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ABSTRACT 
 

MODAL IDENTIFICATION OF STRUCTURES BY USING BAYESIAN 

STATISTICS 
 

Bayesian Probabilistic approaches in the health monitoring of civil engineering 

structures has gained remarkable interest during past decades. When compared to the 

available Operational Modal Analysis (OMA) methods, Bayesian Operational Modal 

Analysis (BAYOMA) determines a probabilistic range with a most probable value and 

uncertainty instead of a certain result. For this reason, the most important difference of 

BAYOMA lies in its capability of uncertainty quantification. Therefore, the modal 

parameters of a measured structure can be determined based on a probabilistic logic 

according to various cases (for example single measurement setup, well separated and/or 

closely spaced modes, multiple measurement setups). Further, the finite element model 

of the investigated structure can also be updated by a Bayesian approach incorporated 

with modal identification procedure. Some efficient BAYOMA methods such as 

Bayesian Spectral Density Approach (BSDA) and Bayesian Fast Fourier Transform 

Approach (BFFTA) have been presented by various researchers during the past two 

decades. Despite their efficient and fast solution procedure, the available methods have 

some critical issues that need to be solved. Most of these problems especially lie in the 

quantification of posterior uncertainties and some special cases arise in closely spaced 

modes and/or multiple setup measurement cases. In the literature, solutions for the 

aforementioned problems have been also presented by various researchers. In the light of 

the accumulated knowledge in the literature, this study presents a computational 

framework for BAYOMA and Bayesian Model Updating (BMU). In addition to some 

improvements to the available methods, new and alternative approaches are presented for 

BAYOMA and BMU. According to the results, it is seen that the quality of identified 

modal parameters and updated finite element models increases significantly by the 

proposed computational procedure.  
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ÖZET 
 

YAPILARIN BAYEZYAN İSTATİSTİKLERİ İLE MODAL 

TANILAMASI 
 

Bayezyan olsasılıksal yaklaşımları, inşaat mühendisliği yapılarının sağlığının 

izlemesinde, geçen on yıllar boyunca kayda değer bir ilgi kazanmıştır. Mevcut 

Operasyonel Modal Analiz (OMA) yöntemleriyle karşılaştırıldığında Bayezyan 

Operasyonel Modal Analiz (BAYOMA) yöntemleri, belirli bir sonuç yerine en olası 

değer ve bu değerin belirsizliğini içeren olasılıksal bir aralık belirler. Bu nedenle, 

BAYOMA'nın en önemli farkı belirsizlikleri tanımlama kabiliyetinde yatmaktadır. 

Böylece, ölçülen bir yapının modal parametreleri, çeşitli durumlara göre (örneğin tekil 

ölçüm grubu, iyi ayrılmış ve/veya çakışan modlar, çoklu ölçüm grupları gibi) bir olasılık 

temelinde belirlenebilir. Ayrıca, incelenen yapının sonlu eleman modeli, modal 

tanımlama prosedüründen elde edilen sonuçlar kullanılarak, bir Bayezyan yaklaşımıyla 

da güncellenebilir. Bayezyan Spektral Yoğunluk Yaklaşımı (BSDA) ve Bayezyan Hızlı 

Fourier Dönüşüm Yaklaşımı (BFFTA) gibi bazı etkili BAYOMA yöntemleri, son yirmi 

yıl boyunca çeşitli araştırmacılar tarafından sunulmuştur. Etkili ve hızlı çözüm 

prosedürlerine rağmen, mevcut yöntemlerde üstesinden gelinmesi gereken bazı kritik 

sorunlar da mevcuttur. Bu sorunların birçoğu, özellikle sonsal (posterior) belirsizliklerin 

belirlenmesinde yatmakta veya çakışan modlar ya da çoklu ölçüm grupları bulunması gibi 

bazı özel durumlarda ortaya çıkmaktadır. Literatürde, yukarıda belirtilen sorunlara 

yönelik çözümler çeşitli araştırmacılar tarafından sunulmuştur. Mevcut bilgiler ışığında, 

bu çalışma BAYOMA ve Bayezyan Model Güncelleme (BMU) için bir hesap çerçevesi 

sunmaktadır. Mevcut yöntemlerde bazı iyileştirmelere ek olarak, BAYOMA ve BMU için 

yeni ve alternatif yaklaşımlar sunulmaktadır. Elde edilen sonuçlara göre, tanılanan modal 

parametrelerin ve güncellenmiş sonlu eleman modellerinin kalitesinin, önerilen hesap 

prosedürü ile önemli ölçüde arttığı görülmektedir.
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CHAPTER 1 

 

INTRODUCTION 

 
1.1. Motivation of Study 

 

Structural Health Monitoring (SHM) applications have an important role to 

determine the dynamic characteristics of structures which are designed to resist extreme 

events such as earthquakes, wind loads. The modal properties of the structures including 

natural frequencies, damping ratios, and modal shape vector have a prominent role in the 

structural design procedure. However, those design characteristics may show significant 

deviations from the actual values due to the non-linear effects such as possible variance 

in the material properties, and small differences in the geometrical configuration during 

the construction phase. In addition, when structures are subject to extreme events such as 

earthquakes, they might have been subjected to damage which can also cause a significant 

change in the dynamic characteristics. For this reason, monitoring the variations in the 

modal properties become prominent to identify the current state of a structure. 

To provide a useful solution for the problems that are mentioned above, 

Operational Modal Analysis (OMA) methods presents efficient tools to identify modal 

properties of structures by using acceleration, velocity or displacement response 

measurements. The most important advantage of OMA methods is that it does not need 

any information for the input motion. Various OMA methods are available in the 

literature based on the physical, statistical or probabilistic interpretation of the measured 

response. In this context, Bayesian Operation Modal Analysis (BAYOMA) presents a 

framework to identify the modal properties based on a probabilistic logic. According to 

this framework, the most probable value (MPV) for each modal parameter are quantified 

with their uncertainties. Different from other OMA methods, BAYOMA defines a 

probabilistic range with an MPV rather than a certain identified parameter. 

As a next step, the finite element model of the measured system may be updated 

by using a Bayesian probabilistic approach. A posterior probability distribution for model 

(stiffness and mass components) and modal parameters can be obtained by using the 
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outputs of any OMA method. In addition, a more reasonable probabilistic model may be 

obtained when the prior distribution of modal parameters is modeled by BAYOMA. 

 

1.2. Literature Review 
 

Modal analysis techniques in the literature can be classified as experimental and 

operational modal analysis methods due to the requirement of input motion information. 

Experimental modal analysis (EMA) which utilizes input-output techniques might be 

more feasible for laboratory studies or some special cases in which the input motion can 

be controlled by shakers or impact loading. However, the application of EMA is quite 

limited due to insufficient information available for input motion in most cases (Orlowitz 

& Brandt, 2017). In this context, OMA presents more feasible techniques to extract the 

dynamic characteristics of the investigated structure since it utilizes the ambient vibration 

data without resorting to information of input data. OMA considers a randomly 

distributed input excitation in stochastic manner. Therefore, it assumes that large number 

of vibration modes are excited by ambient loading effects.  

Various methods are available in the literature for damage detection based on 

updating the finite element models by using the modal parameters that are identified by 

OMA or EMA methods. The most generic form of these updating procedures are based 

on the minimization of discrepancy between the identified eigenvalues, eigenvectors and 

model eigenvalues and eigenvectors (Yuen, 2010; Touat et al, 2014). Bayesian 

approaches for finite element model updating are also available in the literature. These 

approaches are generally a combination of two stages. At first stage, the modal parameters 

are identified by using the acceleration response measurements, and a proper prior 

distribution is assigned for modal (eigenvalues and eigenvectors) and model (stiffness or 

mass scaling factors) parameters (Ching et al, 2006). The main difference between the 

available Bayesian methods lies in the selection of prior distributions for model 

parameters. Generally, truncated normal (Yuen and Kuok, 2011; Yan and Katafygiotis, 

2015c) or lognormal (Das and Debnath, 2018) distributions or their combinations are 

selected to represent the prior distribution of model parameters. Another difference lies 

in the consideration of multiple setup measurements in the Bayesian finite element model 

updating procedure. Here, two different approaches are available based on generation of 

prior distribution of measured modal parameters: (i) using the global values obtained by 
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assembling the local ones from each setup (Yuen and Kuok, 2011), or (ii) using the local 

identified parameters directly ( Yan and Katafygiotis, 2015c; Au and Zhang, 2016; Zhang 

and Au, 2016; Zhang et al, 2017).   

A brief literature review is presented for non-Bayesian and Bayesian OMA 

methods in the following two subsections. In addition, detailed literature reviews for 

specific fields that are investigated in this thesis are provided in the corresponding 

chapters. 

 

1.2.1. Non-Bayesian Methods 
 

Various OMA methods have been presented to the literature based on the time or 

frequency domain analysis of measured response. Among these, Ibrahim Time-domain 

Identification, Natural Excitation Technique and Eigensystem Realization Algorithm 

(NExT-ERA), Stochastic Subspace Identification (SSI), and Frequency Domain 

Decomposition (FDD) come forward as most conventional and well-known time or 

frequency domain techniques in the literature.  

Ibrahim Time-domain Identification is based on the theory that the output of the 

ambient excitation can be reduced to an equivalent free vibration response or correlation 

functions by a random decrement transformation. Finally, the modal parameters are 

obtained by the solution of an eigenvalue problem that is constructed from the reduced 

time-domain data (Ibrahim, 1999; Malekjafarian et al, 2012). Another time-domain 

method, NExT-ERA is a combination of two-different techniques and works in two steps. 

First, the measured ambient vibration data is processed and transformed by NExT to an 

equivalent free-vibration response data. Second, the modal properties are extracted by 

ERA which constructs a linear state-space dynamical model based on the modal 

characteristics of the measured system (Caicedo, 2011). SSI presents an efficient 

statistical framework for system identification based on the sate-space representation of 

a linear dynamic model that is excited by a White Noise excitation. First, the state of the 

system is predicted by a Kalman filter based on the outputs of the Hankel matrix which 

is a special form of the collected response data (data driven) or its covariance (covariance 

driven). Second, the optimal prediction is obtained for the state vector by the projection 

of the outputs of the Kalman filter and the available system matrices. Third, the system 

matrices are obtained by linear regression of Kalman state sequences. Finally, the 
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covariances for the measurement noise and modelling error are recovered (Overschee and 

Moor, 1993; Peeters and De Roeck, 2000). Although SSI is an efficient OMA method 

and it is widely used in the civil engineering community, computational efforts in the 

analysis procedure may increase due to possible problems in the selection of a proper 

model order for the Hankel matrix. If the number of modes to be identified increases, the 

model order may need to be increased as well. Thus, the dimension of the Hankel matrix 

will inevitably increase. This problem is also widely seen in the application of NExT-

ERA. 

A frequency domain identification technique: Frequency Domain Decomposition 

(FDD) has been presented by Brincker et al (2001). This method first transforms the 

measured data to frequency-domain by using Fast Fourier Transformation (FFT). Second, 

the possible modes are detected from the Singular Value (SV) spectrum of the FFT data, 

and the eigenfrequencies are determined from the dominant frequency band of the 

corresponding mode(s) by peak-picking. Damping ratios are determined by using the 

decay of motion of the time-domain response of equivalent single degree of freedom 

(SDOF) system. This time-domain response is obtained by inverse FFT of the frequency-

domain response within the dominant frequency band of the corresponding mode(s). 

Finally, the mode shapes are obtained by the singular value decomposition of the power 

spectral density (PSD) matrix of the measured response. The FDD method presents a fast 

and efficient scheme for frequency domain OMA. However, the method does not consider 

the modelling error and measurement/environmental noise effects. 

 

1.2.2. BAYOMA Methods 
 

Different from the non-Bayesian methods, BAYOMA presents a probabilistic 

framework to determine the modal parameters in terms of MPV. Some Non-Bayesian 

methods also provide statistical information about the identified data in terms of expected 

value, standard deviation and/or covariance (i.e. SSI, FDD). These methods consider 

statistical parameters for identified values by a frequentist approach (Au, 2012a).  

According to these frequentist approaches, the statistical parameters are directly obtained 

from the sample. For example, the expected value is obtained as the sample mean, and 

the other parameters are obtained as sample standard deviation, covariance of different 

trials. Probabilistic approaches, however, defines these parameters in terms of MPV and 
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uncertainty. In a probabilistic approach, the MPV and uncertainty of the modal 

parameters are estimated by using a proper probability distribution for the available data. 

In this context, BAYOMA presents an efficient tool for modal parameter identification 

and uncertainty quantification by using Bayesian statistics. First, a prior probability 

distribution function correlated with the measured data is constructed. This function 

directly depends on the statistical properties of the measured data and it is conditional to 

the expectation of the set of modal parameters to be identified. Second, a “posterior 

distribution” for the set of modal parameters are obtained by using Bayes’ theorem.   

Basic concept of the BAYOMA was first presented by Katafygiotis and Yuen 

(2001a) based on the probabilistic distribution of the statistical expectation of sample 

spectral density matrix. The theory is based on the approximation that the expected 

spectral density matrix of the measured data follows a complex “Wishart Distribution”. 

Therefore, the first BAYOMA method is called “Bayesian Spectral Density Approach 

(BSDA)”. Second, a time-domain approach is presented by Yuen and Katafygiotis  

(2001b) based on the assumption that the measured response data follows a zero-mean 

Gaussian distribution. Third, a different BAYOMA method that is referred as “Bayesian 

Fast Fourier Transform approach” is presented by Yuen and Katafygiotis (2003). This 

approach assumes that the real and imaginary part of the FFT of measured data follows a 

zero mean Gaussian distribution. These BAYOMA methods construct a negative-

logarithm likelihood function of posterior probability distribution of the set of modal 

parameters. Minimization of the negative-logarithm likelihood function with respect to 

the parameters to be identified gives MPVs. However, the computational effort becomes 

remarkably high due to the increasing number of parameters to be identified as depending 

on the number of considered modes within a wide frequency band. For this reason, two 

fast-computational procedures were presented by Au (2011a), (2012b) and (2012c) for 

well separated and closely spaced modes. These approaches consider a narrow band in 

which the mode(s) of interest dominates the total response and turns the negative-

logarithm likelihood function into a more manageable form. 

Yan and Katafygiotis (2015a) presented a two-stage Bayesian approach for 

ambient system identification. At the first stage, the mode shapes, and spectrum 

parameters (natural frequency, damping ratio, spectral density of modal excitation, and 

the spectral density of prediction error) are separated into two parts and MPV of spectrum 

parameters are determined by employing a “Bayesian Spectral Trace Approach (BSTA)”. 



6 
 

Second, the mode shapes are identified by BSDA substituting spectrum parameters that 

are determined in the first stage, into the negative-logarithm likelihood function.  

In BAYOMA, the posterior probability density function (PDF) of the set of modal 

parameters can be well-estimated by the Gaussian approximation in case of the 

sufficiently large amount of measured data (F. Zhang, 2012). Here, a Gaussian PDF is 

obtained in terms of the MPV and posterior covariance matrix of the modal parameters 

by using the first order Taylor series expansion of the negative-logarithm likelihood 

function. Thus, the posterior uncertainties are obtained by the posterior covariance matrix 

which is derived as a Hessian matrix which basically contains the second order derivatives 

of the negative-logarithm likelihood function. 

 

1.3. Objectives of the study 
 

The theoretical background of BAYOMA has been well established and numerous 

theoretical and experimental studies have been presented on this topic by various 

researchers. In the light of the literature, this study aims to present a wide-range 

computational framework from modal identification to finite element model updating and 

damage detection procedure for structures by using Bayesian statistics. For this purpose, 

new or modified solutions for the problems that are addressed in the literature are aimed 

to be developed. 

 One of the most important problems in BAYOMA has been reported as the 

calculation of the posterior covariance matrix under equality constraints. To solve this 

problem, a solution procedure was previously presented by Au and Xie (2017). This study 

presents an alternative solution which results in a block diagonal posterior covariance 

matrix, and it is derived that the modal shape vector and spectrum parameters have zero 

correlation. In addition, some improvements for the solution procedure of closely spaced 

modes are presented. 

This study also presents alternative/new algorithms for mode shape assembly and 

finite element model updating procedure to reduce the computational time/effort and 

posterior uncertainties of the identified/updated parameters. 

A flowchart for the computational framework that is aimed to be developed in this 

study is presented in Figure 1.1. In this computational framework, Bayesian modal 

identification procedure takes a very important role. According to this procedure, first, 
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the most probable modal properties of the measured structure are determined for the cases 

of single or multiple setups. At second stage, the posterior probability distributions of the 

identified modal parameters are obtained. At third stage, the prior distributions for modal 

and model parameters are defined and the finite element model (FEM) of the structure is 

updated by employing the Bayes’ Theorem. At the final stage, the level of the possible 

damage and its location are determined.   

 

 
Figure 1.1. Flowchart for the proposed computational framework 

 

1.4. Outlines 
 

Based on the main objectives of the presented research, this study is composed by 

four main chapters. 

Data Acquisition

MODAL IDENTIFICATION
MPVs and posterior uncertainties

(Single or multiple setups)

Stop

If «Possible
damage» ==Yes

If «FEM calibration is 
required» ==Yes

TR
UE

TR
UE

FALSE

Start

FEM UPDATING

FA
LS

E

DAMAGE DETECTION 

If «FEM updating
is required» ==Yes

TR
UE

FA
LS

E
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 Chapter 2 reviews the theoretical background of available BAYOMA 

methods. An alternative solution for the consideration of equality 

constraints in the posterior uncertainty quantification is presented. The 

capabilities and limits of BAYOMA are investigated. 

 Chapter 3 reviews some computational issues that are addressed in the 

literature. The problems of multiple (closely spaced) and buried modes 

are investigated. A modification is proposed for the solution of multiple 

mode problems. Effect of modelling error on the identification quality is 

investigated. Finally, a general solution procedure for buried mode case 

is presented.  

 In Chapter 4, first, the available mode shape assembly algorithms for 

multiple measurement setups are reviewed. Second, an alternative mode 

shape assembly technique by two-stage Bayesian Fast Fourier Transform 

approach is presented. The presented methodology is compared to the 

available Bayesian method via numerical and experimental analysis.   

 Chapter 5 presents a Bayesian finite element model updating procedure 

including the multiple setup problem and missing data case based on the 

two-stage Bayesian Fast Fourier Transform approach. The effect of the 

presented methodology on the identification (or updating) quality and 

their posterior uncertainties are investigated by numerical and 

experimental analysis.   
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CHAPTER 2 

 

BAYESIAN OPERATIONAL MODAL ANALYSIS IN 

FREQUENCY DOMAIN: WELL SEPARATED MODES 

 
2.1. Introduction 

 

In frequency domain modal identification, statistical properties of FFT data 

obtained from measured acceleration responses present a point of view for the estimation 

of most probable modal parameters including natural frequencies, damping ratios and 

modal shape vectors.  The physical meaning and the statistical properties of FFT data is 

prominence to construct a probabilistic framework for the expected modal parameters. In 

addition to these, spectral density level of excitation and possible measurement errors 

might be important in the identification process. In this context, Bayesian operational 

modal analysis (BAYOMA) in frequency domain proposes simple and fast algorithms 

based on the statistical properties of measured data. Katafygiotis and Yuen (2001a) first 

proposed the Bayesian Spectral Density Approach (BSDA) based on the statistical 

properties of spectral density matrix. A Bayesian Fast Fourier Transform approach 

(BFFTA) was proposed by Yuen and Katafygiotis (2003) to estimate the most probable 

modal parameters by using the Fast Fourier Transform (FFT) data. Au (2011a) proposed 

a fast algorithm for BFFTA for systems with well separated modes and reformulated the 

general methodology presented by Yuen and Katafygiotis (2003). In past decade, 

numerous studies concerning the general computational process and application of 

Bayesian Spectral Density and Fast Fourier Transform Approach have been presented 

(Au et al, 2013;  Lam et al, 2017; Ni and Zhang, 2015; Ni et al, 2015; Ni et al, 2016; Au, 

2016a, 2016b). In addition, Yan and Katafygiotis (2015a) presented a two stage BSDA 

that separates the modal parameters to be identified into two components: (i) spectrum 

variables including frequency, damping ratio, and spectral density of modal excitation 

and prediction error, (ii) spatial parameters including the modal shape components. 

Although BSDA and BFFTA are motivated by different statistical properties of measured 

data, they result in similar estimators.  
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In this chapter, first, the general formulation and derivation of the available 

BAYOMA methods are presented. Second, the fast-computational procedure that is 

available in the literature is reviewed for the implementation of BAYOMA methods. 

Finally, an alternative method for the calculation of posterior covariance matrix is 

presented as a contribution to the literature. Using the proposed methodology, a block 

diagonal covariance matrix is obtained, and its validity is verified by the conventional 

method.  

 

2.2. Dynamic Response Analysis in Frequency Domain 
 

System identification of engineering structures with output only identification 

requires an appropriate mathematical representation of dynamic response in frequency 

domain. The most prominent problem in output only identification is that the excitation 

is an unknown parameter. For this reason, the excitation level that enforce the structure 

to vibrate must be defined as a modal parameter to be identified. In frequency domain, 

the dynamic equation of motion of a multi degree of freedom (MDOF) system can be 

written as;    

k k k kMU CU KU Pk k kU CU KUk k kkCU KUk kkk  (2.1) 

where M, C, and K are n n sized mass, damping and stiffness matrix, and Pk, Uk denote 

n Nt sized frequency depended external load and displacement response functions. In 

addition, n = number of total degrees of freedom (DOFs), and Nt = number of acceleration 

data in time domain. Modal decomposition of the frequency depended displacement, 

velocity and acceleration responses can be written as below. 

1

1

2 2 2

1

2

4

n

k ki i
i

n

k k ki i
i

n

k ki ik
i

U q φ

U πf q φ

U π f q φ

i

i

2k k2Uk πfki

2 4k 4Uk πi

  (2.2) 

in which fk = excitation frequency, qki, φi= normal coordinate function and modal shape 

vector for ith mode. Thus, the uncoupled equation of motion is written as below by 

substituting Eq. (2.2) into (2.1) and pre-multiplying by φi
T. 
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2 2 2 24 1 2 ;
T
i k i

k k i ki ki kiT
i i k

φ P fπ f q ξ β β β
φ Mφ f

i i
  

(2.3) 

Here, fi, ξi= natural frequency and damping ratio, and βki= frequency ratio. Thus, the 

displacement, velocity, and acceleration responses are obtained as 

12 2

1

1

1

1

; 4

; 2

;

n

k ki ki k ki ki
i
n

k ki ki k ki ki
i
n

k ki ki ki ki
i

U U U π f p h

U U U πf p h

U U U p h

; 2
n

k ki ki k; 2U U ;k ki ; πfkU ;k ;

n

k ki ki kiU U U p h;k ki ki kiki ki k;U U;k k;

  (2.4) 

where hki =transfer function from modal excitation, pki, to modal acceleration response, 

, for the ith mode.  

12; 1 2
T
i k

ki ki ki i kiT
i i

φ Pp h β ξ β
φ Mφ

i
  

(2.5) 

If a frequency band is selected such that a single mode dominates the total 

response, the spectral density of acceleration response is obtained as; 
* * *; ;T

k k k k k k k kk k k
H U U S D φφ S p p D h hk k k

*
k kk kkkU U S D*U U S Dk kk  (2.6) 

In Eq. (2.6), Sk = spectral density of modal excitation. Sk is an unknown spectral 

parameter, and its expected value should be determined in addition to the expected value 

of fi, ξi, and φi.   

 

2.3. BAYOMA Methods 
 

In this section, first, BAYOMA methods in the literature are introduced. Then, the 

efficiency of those methods is critically discussed. 

 

2.3.1. Bayesian Spectral Density Approach (BSDA) 
 

The statistical expectation for the spectral density matrix of measured response 

can be defined by its posterior probability distribution. This probabilistic distribution may 

be used as an estimator to identify the set of modal parameters, θ = [f, ξ, S, Se, φT]. Here, 

f, ξ, S, Se, and φ denote the expected value of natural frequency, damping ratio, spectral 

density of modal excitation, spectral density of prediction error, and modal shape vector 
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within the resonant frequency band of a single mode, respectively. The expected value of 

the spectral density matrix of measured response can be defined as (Yuen, 2010); 

T
pk k k e NE S E SD φφ S I   (2.7) 

in which  and . Here,  = scaled FFT of measured acceleration 

response that includes the error term, ek. The spectral density of prediction error includes 

both the channel noise and the modelling error and can be defined as a diagonal matrix 

(Yuen and Katafygiotis, 2003). 

*
k e Nk

E e e S I   (2.8) 

in which N = number of measured DOF. The scaled discrete Fast Fourier Transform 

(FFT) of the measured response, , can be written as below (Au, 2011a). 
2 1 1

1

2 t π k sN
N

k s
t s

ΔtF y e
N

i

sy esys   (2.9) 

where , and Δt = sampling time interval. Probability distribution of modal 

parameters depends on the statistical properties of FFT. In this context, a conditional joint 

probability function of modal parameters (posterior probability density function), 

p(θ│Spk), can be defined for a certain excitation frequency by using Bayes’ theorem, 

pk
pk

pk

p S θ p θ
p θ S

p S
  

(2.10) 

where p(Spk│θ) = likelihood function (or spectral density estimator), p(θ) = prior 

probability distribution of modal parameters, p(Spk) = scaling factor (independent from 

θ). According to the literature, it is well-known that p(Spk│θ) varies much faster than p(θ) 

with respect to θ (Yuen and Katafygiotis 2002, Zhang 2011). Therefore, the posterior 

probability density function, p(θ│Spk), can be assumed to be proportional to p(Spk│θ). 

Yuen (2010) states that spectral density matrix follows the complex Wishart Distribution 

of dimension N with Ns degrees of freedom under ambient excitation. Here Ns = size of 

the windowed part of FFT if an average spectral density matrix is used. Thus, p(Spk│θ) is 

written as below (Yuen, 2010).  
1

2
1 *

1

exp
!

N N N NsN N N avgs
s pk

pk s k k kNs Ns
s k

s

π N S
p S θ N tr E F F

N s E
  

(2.11) 

where Spk
avg = average spectral density matrix. 
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*

1

1 Ns
avg

k kpk
ks

S F F
N

 (2.12) 

Since the modal parameters are assumed to be linearly independent, the posterior 

probability density function can be defined as follows in a selected frequency band.  
1

2
1 *

1

exp
!

N N
N NsN N N avgs

ps k
k s k k kNs Nk k s

s k
s

π N S
p θ S N tr E F F

N s E
(2.13) 

Using the negative-logarithm likelihood function of p(Sk│θ) might be more 

practical because the product definition turns to a summation series.  

ln lnk pk
k k

L θ p θ S p S θ  (2.14) 

By using Eq. (2.11), the negative logarithm-likelihood function is arranged as  
1ln avg

s k s k pk
k k

L θ C N E N tr E S  (2.15) 

where C denotes the constant terms, and does not vary with respect to θ.  

1

1

1
ln ln

2

ln ln( !

f
f s s

Ns
avg

f s p f sk
s

N N N
C π N N N N N

N N N S N N s
 (2.16) 

Using the Spk
avg in the analysis procedure is not necessary, but it provides a 

reduction in computational time and effort. Instead, the spectral density matrix Spk can be 

used in the formulation. In that case, Ns will be equal to 1, and the negative log-likelihood 

function is obtained as; 
1 *ln k k k k

k k
L θ C E tr E F F  (2.17) 

The second term at right hand side can be arranged to a useful form by using an 

algebraic transformation for the trace of the product.  

1 * * 1
k k k k k ktr E F F F E F  (2.18) 

Thus, the negative log-likelihood function turns into the following form by substituting 

Eq. (2.18) into Eq. (2.17). 
* 1ln k k k k

k k
L θ C E F E F  (2.19) 



14 
 

2.3.2. Bayesian Fast Fourier Transform Approach (BFFTA)  

 

The statistical properties of FFT data presents an alternative way to obtain a 

likelihood estimator. In this context, the posterior PDF for θ can be written as below by 

using the Bayes’ theorem. 

k
k

k

p Z θ p θ
p θ Z

p Z   (2.20) 

Here, Zk = augmented vector that contains the real and imaginary part of scaled FFT. 

Re( ) Im( )
TT T

k k kZ F F  (2.21) 

Under ambient excitation, it is assumed that the real and imaginary part of FFT 

follows a zero mean Gaussian distribution (Yuen and Katafygiotis, 2003). Thus, the 

posterior PDF of θ can be defined as; 

1 2
12 1exp

2

N f
T

k k k k
kk k

k

πp θ Z Z C Z
C

  (2.22) 

where Ck = covariance matrix of Zk, and it is defined as below (Au, 2011a). 

Re Im

Im Re
k k

k T
k k

E E
C

E E
 (2.23) 

where, , for well-separated modes (Au, 2011a). Thus, the 

negative logarithm-likelihood function is obtained as; 

11 1 11 ln 2 ln
2 2 2

T
f k k k k

k k
L θ N π C Z C Z   (2.24) 

As it is seen in Eq. (2.23), Ck is a 2N×2N size band matrix, and its determinant 

and inverse can be written as below. 
1

2 1
1; k

k k k
k

E
C E C

E
 (2.25) 

By substituting Eq. (2.25) into Eq. (2.24), the negative logarithm-likelihood 

function turns into a similar form as given  in Eq. (2.19). 
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2.3.3. Bayesian Spectral Trace Approach (BSTA) 
 

BSTA defines the probability distribution of spectrum variables, only. Whereas 

BSDA and BFFTA formulate the negative-likelihood function depending on the spectrum 

variables and mode shapes. According to BSTA, it is assumed that 

 follows a standard normal distribution (Yan and Katafygiotis, 2015a).  
2*

1/2
* 2 2

2
4 exp

4
k k k

k k k
k

F F tr E
p tr F F θ π tr E

tr E
  (2.26) 

Due to the mode shape norm constraint of , trace of  and  are 

obtained for well separated modes as below. 

2 2 2 2

2 2

2

2 1

T
k k e N k e

T T T
k k e k e N

k e e k e

tr E tr SD φφ S I SD nS

tr E tr S D φφ φφ S SD φφ S I

SD S S SD n S

  (2.27) 

Thus, the negative likelihood function for spectrum variables are obtained as below. 
2 2

2*

2 2

, , , ln 2 ln 2 1

4 8 4 1

e f k e e k e
k

k k k e

k k e e k e

L f ξ S S N π SD S S SD n S

F F SD nS

SD S S SD n S

 (2.28) 

BSTA is capable of identifying the spectrum parameters as independent from the 

mode shape vector. For this reason, it is not possible to identify the modal shape vector 

by BSTA. To solve this problem, Yan and Katafygiotis (2015a) applies a two-stage 

approach, and calculates the MPV of mode shape vector by using the BSDA. The 

negative-likelihood function centered at the MPV of spectrum variables that are obtained 

by BSTA is minimized with respect to mode shape vector. In this study, however, this 

approach is considered to be inappropriate since the Bayesian nature of the identification 

process might be deteriorated. Here, MPV of spectrum variables and its uncertainties 

reflects the results of the probability distribution by BSTA. For this reason, the output of 

BSTA cannot be directly used in the BSDA, but it can be considered as initial guess (prior 

most probable value). 
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2.4. Computational Procedure for BAYOMA  
 

Previously introduced methods; BSDA and BFFTA, are motivated by different 

statistical properties of the FFT data of measured response. However, they result in 

similar negative logarithm likelihood functions for the estimation of most probable modal 

parameters. To obtain the MPV of θ, an objective function should be defined and 

minimized with respect to f, ξ, S, Se, and φ under required constraints. In case of well 

separated modes, the minimization of objective function will require less computational 

time and effort near the possible modes.  A norm constraint is required for mode shape 

vector in the objective function, because the spectral density of modal excitation depends 

on the norm of identified most probable φ. This dependence is defined in the following 

equation. 

2

T

k k e
φφE SD S
φ

 (2.29) 

where “ ” denotes the Euclidian norm of the identified mode shape vector. The 

remaining parameters (f, ξ, Se) do not require an additional constraint in the minimization 

procedure.  

 

2.4.1. Fast Computational Procedure for Well Separated Modes 
 

In the original form of the objective function that is given in Eq. (2.19), the inverse 

and determinant of Ek is required to be calculated at each excitation frequency, fk.  

However, the reformulation of objective function in explicit form might be more useful 

by making some modifications in the calculation of inverse and determinant of the 

expected spectral density matrix. For this purpose, Au (2011a) defines an orthonormal 

vector space whose first vector corresponds to mode shape to obtain the inverse end 

determinant of Ek. In this study, however, the same result is obtained by using the matrix 

inversion and determinant lemma (Harville, 1997).  
11 1 1 1 1 1

1 1

ABC D D D A CD A B CD

ABC D B CD A B D
 (2.30) 

By making use of Eq. (2.30),  and  are obtained as below. 



17 
 

11 1 1 1 1

1

1/T T
k e N e e k e

Tk e
e N

k e

E S I S φ φ S φ SD φ S

SD SS I φφ
SD S

  (2.31) 

1

1

1/ T
k k e k e N

N
e e k

E SD φ S φ SD S I

S S SD
 (2.32) 

where , and . Substituting Eqs. (2.29) and (2.32) into Eq. (2.19) and 

applying the of norm constraint for mode shape leads to 
11 ln ln

Δ ( 1)

f e k e e
k

T T

J θ C N N S SD S S κ

φ φ α φ φ
 (2.33) 

where Nf = number of FFT data within the selected frequency band, α = Lagrange 

multiplier that enforces the unit norm of φ, and 

* *= ; Δ k e
k k k k

k k k e

SD Sκ F F F F
SD S

 (2.34) 

In the minimization of Eq. (2.33), two different procedures can be followed. The first 

procedure is based on an iterative solution to minimize the objective function. The second 

procedure is composed in two stages, and it leads to a direct solution without iteration 

(Au, 2017). In this two-stage approach, the modal parameters to be identified can be 

separated in two parts: (i) first part that includes the spectrum parameters f, ξ, S and Se, 

(ii) second part that includes all modal parameters. Here, the second part can be modified 

by defining the most probable (optimal) modal shape vector as depending on spectrum 

parameters.  

 

2.4.2. Two-stage Solution for NLLF 
 

In this section a modified version of the two-stage approach by Au (2011a) is 

presented. The presented modification is based on the definition of Lagrange multiplier 

and the procedure for the determination of modal parameters is completely same by Au 

(2011a). The difference of the presented modification lies in the calculation of posterior 

covariance matrix for modal parameters. Using the presented modification, the posterior 

covariance for modal parameters are obtained as a block diagonal matrix by direct 

differentiation.  
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Objective function that is given in Eq. (2.33) can be considered with two 

components; (i) first part that is sensitive to spectrum parameters, θs = [f, ξ, S, Se], and (ii) 

second part that is sensitive to θ.  
1

Second Part (Sesitive to )
First Part (Sesitive to )

1 ln ln Δ ( 1)T T
f e k e e

k θ
θs

J θ C N N S SD S S κ φ φ α φ φ
cond Part (Sesitive to )

1)φ φ α φ φΔ ((TΔ (φ Δ ((TΔ (
Sec

First Part (Sesitive to )

f e k e e
k

φk e ef e

Sec

φ
(2.35) 

The first term is only sensitive to the variation of spectrum parameters while the second 

term is varying as depending on spectrum parameters as well as mode shape vector. The 

second term can be reformulated depending on spectrum parameters only. For this 

purpose, the objective function for φ can be written as follows at the MPV of spectrum 

parameters 

ˆ
ˆ ˆΔ ( 1)T T
s sθ θs s

J θ L θ φ θ φ α φ φ  (2.36) 

where “^” denotes the most probable value. Taking the first order derivative of Eq. (2.36) 

with respect to φ gives 

ˆ

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 Δ 2 0 Δ ; ΔT T T
s s s

φ φ

J φ θ αφ θ φ αφ α φ θ φ
φ

 (2.37) 

It is seen that the optimal mode shape vector can be obtained by solving the standard 

eigenvalue problem given in Eq. (2.37). Thus, the Lagrange multiplier,  is obtained as 

the maximum eigenvalue of  and the optimal mode shape vector can be updated as the 

eigenvector that corresponds to .  However, the optimal spectral parameters need to be 

obtained before calculation of optimal . 

 

2.4.3. Determination of Most Probable Spectral Parameters 
 

In the minimization process of objective function with respect to spectral 

parameters, the most important issue that affect the computational effort is the initial 

guess. Since, the optimal value of φ depends on the spectral parameters, mode shape 

remains an unknown in the minimization process. An iterative procedure can be followed 

at this step in which all modal parameters should be determined simultaneously at each 

iteration step. A direct solution, however, can be constituted by eliminating the quadratic 

term in the objective function. This elimination can be done by representing the quadratic 

term with its optimal value. Hence, the negative logarithm likelihood function can be 

minimized in two stages: (i) determination of optimal spectral parameters, (ii) 
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determination of optimal mode shape vector. For this purpose, it can be assumed that the 

constraint equation is satisfied not only at the MPVs but also within the whole parameter 

space. Thus, the quadratic term is obtained as a function of spectrum parameters as shown 

in Eq. (2.38).  

Δ ( 1)T T
s sφ θ φ α φ φ α θ  (2.38) 

Note that  is the function of spectral parameters only. The objective function 

can be obtained as depending on spectral parameters by substituting Eq. (2.38) into Eq. 

(2.35) as below. 
1 11 ln lns f e k e e s

k
J θ N N S SD S S κ α θ  (2.39) 

Thus, the objective function can be minimized with respect to spectral parameters 

by unconstrained numerical optimization. This numerical optimization can be done by 

fminsearch or fminunc command in MATLAB. The most important issue that affects the 

computational effort of this minimization process determines the initial guess close to 

optimal values as much as possible. To determine the initial guess for modal parameters, 

Au (2011a) proposed the usage of asymptotic behavior of the solution under large-signal-

to noise ratio (snr). In case of the large snr, optimal modal parameters can be obtained by 

direct solution of the objective function without any iteration and numerical optimization. 

Different from the Au (2011a), this study defines the Lagrange multiplier of α as 

a function of spectral parameters not only at MPV but also at the remaining values. Thus, 

the norm constraint equality will be satisfied at each trial for modal parameters.  

 

2.4.4. Asymptotic Behavior Under Large Signal-to-Noise Ratio 
 

BAYOMA provides an efficient identification procedure by considering the noise 

effect as a prediction error in the analysis. Depending on the quality of the measured data, 

the computational effort and posterior uncertainty of estimated optimal values are directly 

affected in analysis process. The lower snr results in larger computational effort and may 

have an adverse effect on the accuracy of estimated optimal values. Nevertheless, many 

researchers state that BAYOMA gives reasonable results even for low snr (Yuen and 

Katafygiotis, 2003; Au, 2011a). 

The computational difficulties in BAYOMA are removed and the formulation can 

be defined in more simple form in case of large snr. Here, snr is defined as below. 
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k
k

e

SDγ
S

 

(2.40) 

In case of large snr, the matrix of Δ can be rewritten by using the following 

assumption Au (2011a).  
1

1 1e e

k k

S S
SD SD

 

(2.41) 

where Eq. (2.41) is approximately equal to 1. Thus, the matrix of Δ can be transformed 

into the following form 

* 1 *

*
1 *

considerably large negligibly small

1Δ k e
k k e k k

k kk e k

k k
e k k

k k k

SD S F F S F F
SD S SD

F FS F F
SD

considerably large n

e
k

k k

negligibly small

kSDk

negli

k

 (2.42) 

By making use of Eqs. (2.41) and (2.42), the objective function given in Eq. (2.39) can 

be arranged as follows  
1

Sensitiveto
Sensitiveto and

1 1

Sensitiveto , , and

, , , ln 1 ln

ln

e k f e e o
k

Sef ξ

f k k
k

f ξ S Se

J f ξ S S C D N N S S κ α

N S S α D

SensitivetoS

f e e oe e oαe ee e1 ln S S κS κ1 ln e ee1 ln

nsitiveto and

k
k

ξ

Sensitiveto dSand

k
f k k

 (2.43) 

where αo =  (maximum eigenvalue of ), and αk =  

(maximum eigenvalue of ). Minimizing Eq. (2.43) with respect to S and Se gives their 

optimal values as below. 
*

1 1

Sensitiveto and

ˆ ˆ;
1

k k o
k

e f k k
kf

f ξ

F F α
S S N α D

N N
Sensitiveto and

f k k
k

ξ

 (2.44) 

In Eq. (2.44), it is seen that optimal S is sensitive to f and ξ. For this reason, optimal 

values of f and ξ need to be obtained first. By substituting Eq. (2.44) into Eq. (2.43) and 

arranging the results leads to  

1, ln lnk f k k
k k

J f ξ C D N α D  (2.45) 

To obtain the optimal φ, the matrix of Δ can be written as 
1 *Δ e k k

k
S F F

 
(2.46) 
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Thus, optimal mode shape vector can be obtained as the eigenvector that corresponds to 

the maximum eigenvalue of .  

 

2.4.5. Summary of Overall Computational Procedure 
 

There are two different algorithms in the literature to obtain MPV of modal 

parameters by fast computational BAYOMA. First one is an iterative algorithm based on 

the estimation of optimal modal parameters simultaneously at each step. Second one is a 

two-stage non-iterative algorithm that estimates the spectral parameters and modal shape 

vector. The algorithms proposed by Au (2011a) are presented in Table 2.1 and Table 2.2, 

respectively, with small modifications. 

 

Table 2.1. Iterative algorithm by Au (2011a) 

Step 1: Set initial guess for (f, ξ, S, Se) by using Eq. (2.44) and (2.45) 

Step 2: Set initial guess of φ as the eigenvector of . 

Step 3: With φ being constant, determine optimal (f, ξ, S, Se) by minimizing Eq. (2.35)  

Step 4: With (f, ξ, S, Se) being constant, determine the optimal φ as the eigenvector of 

the maximum eigenvalue of Δ  

Repeat Steps 3 to 4 until convergence is reached 

 

Table 2.2. Non-iterative algorithm by Au (2011a) 

Step 1: Set initial guess for (f, ξ, S, Se) and by using Eqs. (2.44) and (2.45) 

Step 2: Determine optimal (f, ξ, S, Se) by minimizing Eq. (2.39) 

Step 3: Determine optimal φ as the eigenvector of the maximum eigenvalue of Δ  

 

 

2.5. Posterior Uncertainties of Optimal Modal Parameters 

 
One of the most prominent advantages of BAYOMA is its capability of 

determining the posterior uncertainties of identified modal parameters. Determination of 

the posterior uncertainties of spectrum parameters requires less computational effort 

when compared to mode shape vector. The posterior uncertainties of spectral parameters 

can be obtained in terms of coefficient of variation (c.o.v.). Here, c.o.v. is calculated as 
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the ratio of posterior variance to their MPV’s. In addition to posterior c.o,v., the posterior 

uncertainty of identified mode shape can be defined by the Expected Modal Assurance 

Criterion (EMAC) value as an estimator to determine the expected discrepancy between 

exact and identified mode shapes.  

The discrepancy between most probable and uncertain values can be well 

estimated by Gaussian approximation. For this purpose, the objection function can be 

written by using the second order Taylor series expansion as below. 

2
ˆ ˆ

ˆ ˆ ˆ ˆT T

θ θ
J θ J θ θ θ J θ θ J θ θ  (2.47) 

Here,  and  denote uncertain and most probable modal parameters, respectively. 

In addition,  Hessian matrix of J(θ) at . In Eq. (2.47), J( ) corresponds to a 

scalar (minimum) and does not affect the variation of J(θ) with respect to θ. In addition, 

the first order derivative of J(θ) with respect to θ will be equal to zero at  (at minimum 

value). Thus, Eq. (2.47) has a relation in the following form which is Gaussian. 

1
ˆ

ˆ ˆT

θ
J θ θ θ C θ θ  (2.48) 

in which  = discrepancy between uncertain and most probable modal parameters, 

= posterior covariance matrix at . The posterior covariance matrix can be 

obtained as the inverse of the second order derivative (Hessian matrix) of J(θ) with 

respect to θ. In case of well separated modes, the Hessian matrix within the resonant 

frequency band of a possible mode is given by 

 

, , , , ,

, , , ,

, , ,

, ,

,
4 4

.

f f f ξ f S f S f φe

ξ ξ ξ S ξ S ξ φe

S S S S S φe
θ

S S S φe e e

φ φ
N N

J J J J J

J J J J
H J J J

Symm J J

J

 (2.49) 

where J(x,y) = derivative of J with respect to x and y, respectively. Posterior uncertainties 

for identified modal parameters can be obtained by means of posterior covariance matrix. 

Thus, the posterior covariance matrix is obtained as follows.  

1
θ θC H  (2.50) 

 



23 
 

2.5.1. Calculation of Hessian Matrix Under Constraints 
 

Calculation of the Hessian matrix has difficulties due to the equality constraints 

defined for the mode shape vector. Conventional methods based on the direct 

differentiation of the objective function require high computational effort and may not 

give the exact result due to the norm constraints. In another word, taking the derivatives 

of the objective function may not be proper way due to the Lagrange multiplier (Au and 

Xie, 2017). To overcome this problem, a fast-computational procedure was proposed by 

Au and Xie (2017). In this procedure, a likelihood function, L(θ) that minimizes the set 

of parameters to be identified θ = [θ1, . . . , θnc] under nc independent constraints is 

considered. Thus, the objective function is defined as 

1

nc

j j
j

J θ L θ λ G θ  (2.51) 

where  and Gj(θ) denote the Lagrange multipliers and equations of equality constraints. 

The Hessian matrix with respect to θ is obtained as below (Au and Xie, 2017). 

2 2 2ˆ ˆv vT
c c cL L λ G  (2.52) 

Here, vc denotes a mapping function that always satisfies the constraint equations. The 

second order derivative of likelihood function is given by  

,,
2 2 2

, ,

θ θ θ φs s s

θ v θ φ θ φ φc s

L LL L θ
L L

 (2.53) 

where, vc, G and their derivatives are given by 

4 4 4 4 4 42

4 4

; v ; 1;

0 0 0
v ;

0 0 2

s
s T

c

N N
c T

N N N N

θ
θ

θ θ G φ φφ
φ φ

I
G

I φφ I

 (2.54) 

Thus, the Hessian matrix under norm constraint is obtained as follows 

4 4 4 4 4 42 2

4 4

, ,2 2

, ,2 2

0 0
0 02

θ θ θ φs s sN N
c T T

N N N Nφθ φφ Ns

θ θ θ φs s s
c c
φ θ φ φs

c c

L LI I
L

I φφ I φφL L αI

L L

L L

 (2.55) 
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where  
, ,2 2

, ,2

, ,2 2

,2 2

θ θ θ θs s s s
c

θ φ θ φ Ts s
c N

Tφ θ θ φs s
c c

φ φ T T
c N φφ N N

L L

L L I φφ

L L

L I φφ L αI I φφ

 (2.56) 

Gradients of L(θ) with respect to modal parameters are presented in Appendix A. 

 

2.5.2. An Alternative Method for Calculation of Posterior Covariance 

Matrix by Two-stage BFFTA 
 

In this section, the Hessian matrix is reformulated by applying the two-stage 

approach that is presented in Section 2.4.2. The possible errors due to the equality 

constraints are removed in the conventional analytical derivation without resorting a 

mapping function. Finally, the Hessian is obtained as a block diagonal matrix and it is 

verified with the procedure by Au and Xie (2017).  

In the derivation of negative-likelihood function, the expected spectral density of 

modal excitation, S, is scaled so that the mode shape vector has unit norm. The main 

problem in the calculation of posterior covariance matrix lies in the fact that the unit norm 

assumption for mode shape is satisfied only at MPV when the Lagrange multiplier 

method is applied. To solve this problem, Au and Xie (2017) defines a mapping function 

that always satisfies the equality constraints. When the mode shape is scaled to the unit 

norm for each trial, this problem can be solved without using the Lagrange multiplier 

method (see Appendix B). In this study, however, an alternative and simplified method 

with Lagrange multiplier is presented based on the two-stage BFFTA. For this purpose, 

the objective function for modal parameters can be rewritten as below. 

, -ΔT
s s s s s N sJ θ φ L θ φ θ α θ I φ α θ  (2.57) 

where Ls(θs) = likelihood function that depends on spectrum parameters only, and α = 

maximum eigenvalue of , . 
11 ln ln

Δ

s s f e k e e
k

T
s s

L θ C N N S SD S S κ

α θ φ θ φ
 (2.58) 
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Here, the Lagrange multiplier, α is defined as a function of spectrum parameters so that 

the norm constraint equality is always satisfied. This assumption may not be considered 

as a proper usage for Lagrange multiplier. However, it becomes necessary to define this 

multiplier as a function of θs in order to satisfy the norm constraints. In addition, it should 

be noted that α still corresponds to a scalar value for the marginal distribution of mode 

shape vector. Under these assumptions, the derivatives of Eq. (2.57) are obtained as 

follows. 
2 2

,
2 2

θ θ s s ss s

s s

L θ α θ
J

θ θ
 (2.59) 

, -Δφ φ
s s NJ θ α θ I  (2.60) 

, 2 -Δθ φ Ts
s s N

s

J φ θ α θ I
θ

 (2.61) 

At , the Hessian matrix can be written as 
ˆ ˆ ˆ ˆ, ,

ˆ ˆˆ , ˆ ˆ,

θ θ θ φs s s s

θ φ θ φ φs

J J
H

J J
 (2.62) 

where 

2 2 2ˆ ˆ,
2 22

ˆˆˆ

2 2

22
ˆ

ˆ

ˆ Δ
ˆ ˆˆ

ˆ

ˆ

s sθ θ s s Ns s sT

s ss θ θθ θ s ss sθ θs s

s s s

ss θ θs sθ θs s

L θ θ α θ I α θ
J φ φ

θ θθ

L θ α θ
θθ

 (2.63) 

ˆ ˆ, ˆ ˆ-2Δ 2φ φ
s s NJ θ α θ I  (2.64) 

ˆ ˆ,

ˆ

-Δ
ˆ2θ φ s s Ns T

s θ θs s

θ α θ I
J φ

θ
 (2.65) 

At ,  can be arranged as 

ˆ ˆ

Δ Δˆ ˆ ˆ ˆ-Δ T
s s N

s s sθ θ θ θs s s s

θ α θ φ φI
θ θ θ

 (2.66) 

Substituting (2.66) into Eq. (2.65) and re-arranging,   can be written as 

ˆ

Δ
ˆ ˆ ˆ2 sT T

N
s θ θs s

θ
φ I φφ

θ
 (2.67) 
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In Eq. (2.67), it is seen that the matrix of  is a semi-positive definite 

matrix whose null vector corresponds to . Therefore,  is obtained as below (see 

Appendix B). 

ˆ ˆ,

2ˆ

Δ
ˆ ˆ ˆ2 0 0

Nθ φs s sT T T
i i

is θ θs s

θ
J φ φφ ρ ρ

θ
 (2.68) 

where , ,  (for i=2 … N) and  = eigenvectors of 

, respectively.  Hence, the Hessian of J(θ) is obtained as a block diagonal 

matrix. 

ˆ 4
ˆ

ˆ4

0

0
Nθs

θ
N φ

H
H

H
 (2.69) 

Here,  and . Finally, the posterior covariance matrix is 

obtained as the inverse of .  

ˆ 4
ˆ

ˆ4

0

0
Nθs

θ
N φ

C
C

C
 

(2.70) 

where  and . According to Eq. (2.70), it is seen that the posterior 

covariance of spectrum parameters and mode shapes can be decoupled. Thus, the 

posterior coefficient of variation (c.o.v.) of spectral parameters are obtained as follows. 

ˆ ˆ

ˆ ˆ

ˆ ˆ ˆ ˆ, ,
; ;ˆ ˆ

ˆ ˆ ˆ ˆ, ,
;ˆ ˆ

θ θs s

e eθ θs s
e

e

C f f C ξ ξ
cov f cov ξ

f ξ

C S S C S S
cov S cov S

S S

 (2.71) 

The same result can be obtained by the manipulation of the computation scheme 

presented by Au an Xie (2017). Here, the derivative of 2Lc
(φ, φ) given in Eq. can be 

arranged as below at MPV of θ.  

ˆ ˆ,2

ˆ

Δˆ ˆ ˆ 0θ φs T T
c N

s θ θs s

L φ I φφ
θ  (2.72) 

When compared to the previous calculation procedure, the proposed methodology 

promises less computational effort for single mode approach since the large sized matrix 

computations are overpassed.   
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2.5.3. Posterior Uncertainty of Modal Shape Vector
 

Different from the spectral parameters, the posterior uncertainty of mode shape 

vector is generally defined by the Expected Modal Assurance Criterion (EMAC) in 

addition to the c.o.v. Here, EMAC can be estimated by the manipulation of the difference 

between most probable and uncertain mode shapes (Au, 2017).  

  

Figure 2.1. Vectoral representation of exact and most probable mode shapes 

Figure 2.1 shows the schematic representation of the vectoral difference 

(uncertainty). Here,  and  denote the most probable and exact mode shape vectors, 

respectively. In addition, φ and ψ represents the mode shape uncertainty and phase angle 

between  and , respectively. Due to the Hermitian structure of , its eigenspace 

decomposition can be written as follows. 

2
ˆ ˆ ,

1

N
T

φ φ i i i
i

H δ ρ ρ  (2.73) 

where  = eigenvalues, and ρi = eigenvectors of . Thus, the eigenspace 

decomposition of  is obtained as  

2
ˆ ,

1 2 2

Decompositionof 2Δ Decompositionof 2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2 2 2

ˆ ˆ ˆ0 2

N N N
T T T T T

φ i i i i i i i i
i i i

αIN
N

T T
i i i

i

δ ρ ρ α φφ λ ρ ρ α φφ α ρ ρ

φφ α λ ρ ρ

Decompositionof 2Δ Decompositionof 2αINI

2 22i ii 222222
i i i i iiii i ii i ii i ii i ii i ii i ii i ii i ii i ii i ii i i

 (2.74) 

It is seen that the minimum eigenvalue corresponding to the most probable mode shape 

vector of  is equal to zero, and the remaining eigenvalues are positive definite. 

Therefore,  is a semi-positive definite matrix. Thus, the posterior covariance matrix is 

obtained as follows. 

12
ˆ ,

1 2

1ˆ ˆ ˆ
2

N N
T T T

φ φ i i i i i i
i i

C δ ρ ρ φφ α λ ρ ρ  (2.75) 

Obtaining the exact  is not possible since its eigenvalue that corresponds to  

is infinite. Instead, the pseudo inverse of  can be obtained to avoid numerical errors. 

ψ
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Here, the mode shape uncertainty, φ, is a combination of the eigenvectors of 

eigenvectors of , weighted by the eigenvalues of . For this reason, the first 

eigenvector (corresponding to ) can be neglected, since it does not cause a discrepancy. 

Thus, the pseudo inverse of  can be assumed to be equal to the covariance of φ. The 

pseudo inverse of  can be obtained as a semi positive definite Hermitian matrix by 

neglecting the zero-eigenvalue term of Hessian matrix (Au and Zhang, 2011). 

2
ˆ ˆ ˆ ,

2

N
T

φ φ φ i i i
i

C H δ ρ ρ  (2.76) 

where “+” denotes the pseudo inverse.  

The uncertainty of mode shape, φ, follows a zero mean Gaussian distribution 

with covariance matrix, , and it is defined by the following equation (Au and Zhang, 

2011). 

,
2

N

i φ i i
i

Δφ z δ ρ  (2.77) 

where zi = independent and identically distributed (i.i.d.) Gaussian numbers. Thus, the 

uncertain mode shape can be written as below. 

,
2

ˆ
N

i φ i i
i

φ φ z δ ρ  (2.78) 

Note that the exact mode shape, φ, should be normalized to unit norm. 
1/22 1/2

2 2 2
, ,

2 2

ˆ 1
N N

i φ i i i φ i
i i

φ φ z δ ρ z δ  (2.79) 

 The expected MAC between the uncertain and most probable mode shapes can 

be obtained as; 

1/2
2 2

, ,
2 2

1 0

1/2
2 2

,
2

ˆ ˆ ˆ ˆ 1
ˆ

1

T N N
T T

i φ i i i φ i
i i

N

i φ i
i

φ φEMAC φ φ z δ φ ρ z δ
φ φ

z δ

0

φ ρ 11iiφ ρi
 (2.80) 

Au and Zhang (2011) state that EMAC can be well estimated by direct Monte 

Carlo Simulation. However, a direct analytical solution can be obtained by the following 

assumption. 
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1/221 1 φEMAC N δ  (2.81) 

where δφ  δφ,i (for i=1 … N). This assumption asymptotically approaches to the exact 

solution, while δφ,i → 0, and N → ∞ (Au and Zhang, 2011). For comparison purposes, an 

exact solution is obtained by Monte Carlo Simulation with Ns = 500,000 randomly 

generated samples. Here, each sample, zi is generated as independent and identically 

distributed (i.d.d.) gaussian numbers, and the statistical distribution of EMAC is obtained. 

Finally, the exact EMAC is calculated as the sample mean of EMACs (see Table 2.3 for 

overall procedure). 

Table 2.3. Exact solution algorithm by Monte Carlo Technique 

Step 1: Set zi as a randomly generated (Ns×1) size i.i.d. normally distributed vector 

(wgn function can be used for MATLAB) 

Step 2: Calculate [EMAC]i value for each sample by Eq. (2.80) 

Step 3: Calculate exact EMAC as the sample mean, EMAC =1/ Ns ∑[EMAC]i 

 

 

Figure 2.2. Convergence of exact and approximate EMAC values (solid line: 

exact, dashed line: approximate) 

Figure 2.2 shows the convergence of exact and approximate EMAC values that 

are calculated for N=2, 5, 10 and 20, respectively. At first view, it is seen that the 

simulated results improve the conclusions of Au and Zhang (2011). As the measured 

number of DOF (N) increases, the exact and approximate solutions match better. It is 

δφ

N=20
N=10

N=5

N=2
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worth to note that EMAC value cannot be calculated when N is smaller than 2. 

Nevertheless, it is seen that the worst case occurs when N=2 as stated by Au and Zhang 

(2011). For this case, relative difference between exact and approximate solutions 

increases up to 10% at δφ =1.00. 

The posterior c.o.v. of mode shape can be estimated via the posterior covariance 

matrix, C  (Au 2017). Here, the posterior variance of the mode shape is calculated as 

2 2 2
, ,

2 2

ˆ ˆ
N N

T
φ φ φ i φ i

i i
σ tr C tr δ φφ δ  (2.82) 

Thus, the posterior c.o.v. can be obtained as the posterior standard deviation 

divided by the norm of the most probable mode shape. 

2
,

2
( )

ˆ

N
φ

φ i
i

σ
cov φ δ

φ
 (2.83) 

 

2.6. Uncertainty Laws 
 

Managing the uncertainty of modal parameters is a major challenge due to the 

complexity of the calculation of posterior covariance matrix in BAYOMA. This 

complexity extremely related with the data duration, selected bandwidth and signal-to-

noise ratio (Au, 2014a, 2014b). In case of large data duration with small damping, the 

uncertainty parameters can be estimated by the following equation (Au, 2014a, 2014b)  

2 2 2
1 0

,max

1 x
x x x

k

aδ δ δ
γ

 (2.84) 

where δx = c.o.v. of parameter x, γk,max = S/(4Seξ2), δx0 and δx1 are zeroth and first 

order term, respectively. In addition, ax is a parameter that depends on the bandwidth, 

data length and period. δx0, δx1 and ax is defined by Au (2014a) as follows. 

 

 For frequency 
1

2 1
0 2

1
2

4 tan2; tan ;
2 1 tan

1

f f f
c f

τ τξ τδ B τ τ a
τπN B τ π τ τ

τ

 (2.85) 

 For damping ratio 
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21
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 (2.86) 

 For spectral density of modal excitation 

2 1 2 1
0 2

1 2 1
2 2

11 2

1
2

1 2; 1 tan tan
2 1

tan2 8 tan 8 42 4
3 tan 32 tan
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1

S S
c f
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 (2.87) 

 For spectral density of prediction error 

2
0

1 ; 1; 0
1S S Se e e

f Se

δ B τ a
n N B τ

 (2.88) 

 For mode shape vector 

2 1
ˆˆ1 2; tanˆ

e
φ φ

c φ

n S ξ
δ B τ τ

ππSN B τ
 (2.89) 

Where τ = bandwidth factor for the selected frequency band, , Nc = 

Nf , Nf = number of FFT points within .  

 

2.7. Numerical and Experimental Analysis 
 

In this section, the effectiveness of the proposed modifications for BAYOMA 

methods is investigated. For this purpose, numerical/experimental studies and field 

applications are presented. 

 

2.7.1. Numerical Analysis I: Ten Story Shear Frame 
 

A finite element model of a ten-story shear frame is generated with inter-story 

stiffness, and story mass of 450 kN/m and 250 kg, respectively. An i.i.d. synthetic 

Gaussian white noise is generated as forcing function with PSD of 1 μg2/Hz, 100 Hz 

sampling rate and 300 sec duration. To obtain a uniform PSD for each modal excitation, 



32 
 

the spatial distribution of the forcing function is arranged as s = Φ-T ΦTMΦ1, where Φ= 

modal shape matrix, M= mass matrix, and 1= 10×1 size unit vector. In addition, an i.i.d. 

Gaussian white noise with a PSD of 10 μg2/Hz is added to the acceleration response of 

each story. 

 

Figure 2.3. Root singular value spectrum and possible modes with selected bandwidths  

 

In Figure 2.3, the average root singular value spectrum of the acceleration 

responses is presented by 1000 windows. In each window, the average spectral density 

matrix of 30 data points is obtained, and their maximum singular values are calculated. 

First five modes are detected at 1.00, 3.00, 4.90, 6.75, and 8.40 Hz, and the corresponding 

selected frequency bands are as indicated in the Root SV spectrum. 

Table 2.4. Identification results for frequency and damping ratios 

Mode 
Number 

f (Hz.) ξ (%) 

MPV Exact c.o.v. 
(%) 

MPV Exact c.o.v. 
(%) 

1 1.0187 1.0092 0.12 0.90 1.00 19.76 

2 3.0016 3.0051 0.13 1.02 1.00 47.60 

3 4.9330 4.9338 0.11 0.97 1.00 11.42 

4 6.7569 6.7524 0.10 1.02 1.00 10.01 

5 8.4191 8.4201 0.11 0.99 1.00 19.69 
 

Identification results for spectrum parameters are presented in Table 2.4 and Table 

2.5. It is seen that the identification results well match with their analytical values. 
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Posterior coefficient of variations for identified frequencies are less than 0.15 %. The 

posterior c.o.v for Se varies from 2.65 to 8.11%. Identification uncertainties increase for 

S, and ξ. Here, the posterior c.o.v. of ξ is determined as 47.60 while the MPV is well 

matched with the exact value.  Note that the posterior c.o.v. only shows the identification 

uncertainty. The fact that the MPV perfectly matches the exact value does not necessarily 

correspond to low (or zero) uncertainty.  

 
Table 2.5. Identification results for the spectral density of modal excitation and prediction 

error, and root signal-to-noise ratio 

Mode 

Number 

(μg2/Hz) (μg2/Hz)  

MPV Exact c.o.v. 

(%) 

MPV Exact c.o.v. 

(%) 

MPV Exact 

1 1.01 1.00 13.97 12.63 10.00 3.65 260 250 

2 1.04 1.00 17.63 11.51 10.00 8.11 217 250 

3 0.94 1.00 12.13 12.20 10.00 2.32 205 250 

4 0.91 1.00 10.96 12.81 10.00 2.04 171 250 

5 1.01 1.00 32.36 14.40 10.00 2.65 179 250 

 

 

Figure 2.4. Identified and analytical mode shape vectors  
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Effect of signal-to-noise ratio on the identification uncertainty for the first mode 

is illustrated in Figure 2.5 and Figure 2.6. At first view, it is observed that the uncertainty 

is not affected by the signal-to-noise ratio for the spectral density of prediction error, Se 

while it shows significant variation for the natural frequency, damping ratio and the 

spectral density of modal excitation. Identification uncertainty decreases as the signal-to-

noise ratio increases, and it converges to a constant value. This case shows that the 

uncertainty cannot be reduced to zero even for significantly large values of signal-to-

noise ratio. This observation is compatible with the results reported by Au (2017). 

Additionally, it is seen that the uncertainty laws give reasonable results for posterior 

coefficient of variations of identified values. A gradually decreasing divergence from the 

exact value is observed from γk = 10 to 100 for c.o.v. of frequency and damping ratios. 

The maximum divergence is observed to be 50% and 15% for the c.o.v. of frequency and 

damping ratio, respectively. The c.o.v. for the spectral density of modal excitation, S, 

spectral density of prediction error, Se, and the modal shape vector, φ, well match with 

the exact values. 

 

 

Figure 2.5. Effect of signal-to-noise ratio on the posterior c.o.v. of spectral parameters  
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Figure 2.6. Effect of signal-to-noise ratio on the posterior c.o.v. of first mode shape 

 

Figure 2.7. Effect of signal-to-noise ratio on the MPVs and posterior standard deviations 
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Figure 2.7 presents the variations in the identified MPVs of spectrum parameters 

as well as their uncertainties in terms of standard deviations. It is seen that MPVs 

converge to exact values with decreasing posterior standard deviations while the modal 

signal-to-noise ratio increases. Here, most dramatical difference is observed in prediction 

error for γk < 100. This difference seems reasonable since the prediction error does not 

only reflect the pure noise effect, but also contains a combined effect of single-mode 

modelling assumption and large level of noise. For this reason, the decrease in the 

identification quality for the smaller values of signal-to-noise ratio is considered to be 

correlated with the combined effect of measurement noise and modelling error.  

For comparison purposes, the considered shear frame is investigated by using two 

different identification techniques: covariance driven SSI (SSI-COV) and FDD. The 

results obtained for γk =1250, 250 and 50 are presented below. Here, Table 2.6, Table 2.7 

and Table 2.8 present the MAC values of mode shapes, natural frequencies and damping 

ratios identified by BAYOMA, FDD and SSI, respectively. Although the result show that 

BAYOMA gives relatively better convergence to the exact values, a reasonable difference 

is not observed among different techniques. The largest difference is observed in mode 

shapes and damping ratios for γk=50. In fact, each identification technique can give 

reasonable results when the data quality is good. Here, the main difference of BAYOMA 

lies in providing the uncertainty information for the identified values. In addition, 

BAYOMA does not require any signal processing procedure such as resampling, high or 

low pass filtering. However, the results by SSI could be obtained for resampling of data 

to 25 Hz sampling frequency to reduce the noise effects. Otherwise, the lower modes 

cannot be identified even for the large model orders.  

 

Table 2.6. Comparison of MAC values of identified mode shapes (n: mode number) 

n 
γk=1250 γk=250 γk=50 

BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SSI 

1 1.0000 1.0000 0.9969 0.9996 0.9978 0.9921 0.9955 0.9895 0.9810 

2 0.9999 0.9999 0.9996 0.9998 0.9978 0.9956 0.9967 0.9905 0.9904 

3 0.9999 0.9999 0.9999 0.9999 0.9993 0.9996 0.9956 0.9927 0.9904 

4 0.9999 0.9997 1.0000 0.9998 0.9989 0.9992 0.9970 0.9915 0.9906 

5 1.0000 0.9984 1.0000 0.9999 0.9994 0.9990 0.9962 0.9870 0.9912 
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Table 2.7. Comparison of identified frequencies (Hz) for first mode 

n Actual 
γk=1250 γk=250 γk=50 

BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SSI 

1 1.01 1.01 1.01 1.01 1.02 1.01 0.99 1.02 1.04 1.03 

2 3.00 3.00 3.01 3.01 3.01 3.01 2.99 3.01 3.03 3.05 

3 4.93 4.93 4.93 4.92 4.94 4.95 4.97 4.94 4.89 4.91 

4 6.76 6.76 6.76 6.74 6.76 6.78 6.74 6.76 6.71 6.78 

5 8.42 8.42 8.42 8.42 8.42 8.40 8.41 8.42 8.44 8.43 

 
Table 2.8. Comparison of identified damping ratios (%) for first mode 

n Actual 
γk=1250 γk=250 γk=50 

BAYOMA FDD SSI BAYOMA FDD SSI BAYOMA FDD SSI 

1 1.00 0.95 1.17 1.23 0.90 1.32 1.15 1.27 1.52 0.71 

2 1.00 0.99 0.90 0.97 1.13 0.74 0.89 1.13 1.56 0.84 

3 1.00 0.98 1.01 0.85 1.05 1.13 1.01 1.11 0.88 0.84 

4 1.00 1.02 0.85 0.92 1.05 0.51 0.83 1.07 1.18 0.94 

5 1.00 0.98 0.81 1.14 0.93 0.52 0.93 0.81 0.65 0.72 

 

 

2.7.2. Numerical Analysis II: A Comparison for Posterior Uncertainty 

Quantification 
 

In this section, the computational time required by the proposed methodology for 

the calculation of posterior covariance matrix is compared to the method by Au and Xie 

(2017) by using a small illustrative example. Here, an analytical shear frame model is 

considered whose fundamental frequency and damping ratio are set to 1 Hz, and 1%, 

respectively. The number of DOF of the considered model varies from 2 to 1000. An i.i.d. 

Gaussian excitation with modal PSD of 10 μg2/Hz is generated as ambient loading with 

100 Hz sampling ratio and 300 sec duration. The measured response is contaminated by 

a Gaussian white noise with PSD of 1 μg2/Hz. Calculations are carried out by MATLAB 

2018b, and ASUS notebook computer with i7 6700HQ 2.60 GHz processor and 16 GB 

RAM. 

Figure 2.8 presents a comparison of the required computational time for the 

proposed methodology and the method by Au and Xie (2017). It is seen that the proposed 
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methodology requires less computational time. However, no significant difference is 

observed while the number of DOF is smaller than 500.  

 

 
Figure 2.8. Comparison of the computational time required for the calculation of posterior 

covariance matrix 

 

2.7.3. Experimental Analysis: Three-story Shear Frame 
 

A three-story laboratory shear frame is shown in Figure 2.9. It is investigated 

under ambient excitation with 250 Hz sampling rate. Three piezo-electric accelerometers 

are used which are defined with 1000 mV/g sensitivity and 11.4 μg/(Hz.)0.5 spectral noise 

density.  

 

Figure 2.9. Schematic view of laboratory frame and measured acceleration responses 

The measurement system consists of a laptop computer with a 1.5 GHz single 

CPU, Linux operating system, and 16 channel USBDUX-Sigma data acquisition box with 

Measurement direction
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24 bit analog to digital conversion, A first order analog lowpass filter with a cut-off 

frequency at 120 Hz for each channel, and a constant current supply for the 

accelerometers. 

 
Figure 2.10. Root singular value spectrum and possible modes with selected bandwidths 

Root singular value spectrum of acceleration response measurements is presented 

in Figure 2.10. For a smooth spectrum, a hamming window is applied by using 75 data 

points (with 1000 windows) and without overlapping. This is sufficient in order to obtain 

a smooth singular value spectrum for the estimation of possible modal frequencies.  

According to Figure 2.10, one is tempted to include the frequencies around 7 Hz 

and 13 Hz as structural modes. The identified mode shapes at 7 Hz and 13 Hz do not 

belong to the investigated structure and can be considered as noise or spurious modes. In 

this particular case, these modal appearances are considered to be modes of the laboratory 

structure in which the experiment is conducted.  

Identified most probable values are presented in Table 2.9. At first view, the signal 

quality is found to be well for all modes with the minimum signal to noise ratio of 

approximately 280. In the first and second mode, signal to noise ratio is considerably 

large (approximately 2250). Despite the large signal to noise ratios, identified spectral 

densities of prediction error are found to be 90 to 800 folds when compared with the 

identified spectral density of modal excitations. This case is considered to be the result of 

very small modal damping. 
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Table 2.9. Identification results for the spectral density of modal excitation and prediction 
error, and root signal-to-noise ratio 

Mode 

Number 

f  ξ  S  Se  
 

MPV 

(Hz.) 

c.o.v. 

(%) 

MPV 

(%) 

c.o.v. 

(%) 

MPV 

(μg/Hz.) 

c.o.v. 

(%) 

MPV 

(μg/Hz.) 

c.o.v. 

(%) 

1 3.7194 0.02 0.1113 11.12 19.93 3.94 1788.60 2.39 2247 

2 10.7277 0.01 0.0885 7.34 12.97 3.61 1969.92 2.48 2049 

3 15.5025 0.01 0.1023 5.75 1.29 4.96 1082.45 3.39 284 

 

Identified mode shapes are presented in Figure 2.11. At first view, it is seen that 

the identified mode shapes are compatible with the general expected mode shapes for a 

shear frame with uniform story stiffness and mass. EMAC values are obtained as [1.000 

1.000 1.000] for the three modes. In addition, posterior c.o.v. are calculated as 0.34, 0.23 

and 0.53%. 

 
Figure 2.11. Root singular value spectrum and possible modes with selected bandwidths 

The exact marginal pdf for a modal parameter can be obtained by direct 

integration of multivariate probability density function with respect to remaining 

parameters. Thus, the exact marginal PDFs are obtained as below. 

exp ; exp

exp ; exp

e e

e e

p f L θ dξdSdS p ξ L θ dfdSdS

p S L θ dfdξdS p S L θ dfdξdS
(2.90) 
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Figure 2.12. Comparison of exact and approximate marginal distributions 

As an alternative, gaussian approximation can be used to obtain the marginal 

PDFs. For this purpose, the marginal likelihood function of a modal parameter can be 

constructed by setting the remaining parameters to be equal to their MPVs. Here, 

likelihood function is constructed by Eq. (2.48). The final form of marginal PDFs should 

be normalized so that the cumulative probability density is 1 for both methods. 

Marginal probability density functions that are obtained by Gaussian 

approximation and by direct numerical integration (exact) are presented in Figure 2.12. It 

is seen that Gaussian approximation converges to exact values. However, the direct 

integration is expensive in terms of computational time and effort. Instead, Gaussian 

approximation may be the best alternative in terms of computational time and effort.  

 

2.7.4. Field Data Example: 58 Story Building 
 

In this section, the modal properties a 58-story building, located in San Francisco, 

is investigated by using BAYOMA and FDD identification techniques. The building was 
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designed by a dual core shear walls and outrigger frames to decrease its displacement 

demand in the lateral directions (Çelebi et al., 2016). The ambient acceleration records 

were acquired by California Strong Motion Instrumentation Program (CSMIP) of the 

California Geological Survey (CGS) by using a 32-channel measurement system. The 

schematic view of the building and sensor placement configurations are presented in 

Figure 2.13. The measure acceleration responses are divided in North-South (NS) and 

East-West (EW) components and the modal properties in the lateral directions are 

obtained separately. For torsional modes, the records in the NS directions are utilized 

only. Due the lack of the measurement points, only the results for the first three torsional 

modes are presented.  

 

Figure 2.13. Schematic view of 58-Story Building and sensor locations (Source: Center 

of Engineering Strong Motion Data) 
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Maximum root singular value spectrum of the records in the NS and EW 

directions and possible modes are presented in Figure 2.14. According to this spectrum, 

five lateral modes in the NS and EW directions, and three torsional modes are detected 

and identified by using two different techniques. 

 

Figure 2.14. Maximum root singular value spectrum and possible modes 

 

Table 2.10. Identified natural frequencies and damping ratios 

Mode 

Number 

f (Hz.) ξ (%) 

BAYOMA 
FDD 

BAYOMA 
FDD 

MPV c.o.v. (%) MPV c.o.v. (%) 

EW1 0.26 0.74 0.26 1.94 37.34 4.91 

NS1 0.30 0.61 0.29 1.60 38.10 4.79 

Tors1 0.44 0.54 0.44 0.47 60.60 2.73 

EW2 1.12 0.36 1.12 1.83 22.29 1.85 

NS2 1.13 0.25 1.12 1.00 25.88 1.45 

Tors2 1.36 0.19 1.37 0.55 37.79 1.59 

EW3 1.90 0.47 1.90 2.03 42.13 1.42 

NS3 2.19 0.41 2.19 0.90 27.31 1.55 

Tors3 2.28 0.31 2.29 1.30 32.37 1.37 

NS4 3.35 0.49 3.34 2.87 37.04 2.72 

EW4 3.66 0.36 3.66 2.17 30.99 1.89 

EW5 4.61 0.40 4.61 2.19 38.85 2.19 

NS5 4.90 0.21 4.90 1.36 27.85 2.57 

 

EW1
EW2 EW3

EW4
NS1

NS2 NS3
NS4

EW5 NS5Tors1
Tors2 Tors3
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Figure 2.15. Identified mode shapes in EW direction 

 

Figure 2.16. Identified mode shapes in NS direction 
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Figure 2.17. Identified torsional mode shapes  

 

Most probable natural frequencies, damping ratios and their identification 

uncertainties in terms of c.o.v. are presented in Table 2.10. For comparison purposes, the 

results are verified by FDD identification technique. According to the obtained results, a 

good agreement is observed between the applied techniques. For damping ratio, however, 

a reasonable convergence is not observed. The difference in the identified damping ratios 

is considered to be induced by the applied robust methodology in FDD. It should be noted 

that the FDD identifies the damping ratio by using the logarithmic decrement obtained 

the inverse FFT of the band limited frequency response data, and this methodology may 

cause large modelling errors due to the omission of the prediction error. In addition, the 

identified mode shapes in the EW, NS and torsional directions are presented in Figure 

2.15, Figure 2.16, and Figure 2.17, respectively. Again, a good agreement is observed 

between the results obtained by BAYOMA and FDD.  
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2.7.5. Field Data Example: One Rincon Tower 
 

Modal parameters of a 64-story building, One Rincon Tower, is investigated in 

this section by using BAYOMA. The structural system of the building consists of a dual 

core wall and outriggers. A 72-channel acceleration response monitoring system was 

installed in the context of a project by the California Strong Motion Instrumentation 

Program (CSMIP) of the California Geological Survey and the National Strong Motion 

Project (NSMP) under the Advanced National Seismic Systems managed by the United 

States Geological Survey (USGS). The ambient response data that is investigated in this 

study is provided by the Center of Engineering Strong Motion Data (CESMD). The 

schematic view of the building and sensor locations are illustrated in Figure 2.18 and 

Figure 2.19, respectively. 

 

 
Figure 2.18. Elevation view of One Rincon Tower and sensor locations (Source: Center 

of Engineering Strong Motion Data) 
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Figure 2.19. Plan views and sensor locations (Source: Center of Engineering Strong 

Motion Data) 

The root singular value spectrum of the ambient response data along the North-

South (NS) and East-West (EW) direction is presented in Figure 2.20. Torsional modes 

are visible at the frequencies around the peak values for both EW and NS directions. Here, 

translational modes are investigated separately. However, the torsional modes are 

identified by consideration of all measurement directions. 
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Figure 2.20. Root singular value spectrum and possible modes 

 

Table 2.11. Identification results for the spectral density of modal excitation and 
prediction error, and root signal-to-noise ratio 

Mode  

Number 

f (Hz.) ξ (%) 

MPV c.o.v. (%) Çelebi et al. 
 (2013) MPV  c.o.v. (%) Çelebi et al. 

 (2013) 
1 

(EW) 0.27 0.75 0.27 1.84 40.51 0.30-0.90 

2 
(NS) 0.31 1.04 0.30 1.66 41.17 0.90 

3 
(Torsion) 0.71 0.31 0.70 0.86 35.80 0.40 

4 
(EW) 1.14 0.19 1.14 0.58 34.35 2.1-4.4 

5 
(NS) 1.30 0.24 1.30 0.43 47.61 0.50 

6 
(Torsion) 2.04 0.14 2.04 0.49 29.25 0.48 

7 
(EW) 2.63 0.16 2.59 0.78 22.87 0.30 

8 
(NS) 2.86 0.14 2.83 0.68 24.43 0.90-1.30 

9 
(Torsion) 3.74 0.26 3.72 1.58 21.76 1.30 

10 
(EW) 4.12 0.23 4.12 1.18 29.33 0.59-0.70 

11 
(NS) 4.34 0.13 4.34 0.72 22.95 1.70 

12 
(Torsion) 5.20 0.33 5.17 1.05 23.76 2.60 

Identified most probable frequencies and damping ratios, and the previous results 

obtained by Çelebi et al. (2013) are presented in Table 2.11. In the study by Çelebi et al. 

1 (EW)
2 (NS)

3 (Tors.)
4 (EW) 5 (NS)

6 (Tors.)

7 (EW)
8 (NS)

9 (Tors.)

10 (EW) 11 (NS)
12 (Tors.)
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(2013), the frequency and damping values are obtained by SSI-COV using the MATLAB-

System Identification Toolbox. They separated the acceleration responses in two parts 

along the East-West (EW) direction as EW1 and EW2. Here, EW1 and EW2 denote the 

acceleration responses in the EW direction obtained at the left bottom, and right upper 

sides of the plan view, respectively. For this reason, two different results are given for 

damping ratios in the EW direction. Results show that the identified most probable 

frequencies are similar with Çelebi et al. (2013).  However, damping ratios do not match. 

These results may be considered as reasonable incorporating the larger variations in 

posterior uncertainty. Here, posterior c.o.v. of frequency values vary from 0.13 to 0.75. 

However, the c.o.v. increases up to 41.17% for damping ratio. In addition, the identified 

spectral densities of modal excitation and prediction error, and root modal signal-to-noise 

ratios are presented in Table 2.12. 

 

Table 2.12. Identification results for the spectral density of modal excitation and 
prediction error, and root signal-to-noise ratio 

Mode  

Number 

S Se 
 

MPV (μg2/Hz.) c.o.v. (%) MPV (μg2/Hz.) c.o.v. (%) 

1 
(EW) 3.5908 19.64 1.0730 3.59 50.24 

2 
(NS) 2.4160 29.54 0.3348 4.51 80.81 

3 
(Torsion) 0.1436 13.78 0.1112 2.26 66.38 

4 
(EW) 0.1653 13.35 0.1546 2.54 88.64 

5 
(NS) 0.0915 37.97 0.1553 5.75 89.11 

6 
(Torsion) 0.0210 14.17 0.0772 2.26 53.50 

7 
(EW) 0.9776 15.50 0.2250 2.56 133.14 

8 
(NS) 0.3370 17.45 0.0989 2.82 136.11 

9 
(Torsion) 0.0340 24.95 0.5061 2.18 8.19 

10 
(EW) 0.3483 36.88 0.2123 3.42 54.20 

11 
(NS) 0.1938 20.81 0.1145 2.86 90.74 

12 
(Torsion) 0.0560 35.18 0.4808 2.71 16.28 
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Figure 2.21. 3D view of the identified mode shapes 

 

Figure 2.22. EMAC values with ± standard deviations 

Figure 2.21 shows the 3D view of the identified mode shapes. In addition, the 

EMAC values, and calculated posterior standard deviations are presented in Figure 2.22. 

Calculated EMAC values that are close to 1 show that the quality of identified mode 

EW

NS
V

V

NS
NS

EW

V

NS

V

EW EW

NSV

V

NS

EW

V
NS

EW

V
NS

EW

V
NS

EW

V
NS

EW

V
NS

EW

V
NS

EW

MODE -7 MODE -8 MODE -9 MODE -10 MODE -11 MODE -12

MODE -1 MODE -2 MODE -3 MODE -4 MODE -5 MODE -6



51 
 

shapes is good. A direct relation is not observed between the EMAC and posterior 

standard deviation. The larger uncertainty arises in the 9th mode with the EMAC value of 

0.9986. However, the remaining ones do not show a proportional relation.  

Figure 2.23 presents exact posterior coefficient of variation values by the 

proposed methodology versus the values obtained by using the uncertainty laws. Results 

show that the exact values well matched with the results obtained by uncertainty laws. 

Due to the quality of data (large signal-to-noise ratio) the observed convergence is 

considered to be reasonable. 

 

  
Figure 2.23. Comparison of exact c.o.v. values with uncertainty laws 
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Figure 2.24. Identified mode shapes by using NS data 

 

Figure 2.25. Identified mode shapes by using EW1 data 
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Figure 2.26. Identified mode shapes by using EW2 data 

 

Figure 2.27. Identified torsional mode shapes by using EW1 and EW2 data 

For comparison purposes, 2D view of the calculated modes shapes in this study 

and by Çelebi et al. (2013) are presented in Figure 2.24, Figure 2.25, Figure 2.26 and 
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Figure 2.27. The mode shapes in the EW direction are separated as EW1 and EW2 to be 

comparable to the study by Çelebi et al. (2013). In the global sense, the presented mode 

shapes match well, except for EW1 and EW2. At the second and fifth modes for EW1, 

and fifth mode for EW2, the results by Çelebi et al. (2013) show some distortions which 

are not compatible with the expectation of the general mode shapes.  

 

2.8. Concluding Remarks 
 

  In this chapter, a review for the theoretical background of frequency based 

BAYOMA methods and available algorithms for well separated modes are presented. For 

posterior uncertainty quantification, an alternative method for the calculation of posterior 

covariance matrix is proposed. Numerical and experimental analysis are presented to 

illustrate the advantages and disadvantages of BAYOMA. The results are summarized 

below. 

 Although BSDA and BFFTA are motivated from different statistical properties of 

measured data, it is seen that the final form of objective functions obtained for 

both methods are same. The solution of the objective function in its original form 

requires too much computational effort due to very small signal-to-noise ratio 

without the dominant frequency band. For this reason, working on a selected 

frequency band becomes useful much more.  

 In case of well separated modes, the solution procedure can be simplified. In this 

procedure, a two-stage approach can be applied. At first stage, only spectral 

parameters are identified via condensed objective function. At second stage, the 

optimal mode shape vector can be obtained by minimizing the likelihood function 

centered at the MPV of spectral parameters identified. The most critical point in 

this two-stage approach is to effect of norm constraints on the singularity of 

posterior covariance matrix 

 One of the most prominent advantages of BAYAMO is to provide an estimation 

for posterior uncertainty. In the calculations for posterior statistics, the two-stage 

approach can also be applied. Based on this idea, an alternative methodology is 

presented in this study. Numerical results indicate that the proposed methodology 

requires less computational time when compared to the fast calculation scheme 

by Au and Xie (2017).
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CHAPTER 3 

 

COMPUTATIONAL ISSUES IN BAYOMA 

 
3.1. Introduction 

 

Frequency domain BAYOMA provides an efficient methodology to determine the 

most probable modal parameters as well as their uncertainties. In case of well-separated 

modes, BAYOMA can be modified to a fast algorithm which assumes that only a single 

mode is available within a selected frequency band. Thus, the considered system is 

modeled as an equivalent single mode system. This assumption has a modelling error due 

to the contribution of unmodeled modes within the selected band. BAYOMA is also 

capable of identifying the level of this modelling error together with instrumental and 

environmental noise effect. 

The effect of modelling error results in an ill-conditioned fast BAYOMA 

algorithm in case of closely spaced modes. Therefore, a different algorithm is needed to 

model this type of problem. Au (2012b) and (2012c) presented an efficient method to 

identify the most probable modal parameters and posterior uncertainties for closely 

spaced modes. This algorithm revises the expected covariance matrix of measured 

response so that it comprises the possible modes within a selected frequency band. In 

addition, the modelling error may cause significant discrepancy between the identified 

MPVs and their actual values even for the well-separated modes. This problem is widely 

seen in case of the mode of interest being buried by unmodeled mode(s). A solution 

procedure for this problem is presented by Zhu et al. (2019) for a special case in which 

the burying mode appears at a lower frequency than the buried mode. 

This chapter presents a revisit for the possible computational issues in regard to 

the modelling errors. First, the closely spaced mode algorithm that is proposed by Au 

(2012b) and (2012c) is reviewed, and a modified algorithm is presented to reduce the 

computational effort. Second, the effect of modelling error is investigated. Third, the 

problem of buried mode case and their solution procedure are investigated. Finally, three 

numerical examples are presented that addresses all these problems, and the results are 

discussed.  
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3.2. Closely Spaced Modes 
 

The fast algorithm presented by Au (2011a) works well only in the case of well 

separated modes. If two or more modes are available in the selected frequency band, the 

previous procedure might not be successful in the determination of most probable modal 

parameters since the response is dominated by multiple modes. To overcome this 

problem, an efficient iterative method is presented by  Au (2012b). In this method, the 

expected spectral density of measured response is written as below,  

 Φ H ΦT
k k e NN N N N N Nm m m m

E S I  (3.1) 

where  
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Here, Nm = number of modes within the selected band and N= number of measurement 

points. The inverse and determinant of Ek can be obtained as follows by making use of 

the matrix inversion and determinant lemma. 
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1 1
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 (3.3) 

The negative-logarithm likelihood function can be obtained by using Eq. (3.3). The main 

problem in the minimization process arises on the problem that the phase angle between 

the mode shapes, and the imaginary and real part of the cross spectral densities. To 

overcome this problem, the mode shape basis can be defined via its singular value 

decomposition as below. 

Φ UΣV

U ; ΣV
0

T

m NmT
N m N N m N N N m Nm N Nm

α
B B

 (3.4) 

where . Hence, the modal shape vector can be written as below (Au, 

2012b). 
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Φ Bα  (3.5) 

Here, B and  denote the orthonormal basis within the mode shape subspace, and position 

of each mode shape vector with respect to B, respectively (Au, 2012b). Substituting Eq. 

(3.5) into Eq. (3.3), and after some mathematical manipulations, the inverse and 

determinant of Ek can be obtained as below. 
11 1 1 1

11 1 1

1 1 1=

T T T
k e N e s s s e k s

T T T
e N e s k s s k s e k

T
e N e N e km

N NT m
k e N s s k em

N Nm
k e

E S I S Bα α α S H α B

S I S Bα H α α H α S H B

S I S B I S E B

E S I α α H S

E S

 (3.6) 

where,  

T
k s k s e mE α H α S I  (3.7) 

and 
*

1 11

*
1

1 11

1 . . .

.. . . .

.. . . .

.. . . .
. . . 1

. . . ;

Nm kk

k

kNkm N mm N Nm m

s m mm ij ij ii jjm m

χ hh

H diag diag

hh χ

α α S α S χ S S S

(3.8) 

Here,  = coherence between ith and jth modal excitations. Substituting Eq. (3.3) into Eq. 

(2.19)  the likelihood function for modal parameters can be arranged as; 
1

* 1

* *

ln ln

;

f f ε ε k
k

k k k
k

T
k k k k k k

k

L θ NN π N m N S S κ E

F E F

F B F κ F F F F

 
(3.9) 

subjected to norm constraint, BTB = IN. Eq. (3.9) can be minimized by following a two-

stage procedure. Au (2012b) stated that the MPV of spectrum parameters can be 

determined under the constraint of . To preserve this constraint,  can be 

defined by the following equation (Au, 2012b). 
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1 1

sin

sin ; tan Im / Re

vij
ij ij

ij ij ij ij ij

χ u e

u χ v χ χ

i

 (3.10) 

In this study, however, it is analytically proved that can be assumed as a real number 

(see Appendix C). Thus, the coherence can be written according to the free parameter of 

uij without referring to vij.  

sinij ijχ u  (3.11) 

At the second step, the mode shape basis, B can be obtained by minimizing Eq. (3.9). In 

the conventional Bayesian algorithm by Au (2012b), the equality constraint of  

is preserved by the hyper-angle representation of B. Recently, a less time -consuming 

method by using the Cayley transformation based on the Crank-Nicholson type updating 

scheme was presented by Zhu et al (2019). According to this scheme, B is updated as 

follows (Wen and Yin, 2013). 

* *

2
T T

τB τ B A B B τ

A GB BG
 (3.12) 

where τ = step size, B*(τ) = updated value of B, and G = the gradient of L(θ) with respect 

to B (see Appendix B for details). 

1 * 12 Ree k k N e km
k

L θ
G S F F B I S E

B
 (3.13) 

Solving Eq. (3.12) for B*(τ) gives 
1

* A A
2 2m m
τ τB τ I I B  (3.14) 

In addition, within a selected band, the number of modal parameters to be 

identified is obtained as below.  
2

PSD of predictionfrequency damping PSD of modal mode shape errorratio excitation coordinate

2 2

1

1

θ m m m m

m m m

N N N N N N

N N N O N

 (3.15) 

 

3.3. Effect of Modelling Error 
 

BAYOMA formulation for well-separated modes assumes that only a single mode 

is dominant within the selected frequency band. The effects of the remaining modes are 
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assumed to be very small. Therefore, a single mode system can be modelled in the 

considered frequency band. If remaining modes have small contributions on the response 

within the selected band, they might cause an error in the computational procedure. This 

modelling error needs to be quantified in the analysis process. Au (2017) defines this 

modelling error as a ratio of the PSD of unmodeled mode(s) to the dominant mode. This 

ratio can be written as follows when there is only one mode of interest within the selected 

band. 

     
2

22 2 2 2 2

ˆˆ4
ˆ ˆ ˆ ˆ ˆ1 4

j i
m

j i j j i

S ξ
ρ

f f ξ f f
 (3.16) 

where i and j denote the mode of interest and the unmodeled mode, respectively. Eq. 

(3.16) can be arranged as below in case of small damping ratio. 

     

2 22 2 2 2 2 2 2

1 2

22 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 4 1

ˆˆ ˆ4
ˆ ˆ1

j i j j i j i

j i i
m

j i

f f ξ f f f f

S S ξ
ρ

f f

 (3.17) 

To illustrate the modeling error concept, a simple example is considered. For this 

purpose, a three degree of freedom system is analytically modelled with the natural 

frequencies of 1, 3, and 5 Hz, and 1% modal damping ratio. Two different scenarios are 

considered for modal excitation levels. These are; Scenario I: S1=S2=S3=100 μg2/Hz, and 

Scenario II: S1=300 μg2/Hz, S2=100 μg2/Hz, and S3=50 μg2/Hz. In addition, the prediction 

error is assumed to be zero in order to see the modelling error effect only. 

Figure 3.1 presents the SV spectrum of uncoupled modal and total responses 

obtained for Scenario I and II in frequency domain. It is seen that the spectral density of 

total response is higher than the individual (uncoupled) modal values. The difference 

between the total and uncoupled modal responses indicates the modeling error level due 

to the single mode assumption. In case of uniform modal excitation level for all modes, 

the spectral density of total response shows an error of about 6 and 14 % for 2nd and 3rd 

mode, respectively. In case of non-uniform modal excitation level, however, the increase 

in the error exceeds to 40% for 3rd mode. 

A numerical example for a further investigation of the effect of modelling error 

ratio on the identification quality is presented in Section 3.6.2. 
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Figure 3.1. Effect of modelling error on the SV spectrum 

 

3.4. Buried Mode Case 
 

Modelling error might cause big computational issues when an unmodeled mode 

is dominant within the select band for the mode of interest. In this case, the response of 

the mode of interest might not be adequately large and/or cannot be easily perceptible. 

Figure 3.2 illustrates the burying mode case. Here, it is seen that the mode of interest 

named as “buried mode” is highly dominated by the burying mode(s) (Zhu et al. 2019). 

To overcome this problem, Zhu et al. (2019) presented an algorithm which is a 

modified form of the procedure for closely spaced modes. In this algorithm, however, 

only the case of the burying mode being on the left side of the buried mode is considered. 

In addition, the burying mode should be quite far away from the buried mode. When the 

buried and buried modes are not enough far away from each other, the problem can also 

be solved by closely spaced mode algorithm. However, the computational time and 

posterior uncertainty may increase due to the large bandwidth selection. To overcome this 

problem, a more general solution for example the case of the burying mode being on the 

right side and/or on both sides of buried mode can be also modeled by following a similar 

procedure. For this purpose, a general approach that covers some possible cases is 

presented in this study. According to this approach, the expected spectral density matrix 

of the acceleration response is constructed based on the procedure given in Section 3.2. 
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Here, the transfer function(s) for burying mode(s) are assumed to be initially estimated 

via the most probable frequency and damping ratios that are determined by using the 

BAYOMA formulation for single modes.  

 

 Figure 3.2. Possible scenarios for buried mode case 
 

It can be seen in Eq. (3.2), that the range of the modelling error ratio, ρm, can be 

as small as zero and may be larger than unity. If the error is close to zero, the single mode 

identification procedure is used. A buried mode identification approach is necessary, 

however, for considerably large modelling error ratios. This case will be addressed by 

using a numerical study in Section 0. For a more general solution, the expected spectral 

density matrix of the measured response can be written as below.  

*

*

*

ˆ ˆ0 0 0 0
Φ 0 0 0 0 Φ

ˆ ˆ0 0 0 0

ki ii ni ji ki
T

k kn in nn jn kn e N

ij nj jjkj kj

h S S S h
E h S S S h S I

S S Sh h

 (3.18) 

In Eq. (3.18), i and j = indices for burying modes, n denotes the buried mode, and “^” 

denotes MPV of hki and hkj that are obtained by single mode approach within the resonant 

frequency band of burying mode. Here, only the spectral densities and mode shapes of 

Burying mode

Buried mode

Burying mode

Buried mode

Burying mode

Buried mode
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the burying modes need to be determined in addition to the modal parameters of buried 

mode. Thus, the number of modal parameters to be identified is obtained as; 
2

frequency damping PSD of predictionPSD of modal mode shaperatio errorexcitation coordinate

1 1 1

3

θ m m

m m

N N N N

N N N
 (3.19) 

 This approach can be simplified for some special cases in which the burying and 

buried modes are quite far away from each other (Zhu et al. 2019). These special cases 

can be classified depending on the location of burying modes. 

 

3.4.1. Special Case I: Burying Mode on the Left Side 
 

If it is assumed that only two possible modes are available in the selected 

frequency band, and the burying mode being on the left side, kj can be written as; 

     
2

1ˆ 1
1 2ki

ki i ki

h
β ξ βi

 (3.20) 

assuming . Thus, the spectral density matrix within the selected can be 

written as below. 

*

1 0 1 0
Φ Φ

0 0
ii in T

k e N
kn ni nn kn

S S
E S I

h S S h
 (3.21) 

where  

 

3.4.2. Special Case II: Burying Mode on the Right Side 
 

If the burying modes being on the right side of the mode of interest and these 

modes are quite far away from each other, again two modes will dominate the measured 

response. In this case, the transfer function can be arranged as below assuming  

. 

     2
2

1
1 2kj kj

kj j kj

h β
β ξ βi

 (3.22) 

Thus, the expected spectral density matrix of the acceleration response can be written as. 
*

2 2

0 0
Φ Φ

0 0
kn nn nj kn T

k e N
kj jn jj kj

h S S h
E S I

β S S β
 (3.23) 
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3.4.3. Special Case III: Burying Mode on Both Sides 
 

When the possible mode within a selected band is buried by two modes, the three 

modes, (i) the mode on the left side, (ii) the mode of interest, and (iii) the mode on the 

right side should be considered in the construction of the expected spectral density matrix. 

In this case, Ek is written as below assuming  and . 

*

2 2

1 0 0 1 0 0
Φ 0 0 0 0 Φ

ˆ ˆ0 0 0 0

ii ni ji
T

k kn in nn jn kn e N

ij nj jjkj kj

S S S
E h S S S h S I

S S Sβ β

 (3.24) 

 

3.5. Summary of Procedures 
 

The solution of multiple and buried mode problems can be obtained by following 

the same computational procedure for closely spaced modes. Here, the number of modal 

parameters to be identified will only show variance based on the type of problem. The 

initial guess for frequencies can be set to the excitation frequency at the peak value of 

singular value spectrum. Damping ratios can be initially chosen as 1% as it is suggested 

by Au (2012b). Initial guess of S can be calculated from the corresponding peak value of 

the singular value spectrum. Au (2012b) suggests the following approach that assumes 

large signal-to-noise ratio for the initial calculation of B and Se. According to this 

approach, assuming SiiDkii/Se = SjjDkjj/Se  yields 

1 1 10 ;N mT T
e k k e k e NS BE B E S E S I BB  (3.25) 

Thus, the negative-logarithm likelihood function is obtained as, 

1 1

1
Δ

m
T

f e e e i i
i

L θ N m N S S κ S B B  (3.26) 

where 
* *; Δ Re( )k k k k

k k
κ F F F F  (3.27) 

Thus, the initial guess for Se can be obtained as follows by minimizing L(θ). 
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* *

1
Δ

e
f m

m
T T
i i k k k k

i k

κS
N N N

κ B B F F F B BF
 (3.28) 

The initial guess for B can be obtained as the eigenvectors that correspond to the 

largest m eigenvalues of ∆. Finally, the initial guess for α can be obtained by a reverse 

calculation of Eq. (3.5) as below.  
1

ΦT Tα B B B  (3.29) 

 

 
Figure 3.3 Flowchart for the solution procedure of multiple and buried modes 

A flowchart for the overall computational procedure is presented in Figure 3.3. 

The proposed flowchart has a small modification based on the fact that the modelling of 

coherence, χij.  For buried mode case, different from the closely spaced modes, the 

frequency and damping values of the burying modes are not considered as the parameters 

to be identified. These parameters are assumed to be initially estimated and assigned to 
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the MPVs that are obtained by the single mode approach for the burying modes, 

separately.   

 

3.6. Numerical Analysis 
 

In this section, first, a numerical example is presented to validate proposed 

modification for closely spaced modes. Second, the effect of modelling error on the 

parameter estimation quality is investigated. Finally, a numerical example is presented 

for the considered buried mode cases. 

 

3.6.1. Closely Spaced Modes 
 

A six-story shear frame structure with closely spaced modes is investigated in this 

section. The natural frequencies of the structure are arranged as 1.00 and 1.03 Hz for first 

two modes, respectively. Modal damping ratio is set to 1.00 %. Free vibration mode 

shapes are considered as [0.1048, 0.2097, 0.3145, 0.4193, 0.5241, 0.6290]T, and [0.3354, 

0.5590, 0.4472, 0.1118, -0.2236, -0.5590]T for the first two modes, respectively. Two 

different i.i.d. Gaussian modal excitations are generated with PSD of 1μg2/Hz. The 

acceleration data of each story is acquired in 300 sec duration with 100 Hz sampling 

frequency. The prediction error for the measured acceleration data is set to have 1μg2/Hz 

spectral density. 

 

 

Figure 3.4. Maximum singular value spectrum and selected frequency band  
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Maximum singular value spectrum of the acceleration response and the selected 

bandwidth with possible modes are presented in Figure 3.4. Identified mode shapes are 

presented in Figure 3.5. A reasonable convergence is observed for the mode. In addition, 

identification results for spectrum parameters are presented in  

Table 3.1, 3.2 and 3.3 which show good convergence with the analytical values. 

Note that this study is based on a single trial with a randomly generated i.i.d. Gaussian 

white noise excitation. The identification uncertainties may undergo variations among 

different trials. 

As a result, the presented modification is verified by the numerical analysis. 

Hereby, it is shown that the estimation quality is preserved by the proposed modification, 

while the number of parameters to be identified is reduced. 

 
Figure 3.5. Identified mode shapes and their analytical values 

 

Table 3.1. Identified frequencies and damping ratios 

Mode 

number 

f (Hz.) ξ (%) 

Exact MPV c.o.v. (%) Exact MPV c.o.v. (%) 

1 1.000 1.002 0.13 1.00 1.08 19.63 

2 1.030 1.032 0.18 1.00 1.02 20.71 
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Table 3.2. PSD of modal excitations and prediction error 

Mode 
number 

PSD of modal excitation, Sii PSD of prediction error, Se 

Exact MPV c.o.v. (%) Exact MPV c.o.v. (%) 
1 1.00 0.97 44.82 

1 1.07 29.46 2 1.00 1.09 49.14 

 

Table 3.3. Free parameter, uij for cross PSD of modal excitation 

Exact  MPV  c.o.v. (%) 

-0.1297 -0.1579 43.25 

 

3.6.2. Effect of Modelling Error 
 

In this section, the six-story structure that is given in the previous numerical 

example is investigated again by a small modification to show the effect of modelling 

error on the identification quality. Different from the previous example, the fundamental 

frequencies for first two modes are considered as f1 = 1 Hz, f2 = 3 Hz. The spectral density 

of modal excitation for the first mode is taken as S1=1.00 μg2/Hz. The spectral density of 

modal excitation of the second mode is arranged in ascending order so that the modelling 

error ratio is between ρm=0 and ρm=1. 

 

Figure 3.6. Variations in identified modal parameters versus modelling error ratio (with 

+- standard deviations)  
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Figure 3.6 presents the identified MPV of modal parameters and their posterior 

standard deviations with respect to the modelling error ratio. Additionally, the MAC 

values between the identified mode shapes and their analytical values are presented in 

Figure 3.7. The MAC values are not acceptable for modelling error ratios larger than 0.1. 

Therefore, it is not reasonable to apply the single mode approximation for the mode of 

interest. To improve the identification quality, it is suggested to investigate the 

corresponding mode by the burying mode approach when ρm > 0.1. 

 

Figure 3.7. Variations in MAC values with respect to the modelling error ratio 

 

3.6.3. Buried Mode Case 
 

Again, a six-story shear frame is considered in this example. The first three natural 

frequencies and damping ratios of the structure is considered as f1=1.00 Hz, f2=3.00 Hz 

and f3=5.00 Hz, ξ1=ξ2=ξ3=1% for the first three modes. The free vibration mode shapes 

are considered as 1 = [0.1048, 0.2097, 0.3145, 0.4193, 0.5241, 0.6290]T, 2 = [0.3354, 

0.5590, 0.4472, 0.1118, -0.2236, -0.5590]T, and 3 = [0.4170, 0.6255, 0.2085, -0.4170, -

0.2085, 0.4170]T. Three different cases are considered: (i) Case-I: burying mode on the 

left side, (ii) Case-II: burying mode on the right side, (iii) burying modes on both sides. 

The structure is subjected to i.i.d. Gaussian excitations with modal PSD of 500 μg2/Hz for 

burying modes, and 1 μg2/Hz for buried modes, respectively, for all cases. Similarly, the 

measured acceleration responses are considered to have a prediction error with 1 μg2/Hz. 

The maximum singular value spectrums of the acceleration responses are presented below 

for Case-I, II and III (see Figure 3.8). 



69 
 

Identified fundamental frequencies and damping ratios for burying modes are 

presented in Table 3.4. Here, the modal parameters of buried modes are obtained by the 

BFFTA algorithm for well separated modes. At the next step, the modal properties of the 

buried mode are identified by using the presented algorithm for buried mode case. 

Identified results for burying and buried modes case are presented in Table 3.4 and Table 

3.5. It is seen that the identified parameters well match with the analytical values.  

 

 

Figure 3.8. Identified mode shapes and their analytical values for Case-I, II and III 

 

Table 3.4. Identified frequencies and damping ratios for burying modes 

Burying mode 

location 

Case-I Case-II Case-III 

f (Hz) ξ (%) f (Hz) ξ (%) f (Hz) ξ (%) 

Left side 1.0015 1.0124 - - 1.0126 0.9913 

Right side - - 2.9998 1.0236 5.0183 0..9896 
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Table 3.5. Identified modal parameters for buried modes 

Case f (Hz) 
c.o.v. 

(%) 
ξ (%) 

c.o.v. 

(%) 

S 

(μg2/Hz) 

c.o.v. 

(%) 

Se 

(μg2/Hz) 

c.o.v. 

(%) 

I 2.9956 0.18 1.02 32.74 1.18 66.25 1.21 33.48 

II 1.0126 0.22 0.97 29.26 1.18 62.36 1.32 38.66 

III 3.0216 0.36 1.03 41.42 1.23 71.21 1.56 45.29 

 

 

Figure 3.9. Identified mode shapes and their analytical values for Case-I, II and III 

Case-IICase-I

Case-III
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Figure 3.9 presents the identified mode shapes and their analytical values. Here, 

identified mode shapes for burying modes denote the MPVs within the dominant 

frequency band for buried mode. Note that the modelling error is calculated as 0.158 for 

all cases. The identified mode shapes for buried modes show good convergence to the 

analytical values for Case-I, II and III.  

 

3.7. Concluding Remarks 
 

This chapter investigates some computational issues in BAYOMA which have 

been reported previously in the literature. First, the solution procedure that was previously 

proposed in the literature for the multiple (closely spaced) mode problem is investigated. 

Here, a small modification is proposed for the computational procedure to decrease the 

number of parameters to be identified in the analysis. Second, the effect of modelling 

error on the identification quality is investigated. Finally, the buried mode case is 

investigated, and a generalized solution is proposed. The analytical derivation of the 

posterior covariance for multiple mode case is available in the literature (Au 2012c). In 

this study, similarly, the posterior covariance matrix is obtained by using the fast 

calculation scheme proposed by Au and Xie (2017). In this calculation, different from Au 

(2012c), the derivatives of the likelihood function are obtained by reformulation of the 

expected spectral density matrix of modal excitation (see Appendix C). In addition, the 

dimension of the Hessian matrix is less than the conventional approach due to the reduced 

number of modal parameters to be identified.  

 It is analytically proven that the the coherence between the ith and jth modal 

excitation can be assumed as a real number. Therefore, the free parameter of vij 

becomes unnecessary, and this modification reduces the number of parameters to 

be updated during the iterations as well as the computational time and effort. 

 As it is reported in the literature larger modelling errors makes the single mode 

assumption unreasonable within the selected frequency band. According to the 

results of this study, the buried mode case should be considered when the modelling 

error ratio is significantly large (ρm > 0.1).   

 In the literature, a special case in which the burying mode is located on the left side 

of the buried mode has been investigated. This study proposes a generalized 

methodology in which the modal parameters of burying modes are assumed as 



72 
 

partially known. Numerical results show that the proposed procedure gives 

reasonable results with respect to various scenarios for the location of burying 

modes. 
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CHAPTER 4 

 

TWO-STAGE BAYESIAN MODE SHAPE ASSEMBLY 

TECHNIQUE FOR MULTIPLE SETUPS 

 
4.1. Introduction 

 

In large scale structures, monitoring of the change in modal parameters has a 

direct effect to make decisions after extreme events (such as earthquakes, tornadoes, etc.). 

For this reason, a full scaled monitoring of change in modal parameters becomes 

necessary.  In the literature, it is known that the modal parameter estimation process in 

large scaled structures requires more computational effort due to the insufficient number 

of measurement instruments (such as accelerometer, data acquisition devices). This case 

makes it necessary to use multiple measurement setups in the identification process. Even 

though the natural frequencies and damping ratios can be obtained via the individual 

setups, obtaining the global mode shape that covers the all measurement setups arises as 

an issue. Essentially, there are two different methods in the literature to obtain the global 

mode shape vector; (i) Pre-identification, and (ii) Post identification methods. Pre-

identification methods are based on various scaling processes for FFTs to obtain a full set 

of synchronous measured data. In case of constant reference sensor (or sensors) and large 

signal-to-noise ratio, pre-identification methods are capable of obtaining the global mode 

shapes with an acceptable accuracy. However, the convergence of those methods reduces 

in case of roving sensors and/or relatively low signal levels due to the accumulated errors 

in scaling procedure (Döhler et al. 2011). 

Post identification methods are based on the assembly of local mode shapes that 

are identified in individual setups or direct estimation of global mode shapes incorporated 

by multiple setups. Here, the local least square approach comes forward as the most 

conventional one, but the results are highly sensitive to sensor configuration and 

estimation quality of local mode shapes. More efficient methods have been presented in 

the current decade for global mode shape assembly or estimation. Au (2011b) presented 

the Global Least Square Approach for the assembly of local mode shapes with an iterative 

algorithm. This iterative algorithm is based on the minimization of the equally weighted 
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discrepancies between the local part of global mode shape and identified local mode 

shape. In addition, some probabilistic approaches for mode shape assembly have also 

been developed based on the Bayesian inference. These methods are capable of 

identifying not only the global mode shapes but also their posterior uncertainties. There 

are two different approaches in the literature for Bayesian mode shape assembly. First, 

Au and Zhang (2012) presented a Bayesian approach for direct estimation of global mode 

shape vector and local spectrum variables incorporating the multiple measurement setups. 

Au (2017) modified the original algorithm that was presented by Au and Zhang (2012)  

and proposed a simplified iterative algorithm. In addition, a different Bayesian technique 

was presented by Yan and Katafygiotis (2015b) that is motivated by the Global Least 

Square Approach. Their approach is based on the assembling local mode shapes that are 

weighted by their posterior covariance matrices for local mode shapes at individual 

setups. 

The available Bayesian global mode shape identification methods (Au and Zhang, 

2012; Au, 2017; Yan and Katafygiotis, 2015b) are motivated from different approaches 

(BFFTA and BSDA) and follow different ways to estimate the most probable global mode 

shape. The basic motivation of this chapter is to develop an alternative mode shape 

assembly algorithm which results in same eigenvalue equations (for global mode shapes) 

that can be obtained by the aforementioned procedures. For this purpose, first, the two-

stage BFFTA by Au (2017) for single setup problems with well separated modes is 

adopted to multiple setups and a modified likelihood function for the global mode shape 

is derived. Second, the same solution is obtained by the Gaussian approximation for the 

most probable local mode shape vector. Finally, the weights of individual setups in the 

most probable global mode shape vector is obtained by using the expansion of Hessian 

matrix for local mode shapes. The final form of the proposed procedure does not need to 

identify local mode shapes separately. Instead, it utilizes the statistical information of 

Hessian matrix of the local mode shapes which can be derived by using only the local 

spectrum variables and FFT of measured data. According to the obtained results, it is seen 

that the proposed algorithm results in higher convergence speed when compared to the 

available BFFTA algorithm. 
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4.2. Non-Bayesian Methods 
 

Non-Bayesian mode shape assembly methods are based on scaling procedures for 

mode shapes in order to obtain the best fit between the reference DOF. Most conventional 

one is Local Least Square Approach in which all mode shapes are scaled with respect to 

a selected refence setup. Au (2011b) presented a Global Least Squares Approach which 

promises less computational effort and error when compared to the local least squares 

approach. In this section, a revisit for least squares approaches is presented. 

  

4.2.1. Local Least Squares Approach 
 

The local least square approach is conventionally used in modal identification 

with multiple setups. The method is based on the scaling of mode shape coordinates at 

reference DOFs among different measurement setups. For this purpose, a least squares 

estimation is applied to determine the scaling factor for the measurement group to be 

transformed to a selected reference group. This least square estimation can be obtained 

as below.  
T

ji i ji j i ji jJ c φ c φ φ c φ  (4.1) 

in which φi, φj = coordinates of local mode shape vectors at reference measurement points 

which belong to the ith and jth groups, cji = scaling factor between the groups i and j. φi, φj 

will be scalars if there is only a single reference point between the setups i and j. In explicit 

form, Eq. (2.1) can be rewritten as 

2T T T
ji i j ji i j ji j jJ c φ φ c φ φ c φ φ  (4.2) 

Taking the first order derivative of Eq. (4.2) with respect to cji gives the optimal 

value of cji as follows. 

2 2 0
T
i jT T

ji i j ji j j ji T
ji j j

φ φJ c φ φ c φ φ c
c φ φ

 (4.3) 

The local mode shapes identified in each group are scaled by the optimal cji. 

Finally, the global mode shape vector is assembled from the scaled local mode shapes. 

When the measurement groups have common reference sensors, this method generally 

gives reasonable results if the data quality is good for each setup. However, the results 

may be unreasonable in case of roving reference sensors among different setups. The 
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reason of this fact may be caused by the accumulated error in the scaling process from 

one group to another.   

 

4.2.2. Global Least Squares Approach 
 

A global least square approach is presented by Au (2011b) to mitigate the possible 

errors in the conventional local least square approach. In the global least square approach, 

the relative error (discrepancy) between local mode shapes that are identified in each 

group and the corresponding part of the global mode shape vector is minimized by the 

least square estimation given in Eq. (4.4).  

2ˆ ˆ ˆ ˆL Φ, Φ Φ Φ ΦT T T
i i i i i i i i i i i iJ α Γ rφ Γ rφ α Γ Γ r  (4.4) 

The least square estimation given in Eq. (4.4) is obtained for ith measurement 

group. Here, Φ denotes the N×1 global mode shape vector (N = # of total measured 

DOFs), i is Ni×1size identified (MPV) local mode shape vector with unit Euclidian norm 

(Ni = # of measured DOFs at each group), and ri is the norm of the local part of global 

mode shape vector. In addition, Γi denotes a Ni×N selection matrix for ith group. Selection 

matrix comprises the information of local measurement points versus total measured 

DOF. For example, when N=5, Ni=3, and only the first, second and fifth DOFs are 

measured in ith group, the selection matrix is written as 

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

iΓ  (4.5) 

Hence, the local part of the global mode shape vector and its norm at ith group is obtained 

as 

1/2

Φ

Φ Φ

i i

T T
i i i i

Φ Γ

r Φ Γ Γ
 (4.6) 

In addition, αi denotes the Lagrange multiplier that enforces the norm of the local mode 

shape to be equal to ri in Eq. (4.6). Thus, the first order derivative of Eq. (4.4) with respect 

to αi gives, 

ˆ

1

ˆ ˆ ˆ2Φ 2 2 0

ˆ ˆΦ 1

T T Ti
i i i i i i i

i α αi i
T T

i i i i

J Γ φ rφ φ α r
r

α r Γ φ

 (4.7) 
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At the MPV of αi  the second order derivative of Eq. (4.7) with respect to ri should 

be larger than zero. 
2

2
ˆ

1 1

ˆ ˆ2 2 0 1

ˆ ˆΦ 1 1 Φ 0

Ti
i i i i

i α αi i

T T T T
i i i i i i

J φ φ α α
r

r Γ φ r Γ φ

 (4.8) 

Thus, the optimal ri can be determined as follows. 

ˆ ˆsgn Φ ΦT T T
i i i ir Γ φ Γ  (4.9) 

where “sgn(.)” denotes the signum function. Since, the local mode shapes are considered 

as statistically independent parameters, the objective function that covers all setups can 

be written as below. 

2

1 1

ˆ ˆ ˆΦ, Φ Φ Φ Φ 1 Φ Φ
N Ns sT T T T

i i i i i i i i i i
i i

J β Γ rφ Γ rφ α Γ Γ r β (4.10) 

where β and Ns denotes the Lagrange multiplier that enforces the unit norm of global 

mode shape vector, and number of setups, respectively. Minimizing Eq. (4.10) with 

respect to Φ gives, 

1

ˆ ˆ ˆ2Φ 2 2 Φ 2 Φ 0

Φ Φ

Ns
T T T T T T

i i i i i i i i
i

Γ Γ rφ Γ α Γ Γ β

A b β
 (4.11) 

in which; 

1 1

ˆ1 ;
N Ns s

T T
i i i i i i

i i
A Γ α Γ b r Γ φ  (4.12) 

Eq. (4.11) is a constrained eigenvalue problem and can be solved by using the 

following augmented matrix (Au, 2011b).  
T

T
N

A bb
D

I A
 (4.13) 

The global mode shape vector can be obtained as the lower N×1 part of the 

eigenvector that corresponds to its minimum eigenvalue. It is seen that the solution of Eq. 

(4.13) requires an iterative procedure. To reduce the computational effort, an initial guess 

for global mode shape vector can be obtained by assuming that the partial mode shape is 

perfectly coherent with identified mode shape.  

ˆ ΦT
i ii

r φ Γ  (4.14) 
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Thus, the Lagrange multiplier, αi will be equal to zero, and the vector of b can be written 

as below. 

1

ˆ ˆ
Ns

T T
i i i i

i
b Γ φφ Γ  (4.15) 

Substituting Eq. (4.15) into Eq. (4.11) leads to 

1

ˆ ˆ Φ Φ
Ns

T T
i N i i ii

i
Γ I φφ Γ β  (4.16) 

The initial guess for the global mode shape vector can be obtained as the 

eigenvector that corresponds to the minimum eigenvalue of the following matrix. Overall 

computational procedure for global least squares approach is presented in Table 4.1. 

1

ˆ ˆ
Ns

T T
i N i i ii

i
Γ I φφ Γ  (4.17) 

 

Table 4.1. Iterative algorithm for the global least square approach 

Step 1: Set the initial guess for Φ by using Eq. (4.17) 

Step 2: Determine ri and αi by using Eqs. (4.6) and (4.7) 

Step 3: Determine Φ by using Eq. (4.13) 

Repeat Step 2 to 3 until convergence is reached 

 

4.3. Bayesian Methods 
 

The most probable value of the global mode shape vector from multiple setups 

can be estimated by a Bayesian Probabilistic Framework. In the literature, two different 

iterative methods are available: (i) Bayesian global mode shape estimation technique 

proposed by Au (2017), and (ii) Bayesian approach for mode shape assembly proposed 

by Yan and Katafygiotis (2015b). 

 

4.3.1. Bayesian Global Mode Shape Identification Technique 
 

Bayesian probabilistic approach for global mode shape estimation is first 

proposed by Au and Zhang (2012) as an iterative algorithm and modified by Au (2017). 

Based on the statistical properties of FFT of the measured acceleration data, the 
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conditional probability density function for the set of modal parameters in an individual 

setup, i, can be written as follows by using the Bayesian Inference.  

ki i i
i ki

ki

p Z θ p θ
p θ Z

p Z
 (4.18) 

Here, θi = [fi, ξi, i, Sei, φi], is the set of modal parameters to be identified and comprises 

the natural frequency, damping ratio, spectral density of modal excitation that is scaled 

with respect to the unit norm for local mode shape, spectral density of prediction error, 

and local mode shape vector (with unit norm) at ith setup, respectively. Here, the local 

mode shape corresponds to the measured DOF at ith setup. In addition, 

 denotes the augmented FFT vector of the measured response at 

the ith setup. In case of non-informative prior distribution for ,   can be 

assumed to be proportional to . With a large amount of measured data,  

follows a zero mean Gaussian distribution (Au and Zhang, 2012).  

1 112 exp
2

N Ti
i ki θ ki θ kii i

p θ Z π C Z C Z  (4.19) 

where Ni = # of measured DOF, Cθi = expected value of the covariance matrix, E[Zki Zki
T].  

*

*

Re( ) 01
2 0 Re( )

ki kiT
ki ki

ki ki

E F F
E Z Z

E F F
 (4.20) 

In addition, Fki= FFT of acceleration response, Nfi= # of data within the selected 

frequency band, = scaled PSD of modal excitation, and Sei= expected PSD of prediction 

error in the dominant frequency band at ith setup, respectively. The expected PSD of 

measured response, Eki, is written as below. 
* 2Re( ) ; ; ;T

k ki ki i ki i i ei Ni i i i i i i i iE E F F S D φφ S I S r S r ψ ψ rφ (4.21) 

where [.]*=conjugate transpose, ║.║= Euclidian norm, Fki = FFT of measured response 

at ith setup, i = spectral density of modal excitation that is scaled with respect to the unit 

norm of global mode shape vector, ψi = local mode shape with norm of ri, and INi = Ni × 

Ni size identity matrix. In addition, Dki is written as below. 
12 221 2 ;ki ki i ki ki i kD β ξ β β f f  (4.22) 

Thus, the negative log-likelihood function for the ith setup can be written as below. 

1

ln 1 ln lni i i fi fi ei i ki ei
k

T
ei i i i i

L θ N N π N S S D S

S κ φ Δφ
 (4.23) 
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where 
1

* *; Rei ki ei
i ki ki i ki ki

k k i ki ei

S D Sκ F F Δ F F
S D S

 (4.24) 

The local mode shapes identified in each setup are linearly independent (Au, 

2017). Therefore, the objective function for  can be written as below by using Eq. (4.23).  

1

1 2 2

1

Φ, , ln 1 ln ln

Φ Φ Φ Φ 1 Φ Φ

Ns

i fi fi e i ki ei
i k

Ns
T T T T T

e i i i i i i i i i
i

J α β N N π N S S D S

S κ r Γ Δ Γ α Γ Γ r β
 (4.25) 

Taking the first order derivative of Eq. (4.25) with respect to ri gives (Au, 2017) 

4
Φ Φˆ

T T
i i i

i
e i

Γ Δ Γα
S r

 (4.26) 

Taking the first order derivative of Eq. (4.25) with respect to  results in a standard 

eigenvalue-eigenvector problem as follows. 

2

1

Φ Φ

ˆ ;
Ns

T T
i i i i i i i

i

B β

B α L L A A r L ΔL
 (4.27) 

In case of large snr, and Sei can be obtained in same manner as it is explained 

in Chapter 2. 

1i ki ei

i kii ki ei

S D S
S DS D S

 (4.28) 

1;
1

i i
ei i ki ki

ki fi

κ λS S λ D
N N

 
(4.29) 

where 

*Φ Φ ; ; Re
Φ Φ

T T
i ki i

ki i ki ki k kT T
ki i

Γ Δ Γλ λ λ Δ F F
Γ Γ

 (4.30) 

Substituting Eqs. (4.28) and (4.29) into Eq. (4.25) and taking the first order 

derivative with respect to  leads to the following eigenvalue problem 

0

* *
0

1

Φ Φ

; max
Ns

T
i ki ki i i i ki ki

i k

A β

A Γ F F λ Γ λ eig F F
 (4.31) 

The high snr can be used for the initial guess of spectral parameters and global 

shape vector (Au, 2017). 
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4.3.2. Bayesian Mode Shape Assembly 
 

A Bayesian mode shape assembly method that is motivated from the global least 

squares approach is presented by Yan and Katafygiotis (2015b). The negative log-

likelihood function can be written by Gaussian Approximation as follows. 

1
ˆ

1 ˆ ˆln
2

T
i i i ki i i φ i ii

L φ p φ Z φ φ C φ φ  (4.32) 

where higher order terms can be neglected since the third and higher order derivatives of 

 will be equal to zero. Once the MPV of spectral parameters are determined, the 

objective function can be written to depend on the global mode shape only. 

1 2
ˆ

1 1

1 ˆ ˆΦ, , , Φ Φ Φ Φ 1
2

1 Φ Φ

N Ns sT T T
i i i φ i i i i i i ii

i i

T

J χ a β χ Γ φ C χ Γ φ α χ Γ Γ

β
 (4.33) 

in which χi
-1=±║Γiφ║, and αi, β are the Lagrange multipliers. In addition,  denotes the 

posterior covariance matrix for . Taking the first order derivative of Eq. (4.33) with 

respect to χi and solving for αi gives  
1 1
ˆ ˆˆΦ Φ Φ

ˆ
2Φ Φ 2Φ Φ

T T T
i φ i φ ii i i

i T T T T
i i i

Γ C Γ φ C Γ
α

Γ Γ Γ Γ
 (4.34) 

The minimum value of the objective function occurs when the Hessian of the 

objective function with respect to χi is larger than zero (Yan and Katafygiotis 2015b). 

2
21

ˆ2
ˆ

Φ Φ 2 Φ 0T T
φ i i ii i

i α αi i

J L C L α L
χ

 (4.35) 

Thus, the optimal values of χi and αi is obtained as (Yan and Katafygiotis 2015b). 
1 1
ˆ ˆ

11
ˆ

ˆΦ Γ Γ Φ Γ Φ
ˆ

2Φ Γ Γ Φ 2Φ Γ Γ Φ

ˆˆ sgn Φ Φ

T T T
i φ i φ ii i i

i T T T T
i i i i

T
i φ i ii i

C φ C
α

χ φ C Γ Γ

 (4.36) 

Substituting Eq. (4.36) into Eq. (4.33), and taking the first order derivative with respect 

to Φ leads to the following constrained eigenvalue problem.  

Φ ΦA b β  (4.37) 

where  

2 1 2 1
ˆ ˆ

1 1 1

1 1 ˆΓ Γ Γ Γ ; Γ
2 2

N N Ns s s
T T T

i i φ i i i i i i i φ ii i
i i i

A χ C α χ b χ C φ  (4.38) 
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Thus, the optimal value of Φ can be updated as eigenvector of the augmented 

matrix given in Eq. (4.13).  

 

4.4. Proposed Bayesian Algorithm 
 

In this section, an alternative mode shape assembly algorithm is presented. The 

two-stage Bayesian approach, which is previously applied for single setup problem by 

Au (2011a) is adopted to multiple setup case. At first stage of the proposed methodology, 

the MPV of spectrum variables are obtained by minimizing the local likelihood with 

respect to local spectrum variables. At second stage, a constrained negative logarithm 

likelihood function for local mode shape is obtained. Finally, the global mode shape 

vector is obtained by minimization of assembled local likelihood functions.  

 

4.4.1. Two-Stage BFFTA for Mode Shape Assembly 
 

The negative logarithm-likelihood function for  can be considered in two 

parts for well separated modes: (i) the first part only is sensitive to θsi= [fi, ξi, i, Sei], and 

(ii) the second part is sensitive to θi (Au, 2017). 
1

  Second Part
(Sensitive to )  First Part (Sensitive to )

ln 1 ln ln ΔT
i i i fi fi ei i ki ei ei i i i i

k
θθ isi

L θ N N π N S S D S S κ φ φ
cond Part

i i iφ φΔT
i iΔ

  Sec
(SenFirst Part (Sensitive to )

i fi fi ei i ki ei ei i
k

i ki ei ei ii fi fi ei

ec

 (4.39) 

The Most Probable Value (MPV) for each parameter can also be determined by 

the direct minimization of Eq. (4.39) as similar to the methodology presented in the 

Section 2.4.2. In this minimization process, the modal parameters including spectral 

parameters and mode shapes can be decoupled for computational simplicity. For globally 

identifiable problems, it is known that Eq. (4.39) has a unique minimum at the MPV of 

θi. For this reason, when the MPV of the local mode shape is considered, the second part 

of Eq. (4.39) can be represented as the function of θsi. 

ˆ ˆΔT
i i i i siφ φ θi siθi s  (4.40) 

Here, = MPV of local mode shape with unit norm (for ith setup). Thus, the negative 

logarithm-likelihood function will only depend on the spectral parameters when ii is 

substituted into Eq. (4.). 



83 
 

1ln 1 ln ln
i i si si i si

si si i fi fi e i ki e e i
k

L θ L θ θ

L θ N N π N S S D S S κ
i siθi s

 (4.41) 

The spectral parameters can be obtained by minimizing Eq. (4.41). It follows that 

the first part will be constant when the most probable value (MPV) of θsi is substituted 

into Eq.(4.39). An inclusion of a unit norm constraint for φi to the likelihood function 

(centered at the MPV of θsi) results in the following equation. 

ˆ ˆ ˆ, , Δ 1T T
i i i si si si i i i i i iJ φ λ θ L θ φ φ λ φ φ  (4.42) 

where  = optimal value of first part, and λi is the Lagrange multiplier that enforces 

the unit norm of the local mode shape. Minimization of Eq. (4.42) with respect to φi gives, 

ˆ

, ˆˆ ˆ2 Δ 2 0i i i T T
i i i i

i φ φi i

J φ λ
φ λ φ

φ
 (4.43) 

Eq. (4.43) can be solved as a standard eigenvalue problem which results in the 

MPV of φi. Further, it is seen that the optimal value of λi equals to the optimum ii which 

is equal to the maximum eigenvalue of .  

ˆ ˆˆ ˆΔT
i i i iλ φ φ  (4.44) 

At first stage, the most probable spectrum variables can be obtained by 

minimizing Eq. (4.41) with respect to θsi. At the next step, the constrained negative 

logarithm likelihood function (centered at the MPV of spectrum parameters) for local 

mode shape at an individual setup, is obtained by arranging Eq. (4.41),  as below.  

ˆ ˆ ˆ, , ΔT
i i i si si si i i i i iJ φ λ θ L θ λ φ λ φ  (4.45) 

Neglecting the constant terms that do not affect the variation of φi leads to the following 

relation.  

ˆ
1ˆ, ,
2

T
i i i si i φ ii

J φ λ θ φ H φ  (4.46) 

where, = Hessian matrix of  with respect to φi (with unit norm) at 

.   can be calculated numerically using finite difference method or can be derived 

analytically. For both procedures, the equality constraints that arises due to the norm of 

the local mode shape should be considered (Au, 2011a; Au and Xie, 2017). Otherwise, 

 will be a negative definite matrix, and therefore it will inevitably contradict the 

minimization nature of the MPV of mode shape (Au, 2011a).  can be analytically 
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derived by following the methodology that is proposed by Au and Xie (2017) or can be 

simply obtained by double differentiating of Eq. (4.45) with respect to . 

2

ˆ 2

ˆ

ˆ ˆ, , ˆˆ2Δ 2
i i i si

φ i i Ni i
i

φ φi i

J φ λ θ
H λ I

φ
 (4.47) 

The modal shapes of individual setups are statistically independent (Au and 

Zhang, 2012). Thus, the objective functions for each setup can be assembled by linear 

combination, and the resulting objective function for the global mode vector, Φ, under 

norm constraints can be written as follows by substituting , where Гi is the 

selection matrix that extracts the DOFs measured at ith setup. 

2 2
ˆ

1 1

1Φ, , , Φ Φ Φ Φ 1 Φ Φ
2

N Ns s
T T T T T

i i φ i i i i ii
i i

J α β r r Γ H Γ α Γ Γ r β (4.48) 

where α = [ α1, …, αNs), r = [ r1, …, rNs], αi = Lagrange multiplier for the norm constraint 

of ГiΦ = ri, and β = Lagrange multiplier that enforces the unit norm for Φ. The Lagrange 

multiplier αi is obtained at the minimum value of Eq. (4.48) with respect to ri. 
4

3
ˆ ˆˆΦ Φ 2 0 Φ Φ

2
T T T Ti

i i φ i i i i i φ ii i
i

rJ r Γ H Γ α r α Γ H Γ
r

 (4.49) 

Note that the second order derivative of the objective function with respect to ri is 

a non-negative value since  is semi-positive definite (Au, 2011a). 
2

4 4
ˆ ˆ2 ˆ3 Φ Φ 2 4 Φ Φ 0T T T T

i i φ i i i i φ ii i
i

J r Γ H Γ α r Γ H Γ
r

 (4.50) 

Minimizing Eq.(4.50) with respect to Φ leads to 

2
ˆ

ˆ 1 1Φ Φ

ˆ ˆ ˆˆΦ Φ 2 2 Φ 0
Φ

N Ns s
T T T T T

i i φ i i i ii
i i

J r Γ H Γ α Γ Γ β  (4.51) 

Thus, the most probable global mode shape vector is obtained by the solution of the 

following standard eigenvalue problem. 

ˆ ˆAΦ Φβ  (4.52) 

in which  

2
ˆ

1

1 ˆA 2
2

Ns
T

i i φ i Ni ii
i

Γ r H α I Γ  (4.53) 
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4.4.2. Alternative Solution by Gaussian Approximation  
 

In this section, it is shown that the solution for the global mode shape vector is 

unique regardless of the implemented assembly methodology. For this purpose, the final 

solution for the global mode shape in Eq. (4.52) is obtained by following a similar 

procedure to the method by Yan and Katafygiotis (2015b). Since the problem is globally 

identifiable, the conditional PDF for ith local mode shape centered at the MPV for 

spectrum variables can be estimated by Gaussian approximation. For this purpose, the 

conditional PDF for global mode shape can be written as below.  

1
Φ [ ... ] Φ

Ns

i N is
i

p φ φ p φ
 

(4.54) 

According to the Bayes’ theorem, the following equality can be constructed. 

Φ Φ
Φ i

i
i

p φ p
p φ

p φ
 (4.55) 

where,  and  denote the marginal and conditional prior distributions for  

and , respectively. Again, assuming a noninformative prior distribution for , 

 can be well estimated by Gaussian approximation around the MPV of local 

mode shape.  

/21 1 1
ˆ ˆ

1 ˆ ˆΦ Φ 2 exp Φ Φ
2

TN
i i φ i i i φ i i ii i

p φ p φ H π r Γ φ H r Γ φ  (4.56) 

where is used instead of the inverse of the posterior covariance matrix. Thus, the 

negative logarithm likelihood function of  is written as; 

1 1 1
ˆ ˆ

Φ, ln Φ

1 1 1 ˆ ˆΦ, ln ln Φ Φ
2 2 2

i i i

T

i i φ i i i φ i i ii i

L r p φ

L r N π H r Γ φ H r Γ φ
 (4.57) 

Applying the norm constraint for the local mode shape, the objective function for 

the ith setup is obtained as; 

2Φ, , Φ, Φ ΦT T
i i i i i i i i i

J α r L r α Γ Γ r  (4.58) 

Taking the first order derivative of Eq. (4.58) with respect to ri gives 

2 3
ˆ ˆˆΦ Φ Φ 2 0T T T Ti

i i φ i i i φ i i ii i
i

J r Γ H φ r Γ H Γ α r
r

 (4.59) 

Thus, the optimal value of αi is obtained as 
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4 3

ˆ ˆ
ˆˆ ˆΦ Φ Φ Φ

2 2
T T T Ti i

i φ i i φ ii i i

r rα Γ H Γ Γ H φ  (4.60) 

Finally, the objective function for the global mode vector under norm constraints is 

written as 

1 1 2
ˆ

1 1

1 ˆ ˆΦ, , , Φ Φ Φ Φ
2

1 Φ Φ

N Ns sT T T
i i i φ i i i i i ii i

i i

T

J α β r r Γ φ H r Γ φ α Γ Γ r

β
(4.61) 

Minimizing Eq. (4.61) with respect to Φ leads to the following constrained 

eigenvalue problem. 

2 1
ˆ

1 1

AΦ b Φ
1 1 ˆˆ ˆA 2 ; b
2 2

N Ns s
T T

i i φ i Ni i i i φ ii i
i i

β

Γ r H α I Γ r Γ H φ
 (4.62) 

The obtained constrained eigenvalue problem is similar to the result by Yan and 

Katafygiotis (2015b). For this alternative solution, however, Eq. (4.62) is reduced into a 

standard eigenvalue problem. For this purpose, the components of  can be expressed 

in terms of the eigenvalue decomposition of its two terms.  

ˆ

1 2

1 2

1 1

ˆ ˆˆ2Δ 2 2

ˆ . . .

ˆ2 . . .

max ,..., ;

T T
φ i i N ii i

i Ni

i Ni

T
N Ni i

H λ I UΣU λUU

U u φ u u

Σ diag σ λ σ σ

σ σ σ UU I

 (4.63) 

Then, the equivalent eigenvalue decomposition of  is written by combining the 

decomposed terms in Eq. (4.63). 

ˆ

2

2

ˆ . . .

ˆ ˆ0 2 . . . 2

T
φi

i Ni

i N ii

H UΣU

U φ u u

Σ diag σ λ σ λ

 (4.64) 

In Eq. (4.64),  is semi-positive definite with null vector, , and its eigenvalue 

that corresponds to  is equal to zero. Therefore, the vector of b will be a zero vector. 

Thus, Eq. (4.62) leads to the same standard eigenvalue problem that is given in Eq. (4.52). 
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4.4.3. Estimation of the Weights for Individual Setups 
 

In the assembly procedure, local mode shapes that are identified in the individual 

setups have a contribution to the global mode shape. The Global Least Square approach 

assumes that all setups are equally weighted, and their contribution is uniform. Bayesian 

methods, however, considers the weight of each setup incorporating the identification 

quality (Au and Zhang 2012; Yan and Katafygiotis, 2015b). In this context, Au and Zhang 

(2012) presents the following asymptotic weighting factor in case of large signal to noise 

ratio.     
2

i i
i

ei

r λw
S  

(4.65) 

in which  is the largest eigenvalue of . 

In case of lower signal-to-noise ratio, the weighting of each setup can also be 

calculated as depending on the data quality. For this purpose, the local Hessian matrix, 

 can be rewritten as follows by neglecting the zero-eigenvalue term along the local 

mode shape direction. 

ˆ
ˆ ˆ ˆ

1
φ Ti

φ N i ii i
i

δ
H I φφ

N
 (4.66) 

where  = sum of all eigenvalues of . By using Eq. (4.66), the optimal value of the 

Lagrange multiplier, αi, can be arranged as, 
4

ˆ 2ˆ ˆ ˆΦ Φ
1

i φ T T Ti
i i i i ii

i

r δ
α r Γ φφ Γ

N
 (4.67) 

Substituting Eqs. (4.66) and (4.67)  into Eq. (4.53) yields, 
2

ˆ

1

ˆ ˆ ˆA=
1

Ns
i φ T Ti

i i N i i ii
i i

r δ
Γ α I φφ Γ

N
 (4.68) 

where  

2 ˆ ˆ= Φ ΦT T T
i i i i i iα r Γ φφ Γ  (4.69) 

Thus, the weight of the ith setup in the optimal global mode shape can be calculated by 

the following formula. 
2

ˆ

2 1
i φi

i
i

r δ
w

N
 (4.70) 
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4.4.4. Posterior Uncertainty 
 

The assembled global mode shape vector has identification uncertainty, as well. 

To define this uncertainty, posterior covariance matrix should be calculated first. To 

obtain the posterior covariance matrix, the spectrum variables identified at each setup 

should also be included. Therefore, the Hessian matrix for local spectrum variables and 

global mode shape vector is obtained as follows 

, ,Φ

Φ, Φ,Φ

θ θ θs s s

N N N Nθ θ θs s s

θs
N NN Nθs N N N Nθ θs s

J J

J J
 (4.71) 

, ,Φ1 1 1

, ,Φ

, ,

. .
. .

. .

θ θ θs s s

θ θ θs s s

θ θ θ θs s s sN N N Ns s s s

J J

J J

J J

 (4.72) 

where , and  . Before obtaining the derivatives of the 

objective function, it should be noted that, the Lagrange multiplier of β can be defined as 

a function of . 

2
ˆ

1

1ˆ ˆˆΦ 2 Φ
2

Ns
T T

s i i φ si i Ni ii
i

β θ Γ r H θ α I Γ  (4.73) 

Thus,  is obtained as zero matrix. 

ˆ ˆ,Φ 2
ˆ

1 ˆ ˆ

2
ˆ

1 ˆ

ˆ ˆˆΦ 2 -2Φ

ˆ ˆ ˆˆΦ 2 ΦΦ

0

Nsθsi sT T T
i i φ si i Ni ii

isi siθ θ θ θsi si si si

Ns
T T T

i i φ si i Ni i Ni
isi θ θsi si

β θ
J Γ r H θ α I Γ

θ θ

Γ r H θ α I Γ I
θ

(4.74) 

Note that  is a semi-positive definite matrix whose null vector is equal to . 

Therefore,  will be a zero matrix. Thus, the Hessian of the objective function will 

be block diagonal matrix. 
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ˆ

Φ̂

0

0
θs

H

H
 

(4.75) 

where,  and  . Here,  is obtained as below. 

2
ˆ ˆΦ

1

ˆˆ2 2
Ns

T
i i φ i Ni i Ni

i
H Γ r H α I Γ βI  (4.76) 

It is seen that there is no correlation between the local spectrum parameters and global 

mode shape vector. For this reason, the posterior covariance matrix,  can be directly 

obtained by the inverse of Hessian, . However, this procedure inevitably causes 

numerical errors since the minimum eigenvalue of  might be equal to zero. Instead, 

pseudo inverse of  can be taken to calculate . Thus, the posterior covariance matrix 

for multiple setups is obtained as below. 
1
ˆ

Φ̂

0ˆ
0
θs

H
C

H
 (4.77) 

4.4.5. Summary of Procedure 

The proposed modified solution assembles mode shapes by using the probability 

distributions for local mode shapes centered at the local spectrum variables. For this 

reason, first, the spectrum variables at ith setup should be determined. Second, posterior 

distributions for local mode shapes should be obtained. In the calculation process, the 

initial guess for  and  can be calculated by using Eqs (4.28) and (4.29). 

When the local part of  is well matched with the identified local mode shape 

i (zero discrepancy), the Lagrange multiplier  can be expected to be equal to zero. 

Thus,  turns into the following form. 

1 2
ˆ

1

ˆˆ ˆ 0; A
Ns

T
i i i i i i φ ii

i
r ΓΦ φ α r Γ H Γ  (4.78) 

The initial guess of the global mode shape vector can be taken as the eigenvector 

of  (corresponding to minimum eigenvalue) in Eq. (4.53) by setting ri
 =1. 

The overall procedure of the proposed algorithm is presented in Figure 4.1. The 

main difference from Au (2017) resides in; 

 the application of two-stage BFFTA to multiple setups,  

 weighting of each setup by the Hessian matrix for local mode shapes 

 the calculation of initial guess, and  
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 the consideration of possible discrepancy between the local part of the global 

mode shape and the identified local mode shape.  

 

Figure 4.1.  Flow chart for the proposed algorithm 

 

The discrepancy is characterized by defining two different norm constraints for 

local mode shape. First one, , enforces the unit norm for φi, and the second one, , 

enforces that ri =║Гi Φ║. Here, the calculation of optimal φi is unnecessary. As the initial 

guess is close to the optimal value, the convergence speed in the iteration phase is 

expected to be increased.  

Although the theoretical background of the presented methodology is based on 

the approximation of well-separated modes, it can also be implemented for the closely 

spaced modes. In case of closely spaced modes, the Hessian matrix for the mode shape 

vector is also semi-positive definite due to the norm constraint singularity (see Appendix 

D). Therefore, the presented methodology can be directly applied for closely spaced mode 

END

START

Determine initial guess for
by peak-picking.
Set initial guess for ξ as 0.01

Calculate initial guess for
and by using Eqs. 4.(28)
and 4.(29)

Calculate optimal , ξ , ,
and by using Eq. (4.41)
Calculate by Eq. (4.47)

Calculate initial guess for by
using Eq. (4.77) setting ri

-2 =1

Calculate ri and obtain optimal
by Eq. (4.52)

Check 
convergence

of

Yes

No
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case. Here, the spectrum variables and the Hessian matrix for local mode shape should be 

obtained by using the closely spaced mode algorithm at the first stage. In addition, the 

posterior covariance matrix for the global mode shape vector can be calculated neglecting 

zero correlation between the global mode shape vectors of closely spaced modes. 

       

4.5. Experimental and Numerical Analysis 
 

In this section, the proposed two-stage mode shape assembly methodology is 

numerically and experimentally verified. The proposed algorithm is compared to the 

previous mode shape assembly algorithm by Au (2017). For this purpose, one 

experimental and one benchmark study is presented. Finally, a field application is 

presented for global mode shape estimation with closely-spaced modes.  

 

4.5.1. Experimental analysis: Laboratory shear frame 
 

A ten-story shear frame shown in Figure 4.2 is measured with two different 

multiple setup configurations (see Table 4.2). These cases are considered in order to see 

the effect of sensor configuration on the assembly procedure. Here, Case-I represents a 

fixed reference sensor placement, while Case-II represents a roving reference sensor 

placement configuration. Small amplitude acceleration responses are acquired under 

ambient excitation for both cases. For comparison purposes, the given shear frame is 

measured under adequately large amplitude ambient excitation at single setup and the 

obtained frequencies, damping ratios and modal shape results are used as reference 

values.  

In the laboratory experiments, piezo-electric accelerometers are used which are 

defined with 1000 mV/g sensitivity and 11.4 μg/(Hz.)0.5 spectral noise density. The 

measurement system consists of a laptop computer with a 1.5 GHz single CPU and Linux 

operating system, a 16 channel USBDUX-Sigma data acquisition box with 24 bit analog 

to digital conversion, a first order analog lowpass filter with a cut-off frequency at 120 

Hz for each channel, and a constant current supply for the accelerometers. The 

acceleration responses are recorded in the weak direction of the buildings and all 

measurements of groups are acquired in different times with 1000 Hz. sampling 

frequency and 5 minutes duration. 
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Figure 4.2. Ten story shear frame structure 

 

Table 4.2. Setup configurations for Case-I and Case-II 

Setup Number Measured DOFs 

            Case-I             Case-II 

1 1, 2, 3, 10 1, 2, 3, 4 

2 1, 4, 5,10 3. 4, 5, 6 

3 1, 6, 7, 10 5, 6, 7, 8 

4 1, 8, 9, 10 7, 8, 9, 10 

 

 

Figure 4.3. Maximum root singular value spectra 

b-) Case-II (Setups 1 to 4)a-) Case-I (Setups 1 to 4)
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Table 4.3. Average MPVs and representative statistics for fi, and ξi 
Mode 

# 

Reference Case-I Case-II 

f 

(Hz.) 

ξ 

(%) 

f ξ f ξ 

MPV 

(Hz.) 

c.o.v. 

(%) 

MPV 

(Hz.) 

c.o.v. 

(%) 

MPV 

(Hz.) 

c.o.v. 

(%) 

MPV 

(Hz.) 

c.o.v. 

(%) 

1     2.59 0.34     2.62 0.23 0.23 26.77     2.62 0.30 0.23 14.78 

2     7.32 0.26     7.38 0.10 0.22 44.30     7.37 0.10 0.22 11.82 

3    11.65 0.23    11.71 0.13 0.12 19.72    11.70 0.14 0.11 25.34 

4    16.96 0.16    17.03 0.07 0.12 46.93    17.03 0.08 0.14 24.66 

5    20.65 0.14    20.72 0.10 0.15 30.62    20.72 0.07 0.14 26.09 

6    24.69 0.16    24.75 0.22 0.16 38.27    24.75 0.69 0.14 61.66 

7    26.94 0.18    27.07 0.36 0.15 55.43    27.03 0.12 0.14 36.43 

8    29.85 0.16    29.95 0.32 0.18 33.86    29.92 0.08 0.15 22.31 

9    33.19 0.16    33.23 0.85 0.13 47.23    33.35 0.22 0.16 21.59 

10    37.47 0.18    37.53 0.34 0.17 28.18    37.52 0.30 0.15 34.86 

 

A manual selection of the bandwidth for possible modes requires a visual 

inspection of the frequency response data.  For each measurement setup, the maximum 

root maximum singular value spectrums for Case-I and II are obtained by windowing 

(with 600 segments), and they are presented in Figure 4.3. The selected bandwidths of 

possible modes are marked in the figures by lateral error bars. 

The average values of the MPV for natural frequencies and damping ratios 

obtained at each setup together with coefficients of variation are presented in Table 4.3. 

for Case-I and II. The coefficients of variation for natural frequencies and damping ratios 

among all setups include setup-to-setup variability and identification uncertainty which 

is defined as representative statistics by Zhang and Au (2016). According to the results, 

the maximum c.o.v. remains less than 1% for each case for identified frequencies. For 

damping ratios, standard deviations show relatively large variations among different 

setups. These variations are the result of the setup-to-setup variability instead of 

identification uncertainty. Exact values of natural frequencies and damping ratios are 

expected to be invariant for each setup. To the contrary, the spectral density of modal 

excitation and prediction error may show significant variations among different setups 

due to the possible variations in excitation levels. As a result, a decrease in signal strength 

is observed for larger modes. To illustrate this case, average modal signal-to-noise ratios 

and their setup-to-setup variations are presented in Figure 4.4.   
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Figure 4.4. Variations in the estimated signal-to-noise ratios 

Figure 4.4, the variations in the estimated signal-to-noise ratios,  

are presented. For both cases, setup-to-setup variability of signal-to-noise ratio is 

remarkably large for all modes. This variability may not affect the identification quality 

in lower modes due to the relatively higher signal quality. For higher modes (Modes 6 to 

10), however, this variability may cause significant errors in the identification process 

due to the smaller signal-to-noise effect.  

Assembled mode shapes for Case-I and II are presented in Figure 4.5 and Figure 

4.6, respectively. The iterations of algorithms are stopped as the MAC value between the 

current and previous steps is larger than 0.9999. According to the results, it is seen that 

the assembled mode shapes by using the presented methodology are similar for the 

proposed methodology and the algorithm by Au (2017). The ninth mode obtained by 

using the algorithm by Au (2017), however, does not meet the reference mode shape. The 

reason of this fact resides on the initial guess proposed by Au (2017) which is quite far 

away from the optimal value. The MAC values between the identified and reference mode 

shapes are presented in Table 4.4. Here, MAC1 and MAC2 indicate the MAC values for 

the mode shapes obtained by the proposed methodology and the algorithm by Au (2017), 

respectively, with respect to reference mode shapes. Both procedures give similar results 

except for the ninth mode. 

Setup
1 to 4

Setup
1 to 4
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Figure 4.5. Assembled mode shapes for Case-I 

 

Figure 4.6. Assembled mode shapes for Case-II 
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Table 4.4. Calculated MAC values for Case I and II 

Mode 

number 

Case-I Case-II 

MAC1 MAC2 EMAC MAC1 MAC2 EMAC 

1 0.9963 0.9962 0.9998 0.9980 0.9978 0.9991 

2 0.9932 0.9934 0.9993 0.9960 0.9954 0.9990 

3 0.9915 0.9927 0.9996 0.9986 0.9970 0.9994 

4 0.9972 0.9912 0.9992 0.9945 0.9929 0.9993 

5 0.9950 0.9933 0.9983 0.9972 0.9967 0.9988 

6 0.9801 0.9752 0.9882 0.9852 0.9827 0.9857 

7 0.9856 0.9822 0.9906 0.9825 0.9809 0.9860 

8 0.9741 0.9695 0.9873 0.9748 0.9737 0.9843 

9 0.9665 0.3847 0.9783 0.9763 0.1861 0.9805 

10 0.9693 0.9659 0.9935 0.9848 0.9658 0.9835 

 

 

Figure 4.7. Variations in MAC values with respect to reference mode shapes versus the 

number of iterations 
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Figure 4.8. Calculated setup weights for Case-I 

Figure 4.7 presents the MAC values of the mode shapes that are obtained at each 

iteration step for Mode 9 and 10 with respect to reference mode shapes. The lower modes 

show no significant variance, and therefore they are not shown. It is seen that the quality 

of the initial guess of the proposed algorithm gives more reasonable results when 

compared to the results of the algorithm by Au (2017). The reason is considered to be 

caused by the large signal-to-noise asymptotic behavior assumption for the initial guess 

by Au (2017). Since the higher modes are subjected to less level of excitation, the initial 

guess by using the large signal-to-noise asymptotic behavior may significantly diverge 
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from the actual value. Figure 4.8 and Figure 4.9 present the calculated weights for the 

initial and final mode shapes by the proposed methodology and the asymptotic weight 

proposed by Au and Zhang (2012). It can be seen that the weights for modes 1 to 8 are in 

the same range.  The asymptotic weights for modes 9 and 10, however, are quite different 

from the proposed algorithm, which is considered to be the cause of the difference in the 

ninth mode shape.    

 

Figure 4.9. Calculated setup weights for Case-II 

 

4.5.2. Benchmark study: Z24 Bridge 
 

The former Z24 Bridge in Switzerland is investigated in this section. The bridge 

is used in a benchmark study under the COST-F European Network project (Reynders 
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and De Roeck, 2008). The bridge passes over the Bern-Zürich highway, and connects the 

two towns of Utzenstorf and Koppigen. It is composed of three spans with lengths of 14, 

30, and 14 meters as it is illustrated in Figure 4.10. 

 

.  

Figure 4.10. Schematic representation of Z24 Bridge and sensor layouts (Reynders et al, 

2012; Reynders and Roeck, 2008)  

In the benchmark study, the Z24 Bridge is measured at 152 points under ambient 

and forced vibrations by KU LEUVEN Structural Mechanics division between 1998 and 
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2000. Nine measurement setups with three reference points are conducted to obtain a 

complete measurement of the bridge. The schematic representation of the sensor layout 

for the deck and piers are shown in Figure 4. The collected data for seventeen different 

cases is available on the website https://bwk.kuleuven.be/bwm/z24. Among these, the 

third reference measurement is considered in this study. 

The average root singular value spectrum of reference measurement-2 by using 

the 13000 windows is presented in Figure 4.11. Here, the first five modes are easily 

perceptible. The sixth mode is not excited in all setups. It is visible in the second, third 

and seventh setups, only. In addition, it is seen that the visible modes are well separated. 

A similar trend is observed in previous studies by Peeters and Ventura (2003), and 

Reynders et al (2012).  

 

Figure 4.11. Root singular value spectrum for all setups 

The calculated natural frequencies and damping ratios are presented in Table 4.5 

compared with the results by Peeters and Ventura (2003), and Reynders et al (2012). The 

identified results are the mean values obtained as the average of the MPVs for all setups. 

In addition, the posterior coefficient of variations including the setup-to-setup variability 

and identification are presented in Table 4.5, as well. The calculated MPVs of frequency 

and damping ratio are compatible with results by the previous studies (Peeters and 

Ventura, 2003; Reynders et al, 2012) The largest relative difference is less than 1%. 

Variations in the most probable frequency and damping ratios for the first two modes are 

presented in Figure 4.12 and Figure 4.13, respectively. Here, error bars show the posterior 

standard deviations. In addition, due to the large signal-to-noise ratio, the signal quality 

is observed to be good for all setups according to the results presented in Figure 4.14. 
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Table 4.5.  Calculated frequencies and damping ratios 

Mode 

Number 

f (Hz.) ξ (%) 

Peeters 

and 

Ventura 

(2003) 

Reynders 

et al 

(2012) 

Present 

Study 

c.o.v. 

(%) 

Peeters 

and 

Ventura 

(2003) 

Reynders 

et al 

(2012) 

Present 

Study 

c.o.v. 

(%) 

1 3.86 3.86 3.85 0.30 0.90 0.80 0.92 24.54 

2 4.90 4.90 4.89 0.41 1.40 1.40 1.36 19.34 

3 9.77 9.76 9.77 0.25 1.30 1.40 1.19 27.59 

4 10.30 10.30 10.32 0.87 1.40 1.30 1.94 54.40 

5 12.50 12.42 12.53 1.15 2.50 2.80 3.18 36.84 

6 13.20 13.22 13.22 0.86 3.00 3.40 3.05 37.45 

 

 

Figure 4.12. Identified frequencies with representative statistics  

 

Figure 4.13. Identified damping ratios with representative statistics  
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Figure 4.14. Variations in the identified signal-to-noise ratios among different setups 

Figure 4.15 presents the assembled global mode shapes by the proposed 

algorithm. The mode shapes for the first six modes are well identified and seem 

compatible with previous studies (Peeters and Ventura, 2003; Reynders et al, 2012). The 

algorithm by Au (2017) gives similar results, and the first three modes are directly 

identified without iteration. Table 4.6 presents the calculated MAC values between the 

proposed methodology and the algorithm by Au (2017). Here, MACas and MACref 

represent the MAC values between the final mode shapes by the proposed method, and 

the initial guess and final mode shapes obtained from the algorithm by Au (2017), 

respectively. It is seen that the results are similar for both methodologies. The fourth 

mode, however, shows a difference about 12% between the initial guess by Au (2017) 

and the final mode shapes.  

Table 4.6. MAC values for the estimated mode shapes 

Mode number EMAC MACas MACref 

1 1.0000 1.0000 1.0000 

2 1.0000 0.9999 1.0000 

3 1.0000 1.0000 1.0000 

4 1.0000 0.8826 1.0000 

5 1.0000 0.9992 0.9999 

6 1.0000 0.9991 1.0000 

 

Setup 1 to 9
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Figure 4.15. Identified mode shapes by the proposed modified algorithm 
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Figure 4.16. Variations in MACi,0 values with respect to number of iterations 

 

Figure 4.17. Variations in calculated setup weights 
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Convergence of MAC values with respect to the iteration number is presented in 

Figure 4.16. Here, MACi,0 = MAC value between the mode shapes at the ith iteration and 

the initial guess of each algorithms. According to Figure 4.16, the estimation of the 4th 

mode shape diverges down to a MAC value of 0.88 from the initial guess with the 

algorithm by Au (2017). Further, estimations of mode five and six, initially show a 

significant divergence from the initial guess which is cancelled out in a few numbers of 

iteration. The MAC values for the proposed algorithm, however, indicates that nearly no 

change takes place during iteration. The proposed algorithm reaches to this optimal global 

mode shape without iteration, and therefore it can be concluded that the initial guess of 

the proposed algorithm is more feasible. The difference between the initial guess by Au 

(2017) and the proposed algorithm lies in the involvement of spectrum parameters in the 

calculation of initial guess by the proposed algorithm.   

In order to figure out the reason of the divergence in the MAC values, especially 

for mode 4, the calculated normalized weights of the setups in the global mode shapes are 

presented in Figure 4.17. For mode 4, it can be seen that the asymptotic weight is much 

lower than the weights calculated by the proposed methodology at setup 4. This case is 

not the reason, but it may be considered to be in parallel with the divergence in the MAC 

value as shown in Figure 4.16.  

 

4.5.3. Application for Closely Spaced Modes: One Rincon Tower 
 

The presented method is applied to the measurements acquired from the One 

Rincon Tower which is previously investigated in Section 2.7.5. The measured data is 

separated to six setups (see Table 4.7), and first lateral (EW) and translational (NS) mode 

shapes are identified by using the presented methodology. 

Figure 4.18 presents the identified average frequencies and damping ratios with 

setup-to-setup variability in terms of coefficient of variation. Here, dashed line denotes 

the most probable values obtained by using the single setup algorithm. Results show that 

local MPVs reasonably match with the MPVs that are obtained by single mode approach. 

Figure 4.19 presents the assembled mode shapes by using the proposed algorithm. 

At first view, it is seen that the identified mode shapes are reasonable. The MAC values 

between the mode shapes that are identified by using the closely spaced modes and single 
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mode algorithms are obtained as 0.9982 and 0.9955, respectively. In addition, EMAC 

values are obtained as 0.9996 and 0.9996 for closely spaced modes. 

Table 4.7. Sensor placements for measurement setups 

Setup No Measured Sensors 

1 7, 8, 9 10, 11, 39, 40, 41 42, 43 

2 42, 43 50, 51, 52, 12, 13, 14, 44, 45, 53, 54, 55 

3 53, 54, 55, 56, 57, 58, 15, 16, 65, 66, 17, 18, 19, 20 

4 18, 19, 20, 59, 60, 61, 46, 47, 21, 22,23 

5 21, 22, 23, 48, 49, 62, 63, 64, 24, 25, 67, 68, 26, 27, 28, 29 

6 27, 28, 29, 69, 30, 70, 71, 72, 31, 32, 33, 35, 36 

 

 

 

Figure 4.18. Identified natural frequencies and damping ratios with standard deviations 
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Figure 4.19. Identified mode shapes 

V
NS

EW EW

V

NS

V

EW

V

NS

VV
NS

EW

Mode 1 (0.27 Hz)

Mode 2 (0.31 Hz)



108 
 

4.5.4. Numerical Analysis: A Comparison for Posterior Uncertainty 

Quantification 
 

The computational time required by the proposed posterior uncertainty 

quantification methodology for multiple setups is compared to the method by Au and Xie 

(2017) via an illustrative example. For this purpose, an analytical shear frame model is 

considered whose fundamental frequency and damping ratio are set to 1 Hz, and 1%, 

respectively. The number of measurement setups varies from 1 to 100. Only two DOFs 

are measured at each setup with a single roving reference sensor. An i.i.d. Gaussian 

excitation with modal PSD of 10 μg2/Hz is generated as ambient loading with 100 Hz 

sampling ratio and 300 sec duration, and the measured response is contaminated by a 

Gaussian white noise with PSD of 1 μg2/Hz for each setup. The calculations are carried 

out by a notebook computer with i7 6700HQ 2.60 GHz processor and 16 GB RAM.   

Figure 4.20 presents a comparison of the required computational time versus the 

number of setups, Ns, for the proposed methodology and the method by Au and Xie 

(2017). It is seen that the proposed methodology requires significantly less computational 

time when Ns > 10. The reason of this difference lies in the fact that the dimension of the 

Hessian matrix increases remarkably for larger Ns values.   

 

Figure 4.20. Comparison of the computational time required for the calculation of 

posterior covariance matrix 
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4.6. Concluding Remarks 
 

In this chapter, an alternative mode shape assembly algorithm based on the two-

stage BFFTA is presented, and the uniqueness of the solution is verified analytically by 

using two main methodologies available in the literature. These are based on the direct 

estimation of the global mode shape vector incorporating the FFT data or assembling the 

identified local mode shapes by using the Gaussian approximation, respectively. The 

proposed methodology is implemented to a ten-story laboratory shear frame and a 

benchmark study, and the obtained results are compared to the algorithm by Au (2017). 

The general conclusions are summarized below.  

 The proposed procedure considers that each setup is weighted by its Hessian 

matrix (for local mode shape) and the local mode shape information conducted 

with spectrum parameters is embedded in this matrix. Thus, the global mode shape 

vector is obtained by assembling the local Hessian matrices and it is not necessary 

to obtain the optimal local mode shape vectors for each setup. 

 In the literature, the initial guess for global mode shape vector assumes large 

signal-to-noise ratio and neglects the effect of data quality. If the signal-to-noise 

ratio is not adequately large for all or a few setups, however, the initial guess may 

significantly diverge from the optimal mode shape. The proposed application, on 

the other hand, uses the two-stage approach leading to a more reasonable initial 

guess for global mode shapes which increases the convergence speed during 

iteration. 

 When the data quality is well in each setup, the identified mode shapes shows no 

significant variance among any method that is being used. According to the results 

by the ten- story shear frame study, however, it is seen that the quality of identified 

mode shapes by the proposed algorithm is improved when the signal-to-noise ratio 

is low.  
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CHAPTER 5 

 

A TWO-STAGE BAYESIAN APPROACH FOR FINITE 

ELEMENT MODEL UPDATING BY USING 

ACCELERATION RESPONSE DATA FROM MULTIPLE 

SETUP MEASUREMENTS 

 
5.1. Introduction 

 

Finite element (FE) model updating has great importance in damage detection of 

structures and calibration of the considered mathematical model with respect to actual 

effects. For this reason, model updating has received the attention of many researchers 

over the years. While damage detection is possible with measured vibration response data 

only, FE model updating might be more effective on the detection of damage location and 

severity (Yan and Katafygiotis, 2015c). Various FE model updating approaches are 

available in the literature (Mottershead and Friswell, 1993; Yang and Chen, 2010; 

Mottershead et al, 2011; Touat et al, 2014). The most generic form of these approaches 

is based on the determination of system eigenvalues and eigenvectors that are best-fitted 

with measured (or identified) ones (Yuen, 2010). The problem of obtaining the best-fit 

between the measured and model parameters can be solved by weighted least-squares. 

However, some problems inevitable arises in this procedure. The major one of these 

problems is referred as mode-matching problem (Yuen, 2010; Yan & Katafygiotis, 

2015c). For large scale structures, only a few number of lower modes can be determined 

by modal identification methods. Therefore, the higher modes which dominate the 

stiffness components are not able to be matched with measured counterparts. In addition, 

some lower modes may not be identified due to the low ambient excitation level or high 

level of environmental and/or instrumental noise effects on the measurements. Another 

problem is existence of incomplete data. When the structure is measured with limited 

number of sensors, the measured DOF represents only a local part of the whole structure. 

To solve this problem, the investigated structure may be measured by multiple setups. In 

this case, the matching of global modal shapes with local parts and FE eigenvectors arises 
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as another issue. All these issues are also incorporated with a mode matching problem. 

The solution of this problem is part of the response of how to quantify the parametric 

uncertainties. For this reason, the FE updating approaches based on stochastic processes 

have been employed by the researchers within the past decades. Friswell (1989) presented 

a minimum variance estimator based on the minimization of the expected variance of 

measurement errors. Here, the basic idea is to consider the effect of measurement noise 

while matching the measured and modeled parameters. A two-stage covariance 

minimization method was presented by Govers and Link (2010) incorporating the 

multiple experimental setups based on a similar idea. At first stage, the expected values 

and their uncertainties are obtained by taking the sample mean and covariance of 

experimental parameters among different setups. Second, the model parameter 

covariance matrix is updated by minimizing the discrepancy between the analytical and 

experimental results. Various similar stochastic approaches such as perturbation method 

based on parameter-model variability estimation (Khodaparast et al, 2008; Husain et al, 

2012), or robust updating formulation by random matrix theory for uncertain 

computational models (Soize et al, 2008) are available in the literature. 

In previous researches, FE model updating have been also considered based on 

the probabilistic logic to solve the mode matching problem (Katafygiostis and Beck, 

1998; Katafygiostis et al, 1998; Lam et al, 2015; Mustafa and Matsumoto, 2017; Prajapat  

and Chaudhuri, 2018). In the methodology presented by Beck and Katafygiostis (1998), 

the optimal (or updated) model parameters are obtained as the most probable value within 

a chosen class of structural models by Bayesian statistical framework assuming all the 

models have equally weighted prior distributions. This procedure requires updating the 

posterior most probable value by integrating the prior distributions over the whole 

parameter space. This evaluation process is defined as difficult by Beck and Au (2002) 

due to the large dimension for numerical integration, and a Markov Chain Monte Carlo 

simulation is employed to reduce the computational effort. A two-stage Bayesian model 

updating procedure was proposed by Ching and Beck (2004). In this procedure, first, the 

modal identification procedure is completed, and experimental modal parameters are 

updated. Second, a prior distribution for stiffness parameters are defined, and finally most 

probable model parameters are obtained by applying Bayes’ theorem. This procedure is 

applied for both reference (undamaged) and damaged cases, and a damage extent is 

defined in order to measure the severity of damage level. A similar methodology is 

introduced by Yuen and Kuok (2011) for modal updating with incomplete measured data 
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assuming the mass parameters are known. In this methodology, the prior distribution of 

stiffness parameters is assumed to be Gaussian with large variance so that the prior 

stiffness parameters are overestimated. Yan and Katafygiotis (2015c) proposed a 

Bayesian approach for model updating by utilizing the multiple setup measurements. 

Here, the optimal (most probable) global mode shape is obtained by assembling identified 

local mode shapes via their prior distributions. Different from the Yuen and Kuok (2011), 

the eigenvalues are not considered as model parameters to be updated. The formulation 

considers stiffness, mass and global mode shape uncertainty. Selection of prior 

distribution is similar with Yuen and Kuok (2011). However, the selection of prior 

variance for mass parameters is adequately small so that the prior probability for mass 

parameters is assumed to be well estimated. The assumption of well estimated mass 

parameters stands on two cases: (i) proper estimation of mass matrix is relatively more 

possible in comparison with stiffness parameters, (ii) the correlation between the stiffness 

and mass parameters might make the solution ill-conditioned when both are not 

considered as well-estimated. 

Another major problem in Bayesian FE model updating is the definition of prior 

distributions for mass and stiffness parameters since they are strictly positive definite. For 

this reason, using of standard Gaussian distribution becomes unsuccessful to estimate 

prior probabilities. To solve this problem, the truncated Gaussian distribution (Yan and 

Katafygiotis, 2015c; Yuen, 2010) or lognormal distribution (Das and Debnath, 2018) may 

be used. In addition, inverse beta or gamma distributions are also reasonable for prior 

estimation (Mathai and Moschopoulos, 1997; Furman, 2008). 

This chapter presents a Bayesian FE model updating approach utilizing the 

ambient vibration data from multiple setup measurements. The overall procedure rests on 

two stages. In the first stage, the MPV of eigenvalues (frequencies) and posterior 

covariance matrix of eigenvalues and eigenvectors (mode shapes) are obtained by the 

Bayesian Fast Fourier Transform Approach (BFFTA) and the prior probability 

distribution of eigenvalues and eigenvectors are estimated by Gaussian approximation of 

their posterior PDFs. At second stage, the model parameters including eigenvalues, 

eigenvectors, stiffness and mass parameters are updated by using Bayesian inference. The 

previous two-stage algorithms (Au and Zhang, 2016; Zhang and Au, 2016; Zhang et al, 

2017) consider the posterior covariance matrix for local mode shape as being block 

diagonal for large values of signal-to-noise ratio. In this study, however, a block diagonal 

covariance matrix is derived independent from the signal-to-noise ratio. Further, the 
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modelling error in the eigen equations are considered as a model parameter to be updated. 

The prior probability distribution for stiffness and mass parameters are assumed as 

truncated Gaussian. The prior variance of modelling error and measured parameters are 

considered as soft constraints so that they are updated within the procedure. Further, the 

effect of soft constraint approximation on the updated parameters and their posterior 

uncertainties are compared to the rigid constraint (prescribed prior variance) 

approximation. 

 

5.2. Stage I: Modal Identification 
 

Eigenvalues and eigenvectors of the finite element model are expected to 

represent the whole structure. However, the modal information extracted from 

measurement data are constrained with the measurement points. In most cases, taking a 

full-scale measurement may not be possible due to the lack of instruments. The 

eigenvalues might be obtained with good accuracy by system identification. However, 

the identified eigenvectors may not represent the system eigenvectors properly when 

insufficient measurement points are available only. This problem can be confronted by 

increasing the measurement setups. Thus, the posterior distribution of the modal 

parameters for each setup can be considered as a proper prior estimation for system 

eigenvalues and eigenvectors. For this purpose, first BFFTA can be implemented to 

identify the most probable eigenvalues and eigenvectors, and their posterior uncertainties. 

Second, their posterior probability distribution can be estimated by Gaussian 

approximation. According to the fast BFFTA presented by Au (2011a), the negative-

likelihood function for modal parameters to be identified, within the resonant frequency 

band of nth mode at setup i, can be defined as follows. 
1

, , , , , ,

1
, ,* *

, ,

Θ ln 1 ln ln

; Re

ni ni i f ni f ni e ni ni k ni e ni e ni ni
k

T
ni ni ni

i k ni e ni
ni ki ki i ki ki

k k ni k ni e ni

L N N π N S S D S S κ

φ Δ φ

S D S
κ F F Δ F F

S D S

 (5.1) 

In addition, Lni(Θni) should be subjected to the constraint of φni
T φni =1. Here, Θni 

= [λni, ξni, ni, Se,ni, φni], is the set of modal parameters to be identified and comprises the 

eigenvalue (square of natural angular frequency), damping ratio, spectral density of 

modal excitation that is scaled with respect to the unit norm for local mode shape, spectral 
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density of prediction error, and local mode shape vector (with unit norm), Fki= FFT of 

acceleration response, Nf,ni= # of data within the selected frequency band, for ith setup, 

respectively . In addition, Dk,ni denotes the dynamic amplification and can be written as, 
12 2

, , , ,1 4 ; ; 2k ni k ni ni k ni k ni ni k k kD β ξ β β λ λ λ πf  (5.2) 

where fk = excitation frequency. Minimizing Eq. (4.23) gives the most probable modal 

parameters for ith setup. At the next step, the posterior probability of modal parameters 

can be well-estimated by Gaussian distribution (Au, 2011a). 

Θ̂

1 ˆ ˆΘ exp Θ Θ Θ Θ
2

T

ni ki ni ni ni nini
p Z H  (5.3) 

Here,  denotes the augmented FFT vector of the measured 

response at the ith setup,  and = Hessian of Eq. (4.23) under norm constraint at 

.  is obtained as a block diagonal matrix and written as below (see Section 2.5.2). 

Θ̂ ,
Θ̂

ˆ

0

0
s ni

ni
φni

H
H

H
 (5.4) 

Here, [ ni, ni, ni, e,ni], , and , 

(  = Lagrange multiplier that enforces the unit norm of , Ni = # of measured DOF at 

ith setup). Note that is a semi positive definite matrix whose null vector corresponds 

to  (see Section 2.4.2). 

2
ˆˆ ˆ ˆ ˆ2 0T T

ni ni ni ni φ ini
α φ Lφ φ H φ  (5.5) 

 

5.3. Stage II: Model Updating 
 

The prior probability distributions required for FE model updating are defined in 

this stage. Here, the prior probability distribution of eigenvalues and eigenvectors are 

modeled by the posterior probability estimation obtained from the modal identification 

stage. In addition, a prior probability distribution for modelling error in the eigenvalue 

equations is considered in order to avoid the mode matching problem. Then, the posterior 

PDF of the model parameters is estimated by using Bayes’ theorem. Finally, the FE model 

is updated by maximum likelihood estimation of the posterior PDF that is obtained by 

Bayesian inference.  
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5.3.1. Prior Probability Distributions of Eigenvalues and Eigenvectors 
 

The modal parameters to be updated comprise the eigenvalues and eigenvectors 

with a prediction error for ith setup. Thus, the eigenvalue and local eigenvector of each 

setup can be defined by  

ˆni ni χniχ χ ε  (5.6) 

where,  denotes the set of system modal parameters, Γoi= 

selection matrix that extracts the measured DOFs at ith setup, is the set 

of most probable local modal parameters obtained at the first stage, and  prediction 

error, respectively. In addition, λn and Φn denote the nth mode eigenvalue and eigenvector 

(global mode shape vector) of the finite element model, respectively. The error term,  

can be assumed to follows a zero mean Gaussian distribution, and this distribution can be 

assumed as the posterior of the local eigenvalues and eigenvectors. When  is assumed 

to be linearly independent for each setup, the prior probability distribution of the 

prediction error can be written as 

1 1

ˆ
1 1

ˆ ˆΘ Θ

1 ˆ ˆexp H
2

N Nm s

χ s χni sni
n i

N Nm s T
n ni χ n nini

n i

p ε p ε

χ χ χ χ
 (5.7) 

where Ns = number of measurement setups, Nm = number of considered modes, and 

. In addition,  denotes the Hessian with respect to  at 

 can be obtained by the BFFTA. Thus,  is written as a block diagonal matrix. 

ˆ 1
ˆ

ˆ1

0
H

0
Nλ ini

χni
N φi ni

H

H
 (5.8) 

 

5.3.2. Estimation of Prior Stiffness and Mass Distributions 
 

The prior probability distribution of mass and stiffness parameters are considered 

as truncated Gaussian. The mass parameters of civil structures generally can be estimated 

with high accuracy. Therefore, the mass parameters are assumed to be well-estimated 

with small prior covariance (Yan and Katafygiotis, 2015c). The prior probability 
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distributions for mass parameters are assumed to be linearly independent (zero correlation 

between each mass parameter). Thus, the prior mass distribution can be defined as below. 

1

Nρ

r
r

p ρ p ρ  (5.9) 

where, ρ = [ ρ1, ρ2, … ρNρ] indicates the set of mass parameters to be updated, ρr = rth 

mass parameter, and Nρ = number of mass parameters. Here, p(ρr) can be defined as 

below. 
2

0

ˆ

ˆ
exp , for 0

0, for 0

r r
r

r ρo

r

ρ ρ
ρ

p ρ S

ρ

 (5.10) 

where prior estimation for rth mass parameter,  constant prior variance for 

each mass parameter. The covariance matrix for mass parameters is assumed to be 

diagonal (as INρ).  Similarly, the prior distribution for stiffness parameters are defined 

as below. 

1

2

0

ˆ

ˆ
exp , for 0

0, for 0

Nθ

r
r

r r
r

r θo

r

p θ p θ

θ θ
θ

p θ S

θ

 (5.11) 

Here, θ = set of stiffness parameters, θr = rth mass parameter, prior estimation for 

rth stiffness parameter,  constant prior variance for each stiffness parameter, and Nθ 

= number of stiffness parameters.  

 

5.3.3. Prior Probability Distribution for Modelling Error  
 

Considering a general eigenvalue-eigenvector problem for a particular mode, n, 

the following equality can be constructed for a modal updating problem. 

 Φ Φn n n mK λ M ε  (5.12) 

in which K and M are the parametric stiffness and mass matrices, respectively. In 

addition, n, Φn and m denote the eigenvalue (square of natural angular frequency), 

eigenvector (mode shape), and modelling error for nth mode, respectively.  Assuming that 
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 follows a zero mean Gaussian distribution, the following pdf can be defined for a 

given set of system modal parameters, , 

 

/2 1
ˆ ˆ2 expN T

m ε m ε mp ε χ πS ε S ε  (5.13) 

where = expected variance of modelling error (assumed to be constant and uniform for 

each mode), and N = number of DOFs in the finite element model. The prediction error 

can be defined in terms of mass and stiffness parameter as below. 

Φ Ω Φm n n n nε K λ M  (5.14) 

Substituting Eq. (5.14) into Eq. (5.13) leads to the following conditional 

probability function. 

/2 1
ˆ ˆ,Φ , , 2 exp Φ Ω Ω ΦN T T

n n ε n n n nε
p ε λ θ ρ πS S  (5.15) 

Here, the parametric stiffness and mass matrices are defined as follows.  

0 0
1 1

NN ρθ

r r r r
r r

K K θ K M M ρ M  (5.16) 

where, K0 and M0 are N×N sized non-parametric stiffness and mass matrices, Kr, and Mr 

= N×N sized rth non-parametric sub-structural stiffness and mass matrices.  

 

5.3.4. Posterior Probability Distribution for System Parameters 
 

Applying the Bayes’ theorem, the posterior probability distribution for model 

parameters can be written as follows. 

ˆ, , , Θχ m o χ m sp θ ρ χ ε ε c p ε χ p ε p θ p ρ  (5.17) 

where, , and c0 denotes a normalizing constant. The negative-

logarithm likelihood function for Eq. (5.17) is obtained as follows by utilizing Eqs. (5.10), 

(5.11), (5.15), and (5.7). 

21 1
ˆˆ

1 1 1 1

1 1
ˆ ˆ ˆ0 0 0 0

1
ˆ

1

1 1 ˆˆ ˆ, , Φ Φ
2 2

1 1 1 1ˆ ˆ ˆ ˆ ln 2 ln
2 2 2 2
1 Φ Ω Ω Φ
2

N N N Nm s m sT
ni oi n ni φ ni oi n ni n ni λi ni

n i n i

T T
ρ m m εθ oo

Nm
T T
n n ε n n

n

L θ ρ χ r Γ φ H r Γ φ λ λ H

θ θ S θ θ ρ ρ S ρ ρ N N π N N S

S

(5.18) 
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Here, a unit norm constraint should be defined for ΓoiΦn and Φn, respectively. Thus, Eq. 

(5.18) leads to a linear optimization problem as below. 

2

1
, , , , , , Φ Φ Φ Φ 1

Ns
T T T

ni n oi oi n ni n n
i

J θ ρ χ α β L θ ρ χ α Γ Γ r β  (5.19) 

where . MPV of model parameters can be estimated by 

minimizing Eq. (5.19) with respect to θ, ρ, and χ. 

 

5.3.4.1. MPV of Modal Parameters 
 

Eq. (5.19) defines a set of modal parameters, χ, that covers all measurement 

setups. For this reason, the posterior MPV of χ is incorporated with measured response 

data as well as structural model parameters. Thus, the minimization process performs a 

posterior modal identification and model updating together. In this context, minimizing 

Eq. (5.19) with respect to λn, and Φn gives the most probable posterior modal parameters 

incorporated with structural model parameters. 

The first order derivative of Eq. (5.19) with respect to λn gives 
1

1 1
ˆ ˆˆ ˆ

1 1ˆ

ˆ ˆ0
N Ns s

n ε λ ε λ niλ λn nni ni
i in λ λn n

J λ S G H S g H λ
λ

 (5.20) 

Here, , and g n . If the modelling error is 

neglected, the MPV of λn can be set to the most probable values obtained from the 

measurements as below; 
1

ˆ ˆ
1 1

ˆ ˆ
N Ns s

n niλ λni ni
i i

λ H H λ  (5.21) 

Eq. (5.21) can be used as the initial guess for λn. Similarly, minimizing Eq. (5.19) 

with respect to Φn gives; 

ˆΦ Φ

2 1 1
ˆ ˆ ˆ

1 1

0
Φ

ˆ ˆ ˆ2 Ω Ω Φ 2 Φ 0

n n n

N Ns s
T T T

oi ni φ ni N oi n ε n n n n ni oi φ nii i i
i i

J

Γ r H α I Γ S β r Γ H φ
(5.22) 

Due to the fact that  is the null vector of  ( =0), Eq. (5.22) leads to 

the following standard eigenvalue problem. 

ˆ ˆΦ Φn n n nA β  (5.23) 
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2 1
ˆ ˆ

1

1 1ˆ2 Ω Ω
2 2

Ns
T T

n oi ni φ ni N oi n ε ni i
i

A L r H α I L S  (5.24) 

Thus, the optimal Φn can be obtained as the eigenvector of An that corresponds to 

the minimum eigenvalue. When the norm constraint for Φn is omitted in the solution, An 

is constrained to be a semi-positive definite matrix. However, this case is possible if and 

only if modelling and measurement errors are equal to zero. In reality, a zero error may 

not be obtained and therefore, the norm of Φn is constrained to be 1 in the presented 

methodology. On the other hand, an initial estimation for Φn can be obtained as the 

eigenvector (for minimum eigenvalue) of the following matrix by assuming zero 

discrepancy between  and  and neglecting the modelling error. 

ˆ
1

Ns
T

oi φ oii
i

Γ H Γ  (5.25) 

Optimal value of the Lagrange multiplier, αni can be obtained by minimizing Eq. 

(5.19) with respect to rni. The first order derivative of Eq. (5.19) leads to the following 

equation. 

3
ˆ

ˆ ˆ,

ˆ ˆ ˆΦ 2 0T T
ni n oi φ ni nini

ni r r α αni ni ni ni

J r Γ H α r
r

 (5.26) 

Thus, the optimal αni is obtained as follows. 
4

2
ˆ

ˆˆ ˆΦ ; Φ Φ
2

T T T Tni
ni n oi φ ni n oi oi nni

rα Γ H r Γ Γ  (5.27) 

 

5.3.4.2. MPV of Model Parameters 
 

Taking the first order derivative of Eq. (5.19) with respect to θ and solving for 

optimal   yields; 
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where 

1 0 1
Φ ... Φ ; ΦK n N n K n nn θ nN N Nθ

G K K g λ M ρ K  (5.29) 

Similarly, minimizing Eq. (5.19) with respect to ρ gives the optimal mass parameter 

vector as below. 
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where 
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Finally, the posterior MPV of Sε is obtained as below. 
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5.4. Summary of Procedures 
 

In modal parameter identification by fast BFFTA for individual setups, a norm 

constraint for local mode shape is necessary. Otherwise the minimization procedure 

becomes ill-conditioned due to the negative definite Hermitian structure of the Hessian 

matrix for local mode shape. For mode shape assembly problems, a norm constraint for 

global mode shape is also required to well match the identified local mode shape and 

corresponding part of the global mode shape. In Bayesian model updating applications, 

norm constraint for global mode shape is not used (Yuen 2010, Yan and Katafygiotis 

2015c). The presented procedure needs a norm constraint for Φ since An might not be a 

semi-positive definite matrix due to the modelling and measurement error. Otherwise, the 

solution will be ill-conditioned due to the non-existent null vector search of An.  

The flow chart for the proposed procedure is presented in Figure 5.1. First, the 

local spectrum parameters including eigenvalues (square of most probable natural angular 

frequency), damping ratio, spectral density of modal excitation and prediction error 

should be obtained. Second, the Hessian matrix for eigenvalues and eigenvectors (most 

probable local mode shape) should be obtained by Gaussian approximation. At the 



121 
 

iteration step, the posterior most probable values for model parameters are updated until 

the prescribed convergence criteria are satisfied. 

 

Figure 5.1. Flow chart for the proposed algorithm 

 

5.5. Posterior Uncertainty 
 

Posterior statistical parameters in terms of variance, standard deviation, and 

coefficient of variation can be estimated via the posterior covariance matrix centered at 

the MPV of system parameters. Using the second order Taylor series expansion, the 

covariance matrix can be calculated as the inverse of the Hessian matrix. Here, the 

Hessian matrix centered at the MPV of system parameters is given by   
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END
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Calculate initial guess for
and by Eqs. (5.21) and
(5.25).

Calculate optimal
and by BFFTA.

Check 
convergence
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Yes
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Calculate optimal αni by Eq.
(5.27)

Calculate optimal θ, ρ, λ, Φ
and by Eqs. (5.28), (5.30),
(5.20), (5.23) and (5.32)
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where J(.,.) denotes the derivatives of Eq. (5.19) (see Appendix D). In addition, 

, , and  

 

5.6. Probabilistic Damage Detection 
 

The most probable model parameters and their uncertainties can be obtained by 

the presented procedure. Here, it should be noted that again, the mass parameters are 

assumed as initially well-estimated. Using this assumption, the posterior most probable 

values for stiffness parameters can be estimated well. At the next step, the level of damage 

for the rth stiffness parameter can be estimated based on probabilistic logic. By using the 

Gaussian approximations for marginal distributions, Vanik et al. (2002) defines the 

probability of exceedance to a certain damage level for the ith stiffness parameter as 

follows 

2
ˆ ˆ

ˆ ˆ1
Φ

1

ud pd
dam i i i

i i

i ud pdθ θi i

d θ θ
P d

d S S
Φ

1 dd1 d
 (5.34) 

where  indicates the level of damage (as a threshold), and  = most 

probable ith stiffness parameter that represents the undamaged and damaged case,  

and = posterior variance of ith stiffness parameter for the undamaged and damaged 

case, and  = standard normal cumulative distribution function. Thus, the level of 

damage can be estimated by a probabilistic logic instead of monitoring the change in .  

 

5.7. Numerical and Experimental Analysis 
 

In this section, first a numerical analysis is presented to verify the presented 

procedure. For comparison purposes, the variations in the posterior uncertainties are 

investigated if the modelling and prediction error is prescribed. Second, an experimental 

study is presented to see the effect of incomplete data on the results.  
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5.7.1. Numerical analysis: Torsional Shear Frame 
 

A fifteen-story torsional shear frame structure is investigated to validate the 

proposed methodology. The plan layout of the investigated structure is presented in 

Figure 5.2. The lateral stiffness in the x-x and y-y direction is considered as kix = 1000 

kN/m and kiy =800 kN/m, respectively. In addition, story mass is m = 250 kg in both 

directions. Identically distributed and independent Gaussian white noise is generated with 

300 second duration and 100 Hz sampling frequency, and the spectral density of 5N/Hz 

in the lateral directions and 25 Nm/Hz in the torsional direction, respectively. The rms of 

measurement error is assumed 20% of the rms of simulated response (without noise) for 

each channel. The structure is measured with four setups. The sensor layout of the setups 

is presented in Table 5.1. The acceleration response of the structure is measured at the 

center in the translational directions. Torsional acceleration measurements are omitted. 

Therefore, torsional modes are not identified, but they are extracted from the updated 

finite element model. 

 

Figure 5.2. Plan view of fifteen story torsional shear frame structure 

Table 5.1. Multiple setup configuration 

Setup No Measured DOF 

1 1x, 1y, 2x, 2y, 3x, 3y, 4x, 4y, 5x, 5y 

2 4x, 4y, 5x, 5y, 6x, 6y, 7x, 7y, 8x, 8y 

3 7x, 7y, 8x, 8y, 9x, 9y, 10x, 10y, 11x, 11y, 12x, 12y 

4 11x, 11y, 12x, 13y, 13x, 13y, 14x, 15y, 15x, 15y 

 

+x-x

kix+ = 300 kN/m

kix- = 300 kN/m

kiy- = 500 kN/m kiy+ = 500 kN/m

+y

-y

Δi1

Δi2
Δi3

Lx=15 m

L y=
10

m
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Assuming the initial stiffness and mass is equal to zero (K0=0, M0=0), the 

parametric stiffness matrix is defined below. 
30

1

Nθ

i i
i

K θ θ K  (5.35) 

where Nθx= Nθy=Nρ =15. In addition, Kix, Kiy, are written as follows. 

 For i=1, 

2

1

1 0 0 1 0 0
0 0 0 0 0 0
0 0 / 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x
ix

L
K k  (5.36) 

 For i=2, 

2

2 2

0 0 0 0 0 0
0 1 0 0 1 0
0 0 / 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

y
y

L
K k  (5.37) 

 For i=3, 5, 7, . . ., 29 

3 1 /2 2 45

2 2
1 3 1 /2 2 1 3 15 1 /2

2 2

3 15 1 /2 45

0

1 0 0 1 0 0
0 0 0 0 0 0

0 00 0 / 4 0 0 / 4
1 0 0 0 0

0 0 0 0 0 0
0 0 / 4 0 0 / 4

0

i

i ix x
i ix

ix

x x

i

L L
K k

k

L L

 

(5.38) 

 For i=4, 6, 8, . . ., 30 
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3( /2 2) 45

2 2
1 3( /2 2) 1 3(15 /2)

2 2

3(15 /2) 45

0

0 0 0 0 0 0
0 1 0 0 1 0
0 0 / 4 0 0 / 40 0
0 0 0 0 0
0 1 0 0 1 0
0 0 / 4 0 0 / 4

0

i

y yi i
i iy

ix

y y

i

L L
K k

k

L L

 
(5.39) 

 

Here, kix = kix- + kix+ and kiy= kiy- + kiy-. In addition, the mass matrix is defined by 
15

1

Nρ

i i
i

M θ ρM  (5.40) 

where Mi can be written as below. 

 For i=1,   

2 2

6 39

39 45

1 0 0 0 0 0
0 1 0 0 0 0

0 0 0 0 0 012
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0

x y

i

L L

M m
 

(5.41) 

 For i=2, . . ., 14 

3( 2) 45

2 2

1 3( 2) 1 3(15 )

2 2

3(15 ) 45

0

1/ 2 0 0 0 0 0
0 1/ 2 0 0 0 0

0 0 0 0 00 024
0 0 0 1/ 2 0 0
0 0 0 0 1/ 2 0

0 0 0 0 0
24

0

i

x y

i i
i

x y

i

L L

M m

L L

 
(5.42) 

 For i=15 
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1 3( 2) 1 3(15 )
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3(15 ) 45

0

1 / 2 0 0 0 0 0
0 1 / 2 0 0 0 0

0 0 0 0 00 024
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 0 0
12

0

i

x y

i i
i

x y

i

L L

M m

L L

 
(5.43) 

Prior most probable value for stiffness parameters selected as θixo= θiyo= 10 

(overestimated) with the variance of Sθo = 50. In addition to this, the prior mass parameters 

are assumed to be well-estimated with ρio= 1 and Sρo = 0.01. Selected prior distributions 

for stiffness and mass parameters are presented in Figure 5.3.  

 

Figure 5.3. Selected distributions for prior estimation of stiffness and mass parameters 

Model parameters for the investigated structure is updated for two cases: (i) 

undamaged and (ii) damaged case. In the undamaged case, actual model parameters are 

set to be θxi= θyi=1.00. For the damaged case, θx1=0.70, θx7=0.40, θy2=0.90, θy5=0.75 and 

the remaining parameters are set to 1.00. In addition, actual mass parameters are 

considered as ρi=1.00 for both cases. 
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Table 5.2. Actual and updated natural frequencies with posterior c.o.v. 
Mode 

Number 

Undamaged Case Damaged Case 

Dir. Analytical 
(Hz.) 

Updated 
(Hz.) 

c.o.v. 
(×10-10) 

Dir. Analytical 
(Hz.) 

Updated 
(Hz.) 

c.o.v. 

(×10-10) 

1 y 0.79 0.79 0.22 y 0.77 0.77 4.68 
2 x 1.02 1.02 0.33 x 0.94 0.94 3.48 
3 Tors 1.50 1.50* - Tors 1.45 1.45* - 
4 y 2.36 2.37 0.15 y 2.36 2.36 2.60 
5 x 3.05 3.05 0.26 x 2.91 2.92 2.30 
6 y 3.91 3.92 0.08 y 3.87 3.86 1.42 
7 Tors 4.49 4.50* - x 4.55 4.56 1.10 
8 x 5.04 5.04 0.11 Tors 4.42 4.41* - 
9 y 5.42 5.42 0.03 y 5.28 5.28 1.01 
10 y 6.87 6.86 0.01 y 6.78 6.78 0.72 
11 x 6.99 6.99 0.05 x 6.84 6.84 0.83 
12 Tors 7.43 7.43* - Tors 7.18 7.18* - 
13 x 8.87 8.87 0.02 x 8.19 8.20 0.61 
14 Tors 10.29 10.29* - Tors 10.08 10.08* - 
15 Tors 13.06 13.07* - Tors 12.61 12.60* - 

 

Table 5.3. Actual and updated stiffness parameters in the x-x direction 

Parameter 
Undamaged case Damaged case 

Actual  Updated 
c.o.v 

(×10-14) Actual  Updated 
c.o.v 

(×10-14) 

θx1 1.0000 1.0044 1.0214 0.7000 0.7078 8.4405 
θx2 1.0000 1.0114 1.2943 1.0000 1.0107 10.8562 
θx3 1.0000 1.0076 0.8476 1.0000 1.0059 8.6016 
θx4 1.0000 1.0089 1.0702 1.0000 1.0114 8.3922 
θx5 1.0000 1.0089 1.0193 1.0000 1.0062 7.7128 
θx6 1.0000 1.0056 1.0326 1.0000 1.0043 6.9394 
θx7 1.0000 1.0109 1.0056 0.4000 0.4009 2.3786 
θx8 1.0000 1.0010 1.0221 1.0000 1.0076 5.9229 
θx9 1.0000 1.0168 0.9642 1.0000 1.0074 6.5112 
θx10 1.0000 1.0000 0.7876 1.0000 1.0029 8.5295 
θx11 1.0000 1.0057 0.8855 1.0000 1.0037 5.7305 
θx12 1.0000 0.9991 1.0363 1.0000 1.0090 10.6522 
θx13 1.0000 1.0076 1.0826 1.0000 1.0100 7.9952 
θx14 1.0000 1.0125 0.7692 1.0000 1.0016 11.6128 
θx15 1.0000 0.9987 0.9038 1.0000 1.0003 14.9658 

 

Updated natural frequencies for first fifteen modes are presented in Table 5.2. 

Here, the translational modes indicate the identified most probable values by using the 

presented algorithm, and torsional modes are obtained from the eigenvalue analysis of 
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the updated finite element model. It is seen that the identified frequencies match well with 

their analytical values. In addition, identified stiffness parameters and the corresponding 

posterior coefficient of variations (c.o.v.) in the x-x and y-y direction is presented in Table 

5.3 and Table 5.4, respectively. Similarly, it is seen that the stiffness parameters show 

good convergence to the analytical values for both undamaged and damaged cases. 

In the previous studies, the modelling and prediction errors are generally defined 

as rigid constraints (they are assigned to the selected prescribed values). The presented 

method, however, defines soft constraints for modelling and prediction error. Therefore, 

the possible discrepancies due to the modelling and prediction error are calculated at each 

iteration step.  Figure 5.4 presents the cumulative probability density functions of possible 

damage with respect to the damage level. It is seen that the probabilities of damage show 

very small (nearly zero) variance around the most probable damage levels. The reason of 

this fact is thought to be the result of using soft constraints for the modelling and 

prediction error. 

 

Table 5.4. Actual and updated stiffness parameters in the y-y direction 

Parameter 
Undamaged case Damaged case 

Actual Updated 
c.o.v 

(×10-14) Actual Updated 
c.o.v 

(×10-14) 

θy1 1.0000 1.0090 1.4566 1.0000 1.0035 11.2068 
θy2 1.0000 1.0105 1.0229 0.9000 0.9089 9.7372 
θy3 1.0000 1.0133 0.9693 1.0000 1.0079 12.1623 
θy4 1.0000 0.9973 0.7562 1.0000 0.9944 15.5966 
θy5 1.0000 1.0085 1.2633 0.7500 0.7521 8.7421 
θy6 1.0000 1.0027 1.0756 1.0000 0.9971 6.4256 
θy7 1.0000 1.0021 1.5264 1.0000 1.0005 5.9322 
θy8 1.0000 1.0105 1.0523 1.0000 1.0014 4.3256 
θy9 1.0000 1.0070 0.9145 1.0000 1.0105 7.1385 
θy10 1.0000 1.0091 1.1580 1.0000 1.0158 9.9661 
θy11 1.0000 1.0137 1.6386 1.0000 1.0144 11.1286 
θy12 1.0000 0.9973 1.1325 1.0000 0.9957 12.5625 
θy13 1.0000 1.0093 1.4086 1.0000 0.9989 8.4346 
θy14 1.0000 0.9982 0.9373 1.0000 1.0085 10.0628 
θy15 1.0000 1.0070 1.1548 1.0000 0.9924 12.0963 
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Figure 5.4. Cumulative probability of damage for the stiffness parameters (blue line: x-x 

direction, red line: y-y direction) 

Figure 5.5 and Figure 5.6 show the convergence speed of the estimated stiffness 

parameters to their analytical value and the variation of their posterior c.o.v. with respect 

to the number of considered modes in the cases of considering the rigid and soft 

constraints for λni, respectively. For the rigid constraint case, λni is set to the MPVs that 

are identified from the measurements. It is seen that the convergence speed of the 

estimated stiffness parameters to the analytical value is higher in the presented 

methodology (soft constraint approach) when compared to the rigid constraint approach. 

In addition, the presented methodology reduces the posterior c.o.v. significantly for the 

first stiffness parameter when compared to the rigid constraint approach. 

 

Figure 5.5. Variation of the estimated θx1 versus the number of considered modes (red 

circle: rigid constraint, blue square: soft constraint for eigenvalues)   

P2y

P5y

P1x P7x
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Figure 5.6. Variation of the posterior c.o.v. of θx1 versus the number of considered modes 

(red circle: rigid constraint, blue square: soft constraint for eigenvalues)   

Figure 5.7 and Figure 5.8 show the variation of estimated stiffness parameters and 

their posterior c.o.v. in case of the prescribed variance for modelling and measurement 

error. Here, the prediction error for eigenvalues and eigenvectors are defined to have a 

c.o.v. of 1%. The prescribed variance of modelling error is calculated according to the 

defined prediction error. Results show that the soft constraint approach for modelling and 

measurement error increases the convergence speed of most probable stiffness parameters 

and decreases significantly the posterior coefficient of variation. 

 

Figure 5.7. Variation of the estimated θy1 versus the number of considered modes (red 

circle: rigid constraint, blue square: soft constraint for modelling and 

prediction error)   
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Figure 5.8. Variation of the posterior c.o.v. of θy1 versus the number of considered modes 

(red circle: rigid constraint, blue square: soft constraint for modelling and 

prediction error)   

 
Figure 5.9. Updated mode shapes (blue squares) and analytical values (red line) for 

undamaged case 
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Figure 5.10. Updated mode shapes (blue squares) and analytical values (red line) for 

damaged case 
 

Figure 5.9 and Figure 5.10 show the updated first fifteen mode shapes for 

damaged and undamaged cases. Here, torsional mode shapes are estimated from the 

updated finite element model. The estimated mode shapes (presented by blue squares) 

match well with the analytical results for both undamaged and damaged cases. In addition, 

the posterior c.o.v. values for identified mode shapes are presented in Table 5.5. 

 
Table 5.5. Posterior c.o.v. values for mode shapes (×10-12) 

Mode number 
Undamaged case Damaged case 

yy-dir xx-dir. yy-dir xx-dir. 
1 3.86 4.25 7.35 9.93 
2 5.25 4.92 7.42 11.16 
3 5.85 6.04 9.83 13.25 
4 7.23 8.23 10.21 13.86 
5 9.16 9.95 12.36 15.79 
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5.7.2. Experimental analysis: Ten story shear frame 
 

In this section, the presented methodology is applied to the ten-story shear frame 

which is investigated in Section 4.5 (see Figure 4.2). The story stiffness of the structure 

is analytically calculated as [38.67 38.67 38.67 25.78 25.78 25.78 25.78 12.89 12.89 

12.89] KN/m. In addition, the story mass is calculated as 2.355 kg for each story. For real 

life applications in which the nominal stiffness parameters are assumed to be well 

estimated, one may take a prior estimation of 1.00. In this study, however, the prior 

estimation for stiffness parameters are intentionally considered as overestimated and 

assigned to 10.0 with a large variance. The mass parameters are selected as 1.00 with 

small variance (well-estimated).  Three different scenarios are considered to see the effect 

of incomplete measurement data. Sensor configurations for these scenarios are given in 

Table 5.6. 

Table 5.6. Sensor placement configuration for considered measurement scenarios 

Setup Number 
Measured DOFs 

Scenario I Scenario II Scenario III 

1 1, 4 2, 3, 4 1, 2, 3, 4 

2 4, 6 4, 5, 6 3. 4, 5, 6 

3 6, 8 5, 6, 7 5, 6, 7, 8 

4 8, 10 7, 8, 9 7, 8, 9, 10 

 

Table 5.7. MPVs and posterior c.o.v. for natural frequencies (“*” denotes the MPVs that 

are identified from the measurements) 

Mode 
# 

Scenario I Scenario II Scenario III 

MPV* MPV c.o.v (%) MPV* MPV c.o.v (%) MPV* MPV c.o.v (%) 
1 2.61 2.62 0.11 2.62 2.62 0.08 2.62 2.62 0.07 
2 7.38 7.37 0.06 7.37 7.37 0.05 7.37 7.37 0.05 
3 11.67 11.69 0.03 11.69 11.69 0.01 11.70 11.70 0.01 
4 17.02 17.03 0.02 17.03 17.03 0.01 17.03 17.03 0.01 
5 20.72 20.70 0.02 20.72 20.71 0.01 20.71 20.71 0.01 

 

Table 5.7 presents the identified MPVs of natural frequencies and their posterior 

c.o.v. values. Here, “MPV*” denotes the most probable frequencies identified by BFFTA, 

and “MPV” denotes the most probable frequencies by the presented method. Results show 
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that the discrepancy between the updated and measured values are very small. In addition, 

as the number of measured DOF increases, the discrepancy of the MPVs and their 

posterior c.o.v. values decrease.  

 

Table 5.8. Identified stiffness parameters for considered scenarios 

Stiffness 

Parameter 

Scenario I Scenario II Scenario III 

MPV c.o.v (%) MPV c.o.v (%) MPV c.o.v (%) 

θ1 0.9055 0.3195 0.9216 0.2927 0.9846 0.1607 

θ2 0.9346 0.5147 0.8632 0.3729 0.8606 0.1700 

θ3 1.1641 0.5701 1.0955 0.1484 0.9162 0.1025 

θ4 1.1868 0.5723 1.0629 0.1512 1.0798 0.1015 

θ5 0.9227 0.6093 0.9929 0.1944 0.9967 0.1288 

θ6 1.1425 0.7114 0.9866 0.2180 1.0205 0.1497 

θ7 1.0547 0.5564 1.1626 0.1774 1.1447 0.1177 

θ8 1.6102 0.7402 1.6051 0.2214 1.5781 0.1311 

θ9 1.4575 0.6004 1.4997 0.2192 1.5269 0.1314 

θ10 1.5213 0.5782 1.4805 0.2170 1.5191 0.1343 

 

 

Figure 5.11. Updated mode shapes for considered scenarios 
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Identified stiffness parameters and their posterior c.o.v. values are presented in 

Table 5.8. At first view, it is seen that the identified stiffness parameters show a maximum 

difference of about 10% among the Scenario-I and III. This difference is considered to be 

caused by the effect of insufficient measurement points in Scenario-I. Here, only the first 

five modes could be identified by the presented method. The omission of higher modes 

results in a weaker estimation for stiffness parameters. The results from Scenario II show 

a small difference from Scenario III, since only the last two modes out of ten are missed. 

In addition, the posterior c.o.v. shows significant increase in case of incomplete data. 

Despite the difference in stiffness parameters, the posterior most probable mode shapes 

are observed to be identical for the considered scenarios (see Figure 5.11).  

 

5.8. Concluding Remarks 
 

Motivated from previous research, this study presents a two-stage Bayesian finite 

element modal updating procedure from the ambient response measurements obtained by 

multiple setups. The prior estimations for global eigenvalues and eigenvectors are 

considered by using Gaussian approximation centered at the MPV of local eigenvalues 

and eigenvectors obtained by BFFTA at each setup. The results are listed below. 

 The proposed procedure results in lower posterior uncertainty which makes it less 

sensitive to the posterior MPV for model parameters. The reason of this fact is 

considered to stem from using the posterior distribution of local modal parameters 

obtained by BFFTA at each setup for prior probability distribution of eigenvalues 

and eigenvectors.  

 Some applications in the literature consider the measured eigenvalues as the 

prescribed (or target) and the possible prediction errors are neglected. In this 

study, however, the prediction error between the system and measured 

eigenvalues are considered. According to the results, it is seen that the proposed 

methodology results in significantly less posterior c.o.v. for stiffness parameters.    

 When the modelling error level is prescribed, the posterior uncertainties are 

affected by the chosen value even if the identified MPVs for model parameters 

are close to the actual value. The smaller values do not guarantee the smaller 

posterior c.o.v. for model parameters. This prescribed value should be selected 

according to the prediction error defined for the eigenvalues and eigenvectors. In 
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addition, some applications completely neglect the modelling error which may 

also result in larger posterior uncertainty. In the proposed methodology, however, 

the modelling error is not constrained, and it is estimated at each iteration step. In 

the presented numerical analysis, the posterior c.o.v. for model parameters are 

found significantly smaller from the prescribed modeling error approach.  

 Both the stiffness and the mass parameters are considered as model parameters to 

be updated in the presented methodology. Assuming both parameters are initially 

not well-estimated does not give reasonable results since an infinite number of 

sets for most probable stiffness and mass parameters can be found. For this reason, 

at least one of those parameters should be assumed as well-estimated. The mass 

is generally much easier to be evaluated, and therefore the mass parameters are 

assumed to be well-estimated with small prior variance in the numerical examples. 
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CHAPTER 6 

 

CONCLUSIONS 

 
6.1. Summary of Results and General Conclusions 

 

In the light of the studies available in the literature, this study presents a Bayesian 

computational framework starting from the identification of modal properties of the civil 

engineering structures. The procedure is completed by finite element model updating and 

damage detection by utilizing the measured acceleration response data. The summary of 

the general conclusions is presented below. 

 The various BAYOMA methods such as BSDA and BFFTA can result in a 

standard form in terms of the negative logarithm-likelihood function. Only the 

Bayesian Spectral Trace Approach, which decouples the spectrum variables and 

mode shapes, presents a different methodology. In this methodology, MPV of 

spectrum variables are obtained by BSTA at the first stage. The mode shapes are 

obtained subsequently using the BSDA centered at the MPV of spectrum 

variables. In this study, however, this approach is considered as ill-conditioned in 

terms of its theoretical background. The reason of this conclusion lies in the 

consideration of the distribution of modal parameters by different probabilistic 

models. Here, the most important conceptual problem arises at the second step in 

which the most probable mode shapes are determined by assuming the MPV of 

spectrum variables. This assumption may sound reasonable when the MPV of 

spectrum variables are well matched with the actual values with zero uncertainty 

only, because each MPV and its uncertainty is correlated to the selected 

probability distribution. The identified spectrum parameters at the first stage 

reflect the MPVs according to the BSTA. Therefore, they cannot be considered as 

MPVs for BSDA at the second step. Here, assuming the outputs of the first stage 

as the prior distribution of the spectrum variables becomes more reasonable. 

Motivated from the previous studies, this study presents a different two-stage 

approach based on BFFTA. The main difference of the presented study lies in the 

consideration of the constraint equations for mode shapes. The equality 
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constraints for mode shapes are defined so that they are satisfied for each trial of 

spectrum variables. Thus, the posterior uncertainties of spectrum variables and 

mode shapes can be decoupled. 

 The most prominent advantages of BAYOMA is that it provides uncertainty 

information for the identified values and it is capable of identifying the level of 

modal excitation and prediction error. When compared to the available OMA 

methods, BAYOMA does not show remarkable difference in terms of the 

convergence of identified parameters to actual values. However, the convergence 

of BAYOMA becomes more reasonable under large noise effect, especially for 

damping ratio and mode shape vector.  

 The available Bayesian formulation for closely spaced modes defines the cross 

spectral density between different modal excitations in terms of the coherence. 

Therefore, the norm and phase angle of the coherence are considered as 

parameters to be identified. This study, however, states that the coherence 

between the modal excitations can be assumed as a real number when the structure 

is subjected to i.i.d. Gaussian excitation. In addition, numerical results for the 

burying mode case indicate that the presented methodology is capable of 

identifying the modal parameters as independent from the location of the burying 

mode. 

 Different from the available Bayesian methods for multiple setups, the proposed 

Bayesian mode shape assembly technique incorporates the setup weights with 

Hessian matrix for the local mode shape. Here, the Hessian matrix for the local 

mode shape is calculated by using the local spectrum variables, only. Therefore, 

obtaining the local mode shapes becomes unnecessary. Due to the norm constraint 

singularity, the presented methodology can also be applied for closely spaced 

modes. The results show that the presented method presents better results in terms 

of convergence speed due to the high quality of initial estimation. In most cases, 

the global mode shapes can be identified without iteration. In addition, the 

presented methodology shows that there is zero correlation between the global 

mode shape vector and local spectrum parameters in case of well separated modes. 

This result significantly reduces the computational effort for the posterior 

uncertainty quantification.  



139 
 

 A new Bayesian finite element model updating methodology is presented 

incorporating the presented mode shape assembly technique. Here, the posterior 

distribution of global natural frequencies and mode shape vectors are considered 

as the prior distribution of the eigenvalues and eigenvector of the finite element 

model. Therefore, the model parameters could be directly identified from the FFT 

of measured data. The numerical results indicate that the presented methodology 

increases the convergence speed and reduces the posterior uncertainty of model 

parameters significantly. In addition, experimental results show that the presented 

methodology gives reasonable results in case of incomplete measurement 

points/data. 

 

6.2. Recommendations for Future Works 
 

During the past decade, significant developments have been achieved in regard to 

solutions of several problems in the applications of BAYOMA and BMU. However, some 

critical issues that need to be solved still exist. 

 In the literature, the effect of modelling error is investigated for a buried mode 

case in which there is only one buried and one burying mode available. This study 

extends the possible buried mode cases according to the location of burying 

modes. However, the presented study is limited to maximum three buried mode 

cases. There are also a lot of possibilities in regarding to the number of buried and 

burying mode(s), and their locations. A more general method might be developed.  

 Despite the efficiency and high computational speed of frequency domain 

BAYOMA methods, it needs a manual bandwidth selection. The manual selection 

also helps to make an inference about the data quality and elimination of spurious 

(non-structural) modes. However, the computational effort may inevitably 

increase due to the difficulties on the detection of possible modes in case of low 

data quality. To solve this problem and to obtain a fully automated BAYOMA 

application, an automated bandwidth selection should be developed in which the 

possible modes are efficiently detected without a user interpretation. 

 Classical BAYOMA or BMU methods present efficient tools for linear modal 

analysis under small amplitude ambient vibration effect. A Bayesian approach 
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might be developed to detect the changes in modal or model parameters in case 

of non-linear vibration responses during large amplitude earthquake excitations.   
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APPENDIX A 

 

DERIVATIVES OF NEGATIVE-LOGARITHM 

LIKELIHOOD FUNCTION 

 
Gradients of L(θ) with respect to modal parameters are obtained as follows. 
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L φ S SD SD S F F

S S D D SD S F F
 (A.5) 
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 Gradient of 2L(ξ, ξ) 
21 2, ,2 1

2 2,2 1

2 3 1

1

2

ξ ξ ξ ξ ξ
k k e k k e k e

k

ξ ξ ξ
k k k k e k e

k

ξ
k k k e k e

k

L SD SD S SD SD S α S

S D D D SD S α S

D SD SD S α S

 (A.6) 

 Gradient of 2L(ξ, S) 
1 2,2 1

2 11

1

2 1

ξ S ξ ξ
k k e k k k e k e

k

ξ
k k k e k e k k e

k

L D SD S SD D SD S α S

SD D SD S α S SD SD S
 (A.7) 

 Gradient of 2L(ξ, Se) 
2 1,2 2 1

2 12 1 1

1

2

ξ S ξe
k k e k e k e k e

k

ξ
k k k e k e e k e

k

L SD SD S λ S SD S α S

S D D SD S α S S SD S
 (A.8) 

 Gradient of 2L(ξ, φ) 

1,2 1 *

21 2 *

2 Re

2 Re

ξ φ ξT
e k k e k k

k

ξ
e k k k e k k

k

L φ S SD SD S F F

S S D D SD S F F
 (A.9) 

 Gradient of 2L(S, S) 
2 1,2 2 12 1 1S S

k k e k e k k e
k

L D SD S α S SD SD S  (A.10) 

 Gradient of 2L(S, Se) 
2 1,2 1

1 12

21

1 1

1

S Se
k k e k e k k e

k

k k e k e k k e
k

k e k k e

L D SD S α S SD SD S

D SD S α S SD SD S

α S SD SD S

 (A.11) 

 Gradient of 2LS, φ) 

1 1,2 1 *2 1 ReS φ T
e k k e k k e k k

k
L φ S D SD S SD SD S F F (A.12) 

 Gradient of 2L(Se, Se) 
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2,2 2 3

1 1 21 2 1

1 2

2

S Se e
f e k e e

k

k k e k e e e k e k e
k

L N N S SD S S κ

SD SD S α S S S SD S SD S
 (A.13) 

 Gradient of 2L(Se, φ) 

1 2,2 2 1 *2 ReS φ Te
k e k e e k e k k

k
L SD S SD S S SD S F F φ  (A.14) 

 Gradient of 2L(φ, φ) 

, 2Δφ φL  (A.15) 

In addition, derivatives of Dk are obtained as below. 

 Derivative of Dk
(f) 

2
2

2 2
2 2 8f

k k
k k k

f ξ fD D
f f f

 (A.16) 

 Derivative of Dk
(f, f) 

22 2
, 2 3

2 2 2 2
2 8 2 82f f

k k k
k k k k k

ξ f ξ fD D D
f f f f f

 (A.17) 

 Derivative of Dk
(ξ) 

2
2

2
8f

k k
k

ξfD D
f

2
2

2
8f

k k
k

ξfD D
f

 (A.18) 

 Derivative of Dk
(ξ, ξ) 

2 2
2 3

2 2
8 128f

k k k
k k

f fD D D
f f

 (A.19) 

 Derivative of Dk
(f, ξ) 

2 2
, 2 3

2 2 2 2
16 2 8 82f ξ

k k k
k k k k k

ξf f ξ f ξ fD D D
f f f f f

 (A.20) 
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APPENDIX B 

 

SCALING OF NEGATIVE LOG-LIKELIHOOD 

FUNCTION FOR UNIT NORM OF MODE SHAPE 

VECTOR 

 
Derivatives of Spectral Density Matrix with Scaled Mode Shape Vector 

 
The expected spectral density of measured response should be written as follows 

when it is assumed that it always satisfies the unit norm approximation for the mode shape 

vector. 

Tk
k e NT

SDE φ φ S I
φ φ

 (B.1) 

 and  are obtained as follows by using the matrix inversion and 

determinant lemma. 
11 1 1 1 1

11

/T T T
k e N e e k e

T Tk e
e N

k e

E S I S φ φ S φ φ φ SD φ S

SD SS I φφ φ φ
SD S

 (B.2) 

1

11

/T T T
k k e k e N

N
e e k

E φ φ SD φ S φ SD φ φ S I

S S SD
 (B.3) 

Thus, the negative logarithm-likelihood function can be obtained as follows by 

making use of Eqs. (B.2) and (B.3). 

ΔT

s T
φ φJ θ C L
φ φ

 (B.4) 

Derivatives of J(θ) are obtained as; 

Δ θT s
θ θs s

s T
φ φJ L
φ φ

 (B.5) 

2
Δ Δ2 2

T T
φ T

T T

φ φ φJ φ
φ φ φ φ

 (B.6) 
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,
2

Δ Δ2 2
θ θT Ts s

θ φ Ts
T T

φ φ φJ φ
φ φ φ φ

 (B.7) 

,
2 3 2

Δ Δ Δ Δ2 8 8 2
T T T

φ φ T
NT T T T

φφ φ φ φ φJ φφ I
φ φ φ φ φ φ φ φ

 (B.8) 

At  and =  

ˆ ˆˆ ˆ ˆ ˆΔ ΔTφ φ φ φ  (B.9) 

ˆ ˆ ˆˆ,

ˆ

ˆ ˆˆ ˆ ˆ ˆ2 Δ 2 Δ

ˆˆ ˆ ˆ2 Δ 0

θ φ θ θs s sT T T

θsT T
N

J φ φ φφ

φ I φφ
 (B.10) 

ˆ ˆ, ˆ ˆ ˆ2Δ 2 Δφ φ T
NJ φ φI  (B.11) 

 

Eigen Decomposition of the Derivatives of Δ(θs) 

 
Derivative of  with respect to  can be obtained as follows. 

*Δ
Res k

k k
ks s e k e

θ SD F F
θ θ S SD S

 (B.12) 

In Eq. (B.12), it is seen that the derivative of  is a Hermitian matrix. 

Therefore, its eigen decomposition should also be Hermitian. 

1

1

Δ

Δ

N
T

s i i i
i

TN
s T Ti i i

i i i i i i
is s s s

θ λ ρ ρ

θ λ ρ ρρ ρ λ ρ λ ρ
θ θ θ θ

 (B.13) 

Here,  will be orthogonal to ρi. Therefore,  should be equal to zero in 

order to keep Hermitian structure of . Thus, the derivative of is 

obtained as below. 

1 2

Δ N N
s sT T Ti i

i i i i
i is s s s

θ α θλ λρ ρ φφ ρ ρ
θ θ θ θ

 (B.14) 
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APPENDIX C 

 
DERIVATION OF COHERENCE BETWEEN TWO DIFFERENT 

SIGNALS AND CAYLEY TRANSFORMATION 

 

The Expected Coherence Between Different Modal Excitations 

 
The expected spectral density matrix of modal excitation can be written as below 

in case of the considered structure is subjected to independent and identically distributed 

Gaussian excitations. 
*Φ Φ

Φ MΦ

T
k k

T

E p p
S  (C.15) 

where Φ = modal shape matrix, M = mass matrix, and pk=nodal force vector (Gaussian). 

Here, the expected value of the spectral density of nodal forces will equal to a real 

diagonal matrix due to the zero correlation between different nodes. Thus, the expected 

spectral density matrix inevitably becomes a real matrix.  

Φ Φ
Φ MΦ

T
p

T

S
S  (C.16) 

 

where Sp  denotes the expected spectral density of nodal forces. Hence, the coherence 

between the ith and jth modal excitations can be written as below 

12 sinij
ij

ii jj

S
χ u

S S
 (C.17) 

where uij denotes a free parameter.  

 

Cayley Transformation 

 
Consider a function a minimization problem with an orthogonality constraint as 

below.  

min T
Nn mX

F X α X X I
n m

 (C.18) 

where F(X) is a differentiable function. Using the optimization scheme by Wen and Yin 

(2013) based on the Cayley transformation - a Crank-Nicholson type updating scheme, 
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Eq. (C.4) can be minimized by preserving the norm constraint equality of ( ). 

Here, X can be updated by the Crank-Nicholson like scheme as follows. 

2upd upd
τX X A X X  (C.19) 

where 

T
X XA F X X F  (C.20) 

and τ denotes the step size. Solving Eq. (C.5) for Xupd yields,  
1

2 2upd n n
τ τX I A I A X  (C.21) 

The Barzilai-Borwain step size can be selected for τ to accelerate the iteration 

procedure (Barzilai, 1988). Thus, τ can be calculated by using the following equation 

(Wen and Yin, 2013). 

1 1

1 1

Δ T
k k

T
k k

tr X Z
τ

tr Z Z
 (C.22) 

where 

1 1

1 1

Δ k k k

k X k X k

X X X
Z F X F X

 
(C.23) 
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APPENDIX D 

 

DERIVATION OF POSTERIOR COVARIANCE MATRIX 

FOR CLOSELY SPACED MODES 

 
Posterior covariance matrix for closely spaced modes can be obtained by using 

the fast calculation scheme by Au and Xie (2017). For this purpose, the objective function 

is defined by 

1
( ) ( ) 1

Nm
T

i i i
i

J θ L θ α φ φ  (D.1) 

where 
1 *( ) ln k k k k

k k
L θ E tr E F F  (D.2) 

The second order gradient of J(θ) is obtained as below. 
( , ) ( ,Φ)

2

(Φ, ) (Φ,Φ)
( )

θ θ θs s s
N N N Nθ θ ms s

θs
N N N NN N N m mm θs

J J
J θ

J J
 (D.3) 

where  is an  size matrix, and  

. The derivatives of J(θ) is given by; 
( , )( , ) ( , ) ( ,Φ) ( , )1

( , )1 1
1

(Φ,Φ)

( , )

; . . .

2

.
.

.

2

θ φθ θ θ θ θ θ φ s Ns s s s s s m

φ φ
N

φ φN Nm m
N Nm

J L J L L

L α I

J

L α I

 (D.4) 

and the Lagrange multiplier of αi is obtained as below. 

ˆ( )11
2

φ
i i Nα L φ I  (D.5) 

Derivatives of J(θ), 
( , )( , )( , ) 1 *ln
x yx yx y

k k k k
k k

L E tr E F F  (D.6) 

 

Derivatives of  and ; 
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( ) 1 ( )

( , ) 1 ( , ) 1 ( ) 1 ( )

( )1 1 ( ) 1

( , )1 1 ( ) 1 ( ) ( , ) ( ) 1 ( )

ln ;

ln

;

x x
k k k

x y x y y x
k k k k k k k

x x
k k k k

x y y x x y x y
k k k k k k k k k

E tr E E

E tr E E E E E E

E E E E

E E E E E E E E E

 (D.7) 

 

Derivatives of Ek; 

1 1

( )( )

1 1

( , )( , )

1 1

( , )( ) ( , )

1 1 1 1

( , )
1

,

,

,

, ; ,

,

N Nm m
T

k i k j e N
i j

N Nm m θsθ Ts
k i k j e N

i j

N Nm m θ θs sθ θ Ts s
k i k j e N

i j

N N N Nm m m m θ φs iφ θ φT Ti s i
k k j k k k j

i j i j

Nm

kφ φi i
jk

E φH i j φ S I

E φ H i j φ S I

E φ H i j φ S I

E H i j φ E H H i j φ

H i j
E 1

( ) ( , ) ( , )

0

; 0

, , , ,... , 1 1

Nm

i

S θ S φ Se s e i e
k N k k

s i i ii ij m m

if i j

else

E I E E

θ f ξ S u for i to N and j to N

 (D.8) 

First order derivatives of Hk 

1/2 *

( )
( )

( )1/2 *

( )
( )

( )1/2 *

( )

( )

, ; , ;

,
sin( )

,
sin( )

, 1
2

vij
k ii kii k ii jj ki kj

fi
ii kifi

fk i
ii jj ij ki kj

ξi
ii kiξi

ξk i
ii jj ij ki kj

ξi
kiSii

k
i

H i i S D H i j S S e h h

S D if i j
H i j

S S u h h else

S D if i j
H i j

S S u h h else

D if i j
H i j

S

i

1/2 1/2 *

( )
1/2 *

sin( )

0
,

cos( )

i jj ij ki kj

uij
k

ii jj ij ki kj

S u h h else

if i j
H i j

S S u h h else

 
(D.9) 
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Second order derivatives of Hk; 

( )
( , )

( , )1/2 *

( )
( , )

( , )1/2 *

( )

( , )
( )1/2 1/2 *

,
sin

,
sin

, 1 sin
2

fi
ii kif fi i

f fk i i
ii jj ij ki kj

ξi
ii kif ξi i

f ξk i i
ii jj ij ki kj

ξi
kif Si ii

fk i
ii jj ij ki kj

S D if i j
H i j

S S u h h else

S D if i j
H i j

S S u h h else

D if i j
H i j

S S u h h else

( , )
( )1/2 *

0
,

cos
f ui ij

fk i
ii jj ij ki kj

if i j
H i j

S S u h h else

 (D.10) 

( )
( , )

( , )1/2 *

( )

( , )
( )1/2 1/2 *

( , )
( )1/2 *

,
sin

, 1 sin
2
0

,
cos

fi
ii kiξ ξi i

ξ ξk i i
ii jj ij ki kj

ξi
kiξ Si ii

ξk i
ii jj ij ki kj

ξ ui ij
ξk i

ii jj ij ki kj

S D if i j
H i j

S S u h h else

D if i j
H i j

S S u h h else

if i j
H i j

S S u h h else

 (D.11) 

( , )

3/2 1/2 *

( , )

1/2 1/2 *

0
, 1 sin

4
0

, 1 cos
2

S Sii ii
k

ii jj ij ki kj

S uii ij
k

ii jj ij ki kj

if i j
H i j

S S u h h else

if i j
H i j

S S u h h else

 (D.12) 

( , )
1/2 *

0
,

sin
u uij ij

k
ii jj ij ki kj

if i j
H i j

S S u h h else
1/1/

S S
1/

ii jjii jjS Sii jj

 (D.13) 
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Derivatives of  

( ) ( )( )* * *

( ) ( )( )* * *

( , ) ( ) ( , )( , ) ( )* * * *

( , ) ( ) ( , )( , ) ( )* * * *

(*

2

2

f ffi ii
ki kj ki kj ki kj

ξ ξfi ii
ki kj ki kj ki kj

f f f f ff f fi i i i ii i i
ki kj ki kj ki kj ki kj

ξ ξ ξ ξ ξξ ξ ξi i i i ii i i
ki kj ki kj ki kj ki kj

ki kj

h h h h h h

h h h h h h

h h h h h h h h

h h h h h h h h

h h
, ) ( )( , ) ( )* *

( , ) ( )( )* *

f ξ ξf ξ fi i ii i i
ki kj ki kj

f ξ fξi i ii
ki kj ki kj

h h h h

h h h h

 
(D.14) 

Derivatives of  
1/2 1/22 2

*
2 2

( ) 1( ) 1 * *
2 2

( ) 1( ) 1 * *

( , ) 1
2 2

1 2 ; 1 2

2 2;

2 2;

1

i i i i
ki i ki i

k kk k

fif i i i ii
ki ki ki ki

k kk k

ξiξ i ii
ki ki ki ki

k k

f f ii i
ki ki

k k

f f f fh ξ h ξ
f ff f

f ξ f ξh h h h
f ff f

f fh h h h
f f

fh h
f f

i i

i i

i i

i ( ) 2

( , ) 1 ( ) 2* * * *
2 2

( ) ( ) 2( , ) ( ) 2 * * *

( , ) ( )1 2

( , )*

2 ;

21

2 2;

21

1

fi i
ki ki

k

f f fi i ii i
ki ki ki ki

kk k

ξ ξi iξ ξ ξi ii i i
ki ki ki ki ki ki

k k

f ξ fii i i
ki ki ki ki

k k

f ξi i
ki ki

k

ξ h h
f

f ξh h h h
ff f

f fh h h h h h
f f

fh h h h
f f

h h
f

i

i i

i i

i
( ) 21 * *2 ξii

ki ki
k

f h h
f

i
 

(D.15) 

Thus, the posterior covariance matrix for the modal parameters are obtained as below. 

2 T
θ c cC v J v  (D.16) 

where vc = mapping function that always satisfies the equality constraints, and “+” 

denotes the pseudo inverse. 

1 1 . . .
TT T T

c s N Nm m
v θ φ φ φ φ  (D.17) 
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1 1

.
.

.

Nθs
T

N

c

T
N N Nm m

I

I φ φ

v

I φ φ

 (D.18) 

Due to the norm constraint singularity, the null vector of the posterior covariance 

matrix for ith mode shape will be equal to φi.  

  

2

2
0

T T
φi N i i φ N i ii

N
T T

i i j j j
j

C I φ φ J I φ φ

φ φ σ ρ ρ
 (D.19) 

Similarly, the null vectors of the Cθ will be equal to the corresponding mode 

shapes. 

  

1
1

1

00
0 0 ... 0 0

NN θθ T T T Tss
θ N N Nθ θ ms s

Nm

Nθ
T

j j j
j Nm

C φ φ
φφ

σ ρ ρ
 (D.20) 
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APPENDIX E 

 

DERIVATION OF HESSIAN MATRIX FOR MODEL 

PARAMETERS 

 
The derivatives of Eq. (5.19) is obtained as follows. 

 

 Derivative of J(θ,θ) 
2

( , ) 1 1
ˆ2

1ˆ ˆ ˆ, ,

I
Nm

θ θ T
θ N N ε K Kro n n

nθ θ ρ ρ χ χ

JJ S S G G
θ

 (E.1) 

 Derivative of J(θ,ρ) 
2

( , ) ( , ) 1
ˆ

1ˆ ˆ ˆ, ,

NmTθ ρ ρ θ T
ε K Mn n

nθ θ ρ ρ χ χ

JJ J S G G
θ ρ

 (E.2) 

 Derivative of J(θ, ) 
2

( , )( , )( , ) ( , ) 1

ˆ ˆ ˆ, ,

( , ) 11
ˆ

...

Φ

T θ λNθ λθ λ λ θ m

N Nθ mθ θ ρ ρ χ χ

θ λ T
ε K nn

JJ J J J
θ λ

J S G M ρ

 (E.3) 

 Derivative of J(θ,Φ) 
2

( ,Φ )( ,Φ )( ,Φ) (Φ, ) 1

ˆ ˆ ˆ, ,

( ,Φ )( ,Φ ) ( ,Φ )1

( ,Φ ) 1
ˆ

1

...
Φ

...

ˆ ˆ ˆ2 Φ Ω Φ Φ

T θ Nθθ θ m

N N Nθ mθ θ ρ ρ χ χ

TTT θθ θ N nn n θ

N Nθ

θ T Ti n
ε n n i N n n

N

JJ J J J
θ

J J J

J S K I

 (E.4) 

 Derivative of J(ρ,ρ) 
2

( , ) 1 1
ˆ ˆ2

1ˆ ˆ ˆ, ,

I
Nm

ρ ρ T
ρ N N ε M Mro n n

nθ θ ρ ρ χ χ

JJ S S G G
ρ

 (E.5) 

 Derivative of J( , ) 
2

( , )( , )( , ) ( , ) 1

ˆ ˆ ˆ, ,

( , ) 1
0

...

ˆˆ2 Φ

T ρ λNρ λρ λ λ ρ m

N Nρ mθ θ ρ ρ χ χ

ρ λ T T Tn
ε n M M M M M nn n n n n

JJ J J J
ρ λ

J S λ G G ρ G g G MT T TˆMn n n n nM M M MM M M MG G ρ G g GT T TTˆM M M M MMM M M MM M M MMG G ρ G gG gT T
M M M MM M M

 (E.6) 



154 
 

where 

1
ˆ ˆΦ ... ΦM n N nn el N Nρ

G M MMn
GM M111M11  (E.7) 

 Derivative of J( ,Φ) 
2

( ,Φ )( ,Φ )( ,Φ) (Φ, ) 1

ˆ ˆ ˆ, ,

( ,Φ )( ,Φ ) ( ,Φ )1

( ,Φ ) 1
ˆ

1

...

...

ˆ ˆ ˆ2 Φ Ω Φ Φ

T ρ Nρρ ρ m

N N Nρ mθ θ ρ ρ χ χ

TTT ρρ ρ N nn n θ

N Nρ

ρ T Ti n
ε n n n i N n n

N

JJ J J J
θ λ

J J J

J S λ M I

 (E.8) 

 Derivative of J( , ) 

2
( , ) 1

ˆˆ2
1ˆ ˆ ˆ, ,

Ns
λ λ

ε λ λn ni
iθ θ ρ ρ χ χ N Nm m

JJ diag S G H
λ

 (E.9) 

 Derivative of J( ,Φ) 
2

( ,Φ )( ,Φ )( ,Φ) (Φ, ) 1

ˆ ˆ ˆ, ,

( ,Φ )( ,Φ ) ( ,Φ )1

1
ˆ( ,Φ ) 1

1

...
Φ

...

ˆ ˆ ˆ ˆ2 Φ Φ Φ if

0 otherwise

T λ Nλλ λ m

N N Nmθ θ ρ ρ χ χ

TTT λλ λ N nn n m

N N Nm

T T
ε n n N n nλ nm n N

N

JJ J J J
λ

J J J

S Ω M ρ I n m
J

 (E.10) 

 Derivative of J(Φ,Φ) 
2

(Φ ,Φ )(Φ ,Φ )(Φ,Φ) 1 1
2

ˆ ˆ ˆ, ,

(Φ ,Φ ) 2 1
ˆ ˆ

1

...
Φ

2 Ω Ω 2 I

N Nm m

N N N Nm mθ θ ρ ρ χ χ

Ns
T Tn n

oi ni φ ni N oi n ε n n ni i n
i

JJ diag J J

J Γ r H α I Γ S β

 (E.11) 
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