part and real part of probe coherence are calculated.
Parameters except for n and r, used in following calculations are as follows (in MHz):
Q) =27 x01,Q =2rx8 Q3 =2r x 1,I'y =27 x 5.39, 'y = 27 x 3.31,'s = 0,
Ay = 0, A3 = —27 x 4. For the calculations where effect of n is investigated, inter-
atomic distance is kept constat at r = 5 pum and for the calculations where the effect of
is investigated, principal quantum number is kept constant at n = 60.

Figure 3.2 shows imaginary part of probe coherence with respect to probe de-
tuning, for changing n, with r = 5 pm. Inset shows the region around three-photon
resonance for clarity. EIT window occurs at three-photon resonance A; = 27 x 4 MHz

and as the interaction gets stronger by means of increasing n, EIT window starts to shift
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away from three-photon resonance and transparency weakens. From Table 3.1, at n = 50
blockade radius is 3.66 pm and inter-atomic distance is 5 pm, meaning that interaction
does not disturb the excitation of the second atom to Rydberg state, therefore EIT mech-
anism persists. But as can be seen from the inset; starting from n = 60 EIT behavior
start to change since blockade radius at n = 60 is 5.31 pum, meaning atoms are inside the
blockaded region. As the interaction gets stronger, probability of exciting both atoms to a

Rydberg state decreases and transparency fades.

-3
14 10

Kis — Non-Int
—n=50

| n=60

‘ —n=70 -

Figure 3.2. Imaginary part of probe coherence with »r = 5 pm at different n, with
respect to probe field detuning. Inset shows the region around three-photon

resonance (A; = 2w x 4 MHz). Other parameters are provided in text.

Figure 3.3, shows imaginary part of probe coherence, with respect to probe detun-
ing, for changing r with n = 60. Cases of r = 1,2,4,6 um with n = 60 are shown. Inset
shows the region around three-photon resonance for clarity. Recalling the van der Waals
interaction definition in Eqn. (1.14), as the inter-atomic distance decreases, van der Waals
interaction increases. From Table 3.1, at n = 60, blockade radius is 5.31 pm, therefore
when the inter-atomic distance is larger than blockade radius van der Waals interaction
does not affect the mechanism of EIT, but when the atomic separation becomes smaller

than blockade radius, interaction shows its effect. When the atoms are inside the blockade
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region, excitation to Rydberg state is not possible at the same instance. This in turn effects
the formation of EIT. As the atoms get closer to one another, interaction increases and in
the case of = 1 um, transparency is completely lost and the system is now an effective

three-level system.
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Figure 3.3. Imaginary part of probe coherence at n = 60, with different r, with re-
spect to probe field detuning. Inset shows the region around three-photon

resonance (A; = 2w x 4 MHz). Other parameters are provided in text.

Figure 3.4 shows real part of probe coherence with respect to probe detuning, for
changing n, with » = 5 um. Starting with the non-interacting case, n = 50, 60, 70, 80
cases are displayed. Inset shows the region around three-photon resonance for clarity.
As the interaction gets stronger blockade radius increases as well. When the atoms are
inside blockaded region excitation to Rydberg state cannot be accomplished. Therefore
as n increases, dispersive feature introduced by the EIT mechanism loses its effect.

Figure 3.5 shows the real part of probe coherence with respect to probe field de-
tuning, for changing » with n = 60. Cases of » = 1,2,4,6 um with n = 60 are shown.
Inset shows the region around three-photon resonance for clarity. As in Figure 3.3, in-
creasing interaction by means of closer atomic separation disrupt the EIT mechanism and

steep dispersion curve introduced with EIT. In the case of » = 1 pum, dispersive property
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Figure 3.4. Real part of probe coherence with » = 5 um at different n, with respect
to probe field detuning. Inset shows the region around three-photon reso-

nance (A; = 27 x 4 MHz). Other parameters are provided in text.

occuring at three-photon resonance is lost.

As the atoms get closer to one another, van der Waals interaction increases further
and at » = 1 um EIT is completely lost, meaning excitation to Rydberg state could not
be achieved, making the system an effective three-level case. This is the limit of extreme
interaction and in Figure 3.6 imaginary part and real part of probe coherence for a three-
level case compared with a four-level case with inter-atomic distance being » = 1 pm is
shown.

In Figure 3.7 ground state populations with changing probe field detuning are

shown for two cases; on the left side for different inter-atomic distances r = 1,2,4,6 um

with n = 60 and on the right side for different principal quantum numbers n = 50, 60, 70, 80

including non-interacting scenario with inter-atomic distance » = 5 um. Insets show the
region around three-photon resonance. In both cases, ground state population is at its
lowest value when the three-photon resonance is achieved A; = 27 x 4 MHz. As the
interaction increases by either increasing n or decreasing r, atoms are less likely to leave

ground state. In the left side, at n = 60 blockade radius is r, = 5.31 um, therefore van
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Figure 3.5. Real part of probe coherence at n = 60, with different r, with respect
to probe field detuning. Inset shows the region around three-photon reso-

nance (A; = 27 x 4 MHz). Other parameters are provided in text.
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Figure 3.6. Imaginary part and real part of probe coherence with respect to probe field
detuning for » = 1 um in the four-level case and a three-level case. (Left),
shows imaginary part of probe coherence and (Right) shows real part of
probe coherence with different probe detunings. Other parameters are pro-

vided in text.
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der Waals interaction becomes prominent when the atoms are placed closer than 7;,. On
the right side atomic separation is constant » = 5 pum and at n = 50 blockade radius
is r, = 3.66 pm, so interaction effects can not be seen since atoms are well outside the

blockade region.
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Figure 3.7. Ground state populations, with respect to probe field detuning for two
cases: (Left) for different inter-atomic distances » = 1,2,4,6 pm
with n = 60, (Right) for different principal quantum numbers n =
50, 60, 70, 80 including non-interacting scenario with inter-atomic distance
r = 5 pum. Insets show the region around three-photon resonance

(A1 = 27w x 4 MHz). Other parameters are provided in text.

In Figure 3.8 Rydberg state populations with changing probe field detuning are
shown for two cases; on the left side for different inter-atomic distances r = 1,2,4,6 um
with n = 60 and on the right side for different principal quantum numbers n = 50, 60, 70, 80
including non-interacting scenario with inter-atomic distance 7 = 5 um. Insets show the
region around three-photon resonance. In both cases, Rydberg state population is at its
highest value at three-photon resonance A; = 27 x 4 MHz. As the interaction increases
by either increasing n or decreasing r, atoms are less likely to be excited to Rydberg state.
In the left side, at n = 60 blockade radius is r, = 5.31 um, therefore van der Waals in-
teraction becomes prominent and excitation to Rydberg state decreases, when the atoms
are placed closer than r,. On the right side atomic separation is constant 7 = 5 pm and
at n = 50 blockade radius is r, = 3.66 um, so interaction effects can not be seen since

atoms are well outside the blockade region.
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Figure 3.8. Rydberg state populations, with respect to probe field detuning for two
cases: (Left) for different inter-atomic distances r = 1,2,4,6 um
with n = 60, (Right) for different principal quantum numbers n =
50, 60, 70, 80 including non-interacting scenario with inter-atomic distance
r = 5 pum. Insets show the region around three-photon resonance

(A = 2w x 4 MHz). Other parameters are provided in text.

3.1.2. Self-Consistent Mean-Field Algorithm

After considering two interacting Cs atoms case, we extended mean-field method
to a self-consistent mean-field method in order to increase accuracy of the solutions for

larger systems. Recalling many-body equations of motion within mean-field approxima-

tion in Eqn. 3.2, van der Waals interactions were in the form: i ) V;; p(ﬁpfﬁf It can be
i#]

seen that; Rydberg state population p,4 is common for every interaction term. Therefore

we can write the van der Waals interaction for i** atom as:

iy Vel =iplie) (3.4)
i#£]

with, §® Z

|1 - e p44 Our self-consistent mean-field approach starts with a
random guess for average Rydberg state population psy. Then, we distribute atoms ran-
domly and calculate the sum of pairwise interactions for each atom based on the distance

between each pair. After the interactions are added to the system, linearly coupled equa-
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tions are solved for steady state Rydberg state population. Then the absolute difference
between initial guess and solution for py4 is checked. If the difference is higher than a
tolerance value, the solution for p,4 is used as the new guess for the system. New steady
state solution for p44 is acquired once again but with the previous solution as the initial
guess for the system, then the difference between previous solution and new solution is
checked, if the difference is larger than tolerance, same replacement takes place again.
We expect this system to converge, therefore this replacement dynamic goes on until a
difference smaller than tolerance is obtained. For the calculations statistical average is
taken over 1000 realizations. Figure 3.9 shows the flowchart for self-consistent mean-

field algorithm. MATLAB script used in production of figures in this Section is provided

Difference < tolerance PR
Solution is
correct

Difference < tolerance

in Section A.2.

Initial Rydberg
Population —
guess

Compare
guess and
solution

Solve many body
coupled equations

Replace solution->guess Compare
Solve many body new - old
equations solutions

Difference > tolerance

Difference > tolerance |

Figure 3.9. Self-consistent mean-field algorithm flowchart.

Calculations in this section consist of; imaginary part and real part of probe co-
herence, ground state and Rydberg state populations for steady state, for 50 atoms with
respect to probe field detuning. Different cases of interactions, starting from the non-
interacting case as a reference, n = 50, 60, 70, 80, 90, 100 are shown, data are statistically
averaged over 1000 realizations. Insets in the following figures show the region zoomed
around three-photon resonance A; = 27 x 4 MHz, for clarity. As the interaction in-
creases, Rydberg blockade radius gets larger and more atoms are left inside blockaded

region, therefore reducing the number of atoms in a Rydberg state at the same time. This
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excitation suppression, traps atoms in the ground state, crippling the dark state formation,
thus EIT and dispersive feature lose their prominence. Parameters used are the same as
two-body system in Section 3.1.1.

Figure 3.10 shows the occurence of induced transparency due to the strong dress-
ing around three-photon resonance. Two absorption peaks at A; = 27 x 4 MHz and
A1 = —2m x 4 correspond to the absorption of the dressed states. But due to the dark
state formation at three-photon resonance, absorption minima is observed instead of a

peak.
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Figure 3.10. Imaginary part of probe coherence with respect to probe field detuning,
with non-interacting case and n = 50, 60, 70, 80, 90, 100. Inset shows the
zoomed in region around three-photon resonance A; = 27 x4 MHz. Other

parameters are provided in text.

Figure 3.11 shows the dispersive feature introduced by EIT mechanism at three-
photon resonance. In the non-interacting case steep dispersion curve is observed, but as
the van der Waals interaction gets stronger, slope of the dispersion curve gets smoother
and at n = 100 as can be seen from the inset, steep curvature is completely lost.

Figures 3.12 shows the ground state populations for different interaction energies

scanned across probe field detuning. Inset shows the region zoomed around three-photon
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Figure 3.11. Real part of probe coherence with respect to probe field detuning, with
non-interacting case and n = 50,60, 70,80,90,100. Inset shows the
zoomed in region around three-photon resonance A; = 27 x4 MHz. Other

parameters are provided in text.

resonance A; = 27 x 4 MHz. Since the probe field is weak most of the population in
the system is at ground state. At three-photon resonance, ground state population has the
lowest value because excitation to Rydberg state is most effectively achieved at three-
photon resonance. But as n increases, probability of exciting atoms from the ground state
decreases, effectively trapping atoms at ground state.

Figure 3.13 shows the Rydberg state population with respect to probe field de-
tuning for different interaction energies by means of changing principal quantum number
n. Inset shows the region zoomed around three-photon resonance A; = 27 x 4 MHz.
Highest Rydberg state population is achieved at three-photon resonance for every case of
interaction including the non-interacting case. As the van der Waals interaction increases,
Rydberg state population decreases. This happens because of the Rydberg blockade ef-
fect. As the interaction increases, number of atoms inside blockaded region increases,
therefore reducing the number of Rydberg atoms inside the blockaded region.

Following calculations consist of; imaginary part and real part of probe coherence,
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Figure 3.12. Ground state population with respect to probe field detuning, with non-
interacting case and n = 50, 60, 70, 80, 90, 100. Inset shows the zoomed
in region of three-photon resonance A; = 27 x 4 MHz. Other parameters

are provided in text.

ground state and Rydberg state populations for steady state, for 50 atoms with respect
to probe field detuning. van der Waals interaction is kept constant with n = 60, but
different cases of dressing field detunings A, = 27 x (—2,0,2,4) MHz are shown, Ay =
2m x 0 case is the reference case, since it is previously shown. Data are statistically
averaged over 1000 realizations. Parameters used in the following figures (in MHz):
n=2=0600 =2rx0.1, Q0% =27 x8, Q3 =2r x1,I'y =27 x 539, 'y =27 x 1,
I's =0, A = =27 x 4. As the dressing field becomes off-resonant, EIT effect and
dispersive feature shift toward three-photon resonance A; + Ay + Az = 0, meaning that
three-photon resonance is required for formation of dark-state and energy crossings. And
as the dressing field detuning changes, ground state population minimum and Rydberg
state population maximum shifts toward three-photon resonance as well, implying that
effective excitation from ground state is achieved at three-photon resonance.

Figure 3.14 shows imaginary part of probe coherence for different dressing field
detunings with respect to probe field detuning. We expected to observe EIT behavior at

three-photon resonance A; + As + A3 = 0 and it can be seen that with changing A, EIT

37



-3
g x10

T -1
—Non-Int
—n=50
; n=60
8r 2l _n:70
ol | —n=80
6 n=90

4 —n=100
5 2 A_
0

P44

Figure 3.13. Rydberg state population with respect to probe field detuning, with non-
interacting case and n = 50, 60, 70, 80, 90, 100. Inset shows the zoomed
in region of three-photon resonance A; = 27 x 4 MHz. Other parameters

are provided in text.

shifts towards three-photon resonance.

Figure 3.15 shows real part of probe coherence for different dressing field de-
tunings with respect to probe field detuning. We expected to observe steep dispersion
introduced by EIT mechanism at three-photon resonance A; + Ay + A3z = 0 and steep
change in refractive index shifts towards three-photon resonance with changing A,.

Figure 3.16 shows ground state population for different dressing field detunings
with respect to probe field detuning. Excitation from ground state is most efficiently
achieved at three-photon resonance meaning that ground state population has its lowest
value at three-photon resonance. The case where Ay = 27 x 4 MHz, is the lowest ground
state population compared to other three cases. This is because in that case, probe field is
on resonance with the transition from ground state to first excited state. And as the probe
field detuning increases excitation from ground state decreases.

Figure 3.17 shows Rydberg state population for different dressing field detunings

with respect to probe field detuning. Explanation for Figure 3.16 is also valid here. Since
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Figure 3.14. Imaginary part of probe coherence with respect to probe field detuning,
with different dressing detunings A, = 27 x (—2,0,2,4). Other parame-

ters are provided in text.

the excitation from ground state is most efficiently achieved with probe field on resonance,
Rydberg state population has its highest value when the probe field is resonant with the
transition.

We have seen that, a strong dressing field {2, and a weak probe field €2; in ladder
configuration resulted in energy crossings and a dark-state to be formed. Dark-state for-
mation at three-photon resonance (A; + Ay + Ag = 0) allowed for a transparency window
to be opened and with the inclusion of atomic interactions showed that EIT is prone to
be disturbed. We observed that, van der Waals interactions affect the Rydberg population
negatively. Calculations with changing dressing field detuning A, showed us that EIT
effects are only seen at three-photon resonance.

In the next chapter, Rate Equation model will be explained and applied for the
same Rydberg EIT configuration. Rate Equation model is another approach for study-
ing many-body systems and it allows for a more accurate description and analysis of
interacting many-body systems. In the Rate Equation model, we truncate the many-body

dynamics to only include the state population rates.
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Figure 3.15. Real part of probe coherence with respect to probe field detuning, with
different dressing detunings Ay = 27 x (—2,0, 2, 4). Other parameters are

provided in text.
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Figure 3.16. Ground state population with respect to probe field detuning, with different
dressing detunings Ay = 27 x (—2,0, 2, 4). Other parameters are provided

in text.
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Figure 3.17. Rydberg state population with respect to probe field detuning, with dif-
ferent dressing detunings Ay = 27 x (—2,0,2,4). Other parameters are

provided in text.
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CHAPTER 4

RATE EQUATION MODEL

After developing a self-consistent mean-field method, in order to achieve more
accuracy we applied rate equation model to many-body system. Rate equation model, re-
duces the many-body dynamics to include only the population rates. Rate equation model
is used in three-level Rydberg EIT schemes (Ates et al., 2006, 2007, 2011; Sevingli et al.,
2011). Methodology for the model is followed directly from the literature. Firstly, we
assume that there is no interaction present in the system V;; = 0. Then many-body equa-
tions of motion in Eqn. (2.22) reduces to single particle OBEs in Eqn. (2.20). Following
that we assume, coherences p,3 , o # 3 evolve slowly compared to the populations p,..
This enables us to adiabatically eliminate coherences p,3 = 0. After that we performed
a linear solution over coherences and we acquired rate equations for populations for a

single-body:

P11 —a11 A2 a13 Q14 P11
i pa2 | | Gz —G2 a3 G P22 @.1)
dt P33 asi Qg2  —az3z (34 P33

P44 Q41 Q42 Q43 —Q44 P44

Here, coefficient matrix of populations are called the bare transition rate matrix
and a,p are transition rates. But some of the transition rates might be negative which is
not physical (Wilcox and Lamb, 1960). To overcome this issue we perform a linear trans-
formation to remove the negative rates while preserving the same steady state solutions.

Then, following along the literature, we introduce the following correction matrix as:

O+ 031+ 0a1 —k3+ 02 + 093+ 02 + 032+ 0us —ky+ 093+ 031 + 030+ 034+ 043 —ki + 0oa + 034 + 041 + 042 + 0u3

Aa— —021 k3 — 091 — 023 — 0 —023 —024
—031 —032 ko — 031 — 039 — 034 —034 ’
—O0aq1 —042 —043 ki —oa — 042 — 0a3
. Ao~ |Aa .
with 0,3 = # and ki, ko, k3 are constants chosen so p = (a + Aa)p

will yield the same steady states as: p = ap. After obtaining the correct transformed

rates, we introduce the interaction as a local detuning, since we only consider Rydberg
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state interactions, in order to extend the single-body system to include many-body effects.

Local detuning is defined as follows:

Cs

i = 15°

Aéi) A, — Z/
i#]

4.2)

Here, summation term is over Rydberg atoms only. Then in order to acquire
steady state populations we used Monte-Carlo sampling. Monte-Carlo sampling is es-
pecially useful when acquiring a deterministic result to a probabilistic problem. In our
Monte-Carlo algorithm: atoms are randomly distributed and initialized in ground state.
Then, random transitions are performed according to transition probabilities determined

by transition rates. Probability of transition between state « and state (3 is defined as:

PO, =5 (a+Aa),, . (4.3)

Here Péi 8 is the probability of transition between state « and state /3, J; is the
time step, which is defined as; every increment of transition. Total time is determined by
the time it takes for the populations to reach a steady state. Then, we roll a die for every
time step for every atom and compare the probability of the atom leaving its current state
with die. If the die is smaller than the probability, transition occurs. Since we are only
interested in the interactions caused by Rydberg atoms, when an atom transitions to Ryd-
berg state, we calculate Rydberg interaction with every other atom and add the interaction
energy to that atom’s Rydberg state detuning value as in Eqn. (4.2). Therefore when the
Rydberg state detuning changes, the probability of exciting that atom to a Rydberg state
changes as well. Figure 4.1 shows a flowchart for the Monte-Carlo sampling. MATLAB
script for Monte-Carlo algorithm is provided in Section A.3.

Since our system at hand is a four-level scheme, we have 16 coefficients that gov-
ern populations and transitions. And even for a small system of 100 atoms, performing a
statistically averaged Monte-Carlo sampling over 100 realizations is extremely time con-
suming. Unfortunately due to lack of time and computational power we could not perform
this calculation in the time frame of this thesis. A possible solution to this issue is using
the effective operator formalism method (Reiter and Sgrensen, 2012). In this method,

effective operators are defined for the system in order to reduce the evolution of system
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Figure 4.1. Rate equation model Monte-Carlo algorithm flowchart.

dynamics. It would be possible to reduce the four-level system into an effective three-level
system. There are several applications of effective operator formalism on literature and
it is observed to be in good agreement with the experimental results (Reiter et al., 2012;
Schempp et al., 2015). It is also reportedly possible to apply rate equation model with
atom pair treatment (Heeg et al., 2012). This hybrid model too, has potential to reduce

the complexity of our problem.
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CHAPTER 5

CONCLUSION

In this thesis, Electromagnetically Induced Transparency in a four-level Rydberg
scheme is analyzed and effect of Rydberg-Rydberg interactions on EIT behavior is stud-
ied. In the Introduction Chapter, EIT scheme in a three-level lambda system with strong
coupling field and weak probe field, is explained by dressed-state formalism. First Hamil-
tonian for a three-level lambda system is derived within dipole and rotating wave approx-
imations. Then dressed states are acquired and the formation of a dark-state with zero
eigenvalue was shown. Moreover, absence of absorption for the probe field is explained
by the dark-state. Following that; optical response in terms of absorption and refractive
index for an atomic medium is explained. Rydberg blockade mechanism due to van der
Waals interaction is discussed.

Afterwards, in Theory Chapter; atom-light interaction terms for a four-level ladder
system is obtained and Optical Bloch Equations are acquired. Followed by discussions of
steady state solutions and avoided crossings corresponding to absorptive features. Later,
many-body equations of motion for interacting system are derived. Many-body equations
are not solvable due to the hierarchy introduced by two-body density matrices, therefore
two approaches to tackle this problem is employed. In the first approach, mean-field
approximation is used to reduce two-body density matrices into product of single-body
density matrices. First interacting two-body case is analyzed in detail. Optical response
of the medium and ground state and Rydberg state populations are studied in detail for
different interaction energies. Rydberg blockade effect on optical properties and state
populations are discussed. After that, in order to study larger systems with more ac-
curacy, self-consistent mean-field method is developed. Effects of Rydberg interaction
and Rydberg blockade on optical properties as well as state populations are analyzed.
In the second approach, rate equation method is adopted. After adiabatic elimination of
coherences, rate equations for populations are obtained and a Monte-Carlo algorithm is
developed in order to solve the system. Due to inadequacies in time and computation

power, rate equation method could not be completed within the time frame of this thesis.
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A possible remedy to this problem is to reduce the four-level system into an effective
three-level system. This can be achieved by effective operator formalism method and will
be pursued in the future.

In conclusion; EIT phenomenon is extended to a four-level ladder scheme in which
fourth level is a Rydberg state. Presence of transparency due to dark-state formation is
analyzed in detail. Effects of Rydberg-Rydberg interactions on EIT features are studied.
It is observed that; as the van der Waals interaction increases either by means of increas-
ing principal quantum number or by decreasing inter-atomic distance, Rydberg blockade
becomes more effective and transparency weakens. In the limit of extreme interaction,
excitation to Rydberg state could not be achieved and four-level system transforms to an

effective three-level system without the Rydberg state and transparency is completely lost.
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APPENDIX A

MATLAB SCRIPTS

In Appendix, three MATLAB scripts are provided. In Section A.1, script for,
steady state solutions of coherences and populations for Optical Bloch Equations is pro-
vided. In Section A.2, self-consistent mean-field algorithm is provided and in Section A.3

Monte-Carlo algorithm used for rate equation method is provided.

A.1. Steady State Solutions for OBEs

MATLAB script for calculating steady state solutions for coherences and popula-

tions from OBEs are presented. Figure 2.2 is obtained by using this code.

1 % This code, calculates the coherences and populations for a four—level

2 % ladder system in steady state.
4 % System parameters
6 % Rabi frequencies for probe, dressing and coupling fields:

8 wl = 2xpix(0.1);
9 w2 = 2xpix(8);
10 w3 = 2xpi*(0.5);

12 % Field detunings:

14 det2 = 2xpix*(0);
15 det3 = 2xpix(—4);

17 % Radiative decay rates:

19 gl = 2%pix(l);

20 g2 = 2xpix*x(1);

21 g3 = 0;

22

23 % Probe detuning to be scanned:

24

25 prob_det = —2%pix8:2xpi*x0.001:2% pi*8;
26

27 i=1; % Dummy variable



28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Yo

This loop solves the linearly

% detuning .

for detl

% d_

% Coefficient matrix resulting

Coeffs (:,:

detl

=—8:0.001:8
rho = Coeffs % rho

0;...

coupled

from

(wlxli)/2, — gl/2 — pixdetl=2i,
0, 0, 0, 0, 0;...
0, (w2x1i)/2, — det2x1li — g2/2 — pixdetl*2i,
0, 0, 0, 0, 0, 0, 0, O;...
0, 0, (w3x1i)/2, — det2x1i — det3x1i — pixdetl*2i,

0, 0, 0, 0, 0, O,
—(wlxli)/2, 0, 0, 0, — gl/2 + pixdetl*2i,

0;...

0, 0, 0, 0, 0;...
(Wix1i)/2, —gl, (w2li)

0, —(wlxli)/2, O,
0, 0, 0;...
0, 0, —(wlxli)/2,

0,

0, 0,

—(w2xli)/2, 0, 0, 0, 0,
0, 0, 0, —(wlxli)/2,
—(w2%1i)/2, 0, 0, 0, 0;...
0, 0, 0, 0, —(w2x1i)/2, 0, 0,
0, 0, 0;...
0, 0, 0, 0, 0, —(w2+1i)/2, 0,
/2, 0, 0, —(w3%1i)/2, 0,
—(wW2x1i)/2,

0, —(w3xli)/2,

0, 0, 0, 0,0, 0,
Y12, 0;...

0, 0, 0, 0, 0, 0,
—(w3x1i)/2;..

0,

set of equations

the Master Eqn.

,i)=[ 0, (wlxli)/2, 0, 0, —(wlxli)/2, gl,

(w2x1i)/2, 0, 0, —(wlxli)/2,

0;...
0, 0, (W3x1i)/2, — det2x1i — det3x1i — gl/2, 0,

0,

(w3x1i)/2,

/2, 0, 0, —(w2x1i)/2, g2,

(wW2x1i)/2, — det2x1i — gl/2 — g2/2,

for every probe

0, 0, 0, —(wlxli)/2,

det2x1i — g2/2 + pixdetl*2i,

(wlxli)/2,

0;...

0,

—(W2x1i)/2,

0, (w2x1i)/2, —g2,

det2x1i — gl/2 — g2/2,

(w3x1i)/2,

(wlxli)/2, 0, 0, —(w2x1li)/2,

(w3x1i)/2,

0,

0, 0, —(wlxli)/2,

0, 0, 0, 0, 0, 0, 0, 0, O,

0, 0, 0, 0, 0,

0,

0,

0,

0,

0,

0,

0,

0,

0,

(wlxli)/2,

0, 0,

0, 0, (w3x1i)/2, — det3x1li — g2/2,

0, 0, 0, 0, 0, 0, 0, 0, —(w3xli)/2, 0, 0, O,
0;...

(wlxli)/2, 0,

0, 0, 0, 0, 0, 0, 0, 0, O,
gl/2, (w2xli)/2,

0, 0, 0, 0, 0, O,
w3xli)/2;...
0, 0, 0, 0, 0, O,
1, 0, 0, 0, O, 1,
(i)=det3;

i=i+1;

end

Yo

B=[0,0;0;0;0;0;0,0;0;0;0;0;0;0;0;0;1];

%o

Steady

Linear

state conditions

solution :

0;...

0, 0, 0, O,

i

.€

:(d_rho

—(w3x1i)/2, 0, 0,

—(w3x1i)/2, 0,

0,
L,

—(w3x1i)/2,
0o, 0, 0, O,

0)

0,

(w2x11)

—(w3x1i

0,

0,

0,

det2x1i + det3x1i + pixdetl*2i,

(wlx1i)/2,

0, (w2x1i)/2,

0, 0,
1];

(w3x1i)/2,

0;...

det2x1i + det3*1i —

det3+1i — g2/2, (
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62

63 sols=zeros(16,length(Coeffs));

64 for j=Il:length(Coeffs)

65 sols (:,j)=linsolve (Coeffs (:,:,j),B);
66 end

67

68 % Visualization:

69

70 figure (' Position’,[70,70,1300,900])

71

72 subplot(2,1,1)

73 pl = plot(prob_det/(2xpi),imag(sols(2,:)));
74  set(pl, LineWidth’ ,3.7);

75 set(pl, LineStyle’, —");

76 ylim auto

77 ax=gca;

78 ax.FontSize=30;

79 ax.Box="on’;

80 title (', FontWeight’, bold’);

81 xlabel(’’, interpreter’, latex );

82 ylabel ("Im($\rho_{12}$)’,  interpreter’, latex’);
83

84 subplot(2,1,2)

85 pll = plot(prob_det/(2xpi),real(sols(2,:)));
86 set(pll, LineWidth’ ,3.7);

87 set(pll, LineStyle’, —");

88 set(pll, Color’, 'red’);

89 ylim auto

90 ax=gca;

91 ax.FontSize=30;

92 ax.Box="on’;

93 title (', FontWeight’, bold’);

94 xlabel(’$\displaystyle\frac {\Delta_1}{2\pi}${(MHz)}" ,  interpreter’, latex’);

95 ylabel ("Re($\rho_{12}$)’, interpreter’, latex ’);
9% tightfig;

A.2. Self-Consistent Mean-Field Algorithm

MATLAB script containing self-consistent mean-field method is presented. Fig-

ures in Section 3.1.2 are obtained by using this script.

1 % Self—Consistent Mean—Field algorithm .

2

3 tic % For tracking time it takes to finish the program.
4

5 % for loop that runs over principal quantum number.
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for n = [0,50,60,70,80,90,100]

% Constants required to calculate C6 term in atomic

%tor Cesium:

c0 = 1.064x1el;
cl = —6.249x1le—1;
c2 2.330x1e—3;

C6 = (n™"11)x(cO + nxcl + (n”2)xc2);

hartree=4.35574417+x1e—18;

a0=5.251772108«1e—11;

hbar=1.054571800x%1e —34;

% C6 in units of MHz(micrometer)”6

C6=(le—6)+xC6bxhartree *x((aOx1e6)”"6)/hbar;

% Number of atoms:

n_atoms =50;

% Density of atoms:

density = 1e9; % cubic centimeters

% System Parameters (All in units of MHz)

% Light Field Rabi Frequencies

wl=2%pi*(0.1);

w2=2x*pi *(8) ;

w3=2xpi*(1);

% Field Detunings

det1=2%pi*(0); % Initially probe detuning is zero.

d2=2xpi*(0);

d3=2xpix(—4);

% Decay Rates

gl=2%pi=x(5.39);
g2=2xpi*(3.31);

% Initial guess for Rydberg State Population:

units :
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guess=le—6;

% Assigning the guess for every atom:

pops_ryd=zeros (1,n_atoms);

for i=1:n_atoms

pops_ryd(i)=guess;

end

pops_ryd = sum(pops_ryd)/n_atoms;

% Probe Detuning range to be scanned. Needed for creating coefficient matrix.

prob_detuning=2%pi*[ —8:0.05:3.6,3.6:0.001:4.2,4.2:0.05:8];

% Number of realizations for statistical averaging.

n_iteration = 1000;

for o = l:n_iteration

% Initiate atoms at ground state with random positions.

[atom]=atom_prop (n_atoms , density ,d3);

Coefs_k=[];

h=1; % Dummy variable

m=1;

for detl=2%pi*[ —8:0.05:3.6,3.6:0.001:4.2,4.2:0.05:8]

J%Completing the matrix equation for steady state solutions.

vec=[];

for i=17:17:n_atomsx*17

vec(i,l)=1;

end

d4=zeros (n_atoms ,n_atoms) ;

% Calculates the distance between each atom and assigns the interaction

% term with respect to that.

for i=1:n_atoms
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for j=1:n_atoms
if j~=i
% Calculating the distance between each atom. 1074 is the
% conversion factor to micrometers.
r = ledssqrt ((atom(i,l)—atom(j,1))"2+...
(atom(i,2)—atom(j,2))"2+...

(atom(i,3)—atom(j,3))"2);
d4(i,j) = (C6/r"6)*xpops_ryd;

end

end

end

% Collects all respective interactions and sums them for each atom.

for i=1:n_atoms

d44 (i)=sum(d4(i,:));

end

% Creating the interaction matrix, later to be added to Coefficient

Matrix .

int_matrix =[];

% Terms for the first atom are added manually for simplicity of the

% following for loops:

int_matrix (4,4)=+1ixd44 (1) ;

int_matrix (8,8)=+1i%xd44 (1) ;

int_matrix (12,12)=+1i%xd44(1);

v=1; % Dummy variable

for k=20:16:16*n_atoms

for b=k:4:k+8

int_matrix (b+v,b)=1i*xd44(v+1);

end

v=v+1;
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end

% Terms for the first atom are added manually for simplicity of the

% following for loops:

int_matrix (13,13)=—1ixd44(1);
int_matrix (14,14)=—1ixd44(1);
int_matrix (15,15)=—1i%d44(1);

z=1; % Dummy variable

for k=20:16:16%xn_atoms
for b=k+9:k+11
int_matrix (b+z,b)=—1i%d44(z+1);
end
z=z+1;

end

int_matrix (n_atoms*17,n_atoms*16)=0;

Coefs=[];

CC=[ 0, (wlxli)/2, 0, 0, —(wlxli)/2, gl, O, O, O, O, O, O, O, O, O,

0;...

(wlxli)/2, — gl/2 — detl=li, (w2x1i)/2, 0, 0, —(wlxli)/2, 0, 0, O,
0, 0, 0, 0, 0, 0, O;...

0, (w2x1i1)/2, — d2*1i — g2/2 — detl=li, (w3x1i)/2, 0, 0, —(wlxli)/2,
0, 0, 0, 0, 0, 0, 0, O, O;...

0, 0, (wW3x1i)/2, — d2%1i — d3*1i — detl*li, 0, 0, 0, —(wlxli)/2, O,
0, 0, 0, 0, 0, 0, O;...

—(wlxli)/2, 0, 0, 0, — gl/2 + detlxli, (wlxli)/2, 0, 0, —(wW2x1i)/2,
0, 0, 0, 0, 0, 0, O;...

0, —(wlxli)/2, 0, 0, (wlxli)/2, —gl, (w2x1i)/2, 0, 0, —(W2xli)/2, g2
, 0, 0, 0, 0, 0;...

0, 0, —(wlxli)/2, 0, 0, (w2xli)/2, — d2x1i — g1/2 — g2/2, (w3x1li)/2,
0, 0, —(w2x1i)/2, 0, 0, 0, 0, O;...

0, 0, 0, —(wlxli)/2, 0, O, (w3x1i)/2, — d2x1i — d3%1i — gl/2, 0, O,
0, —(w2x1i)/2, 0, 0, 0, O;...

0, 0, 0, 0, —(w2xli)/2, 0, 0, O, d2x1i — g2/2 + detlxli, (wlxli)/2,
0, 0, —(w3x1i)/2, 0, 0, 0;...

0, 0, 0, 0, O, —(w2x1i)/2, 0, O, (wlxli)/2, d2*x1i — gl/2 — g2/2, (w2
x11)/2, 0, 0, —(w3x1i)/2, 0, O;...

0, 0, 0, 0, 0, O, —(w2xli)/2, O, O, (w2x1i)/2, —g2, (w3xli)/2, 0, O,
—(w3x1i)/2, 0;...

0, 0, 0, 0, 0, 0, 0, —(w2xli)/2, 0, O, (w3x1i)/2, — d3%1i — g2/2, O,
0, 0, —(wW3xli)/2;...

0o, o0, 0, 0, 0, O, O, O, —(wW3x1li)/2, 0, 0, O, d2%1i + d3xli + detl=xli
, (wlxli)/2, 0, O;...
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0o, 0, 0, 0, 0, 0, O, 0, O, —(W3xli)/2, 0, O, (wlxli)/2, d2*1i + d3x*l

i — gl/2, (w2x1i)/2, 0;...

0, 0, 0, 0, 0, 0, 0, 0, O, O, —(w3x1i)/2, 0, 0, (w2xli)/2, d3xli —

g2/2, (wW3x1i)/2;...
o, o, 0, 0, O, O, O, 0, O, O, O, —(w3x1i)/2, 0, O, (w3xli)/2
1 0, 0, 0, 0, 1, 0, 0, O, 0, 1, 0, O, 0, O, 1];

0;...

% blkdiag is a function that adds the CC Matrix to an Empty Matrix

% Coefs diagonally. This for loops allows it to do that for each
% in the system. For each atom there is a 17x16 matrix involving

% coefficients .

for j=1:n_atoms
Coefs = blkdiag (Coefs ,CC);

end

Coefs_k(:,:,h) = Coefs + int_matrix;

% Linearly solving the system using Coefs_k and vec.

sols=linsolve (Coefs_k (:,:,h),vec);

sols_ryd=zeros(1,n_atoms);

for i=1:n_atoms
sols_ryd(i)=real (sols(16x%i));
end

sols_ryd = sum(sols_ryd)/n_atoms;
s=1;
while abs(pops_ryd—sols_ryd)>le—3
s=s+1;
if $>500
Joerr_d1 (m)=d1/(2x*pi);
m=m+1;
break

end

pops_ryd=sols_ryd;

for i=1:n_atoms

for j=1l:n_atoms

if je=i

atom

% Calculating the distance between each atom. 1074 is

the
% conversion factor to micrometers.

r = ledxsqrt((atom(i,l)—atom(j,1))"2+...
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(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);
d4(i,j) = (C6/r"6)*pops_ryd;
end
end
end
% Collects all respective interactions and sums them for each atom.
for i=1:n_atoms
d44 (i)=sum(d4(i,:));
end
% Creating the interaction matrix, later to be added to Coefficient
Matrix .

int_matrix =[];

% Terms for the first atom are added manually for simplicity of the

% following for loops:

int_matrix (4,4)=+1ixd44(1);

int_matrix (8,8)=+1ixd44(1);

int_matrix (12,12)=+1ixd44(1);
v=1; % Dummy variable

for k=20:16:16*xn_atoms

for b=k:4:k+8
int_matrix (b+v,b)=1ixd44(v+1);

end

v=v+1;

end

% Terms for the first atom are added manually for simplicity of the

% following for loops:
int_matrix (13,13)=—1ixd44(1);
int_matrix (14,14)=—1ixd44(1);

int_matrix (15,15)=—1ixd44(1);

z=1; % Dummy variable
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end

for k=20:16:16+n_atoms
for b=k+9:k+11
int_matrix (b+z,b)=—1i%xd44(z+1);
end
z=z+1;

end

int_matrix (n_atoms*17,n_atoms*16)=0;

Coefs_k (:,:,h) = Coefs + int_matrix;

% Linearly solving the system using Coefs_k and vec.

sols=linsolve (Coefs_k (:,:,h),vec);

for i=1:n_atoms

sols_ryd(i)=real (sols(16x*i));

end

sols_ryd = sum(sols_ryd)/n_atoms;
end
solutions (: ,h,0)=so0ls;
h=h+1;

end

end

% Statistical average:

av_sols= sum(solutions ,3)/n_iteration;

time=toc ;

% Save the data.

save(strcat(’ sc_cs_’,num2str(n), ' ,num2str(n_atoms),’

mat’),’av_sols’,’dll’, time’,’m’)

A.3. Monte-Carlo Algorithm

rate equation model is provided as follows:

1

2

3

Yo

for

This code represents the Monte—Carlo algorithm.

% Main loop that runs over each atom.

i=1:n_atoms

,num2str(n_iteration), .

MATLAB script containing Monte-Carlo algorithm mentioned in Chapter 4 for
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% Local detuning:

dloc = atom(i,5);

% 1f the atom is in ground state:

if atom(i,4) == 1

% Probability of atom leaving ground state:

pl = dtxtrl11(dl,d2,dloc,wl,w2,w3,g1,g2);

% Roll a die:

die = rand;

% Atom leaves ground state if pl is larger than die:
if die<pl
% Probabilities of transitions to states 2,3,4:
p21 = tr21(dl,d2,dloc ,wl,w2,w3,gl,g2)/tr11(dl,d2,dloc,wl,w2,w3,gl,g2);
p31 = tr31(dl,d2,dloc ,wl,w2,w3,gl,g2)/trll(dl,d2,dloc,wl,w2,w3,gl,g2);
p4l = trd41(dl,d2,dloc ,wl,w2,w3,gl,g2)/trll(dl,d2,dloc,wl,w2,w3,gl,g2);
die = rand;
% Check the transitions:
if die<=p21
atom(i,4) = 2; % Atom is in state 2
elseif die<=p21+p31 && die>p2l
atom (i ,4)=3; % Atom is in state 3
else
atom (i ,4)=4; % Atom is in state 4
% When any atom gets to state 4 or Rydberg state ,
% pairwise interactions with every other atom are

% calculated and recorded:

for j=l:n_atoms
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if je=i

% Inter —atomic distance:

r = sqrt((atom(i,l)—atom(j,1))"2+...

(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);
% van der Waals interaction:
atom(j ,5) = atom(j,5) + C6/r"6;
end
end
end

end

% Same procedure as above for atom being in ground state:

elseif atom(i,4) == 2

p2 = dtxtr22(dl,d2,dloc,wl,w2,w3,g1,g2);

die = rand;

if die<p2

p32 = tr32(dl,d2,dloc ,wl,w2,w3,¢gl,g2)/tr22(dl,d2,dloc ,wl,w2,w3,gl,g2);
p42 = tr42(dl,d2,dloc ,wl,w2,w3,¢gl,g2)/tr22(dl,d2,dloc ,wl,w2,w3,gl,g2);
pl2 = tr12(dl,d2,dloc ,wl,w2,w3,¢gl,g2)/tr22(dl,d2,dloc ,wl,w2,w3,gl,g2);

die = rand;

if die<=p32

atom (i ,4)=3;

clseif die<=p42+p32 && die>p32

atom (i ,4) = 4;

for j=l:n_atoms

if j~=i

r = sqrt((atom(i,l)—atom(j,1))" 2+...

(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);

atom(j ,5) = atom(j,5) + C6/r"6;
end

end

else
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atom(i.,4) = 1;

end

end

elseif atom(i,4) == 3

p3 = dt*tr33(dl,d2,dloc ,wl,w2,w3,gl1,g2);

die = rand;

if die<p3

p43 = tr43(dl,d2,dloc ,wl,w2,w3,gl,g2)/tr33(dl,d2,dloc ,wl,w2,w3,gl,g2);
p23 = tr23(dl,d2,dloc,wl,w2,w3,gl,g2)/tr33(dl,d2,dloc,wl,w2,w3,gl,g2);
pl3 = tr13(dl,d2,dloc ,wl,w2,w3,¢gl,g2)/tr33(dl,d2,dloc,wl,w2,w3,gl,g2);

die = rand;

if die<=p43

atom (i ,4) = 4;

for j=1:n_atoms

if j~=i

r = sqrt((atom(i,l)—atom(j,1))"2+...

(atom(i,2)—atom(j,2))"2+...

(atom(i,3)—atom(j,3))"2);

atom(j ,5) = atom(j,5) + C6/r"6;

end

end

elseif die<=p23+p43 && die>p43

atom (i ,4) 2;

else

atom (i ,4)

Il
—_

end

end

else
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p4 = dtxtrd44(dl,d2,dloc ,wl,w2,w3,g1,g2);

die = rand;
if die<p4
p34 = tr34(dl,d2,dloc ,wl,w2,w3,gl,g2)/tr44(dl,d2,dloc ,wl,w2,w3,gl,g2);
p24 = tr24(dl,d2,dloc ,wl,w2,w3,gl,g2)/trd44(dl,d2,dloc ,wl,w2,w3,gl,g2);
pl4 = tr14(dl,d2,dloc ,wl,w2,w3,gl,g2)/trd44(dl,d2,dloc ,wl,w2,w3,gl,g2);
die = rand;
if die<=p34
atom(i,4) = 3;
for j=l:n_atoms
if j~=i
r = sqrt((atom(i,l)—atom(j,1))"2+...
(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);
atom(j ,5) = atom(j,5) — C6/r"6;
end
end
elseif die<=p24+p34 && die>p34
atom (i ,4) = 2;
for j=1:n_atoms
if j~=i
r = sqrt((atom(i,l)—atom(j,1))" 2+...
(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);
atom(j ,5) = atom(j,5) — C6/r"6;
end
end

else

atom(i,4) = 1;

for j=l:n_atoms
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if je=i

r = sqrt((atom(i,l)—atom(j,1))"2+...

(atom(i,2)—atom(j,2))"2+...
(atom(i,3)—atom(j,3))"2);

atom(j ,5) = atom(j,5) — C6/r"6;
end
end
end
end

end

end
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