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ABSTRACT

MODAL IDENTIFICATION OF STRUCTURES BY USING BAYESIAN
STATISTICS

Bayesian Probabilistic approaches in the health monitoring of civil engineering
structures has gained remarkable interest during past decades. When compared to the
available Operational Modal Analysis (OMA) methods, Bayesian Operational Modal
Analysis (BAYOMA) determines a probabilistic range with a most probable value and
uncertainty instead of a certain result. For this reason, the most important difference of
BAYOMA lies in its capability of uncertainty quantification. Therefore, the modal
parameters of a measured structure can be determined based on a probabilistic logic
according to various cases (for example single measurement setup, well separated and/or
closely spaced modes, multiple measurement setups). Further, the finite element model
of the investigated structure can also be updated by a Bayesian approach incorporated
with modal identification procedure. Some efficient BAYOMA methods such as
Bayesian Spectral Density Approach (BSDA) and Bayesian Fast Fourier Transform
Approach (BFFTA) have been presented by various researchers during the past two
decades. Despite their efficient and fast solution procedure, the available methods have
some critical issues that need to be solved. Most of these problems especially lie in the
quantification of posterior uncertainties and some special cases arise in closely spaced
modes and/or multiple setup measurement cases. In the literature, solutions for the
aforementioned problems have been also presented by various researchers. In the light of
the accumulated knowledge in the literature, this study presents a computational
framework for BAYOMA and Bayesian Model Updating (BMU). In addition to some
improvements to the available methods, new and alternative approaches are presented for
BAYOMA and BMU. According to the results, it is seen that the quality of identified
modal parameters and updated finite element models increases significantly by the

proposed computational procedure.
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OZET

YAPILARIN BAYEZYAN ISTATISTIKLERI ILE MODAL
TANILAMASI

Bayezyan olsasiliksal yaklagimlari, ingaat miihendisligi yapilarinin sagliginin
izlemesinde, gecen on yillar boyunca kayda deger bir ilgi kazanmistir. Mevcut
Operasyonel Modal Analiz (OMA) yontemleriyle karsilagtirnildiginda Bayezyan
Operasyonel Modal Analiz (BAYOMA) yontemleri, belirli bir sonug¢ yerine en olasi
deger ve bu degerin belirsizligini iceren olasiliksal bir aralik belirler. Bu nedenle,
BAYOMA'nin en o6nemli farki belirsizlikleri tanimlama kabiliyetinde yatmaktadir.
Boylece, Ol¢iilen bir yapinin modal parametreleri, ¢esitli durumlara gore (6rnegin tekil
Ol¢ciim grubu, iyi ayrilmis ve/veya cakisan modlar, ¢oklu 6l¢iim gruplar gibi) bir olasilik
temelinde belirlenebilir. Ayrica, incelenen yapinin sonlu eleman modeli, modal
tanimlama prosediiriinden elde edilen sonuglar kullanilarak, bir Bayezyan yaklasimiyla
da giincellenebilir. Bayezyan Spektral Yogunluk Yaklagimi (BSDA) ve Bayezyan Hizli
Fourier Doniisiim Yaklasimi (BFFTA) gibi bazi1 etkili BAYOMA yontemleri, son yirmi
yil boyunca c¢esitli arastirmacilar tarafindan sunulmustur. Etkili ve hizli ¢6zliim
prosediirlerine ragmen, mevcut yontemlerde iistesinden gelinmesi gereken bazi kritik
sorunlar da mevcuttur. Bu sorunlarin birgogu, 6zellikle sonsal (posterior) belirsizliklerin
belirlenmesinde yatmakta veya ¢akisan modlar ya da ¢oklu 6l¢iim gruplart bulunmasi gibi
bazi 6zel durumlarda ortaya cikmaktadir. Literatiirde, yukarida belirtilen sorunlara
yonelik ¢ozlimler ¢esitli arastirmacilar tarafindan sunulmustur. Mevcut bilgiler 1s181nda,
bu calisma BAYOMA ve Bayezyan Model Giincelleme (BMU) i¢in bir hesap ¢ergevesi
sunmaktadir. Mevcut yontemlerde bazi iyilestirmelere ek olarak, BAYOMA ve BMU i¢in
yeni ve alternatif yaklagimlar sunulmaktadir. Elde edilen sonuglara gore, tanilanan modal
parametrelerin ve giincellenmis sonlu eleman modellerinin kalitesinin, onerilen hesap

prosediirii ile 6nemli 6l¢iide arttig1 goriilmektedir.
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CHAPTER 1

INTRODUCTION

1.1. Motivation of Study

Structural Health Monitoring (SHM) applications have an important role to
determine the dynamic characteristics of structures which are designed to resist extreme
events such as earthquakes, wind loads. The modal properties of the structures including
natural frequencies, damping ratios, and modal shape vector have a prominent role in the
structural design procedure. However, those design characteristics may show significant
deviations from the actual values due to the non-linear effects such as possible variance
in the material properties, and small differences in the geometrical configuration during
the construction phase. In addition, when structures are subject to extreme events such as
earthquakes, they might have been subjected to damage which can also cause a significant
change in the dynamic characteristics. For this reason, monitoring the variations in the
modal properties become prominent to identify the current state of a structure.

To provide a useful solution for the problems that are mentioned above,
Operational Modal Analysis (OMA) methods presents efficient tools to identify modal
properties of structures by using acceleration, velocity or displacement response
measurements. The most important advantage of OMA methods is that it does not need
any information for the input motion. Various OMA methods are available in the
literature based on the physical, statistical or probabilistic interpretation of the measured
response. In this context, Bayesian Operation Modal Analysis (BAYOMA) presents a
framework to identify the modal properties based on a probabilistic logic. According to
this framework, the most probable value (MPV) for each modal parameter are quantified
with their uncertainties. Different from other OMA methods, BAYOMA defines a
probabilistic range with an MPV rather than a certain identified parameter.

As a next step, the finite element model of the measured system may be updated
by using a Bayesian probabilistic approach. A posterior probability distribution for model

(stiffness and mass components) and modal parameters can be obtained by using the



outputs of any OMA method. In addition, a more reasonable probabilistic model may be

obtained when the prior distribution of modal parameters is modeled by BAYOMA.

1.2. Literature Review

Modal analysis techniques in the literature can be classified as experimental and
operational modal analysis methods due to the requirement of input motion information.
Experimental modal analysis (EMA) which utilizes input-output techniques might be
more feasible for laboratory studies or some special cases in which the input motion can
be controlled by shakers or impact loading. However, the application of EMA is quite
limited due to insufficient information available for input motion in most cases (Orlowitz
& Brandt, 2017). In this context, OMA presents more feasible techniques to extract the
dynamic characteristics of the investigated structure since it utilizes the ambient vibration
data without resorting to information of input data. OMA considers a randomly
distributed input excitation in stochastic manner. Therefore, it assumes that large number
of vibration modes are excited by ambient loading effects.

Various methods are available in the literature for damage detection based on
updating the finite element models by using the modal parameters that are identified by
OMA or EMA methods. The most generic form of these updating procedures are based
on the minimization of discrepancy between the identified eigenvalues, eigenvectors and
model eigenvalues and eigenvectors (Yuen, 2010; Touat et al, 2014). Bayesian
approaches for finite element model updating are also available in the literature. These
approaches are generally a combination of two stages. At first stage, the modal parameters
are identified by using the acceleration response measurements, and a proper prior
distribution is assigned for modal (eigenvalues and eigenvectors) and model (stiffness or
mass scaling factors) parameters (Ching et al, 2006). The main difference between the
available Bayesian methods lies in the selection of prior distributions for model
parameters. Generally, truncated normal (Yuen and Kuok, 2011; Yan and Katafygiotis,
2015c¢) or lognormal (Das and Debnath, 2018) distributions or their combinations are
selected to represent the prior distribution of model parameters. Another difference lies
in the consideration of multiple setup measurements in the Bayesian finite element model
updating procedure. Here, two different approaches are available based on generation of

prior distribution of measured modal parameters: (i) using the global values obtained by



assembling the local ones from each setup (Yuen and Kuok, 2011), or (ii) using the local
identified parameters directly ( Yan and Katafygiotis, 2015¢; Au and Zhang, 2016; Zhang
and Au, 2016; Zhang et al, 2017).

A brief literature review is presented for non-Bayesian and Bayesian OMA
methods in the following two subsections. In addition, detailed literature reviews for
specific fields that are investigated in this thesis are provided in the corresponding

chapters.

1.2.1. Non-Bayesian Methods

Various OMA methods have been presented to the literature based on the time or
frequency domain analysis of measured response. Among these, Ibrahim Time-domain
Identification, Natural Excitation Technique and Eigensystem Realization Algorithm
(NExT-ERA), Stochastic Subspace Identification (SSI), and Frequency Domain
Decomposition (FDD) come forward as most conventional and well-known time or
frequency domain techniques in the literature.

Ibrahim Time-domain Identification is based on the theory that the output of the
ambient excitation can be reduced to an equivalent free vibration response or correlation
functions by a random decrement transformation. Finally, the modal parameters are
obtained by the solution of an eigenvalue problem that is constructed from the reduced
time-domain data (Ibrahim, 1999; Malekjafarian et al, 2012). Another time-domain
method, NExT-ERA is a combination of two-different techniques and works in two steps.
First, the measured ambient vibration data is processed and transformed by NExT to an
equivalent free-vibration response data. Second, the modal properties are extracted by
ERA which constructs a linear state-space dynamical model based on the modal
characteristics of the measured system (Caicedo, 2011). SSI presents an efficient
statistical framework for system identification based on the sate-space representation of
a linear dynamic model that is excited by a White Noise excitation. First, the state of the
system is predicted by a Kalman filter based on the outputs of the Hankel matrix which
is a special form of the collected response data (data driven) or its covariance (covariance
driven). Second, the optimal prediction is obtained for the state vector by the projection
of the outputs of the Kalman filter and the available system matrices. Third, the system

matrices are obtained by linear regression of Kalman state sequences. Finally, the



covariances for the measurement noise and modelling error are recovered (Overschee and
Moor, 1993; Peeters and De Roeck, 2000). Although SSI is an efficient OMA method
and it is widely used in the civil engineering community, computational efforts in the
analysis procedure may increase due to possible problems in the selection of a proper
model order for the Hankel matrix. If the number of modes to be identified increases, the
model order may need to be increased as well. Thus, the dimension of the Hankel matrix
will inevitably increase. This problem is also widely seen in the application of NExT-
ERA.

A frequency domain identification technique: Frequency Domain Decomposition
(FDD) has been presented by Brincker et al (2001). This method first transforms the
measured data to frequency-domain by using Fast Fourier Transformation (FFT). Second,
the possible modes are detected from the Singular Value (SV) spectrum of the FFT data,
and the eigenfrequencies are determined from the dominant frequency band of the
corresponding mode(s) by peak-picking. Damping ratios are determined by using the
decay of motion of the time-domain response of equivalent single degree of freedom
(SDOF) system. This time-domain response is obtained by inverse FFT of the frequency-
domain response within the dominant frequency band of the corresponding mode(s).
Finally, the mode shapes are obtained by the singular value decomposition of the power
spectral density (PSD) matrix of the measured response. The FDD method presents a fast
and efficient scheme for frequency domain OMA. However, the method does not consider

the modelling error and measurement/environmental noise effects.

1.2.2. BAYOMA Methods

Different from the non-Bayesian methods, BAYOMA presents a probabilistic
framework to determine the modal parameters in terms of MPV. Some Non-Bayesian
methods also provide statistical information about the identified data in terms of expected
value, standard deviation and/or covariance (i.e. SSI, FDD). These methods consider
statistical parameters for identified values by a frequentist approach (Au, 2012a).
According to these frequentist approaches, the statistical parameters are directly obtained
from the sample. For example, the expected value is obtained as the sample mean, and
the other parameters are obtained as sample standard deviation, covariance of different

trials. Probabilistic approaches, however, defines these parameters in terms of MPV and



uncertainty. In a probabilistic approach, the MPV and uncertainty of the modal
parameters are estimated by using a proper probability distribution for the available data.
In this context, BAYOMA presents an efficient tool for modal parameter identification
and uncertainty quantification by using Bayesian statistics. First, a prior probability
distribution function correlated with the measured data is constructed. This function
directly depends on the statistical properties of the measured data and it is conditional to
the expectation of the set of modal parameters to be identified. Second, a “posterior
distribution” for the set of modal parameters are obtained by using Bayes’ theorem.

Basic concept of the BAYOMA was first presented by Katafygiotis and Yuen
(2001a) based on the probabilistic distribution of the statistical expectation of sample
spectral density matrix. The theory is based on the approximation that the expected
spectral density matrix of the measured data follows a complex “Wishart Distribution”.
Therefore, the first BAYOMA method is called “Bayesian Spectral Density Approach
(BSDA)”. Second, a time-domain approach is presented by Yuen and Katafygiotis
(2001b) based on the assumption that the measured response data follows a zero-mean
Gaussian distribution. Third, a different BAYOMA method that is referred as “Bayesian
Fast Fourier Transform approach” is presented by Yuen and Katafygiotis (2003). This
approach assumes that the real and imaginary part of the FFT of measured data follows a
zero mean Gaussian distribution. These BAYOMA methods construct a negative-
logarithm likelihood function of posterior probability distribution of the set of modal
parameters. Minimization of the negative-logarithm likelihood function with respect to
the parameters to be identified gives MPVs. However, the computational effort becomes
remarkably high due to the increasing number of parameters to be identified as depending
on the number of considered modes within a wide frequency band. For this reason, two
fast-computational procedures were presented by Au (2011a), (2012b) and (2012c) for
well separated and closely spaced modes. These approaches consider a narrow band in
which the mode(s) of interest dominates the total response and turns the negative-
logarithm likelihood function into a more manageable form.

Yan and Katafygiotis (2015a) presented a two-stage Bayesian approach for
ambient system identification. At the first stage, the mode shapes, and spectrum
parameters (natural frequency, damping ratio, spectral density of modal excitation, and
the spectral density of prediction error) are separated into two parts and MPV of spectrum

parameters are determined by employing a “Bayesian Spectral Trace Approach (BSTA)”.



Second, the mode shapes are identified by BSDA substituting spectrum parameters that
are determined in the first stage, into the negative-logarithm likelihood function.

In BAYOMA, the posterior probability density function (PDF) of the set of modal
parameters can be well-estimated by the Gaussian approximation in case of the
sufficiently large amount of measured data (F. Zhang, 2012). Here, a Gaussian PDF is
obtained in terms of the MPV and posterior covariance matrix of the modal parameters
by using the first order Taylor series expansion of the negative-logarithm likelihood
function. Thus, the posterior uncertainties are obtained by the posterior covariance matrix
which is derived as a Hessian matrix which basically contains the second order derivatives

of the negative-logarithm likelihood function.

1.3. Objectives of the study

The theoretical background of BAYOMA has been well established and numerous
theoretical and experimental studies have been presented on this topic by various
researchers. In the light of the literature, this study aims to present a wide-range
computational framework from modal identification to finite element model updating and
damage detection procedure for structures by using Bayesian statistics. For this purpose,
new or modified solutions for the problems that are addressed in the literature are aimed
to be developed.

One of the most important problems in BAYOMA has been reported as the
calculation of the posterior covariance matrix under equality constraints. To solve this
problem, a solution procedure was previously presented by Au and Xie (2017). This study
presents an alternative solution which results in a block diagonal posterior covariance
matrix, and it is derived that the modal shape vector and spectrum parameters have zero
correlation. In addition, some improvements for the solution procedure of closely spaced
modes are presented.

This study also presents alternative/new algorithms for mode shape assembly and
finite element model updating procedure to reduce the computational time/effort and
posterior uncertainties of the identified/updated parameters.

A flowchart for the computational framework that is aimed to be developed in this
study is presented in Figure 1.1. In this computational framework, Bayesian modal

identification procedure takes a very important role. According to this procedure, first,



the most probable modal properties of the measured structure are determined for the cases
of single or multiple setups. At second stage, the posterior probability distributions of the
identified modal parameters are obtained. At third stage, the prior distributions for modal
and model parameters are defined and the finite element model (FEM) of the structure is
updated by employing the Bayes” Theorem. At the final stage, the level of the possible

damage and its location are determined.

TRUE

3s1v4
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Figure 1.1. Flowchart for the proposed computational framework

1.4. Outlines

Based on the main objectives of the presented research, this study is composed by

four main chapters.



Chapter 2 reviews the theoretical background of available BAYOMA
methods. An alternative solution for the consideration of equality
constraints in the posterior uncertainty quantification is presented. The
capabilities and limits of BAYOMA are investigated.

Chapter 3 reviews some computational issues that are addressed in the
literature. The problems of multiple (closely spaced) and buried modes
are investigated. A modification is proposed for the solution of multiple
mode problems. Effect of modelling error on the identification quality is
investigated. Finally, a general solution procedure for buried mode case
is presented.

In Chapter 4, first, the available mode shape assembly algorithms for
multiple measurement setups are reviewed. Second, an alternative mode
shape assembly technique by two-stage Bayesian Fast Fourier Transform
approach is presented. The presented methodology is compared to the
available Bayesian method via numerical and experimental analysis.
Chapter 5 presents a Bayesian finite element model updating procedure
including the multiple setup problem and missing data case based on the
two-stage Bayesian Fast Fourier Transform approach. The effect of the
presented methodology on the identification (or updating) quality and
their posterior uncertainties are investigated by numerical and

experimental analysis.



CHAPTER 2

BAYESIAN OPERATIONAL MODAL ANALYSIS IN
FREQUENCY DOMAIN: WELL SEPARATED MODES

2.1. Introduction

In frequency domain modal identification, statistical properties of FFT data
obtained from measured acceleration responses present a point of view for the estimation
of most probable modal parameters including natural frequencies, damping ratios and
modal shape vectors. The physical meaning and the statistical properties of FFT data is
prominence to construct a probabilistic framework for the expected modal parameters. In
addition to these, spectral density level of excitation and possible measurement errors
might be important in the identification process. In this context, Bayesian operational
modal analysis (BAYOMA) in frequency domain proposes simple and fast algorithms
based on the statistical properties of measured data. Katafygiotis and Yuen (2001a) first
proposed the Bayesian Spectral Density Approach (BSDA) based on the statistical
properties of spectral density matrix. A Bayesian Fast Fourier Transform approach
(BFFTA) was proposed by Yuen and Katafygiotis (2003) to estimate the most probable
modal parameters by using the Fast Fourier Transform (FFT) data. Au (2011a) proposed
a fast algorithm for BFFTA for systems with well separated modes and reformulated the
general methodology presented by Yuen and Katafygiotis (2003). In past decade,
numerous studies concerning the general computational process and application of
Bayesian Spectral Density and Fast Fourier Transform Approach have been presented
(Auetal, 2013; Lam etal, 2017; Ni and Zhang, 2015; Ni et al, 2015; Ni et al, 2016; Au,
2016a, 2016b). In addition, Yan and Katafygiotis (2015a) presented a two stage BSDA
that separates the modal parameters to be identified into two components: (i) spectrum
variables including frequency, damping ratio, and spectral density of modal excitation
and prediction error, (if) spatial parameters including the modal shape components.
Although BSDA and BFFTA are motivated by different statistical properties of measured

data, they result in similar estimators.



In this chapter, first, the general formulation and derivation of the available
BAYOMA methods are presented. Second, the fast-computational procedure that is
available in the literature is reviewed for the implementation of BAYOMA methods.
Finally, an alternative method for the calculation of posterior covariance matrix is
presented as a contribution to the literature. Using the proposed methodology, a block
diagonal covariance matrix is obtained, and its validity is verified by the conventional

method.
2.2. Dynamic Response Analysis in Frequency Domain

System identification of engineering structures with output only identification
requires an appropriate mathematical representation of dynamic response in frequency
domain. The most prominent problem in output only identification is that the excitation
is an unknown parameter. For this reason, the excitation level that enforce the structure
to vibrate must be defined as a modal parameter to be identified. In frequency domain,
the dynamic equation of motion of a multi degree of freedom (MDOF) system can be

written as;
MU, +CU, +KU, =P, 2.1)

where M, C, and K are nXn sized mass, damping and stiffness matrix, and Pi, Ux denote
nXN; sized frequency depended external load and displacement response functions. In
addition, n = number of total degrees of freedom (DOFs), and N;=number of acceleration
data in time domain. Modal decomposition of the frequency depended displacement,

velocity and acceleration responses can be written as below.
U, = Z 49
i=1
U, =i2af, Y 4,0, 2.2)
i=1

Uk = i24”2szz 9%
i1

in which f; = excitation frequency, g, ¢;= normal coordinate function and modal shape
vector for i mode. Thus, the uncoupled equation of motion is written as below by

substituting Eq. (2.2) into (2.1) and pre-multiplying by ¢,”.
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Here, f;, = natural frequency and damping ratio, and fi= frequency ratio. Thus, the
displacement, velocity, and acceleration responses are obtained as
& -1
Uy, = ZUki; Uy = (47[2](13) Prihi
i=1
. . . ,1
U =2 U Up=(27) Py (24)

Uk = leki; Uki = Py,
i1

where Ay =transfer function from modal excitation, p, to modal acceleration response,
Uy, for the i mode.
o by, [(1-82)+i(28.)] 25
L= l—, ;= = P +i P .
Pri (/’iT Mo, k k k (2.5)
If a frequency band is selected such that a single mode dominates the total

response, the spectral density of acceleration response is obtained as;
H, = UkUZ = Ska¢€0T; Sy = Pkp; D, = hkh;: (2.6)
In Eq. (2.6), Sk = spectral density of modal excitation. Sk is an unknown spectral

parameter, and its expected value should be determined in addition to the expected value

Offi, fi, and @i.
2.3. BAYOMA Methods

In this section, first, BAYOMA methods in the literature are introduced. Then, the

efficiency of those methods is critically discussed.
2.3.1. Bayesian Spectral Density Approach (BSDA)

The statistical expectation for the spectral density matrix of measured response
can be defined by its posterior probability distribution. This probabilistic distribution may
be used as an estimator to identify the set of modal parameters, 0 = [f. & S, S, ¢']. Here,
1, & S, Se, and ¢ denote the expected value of natural frequency, damping ratio, spectral

density of modal excitation, spectral density of prediction error, and modal shape vector
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within the resonant frequency band of a single mode, respectively. The expected value of

the spectral density matrix of measured response can be defined as (Yuen, 2010);
E[Spk] =E, =SD,pp" +S,1 (2.7)

in which S, = FiFy; and F, = Uy + ey. Here, F, = scaled FFT of measured acceleration
response that includes the error term, ex. The spectral density of prediction error includes

both the channel noise and the modelling error and can be defined as a diagonal matrix

(Yuen and Katafygiotis, 2003).
E| e |=S,1, (2.8)

in which N = number of measured DOF. The scaled discrete Fast Fourier Transform
(FFT) of the measured response, y(t), can be written as below (Au, 2011a).

2ai(k-1)(s-1)

Nt N J\ 7
F, = %Zj}sxe N (2.9)

t s=l
where k = {1, ... , Nt}, and A¢ = sampling time interval. Probability distribution of modal
parameters depends on the statistical properties of FFT. In this context, a conditional joint
probability function of modal parameters (posterior probability density function),

p@ | Spk), can be defined for a certain excitation frequency by using Bayes’ theorem,
p (S pk )

where p(Spk | 0) = likelihood function (or spectral density estimator), p(f) = prior

p(e\spk) = (2.10)

probability distribution of modal parameters, p(Spx) = scaling factor (independent from
0). According to the literature, it is well-known that p(Sp« | ) varies much faster than p(6)
with respect to 6 (Yuen and Katafygiotis 2002, Zhang 2011). Therefore, the posterior
probability density function, p(€ | Spk), can be assumed to be proportional to p(Spk | 0).
Yuen (2010) states that spectral density matrix follows the complex Wishart Distribution
of dimension N with N, degrees of freedom under ambient excitation. Here N, = size of
the windowed part of FFT if an average spectral density matrix is used. Thus, p(Spy« | 0)is
written as below (Yuen, 2010).

N(N-1) Ny
2 NVWsN) | gag |
p<Spk |9) - Ny - pl:v exp(—NStr |:Ek_1F;CFk*:|) (2.11)

H(Ns _S)!|Ek

s=1

where Sy average spectral density matrix.
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S U
S0 = — > FF, (2.12)
s k=1
Since the modal parameters are assumed to be linearly independent, the posterior

probability density function can be defined as follows in a selected frequency band.

_N(N-1) v
T 2 iV(Ns—N) S;Zg s L .
Hp(<9|Sk) oc H T » exp(—Nstr[Ek F.F, ]) (2.13)
k s

C T -9)lE,

s=1

Using the negative-logarithm likelihood function of p(Sk|9) might be more

practical because the product definition turns to a summation series.

L(@):—ln{];[p(ﬂsk)}oc—ln{lz[p(spk |9)} (2.14)

By using Eq. (2.11), the negative logarithm-likelihood function is arranged as

L(0)=C+N, > n|E|+N, ¥ or[ E'S5¢ | (2.15)
k k
where C denotes the constant terms, and does not vary with respect to 6.
N ,N(N-1
C= —MlnnJerN(Ns ~N)InN,
2 P

(2.16)
+N,(N,=N)n

avg
Spk

+N, [iln((Ns —s)!]_

Using the Sp“*® in the analysis procedure is not necessary, but it provides a

reduction in computational time and effort. Instead, the spectral density matrix Syx can be
used in the formulation. In that case, N, will be equal to 1, and the negative log-likelihood

function is obtained as;
L(0)=C+ Y n|E |+ > tr| E;'F,F/] (2.17)
k k

The second term at right hand side can be arranged to a useful form by using an
algebraic transformation for the trace of the product.
ir| E,'F,F, |= F'E,'F, (2.18)
Thus, the negative log-likelihood function turns into the following form by substituting
Eq. (2.18) into Eq. (2.17).
L(9)=C+;1H|Ek|+;ﬂ*E?ﬂ (2.19)
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2.3.2. Bayesian Fast Fourier Transform Approach (BFFTA)

The statistical properties of FFT data presents an alternative way to obtain a
likelihood estimator. In this context, the posterior PDF for  can be written as below by
using the Bayes’ theorem.

p(Zk |9)p(9)

P(‘9|Zk): p(Zk)

Here, Zi = augmented vector that contains the real and imaginary part of scaled FFT.

(2.20)

z, =[Re(F)" m(F)' | 2.21)

Under ambient excitation, it is assumed that the real and imaginary part of FFT
follows a zero mean Gaussian distribution (Yuen and Katafygiotis, 2003). Thus, the

posterior PDF of 6 can be defined as;

L)/
Hp(0|Z) H| A exp( ZZ C‘ZJ (2.22)

where Ci = covariance matrix of Z, and it is defined as below (Au, 2011a).

Ck:[ Re(E,) Im(Ek)] 023

~Im(E,)" Re(E,)

where, Im(E,) = —Im(E,)T = 0, for well-separated modes (Au, 2011a). Thus, the

negative logarithm-likelihood function is obtained as;
L(@):—E(Nf—1)1n27r+%Zln|€k|+%ZZ[Ck“Zk (2.24)
k k

As it is seen in Eq. (2.23), Cris a 2N%X2N size band matrix, and its determinant

1
c = {Ek _1} (2.25)
Ek

By substituting Eq. (2.25) into Eq. (2.24), the negative logarithm-likelihood

and inverse can be written as below.

|Ck|:

function turns into a similar form as given in Eq. (2.19).
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2.3.3. Bayesian Spectral Trace Approach (BSTA)

BSTA defines the probability distribution of spectrum variables, only. Whereas
BSDA and BFFTA formulate the negative-likelihood function depending on the spectrum
variables and mode shapes. According to BSTA, it is assumed that {tr[Re(F,Fy)] —

tr(Ey)}/+/ 2tr(EZ) follows a standard normal distribution (Yan and Katafygiotis, 2015a).

}1/2 {F}:F}C —tr(Ek )}2
exp| —
4tr(E,f)

p(tr(@@*) 9) - {47:2 r(E?) (2.26)

Due to the mode shape norm constraint of ¢T¢ = 1, trace of Ej and Ef are

obtained for well separated modes as below.
tr(E,)=tr(SDypp" +S,1,,) = SD, +nS,
tr(E,f ) = tr(SzD,fgogorgogoT +28,8D,pp" + SjIN ) (2.27)
=(SD, +S,)" +28,8D, +(n—1)S?
Thus, the negative likelihood function for spectrum variables are obtained as below.
L(f.£S,S,)= N, In2x + Zk:ln{(SDk +5,) +28,8D, +(n-1)S?|

(2.28)

.y [F/F,~(SD, +nS,)]
T 4(SD, +5,)" +8S,SD, +4(n—1)S?
BSTA is capable of identifying the spectrum parameters as independent from the
mode shape vector. For this reason, it is not possible to identify the modal shape vector
by BSTA. To solve this problem, Yan and Katafygiotis (2015a) applies a two-stage
approach, and calculates the MPV of mode shape vector by using the BSDA. The
negative-likelihood function centered at the MPV of spectrum variables that are obtained
by BSTA is minimized with respect to mode shape vector. In this study, however, this
approach is considered to be inappropriate since the Bayesian nature of the identification
process might be deteriorated. Here, MPV of spectrum variables and its uncertainties
reflects the results of the probability distribution by BSTA. For this reason, the output of
BSTA cannot be directly used in the BSDA, but it can be considered as initial guess (prior

most probable value).

15



2.4. Computational Procedure for BAYOMA

Previously introduced methods; BSDA and BFFTA, are motivated by different
statistical properties of the FFT data of measured response. However, they result in
similar negative logarithm likelihood functions for the estimation of most probable modal
parameters. To obtain the MPV of 6, an objective function should be defined and
minimized with respect to f, & S, Se, and ¢ under required constraints. In case of well
separated modes, the minimization of objective function will require less computational
time and effort near the possible modes. A norm constraint is required for mode shape
vector in the objective function, because the spectral density of modal excitation depends

on the norm of identified most probable ¢. This dependence is defined in the following

equation.
g’
E,=SD, % +5, (2.29)
ol
where “||.||” denotes the Euclidian norm of the identified mode shape vector. The

remaining parameters (f, &, Se) do not require an additional constraint in the minimization

procedure.
2.4.1. Fast Computational Procedure for Well Separated Modes

In the original form of the objective function that is given in Eq. (2.19), the inverse
and determinant of Ej; is required to be calculated at each excitation frequency, fi.
However, the reformulation of objective function in explicit form might be more useful
by making some modifications in the calculation of inverse and determinant of the
expected spectral density matrix. For this purpose, Au (2011a) defines an orthonormal
vector space whose first vector corresponds to mode shape to obtain the inverse end
determinant of Ey. In this study, however, the same result is obtained by using the matrix
inversion and determinant lemma (Harville, 1997).

(4BC+D)' =D -D"4(CD"' 4+ B )’l cp™

(2.30)
|4BC+D|=|B"" +CD™ 4||B||D|

By making use of Eq. (2.30), E; ! and |Ey| are obtained as below.
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-1

E'=S"1,+5"9[¢"S'p+1/SD, | ¢'S,’

=S;11N i SDy /S, 00" (231)

(SD, +5S,)
|E,|=[1/ 5D, +0"S.'9||SD,||5.1,] o)

= S1(S,+SD,) '

where |S.Iy| = S¥, and T ¢ = 1. Substituting Eqgs. (2.29) and (2.32) into Eq. (2.19) and

applying the of norm constraint for mode shape leads to
J(0)=C+N,(N-1)InS,+> In(SD, +8,)+5, '«
k (2.33)

—¢'Ap+a(p’p-1)
where Ny = number of FFT data within the selected frequency band, a = Lagrange
multiplier that enforces the unit norm of ¢, and
" SD, /S .

SRR =T R 234
In the minimization of Eq. (2.33), two different procedures can be followed. The first
procedure is based on an iterative solution to minimize the objective function. The second
procedure is composed in two stages, and it leads to a direct solution without iteration
(Au, 2017). In this two-stage approach, the modal parameters to be identified can be
separated in two parts: (i) first part that includes the spectrum parameters f, &, S and Se,
(ii) second part that includes all modal parameters. Here, the second part can be modified
by defining the most probable (optimal) modal shape vector as depending on spectrum

parameters.
2.4.2. Two-stage Solution for NLLF

In this section a modified version of the two-stage approach by Au (2011a) is
presented. The presented modification is based on the definition of Lagrange multiplier
and the procedure for the determination of modal parameters is completely same by Au
(2011a). The difference of the presented modification lies in the calculation of posterior
covariance matrix for modal parameters. Using the presented modification, the posterior
covariance for modal parameters are obtained as a block diagonal matrix by direct

differentiation.
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Objective function that is given in Eq. (2.33) can be considered with two
components; (i) first part that is sensitive to spectrum parameters, 8= [f, &, S, Se], and (i7)
second part that is sensitive to 6.

J(0)=C+N, (N-1)InS,+> In(SD, +S,)+S, 'k —¢ Ap+a(p 9 1)
k

Second Part (Sesitive to &)

(2.35)

First Part (Sesitive to 6 )
The first term is only sensitive to the variation of spectrum parameters while the second
term is varying as depending on spectrum parameters as well as mode shape vector. The
second term can be reformulated depending on spectrum parameters only. For this
purpose, the objective function for ¢ can be written as follows at the MPV of spectrum

parameters

J(9)

oei ~ L (és)_‘/’TA(és)?’* a(p’p=1) (2.36)

A

where denotes the most probable value. Taking the first order derivative of Eq. (2.36)

with respect to ¢ gives
aJ
O

:—2¢TA(9S)+2a¢T =0 = A(é‘q)gﬁ:agﬁ; &=@TA(¢9AS)(23 (2.37)

=

It is seen that the optimal mode shape vector can be obtained by solving the standard
eigenvalue problem given in Eq. (2.37). Thus, the Lagrange multiplier, & is obtained as
the maximum eigenvalue of A and the optimal mode shape vector can be updated as the
eigenvector that corresponds to &. However, the optimal spectral parameters need to be

obtained before calculation of optimal ¢.
2.4.3. Determination of Most Probable Spectral Parameters

In the minimization process of objective function with respect to spectral
parameters, the most important issue that affect the computational effort is the initial
guess. Since, the optimal value of ¢ depends on the spectral parameters, mode shape
remains an unknown in the minimization process. An iterative procedure can be followed
at this step in which all modal parameters should be determined simultaneously at each
iteration step. A direct solution, however, can be constituted by eliminating the quadratic
term in the objective function. This elimination can be done by representing the quadratic
term with its optimal value. Hence, the negative logarithm likelihood function can be

minimized in two stages: (i) determination of optimal spectral parameters, (ii)

18



determination of optimal mode shape vector. For this purpose, it can be assumed that the
constraint equation is satisfied not only at the MPVs but also within the whole parameter
space. Thus, the quadratic term is obtained as a function of spectrum parameters as shown

in Eq. (2.38).
—9'A(0,)p+a(p 9-D)=a(0,) (2.38)

Note that a(6;) is the function of spectral parameters only. The objective function
can be obtained as depending on spectral parameters by substituting Eq. (2.38) into Eq.
(2.35) as below.

s

J(0,)=N,(N-1)InS,+> In(SD, +5,) " +5.'x~a(0,) (2.39)

Thus, the objective function can be minimized with respect to spectral parameters
by unconstrained numerical optimization. This numerical optimization can be done by
fminsearch or fminunc command in MATLAB. The most important issue that affects the
computational effort of this minimization process determines the initial guess close to
optimal values as much as possible. To determine the initial guess for modal parameters,
Au (2011a) proposed the usage of asymptotic behavior of the solution under large-signal-
to noise ratio (snr). In case of the large snr, optimal modal parameters can be obtained by
direct solution of the objective function without any iteration and numerical optimization.

Different from the Au (2011a), this study defines the Lagrange multiplier of a as
a function of spectral parameters not only at MPV but also at the remaining values. Thus,

the norm constraint equality will be satisfied at each trial for modal parameters.
2.4.4. Asymptotic Behavior Under Large Signal-to-Noise Ratio

BAYOMA provides an efficient identification procedure by considering the noise
effect as a prediction error in the analysis. Depending on the quality of the measured data,
the computational effort and posterior uncertainty of estimated optimal values are directly
affected in analysis process. The lower snr results in larger computational effort and may
have an adverse effect on the accuracy of estimated optimal values. Nevertheless, many
researchers state that BAYOMA gives reasonable results even for low snr (Yuen and
Katafygiotis, 2003; Au, 2011a).

The computational difficulties in BAYOMA are removed and the formulation can

be defined in more simple form in case of large snr. Here, snr is defined as below.
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SD,

Yk = S_ (2.40)

e

In case of large snr, the matrix of A can be rewritten by using the following

[ S } z( S ) (2.41)
SD, SD,

where Eq. (2.41) is approximately equal to 1. Thus, the matrix of A can be transformed

assumption Au (2011a).

into the following form

SD /S o _ 1 *
A= k ~Y | S'-——— |FF
Z SD S) k k Z( e Sij k™ k

k k

(2.42)

considerably large  negligibly small
By making use of Egs. (2.41) and (2.42), the objective function given in Eq. (2.39) can

be arranged as follows

J(f.6.5.8,)=C+ YD, +[N,(N-1)lnS,+S," (x-a,)]
: |

v
— SensitivetoS,
Sensitiveto fand&

J{Nf In S+ S‘IZaka‘l}
k

v
Sensitiveto /,&,Sand S,

(2.43)

where ao = @7 Yy FiFp ¢ (maximum eigenvalue of Y, FiFy), and ox = @TF Fid

(maximum eigenvalue of F; Fy;). Minimizing Eq. (2.43) with respect to S and S. gives their

optimal values as below.

S FF,-a,
k

©ON(N-1)

A

S=N"> oD, (2.44)
Sensitiietofandg“

In Eq. (2.44), it is seen that optimal S is sensitive to fand £. For this reason, optimal

values of fand ¢ need to be obtained first. By substituting Eq. (2.44) into Eq. (2.43) and

arranging the results leads to

J(f.&)=C+>.InD,+N, 1n(2akD,;lJ (2.45)
k k
To obtain the optimal ¢, the matrix of A can be written as

A=S'"YFF, (2.46)
k
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Thus, optimal mode shape vector can be obtained as the eigenvector that corresponds to

the maximum eigenvalue of ), F Fy.

2.4.5. Summary of Overall Computational Procedure

There are two different algorithms in the literature to obtain MPV of modal
parameters by fast computational BAYOMA. First one is an iterative algorithm based on
the estimation of optimal modal parameters simultaneously at each step. Second one is a
two-stage non-iterative algorithm that estimates the spectral parameters and modal shape
vector. The algorithms proposed by Au (2011a) are presented in Table 2.1 and Table 2.2,

respectively, with small modifications.

Table 2.1. Iterative algorithm by Au (2011a)
Step 1: Set initial guess for (f, &, S, Se) by using Eq. (2.44) and (2.45)

Step 2: Set initial guess of ¢ as the eigenvector of )}, Fy Fy.
Step 3: With ¢ being constant, determine optimal (f; ¢, S, S.) by minimizing Eq. (2.35)
Step 4: With (f; &, S, Se) being constant, determine the optimal ¢ as the eigenvector of
the maximum eigenvalue of A

Repeat Steps 3 to 4 until convergence is reached

Table 2.2. Non-iterative algorithm by Au (2011a)
Step 1: Set initial guess for (f, &, S, Se) and by using Egs. (2.44) and (2.45)

Step 2: Determine optimal (f, &, S, Se¢) by minimizing Eq. (2.39)

Step 3: Determine optimal ¢ as the eigenvector of the maximum eigenvalue of A

2.5. Posterior Uncertainties of Optimal Modal Parameters

One of the most prominent advantages of BAYOMA is its capability of
determining the posterior uncertainties of identified modal parameters. Determination of
the posterior uncertainties of spectrum parameters requires less computational effort
when compared to mode shape vector. The posterior uncertainties of spectral parameters

can be obtained in terms of coefficient of variation (c.0.v.). Here, c.0.v. is calculated as
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the ratio of posterior variance to their MPV’s. In addition to posterior c.o,v., the posterior
uncertainty of identified mode shape can be defined by the Expected Modal Assurance
Criterion (EMAC) value as an estimator to determine the expected discrepancy between
exact and identified mode shapes.

The discrepancy between most probable and uncertain values can be well
estimated by Gaussian approximation. For this purpose, the objection function can be

written by using the second order Taylor series expansion as below.
A ~N\T AT 2 A
J(0)=J(0)+(0-0) Vs +(0-0) V2J(0-0) (2.47)
Here, 6 and 8 denote uncertain and most probable modal parameters, respectively.
In addition, 1752 | = Hessian matrix of J(6) at 6 = 8. In Eq. (2.47), J(6) corresponds to a
scalar (minimum) and does not affect the variation of J(0) with respect to 6. In addition,

the first order derivative of J(#) with respect to 6 will be equal to zero at 8 (at minimum
value). Thus, Eq. (2.47) has a relation in the following form which is Gaussian.
T n

J(0)=(0-0) ¢;'(0-0) (2.48)
in which (9 -0 ) = discrepancy between uncertain and most probable modal parameters,
Cg = posterior covariance matrix at 6 = 0. The posterior covariance matrix can be
obtained as the inverse of the second order derivative (Hessian matrix) of J(6) with
respect to 6. In case of well separated modes, the Hessian matrix within the resonant
frequency band of a possible mode is given by
g g s (S g (fe) ]

g g8 4@Ss) (o)

H,= JES) 85 (S0 (2:49)
Symm J(SeaSe) J(Se ,40)
(2:9)
L J " J(N+4)x(N+4)

where J&) = derivative of J with respect to x and y, respectively. Posterior uncertainties
for identified modal parameters can be obtained by means of posterior covariance matrix.

Thus, the posterior covariance matrix is obtained as follows.

C,=H, (2.50)
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2.5.1. Calculation of Hessian Matrix Under Constraints

Calculation of the Hessian matrix has difficulties due to the equality constraints
defined for the mode shape vector. Conventional methods based on the direct
differentiation of the objective function require high computational effort and may not
give the exact result due to the norm constraints. In another word, taking the derivatives
of the objective function may not be proper way due to the Lagrange multiplier (Au and
Xie, 2017). To overcome this problem, a fast-computational procedure was proposed by
Au and Xie (2017). In this procedure, a likelihood function, L(6) that minimizes the set
of parameters to be identified 6 = [61, . . . , Oxc] under n. independent constraints is

considered. Thus, the objective function is defined as
J(0)=L(0)+ Y46, (0) @51
j=1

where 4jand G;(0) denote the Lagrange multipliers and equations of equality constraints.

The Hessian matrix with respect to € is obtained as below (Au and Xie, 2017).

VL = VAL (V'L+AV’G) VY, (2.52)
Here, v. denotes a mapping function that always satisfies the constraint equations. The
second order derivative of likelihood function is given by

(es,@s) (9s ,(ﬂ)
_ye | L (2.53)

VEL=V’L(6)
0=v.(0) Jwbs)  leo)

where, v, G and their derivatives are given by

05‘
0= P}; v.(0)=| ¢ | G=0"p-1;
’ ol (2.54)
Vy = {I4x4 04 | VG = |:O4><4 04><N:|
‘ Oy Iy— W”T_ , Oyg 21y

Thus, the Hessian matrix under norm constraint is obtained as follows

Vi = { Lo Oy }VZ Lo, Lo, { Ly O }
c ™ T r
Oy Iy—00 Ly L, +2aly |[Oyy Iy—9p

2.55
V2L(9vﬂs) V2L(9s %) ( )
v v
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where

2L(9s ’05) — VQL(GS ﬂs)

c

270s0) _ (050) (IN _ (l)(DT)

c

\Y%
Vv
VL) < (VL) }T (2.56)
VZL("W) :<IN o9’ )(wa +2aly ) (IN - (/’(DT)

Gradients of L(0) with respect to modal parameters are presented in Appendix A.

2.5.2. An Alternative Method for Calculation of Posterior Covariance

Matrix by Two-stage BFFTA

In this section, the Hessian matrix is reformulated by applying the two-stage
approach that is presented in Section 2.4.2. The possible errors due to the equality
constraints are removed in the conventional analytical derivation without resorting a
mapping function. Finally, the Hessian is obtained as a block diagonal matrix and it is
verified with the procedure by Au and Xie (2017).

In the derivation of negative-likelihood function, the expected spectral density of
modal excitation, S, is scaled so that the mode shape vector has unit norm. The main
problem in the calculation of posterior covariance matrix lies in the fact that the unit norm
assumption for mode shape is satisfied only at MPV when the Lagrange multiplier
method is applied. To solve this problem, Au and Xie (2017) defines a mapping function
that always satisfies the equality constraints. When the mode shape is scaled to the unit
norm for each trial, this problem can be solved without using the Lagrange multiplier
method (see Appendix B). In this study, however, an alternative and simplified method
with Lagrange multiplier is presented based on the two-stage BFFTA. For this purpose,

the objective function for modal parameters can be rewritten as below.
J(0,.0)=L,(0,) =" {-A(0,) +a(0,) I }p—a(0,) (2.57)

where Ly(6;) = likelihood function that depends on spectrum parameters only, and a(6s)=
maximum eigenvalue of A(6,), [a(8,) = @TA(O,)].

L(6,)=C+N,(N-1)InS,+> In(SD, +S,)+S. '«
k (2.58)
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Here, the Lagrange multiplier, a is defined as a function of spectrum parameters so that

the norm constraint equality is always satisfied. This assumption may not be considered

as a proper usage for Lagrange multiplier. However, it becomes necessary to define this

multiplier as a function of 6, in order to satisfy the norm constraints. In addition, it should

be noted that a still corresponds to a scalar value for the marginal distribution of mode

shape vector. Under these assumptions, the derivatives of Eq. (2.57) are obtained as

follows.

J(es’as) — aZLS (‘9?) _ aza (gv)
06? 06?

J = A0,)+a(0,)1,

JUs0) — 20" %{-A(Q)+a(ﬁs)1N}

At 8 = @, the Hessian matrix can be written as

(5:05)  (d5-95)

- J J
/ J(“;’és) J(@,@)
where
iy L)@ {a)-a(0) 1] 5i 20(0)
00? A 20> ; 80 |
0y=0y s =Os s=Us
_ ast (és) 8205(0()
EE o 06? i,
T = 2A(0,)+2a(0,)1,,
J0d) _ o a{-A(Q)+a(Q)1N}|
=29
00,
05=0;
At O = B, = 0, 0{—A(6;) + a(6)}/36, can be arranged as
0 A A ON .; OA .
— - e )
SRCEU IR RN

Substituting (2.66) into Eq. (2.65) and re-arranging, | (65%) can be written as

257 B )

N

O5=0

(2.59)

(2.60)

2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)
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In Eq. (2.67), it is seen that the matrix of (Iy — @@7) is a semi-positive definite
matrix whose null vector corresponds to @. Therefore, | (652) is obtained as below (see
Appendix B).
9A(0,)

o0

N

Os.9)

Jlts) _ 20"

N
x(Oxg?;é;T+ZpipiTJ:0 (2.68)

O =04 =2
where Iy = YN pipl, pr =@, ¢Tp; =0 (for i=2 ... N) and p; = eigenvectors of
(Iy — @®7), respectively. Hence, the Hessian of J(6) is obtained as a block diagonal

matrix.
Hé 04><N
H; = ’ (2.69)
0N><4 H(Z
Here, Hp = ](95'95) and Hp, = J@s®) Finally, the posterior covariance matrix is
obtained as the inverse of Hg.
Cés O4><N
C 5= (2.70)
0N><4 C@

where Cp_ = Hg_s L and Cp, = H(gsl. According to Eq. (2.70), it is seen that the posterior

covariance of spectrum parameters and mode shapes can be decoupled. Thus, the

posterior coefficient of variation (c.o.v.) of spectral parameters are obtained as follows.

con(7)- TN, - GlE4),
Ji ; éA ) (2.71)
-S89, 5 5l5)

The same result can be obtained by the manipulation of the computation scheme
presented by Au an Xie (2017). Here, the derivative of V2L, ? given in Eq. can be
arranged as below at MPV of 6.

) A OA . A
v o B (Iy-99")=0 (2.72)
When compared to the previous calculation procedure, the proposed methodology
promises less computational effort for single mode approach since the large sized matrix

computations are overpassed.
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2.5.3. Posterior Uncertainty of Modal Shape Vector

Different from the spectral parameters, the posterior uncertainty of mode shape
vector is generally defined by the Expected Modal Assurance Criterion (EMAC) in
addition to the c.o.v. Here, EMAC can be estimated by the manipulation of the difference

between most probable and uncertain mode shapes (Au, 2017).

Figure 2.1. Vectoral representation of exact and most probable mode shapes

Figure 2.1 shows the schematic representation of the vectoral difference
(uncertainty). Here, ¢ and ¢ denote the most probable and exact mode shape vectors,
respectively. In addition, dp and y represents the mode shape uncertainty and phase angle
between @ and ¢, respectively. Due to the Hermitian structure of Hy, its eigenspace

decomposition can be written as follows.

N
Hy=) 0,00 (2.73)
i=1

where 653 = eigenvalues, and p; eigenvectors of Hg. Thus, the eigenspace

decomposition of Hy is obtained as

N N N
> 5imm! :[_mx@gf ->2), Xpipf}[zaxw +220Ac><pipf}
i=1

i=2 =2

Decompos;{ion of -2A Decompositionof 2al \/ (274)

N
:Ox(ﬁ@T +Zz(&_}“[)xp[piT

i=2
It is seen that the minimum eigenvalue corresponding to the most probable mode shape

vector of Hy is equal to zero, and the remaining eigenvalues are positive definite.
Therefore, Hy is a semi-positive definite matrix. Thus, the posterior covariance matrix is

obtained as follows.
. 2 T A AT 1 il A -1 T
C¢ :Z&(/)’ipipi =0 X )P "’EZ(OC_’L‘) Xp.p; (2.75)
i=1 i=2

Obtaining the exact Cy is not possible since its eigenvalue that corresponds to @

is infinite. Instead, the pseudo inverse of Hy can be obtained to avoid numerical errors.
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Here, the mode shape uncertainty, 4p, is a combination of the eigenvectors of

eigenvectors of Hy

@» weighted by the eigenvalues of &5;. For this reason, the first

eigenvector (corresponding to @) can be neglected, since it does not cause a discrepancy.

Thus, the pseudo inverse of Hy can be assumed to be equal to the covariance of Jp. The
pseudo inverse of Hy can be obtained as a semi positive definite Hermitian matrix by

neglecting the zero-eigenvalue term of Hessian matrix (Au and Zhang, 2011).
& 2 T
+
Cy=H; =2 0;.p:p; (2.76)
i=2

where “+” denotes the pseudo inverse.
The uncertainty of mode shape, 4p, follows a zero mean Gaussian distribution
with covariance matrix, Cp, and it is defined by the following equation (Au and Zhang,

2011).
N
Ap= Z%’%,iﬂi (2.77)
i=2

where z; = independent and identically distributed (i.i.d.) Gaussian numbers. Thus, the

uncertain mode shape can be written as below.
N
p=90+ ;Ziéq),ipi (2.78)
Note that the exact mode shape, ¢, should be normalized to unit norm.
N 2\V2 N 12
> z0,.p, J = (1 + zzfaj,,j (2.79)
=2 =2

The expected MAC between the uncertain and most probable mode shapes can

|l = [II(/‘)IIz +

be obtained as;

- N v -12
waC = 0| (§79) s 3 (9 14252
lellle] |7 = =2

AT (2.80)
N -1/2
_ [1 N szaj,ij
=2

Au and Zhang (2011) state that EMAC can be well estimated by direct Monte
Carlo Simulation. However, a direct analytical solution can be obtained by the following

assumption.
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EMAC~[1+(N-1)52] "~ 2.81)

4

where d, = 0, (for i=1 ... N). This assumption asymptotically approaches to the exact
solution, while d,; — 0, and N — oo (Au and Zhang, 2011). For comparison purposes, an
exact solution is obtained by Monte Carlo Simulation with Ny = 500,000 randomly
generated samples. Here, each sample, z; is generated as independent and identically
distributed (i.d.d.) gaussian numbers, and the statistical distribution of EMAC is obtained.
Finally, the exact EMAC is calculated as the sample mean of EMACs (see Table 2.3 for

overall procedure).

Table 2.3. Exact solution algorithm by Monte Carlo Technique

Step 1: Set z; as a randomly generated (Nsx1) size i.i.d. normally distributed vector
(wgn function can be used for MATLAB)
Step 2: Calculate [EMAC]; value for each sample by Eq. (2.80)
Step 3: Calculate exact EMAC as the sample mean, EMAC =1/ N; > [EMAC];

081

061

EMAC

04r

0.2

0 0.2 0.4 0.6 0.8 1
)

2

Figure 2.2. Convergence of exact and approximate EMAC values (solid line:

exact, dashed line: approximate)

Figure 2.2 shows the convergence of exact and approximate EMAC values that
are calculated for N=2, 5, 10 and 20, respectively. At first view, it is seen that the
simulated results improve the conclusions of Au and Zhang (2011). As the measured

number of DOF (N) increases, the exact and approximate solutions match better. It is

29



worth to note that EMAC value cannot be calculated when N is smaller than 2.
Nevertheless, it is seen that the worst case occurs when N=2 as stated by Au and Zhang
(2011). For this case, relative difference between exact and approximate solutions
increases up to 10% at 6, =1.00.

The posterior c.o.v. of mode shape can be estimated via the posterior covariance

matrix, Cy (Au 2017). Here, the posterior variance of the mode shape is calculated as

N N
o;=tr|C,|= t{;@f@@f} = ;5;5 (2.82)

Thus, the posterior c.0.v. can be obtained as the posterior standard deviation

divided by the norm of the most probable mode shape.
g, SN
cov(p) = i D6 (2.83)
i=2

2.6. Uncertainty Laws

Managing the uncertainty of modal parameters is a major challenge due to the
complexity of the calculation of posterior covariance matrix in BAYOMA. This
complexity extremely related with the data duration, selected bandwidth and signal-to-
noise ratio (Au, 2014a, 2014b). In case of large data duration with small damping, the
uncertainty parameters can be estimated by the following equation (Au, 2014a, 2014b)

53, =afo[1+ a. ] .

yk ,max

where J, = c.0.v. of parameter X, yinw = S/(4S.52), 6xo and y; are zeroth and first
order term, respectively. In addition, a. is a parameter that depends on the bandwidth,

data length and period. dxo, dx1 and ay is defined by Au (2014a) as follows.

e For frequency

- £ ' _z oL T, ~ 4(r—tan’lr)
5f0_27rNch(r)’ 5 (r)—n(tan T+t2+1)’ af_(t - T (2.85)
an r+12+1

e For damping ratio
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2

2(tan™
§0=+; B.(r)==|tan" 1+ —5—~- (an T)
27N B, () T 7 +1 T
(2.86)
4(12 +1)(3—‘[an‘1 t—37r+7" tan”' r)an_1 T
“= 3(12 +1)(r—2tan7l r)tanf1 T+’
e For spectral density of modal excitation
2 1 . _ 2 -1_\2 -1 4
5SO—W, BS(T)—I—;(tan T) (tan T+T2+1j
tan™ -1
aS=2+ 2 (an T) 8tan T 871 +i‘[2+4 (2.87)
2(tan’1 1)2 bt b tan 7 3
b=tan"' 7+ 2T
77 +1
e For spectral density of prediction error
1
95 0= ;B (1)=1 =0
o (g AT @35)
e For mode shape vector
~1)$.¢
5, :M; B(o(r)zgtan_lr (2.89)
ESNCBq)(T) m

Where T = bandwidth factor for the selected frequency band, f (1 + 1€ ), Nc =
Ny/2&, Ny= number of FFT points within f(l + ‘L'é)

2.7. Numerical and Experimental Analysis

In this section, the effectiveness of the proposed modifications for BAYOMA
methods is investigated. For this purpose, numerical/experimental studies and field

applications are presented.
2.7.1. Numerical Analysis I: Ten Story Shear Frame

A finite element model of a ten-story shear frame is generated with inter-story
stiffness, and story mass of 450 kN/m and 250 kg, respectively. An i.i.d. synthetic
Gaussian white noise is generated as forcing function with PSD of 1 ug*/Hz, 100 Hz

sampling rate and 300 sec duration. To obtain a uniform PSD for each modal excitation,
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the spatial distribution of the forcing function is arranged as s = @7 ®’M®1, where ®=
modal shape matrix, M= mass matrix, and 1= 10x1 size unit vector. In addition, an i.i.d.
Gaussian white noise with a PSD of 10 ug’/Hz is added to the acceleration response of

each story.

Root Singular Value Spectrum

10 r T T T T

—_
S
a

Root SV (g.Hz "?)

10-6 | | | | ] 1 1 |
0 1 2 3 4 5 6 7 8 9

Excitation Frequency (Hz)

Figure 2.3. Root singular value spectrum and possible modes with selected bandwidths

In Figure 2.3, the average root singular value spectrum of the acceleration
responses is presented by 1000 windows. In each window, the average spectral density
matrix of 30 data points is obtained, and their maximum singular values are calculated.
First five modes are detected at 1.00, 3.00, 4.90, 6.75, and 8.40 Hz, and the corresponding
selected frequency bands are as indicated in the Root SV spectrum.

Table 2.4. Identification results for frequency and damping ratios

Mode f (Hz.) S (%)

Number MPV Exact C.0.V. MPV Exact C.0.V.
(%) (%)

1 1.0187 1.0092 0.12 0.90 1.00 19.76

2 3.0016 3.0051 0.13 1.02 1.00 47.60

3 4.9330 4.9338 0.11 0.97 1.00 11.42

4 6.7569 6.7524 0.10 1.02 1.00 10.01

5 8.4191 8.4201 0.11 0.99 1.00 19.69

Identification results for spectrum parameters are presented in Table 2.4 and Table

2.5. It is seen that the identification results well match with their analytical values.
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Posterior coefficient of variations for identified frequencies are less than 0.15 %. The

posterior c.0.v for Se varies from 2.65 to 8.11%. Identification uncertainties increase for

S, and ¢. Here, the posterior c.o.v. of £ is determined as 47.60 while the MPV is well

matched with the exact value. Note that the posterior c.0.v. only shows the identification

uncertainty. The fact that the MPV perfectly matches the exact value does not necessarily

correspond to low (or zero) uncertainty.

Table 2.5. Identification results for the spectral density of modal excitation and prediction
error, and root signal-to-noise ratio

Number MPV Exact C.0.V. MPV Exact C.0.V. MPV Exact
(%) (%)
1 1.01 1.00 13.97 12.63 10.00 3.65 260 250
2 1.04 1.00 17.63 11.51 10.00 8.11 217 250
3 0.94 1.00 12.13 12.20 10.00 2.32 205 250
4 0.91 1.00 10.96 12.81 10.00 2.04 171 250
5 1.01 1.00 32.36 14.40 10.00 2.65 179 250
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o 9 9 o
8f 8f 8r 8f
7 (0] 7 7 7
5 6 0] 6F 6 6F
£
Z 5 ¢ 5+ 5+ 5-
by
S
n 4 Q 4t 4t 4t
3 Q 3t 3 3F
2F 2F 2t 2t
1+ 1+ 1+ 1+
0 1= 0 \= 0 1= 0 = = !
-1 0 1 -1 0 1 -1 0 1 1 0 0 1

—F— Identified — “©— - Analytical

Figure 2.4. Identified and analytical mode shape vectors
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Effect of signal-to-noise ratio on the identification uncertainty for the first mode
is illustrated in Figure 2.5 and Figure 2.6. At first view, it is observed that the uncertainty
is not affected by the signal-to-noise ratio for the spectral density of prediction error, Se
while it shows significant variation for the natural frequency, damping ratio and the
spectral density of modal excitation. Identification uncertainty decreases as the signal-to-
noise ratio increases, and it converges to a constant value. This case shows that the
uncertainty cannot be reduced to zero even for significantly large values of signal-to-
noise ratio. This observation is compatible with the results reported by Au (2017).
Additionally, it is seen that the uncertainty laws give reasonable results for posterior
coefficient of variations of identified values. A gradually decreasing divergence from the
exact value is observed from yx = 10 to 100 for c.o.v. of frequency and damping ratios.
The maximum divergence is observed to be 50% and 15% for the c.o.v. of frequency and
damping ratio, respectively. The c.o.v. for the spectral density of modal excitation, S,
spectral density of prediction error, S., and the modal shape vector, ¢, well match with

the exact values.
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Figure 2.5. Effect of signal-to-noise ratio on the posterior c.o.v. of spectral parameters
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Figure 2.7. Effect of signal-to-noise ratio on the MPV's and posterior standard deviations
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Figure 2.7 presents the variations in the identified MPVs of spectrum parameters
as well as their uncertainties in terms of standard deviations. It is seen that MPVs
converge to exact values with decreasing posterior standard deviations while the modal
signal-to-noise ratio increases. Here, most dramatical difference is observed in prediction
error for y; < 100. This difference seems reasonable since the prediction error does not
only reflect the pure noise effect, but also contains a combined effect of single-mode
modelling assumption and large level of noise. For this reason, the decrease in the
identification quality for the smaller values of signal-to-noise ratio is considered to be
correlated with the combined effect of measurement noise and modelling error.

For comparison purposes, the considered shear frame is investigated by using two
different identification techniques: covariance driven SSI (SSI-COV) and FDD. The
results obtained for y,=1250, 250 and 50 are presented below. Here, Table 2.6, Table 2.7
and Table 2.8 present the MAC values of mode shapes, natural frequencies and damping
ratios identified by BAYOMA, FDD and SSI, respectively. Although the result show that
BAYOMA gives relatively better convergence to the exact values, a reasonable difference
is not observed among different techniques. The largest difference is observed in mode
shapes and damping ratios for y=50. In fact, each identification technique can give
reasonable results when the data quality is good. Here, the main difference of BAYOMA
lies in providing the uncertainty information for the identified values. In addition,
BAYOMA does not require any signal processing procedure such as resampling, high or
low pass filtering. However, the results by SSI could be obtained for resampling of data
to 25 Hz sampling frequency to reduce the noise effects. Otherwise, the lower modes

cannot be identified even for the large model orders.

Table 2.6. Comparison of MAC values of identified mode shapes (n: mode number)

yw=1250 =250 =50

BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SS1
1.0000 1.0000 0.9969 0.9996 0.9978 0.9921 0.9955 0.9895 0.9810
0.9999 0.9999 0.9996 0.9998 0.9978 0.9956 0.9967 0.9905 0.9904
0.9999 0.9999  0.9999 0.9999 0.9993  0.9996 0.9956 0.9927 0.9904
0.9999 0.9997 1.0000 0.9998 0.9989 0.9992 0.9970 0.9915 0.9906
1.0000 0.9984 1.0000 0.9999 0.9994  0.9990 0.9962 0.9870 0.9912

O S S
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Table 2.7. Comparison of identified frequencies (Hz) for first mode

0 Actual 1=1250 =250 7=50
BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SSI
1 1.01 1.01 1.01  1.01 1.02 1.01  0.99 1.02 1.04 1.03
2 3.00 3.00 3.01 3.01 3.01 3.01 299 3.01 3.03 3.05
3 4.93 4.93 493 492 4.94 495 497 4.94 489 4091
4 6.76 6.76 6.76  6.74 6.76 6.78 6.74 6.76 6.71  6.78
5 8.42 8.42 8.42 8.42 8.42 8.40 8.41 8.42 8.44 8.43
Table 2.8. Comparison of identified damping ratios (%) for first mode
 etual m=1250 =250 =50
BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SSI
1 1.00 0.95 1.17  1.23 0.90 132 1.15 1.27 1.52  0.71
2 1.00 0.99 0.90 0.97 1.13 0.74  0.89 1.13 1.56 0.84
3 1.00 0.98 1.01 0.85 1.05 1.13  1.01 1.11 0.88 0.84
4 1.00 1.02 0.85 0.92 1.05 0.51 0.83 1.07 1.18 094
5 1.00 0.98 0.81 1.14 0.93 0.52 0.93 0.81 0.65 0.72

2.7.2. Numerical Analysis II: A Comparison for Posterior Uncertainty

Quantification

In this section, the computational time required by the proposed methodology for
the calculation of posterior covariance matrix is compared to the method by Au and Xie
(2017) by using a small illustrative example. Here, an analytical shear frame model is
considered whose fundamental frequency and damping ratio are set to 1 Hz, and 1%,
respectively. The number of DOF of the considered model varies from 2 to 1000. An i.i.d.
Gaussian excitation with modal PSD of 10 ug®/Hz is generated as ambient loading with
100 Hz sampling ratio and 300 sec duration. The measured response is contaminated by
a Gaussian white noise with PSD of 1 ug?/Hz. Calculations are carried out by MATLAB
2018b, and ASUS notebook computer with 17 6700HQ 2.60 GHz processor and 16 GB
RAM.

Figure 2.8 presents a comparison of the required computational time for the

proposed methodology and the method by Au and Xie (2017). It is seen that the proposed
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methodology requires less computational time. However, no significant difference is

observed while the number of DOF is smaller than 500.
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Figure 2.8. Comparison of the computational time required for the calculation of posterior

covariance matrix
2.7.3. Experimental Analysis: Three-story Shear Frame
A three-story laboratory shear frame is shown in Figure 2.9. It is investigated

under ambient excitation with 250 Hz sampling rate. Three piezo-electric accelerometers

are used which are defined with 1000 mV/g sensitivity and 11.4 pug/(Hz.)* spectral noise

density.
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Figure 2.9. Schematic view of laboratory frame and measured acceleration responses

The measurement system consists of a laptop computer with a 1.5 GHz single

CPU, Linux operating system, and 16 channel USBDUX-Sigma data acquisition box with
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24 bit analog to digital conversion, A first order analog lowpass filter with a cut-off

frequency at 120 Hz for each channel, and a constant current supply for the

accelerometers.
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Figure 2.10. Root singular value spectrum and possible modes with selected bandwidths

Root singular value spectrum of acceleration response measurements is presented
in Figure 2.10. For a smooth spectrum, a hamming window is applied by using 75 data
points (with 1000 windows) and without overlapping. This is sufficient in order to obtain
a smooth singular value spectrum for the estimation of possible modal frequencies.

According to Figure 2.10, one is tempted to include the frequencies around 7 Hz
and 13 Hz as structural modes. The identified mode shapes at 7 Hz and 13 Hz do not
belong to the investigated structure and can be considered as noise or spurious modes. In
this particular case, these modal appearances are considered to be modes of the laboratory
structure in which the experiment is conducted.

Identified most probable values are presented in Table 2.9. At first view, the signal
quality is found to be well for all modes with the minimum signal to noise ratio of
approximately 280. In the first and second mode, signal to noise ratio is considerably
large (approximately 2250). Despite the large signal to noise ratios, identified spectral
densities of prediction error are found to be 90 to 800 folds when compared with the
identified spectral density of modal excitations. This case is considered to be the result of

very small modal damping.
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Table 2.9. Identification results for the spectral density of modal excitation and prediction
error, and root signal-to-noise ratio

f ¢ S Se
MPV  c.o.v. MPV c.o.v. MPV c.o.v. MPV  c.o.v.
Hz.) (%) (%) (%) (ng/Hz) (%) (ng/Hz) (%)
1 3.7194 0.02 0.1113 11.12 1993 394 1788.60 239 2247
2 10.7277 0.01 0.0885 7.34 1297  3.61 1969.92 2.48 2049
3 15.5025 0.01 0.1023 5.75 1.29 496 1082.45 339 284

Identified mode shapes are presented in Figure 2.11. At first view, it is seen that
the identified mode shapes are compatible with the general expected mode shapes for a
shear frame with uniform story stiffness and mass. EMAC values are obtained as [1.000
1.000 1.000] for the three modes. In addition, posterior c.o.v. are calculated as 0.34, 0.23
and 0.53%.
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Figure 2.11. Root singular value spectrum and possible modes with selected bandwidths

The exact marginal pdf for a modal parameter can be obtained by direct
integration of multivariate probability density function with respect to remaining

parameters. Thus, the exact marginal PDFs are obtained as below.

p(1)==[[[exp[L(0)}cdsas,; p(¢)=-[[[exp[L(0)]fasis,

p(8)= _.[”eXp[L(Q)]dfddee; p(S,)= —”jexp[L(@)]dfdde (2.90)
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Figure 2.12. Comparison of exact and approximate marginal distributions

As an alternative, gaussian approximation can be used to obtain the marginal
PDFs. For this purpose, the marginal likelihood function of a modal parameter can be
constructed by setting the remaining parameters to be equal to their MPVs. Here,
likelihood function is constructed by Eq. (2.48). The final form of marginal PDFs should
be normalized so that the cumulative probability density is 1 for both methods.

Marginal probability density functions that are obtained by Gaussian
approximation and by direct numerical integration (exact) are presented in Figure 2.12. It
is seen that Gaussian approximation converges to exact values. However, the direct
integration is expensive in terms of computational time and effort. Instead, Gaussian

approximation may be the best alternative in terms of computational time and effort.

2.7.4. Field Data Example: 58 Story Building

In this section, the modal properties a 58-story building, located in San Francisco,

is investigated by using BAYOMA and FDD identification techniques. The building was
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designed by a dual core shear walls and outrigger frames to decrease its displacement
demand in the lateral directions (Celebi et al., 2016). The ambient acceleration records
were acquired by California Strong Motion Instrumentation Program (CSMIP) of the
California Geological Survey (CGS) by using a 32-channel measurement system. The
schematic view of the building and sensor placement configurations are presented in
Figure 2.13. The measure acceleration responses are divided in North-South (NS) and
East-West (EW) components and the modal properties in the lateral directions are
obtained separately. For torsional modes, the records in the NS directions are utilized
only. Due the lack of the measurement points, only the results for the first three torsional
modes are presented.

San Franclsco - 58-story Residentlal Bldg.

(CSMIP Statlon No, 58411) SENSOR LOCATIONS
S o fprente
pa i “lera s = 1 Niet /
| A v
FTj 3,/’

Structure Reference
Orientation: Nyop=

i L

1 -Super column Level 13 Plan Level 22 Plan

—Level 32 [ )=level 8 ( )=tever 23

a5

183°4™

\

\

B
—'s 398"

—level B o story Bld |
/Scmmu joint TTSHIP Sialion —
TEATZ]

. e
1" seismic
~joint
e |

o Level 21 Plan
- - . ()=Level 17

B1 Floor Plan

_Level Bl

i Level 1

Pile foundation
(80" in unguﬂ/

uuchLeF
loment Frames

Level 47 Plan Roof Plan

Structure Reference
Orientation: N r= 311

Level 32 Plan Level 46 Plan Level 58 Plan

{\=toval 45
Figure 2.13. Schematic view of 58-Story Building and sensor locations (Source: Center
of Engineering Strong Motion Data)
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Maximum root singular value spectrum of the records in the NS and EW
directions and possible modes are presented in Figure 2.14. According to this spectrum,
five lateral modes in the NS and EW directions, and three torsional modes are detected

and identified by using two different techniques.
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Figure 2.14. Maximum root singular value spectrum and possible modes

Table 2.10. Identified natural frequencies and damping ratios

Mode f(Hz.) < (%)
BAYOMA BAYOMA

Number MPV c.o.v. (%) FbDb MPV c.o.v. (%) FbDb
EW1 0.26 0.74 0.26 1.94 37.34 491
NSI1 0.30 0.61 0.29 1.60 38.10 4.79
Torsl 0.44 0.54 0.44 0.47 60.60 2.73
EW2 1.12 0.36 1.12 1.83 22.29 1.85
NS2 1.13 0.25 1.12 1.00 25.88 1.45
Tors2 1.36 0.19 1.37 0.55 37.79 1.59
EW3 1.90 0.47 1.90 2.03 42.13 1.42
NS3 2.19 0.41 2.19 0.90 27.31 1.55
Tors3 2.28 0.31 2.29 1.30 32.37 1.37
NS4 3.35 0.49 3.34 2.87 37.04 2.72
EW4 3.66 0.36 3.66 2.17 30.99 1.89
EWS5 4.61 0.40 4.61 2.19 38.85 2.19
NS5 4.90 0.21 4.90 1.36 27.85 2.57
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Figure 2.16. Identified mode shapes in NS direction
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Figure 2.17. Identified torsional mode shapes

Most probable natural frequencies, damping ratios and their identification
uncertainties in terms of c.0.v. are presented in Table 2.10. For comparison purposes, the
results are verified by FDD identification technique. According to the obtained results, a
good agreement is observed between the applied techniques. For damping ratio, however,
a reasonable convergence is not observed. The difference in the identified damping ratios
is considered to be induced by the applied robust methodology in FDD. It should be noted
that the FDD identifies the damping ratio by using the logarithmic decrement obtained
the inverse FFT of the band limited frequency response data, and this methodology may
cause large modelling errors due to the omission of the prediction error. In addition, the
identified mode shapes in the EW, NS and torsional directions are presented in Figure
2.15, Figure 2.16, and Figure 2.17, respectively. Again, a good agreement is observed
between the results obtained by BAYOMA and FDD.
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2.7.5. Field Data Example: One Rincon Tower

Modal parameters of a 64-story building, One Rincon Tower, is investigated in
this section by using BAYOMA. The structural system of the building consists of a dual
core wall and outriggers. A 72-channel acceleration response monitoring system was
installed in the context of a project by the California Strong Motion Instrumentation
Program (CSMIP) of the California Geological Survey and the National Strong Motion
Project (NSMP) under the Advanced National Seismic Systems managed by the United
States Geological Survey (USGS). The ambient response data that is investigated in this
study is provided by the Center of Engineering Strong Motion Data (CESMD). The
schematic view of the building and sensor locations are illustrated in Figure 2.18 and

Figure 2.19, respectively.
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Figure 2.18. Elevation view of One Rincon Tower and sensor locations (Source: Center

of Engineering Strong Motion Data)
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Figure 2.19. Plan views and sensor locations (Source: Center of Engineering Strong

Motion Data)

The root singular value spectrum of the ambient response data along the North-
South (NS) and East-West (EW) direction is presented in Figure 2.20. Torsional modes
are visible at the frequencies around the peak values for both EW and NS directions. Here,
translational modes are investigated separately. However, the torsional modes are
identified by consideration of all measurement directions.
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Figure 2.20. Root singular value spectrum and possible modes

Table 2.11. Identification results for the spectral density of modal excitation and
prediction error, and root signal-to-noise ratio

Mode f(Hz) ¢ (%)
Number o Celebi et al. 0 Celebi et al.
MPV  c.o.v. (%) (2013) MPV  c.0.v. (%) (2013)
1
(EW) 0.27 0.75 0.27 1.84 40.51 0.30-0.90
2
0.31 1.04 0.30 1.66 41.17 0.90
(NS)
3. 0.71 0.31 0.70 0.86 35.80 0.40
(Torsion)
4
(EW) 1.14 0.19 1.14 0.58 34.35 2.1-44
5
(NS) 1.30 0.24 1.30 0.43 47.61 0.50
6. 2.04 0.14 2.04 0.49 29.25 0.48
(Torsion)
7
(EW) 2.63 0.16 2.59 0.78 22.87 0.30
8
(NS) 2.86 0.14 2.83 0.68 24.43 0.90-1.30
9. 3.74 0.26 3.72 1.58 21.76 1.30
(Torsion)
10
(EW) 4.12 0.23 4.12 1.18 29.33 0.59-0.70
11
(NS) 4.34 0.13 4.34 0.72 22.95 1.70
12. 5.20 0.33 5.17 1.05 23.76 2.60
(Torsion)

Identified most probable frequencies and damping ratios, and the previous results

obtained by Celebi et al. (2013) are presented in Table 2.11. In the study by Celebi et al.
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(2013), the frequency and damping values are obtained by SSI-COV using the MATLAB-
System Identification Toolbox. They separated the acceleration responses in two parts
along the East-West (EW) direction as EW1 and EW2. Here, EW1 and EW2 denote the
acceleration responses in the EW direction obtained at the left bottom, and right upper
sides of the plan view, respectively. For this reason, two different results are given for
damping ratios in the EW direction. Results show that the identified most probable
frequencies are similar with Celebi et al. (2013). However, damping ratios do not match.
These results may be considered as reasonable incorporating the larger variations in
posterior uncertainty. Here, posterior c.o.v. of frequency values vary from 0.13 to 0.75.
However, the c.0.v. increases up to 41.17% for damping ratio. In addition, the identified
spectral densities of modal excitation and prediction error, and root modal signal-to-noise

ratios are presented in Table 2.12.

Table 2.12. Identification results for the spectral density of modal excitation and
prediction error, and root signal-to-noise ratio

Mode S S \/_
Y
Number MPV (ng?/Hz.) c.0.v.(%) MPV (ug*Hz.) c.o.v. (%)
1
(EW) 3.5908 19.64 1.0730 3.59 50.24
2
(NS) 2.4160 29.54 0.3348 4.51 80.81
3. 0.1436 13.78 0.1112 2.26 66.38
(Torsion)
4
(EW) 0.1653 13.35 0.1546 2.54 88.64
5
(NS) 0.0915 37.97 0.1553 5.75 89.11
6. 0.0210 14.17 0.0772 2.26 53.50
(Torsion)
7
(EW) 0.9776 15.50 0.2250 2.56 133.14
8
(NS) 0.3370 17.45 0.0989 2.82 136.11
9. 0.0340 24.95 0.5061 2.18 8.19
(Torsion)
10
(EW) 0.3483 36.88 0.2123 3.42 54.20
11
(NS) 0.1938 20.81 0.1145 2.86 90.74
12 0.0560 35.18 0.4808 271 1628
(Torsion)
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Figure 2.21. 3D view of the identified mode shapes
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Figure 2.22. EMAC values with + standard deviations

2.21 shows the 3D view of the identified mode shapes. In addition, the

Figure

EMAC values, and calculated posterior standard deviations are presented in Figure 2.22.

Calculated EMAC values that are close to 1 show that the quality of identified mode
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shapes is good. A direct relation is not observed between the EMAC and posterior
standard deviation. The larger uncertainty arises in the 9" mode with the EMAC value of
0.9986. However, the remaining ones do not show a proportional relation.

Figure 2.23 presents exact posterior coefficient of variation values by the
proposed methodology versus the values obtained by using the uncertainty laws. Results
show that the exact values well matched with the results obtained by uncertainty laws.

Due to the quality of data (large signal-to-noise ratio) the observed convergence is

considered to be reasonable.
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0.8 - ' ' 50 il .
X X
| 40 x
0.6 & &
B 30 X
;g 0.4 w
L Y 20 xx,x
.’x 3
0.2 x"* « 10
oL ol
0 0.2 0.4 0.6 0.8 0 10 20 30 40 50
c.0.v. S (%) c.0.v. S (%)
e
40 : : — 5 -
30t )XX 4
20t X 3 X
x .
LLi xg\‘ x>
10 X 2 *
.'x-'
0*- 1"
0 10 20 30 40 1 2 3 4 5
Uncertainty law Uncertainty law
c.o.v. ¢ (%)
10
5
5
I X_,'x
%x"
E
O .
0 5 10

Uncertainty law

Figure 2.23. Comparison of exact c.o.v. values with uncertainty laws
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Figure 2.24. Identified mode shapes by using NS data
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Figure 2.25. Identified mode shapes by using EW1 data
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Figure 2.26. Identified mode shapes by using EW2 data
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Figure 2.27. Identified torsional mode shapes by using EW1 and EW2 data

For comparison purposes, 2D view of the calculated modes shapes in this study

and by Celebi et al. (2013) are presented in Figure 2.24, Figure 2.25, Figure 2.26 and
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Figure 2.27. The mode shapes in the EW direction are separated as EW1 and EW2 to be
comparable to the study by Celebi et al. (2013). In the global sense, the presented mode
shapes match well, except for EW1 and EW2. At the second and fifth modes for EW1,
and fifth mode for EW2, the results by Celebi et al. (2013) show some distortions which

are not compatible with the expectation of the general mode shapes.

2.8. Concluding Remarks

In this chapter, a review for the theoretical background of frequency based
BAYOMA methods and available algorithms for well separated modes are presented. For
posterior uncertainty quantification, an alternative method for the calculation of posterior
covariance matrix is proposed. Numerical and experimental analysis are presented to
illustrate the advantages and disadvantages of BAYOMA. The results are summarized
below.

e Although BSDA and BFFTA are motivated from different statistical properties of
measured data, it is seen that the final form of objective functions obtained for
both methods are same. The solution of the objective function in its original form
requires too much computational effort due to very small signal-to-noise ratio
without the dominant frequency band. For this reason, working on a selected
frequency band becomes useful much more.

e In case of well separated modes, the solution procedure can be simplified. In this
procedure, a two-stage approach can be applied. At first stage, only spectral
parameters are identified via condensed objective function. At second stage, the
optimal mode shape vector can be obtained by minimizing the likelihood function
centered at the MPV of spectral parameters identified. The most critical point in
this two-stage approach is to effect of norm constraints on the singularity of
posterior covariance matrix

e One of the most prominent advantages of BAYAMO is to provide an estimation
for posterior uncertainty. In the calculations for posterior statistics, the two-stage
approach can also be applied. Based on this idea, an alternative methodology is
presented in this study. Numerical results indicate that the proposed methodology
requires less computational time when compared to the fast calculation scheme

by Au and Xie (2017).
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CHAPTER 3

COMPUTATIONAL ISSUES IN BAYOMA

3.1. Introduction

Frequency domain BAYOMA provides an efficient methodology to determine the
most probable modal parameters as well as their uncertainties. In case of well-separated
modes, BAYOMA can be modified to a fast algorithm which assumes that only a single
mode is available within a selected frequency band. Thus, the considered system is
modeled as an equivalent single mode system. This assumption has a modelling error due
to the contribution of unmodeled modes within the selected band. BAYOMA is also
capable of identifying the level of this modelling error together with instrumental and
environmental noise effect.

The effect of modelling error results in an ill-conditioned fast BAYOMA
algorithm in case of closely spaced modes. Therefore, a different algorithm is needed to
model this type of problem. Au (2012b) and (2012c¢) presented an efficient method to
identify the most probable modal parameters and posterior uncertainties for closely
spaced modes. This algorithm revises the expected covariance matrix of measured
response so that it comprises the possible modes within a selected frequency band. In
addition, the modelling error may cause significant discrepancy between the identified
MPVs and their actual values even for the well-separated modes. This problem is widely
seen in case of the mode of interest being buried by unmodeled mode(s). A solution
procedure for this problem is presented by Zhu et al. (2019) for a special case in which
the burying mode appears at a lower frequency than the buried mode.

This chapter presents a revisit for the possible computational issues in regard to
the modelling errors. First, the closely spaced mode algorithm that is proposed by Au
(2012b) and (2012c¢) is reviewed, and a modified algorithm is presented to reduce the
computational effort. Second, the effect of modelling error is investigated. Third, the
problem of buried mode case and their solution procedure are investigated. Finally, three
numerical examples are presented that addresses all these problems, and the results are

discussed.
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3.2. Closely Spaced Modes

The fast algorithm presented by Au (2011a) works well only in the case of well
separated modes. If two or more modes are available in the selected frequency band, the
previous procedure might not be successful in the determination of most probable modal
parameters since the response is dominated by multiple modes. To overcome this
problem, an efficient iterative method is presented by Au (2012b). In this method, the

expected spectral density of measured response is written as below,

B =[], My, o, (O], + Sy G-
where
S K PR TV N
T NS - - Sy, | ny,
H, =diag|| . ||x : xdiag 2
hy 1) | Suy Shn 7t |

L . L meinm AN, <Ny,
Here, N, = number of modes within the selected band and N= number of measurement
points. The inverse and determinant of Ex can be obtained as follows by making use of

the matrix inversion and determinant lemma.
e

E'=SI,-S.'o(0"0+5,H,') o
|E|= |, + @ @S

|81, (3-3)

=[S.1y, +® DH,[ S

The negative-logarithm likelihood function can be obtained by using Eq. (3.3). The main
problem in the minimization process arises on the problem that the phase angle between
the mode shapes, and the imaginary and real part of the cross spectral densities. To
overcome this problem, the mode shape basis can be defined via its singular value
decomposition as below.
®=UzV’
— ame
L T W =
NxNp

(N=m)xN,

where m < min(N, N,,,). Hence, the modal shape vector can be written as below (Au,

2012b).
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® = Ba (3.5)

Here, B and a denote the orthonormal basis within the mode shape subspace, and position
of each mode shape vector with respect to B, respectively (Au, 2012b). Substituting Eq.
(3.5) into Eq. (3.3), and after some mathematical manipulations, the inverse and
determinant of £ can be obtained as below.

E'=S]'1,-S."Ba, (asTaS +S H' )71 ol B"

=S,'1,~S,'Ba,Ha (o, Hya! +S,H,') B

=S.'1,~S,'B(I,, -S.E.')B’ (3.6)
E,|= Sy, +afasflk‘S£N_N’")
= | o(N=Ny,
=|E,[ s
where,
Ek = as _kasT + Selm (37)
and
_hkl ] i 1 Xle ] i h/:l ]
H, = diag . x| . . . x diag
(3.8)
L P | ANyt o 1 vy, _h;:zvm |

as:[am/sin - am'\/Smm:I ’ Xil.zS,‘-,/\/S,-,-S,;,-

Here, x;; = coherence between i and j modal excitations. Substituting Eq. (3.3) into Eq.
(2.19) the likelihood function for modal parameters can be arranged as;

L(0)=NN,Inz+(N-m)N,S, +S.ic+ Y In|E,|

k
+> F E;'F,
; ek (3.9)

F,=B'F; k=) (FF-FF,)

k
subjected to norm constraint, B’B = Iy. Eq. (3.9) can be minimized by following a two-
stage procedure. Au (2012b) stated that the MPV of spectrum parameters can be

determined under the constraint of || Xi ]|| < 1 To preserve this constraint, y;; can be

defined by the following equation (Au, 2012b).
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Xy = sin(uy)xeivy
Jo vy =tan” (Im{, }/Re{x, )

In this study, however, it is analytically proved that y;; can be assumed as a real number

(3.10)

—sin”!
uij =S (HXI/

(see Appendix C). Thus, the coherence can be written according to the free parameter of

u;; without referring to vy

1 =sin (i, ) (3.11)
At the second step, the mode shape basis, B can be obtained by minimizing Eq. (3.9). In
the conventional Bayesian algorithm by Au (2012b), the equality constraint of BTB = Iy
is preserved by the hyper-angle representation of B. Recently, a less time -consuming
method by using the Cayley transformation based on the Crank-Nicholson type updating
scheme was presented by Zhu et al (2019). According to this scheme, B is updated as
follows (Wen and Yin, 2013).
* T *
B (r):B—EA[B+B ()] a1
A=GB" -BG"
where 7 = step size, B'(t) = updated value of B, and G = the gradient of L(6) with respect
to B (see Appendix B for details).

G= aLa—f) = —2Selzk:Re(ﬂﬂ*B[1Nm ~S.E; ]) (3.13)

Solving Eq. (3.12) for B"(1) gives
r ! T
B*(r)=(1m+—Aj (]m——AjB (3.14)
2 2
In addition, within a selected band, the number of modal parameters to be
identified is obtained as below.

N,= N + N + N + NN+ 1

frequency  damping  PSDofmodal  modeshape 5D of prediction
ratio excitation coordinate error (3 . 1 5)

=(N, +1)2 +NmN+0(N,i)

3.3. Effect of Modelling Error

BAYOMA formulation for well-separated modes assumes that only a single mode

is dominant within the selected frequency band. The effects of the remaining modes are
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assumed to be very small. Therefore, a single mode system can be modelled in the
considered frequency band. If remaining modes have small contributions on the response
within the selected band, they might cause an error in the computational procedure. This
modelling error needs to be quantified in the analysis process. Au (2017) defines this
modelling error as a ratio of the PSD of unmodeled mode(s) to the dominant mode. This

ratio can be written as follows when there is only one mode of interest within the selected

band.
48 &
(1-72/72) +a& 72/ 72

where i and j denote the mode of interest and the unmodeled mode, respectively. Eq.

P = (3.16)

(3.16) can be arranged as below in case of small damping ratio.
A AA\2 An A A A A2
(1=72/72) va& 7232 |= (- 72/ 77)
48 S71E2 (3.17)

ji =i

To illustrate the modeling error concept, a simple example is considered. For this
purpose, a three degree of freedom system is analytically modelled with the natural
frequencies of 1, 3, and 5 Hz, and 1% modal damping ratio. Two different scenarios are
considered for modal excitation levels. These are; Scenario I: $1=S,=S3=100 ug*/Hz, and
Scenario II: $1=300 ug?/Hz, S>=100 ug?*/Hz, and $5=50 ug*/Hz. In addition, the prediction
error is assumed to be zero in order to see the modelling error effect only.

Figure 3.1 presents the SV spectrum of uncoupled modal and total responses
obtained for Scenario I and II in frequency domain. It is seen that the spectral density of
total response is higher than the individual (uncoupled) modal values. The difference
between the total and uncoupled modal responses indicates the modeling error level due
to the single mode assumption. In case of uniform modal excitation level for all modes,
the spectral density of total response shows an error of about 6 and 14 % for 2™ and 3™
mode, respectively. In case of non-uniform modal excitation level, however, the increase
in the error exceeds to 40% for 3™ mode.

A numerical example for a further investigation of the effect of modelling error

ratio on the identification quality is presented in Section 3.6.2.
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Figure 3.1. Effect of modelling error on the SV spectrum

3.4. Buried Mode Case
Modelling error might cause big computational issues when an unmodeled mode
i1s dominant within the select band for the mode of interest. In this case, the response of
the mode of interest might not be adequately large and/or cannot be easily perceptible.
Figure 3.2 illustrates the burying mode case. Here, it is seen that the mode of interest
named as “buried mode” is highly dominated by the burying mode(s) (Zhu et al. 2019).
To overcome this problem, Zhu et al. (2019) presented an algorithm which is a
modified form of the procedure for closely spaced modes. In this algorithm, however,
only the case of the burying mode being on the left side of the buried mode is considered.
In addition, the burying mode should be quite far away from the buried mode. When the
buried and buried modes are not enough far away from each other, the problem can also
be solved by closely spaced mode algorithm. However, the computational time and
posterior uncertainty may increase due to the large bandwidth selection. To overcome this
problem, a more general solution for example the case of the burying mode being on the
right side and/or on both sides of buried mode can be also modeled by following a similar
procedure. For this purpose, a general approach that covers some possible cases is
presented in this study. According to this approach, the expected spectral density matrix

of the acceleration response is constructed based on the procedure given in Section 3.2.
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Here, the transfer function(s) for burying mode(s) are assumed to be initially estimated

via the most probable frequency and damping ratios that are determined by using the

BAYOMA formulation for single modes.
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Figure 3.2. Possible scenarios for buried mode case

It can be seen in Eq. (3.2), that the range of the modelling error ratio, p,, can be
as small as zero and may be larger than unity. If the error is close to zero, the single mode
identification procedure is used. A buried mode identification approach is necessary,
however, for considerably large modelling error ratios. This case will be addressed by
using a numerical study in Section 0. For a more general solution, the expected spectral

density matrix of the measured response can be written as below.

Loy

h, 0 oS, S, S.|h 0 0
E,=®/0 h, O|S, S, S,||0 h, 0|0 +SI, (3.18)
0 0 A |S Sy SiJjo o ki

In Eq. (3.18), i and j = indices for burying modes, n denotes the buried mode, and “*”
denotes MPV of A and Ay, that are obtained by single mode approach within the resonant

frequency band of burying mode. Here, only the spectral densities and mode shapes of
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the burying modes need to be determined in addition to the modal parameters of buried
mode. Thus, the number of modal parameters to be identified is obtained as;

Ny= 1 + 1 + N. + NN + 1

frequency damping PSD of modal mode shape PSD of prediction
ratio excitation coordinate error (3 . 1 9)

=N, (N, +N)+3
This approach can be simplified for some special cases in which the burying and

buried modes are quite far away from each other (Zhu et al. 2019). These special cases

can be classified depending on the location of burying modes.
3.4.1. Special Case I: Burying Mode on the Left Side

If it is assumed that only two possible modes are available in the selected
frequency band, and the burying mode being on the left side, A can be written as;
il\ = 3 1 : ~
(1 - :Bki ) + lzé:iﬁki

ki

1 (3.20)

assuming S; = f;/fr = 0. Thus, the spectral density matrix within the selected can be

E -l % Swll 0 o' +S1 3.21
‘o O hkn Sm' Snn 0 th o ( )

written as below.

where S;, = S,
3.4.2. Special Case II: Burying Mode on the Right Side

If the burying modes being on the right side of the mode of interest and these
modes are quite far away from each other, again two modes will dominate the measured

response. In this case, the transfer function can be arranged as below assuming f; =

filfi » 1.

= 1 ~—f7
(1 _ﬁé)_izfjﬂkj ki (3.22)

Thus, the expected spectral density matrix of the acceleration response can be written as.

E =0 U R o' +S.1 3.23
k— 0 _ﬁl;Z S S O _ﬁ_-2 e’ N ( . )

jn J kj

hy
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3.4.3. Special Case I11: Burying Mode on Both Sides

When the possible mode within a selected band is buried by two modes, the three
modes, (i) the mode on the left side, (i7) the mode of interest, and (iii) the mode on the
right side should be considered in the construction of the expected spectral density matrix.

In this case, Ej is written as below assuming By; = fi/fi = 0 and By; = f;/fi »> 1.

1 0 0o (s, S, S|l 0 0

ii ni Ji

E,=®0 h, 0 [|S, S, S,/0 h, 0 |O"+SI, (3.24)

in nn jn

0 0 -4 |LSi Sy SiJlo o -B;

3.5. Summary of Procedures

The solution of multiple and buried mode problems can be obtained by following
the same computational procedure for closely spaced modes. Here, the number of modal
parameters to be identified will only show variance based on the type of problem. The
initial guess for frequencies can be set to the excitation frequency at the peak value of
singular value spectrum. Damping ratios can be initially chosen as 1% as it is suggested
by Au (2012b). Initial guess of S can be calculated from the corresponding peak value of
the singular value spectrum. Au (2012b) suggests the following approach that assumes
large signal-to-noise ratio for the initial calculation of B and S.. According to this

approach, assuming S;;:Dxii/Se = SjiDy;jj/Se = oo yields
S,BE;'B"~0 = |E|~S""; E'~S,'(I,-BB") (3.25)
Thus, the negative-logarithm likelihood function is obtained as,

L(0)~(N-m)N,S,+S, 'k + Se‘]iBiTABi (3.26)

i=1

where

k=Y FF; A=) Re(FF,) (3.27)
k k

Thus, the initial guess for S. can be obtained as follows by minimizing L(6).
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K
S =—"
N,(N-N,)
(3.28)

K= i B/AB, =" (F,F,—F,B"BF,)
i=1 k

The initial guess for B can be obtained as the eigenvectors that correspond to the
largest m eigenvalues of A. Finally, the initial guess for a can be obtained by a reverse

calculation of Eq. (3.5) as below.

a=(B"B) B'® (3.29)

A 4

Set initial guess for f, & S, S,, B,
agand v

Calculate MPV for a,and v by
minimizing Eq. (3.9)

A 4
Calculate MPV for f, £ and S, by
minimizing Eq. (3.9) and calculate
Sand a

A4
Update B by Eq. (3.14) and
calculate mode shapes as ®=Ba.

No

Check
convergence
criteria

oo

Figure 3.3 Flowchart for the solution procedure of multiple and buried modes

A flowchart for the overall computational procedure is presented in Figure 3.3.
The proposed flowchart has a small modification based on the fact that the modelling of
coherence, y;. For buried mode case, different from the closely spaced modes, the
frequency and damping values of the burying modes are not considered as the parameters

to be identified. These parameters are assumed to be initially estimated and assigned to
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the MPVs that are obtained by the single mode approach for the burying modes,

separately.

3.6. Numerical Analysis

In this section, first, a numerical example is presented to validate proposed
modification for closely spaced modes. Second, the effect of modelling error on the
parameter estimation quality is investigated. Finally, a numerical example is presented

for the considered buried mode cases.

3.6.1. Closely Spaced Modes

A six-story shear frame structure with closely spaced modes is investigated in this
section. The natural frequencies of the structure are arranged as 1.00 and 1.03 Hz for first
two modes, respectively. Modal damping ratio is set to 1.00 %. Free vibration mode
shapes are considered as [0.1048, 0.2097, 0.3145, 0.4193, 0.5241, 0.6290]7, and [0.3354,
0.5590, 0.4472, 0.1118, -0.2236, -0.5590]" for the first two modes, respectively. Two
different i.i.d. Gaussian modal excitations are generated with PSD of 1ug’*/Hz. The
acceleration data of each story is acquired in 300 sec duration with 100 Hz sampling
frequency. The prediction error for the measured acceleration data is set to have 1ug?/Hz

spectral density.
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Figure 3.4. Maximum singular value spectrum and selected frequency band
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Maximum singular value spectrum of the acceleration response and the selected
bandwidth with possible modes are presented in Figure 3.4. Identified mode shapes are
presented in Figure 3.5. A reasonable convergence is observed for the mode. In addition,
identification results for spectrum parameters are presented in

Table 3.1, 3.2 and 3.3 which show good convergence with the analytical values.
Note that this study is based on a single trial with a randomly generated i.i.d. Gaussian
white noise excitation. The identification uncertainties may undergo variations among
different trials.

As a result, the presented modification is verified by the numerical analysis.
Hereby, it is shown that the estimation quality is preserved by the proposed modification,

while the number of parameters to be identified is reduced.
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Figure 3.5. Identified mode shapes and their analytical values

Table 3.1. Identified frequencies and damping ratios

Mode f(Hz.) & (%)
number Exact mMpPV c.ov. (%) Exact mMpPV c.ov. (%)
1 1.000 1.002 0.13 1.00 1.08 19.63
2 1.030 1.032 0.18 1.00 1.02 20.71
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Table 3.2. PSD of modal excitations and prediction error

Mode PSD of modal excitation, Sii PSD of prediction error, S.
number Exact MPV c.ov. (%) Exact MPV c.ov. (%)
1 1.00 0.97 44.82
2 1.00 1.09 49.14 1 1.07 29.46

Table 3.3. Free parameter, u;; for cross PSD of modal excitation

Exact MPV c.o.v. (%)

-0.1297 -0.1579 43.25

3.6.2. Effect of Modelling Error

In this section, the six-story structure that is given in the previous numerical
example is investigated again by a small modification to show the effect of modelling
error on the identification quality. Different from the previous example, the fundamental
frequencies for first two modes are considered as f1 = 1 Hz, f> =3 Hz. The spectral density
of modal excitation for the first mode is taken as S1=1.00 pg*/Hz. The spectral density of
modal excitation of the second mode is arranged in ascending order so that the modelling

error ratio is between p,=0 and p,—=1.
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Figure 3.6. Variations in identified modal parameters versus modelling error ratio (with

+- standard deviations)

67



Figure 3.6 presents the identified MPV of modal parameters and their posterior
standard deviations with respect to the modelling error ratio. Additionally, the MAC
values between the identified mode shapes and their analytical values are presented in
Figure 3.7. The MAC values are not acceptable for modelling error ratios larger than 0.1.
Therefore, it is not reasonable to apply the single mode approximation for the mode of
interest. To improve the identification quality, it is suggested to investigate the

corresponding mode by the burying mode approach when p,, > 0.1.
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Figure 3.7. Variations in MAC values with respect to the modelling error ratio

3.6.3. Buried Mode Case

Again, a six-story shear frame is considered in this example. The first three natural
frequencies and damping ratios of the structure is considered as fi=1.00 Hz, >=3.00 Hz
and 3=5.00 Hz, £i=6=8=1% for the first three modes. The free vibration mode shapes
are considered as ¢ = [0.1048, 0.2097, 0.3145, 0.4193, 0.5241, 0.6290]7, ¢, =[0.3354,
0.5590, 0.4472, 0.1118, -0.2236, -0.5590]7, and ¢3=[0.4170, 0.6255, 0.2085, -0.4170, -
0.2085, 0.4170]. Three different cases are considered: (i) Case-I: burying mode on the
left side, (i7) Case-II: burying mode on the right side, (iii) burying modes on both sides.
The structure is subjected to i.i.d. Gaussian excitations with modal PSD of 500 ug?/Hz for
burying modes, and 1 pg?/Hz for buried modes, respectively, for all cases. Similarly, the
measured acceleration responses are considered to have a prediction error with 1 ug*/Hz.
The maximum singular value spectrums of the acceleration responses are presented below

for Case-I, II and III (see Figure 3.8).

68



Identified fundamental frequencies and damping ratios for burying modes are
presented in Table 3.4. Here, the modal parameters of buried modes are obtained by the
BFFTA algorithm for well separated modes. At the next step, the modal properties of the
buried mode are identified by using the presented algorithm for buried mode case.
Identified results for burying and buried modes case are presented in Table 3.4 and Table

3.5. It is seen that the identified parameters well match with the analytical values.
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Figure 3.8. Identified mode shapes and their analytical values for Case-I, II and II1
Table 3.4. Identified frequencies and damping ratios for burying modes
Case-1 Case-I11 Case-I11
Burying mode
location
S (Hz) < (%) S (H?) < (%) S (Hz) < (%)
Left side 1.0015 1.0124 - - 1.0126 0.9913
Right side - - 2.9998 1.0236 5.0183 0..9896
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Table 3.5. Identified modal parameters for buried modes

c.o.v. c.0.v. S c.0.v. Se c.o.v.
Case H, %
TED Sy gy 9 wemy
1 29956 0.18 1.02 32.74 1.18 66.25 1.21 33.48
11 1.0126 0.22 0.97 29.26 1.18 62.36 1.32 38.66
111 3.0216 0.36 1.03 41.42 1.23 71.21 1.56 45.29
Case-l Case-ll
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Figure 3.9. Identified mode shapes and their analytical values for Case-I, II and III
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Figure 3.9 presents the identified mode shapes and their analytical values. Here,
identified mode shapes for burying modes denote the MPVs within the dominant
frequency band for buried mode. Note that the modelling error is calculated as 0.158 for
all cases. The identified mode shapes for buried modes show good convergence to the

analytical values for Case-I, II and III.

3.7. Concluding Remarks

This chapter investigates some computational issues in BAYOMA which have
been reported previously in the literature. First, the solution procedure that was previously
proposed in the literature for the multiple (closely spaced) mode problem is investigated.
Here, a small modification is proposed for the computational procedure to decrease the
number of parameters to be identified in the analysis. Second, the effect of modelling
error on the identification quality is investigated. Finally, the buried mode case is
investigated, and a generalized solution is proposed. The analytical derivation of the
posterior covariance for multiple mode case is available in the literature (Au 2012c¢). In
this study, similarly, the posterior covariance matrix is obtained by using the fast
calculation scheme proposed by Au and Xie (2017). In this calculation, different from Au
(2012c), the derivatives of the likelihood function are obtained by reformulation of the
expected spectral density matrix of modal excitation (see Appendix C). In addition, the
dimension of the Hessian matrix is less than the conventional approach due to the reduced
number of modal parameters to be identified.

" and ;" modal

e It is analytically proven that the the coherence between the i
excitation can be assumed as a real number. Therefore, the free parameter of v;
becomes unnecessary, and this modification reduces the number of parameters to
be updated during the iterations as well as the computational time and effort.

e As it is reported in the literature larger modelling errors makes the single mode
assumption unreasonable within the selected frequency band. According to the
results of this study, the buried mode case should be considered when the modelling
error ratio is significantly large (p, > 0.1).

¢ In the literature, a special case in which the burying mode is located on the left side

of the buried mode has been investigated. This study proposes a generalized

methodology in which the modal parameters of burying modes are assumed as
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partially known. Numerical results show that the proposed procedure gives
reasonable results with respect to various scenarios for the location of burying

modes.
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CHAPTER 4

TWO-STAGE BAYESIAN MODE SHAPE ASSEMBLY
TECHNIQUE FOR MULTIPLE SETUPS

4.1. Introduction

In large scale structures, monitoring of the change in modal parameters has a
direct effect to make decisions after extreme events (such as earthquakes, tornadoes, etc.).
For this reason, a full scaled monitoring of change in modal parameters becomes
necessary. In the literature, it is known that the modal parameter estimation process in
large scaled structures requires more computational effort due to the insufficient number
of measurement instruments (such as accelerometer, data acquisition devices). This case
makes it necessary to use multiple measurement setups in the identification process. Even
though the natural frequencies and damping ratios can be obtained via the individual
setups, obtaining the global mode shape that covers the all measurement setups arises as
an issue. Essentially, there are two different methods in the literature to obtain the global
mode shape vector; (i) Pre-identification, and (i) Post identification methods. Pre-
identification methods are based on various scaling processes for FFTs to obtain a full set
of synchronous measured data. In case of constant reference sensor (or sensors) and large
signal-to-noise ratio, pre-identification methods are capable of obtaining the global mode
shapes with an acceptable accuracy. However, the convergence of those methods reduces
in case of roving sensors and/or relatively low signal levels due to the accumulated errors
in scaling procedure (Ddhler et al. 2011).

Post identification methods are based on the assembly of local mode shapes that
are identified in individual setups or direct estimation of global mode shapes incorporated
by multiple setups. Here, the local least square approach comes forward as the most
conventional one, but the results are highly sensitive to sensor configuration and
estimation quality of local mode shapes. More efficient methods have been presented in
the current decade for global mode shape assembly or estimation. Au (2011b) presented
the Global Least Square Approach for the assembly of local mode shapes with an iterative

algorithm. This iterative algorithm is based on the minimization of the equally weighted
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discrepancies between the local part of global mode shape and identified local mode
shape. In addition, some probabilistic approaches for mode shape assembly have also
been developed based on the Bayesian inference. These methods are capable of
identifying not only the global mode shapes but also their posterior uncertainties. There
are two different approaches in the literature for Bayesian mode shape assembly. First,
Au and Zhang (2012) presented a Bayesian approach for direct estimation of global mode
shape vector and local spectrum variables incorporating the multiple measurement setups.
Au (2017) modified the original algorithm that was presented by Au and Zhang (2012)
and proposed a simplified iterative algorithm. In addition, a different Bayesian technique
was presented by Yan and Katafygiotis (2015b) that is motivated by the Global Least
Square Approach. Their approach is based on the assembling local mode shapes that are
weighted by their posterior covariance matrices for local mode shapes at individual
setups.

The available Bayesian global mode shape identification methods (Au and Zhang,
2012; Au, 2017; Yan and Katafygiotis, 2015b) are motivated from different approaches
(BFFTA and BSDA) and follow different ways to estimate the most probable global mode
shape. The basic motivation of this chapter is to develop an alternative mode shape
assembly algorithm which results in same eigenvalue equations (for global mode shapes)
that can be obtained by the aforementioned procedures. For this purpose, first, the two-
stage BFFTA by Au (2017) for single setup problems with well separated modes is
adopted to multiple setups and a modified likelihood function for the global mode shape
is derived. Second, the same solution is obtained by the Gaussian approximation for the
most probable local mode shape vector. Finally, the weights of individual setups in the
most probable global mode shape vector is obtained by using the expansion of Hessian
matrix for local mode shapes. The final form of the proposed procedure does not need to
identify local mode shapes separately. Instead, it utilizes the statistical information of
Hessian matrix of the local mode shapes which can be derived by using only the local
spectrum variables and FFT of measured data. According to the obtained results, it is seen
that the proposed algorithm results in higher convergence speed when compared to the

available BFFTA algorithm.
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4.2. Non-Bayesian Methods

Non-Bayesian mode shape assembly methods are based on scaling procedures for
mode shapes in order to obtain the best fit between the reference DOF. Most conventional
one is Local Least Square Approach in which all mode shapes are scaled with respect to
a selected refence setup. Au (2011b) presented a Global Least Squares Approach which
promises less computational effort and error when compared to the local least squares

approach. In this section, a revisit for least squares approaches is presented.
4.2.1. Local Least Squares Approach

The local least square approach is conventionally used in modal identification
with multiple setups. The method is based on the scaling of mode shape coordinates at
reference DOFs among different measurement setups. For this purpose, a least squares
estimation is applied to determine the scaling factor for the measurement group to be
transformed to a selected reference group. This least square estimation can be obtained

as below.

'](Cji) = (% € )T (60,- _C./#’j) 4.1
in which ¢;, ¢; = coordinates of local mode shape vectors at reference measurement points
which belong to the i and j* groups, cj; = scaling factor between the groups i and ;. ¢;, @;
will be scalars if there is only a single reference point between the setups 7 and /. In explicit

form, Eq. (2.1) can be rewritten as
J(ci)=0lo;—col0;+ci0)0, (4.2)

Taking the first order derivative of Eq. (4.2) with respect to ¢;; gives the optimal

value of ¢;; as follows.

aJ T T %TQ’-
—=—2c4i¢i(p.+2c4i(/).(/).:0 =c, = J
acﬂ J J Jirj ¥ J gofgoj

(4.3)

The local mode shapes identified in each group are scaled by the optimal c;;.
Finally, the global mode shape vector is assembled from the scaled local mode shapes.
When the measurement groups have common reference sensors, this method generally
gives reasonable results if the data quality is good for each setup. However, the results

may be unreasonable in case of roving reference sensors among different setups. The
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reason of this fact may be caused by the accumulated error in the scaling process from

one group to another.
4.2.2. Global Least Squares Approach

A global least square approach is presented by Au (2011b) to mitigate the possible
errors in the conventional local least square approach. In the global least square approach,
the relative error (discrepancy) between local mode shapes that are identified in each
group and the corresponding part of the global mode shape vector is minimized by the

least square estimation given in Eq. (4.4).
J(Ll.(I),al. ) = (Fl.cI) —19, )T (Fiq) — 79, ) T (q)TFiTFi(D - ’%2) (4.4)

The least square estimation given in Eq. (4.4) is obtained for i/ measurement
group. Here, ® denotes the Nx1 global mode shape vector (N = # of total measured
DOFs), @ is Nix1size identified (MPV) local mode shape vector with unit Euclidian norm
(N; = # of measured DOFs at each group), and r; is the norm of the local part of global
mode shape vector. In addition, I denotes a NixN selection matrix for i group. Selection
matrix comprises the information of local measurement points versus total measured
DOF. For example, when N=5, Ni=3, and only the first, second and fifth DOFs are
measured in i’ group, the selection matrix is written as

1 00 0O
I'=10 1 0 0 0 (4.5)
0 0 0 01
Hence, the local part of the global mode shape vector and its norm at i group is obtained
as

@, = [0

1

4.6
]/;_ _ i”@l” _ i((DTETE(D)l/Z ( )

In addition, a; denotes the Lagrange multiplier that enforces the norm of the local mode

shape to be equal to 7; in Eq. (4.6). Thus, the first order derivative of Eq. (4.4) with respect

to a; gives,

o 20" I7¢, £2r9 ¢ + 201, =0
or| _. 4.7)

76



At the MPV of a;, the second order derivative of Eq. (4.7) with respect to 7; should

be larger than zero.

0°J,

o |y Wor200= 0 (4.8)
= (#7011 G, 1) >-1= £ 4, >0
Thus, the optimal 7; can be determined as follows.
i, =sen(@7 17, )| 170 4.9)

where “sgn(.)” denotes the signum function. Since, the local mode shapes are considered
as statistically independent parameters, the objective function that covers all setups can

be written as below.
Ny Ny

J(@8) =Y (60-r1,) (50-76)+ Y0, (V77 077 )+ p(1-07®)  (4.10)

i i i
i=1 i=1

where S and Ny denotes the Lagrange multiplier that enforces the unit norm of global
mode shape vector, and number of setups, respectively. Minimizing Eq. (4.10) with

respect to @ gives,

Ny

2(207 11 =279 T 26,07 1T ) - 20 =0
= 4.11)

= AD+b=pd

in which;

A{ZS:ET (1+ai)E}; b{ﬁ—nﬁ@,} (4.12)

1

Eq. (4.11) is a constrained eigenvalue problem and can be solved by using the

following augmented matrix (Au, 2011b).
T

D:LilV bjr} (4.13)

The global mode shape vector can be obtained as the lower Nx1 part of the

eigenvector that corresponds to its minimum eigenvalue. It is seen that the solution of Eq.

(4.13) requires an iterative procedure. To reduce the computational effort, an initial guess

for global mode shape vector can be obtained by assuming that the partial mode shape is

perfectly coherent with identified mode shape.

r=, 10 (4.14)
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Thus, the Lagrange multiplier, a; will be equal to zero, and the vector of b can be written

as below.
NS
b=\ 317411 (4.15)
Substituting Eq. (4.15) into Eq. (4.11) leads to
Ny
[Z I (1, — 60! )F,}ob = p® (4.16)
i=l1

The initial guess for the global mode shape vector can be obtained as the
eigenvector that corresponds to the minimum eigenvalue of the following matrix. Overall

computational procedure for global least squares approach is presented in Table 4.1.

2

(1, =080 )1, (4.17)

1

]
LN

Table 4.1. Iterative algorithm for the global least square approach

Step 1: Set the initial guess for @ by using Eq. (4.17)
Step 2: Determine »; and o; by using Egs. (4.6) and (4.7)
Step 3: Determine @ by using Eq. (4.13)

Repeat Step 2 to 3 until convergence is reached

4.3. Bayesian Methods

The most probable value of the global mode shape vector from multiple setups
can be estimated by a Bayesian Probabilistic Framework. In the literature, two different
iterative methods are available: (i) Bayesian global mode shape estimation technique
proposed by Au (2017), and (ii) Bayesian approach for mode shape assembly proposed
by Yan and Katafygiotis (2015b).

4.3.1. Bayesian Global Mode Shape Identification Technique

Bayesian probabilistic approach for global mode shape estimation is first
proposed by Au and Zhang (2012) as an iterative algorithm and modified by Au (2017).

Based on the statistical properties of FFT of the measured acceleration data, the
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conditional probability density function for the set of modal parameters in an individual
setup, i, can be written as follows by using the Bayesian Inference.
p (Zki |‘9i ) p(ei )

P (Zki )

Here, 0;= [f;, &, Si, Sei, 1], is the set of modal parameters to be identified and comprises

r(6,12,)= (4.18)

the natural frequency, damping ratio, spectral density of modal excitation that is scaled
with respect to the unit norm for local mode shape, spectral density of prediction error,
and local mode shape vector (with unit norm) at i setup, respectively. Here, the local

mode shape corresponds to the measured DOF at i

setup. In addition, Z; =
[Re(Fy;); Im(Fy;)] € R denotes the augmented FFT vector of the measured response at
the i setup. In case of non-informative prior distribution for p(6;), p(6;|Zy;) can be
assumed to be proportional to p(Zy;|6;). With a large amount of measured data, p(6;|Zy;)

follows a zero mean Gaussian distribution (Au and Zhang, 2012).

p(612,) = (22) " |c, \’1 exp(—%Z,gC;ilei] (4.19)
where N; = # of measured DOF, Cy;= expected value of the covariance matrix, E[Zx Zi!].
E[2,2; = * (4.20)

2 0 E[Re(F,Fy)]

In addition, Fi= FFT of acceleration response, Ns= # of data within the selected
frequency band, S;= scaled PSD of modal excitation, and S.~= expected PSD of prediction
error in the dominant frequency band at i setup, respectively. The expected PSD of
measured response, Ex;, 1s written as below.

E, = E[Re(F;aFZ):I =S, Dup0] +Sylys S, =18 1, =% ”l//i ; (4.21)

where [.]"=conjugate transpose, || . || = Euclidian norm, Fi; = FFT of measured response
at i setup, S; = spectral density of modal excitation that is scaled with respect to the unit
norm of global mode shape vector, y; = local mode shape with norm of 7;, and Iy; = N; x

N; size identity matrix. In addition, Dy; is written as below.

-1

2
D,; :[(l—ﬂé) +(2§iﬁki )2} s Ba=1il1 (4.22)
Thus, the negative log-likelihood function for the i setup can be written as below.

L(6,)=NN,Inz+(N,~1)lnS, +> In(5.D, +5,,)
| | z (4.23)
+ Se:ilKi - (Dz‘TAi(Pi
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where

_— S.D,S.; .
:;Ea‘Fki’ 4, = ;(SDkleS ) (F;a‘Fk[) (4.24)

The local mode shapes identified in each setup are linearly independent (Au,

2017). Therefore, the objective function for @ can be written as below by using Eq. (4.23).

N

J (@0, )= Z{N[Nﬁ Inz+(N,-1)InS,+Y (5D, +8, )}
k

i=1

(4.25)
NS
#2820 I AL+ o, (10T [0 =17) |+ p(1-0 @)
Taking the first order derivative of Eq. (4.25) with respect to 7; gives (Au, 2017)
. Q' IALD
O =——"—"— (4.26)
S.1;

Taking the first order derivative of Eq. (4.25) with respect to @ results in a standard
eigenvalue-eigenvector problem as follows.
BD = pd

N 427
B:ZaLTL —A; A=r"LAL (%.27)

A [ Sy Ay |

In case of large snr, S; and S.; can be obtained in same manner as it is explained

in Chapter 2.
'§kai ~1— Sei 4.28
(5D.+5.) 5D, 29
=1 - 4.29
e Kl—lll; S = Z’lkiDl:il ( :
(N i 1)Nﬁ k
where
O IO
T ; v 4y ~Re(FF) (4.30)

Substituting Egs. (4.28) and (4.29) into Eq. (4.25) and taking the first order

derivative with respect to ® leads to the following eigenvalue problem

4,0 = po
i=1 k

The high snr can be used for the initial guess of spectral parameters and global

shape vector (Au, 2017).

(4.31)
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4.3.2. Bayesian Mode Shape Assembly

A Bayesian mode shape assembly method that is motivated from the global least
squares approach is presented by Yan and Katafygiotis (2015b). The negative log-

likelihood function can be written by Gaussian Approximation as follows.

1 . _ .
L(p)=-In| p(p]Z,)]= 5((/),- -9,) C;'(0,-9,) (4.32)
where higher order terms can be neglected since the third and higher order derivatives of

L;(p;) will be equal to zero. Once the MPV of spectral parameters are determined, the

objective function can be written to depend on the global mode shape only.

Ny Ny
J(CD, X-a, ﬂ) = %Z(Xiriq)_é)i )T Cq;l-l (Xil?q)_(ﬁi)—}_zai (Xz‘zCDT[;T[;(D_l)
= P (4.33)
+p(1-0" D)

in which y; 1=+ || Lip || , and o, 8 are the Lagrange multipliers. In addition, Cp, denotes the
posterior covariance matrix for @;. Taking the first order derivative of Eq. (4.33) with
respect to y; and solving for a; gives
T T ~-1 AT -1
4 :(D L C@i]—;q)+ gDI'C@I‘[;(D

+ 4.34
Y20 20" IO (3:34)

The minimum value of the objective function occurs when the Hessian of the
objective function with respect to y; is larger than zero (Yan and Katafygiotis 2015b).

&

8)42

1

=0'/C;'L®+20,|LO| >0 (4.35)

Thus, the optimal values of y; and ¢; is obtained as (Yan and Katafygiotis 2015b).
. O'T/C,T®
= -

" 20'TIT.®

4/C,'T|
20'TT,0| (4.36)

A A — -1
7o =sen(9/ G, T0) 10|
Substituting Eq. (4.36) into Eq. (4.33), and taking the first order derivative with respect

to @ leads to the following constrained eigenvalue problem.

AD+b = pD (4.37)

where
A—li T7'C'r +§: TT; b—lNS r’'c'o 4.38
5 XiliColy o XLl =5 Xit i Co @i (4.38)

i=1 i=1 i=1
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Thus, the optimal value of @ can be updated as eigenvector of the augmented

matrix given in Eq. (4.13).
4.4. Proposed Bayesian Algorithm

In this section, an alternative mode shape assembly algorithm is presented. The
two-stage Bayesian approach, which is previously applied for single setup problem by
Au (2011a) is adopted to multiple setup case. At first stage of the proposed methodology,
the MPV of spectrum variables are obtained by minimizing the local likelihood with
respect to local spectrum variables. At second stage, a constrained negative logarithm
likelihood function for local mode shape is obtained. Finally, the global mode shape

vector is obtained by minimization of assembled local likelihood functions.
4.4.1. Two-Stage BFFTA for Mode Shape Assembly

The negative logarithm-likelihood function for p(8;|Z;) can be considered in two
parts for well separated modes: (i) the first part only is sensitive to Os= [fi, &, Si, Sei], and
(i) the second part is sensitive to 6; (Au, 2017).

Li(Qi)=?ViNﬁlnn+(Nﬁ—l)lnSei+Zk:1n(§l.Dki+Sei)+Sei]ici— @,ﬁ (4.39)

Second Part
First Part (Sensitive to fg;) (Sensitive to 6;)

The Most Probable Value (MPV) for each parameter can also be determined by
the direct minimization of Eq. (4.39) as similar to the methodology presented in the
Section 2.4.2. In this minimization process, the modal parameters including spectral
parameters and mode shapes can be decoupled for computational simplicity. For globally
identifiable problems, it is known that Eq. (4.39) has a unique minimum at the MPV of
6,. For this reason, when the MPV of the local mode shape is considered, the second part

of Eq. (4.39) can be represented as the function of 6.

oIAG, =1,(6,) (4.40)

1

Here, ;= MPV of local mode shape with unit norm (for i* setup). Thus, the negative

logarithm-likelihood function will only depend on the spectral parameters when (. is

substituted into Eq. (4.).
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L, (‘9:‘) =L, (Hsi ) — (‘95[)

):NfNﬁlnnJr(Nﬁ_l)lnSe+zln(*§kai+Se)+Se_lxi (4.41)
k

L,(0

Si Si

The spectral parameters can be obtained by minimizing Eq. (4.41). It follows that
the first part will be constant when the most probable value (MPV) of 6y is substituted
into Eq.(4.39). An inclusion of a unit norm constraint for ¢; to the likelihood function

(centered at the MPV of 6y;) results in the following equation.

J(2 20, ) = Ly (0,) 0l A, + 4 (0] 0, —1) (4.42)
where Lg; (ési) = optimal value of first part, and 4; is the Lagrange multiplier that enforces
the unit norm of the local mode shape. Minimization of Eq. (4.42) with respect to ¢; gives,

o/, (goi, A )
op.

1

=207A, +22.97 =0 (4.43)
0i=0;
Eq. (4.43) can be solved as a standard eigenvalue problem which results in the

MPV of ¢;. Further, it is seen that the optimal value of 4; equals to the optimum (, which

is equal to the maximum eigenvalue of A;.

A~

/ii = @iTAi@i

(4.44)

At first stage, the most probable spectrum variables can be obtained by
minimizing Eq. (4.41) with respect to 6. At the next step, the constrained negative
logarithm likelihood function (centered at the MPV of spectrum parameters) for local

mode shape at an individual setup, is obtained by arranging Eq. (4.41), as below.
J; ((Di’j“i’és[) =L, (ési ) -4+ ¢iT (_Ai + j'i)goi (4.45)

Neglecting the constant terms that do not affect the variation of ¢; leads to the following

relation.

J; ((pi’j'[’ési) oc %(”I‘TH@% (4.46)

where, Hp, = Hessian matrix of ]i(<pl-, A ési) with respect to ¢; (with unit norm) at 8; =
0;. Hg, can be calculated numerically using finite difference method or can be derived

analytically. For both procedures, the equality constraints that arises due to the norm of
the local mode shape should be considered (Au, 2011a; Au and Xie, 2017). Otherwise,

Hg, will be a negative definite matrix, and therefore it will inevitably contradict the

minimization nature of the MPV of mode shape (Au, 2011a). Hp, can be analytically
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derived by following the methodology that is proposed by Au and Xie (2017) or can be
simply obtained by double differentiating of Eq. (4.45) with respect to ;.

*J (9., 7.,0,,
= (:¢2 )

1

=—2A,+2}1, (4.47)

9i=0i
The modal shapes of individual setups are statistically independent (Au and
Zhang, 2012). Thus, the objective functions for each setup can be assembled by linear
combination, and the resulting objective function for the global mode vector, @, under
norm constraints can be written as follows by substituting ¢; = 1, T';®, where I; is the

selection matrix that extracts the DOFs measured at i setup.

NS ]vS
J(®,a, p,7)= %ngchTer@i Lo+ (0" 1] Fo—r)+p(1-0'0)  (4.48)

i=1 i=1
where a =[ ai, ..., ons), ¥ =[ 11, ..., 'ns], @ = Lagrange multiplier for the norm constraint
of I'/® = r;, and f = Lagrange multiplier that enforces the unit norm for ®@. The Lagrange

multiplier ;s obtained at the minimum value of Eq. (4.48) with respect to r;.
-4
Y e POTTH, T ®-2ar =0 = 4, = —%cbfrf H,[® (449

Note that the second order derivative of the objective function with respect to 7; is

a non-negative value since Hy, is semi-positive definite (Au, 2011a).

2
Z_{ =30 [T H, 024, = 40" T H, [;®>0 (4.50)
7 1 :

Minimizing Eq.(4.50) with respect to ® leads to

Ny

Ny R
=0 {Z ri-zrl.TH@iri} +@" [Zz&irfri} 280" =0 (4.51)
O=0

i=1 i=1

A
oD

Thus, the most probable global mode shape vector is obtained by the solution of the
following standard eigenvalue problem.
in which

1

A= EZET (2 H,, +26,0) 1T, (4.53)

i
i=1
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4.4.2. Alternative Solution by Gaussian Approximation

In this section, it is shown that the solution for the global mode shape vector is
unique regardless of the implemented assembly methodology. For this purpose, the final
solution for the global mode shape in Eq. (4.52) is obtained by following a similar
procedure to the method by Yan and Katafygiotis (2015b). Since the problem is globally
identifiable, the conditional PDF for i’ local mode shape centered at the MPV for
spectrum variables can be estimated by Gaussian approximation. For this purpose, the

conditional PDF for global mode shape can be written as below.

N
(Vg0 1) =1 2(2]0) (4.54)
i=1
According to the Bayes’ theorem, the following equality can be constructed.
r\o|®)p(®
p(cblwi):—( [©)r(®) (4.55)
p (¢i)

where, p(®) and p(¢@;|P) denote the marginal and conditional prior distributions for ®
and ¢;, respectively. Again, assuming a noninformative prior distribution for p(®),
p(@;|®P) can be well estimated by Gaussian approximation around the MPV of local

mode shape.
p(0l0) = plo|0)=[H;|(2n) " exp (' r0-4) H, ('10-3)  456)

where Hg, is used instead of the inverse of the posterior covariance matrix. Thus, the

negative logarithm likelihood function of p(¢;|®) is written as;
L (q)ari ) = —ln[p(gol.|q))]

L (@,1;)=%N1n7r+%ln‘H@_l‘ +%(;;.117<D—¢i ) H, (7104,

(4.57)

Applying the norm constraint for the local mode shape, the objective function for

the i” setup is obtained as;

2%

Ji((D,O(A I")ZLi(q),}’;)—i-ai (q)TIjT[l'q)_rlz) (458)

Taking the first order derivative of Eq. (4.58) with respect to r; gives

7, ! '

1

Thus, the optimal value of ¢; is obtained as
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G, =— 2 cDTrTH F(D+ 5 cD I'H, go(D (4.60)

Finally, the objective function for the global mode vector under norm constraints is

written as

I - - - 5
J(CD,a,ﬁ,r)=E;1(V,- IE(D_(/’i)T H, (ri 1E®_¢i)+;ai(qﬂ]:7fi(l)—r,2) (4.61)

+p(1-0'D)
Minimizing Eq. (4.61) with respect to @ leads to the following constrained

eigenvalue problem.

AD+b = pD

ZFT( CH, + 26,1, )T :——Zr-l "H,$,

The obtained constrained eigenvalue problem is similar to the result by Yan and

(4.62)

Katafygiotis (2015b). For this alternative solution, however, Eq. (4.62) is reduced into a

standard eigenvalue problem. For this purpose, the components of Hg, can be expressed

in terms of the eigenvalue decomposition of its two terms.

H, =-2A,+2),1, =USU" +2jUU"

U=[ul =¢i Uy, . . . MNZ_:I
2= diag[al = —Zii o, . . . ONIJ (4.63)
|01|=max( i ); vu’ :[Ni

Then, the equivalent eigenvalue decomposition of Hg, is written by combining the

decomposed terms in Eq. (4.63).

H, =UXU"
U=[6 w, . . . uy] (4.64)
E:diag[o (0, +24) . (aN[+2i[)}

In Eq. (4.64), Hp, is semi-positive definite with null vector, ¢;, and its eigenvalue

that corresponds to @; is equal to zero. Therefore, the vector of b will be a zero vector.

Thus, Eq. (4.62) leads to the same standard eigenvalue problem that is given in Eq. (4.52).
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4.4.3. Estimation of the Weights for Individual Setups

In the assembly procedure, local mode shapes that are identified in the individual
setups have a contribution to the global mode shape. The Global Least Square approach
assumes that all setups are equally weighted, and their contribution is uniform. Bayesian
methods, however, considers the weight of each setup incorporating the identification
quality (Au and Zhang 2012; Yan and Katafygiotis, 2015b). In this context, Au and Zhang
(2012) presents the following asymptotic weighting factor in case of large signal to noise

ratio.

W, oc it (4.65)

in which /; is the largest eigenvalue of Y, Re(Fy;Fr;)-
In case of lower signal-to-noise ratio, the weighting of each setup can also be
calculated as depending on the data quality. For this purpose, the local Hessian matrix,

Hg., can be rewritten as follows by neglecting the zero-eigenvalue term along the local

(p )

mode shape direction.

0, oA
Hy » (Niwl—l) |:IN,- _¢i¢iT:| (4.66)

where 65, = sum of all eigenvalues of Hy,. By using Eq. (4.66), the optimal value of the

Lagrange multiplier, o;, can be arranged as,

a = (N —1)[ 0.6/ @ | (4.67)
Substituting Egs. (4.66) and (4.67) into Eq. (4.53) yields,
AZ% % (@1, —o.0! I, (4.68)
SN Kt
where
a1 0" IG5 [0 (4.69)

Thus, the weight of the i setup in the optimal global mode shape can be calculated by
the following formula.

1% 4.70
RREICED -

87



4.4.4. Posterior Uncertainty

The assembled global mode shape vector has identification uncertainty, as well.
To define this uncertainty, posterior covariance matrix should be calculated first. To
obtain the posterior covariance matrix, the spectrum variables identified at each setup
should also be included. Therefore, the Hessian matrix for local spectrum variables and

global mode shape vector is obtained as follows

e 1

(4.71)
(@.05) :
S
s (Mg, + (Vg +N)
[ J(G“l o) ] | J(eﬂ o) ]
Jlo005) _ , Jls:®) _ : (4.72)
J(HSNs ’HSNS ) J(QSNS o ]

where 6 = [051, e 951\/5 ,and Ng_ = Z?]:Sl Ny, . Before obtaining the derivatives of the

objective function, it should be noted that, the Lagrange multiplier of § can be defined as

a function of 6;.

2

I (2 H,, (6, )+2&i1N,.)ri}ci> (4.73)

1

6. -

#(0)- 9|1

Thus, J (650®) i5 obtained as zero matrix.

gi®) cDT 0 {i (*2H ) +26,1,, )F} 2¢r PO (%)

=7 ai{grl (r2H,, ( )+2&i1N,<)C} [ 1, - D" | (4.74)

=0

Note that [I N — a)éT] is a semi-positive definite matrix whose null vector is equal to ®.

Therefore, | (65:®) will be a zero matrix. Thus, the Hessian of the objective function will

be block diagonal matrix.
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H, 0 \
0 (4.75)

where, Hp_ = ] (6585) and Hg =] (@®), Here, Hg is obtained as below.
Ny R
Hy=317 (7 H,, +26,0 ) T =281, (4.76)

It is seen that there is no correlation between the local spectrum parameters and global
mode shape vector. For this reason, the posterior covariance matrix, Cg can be directly
obtained by the inverse of Hessian, Hg. However, this procedure inevitably causes
numerical errors since the minimum eigenvalue of Hg might be equal to zero. Instead,
pseudo inverse of Hg can be taken to calculate Cg. Thus, the posterior covariance matrix

for multiple setups is obtained as below.

. H(;l 0
C=| 5 ) 4.77)
0 H]

4.4.5. Summary of Procedure

The proposed modified solution assembles mode shapes by using the probability
distributions for local mode shapes centered at the local spectrum variables. For this
reason, first, the spectrum variables at i’ setup should be determined. Second, posterior
distributions for local mode shapes should be obtained. In the calculation process, the
initial guess for S; and S,; can be calculated by using Eqs (4.28) and (4.29).

When the local part of @ is well matched with the identified local mode shape
@i (zero discrepancy), the Lagrange multiplier &; can be expected to be equal to zero.

Thus, A turns into the following form.

NY
Lo —>¢, =650, AxYpCITH

i=1

@4.78)

l' l

The initial guess of the global mode shape vector can be taken as the eigenvector
of A (corresponding to minimum eigenvalue) in Eq. (4.53) by setting r;=1.

The overall procedure of the proposed algorithm is presented in Figure 4.1. The
main difference from Au (2017) resides in;

e the application of two-stage BFFTA to multiple setups,

o weighting of each setup by the Hessian matrix for local mode shapes

e the calculation of initial guess, and
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e the consideration of possible discrepancy between the local part of the global

mode shape and the identified local mode shape.

Proposed Algorithm

START

Determine initial guess for f;
by peak-picking.
Set initial guess for &; as 0.01

|

Calculate initial guess for S;
and S,; by using Egs. 4.(28)
and 4.(29)

Calcu_late optimal f;, &, Si,
and S; by using Eq. (4.41)
Calculate Hy, by Eq. (4.47)

{

Calculate initial guess for ® by
using Eq. (4.77) setting r;2 =1

i)

Calculate r; and obtain optimal
® by Eq. (4.52)

No

Check
convergence
of ®

Figure 4.1. Flow chart for the proposed algorithm

The discrepancy is characterized by defining two different norm constraints for
local mode shape. First one, A;, enforces the unit norm for ¢;, and the second one, &;,
enforces that ;= || I ® || . Here, the calculation of optimal ¢; is unnecessary. As the initial
guess is close to the optimal value, the convergence speed in the iteration phase is
expected to be increased.

Although the theoretical background of the presented methodology is based on
the approximation of well-separated modes, it can also be implemented for the closely
spaced modes. In case of closely spaced modes, the Hessian matrix for the mode shape
vector is also semi-positive definite due to the norm constraint singularity (see Appendix

D). Therefore, the presented methodology can be directly applied for closely spaced mode

90



case. Here, the spectrum variables and the Hessian matrix for local mode shape should be
obtained by using the closely spaced mode algorithm at the first stage. In addition, the
posterior covariance matrix for the global mode shape vector can be calculated neglecting

zero correlation between the global mode shape vectors of closely spaced modes.

4.5. Experimental and Numerical Analysis

In this section, the proposed two-stage mode shape assembly methodology is
numerically and experimentally verified. The proposed algorithm is compared to the
previous mode shape assembly algorithm by Au (2017). For this purpose, one
experimental and one benchmark study is presented. Finally, a field application is

presented for global mode shape estimation with closely-spaced modes.

4.5.1. Experimental analysis: Laboratory shear frame

A ten-story shear frame shown in Figure 4.2 is measured with two different
multiple setup configurations (see Table 4.2). These cases are considered in order to see
the effect of sensor configuration on the assembly procedure. Here, Case-I represents a
fixed reference sensor placement, while Case-II represents a roving reference sensor
placement configuration. Small amplitude acceleration responses are acquired under
ambient excitation for both cases. For comparison purposes, the given shear frame is
measured under adequately large amplitude ambient excitation at single setup and the
obtained frequencies, damping ratios and modal shape results are used as reference
values.

In the laboratory experiments, piezo-electric accelerometers are used which are
defined with 1000 mV/g sensitivity and 11.4 pg/(Hz.)0.5 spectral noise density. The
measurement system consists of a laptop computer with a 1.5 GHz single CPU and Linux
operating system, a 16 channel USBDUX-Sigma data acquisition box with 24 bit analog
to digital conversion, a first order analog lowpass filter with a cut-off frequency at 120
Hz for each channel, and a constant current supply for the accelerometers. The
acceleration responses are recorded in the weak direction of the buildings and all
measurements of groups are acquired in different times with 1000 Hz. sampling

frequency and 5 minutes duration.
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a-) Schematical view of laboratory shear frame

b-) Data acquisiton system

Figure 4.2. Ten story shear frame structure

Table 4.2. Setup configurations for Case-I and Case-II

Setup Number Measured DOFs
Case-1 Case-11
1 1,2,3,10 1,2,3,4
2 1,4,5,10 3.4,5,6
3 1,6,7,10 5,6,7,8
4 1,8,9,10 7,8,9,10

Root Singular Value Spectrum

Root SV (g.Hz "?)
3
1

107
Excitation Frequency (Hz)

a-) Case-I (Setups 1 to 4)

Root SV (g.Hz"?)

107

_.
S
IS

Root Singular Value Spectrum

5 10 15 20 25 30 35 40
Excitation Frequency (Hz)

b-) Case-Il (Setups 1 to 4)

Figure 4.3. Maximum root singular value spectra
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Table 4.3. Average MPVs and representative statistics for f;, and &

Mode Reference Case-1 Case-11
# ¢ f é f g
(Hz.) (%) MPV  c.o.v. MPV  c.o.v. MPV c.o.v. MPV  c.o.v.
(Hz.) (%)  (Hz) (%) (Hz.) (%) (Hz) (%)
2.59 034 2.62  0.23 0.23 26.77 2.62 0.30 0.23 14.78

—_—

2 732  0.26 7.38  0.10 0.22 44.30 7.37 0.10 0.22 11.82
3 11.65 0.23 11.71  0.13 0.12 19.72 11.70 0.14 0.11 25.34
4 1696 0.16 17.03  0.07 0.12 46.93 17.03 0.08 0.14 24.66
5 20.65 0.14 20.72  0.10 0.15 30.62 20.72 0.07 0.14 26.09
6 24.69 0.16 2475  0.22 0.16 38.27 24.75 0.69 0.14 61.66
7 2694 0.18 27.07  0.36 0.15 55.43 27.03 0.12 0.14 36.43
8 2985 0.16 2995 0.32 0.18 33.86 29.92 0.08 0.15 22.31
9 33.19 0.16 3323  0.85 0.13 47.23 33.35 0.22 0.16 21.59
10 3747 0.18 37.53  0.34 0.17 28.18 37.52 0.30 0.15 34.86

A manual selection of the bandwidth for possible modes requires a visual
inspection of the frequency response data. For each measurement setup, the maximum
root maximum singular value spectrums for Case-I and II are obtained by windowing
(with 600 segments), and they are presented in Figure 4.3. The selected bandwidths of
possible modes are marked in the figures by lateral error bars.

The average values of the MPV for natural frequencies and damping ratios
obtained at each setup together with coefficients of variation are presented in Table 4.3.
for Case-I and II. The coefficients of variation for natural frequencies and damping ratios
among all setups include setup-to-setup variability and identification uncertainty which
is defined as representative statistics by Zhang and Au (2016). According to the results,
the maximum c.o.v. remains less than 1% for each case for identified frequencies. For
damping ratios, standard deviations show relatively large variations among different
setups. These variations are the result of the setup-to-setup variability instead of
identification uncertainty. Exact values of natural frequencies and damping ratios are
expected to be invariant for each setup. To the contrary, the spectral density of modal
excitation and prediction error may show significant variations among different setups
due to the possible variations in excitation levels. As a result, a decrease in signal strength
is observed for larger modes. To illustrate this case, average modal signal-to-noise ratios

and their setup-to-setup variations are presented in Figure 4.4.
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Setup
1to 4

Wk,max

Setup

1 2 3 4 5 6 7 8 9 10
Mode number

Figure 4.4. Variations in the estimated signal-to-noise ratios

Figure 4.4, the variations in the estimated signal-to-noise ratios, yx; = S;Dyi/Sei
are presented. For both cases, setup-to-setup variability of signal-to-noise ratio is
remarkably large for all modes. This variability may not affect the identification quality
in lower modes due to the relatively higher signal quality. For higher modes (Modes 6 to
10), however, this variability may cause significant errors in the identification process
due to the smaller signal-to-noise effect.

Assembled mode shapes for Case-I and II are presented in Figure 4.5 and Figure
4.6, respectively. The iterations of algorithms are stopped as the MAC value between the
current and previous steps is larger than 0.9999. According to the results, it is seen that
the assembled mode shapes by using the presented methodology are similar for the
proposed methodology and the algorithm by Au (2017). The ninth mode obtained by
using the algorithm by Au (2017), however, does not meet the reference mode shape. The
reason of this fact resides on the initial guess proposed by Au (2017) which is quite far
away from the optimal value. The MAC values between the identified and reference mode
shapes are presented in Table 4.4. Here, MAC1 and MAC2 indicate the MAC values for
the mode shapes obtained by the proposed methodology and the algorithm by Au (2017),
respectively, with respect to reference mode shapes. Both procedures give similar results

except for the ninth mode.
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Table 4.4. Calculated MAC values for Case I and 11

Mode Case-1 Case-11
number MACI MAC2 EMAC MACI MAC2 EMAC
1 0.9963 0.9962 0.9998 0.9980 0.9978 0.9991
2 0.9932 0.9934 0.9993 0.9960 0.9954 0.9990
3 0.9915 0.9927 0.9996 0.9986 0.9970 0.9994
4 0.9972 0.9912 0.9992 0.9945 0.9929 0.9993
5 0.9950 0.9933 0.9983 0.9972 0.9967 0.9988
6 0.9801 0.9752 0.9882 0.9852 0.9827 0.9857
7 0.9856 0.9822 0.9906 0.9825 0.9809 0.9860
8 0.9741 0.9695 0.9873 0.9748 0.9737 0.9843
9 0.9665 0.3847 0.9783 0.9763 0.1861 0.9805
10 0.9693 0.9659 0.9935 0.9848 0.9658 0.9835
Case-l Mode 9 Case-ll
1 I —0—0—0—0—0—0—0—0—0 1 o—0—0—0—0—0—0—0—0—0
0.8 0.8
2 0.6 0.6
=
0.4 1 0.4
0.2 0.2
0 2 4 é 8 10 0
Mode 10
1 - - , , 1
0.98 0.98 | :
&)
<
= 0.96 0.96 |
0.94 0941

iter no
—{F— Au (2017) —O— Proposed algorithm

iter no

Figure 4.7. Variations in MAC values with respect to reference mode shapes versus the

number of iterations
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Figure 4.8. Calculated setup weights for Case-I

Figure 4.7 presents the MAC values of the mode shapes that are obtained at each
iteration step for Mode 9 and 10 with respect to reference mode shapes. The lower modes
show no significant variance, and therefore they are not shown. It is seen that the quality
of the initial guess of the proposed algorithm gives more reasonable results when
compared to the results of the algorithm by Au (2017). The reason is considered to be
caused by the large signal-to-noise asymptotic behavior assumption for the initial guess
by Au (2017). Since the higher modes are subjected to less level of excitation, the initial

guess by using the large signal-to-noise asymptotic behavior may significantly diverge
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from the actual value. Figure 4.8 and Figure 4.9 present the calculated weights for the

initial and final mode shapes by the proposed methodology and the asymptotic weight

proposed by Au and Zhang (2012). It can be seen that the weights for modes 1 to 8 are in

the same range. The asymptotic weights for modes 9 and 10, however, are quite different

from the proposed algorithm, which is considered to be the cause of the difference in the

ninth mode shape.
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Figure 4.9. Calculated setup weights for Case-II

4.5.2. Benchmark study: Z24 Bridge

The former Z24 Bridge in Switzerland is investigated in this section. The bridge

is used in a benchmark study under the COST-F European Network project (Reynders
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and De Roeck, 2008). The bridge passes over the Bern-Ziirich highway, and connects the

two towns of Utzenstorf and Koppigen. It is composed of three spans with lengths of 14,

30, and 14 meters as it is illustrated in Figure 4.10.
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Figure 4.10. Schematic representation of Z24 Bridge and sensor layouts (Reynders et al,

2012; Reynders and Roeck, 2008)

In the benchmark study, the Z24 Bridge is measured at 152 points under ambient
and forced vibrations by KU LEUVEN Structural Mechanics division between 1998 and
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2000. Nine measurement setups with three reference points are conducted to obtain a
complete measurement of the bridge. The schematic representation of the sensor layout
for the deck and piers are shown in Figure 4. The collected data for seventeen different

cases is available on the website https://bwk.kuleuven.be/bwm/z24. Among these, the

third reference measurement is considered in this study.

The average root singular value spectrum of reference measurement-2 by using
the 13000 windows is presented in Figure 4.11. Here, the first five modes are easily
perceptible. The sixth mode is not excited in all setups. It is visible in the second, third
and seventh setups, only. In addition, it is seen that the visible modes are well separated.
A similar trend is observed in previous studies by Peeters and Ventura (2003), and

Reynders et al (2012).
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Figure 4.11. Root singular value spectrum for all setups

The calculated natural frequencies and damping ratios are presented in Table 4.5
compared with the results by Peeters and Ventura (2003), and Reynders et al (2012). The
identified results are the mean values obtained as the average of the MPVs for all setups.
In addition, the posterior coefficient of variations including the setup-to-setup variability
and identification are presented in Table 4.5, as well. The calculated MPVs of frequency
and damping ratio are compatible with results by the previous studies (Peeters and
Ventura, 2003; Reynders et al, 2012) The largest relative difference is less than 1%.
Variations in the most probable frequency and damping ratios for the first two modes are
presented in Figure 4.12 and Figure 4.13, respectively. Here, error bars show the posterior
standard deviations. In addition, due to the large signal-to-noise ratio, the signal quality

is observed to be good for all setups according to the results presented in Figure 4.14.
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Table 4.5. Calculated frequencies and damping ratios

S (Hz.) < (%)
Mode
Peeters  Reynders Present c.o.v. Peeters Reynders Present c.o.v.
Numb
umoer and et al Study (%) and et al Study (%)
Ventura (2012) Ventura (2012)
(2003) (2003)
1 3.86 3.86 3.85 0.30 0.90 0.80 0.92 24.54
2 4.90 4.90 4.89 0.41 1.40 1.40 1.36 19.34
3 9.77 9.76 9.77 0.25 1.30 1.40 1.19  27.59
4 10.30 10.30 10.32  0.87 1.40 1.30 1.94 54.40
5 12.50 12.42 12.53 1.15 2.50 2.80 3.18 36.84
6 13.20 13.22 13.22  0.86 3.00 3.40 3.05 37.45
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Figure 4.12. Identified frequencies with representative statistics
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Figure 4.13.

Identified damping ratios with representative statistics
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Figure 4.14. Variations in the identified signal-to-noise ratios among different setups

Figure 4.15 presents the assembled global mode shapes by the proposed
algorithm. The mode shapes for the first six modes are well identified and seem
compatible with previous studies (Peeters and Ventura, 2003; Reynders et al, 2012). The
algorithm by Au (2017) gives similar results, and the first three modes are directly
identified without iteration. Table 4.6 presents the calculated MAC values between the
proposed methodology and the algorithm by Au (2017). Here, MAC4s and MAC,e
represent the MAC values between the final mode shapes by the proposed method, and
the initial guess and final mode shapes obtained from the algorithm by Au (2017),
respectively. It is seen that the results are similar for both methodologies. The fourth
mode, however, shows a difference about 12% between the initial guess by Au (2017)

and the final mode shapes.

Table 4.6. MAC values for the estimated mode shapes

Mode number EMAC MAC,s MACs
1 1.0000 1.0000 1.0000
2 1.0000 0.9999 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 0.8826 1.0000
5 1.0000 0.9992 0.9999
6 1.0000 0.9991 1.0000
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Figure 4.15. Identified mode shapes by the proposed modified algorithm

103



] Mode 4 ] Mode 5 ] Mode 6
0.95
0.95 0.9
0.9
3 0.9 R 0.85 0.8
1
0.8
0.85 0.7
0.75
0.8 0.7 0.6
0 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
number of iterations
—F— Au (2017) —O— Proposed Algorithm
Figure 4.16. Variations in MAC; values with respect to number of iterations
Mode 1 Mode 2
: — 0.3 e —
0.2¢
0.15¢ 02!
0.1
0.1f
0.05¢
0 0
1.2 3 4 5 6 7 8 9 1.2 3 4 5 6 7 8 9
Mode 3 Mode 4
0.3 —_— 0.4 —_—
=
()]
O 0.3¢1
2 0.2
D
IS 0.2t 1
©S01r
£ 0.1} I] I|| |
o
prd
0 0
1.2 3 4 5 6 7 8 9 1.2 3 4 5 6 7 8 9
Mode 5 Mode 6
0.4 —_— 0.6 —_—
0.3
0.4t
0.2¢
0.2t
0.1t
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Setup no

Setup no

-Initial -Final |:|Asymptotic

Figure 4.17. Variations in calculated setup weights
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Convergence of MAC values with respect to the iteration number is presented in
Figure 4.16. Here, MACio = MAC value between the mode shapes at the i”" iteration and
the initial guess of each algorithms. According to Figure 4.16, the estimation of the 4"
mode shape diverges down to a MAC value of 0.88 from the initial guess with the
algorithm by Au (2017). Further, estimations of mode five and six, initially show a
significant divergence from the initial guess which is cancelled out in a few numbers of
iteration. The MAC values for the proposed algorithm, however, indicates that nearly no
change takes place during iteration. The proposed algorithm reaches to this optimal global
mode shape without iteration, and therefore it can be concluded that the initial guess of
the proposed algorithm is more feasible. The difference between the initial guess by Au
(2017) and the proposed algorithm lies in the involvement of spectrum parameters in the
calculation of initial guess by the proposed algorithm.

In order to figure out the reason of the divergence in the MAC values, especially
for mode 4, the calculated normalized weights of the setups in the global mode shapes are
presented in Figure 4.17. For mode 4, it can be seen that the asymptotic weight is much
lower than the weights calculated by the proposed methodology at setup 4. This case is
not the reason, but it may be considered to be in parallel with the divergence in the MAC

value as shown in Figure 4.16.

4.5.3. Application for Closely Spaced Modes: One Rincon Tower

The presented method is applied to the measurements acquired from the One
Rincon Tower which is previously investigated in Section 2.7.5. The measured data is
separated to six setups (see Table 4.7), and first lateral (EW) and translational (NS) mode
shapes are identified by using the presented methodology.

Figure 4.18 presents the identified average frequencies and damping ratios with
setup-to-setup variability in terms of coefficient of variation. Here, dashed line denotes
the most probable values obtained by using the single setup algorithm. Results show that
local MPVs reasonably match with the MPVs that are obtained by single mode approach.

Figure 4.19 presents the assembled mode shapes by using the proposed algorithm.
At first view, it is seen that the identified mode shapes are reasonable. The MAC values

between the mode shapes that are identified by using the closely spaced modes and single
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mode algorithms are obtained as 0.9982 and 0.9955, respectively. In addition, EMAC
values are obtained as 0.9996 and 0.9996 for closely spaced modes.

Table 4.7. Sensor placements for measurement setups

Setup No Measured Sensors
1 7,8,910, 11, 39, 40, 41 42, 43
2 42,43 50,51,52,12, 13, 14, 44, 45, 53, 54, 55
3 53, 54, 55, 56, 57, 58, 15, 16, 65, 66, 17, 18, 19, 20
4 18, 19, 20, 59, 60, 61, 46, 47, 21, 22,23
5 21,22, 23,48, 49, 62, 63, 64, 24, 25, 67, 68, 26,27, 28, 29
6 27, 28,29, 69, 30,70, 71, 72, 31, 32, 33, 35, 36
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Figure 4.18. Identified natural frequencies and damping ratios with standard deviations

106



Mode 1 (0.27 Hz)

NS

|
|
EW

%ﬂw«.«,ﬂ.ﬂhr..ﬂ,ﬂ»,@.@,_wl.m...‘,!.‘,!w.v
A »N,,«bn,_ SO L UL TETL T WA
W\ ,,;

VAR /AATAL.

WA WA= = =

i <.<><><.<.,....<i4.<\.¢>‘>ﬂ

AN/ VAR AR A lm— ——

A\ VAVVAV

Mode 2 (0.31 Hz)

VA lmiﬁwan..%ﬁ AR/
/A7) VAN
A, A !,

NS

NS

I

|

I
EW

EW

Figure 4.19. Identified mode shapes

107



4.5.4. Numerical Analysis: A Comparison for Posterior Uncertainty

Quantification

The computational time required by the proposed posterior uncertainty
quantification methodology for multiple setups is compared to the method by Au and Xie
(2017) via an illustrative example. For this purpose, an analytical shear frame model is
considered whose fundamental frequency and damping ratio are set to 1 Hz, and 1%,
respectively. The number of measurement setups varies from 1 to 100. Only two DOFs
are measured at each setup with a single roving reference sensor. An i.i.d. Gaussian
excitation with modal PSD of 10 ug?*/Hz is generated as ambient loading with 100 Hz
sampling ratio and 300 sec duration, and the measured response is contaminated by a
Gaussian white noise with PSD of 1 ug?/Hz for each setup. The calculations are carried
out by a notebook computer with 17 6700HQ 2.60 GHz processor and 16 GB RAM.

Figure 4.20 presents a comparison of the required computational time versus the
number of setups, Ns, for the proposed methodology and the method by Au and Xie
(2017). It is seen that the proposed methodology requires significantly less computational
time when N; > 10. The reason of this difference lies in the fact that the dimension of the

Hessian matrix increases remarkably for larger N values.
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Figure 4.20. Comparison of the computational time required for the calculation of

posterior covariance matrix
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4.6.

Concluding Remarks

In this chapter, an alternative mode shape assembly algorithm based on the two-

stage BFFTA is presented, and the uniqueness of the solution is verified analytically by

using two main methodologies available in the literature. These are based on the direct

estimation of the global mode shape vector incorporating the FFT data or assembling the

identified local mode shapes by using the Gaussian approximation, respectively. The

proposed methodology is implemented to a ten-story laboratory shear frame and a

benchmark study, and the obtained results are compared to the algorithm by Au (2017).

The general conclusions are summarized below.

The proposed procedure considers that each setup is weighted by its Hessian
matrix (for local mode shape) and the local mode shape information conducted
with spectrum parameters is embedded in this matrix. Thus, the global mode shape
vector is obtained by assembling the local Hessian matrices and it is not necessary
to obtain the optimal local mode shape vectors for each setup.

In the literature, the initial guess for global mode shape vector assumes large
signal-to-noise ratio and neglects the effect of data quality. If the signal-to-noise
ratio is not adequately large for all or a few setups, however, the initial guess may
significantly diverge from the optimal mode shape. The proposed application, on
the other hand, uses the two-stage approach leading to a more reasonable initial
guess for global mode shapes which increases the convergence speed during
iteration.

When the data quality is well in each setup, the identified mode shapes shows no
significant variance among any method that is being used. According to the results
by the ten- story shear frame study, however, it is seen that the quality of identified
mode shapes by the proposed algorithm is improved when the signal-to-noise ratio

is low.
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CHAPTER 5

A TWO-STAGE BAYESIAN APPROACH FOR FINITE
ELEMENT MODEL UPDATING BY USING
ACCELERATION RESPONSE DATA FROM MULTIPLE
SETUP MEASUREMENTS

5.1. Introduction

Finite element (FE) model updating has great importance in damage detection of
structures and calibration of the considered mathematical model with respect to actual
effects. For this reason, model updating has received the attention of many researchers
over the years. While damage detection is possible with measured vibration response data
only, FE model updating might be more effective on the detection of damage location and
severity (Yan and Katafygiotis, 2015¢c). Various FE model updating approaches are
available in the literature (Mottershead and Friswell, 1993; Yang and Chen, 2010;
Mottershead et al, 2011; Touat et al, 2014). The most generic form of these approaches
is based on the determination of system eigenvalues and eigenvectors that are best-fitted
with measured (or identified) ones (Yuen, 2010). The problem of obtaining the best-fit
between the measured and model parameters can be solved by weighted least-squares.
However, some problems inevitable arises in this procedure. The major one of these
problems is referred as mode-matching problem (Yuen, 2010; Yan & Katafygiotis,
2015c). For large scale structures, only a few number of lower modes can be determined
by modal identification methods. Therefore, the higher modes which dominate the
stiffness components are not able to be matched with measured counterparts. In addition,
some lower modes may not be identified due to the low ambient excitation level or high
level of environmental and/or instrumental noise effects on the measurements. Another
problem is existence of incomplete data. When the structure is measured with limited
number of sensors, the measured DOF represents only a local part of the whole structure.
To solve this problem, the investigated structure may be measured by multiple setups. In

this case, the matching of global modal shapes with local parts and FE eigenvectors arises
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as another issue. All these issues are also incorporated with a mode matching problem.
The solution of this problem is part of the response of how to quantify the parametric
uncertainties. For this reason, the FE updating approaches based on stochastic processes
have been employed by the researchers within the past decades. Friswell (1989) presented
a minimum variance estimator based on the minimization of the expected variance of
measurement errors. Here, the basic idea is to consider the effect of measurement noise
while matching the measured and modeled parameters. A two-stage covariance
minimization method was presented by Govers and Link (2010) incorporating the
multiple experimental setups based on a similar idea. At first stage, the expected values
and their uncertainties are obtained by taking the sample mean and covariance of
experimental parameters among different setups. Second, the model parameter
covariance matrix is updated by minimizing the discrepancy between the analytical and
experimental results. Various similar stochastic approaches such as perturbation method
based on parameter-model variability estimation (Khodaparast et al, 2008; Husain et al,
2012), or robust updating formulation by random matrix theory for uncertain
computational models (Soize et al, 2008) are available in the literature.

In previous researches, FE model updating have been also considered based on
the probabilistic logic to solve the mode matching problem (Katafygiostis and Beck,
1998; Katafygiostis et al, 1998; Lam et al, 2015; Mustafa and Matsumoto, 2017; Prajapat
and Chaudhuri, 2018). In the methodology presented by Beck and Katafygiostis (1998),
the optimal (or updated) model parameters are obtained as the most probable value within
a chosen class of structural models by Bayesian statistical framework assuming all the
models have equally weighted prior distributions. This procedure requires updating the
posterior most probable value by integrating the prior distributions over the whole
parameter space. This evaluation process is defined as difficult by Beck and Au (2002)
due to the large dimension for numerical integration, and a Markov Chain Monte Carlo
simulation is employed to reduce the computational effort. A two-stage Bayesian model
updating procedure was proposed by Ching and Beck (2004). In this procedure, first, the
modal identification procedure is completed, and experimental modal parameters are
updated. Second, a prior distribution for stiffness parameters are defined, and finally most
probable model parameters are obtained by applying Bayes’ theorem. This procedure is
applied for both reference (undamaged) and damaged cases, and a damage extent is
defined in order to measure the severity of damage level. A similar methodology is

introduced by Yuen and Kuok (2011) for modal updating with incomplete measured data
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assuming the mass parameters are known. In this methodology, the prior distribution of
stiffness parameters is assumed to be Gaussian with large variance so that the prior
stiffness parameters are overestimated. Yan and Katafygiotis (2015c) proposed a
Bayesian approach for model updating by utilizing the multiple setup measurements.
Here, the optimal (most probable) global mode shape is obtained by assembling identified
local mode shapes via their prior distributions. Different from the Yuen and Kuok (2011),
the eigenvalues are not considered as model parameters to be updated. The formulation
considers stiffness, mass and global mode shape uncertainty. Selection of prior
distribution is similar with Yuen and Kuok (2011). However, the selection of prior
variance for mass parameters is adequately small so that the prior probability for mass
parameters is assumed to be well estimated. The assumption of well estimated mass
parameters stands on two cases: (i) proper estimation of mass matrix is relatively more
possible in comparison with stiffness parameters, (if) the correlation between the stiffness
and mass parameters might make the solution ill-conditioned when both are not
considered as well-estimated.

Another major problem in Bayesian FE model updating is the definition of prior
distributions for mass and stiffness parameters since they are strictly positive definite. For
this reason, using of standard Gaussian distribution becomes unsuccessful to estimate
prior probabilities. To solve this problem, the truncated Gaussian distribution (Yan and
Katafygiotis, 2015c; Yuen, 2010) or lognormal distribution (Das and Debnath, 2018) may
be used. In addition, inverse beta or gamma distributions are also reasonable for prior
estimation (Mathai and Moschopoulos, 1997; Furman, 2008).

This chapter presents a Bayesian FE model updating approach utilizing the
ambient vibration data from multiple setup measurements. The overall procedure rests on
two stages. In the first stage, the MPV of eigenvalues (frequencies) and posterior
covariance matrix of eigenvalues and eigenvectors (mode shapes) are obtained by the
Bayesian Fast Fourier Transform Approach (BFFTA) and the prior probability
distribution of eigenvalues and eigenvectors are estimated by Gaussian approximation of
their posterior PDFs. At second stage, the model parameters including eigenvalues,
eigenvectors, stiffness and mass parameters are updated by using Bayesian inference. The
previous two-stage algorithms (Au and Zhang, 2016; Zhang and Au, 2016; Zhang et al,
2017) consider the posterior covariance matrix for local mode shape as being block
diagonal for large values of signal-to-noise ratio. In this study, however, a block diagonal

covariance matrix is derived independent from the signal-to-noise ratio. Further, the
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modelling error in the eigen equations are considered as a model parameter to be updated.
The prior probability distribution for stiffness and mass parameters are assumed as
truncated Gaussian. The prior variance of modelling error and measured parameters are
considered as soft constraints so that they are updated within the procedure. Further, the
effect of soft constraint approximation on the updated parameters and their posterior
uncertainties are compared to the rigid constraint (prescribed prior variance)

approximation.
5.2. Stage I: Modal Identification

Eigenvalues and eigenvectors of the finite element model are expected to
represent the whole structure. However, the modal information extracted from
measurement data are constrained with the measurement points. In most cases, taking a
full-scale measurement may not be possible due to the lack of instruments. The
eigenvalues might be obtained with good accuracy by system identification. However,
the identified eigenvectors may not represent the system eigenvectors properly when
insufficient measurement points are available only. This problem can be confronted by
increasing the measurement setups. Thus, the posterior distribution of the modal
parameters for each setup can be considered as a proper prior estimation for system
eigenvalues and eigenvectors. For this purpose, first BFFTA can be implemented to
identify the most probable eigenvalues and eigenvectors, and their posterior uncertainties.
Second, their posterior probability distribution can be estimated by Gaussian
approximation. According to the fast BFFTA presented by Au (2011a), the negative-
likelihood function for modal parameters to be identified, within the resonant frequency

band of n mode at setup i, can be defined as follows.

Lni (®n1) = NiNf,ni e.ni’ " ni

Inz+(N,, ~1)InS,, +> (85,0, +S,,)+S.,%*
k

T
- (oniAnigDni (51)

o -1
K = ZF,;F}([; Ai = Z SiD >
k

]

In addition, L,(®,;) should be subjected to the constraint of ¢, ¢, =1. Here, @
= [Aniy Cni, Sni, Senis @ni], is the set of modal parameters to be identified and comprises the

eigenvalue (square of natural angular frequency), damping ratio, spectral density of

modal excitation that is scaled with respect to the unit norm for local mode shape, spectral
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density of prediction error, and local mode shape vector (with unit norm), Fy= FFT of
acceleration response, Ny,= # of data within the selected frequency band, for i setup,

respectively . In addition, Dy, denotes the dynamic amplification and can be written as,

5 -1
D, ., = |:(1_ﬁk,ni) +4fjiﬁk,m‘j| 5 ﬂk,ni = j‘ni/j’k; Ay =2xf;, (5.2)

where f; = excitation frequency. Minimizing Eq. (4.23) gives the most probable modal
parameters for i" setup. At the next step, the posterior probability of modal parameters

can be well-estimated by Gaussian distribution (Au, 2011a).
1 A T A
p(®ni |Zki) ~ exp|:_5(®m’ - ®m' ) H(:)m. (Gni - ®ni ):| (53)

Here, Zy; = [Re(Fy;); Im(Fy;)] € R denotes the augmented FFT vector of the measured

response at the i setup, and H o,~ Hessian of Eq. (4.23) under norm constraint at 0; =
0,.H 0, is obtained as a block diagonal matrix and written as below (see Section 2.5.2).

Hés,m’ O

H. = (5.4)
Oy 0

Pni
Here, 0. =[Aui, Enir Sty Semil, Hg .= 72L®si8s) and Hp, , = VAL @niPnd + 2@y,
(a; = Lagrange multiplier that enforces the unit norm of @,;, N: =# of measured DOF at

i™ setup). Note that Hg, is a semi positive definite matrix whose null vector corresponds

to Pp; (see Section 2.4.2).

am' = _2¢§iv2[’¢ni = @;HA,”- g’bz’ = O (55)

2

5.3. Stage II: Model Updating

The prior probability distributions required for FE model updating are defined in
this stage. Here, the prior probability distribution of eigenvalues and eigenvectors are
modeled by the posterior probability estimation obtained from the modal identification
stage. In addition, a prior probability distribution for modelling error in the eigenvalue
equations is considered in order to avoid the mode matching problem. Then, the posterior
PDF of the model parameters is estimated by using Bayes’ theorem. Finally, the FE model
is updated by maximum likelihood estimation of the posterior PDF that is obtained by

Bayesian inference.
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5.3.1. Prior Probability Distributions of Eigenvalues and Eigenvectors

The modal parameters to be updated comprise the eigenvalues and eigenvectors
with a prediction error for i setup. Thus, the eigenvalue and local eigenvector of each

setup can be defined by
Xm' = )2;11' + gxm‘ (56)
where, Yni = [An, Toit Toi®n]T denotes the set of system modal parameters, /5=

selection matrix that extracts the measured DOFs at i setup, £,,; = [/Tm-, @m-]Tis the set
of most probable local modal parameters obtained at the first stage, and ¢,,,; = prediction
error, respectively. In addition, A, and @, denote the n mode eigenvalue and eigenvector
(global mode shape vector) of the finite element model, respectively. The error term, €,
can be assumed to follows a zero mean Gaussian distribution, and this distribution can be
assumed as the posterior of the local eigenvalues and eigenvectors. When €,,,; is assumed
to be linearly independent for each setup, the prior probability distribution of the
prediction error can be written as

L Ny N .
p(SX‘G)S) =HHP(8W’ ®Sni) ~

n=l i=1 (57)

Ny Ny 1 R R
HHeXp{_E(Xn _Xm')T Hf(m' (Xn _Xni)}

n=l i=l

where Ny = number of measurement setups, N, = number of considered modes, and @S =
[0511, --- »Osn,v, |- In addition, Hy_, denotes the Hessian with respect to yy; at x,; =
JXni can be obtained by the BFFTA. Thus, Hy . is written as a block diagonal matrix.

H . Him. leNi (5 8)
i ONl-><l H, .

Pni
5.3.2. Estimation of Prior Stiffness and Mass Distributions

The prior probability distribution of mass and stiffness parameters are considered
as truncated Gaussian. The mass parameters of civil structures generally can be estimated
with high accuracy. Therefore, the mass parameters are assumed to be well-estimated

with small prior covariance (Yan and Katafygiotis, 2015c). The prior probability
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distributions for mass parameters are assumed to be linearly independent (zero correlation

between each mass parameter). Thus, the prior mass distribution can be defined as below.

p(0)=I1r(s) (59

where, p = [ p1, p2, ... pnp] indicates the set of mass parameters to be updated, p, =

mass parameter, and N, = number of mass parameters. Here, p(p,) can be defined as

below.

A N2
p(p,)ex S, (5.10)

Po

0, for p <0
where p,q = prior estimation for 7 mass parameter, S5, = constant prior variance for
each mass parameter. The covariance matrix for mass parameters is assumed to be
diagonal (as S5 Iny). Similarly, the prior distribution for stiffness parameters are defined

as below.
Nog
p(O)=11r(0)
- A \2
exp %}, for 6. >0 -11)
<0

0, for 0,

th

p(6,)

Here, 6 = set of stiffness parameters, 6, = r"" mass parameter, 6,,, = prior estimation for

" stiffness parameter, S 9, = constant prior variance for each stiffness parameter, and Ny

= number of stiffness parameters.
5.3.3. Prior Probability Distribution for Modelling Error

Considering a general eigenvalue-eigenvector problem for a particular mode, 7,

the following equality can be constructed for a modal updating problem.
KO =MD +¢, (5.12)

in which K and M are the parametric stiffness and mass matrices, respectively. In
addition, /Z,, ®, and &, denote the eigenvalue (square of natural angular frequency),

eigenvector (mode shape), and modelling error for n mode, respectively. Assuming that
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&m follows a zero mean Gaussian distribution, the following pdf can be defined for a

given set of system modal parameters, y = [ Xir o s )(Nm],

p(sm )():(27TS@ )7N/2 exp(elnglem) (5.13)

where S;= expected variance of modelling error (assumed to be constant and uniform for
each mode), and N = number of DOFs in the finite element model. The prediction error

can be defined in terms of mass and stiffness parameter as below.
e, :(K—/lnM)(Dn =Q O (5.14)

Substituting Eq. (5.14) into Eq. (5.13) leads to the following conditional
probability function.

p(e]4,.@,.0.p) = (27S,) " exp(®;Q]S;'Q,0,) (5.15)

Here, the parametric stiffness and mass matrices are defined as follows.

Ng Np
K=K,+Y> 0K — M=M+> pM, (5.16)

r=1 r=l1
where, Ko and Mo are NxN sized non-parametric stiffness and mass matrices, K,, and M,

= NxN sized " non-parametric sub-structural stiffness and mass matrices.
5.3.4. Posterior Probability Distribution for System Parameters

Applying the Bayes’ theorem, the posterior probability distribution for model

parameters can be written as follows.

o0

where, y = [X1 -+ XNp], and co denotes a normalizing constant. The negative-

608 ) =€, % p(2,11)% (2, ]0,)x p(0)x p(p) (5.17)

logarithm likelihood function for Eq. (5.17) is obtained as follows by utilizing Egs. (5.10),
(5.11), (5.15), and (5.7).
_ ~\T R 1
0 pa ZZ( mlFozq)n goni) Hl( ]I—;z(Dn ¢ni)+5
nlll
L0-6,) s1(0-0,)+1(p=p.) S (p=p)+ N Nln2w+ <N Nins, (5.18
+5( - o) g‘o( - o)"‘z(ﬂ_l)o) po(p_po)"‘E miV 10 71""5 2NInS;  (5.18)

1 Jm
= ;Q5'Q,,
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Here, a unit norm constraint should be defined for /,;®, and ®,, respectively. Thus, Eq.

(5.18) leads to a linear optimization problem as below.
Ny
J(0:p: 105 8) = L(0.p, 1)+ D 0, (O1 T, @, =17 )+ B(D)®, -1)  (5.19)
i=1

where a = [“11, ce aNmNs]' MPV of model parameters can be estimated by

minimizing Eq. (5.19) with respect to 6, p, and y.
5.3.4.1. MPYV of Modal Parameters

Eq. (5.19) defines a set of modal parameters, 7, that covers all measurement
setups. For this reason, the posterior MPV of y is incorporated with measured response
data as well as structural model parameters. Thus, the minimization process performs a
posterior modal identification and model updating together. In this context, minimizing
Eq. (5.19) with respect to Ay, and @, gives the most probable posterior modal parameters
incorporated with structural model parameters.

The first order derivative of Eq. (5.19) with respect to A, gives

aJ A Ny B N,
=0 = A= (SélGin +ZH}W} x(sggin +ZH%_A,“.J (5.20)
i=1 i=1

o,

n

In=rn
Here, G, = ® M"M®,, and gun= ®;K"M®,. If the modelling error is
neglected, the MPV of 4, can be set to the most probable values obtained from the
measurements as below;
Ny -1 Ny
A, = (ZH%] x> H, i, (5.21)
=) =)
Eq. (5.21) can be used as the initial guess for 4,. Similarly, minimizing Eq. (5.19)
with respect to @, gives;

o
o0

n

=0

0,=0,

(5.22)

A A

Ng Ns
= ({Z[‘of (’;1:21_[@ + 2aniINi )1—'01'} + Q:Sé_lgn}q)n - 2ﬂn(Dn + ZFH;II—ZEH@@m = 0
i=1 i=l

Due to the fact that @,; is the null vector of Hg . (Hp, .$n;=0), Eq. (5.22) leads to

the following standard eigenvalue problem.

4,0, =0, (5.23)
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A = %iL; (r2H,, +26,,0, )L, + %Q,{S;Qn (5.24)

Thus, the optimal @, can be obtained as the eigenvector of 4, that corresponds to

the minimum eigenvalue. When the norm constraint for @, is omitted in the solution, 4,
is constrained to be a semi-positive definite matrix. However, this case is possible if and
only if modelling and measurement errors are equal to zero. In reality, a zero error may
not be obtained and therefore, the norm of @, is constrained to be 1 in the presented
methodology. On the other hand, an initial estimation for ®, can be obtained as the

eigenvector (for minimum eigenvalue) of the following matrix by assuming zero

discrepancy between ;' I,;®,, and @,,; and neglecting the modelling error.
NS
T
Zr H, T, (5.25)

Optimal value of the Lagrange multiplier, a,,; can be obtained by minimizing Eq.
(5.19) with respect to 7. The first order derivative of Eq. (5.19) leads to the following
equation.

o
or

ni |y .=p . s
Tni =Tni »%ni =%ni

_ A3 xT T S o, —
—PPOITTH, ~ 24,7, =0 (5.26)

n ol

Thus, the optimal o, is obtained as follows.

~—4

G, =-"O'[VH, ; P2 =TT, (5.27)

ni n> oi n-oi~ ol n

5.3.4.2. MPYV of Model Parameters

Taking the first order derivative of Eq. (5.19) with respect to 6 and solving for

optimal § yields;

N ~ Npm
Z_g =0 =0S;'-0,8;'+>,8,'Gy, Gy 0D S;'Gy g4, =0
=0 © ¢ n=1 ! ! n=1 ’ ! !
A . - . (5.28)
mie[sin, 350016, | s Ss ds
o — n n 0 pn . n—n
where
G, =[ K@, .. KN9<Dn]NxN€; g, =[ (LM (p)-K,)®, ] (5.29)

Similarly, minimizing Eq. (5.19) with respect to p gives the optimal mass parameter

vector as below.
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o,
op p=p
Nm Nlﬂ
= pS; =S, + 2.8:'Gy, Gy p= DS Gy gy, =0 (5.30)
n=1 n=1

Ny ! N
= e i, 3G, | | S|
n=l1 n=1
where

GMn =4, |:M1(Dn MN/JCD”}Npr (5.31)
i, =[(K(0) -3, ]

Finally, the posterior MPV of S; is obtained as below.

Nx1

oJ - I
Ll =0 =S'NN-50Q'Q 0, =0
aSE S.=Sz n=1
Ny, 5 (5.32)
Z| an)n
— SE —n=l
NN

5.4. Summary of Procedures

In modal parameter identification by fast BFFTA for individual setups, a norm
constraint for local mode shape is necessary. Otherwise the minimization procedure
becomes ill-conditioned due to the negative definite Hermitian structure of the Hessian
matrix for local mode shape. For mode shape assembly problems, a norm constraint for
global mode shape is also required to well match the identified local mode shape and
corresponding part of the global mode shape. In Bayesian model updating applications,
norm constraint for global mode shape is not used (Yuen 2010, Yan and Katafygiotis
2015¢). The presented procedure needs a norm constraint for @ since 4, might not be a
semi-positive definite matrix due to the modelling and measurement error. Otherwise, the
solution will be ill-conditioned due to the non-existent null vector search of 4.

The flow chart for the proposed procedure is presented in Figure 5.1. First, the
local spectrum parameters including eigenvalues (square of most probable natural angular
frequency), damping ratio, spectral density of modal excitation and prediction error
should be obtained. Second, the Hessian matrix for eigenvalues and eigenvectors (most

probable local mode shape) should be obtained by Gaussian approximation. At the
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iteration step, the posterior most probable values for model parameters are updated until

the prescribed convergence criteria are satisfied.

( START )

Calculate optimal A,;, Hg,;
Hp ,and Hg 5 . byBFFTA.

(5.25).

Calculate initial guess for A,
and ®, by Egs. (5.21) and

(5.27)

Calculate optimal a,; by Eq.

Calculate optimal
No and Sz by Egs. (5.28), (5.30),
(5.20), (5.23) and (5.32)

0, p, A, ©

Check
convergence
criteria

Figure 5.1. Flow chart for the proposed algorithm

5.5. Posterior Uncertainty

Posterior statistical parameters in terms of variance, standard deviation, and

coefficient of variation can be estimated via the posterior covariance matrix centered at

the MPV of system parameters. Using the second order Taylor series expansion, the

covariance matrix can be calculated as the inverse of the Hessian matrix. Here, the

Hessian matrix centered at the MPV of system parameters is given by

J(Hﬂ) J(Q’P)
J(pﬁ’) J(ﬂ,ﬂ)

J(LO) J()”’/])
J(@ﬁ) J(‘l’,ﬂ)

J(Q,)»)

J(p,i)

JHA
J@A

J0-®)
J P
) (5.33)

(0.,0)
J NyxNy

121



where J*-) denotes the derivatives of Eq. (5.19) (see Appendix D). In addition, Ny = Np +
Ny +Npy(N+ 1D, A=[A . Ay, l,and @ =[P .. Py, .

5.6. Probabilistic Damage Detection

The most probable model parameters and their uncertainties can be obtained by
the presented procedure. Here, it should be noted that again, the mass parameters are
assumed as initially well-estimated. Using this assumption, the posterior most probable
values for stiffness parameters can be estimated well. At the next step, the level of damage
for the 7" stiffness parameter can be estimated based on probabilistic logic. By using the
Gaussian approximations for marginal distributions, Vanik et al. (2002) defines the
probability of exceedance to a certain damage level for the i stiffness parameter as
follows

_ Hud _ A pd
I)idam (dl)zci') (1 di)ei Hi (534)

\/(1 ) S0+,

where d;€[0, 1] indicates the level of damage (as a threshold), @}‘d and @ip % = most

probable i” stiffness parameter that represents the undamaged and damaged case, S gud
l

and S,pa= posterior variance of i™ stiffness parameter for the undamaged and damaged
i

case, and ®(.) = standard normal cumulative distribution function. Thus, the level of

damage can be estimated by a probabilistic logic instead of monitoring the change in 6;.
5.7. Numerical and Experimental Analysis

In this section, first a numerical analysis is presented to verify the presented
procedure. For comparison purposes, the variations in the posterior uncertainties are

investigated if the modelling and prediction error is prescribed. Second, an experimental

study is presented to see the effect of incomplete data on the results.
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5.7.1. Numerical analysis: Torsional Shear Frame

A fifteen-story torsional shear frame structure is investigated to validate the
proposed methodology. The plan layout of the investigated structure is presented in
Figure 5.2. The lateral stiffness in the x-x and y-y direction is considered as ki = 1000
kN/m and ki, =800 kN/m, respectively. In addition, story mass is m = 250 kg in both
directions. Identically distributed and independent Gaussian white noise is generated with
300 second duration and 100 Hz sampling frequency, and the spectral density of SN/Hz
in the lateral directions and 25 Nm/Hz in the torsional direction, respectively. The rms of
measurement error is assumed 20% of the rms of simulated response (without noise) for
each channel. The structure is measured with four setups. The sensor layout of the setups
is presented in Table 5.1. The acceleration response of the structure is measured at the
center in the translational directions. Torsional acceleration measurements are omitted.
Therefore, torsional modes are not identified, but they are extracted from the updated

finite element model.

iy
k. =300 kN/m
k;,. =500 kN/ma ‘a, 4k, =500 kN/m
D307 _ N IS
X > X o
I a, =
~
> A
k,. = 300 kN/m
-y
| L=15m |

Figure 5.2. Plan view of fifteen story torsional shear frame structure

Table 5.1. Multiple setup configuration
Setup No Measured DOF

1 Ix, 1y, 2x, 2y, 3x, 3y, 4x, 4y, 5x, Sy

2 4x, 4y, 5x, S5y, 6x, 6y, 7x, Ty, 8x, 8y

3 7x, Ty, 8x, 8y, 9x, 9y, 10x, 10y, 11x, 11y, 12x, 12y
4 I1x, 11y, 12x, 13y, 13x, 13y, 14x, 15y, 15x, 15y
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Assuming the initial stiffness and mass is equal to zero (Ko=0, Mo=0), the

parametric stiffness matrix is defined below.

Ny=30

K(@)z Z:l: 0.K; (5.35)

where No,= Ngy=N, =15. In addition, K;x, Kjy, are written as follows.

e Fori=l1,
1.0 O -1 0 0 |
0 0 O 0 0 0
Kor| 00 /4 0 0 0 s 36
Moo 0 0 00 (5.36)
0 0 O 0 0 0
. 0 0 O 0 0 0 |
e Fori=2,
00 0 0 0 0 |
01 0 0 -1 0
Kk 00 L/4 0 0 0 s 37
00 0 0 0 0 (5-37)
00 0O 0 0 O
. 00 0 0 0 0 |
e Fori=3,5,7,...,29
i 03{(]+i)/2—2}><45 ]
1 0 0 -1 0 0
0 0 0 0 0 0
O siiiia 0 0 I2/4 0 0 —I*/4 O s
K =k, 1x3{(1+i)/2-2} x x 1x3{15—(1+1)/2} (5.38)
-1 0 0 k., 0 0
0 0 0 0 0 0
0 0 -L'/4 0 0 L'/4
L 03{157(1+i)/2}x45 ]

e Fori=4,6,8,...,30
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0
0
Op31/2-2) 0
0
0
0

O3(i/272)><45

0 0 0 0
1 0 0 -1
0 L,/4 0 0
0 0 Kk, O

-1 0 0 1
0 -L2/4 0 0

03(15—i/2)><45

_Li /4 01><3(15—i/2) (5.39)
0
0
2

Ly /4

Here, kix = kix-+ kix+ and ky= kiy- + kiy-. In addition, the mass matrix is defined by

Np=15

M(9)= Z::, pM,

where M; can be written as below.

e Fori=l1,

e Fori=2,..

M. =m 01><3(i72)

e Fori=15

., 14

[1/2
0

1 0 0 0 O
0 1 0 0 0
I+ 1
0 0 M 0 0
12
0 0 0 0 O
0 O 0 0 O
00 0 0 0
L O39><45
03([—2)><45
0 0 0 0
1/2 0 0 0
>+
—( il Y) 0 0
24
0 0 1/2 0
0 0 0 1/2
0 0 0 0
03(15—i)><45

(5.40)

o O

06><39

(5.41)

S O o O

01x3(154) (5 42)
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| O3(i—2)><45 |
/2 0 0 0 0 0
0 1/2 0 0 0 0

(L2 +L2)
0 0o ~——2 0 0 0
M =m 013-2) 24 05051 (5.43)
! 0 0 0 1 0 0
0 0 0 0 1 0
I+ I’
0 0 0 0 0 M

12

L 03(157i)><45 |

Prior most probable value for stiffness parameters selected as Oino= Oyo= 10
(overestimated) with the variance of Sg, = 50. In addition to this, the prior mass parameters
are assumed to be well-estimated with pi,= 1 and S,, = 0.01. Selected prior distributions

for stiffness and mass parameters are presented in Figure 5.3.

Prior Stiffness Distribution Prior Mass Distribution

40

50 0.9 0.95 1 1.05 11
0 Py

[o]

Figure 5.3. Selected distributions for prior estimation of stiffness and mass parameters

Model parameters for the investigated structure is updated for two cases: (i)
undamaged and (i7) damaged case. In the undamaged case, actual model parameters are
set to be 6= 6,~=1.00. For the damaged case, 6,1=0.70, 6,7=0.40, 6,,=0.90, 6,5=0.75 and
the remaining parameters are set to 1.00. In addition, actual mass parameters are

considered as p;=1.00 for both cases.
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Table 5.2. Actual and updated natural frequencies with posterior c.o.v.

Mode Undamaged Case Damaged Case
Number C.0.V.
Dir. Analytical  Updated cov.  pip Analytical ~ Updated
(Hz)  (Hz)  (<10) Hz)  (Hz) 10

1 y 0.79 0.79 022 y 0.77 0.77 4.68
2 X 1.02 1.02 033 x 0.94 0.94 3.48
3 Tors 1.50 1.50" - Tors 1.45 1.45" -
4 y 2.36 2.37 0.15 y 2.36 2.36 2.60
5 X 3.05 3.05 026 «x 291 2.92 2.30
6 y 3.91 3.92 0.08 3.87 3.86 1.42
7 Tors 4.49 4.50" - X 4.55 4.56 1.10
8 X 5.04 5.04 0.11 Tors 4.42 4417 -
9 y 5.42 5.42 003 y 5.28 5.28 1.01
10 y 6.87 6.86 001 y 6.78 6.78 0.72
11 X 6.99 6.99 0.05 «x 6.84 6.84 0.83
12 Tors 7.43 7.43" - Tors 7.18 7.18" -
13 X 8.87 8.87 0.02 x 8.19 8.20 0.61
14 Tors 10.29 10.29" - Tors 10.08 10.08" -
15 Tors 13.06 13.07" - Tors 12.61 12.60 -

Table 5.3. Actual and updated stiffness parameters in the x-x direction

Undamaged case Damaged case
Parameter c.o.v c.o.v

Actual Updated (x10°4) Actual Updated (x10°4)
Ox1 1.0000 1.0044 1.0214 0.7000 0.7078 8.4405
Oz 1.0000 1.0114 1.2943 1.0000 1.0107 10.8562
O3 1.0000 1.0076 0.8476 1.0000 1.0059 8.6016
Ora 1.0000 1.0089 1.0702 1.0000 1.0114 8.3922
Oxs 1.0000 1.0089 1.0193 1.0000 1.0062 7.7128
Oxs 1.0000 1.0056 1.0326 1.0000 1.0043 6.9394
07 1.0000 1.0109 1.0056 0.4000 0.4009 2.3786
Oxs 1.0000 1.0010 1.0221 1.0000 1.0076 5.9229
Oro 1.0000 1.0168 0.9642 1.0000 1.0074 6.5112
Ox10 1.0000 1.0000 0.7876 1.0000 1.0029 8.5295
Ox11 1.0000 1.0057 0.8855 1.0000 1.0037 5.7305
Ox12 1.0000 0.9991 1.0363 1.0000 1.0090 10.6522
Ox13 1.0000 1.0076 1.0826 1.0000 1.0100 7.9952
Ox14 1.0000 1.0125 0.7692 1.0000 1.0016 11.6128
Ox1s 1.0000 0.9987 0.9038 1.0000 1.0003 14.9658

Updated natural frequencies for first fifteen modes are presented in Table 5.2.
Here, the translational modes indicate the identified most probable values by using the

presented algorithm, and torsional modes are obtained from the eigenvalue analysis of
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the updated finite element model. It is seen that the identified frequencies match well with
their analytical values. In addition, identified stiffness parameters and the corresponding
posterior coefficient of variations (c.0.v.) in the x-x and y-y direction is presented in Table
5.3 and Table 5.4, respectively. Similarly, it is seen that the stiffness parameters show
good convergence to the analytical values for both undamaged and damaged cases.

In the previous studies, the modelling and prediction errors are generally defined
as rigid constraints (they are assigned to the selected prescribed values). The presented
method, however, defines soft constraints for modelling and prediction error. Therefore,
the possible discrepancies due to the modelling and prediction error are calculated at each
iteration step. Figure 5.4 presents the cumulative probability density functions of possible
damage with respect to the damage level. It is seen that the probabilities of damage show
very small (nearly zero) variance around the most probable damage levels. The reason of
this fact is thought to be the result of using soft constraints for the modelling and

prediction error.

Table 5.4. Actual and updated stiffness parameters in the y-y direction

Undamaged case Damaged case
Parameter c.0.v c.0.v

Actual Updated (x10°4) Actual Updated (x10)
Oy 1.0000 1.0090 1.4566 1.0000 1.0035 11.2068
02 1.0000 1.0105 1.0229 0.9000  0.9089 9.7372
03 1.0000 1.0133 0.9693 1.0000 1.0079 12.1623
Oya 1.0000 0.9973 0.7562 1.0000  0.9944 15.5966
Oys 1.0000 1.0085 1.2633 0.7500  0.7521 8.7421
Oye 1.0000 1.0027 1.0756 1.0000  0.9971 6.4256
Oy 1.0000 1.0021 1.5264 1.0000 1.0005 5.9322
Oys 1.0000 1.0105 1.0523 1.0000 1.0014 4.3256
Oyo 1.0000 1.0070 0.9145 1.0000 1.0105 7.1385
Oy10 1.0000 1.0091 1.1580 1.0000 1.0158 9.9661
Oy 1.0000 1.0137 1.6386 1.0000 1.0144 11.1286
Oy12 1.0000 0.9973 1.1325 1.0000  0.9957 12.5625
013 1.0000 1.0093 1.4086 1.0000  0.9989 8.4346
Oy14 1.0000 0.9982 0.9373 1.0000 1.0085 10.0628
Oy1s 1.0000 1.0070 1.1548 1.0000  0.9924 12.0963
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Figure 5.4. Cumulative probability of damage for the stiffness parameters (blue line: x-x

direction, red line: y-y direction)

Figure 5.5 and Figure 5.6 show the convergence speed of the estimated stiffness
parameters to their analytical value and the variation of their posterior c.o.v. with respect
to the number of considered modes in the cases of considering the rigid and soft
constraints for 4,;, respectively. For the rigid constraint case, 4, is set to the MPVs that
are identified from the measurements. It is seen that the convergence speed of the
estimated stiffness parameters to the analytical value is higher in the presented
methodology (soft constraint approach) when compared to the rigid constraint approach.
In addition, the presented methodology reduces the posterior c.o.v. significantly for the

first stiffness parameter when compared to the rigid constraint approach.

I I I ! I I I !
2 3 4 5 6 7 8 9 10

Number of considered modes
Figure 5.5. Variation of the estimated 6y versus the number of considered modes (red

circle: rigid constraint, blue square: soft constraint for eigenvalues)
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Figure 5.6. Variation of the posterior c.0.v. of 6x1 versus the number of considered modes

(red circle: rigid constraint, blue square: soft constraint for eigenvalues)

Figure 5.7 and Figure 5.8 show the variation of estimated stiffness parameters and
their posterior c.o.v. in case of the prescribed variance for modelling and measurement
error. Here, the prediction error for eigenvalues and eigenvectors are defined to have a
c.o.v. of 1%. The prescribed variance of modelling error is calculated according to the
defined prediction error. Results show that the soft constraint approach for modelling and
measurement error increases the convergence speed of most probable stiffness parameters

and decreases significantly the posterior coefficient of variation.

(m]
1
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0.98

y1

0.96

0.94

4 I I I ! I 1 1
2 3 4 5 6 7 8 9 10

Number of considered modes
Figure 5.7. Variation of the estimated 6,1 versus the number of considered modes (red
circle: rigid constraint, blue square: soft constraint for modelling and

prediction error)
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Figure 5.8. Variation of the posterior c.0.v. of 6,1 versus the number of considered modes

(red circle: rigid constraint, blue square: soft constraint for modelling and

prediction error)
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Figure 5.9. Updated mode shapes (blue squares) and analytical values (red line) for
undamaged case
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Figure 5.10. Updated mode shapes (blue squares) and analytical values (red line) for
damaged case

Figure 5.9 and Figure 5.10 show the updated first fifteen mode shapes for
damaged and undamaged cases. Here, torsional mode shapes are estimated from the
updated finite element model. The estimated mode shapes (presented by blue squares)
match well with the analytical results for both undamaged and damaged cases. In addition,

the posterior c.o.v. values for identified mode shapes are presented in Table 5.5.

Table 5.5. Posterior c.0.v. values for mode shapes (x107!2)

Undamaged case Damaged case
Mode number

yy-dir xx-dir. yy-dir xx-dir.
1 3.86 4.25 7.35 9.93
2 5.25 4.92 7.42 11.16
3 5.85 6.04 9.83 13.25
4 7.23 8.23 10.21 13.86
5 9.16 9.95 12.36 15.79
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5.7.2. Experimental analysis: Ten story shear frame

In this section, the presented methodology is applied to the ten-story shear frame
which is investigated in Section 4.5 (see Figure 4.2). The story stiffness of the structure
is analytically calculated as [38.67 38.67 38.67 25.78 25.78 25.78 25.78 12.89 12.89
12.89] KN/m. In addition, the story mass is calculated as 2.355 kg for each story. For real
life applications in which the nominal stiffness parameters are assumed to be well
estimated, one may take a prior estimation of 1.00. In this study, however, the prior
estimation for stiffness parameters are intentionally considered as overestimated and
assigned to 10.0 with a large variance. The mass parameters are selected as 1.00 with
small variance (well-estimated). Three different scenarios are considered to see the effect
of incomplete measurement data. Sensor configurations for these scenarios are given in

Table 5.6.

Table 5.6. Sensor placement configuration for considered measurement scenarios

Measured DOFs
Setup Number - - -
Scenario 1 Scenario 11 Scenario 111
1 1,4 2,3, 4 1,2,3,4
2 4,6 4,5,6 3.4,5,6
3 6,8 5,6,7 5,6,7,8
4 8, 10 7,8,9 7,8,9,10

Table 5.7. MPVs and posterior c.o.v. for natural frequencies (“*” denotes the MPVs that

are identified from the measurements)

Mode Scenario 1 Scenario I Scenario I11
MPV* MPV co.v(%) MPV* MPV co.v(%) MPV* MPV c.o.v(%)

261  2.62 0.11 262 262 0.08 262 262 0.07
738  7.37 0.06 737  7.37 0.05 737 737 0.05
11.67 11.69 0.03 11.69 11.69 0.01 11.70 11.70 0.01
17.02  17.03 0.02 17.03 17.03 0.01 17.03  17.03 0.01
20.72  20.70 0.02 20.72  20.71 0.01 20.71 20.71 0.01

N A W N~

Table 5.7 presents the identified MPVs of natural frequencies and their posterior

c.0.v. values. Here, “MPV*” denotes the most probable frequencies identified by BFFTA,
and “MPV”’ denotes the most probable frequencies by the presented method. Results show
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that the discrepancy between the updated and measured values are very small. In addition,
as the number of measured DOF increases, the discrepancy of the MPVs and their

posterior c.0.v. values decrease.

Table 5.8. Identified stiffness parameters for considered scenarios

Stiffness Scenario 1 Scenario I1 Scenario 111

Parameter MPV c.o.v (%) MPV c.o.v (%) MPV c.o.v (%)

o 0.9055 0.3195 0.9216 0.2927 0.9846 0.1607
6> 0.9346 0.5147 0.8632 0.3729 0.8606 0.1700
0s 1.1641 0.5701 1.0955 0.1484 0.9162 0.1025
04 1.1868 0.5723 1.0629 0.1512 1.0798 0.1015
0s 0.9227 0.6093 0.9929 0.1944 0.9967 0.1288
Os 1.1425 0.7114 0.9866 0.2180 1.0205 0.1497
07 1.0547 0.5564 1.1626 0.1774 1.1447 0.1177
Os 1.6102 0.7402 1.6051 0.2214 1.5781 0.1311
0o 1.4575 0.6004 1.4997 0.2192 1.5269 0.1314
010 1.5213 0.5782 1.4805 0.2170 1.5191 0.1343

Mode-2 Mode-3

107 107 107 107 107

8r 8 8r 8r 8t
S 6} 6t 6 6t 6f
€
=}
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Figure 5.11. Updated mode shapes for considered scenarios
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Identified stiffness parameters and their posterior c.o.v. values are presented in
Table 5.8. At first view, it is seen that the identified stiffness parameters show a maximum
difference of about 10% among the Scenario-I and III. This difference is considered to be
caused by the effect of insufficient measurement points in Scenario-I. Here, only the first
five modes could be identified by the presented method. The omission of higher modes
results in a weaker estimation for stiffness parameters. The results from Scenario II show
a small difference from Scenario III, since only the last two modes out of ten are missed.
In addition, the posterior c.0.v. shows significant increase in case of incomplete data.
Despite the difference in stiffness parameters, the posterior most probable mode shapes

are observed to be identical for the considered scenarios (see Figure 5.11).

5.8. Concluding Remarks

Motivated from previous research, this study presents a two-stage Bayesian finite
element modal updating procedure from the ambient response measurements obtained by
multiple setups. The prior estimations for global eigenvalues and eigenvectors are
considered by using Gaussian approximation centered at the MPV of local eigenvalues
and eigenvectors obtained by BFFTA at each setup. The results are listed below.

e The proposed procedure results in lower posterior uncertainty which makes it less
sensitive to the posterior MPV for model parameters. The reason of this fact is
considered to stem from using the posterior distribution of local modal parameters
obtained by BFFTA at each setup for prior probability distribution of eigenvalues
and eigenvectors.

e Some applications in the literature consider the measured eigenvalues as the
prescribed (or target) and the possible prediction errors are neglected. In this
study, however, the prediction error between the system and measured
eigenvalues are considered. According to the results, it is seen that the proposed
methodology results in significantly less posterior c.o.v. for stiffness parameters.

e When the modelling error level is prescribed, the posterior uncertainties are
affected by the chosen value even if the identified MPVs for model parameters
are close to the actual value. The smaller values do not guarantee the smaller
posterior c.o.v. for model parameters. This prescribed value should be selected

according to the prediction error defined for the eigenvalues and eigenvectors. In
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addition, some applications completely neglect the modelling error which may
also result in larger posterior uncertainty. In the proposed methodology, however,
the modelling error is not constrained, and it is estimated at each iteration step. In
the presented numerical analysis, the posterior c.o.v. for model parameters are
found significantly smaller from the prescribed modeling error approach.

Both the stiffness and the mass parameters are considered as model parameters to
be updated in the presented methodology. Assuming both parameters are initially
not well-estimated does not give reasonable results since an infinite number of
sets for most probable stiffness and mass parameters can be found. For this reason,
at least one of those parameters should be assumed as well-estimated. The mass
is generally much easier to be evaluated, and therefore the mass parameters are

assumed to be well-estimated with small prior variance in the numerical examples.
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6.1.

CHAPTER 6

CONCLUSIONS

Summary of Results and General Conclusions

In the light of the studies available in the literature, this study presents a Bayesian

computational framework starting from the identification of modal properties of the civil

engineering structures. The procedure is completed by finite element model updating and

damage detection by utilizing the measured acceleration response data. The summary of

the general conclusions is presented below.

The various BAYOMA methods such as BSDA and BFFTA can result in a
standard form in terms of the negative logarithm-likelihood function. Only the
Bayesian Spectral Trace Approach, which decouples the spectrum variables and
mode shapes, presents a different methodology. In this methodology, MPV of
spectrum variables are obtained by BSTA at the first stage. The mode shapes are
obtained subsequently using the BSDA centered at the MPV of spectrum
variables. In this study, however, this approach is considered as ill-conditioned in
terms of its theoretical background. The reason of this conclusion lies in the
consideration of the distribution of modal parameters by different probabilistic
models. Here, the most important conceptual problem arises at the second step in
which the most probable mode shapes are determined by assuming the MPV of
spectrum variables. This assumption may sound reasonable when the MPV of
spectrum variables are well matched with the actual values with zero uncertainty
only, because each MPV and its uncertainty is correlated to the selected
probability distribution. The identified spectrum parameters at the first stage
reflect the MPVs according to the BSTA. Therefore, they cannot be considered as
MPVs for BSDA at the second step. Here, assuming the outputs of the first stage
as the prior distribution of the spectrum variables becomes more reasonable.
Motivated from the previous studies, this study presents a different two-stage
approach based on BFFTA. The main difference of the presented study lies in the

consideration of the constraint equations for mode shapes. The equality
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constraints for mode shapes are defined so that they are satisfied for each trial of
spectrum variables. Thus, the posterior uncertainties of spectrum variables and
mode shapes can be decoupled.

The most prominent advantages of BAYOMA is that it provides uncertainty
information for the identified values and it is capable of identifying the level of
modal excitation and prediction error. When compared to the available OMA
methods, BAYOMA does not show remarkable difference in terms of the
convergence of identified parameters to actual values. However, the convergence
of BAYOMA becomes more reasonable under large noise effect, especially for
damping ratio and mode shape vector.

The available Bayesian formulation for closely spaced modes defines the cross
spectral density between different modal excitations in terms of the coherence.
Therefore, the norm and phase angle of the coherence are considered as
parameters to be identified. This study, however, states that the coherence
between the modal excitations can be assumed as a real number when the structure
is subjected to i.i.d. Gaussian excitation. In addition, numerical results for the
burying mode case indicate that the presented methodology is capable of
identifying the modal parameters as independent from the location of the burying
mode.

Different from the available Bayesian methods for multiple setups, the proposed
Bayesian mode shape assembly technique incorporates the setup weights with
Hessian matrix for the local mode shape. Here, the Hessian matrix for the local
mode shape is calculated by using the local spectrum variables, only. Therefore,
obtaining the local mode shapes becomes unnecessary. Due to the norm constraint
singularity, the presented methodology can also be applied for closely spaced
modes. The results show that the presented method presents better results in terms
of convergence speed due to the high quality of initial estimation. In most cases,
the global mode shapes can be identified without iteration. In addition, the
presented methodology shows that there is zero correlation between the global
mode shape vector and local spectrum parameters in case of well separated modes.
This result significantly reduces the computational effort for the posterior

uncertainty quantification.
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6.2.

A new Bayesian finite element model updating methodology is presented
incorporating the presented mode shape assembly technique. Here, the posterior
distribution of global natural frequencies and mode shape vectors are considered
as the prior distribution of the eigenvalues and eigenvector of the finite element
model. Therefore, the model parameters could be directly identified from the FFT
of measured data. The numerical results indicate that the presented methodology
increases the convergence speed and reduces the posterior uncertainty of model
parameters significantly. In addition, experimental results show that the presented
methodology gives reasonable results in case of incomplete measurement

points/data.

Recommendations for Future Works

During the past decade, significant developments have been achieved in regard to

solutions of several problems in the applications of BAYOMA and BMU. However, some

critical issues that need to be solved still exist.

In the literature, the effect of modelling error is investigated for a buried mode
case in which there is only one buried and one burying mode available. This study
extends the possible buried mode cases according to the location of burying
modes. However, the presented study is limited to maximum three buried mode
cases. There are also a lot of possibilities in regarding to the number of buried and
burying mode(s), and their locations. A more general method might be developed.
Despite the efficiency and high computational speed of frequency domain
BAYOMA methods, it needs a manual bandwidth selection. The manual selection
also helps to make an inference about the data quality and elimination of spurious
(non-structural) modes. However, the computational effort may inevitably
increase due to the difficulties on the detection of possible modes in case of low
data quality. To solve this problem and to obtain a fully automated BAYOMA
application, an automated bandwidth selection should be developed in which the
possible modes are efficiently detected without a user interpretation.

Classical BAYOMA or BMU methods present efficient tools for linear modal

analysis under small amplitude ambient vibration effect. A Bayesian approach
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might be developed to detect the changes in modal or model parameters in case

of non-linear vibration responses during large amplitude earthquake excitations.
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APPENDIX A

DERIVATIVES OF NEGATIVE-LOGARITHM
LIKELIHOOD FUNCTION

Gradients of L(6) with respect to modal parameters are obtained as follows.

Gradient of V2L(-)

V2L _ Z|:SD/£.f,.f) (SD, +5,)" - {SD,(f) }2 (SD, +S.)" } (1 - akSe_l)

T
+ Zk:SZ ({D,Ef >}2 +D, DV’ ))(SDk +8,) oS,
- 2; sD, {sp’) }2 (SD, +5,) a,S."
Gradient of V2LV¢)
v ;[SDIEL:) (SD, +5, )*1 _s2p")p) (SD, +5, )72}(1 s )
+ Zk:Sz (DIEf)DIEc“) N Dszgf’é))(SDk ‘S, )_2akSe’1
-2 8'D,D' D (5D, +5,) S,
p
Gradient of V2L"-9

V2 = Z[D,ﬁf \(SD, +58,)" —SD,D{") (SD, +8, )_2}
k

x(1-aS;'sD, (5D, +5,)"
Gradient of V2JV>5¢)
w2 ; spi)(sp, +8S,)” [aksj ~(5D,+5,) ' (1-,S;" )}
_ ; $*D, D) (SD, +5,) ", S [S;l +2(SD, +35, )—1}
Gradient of V2L(- 9

V2L = o {_22 S;'SD{)(SD, +5,)" Re(F,F,)
k

+2"5,'s’D, D\ (SD, +S,) " Re(F,F; )}
k

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)
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Gradient of V2L <)
Vi) = Zk:[SD,(f’é) (SD, +S,)" —{SD,Ef)}2 (SD, +S, )‘2}(1—%561)
+;52 ({D,(f)}z +DkD,£§’§))(SDk +5,) S, (A.6)
W) (D) (5D, +5.) 0,

Gradient of VL&
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k

z . . (A7)
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VLS =N (N=1)S2 =Y (SD, +8,) " +25.
k
~25'SD, (D, +5,) ' &5’ [Sf +5(SD, +8,) " +(SD, +8, )’2}
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e Gradient of V2L#-?)
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In addition, derivatives of Dy are obtained as below.

e Derivative of D%
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e Derivative of D"/
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APPENDIX B

SCALING OF NEGATIVE LOG-LIKELIHOOD
FUNCTION FOR UNIT NORM OF MODE SHAPE
VECTOR

Derivatives of Spectral Density Matrix with Scaled Mode Shape Vector

The expected spectral density of measured response should be written as follows
when it is assumed that it always satisfies the unit norm approximation for the mode shape
vector.

SD
E =950 +Sdy (B.1)
(¢"0)

E;! and |Ej| are obtained as follows by using the matrix inversion and

determinant lemma.

E'=5.'1,+S9[¢'S'p+¢"0/5D,] ¢'S."

. SD, /S - (B.2)
— 1] k e T T
S v+ sp, v 5™ (0"0)
|E|=|p"0/ SD, +¢"S;0||SD, /0" 6||S.1,]
(B.3)

=S¥(s,+SD,)"
Thus, the negative logarithm-likelihood function can be obtained as follows by

making use of Egs. (B.2) and (B.3).

T
J(0)=C+L 222 (B4)
N A
%
Derivatives of J(0) are obtained as;
TA(HS)
JO) =0 22 ¢ (B.5)
»

T T
A 9 Ap

J =2 7—+2 ’ 2¢T (B.6)
2 (q) (p)

144



T A (65) T A (65)
Jlse) _ _H® AT 40? A 2(/) 0" (B.7)
T
o (o"p)
A A A A
S =g B yg BOS g O LO 9 000 (B.8)
00 (o) (o70) (¢¢)

(97A9)0=Ap (B.9)

T 2 TR 4 2T AE) g7

0 (B.10)
=—2¢" A" (1, -9¢" ) =0
JP = oA+ 25" AGI, (B.11)
Eigen Decomposition of the Derivatives of A(0;)
Derivative of A(6;) with respect to 8, can be obtained as follows.
aA(,) o SD,
———— |Re( £, F, B.12
0, 220, [s (5D, +S)} (RF) (B12)

In Eq. (B.12), it is seen that the derivative of A(6,) is a Hermitian matrix.

Therefore, its eigen decomposition should also be Hermitian.

N
=2 4pip!
i1
(B.13)
oA(0,) o, op, op;
D S P L P
20, ;aep’p’ aep’ 20,

Here, dp;/d6, will be orthogonal to p;. Therefore, dp;/d6, should be equal to zero in
order to keep Hermitian structure of 0A(6,)/d6,. Thus, the derivative of A(6;) is
obtained as below.

60c N

S 6/11‘ T
=2 PP = Z p,p, (B.14)

K i=1 s s 2
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APPENDIX C

DERIVATION OF COHERENCE BETWEEN TWO DIFFERENT
SIGNALS AND CAYLEY TRANSFORMATION

The Expected Coherence Between Different Modal Excitations

The expected spectral density matrix of modal excitation can be written as below
in case of the considered structure is subjected to independent and identically distributed
Gaussian excitations.

_®E[ppi]o c.15)
"M
where ® = modal shape matrix, M = mass matrix, and pk=nodal force vector (Gaussian).
Here, the expected value of the spectral density of nodal forces will equal to a real
diagonal matrix due to the zero correlation between different nodes. Thus, the expected
spectral density matrix inevitably becomes a real matrix.
'S0

——’_¢cR (C.16)
O M®

where S, € R denotes the expected spectral density of nodal forces. Hence, the coherence
between the i and j” modal excitations can be written as below
S
=—=-=sin(y, )eR C.17
XIZ SS j ( ij ) ( )

w-j

where u;; denotes a free parameter.

Cayley Transformation

Consider a function a minimization problem with an orthogonality constraint as

below.

min {F(X)+a(X"X-1,)} (C.18)

XERnxm
where F(X) is a differentiable function. Using the optimization scheme by Wen and Yin
(2013) based on the Cayley transformation - a Crank-Nicholson type updating scheme,
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Eq. (C.4) can be minimized by preserving the norm constraint equality of (X7X — Iy).

Here, X can be updated by the Crank-Nicholson like scheme as follows.
T
Xupde—EA(XJrXupd) (C.19)
where
A=(V,F)X" = X(V,F) (C.20)

and 7 denotes the step size. Solving Eq. (C.5) for X,,q yields,
¢t Y T
Xupd :[ln+§AJ (IH—EAJX (C21)

The Barzilai-Borwain step size can be selected for 7 to accelerate the iteration
procedure (Barzilai, 1988). Thus, 7 can be calculated by using the following equation

(Wen and Yin, 2013).

- o (AX] 2, )

(C.22)
(2,2,

where
AXk—l = Xk _kal

Z,_ =V, F(X)-VF(X._) (C.23)
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APPENDIX D

DERIVATION OF POSTERIOR COVARIANCE MATRIX
FOR CLOSELY SPACED MODES

Posterior covariance matrix for closely spaced modes can be obtained by using
the fast calculation scheme by Au and Xie (2017). For this purpose, the objective function
is defined by

JO0)=10)+ Y a, (]9, -1) (D.1)
where
LO) =Y n|E,|+ Y tr| E'F,F, ] (D.2)

The second order gradient of J(6) is obtained as below.

[stﬂs)] [Jw.y,@)]
No, Nog xNmN

[J@ﬁs) ] [Jab.cb) :I
N NxNg, Ny NxNy, N

where V2L(0) is an {Ngs + Ny, N} x {Ngs + N, N} size matrix, and Ng, =

V2J(0) = (D.3)

(N,,, + 1)? + O({N,,N}?). The derivatives of J(0) is given by;

JOs09) _ [0, g6.0) [L“’S’“’” Y T
L +2a1, ) |
(D.4)
J((I),(I)) —
{ (0N, -ON,, )
L +2a, 1}
and the Lagrange multiplier of a; is obtained as below.
L@
a, :_EL ol, (D.5)
Derivatives of J(6),
X, (X,y) - * (X,y)
10 =3 (g | + X o[ ECFE ) (D.6)
k k

Derivatives of In|Ey| and E;;*;

148



in|E, |} o[ £E )

{
(g || = o] B ECY — B EYE;EX ]
{

" (D.7)
E; } ——E'EME",
{ B 1}(’“ ) [ EVEEW —E@) 4 EO g E,Ey)]
Derivatives of Ex;
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Second order derivatives of Hy;

SiiDIEiﬁ) if i=j

Ui
KA _[(Sﬁsﬁ)”zsin( D)7 else

' S D(fi) f izj_
o (i W Z fi
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Derivatives of {hy;hj, j}

{hk,-h,;. }(fn ~{h, }(ﬁ)h:j Th, {h/g }m)
{hk,hk/ }(fz —{h, }(fi) B+ b {h;;}(fi)
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k k
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Thus, the posterior covariance matrix for the modal parameters are obtained as below.
C,=Vv,(V?J) W! (D.16)

where v. = mapping function that always satisfies the equality constraints, and “+”

denotes the pseudo inverse.

vo=lor o flell - o ek s} (D.17)
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Iy — §”1(”1T
VVC = ) (DIS)

Iy _¢Nm¢17\;m ]

Due to the norm constraint singularity, the null vector of the posterior covariance
matrix for i mode shape will be equal to ;.
Coi=(Iy—00! )(Vid) (Iy —00])
" . (D.19)
=0xp,0/ +2 0,p,p;

J=2
Similarly, the null vectors of the Cy will be equal to the corresponding mode
shapes.

0 0
Cg:OX|: N”s}[ojigs ¢f}+...+o{ N(’S}[Oﬁgs coﬁm}

4 O (D.20)

Ng ’
+ Z O;P;P;
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APPENDIX E

DERIVATION OF HESSIAN MATRIX FOR MODEL
PARAMETERS

The derivatives of Eq. (5.19) is obtained as follows.

Derivative of J©?
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