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ABSTRACT

EXTENDED TOPOLOGY ANALYSIS OF A DETECTION MECHANISM

IMPLEMENTATION AGAINST BOTNET BASED DDOS FLOODING ATTACK IN

SDN

When SDN comes up as a new technology, while it also brings many benefits

such as high availability, scalability and performance, it also brings us new vulnerabilities

that is targeted by attackers. Botnet Based DDoS Flooding Attacks have been one of the

major problems for service provider networks who encountered these repeatedly since the

first DDoS came into existence in the early 2000’s. In this thesis, we mainly concentrate

on the source-based detection approach against Botnet Based DDoS Flooding Attack by

combining the strength of SDN and s-Flow-RT technology.

The main purpose of this research is to detect Botnet Based DDoS Flooding Attack

that can also be performed in distributed SDN environments by using a similar approach

with an available detection mechanism which is not implemented previously on an ex-

tended network with more network elements in order to observe whether the obtained

successful results on the small network are compatible with a result obtained on this re-

search. This study also includes a detection application using previously studied detection

approach based on statistical inference model. The detection application is tested on vir-

tual environments by organizing a Botnet Based DDoS Flooding Attacks on a predefined

source node and then test results show that the mechanism could effectively detect the

attack.
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ÖZET

YAZILIM TANIMLI AĞLARDA BOTNET TEMELLİ DAĞITIK HİZMET DIŞI

BIRAKMA SALDIRILARINA KARŞI BİR TESPİT MEKANİZMASININ

GENİŞLETİLMİŞ TOPOLOJİ ANALİZİ

Yazılım Tanımlı Ağ yeni bir teknoloji olarak ortaya çıktığında, yüksek kullanıla-

bilirlik, ölçeklenebilirlik ve performans gibi pek çok avantaj getirirken, aynı zamanda

da saldırganların hedef aldığı yeni güvenlik açıklıklarını da beraberinde getiriyor. Bot-

net Temelli Dağıtık Hizmet Dışı Bırakma Saldırıları, 2000’li yılların başında ilk Dağıtık

Hizmet Dışı Bırakma Saldırısının ortaya çıkmasından beri bunlarla tekrar tekrar karşılaşan

servis sağlayıcı ağlar için önde gelen siber suçlardan biri olmuştur. Bu tezde ağırlıklı

olarak Botnet Temelli Dağıtık Hizmet Dışı Bırakma Saldırılarına karşı Yazılım Tanımlı

Ağ ve s-Flow-RT teknolojisinin güçlerini birleştirerek kaynak temelli tespit yaklaşımına

odaklanırız. Bu araştırmanın temel amacı, daha küçük bir ağ üzerinde elde edilen başarılı

sonuçların, bu çalışmada elde edilen sonuçlarla uyumlu olup olmadığını görmek amacıyla,

Dağıtık Yazılım Tanımlı Ağ ortamlarında da uygulanabilen Botnet Temelli Dağıtık Hizmet

Dışı Bırakma Saldırılarını, daha fazla ağ elemanı ile genişletilmiş bir ağ üzerinde daha

önce uygulanmamış olan mevcut bir tespit mekanizması ile benzer bir yaklaşım kulla-

narak tespit etmektir. Bu çalışma aynı zamanda istatistiksel çıkarım modeline dayanan

daha önce çalışılmış tespit yaklaşımını kullanan bir tespit uygulaması içermektedir. Tespit

uygulaması sanal ortamlarda önceden tanımlanmış bir kaynak düğümünde Botnet Temelli

Dağıtık Hizmet Dışı Bırakma Saldırısı düzenleyerek test edilir ve test sonuçları, mekaniz-

manın saldırıyı etkili bir şekilde algılayabildiğini gösterir.
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CHAPTER 1

INTRODUCTION

Recently, with the emergence of new networking environments such as cloud com-

puting and internet of things environments, the networking paradigms have inevitably

been updated. The dynamic nature of networking environments has always been open to

change in time. This condition leads to increase in the complexity of today’s networks

and it requires to simplify the network management and aggregate the management in

one center. At that point, when a new networking technology evolves, a new requirement

appears to make the network more scalable and dynamic to be able to manage network

devices in a good way. These requirements can be handled with programmable networks

such as Software Defined Networks. SDN is also a new networking approach decoupling

control plane from the data plane. The control plane is logically centralized and respon-

sible for forwarding decisions. At one hand, all devices in traditional networks make

forwarding decisions themselves, on the other hand all devices in SDN environment are

dumb. SDN separates control plane from the data plane. This separation requires the

implementation of new network services such as traffic engineering, access control, band-

width management etc (Murtuza and Asawa, 2018). The data plane composed of network

devices and these devices have some flow entries on their flow tables. In order for devices

to communicate with the controller, there is an OpenFlow protocol to be able to provide a

secure communication. Each flow entry has matching rules and actions. When the packet

arrives at the network element, on the condition that the rules are matching with the in-

coming packet header fields, the packets are allowed to pass through the network element.

Otherwise, packets are forwarded to the controller for further processing. After that, the

controller sets a flow rule for the corresponding packet header fields. The flow rule is

installed on the flow table of the network devices.

Compared to traditional networks, SDN consists of three layers which are Appli-

cation Layer, Control Layer and Infrastructure Layer. Control Layer has network services

and SDN controller and network manager. In Application Layer, there are many busi-

ness applications such as firewalls, IDS and IPS that can communicate with the Control

Plane. This communication is handled by the Northbound API of the SDN controller.
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In Infrastructure Layer, network devices such as routers, switches and hosts take place.

The communication among devices and controller is handled with the Southbound API

generally known as OpenFlow protocol. There are also Eastbound and Westbound APIs

of the SDN network. These APIs perform controller to controller communication.

The central location of the controller has been a vulnerability for different security

attacks. One of the major security concerns for this condition is the distributed denial of

service flooding attacks on SDN environments. While the controller can be a target for

DDoS attacks, the network devices of SDN can also be a target point. The first scenario

for such attack is to exhaust the communication channel between the controller and the

network devices. When the attack packets come up to the switches of the SDN network,

a new flow rule needs to be installed on the switch, as a result, switches use memory

resources and processing power for the large packets of the attack. This situation leads to

the disruption of memory and the overflow of the flow tables. Consequently, the network

element can not serve the arbitrary packets coming from the other locations. When the

scenario for the controller is considered, the controller also uses the processing power and

the memory resources. Large packets for the attacks can not be handled by the controller

in terms of handling new flow entries for non-existing flows on the switches when the

attack happens. The most common characteristics of DDoS attack is to disrupt a legiti-

mate user’s connectivity or services by exhausting limited resources, including network

resources and server resources such as bandwidth, router processing capacity, memory

and CPU (Lu and Wang, 2016). When a DDoS attack is organized on a certain destina-

tion, the attack is generally performed by some malicious users hiding themselves behind

the scene. DDoS attacks may be performed in different ways. The one way is to use the

methods which spoofs the vulnerable server resources, then floods a targeted victim with

huge amount of internet traffic.

The other method is to use Botnet Based methods. Attackers generally seize a

set of computers which are unaware of what is happening by using a group of methods

such as worms, Trojan horses or back-doors. After that, attackers continuously send re-

quests to orchestrate the bots with regard to redirect the traffic to a certain victim address.

The packets going to the victim at a certain time are turned into the huge flows. By that

way, victim server can not fulfill the traffic expectedly. This result leads the server to be

unavailable. While DDoS attacks have been a subject for traditional networks for two

decades, it is also possible for SDN networks to organize DDoS attacks in a local network

inasmuch as these attacks might usually come from outside of the network, however, the

2



Figure 1.1. DDoS Attack Structure-1

attack may also stem from the inside for the networks composed of the multiple tenants,

specially malicious tenants (Lu and Wang, 2016). Due that reason, it is quite important

to perform DDoS attack study on distributed SDN networks by detecting the attack ef-

fectively with regard to shorten the required time to mitigate the attack. While detecting

the attack, it is not only block the source IP addresses causing to the attack, but also it

is important to prevent the spread of the attack by separating the attack traffic from the

legitimate traffic (Murtuza and Asawa, 2018).

1.1. Aim of the Thesis and Objectives

This study mainly aims at detecting the DDoS attacks by using sflow technology

on the distributed SDN environments. According to the information obtained through the

literature search, we searched out an article which is specified on the references part. We

decided to go through with the article of (Lu and Wang, 2016). We mainly concentrated

on the future work of this article which is not implemented previously as an extended

network with more network elements created by the Mininet emulation tool in order that

the available successful results on the small network performed by the (Lu and Wang,

2016) are compatible with a result that will be obtained on this research. The general

purpose of the research is to detect Botnet Based DDoS Flooding Attack that can also

be implemented in distributed SDN environments by using the same approach with the

available detection mechanism based on the approach of aggregation of flows. Addition-
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ally, we also searched out another article called FlowTrApp developed by (Buragohain

and Medhi, 2016) distinguishing the attack flows from the legitimate traffic and depend-

ing on the per flow based detection approach. Each flow is categorized as high rate or

low rate and long lived or short lived attack flow according to two per flow based pa-

rameters like flow rate and flow duration (Buragohain and Medhi, 2016). This approach

also uses the statistical sampling approach provided by s-Flow RT analytics engine. The

algorithm supported by authors of (Lu and Wang, 2016) and used in this research focus

on the approach of aggregation analysis of flows instead of categorizing individual flow.

In addition to this, the other aim is to construct a distributed network architecture with a

recent technology called ONOS in order one cluster to communicate with the other. After

providing the communication of two ONOS clusters by setting the GRE tunnels for the

specified switches of different clusters. It is essential to implement a DDoS Flooding At-

tack from the network under the first cluster to the network under the other cluster. There

are a group of method to the communication of clusters. Two of them will be illustrated

on the section 5.3 in Chapter 5. As an additional purpose, we have planned to observe the

corresponding flows of each victim node by using s-Flow RT technology. Both ONOS

and s-Flow-RT have REST APIs to be able to talk with external applications. As a final

aim, we will write an application getting the topology information from Northbound API

of ONOS and the flow based information from the s-Flow-RT REST API. In this applica-

tion, we have inspired by the article (Lu and Wang, 2016) which implements a modular

application.

1.2. Organization of Thesis

For the remainder of this thesis, Chapter 2 covers the related works on targeting

the DDoS Flooding detection approaches on SDN environments and recent studies related

to such attacks are summarized. In Chapter 3, the needed background information related

with SDN and OpenFlow architecture and some familiar threats that can be performed

on SDN networks and its countermeasures are discussed according to our preliminary re-

search based on the survey of (Alsmadi and Xu, 2015). In Chapter 4, several environment

requirements are explained and indicated how it is installed and configured on Linux

based environments for DDoS attack organization and the detection on the distributed

SDN environments. In Chapter 5, several communication methods of distributed clusters
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are discussed with regard to be able to send traffic from one cluster to the other cluster.

The detection algorithm composed of the available analysis of (Lu and Wang, 2016) are

mentioned on that part. Lastly, the design of the application is mentioned and emphasized

how it is communicating with other applications such as ONOS and sFlow-RT. Chapter 6

presents how distributed networks are constructed on two physical machines and covers

the comparison of obtained simulation results with the study performed on local network

on mentioned article and the information about the experiment is given and evaluated on

that part. Chapter 7 highlights some future works and concludes the paper.
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CHAPTER 2

RELATED WORK

In traditional network environments, exhaustive solutions against DDoS attacks

have been proposed for decades. There are fairly many approaches for the detection and

countermeasure methods to detect or overcome such attacks. In this chapter, we have

examined a group of works performed in SDN environments in terms of the detection and

countermeasure methods.

2.1. A Feasible Method to Combat against DDoS Attack

SDN environment is quite vulnerable to DDoS Flooding attacks. Inasmuch as

the controller-switch communication channel is a potential target for the attackers (Dao

et al., 2015). As a result of sending large amount of traffic, controller-switch channel

can be shutdown for the communication of network components with controller. (Dao

et al., 2015) proposed a feasible approach based on the IP filtering technique to combat

against DDoS attacks in SDN environment. The method analyzes the user traffic to detect

and prevent the attack. When collecting and analyzing the traffic, authors performed an

experiment at University of Auckland network for the period of one month. According

to the result of the analysis, approximately 90% of the frequent users send at least 5

packets to each destination. On the other hand, abnormal users transmitted less than 5

packets per connection. For two weeks period, 60% IP addresses appeared on only one

day. Depending on the traffic analysis which is obtained by the experiment, the method

aims at generating a table T for holding the IP addresses and their statistic counters for the

redirected packets by the switches on the controller. Each unique IP address has a counter

value of ci to specify how much times a request sent by the particular IP address. When

the attack is performed, a new packet is forwarded to the controller if it has not matching

header fields with the existing flow entries. The controller initially knows that the coming

packet from the switch may be a possible attack packet. A specific entry is created by the

controller by using idle_timeout and hard_timeout variables to limit the lifetime of the

flow. Then, the source IP address is updated on the table T and the counter parameter is
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increased by one. When ci variable reaches the boundary of k which is admitted as an

average connection of the frequent users by the experiment, average number of packet

counter statistic s is taken by the switch. Then, s counter statistic parameter is compared

with the minimum average number of packets per connection which is defined as n. If s

variable is smaller than n, the traffic is assessed as a malicious traffic. Because, according

to the observation by the experiment, abnormal users have less packets per connection

than the frequent users. Otherwise, it can be classified as a frequent user. After the user

classification has been done, then they are blocked by defining a drop rule issued by the

controller.

2.2. DDoS Blocking Application

SDN can be utilized to handle the difficulty of DDoS attacks. (Lim et al., 2014)

proposed a technique utilizing the power of SDN on the network elements and using URL

redirection methods against HTTP based flooding attacks. Paper suggests that SDN can

be used as a key factor on its configurability on the network devices to develop a defence

mechanism against botnet based DDoS attacks protecting the server accommodating in

SDN network. (Lim et al., 2014) developed a DBA application running on the POX con-

troller and protecting a specified server connected to an OpenFlow enabled switch. There

are n number of legitimate hosts and k number of illegitimate hosts outside of the SDN

network. Bots particularly target the server address which is specified as D. DBA applica-

tion generates a set of IP addresses in order to use for a redirection of the bots to the fake

server address instead of redirecting on the real server address D under an attack condi-

tion. DBA retrieves the flows and processes them and the server observes possible attack

metrics, the server notifies the DBA application to produce CAPTCHA coded address

from the pool. D’ address is suggested to the bots. In condition that, D’ is recognized by

the malicious side, D” is suggested by the DBA application. The proposed algorithm just

emphasis on the protection scheme assuming that the detection is performed by the server.

For the point of the classification, a threshold value is determined for a client requesting

a certain IP address. For a specific client, when the request number of client exceeds the

threshold value, the client is classified as a bot, and then the corresponding packets are

dropped. When the attack is realized, the bots are redirected to D’ whereas the normal

user can access the real D address of the server.
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2.3. FlowTrApp

FlowTrApp is an SDN framework for data centers which performs DDoS detec-

tion and mitigation depending on two per flow based traffic parameters such as flow rate

and flow duration of a flow. The application uses the OpenFlow protocol and s-Flow

technology. s-Flow technology is a collector technology gathering flow statistics from the

network elements. The application separates the attack flow from the normal flow by cate-

gorizing each flow from high rate to low rate and long lived to short lived. The application

requires specific L7 constraint defined by the application admin. For example, nowadays

many web application allows user to perform the operation in a single transaction at a

time (Buragohain and Medhi, 2016). In order to work the application well, the applica-

tion admin should define the two per flow based parameters according to the behavior of

a legitimate user pattern. A legitimate user pattern is determined by observing the user

behavior to understand how much traffic rate is sent by a legitimate user to perform the

operation and how long it takes. FlowTrApp gets the threshold values from the applica-

tion admin and it constructs a traffic tuple composed of minimum flow rate, maximum

flow rate, minimum flow duration and maximum flow duration. Then, it classifies a traf-

fic flow as attack traffic or normal traffic. Each flow has a flow rate and flow duration to

compare the incoming flow with the boundary values. If two per flow based parameters of

an incoming flow falls into the interval which is defined with a traffic tuple, then this flow

can be categorized as a legitimate flow. (Buragohain and Medhi, 2016) proposed signifi-

cant categories for attack flows. If an incoming flow has greater than the upper limit and

has less duration than the lower limit, then the attack is called as High Rate Spike Attack.

If the incoming flow has greater than the upper limit and has less duration than the upper

limit of duration, then the attack is called as Short Lived High Rate Attack. If the in-

coming flow has greater than the upper limit and has bigger duration than the upper limit

of duration, then the attack is called as Long Lived High Rate Attack. If the incoming

flow falls into the legitimate range for the flow rate and has bigger duration than the upper

limit of duration, then the attack is called as Idle User Attack. If the incoming flow has

smaller than the lower limit and has bigger duration than the upper limit of duration, then

the attack is called as Long Lived Low Rate Attack. (Buragohain and Medhi, 2016) states

that for the other possible areas excluding the mentioned categories, the attack can not be

detected in real time. For the mitigation process, the application uses a malicious user list

to contain the user having malicious behavior and a malicious counter variable to count
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how many times a specific user behaves malicious activities based on the categorization.

Each user has a limited access count to the system. Thus, if the malicious count variable

is greater than legitimate access count, then the source address is blocked by setting the

hard timeout variable as maximum and dropped from the malicious user list.

2.4. Easy Defence Mechanism Against Botnet Based DDoS Flooding

Attacks

This study proposes a source-based defence mechanism against Botnet Based

DDoS attacks. The mechanism depends on the statistical inference model. The sample

flows are obtained from the sFlow-RT collector tool of InMon. The mechanism mainly

aims at combining the power of SDN and the traffic collector. A detection algorithm and

a response scheme proposed by (Lu and Wang, 2016) to detect the attack in source and

mitigate the attack as soon as possible. In order to detect the botnet based attacks, (Lu

and Wang, 2016) emphasis on defining a metric to measure the botnet based attack spec-

ifications. This metric is defined as a traffic tuple which is a two dimension metric called

distribution and collaboration degree (DCD) of destination flow. A destination flow (d-

flow j) is considered as all the packets having the same destination IP address. The first

dimension δ quantifies a degree referring to how many nodes sending request to a des-

tination. The other dimension ρ quantifies the intensity of a flow in another dimension.

(δ, ρ) tuple is represented on the x-y coordinate. The condition of sending packets to a

destination for normal traffic or attack traffic could be defined as a random process and

a discrete random function is treated as Poisson Process for a certain time interval. For

a specific time t, the probability of k users together sending requests to a destination is

defined as a Poisson function. Threshold δ is determined by the Poisson distribution func-

tion. There is another threshold value for ρ variable. The threshold ρ is decided according

to the maximum exit bandwidth of a certain node. After threshold values are determined,

x-y coordinate plane is separated into the category A, B, C and D respectively as indicated

in Figure 2.1. If the the point (δj, ρj) of d-flow j falls into the area A meaning that the

d-flow j is a normal flow due to the fact that δj and ρj is lower than threshold values. If

the point (δj, ρj) of d-flow j falls into the B meaning that the d-flow j is normal, however,

high speed Internet service is accessed by the users and the bandwidth is used a little bit

more like downloading films or files having large sizes (Lu and Wang, 2016). If the the

9



Figure 2.1. Distribution Collaboration Two Dimension Plot (Source: Lu and Wang,

2016)

point (δj, ρj) of d-flow j falls into area C and D, these flows are considered as an attack

flow and these flows are dropped and moved to the blocking queue for the mitigation. For

the attack flows, sliding window queue response is taken and the queue size is controlled

by a function to force the situation back to the area A or B. All drop actions and queue

actions are installed on the corresponding switches on the SDN network according to the

response scheme. This study includes a modular application communicating both Flood-

light SDN controller and sFlow-RT collector by using REST APIs of both controller and

traffic collector. Each module of the application performs the task itself. The application

consists of 6 module which are topology, collector, detection, response, log and update.

Topology gets the topology information from the SDN controller, and pushes the topol-

ogy information to the collector module. Collector schedules the sFlow agents on each

switch to get the traffic information from each switch on the network. After getting the

topology information and traffic data from the network, the detection module categorizes

the traffic according to the detection algorithm. Then, response scheme is executed in

response module to take drop actions and install flow entries on the switches. For every

second, topology and traffic information is updated and recalculated. Hence, the histor-

ical data is hold on the log module and the parameters related to the detection method

is updated according to the historical values. For this thesis, we have used the detection

algorithm of this approach in terms of determining the traffic detection parameters to be

able to perform the detection mechanism with more network elements as specified on the

future study of this research.
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CHAPTER 3

BACKGROUND

In this chapter, SDN, its architecture, OpenFlow Protocol, OpenFlow Switch and

OpenFlow messages used by the controller and network elements of the SDN environment

are explained. Moreover, security concerns on the SDN environment are also explained

in detail.

3.1. Software Defined Network

With the advance of technological improvements, SDN has emerged as a new

networking paradigm for cloud services, social networks and modern networking envi-

ronments. It is proposed as a future communication network architecture. Some in-

creasing requirements and specifications in the traditional network architecture such as

frequent change of bandwidth, adaptation difficulties of the topology and routing infor-

mation change and the inadequacy of storage and capability has played as a main role

for the existence of the SDN. SDN decouples the control plane and data plane where

a logically centralized controller performs forwarding decisions on behalf of switches.

Switches in data plane performs just forwarding process decided by the controller. A log-

ically centralized software is used for the management of the whole network. In SDN,

there are also vulnerabilities unique to SDN in addition to the existing one. Most of the

security issues stem from the communication bottleneck between control plane and data

plane. The followings are the major definitions related to SDN architecture.

Data Plane: It represents hardware and infrastructural elements such as switches and

routers. The whole forwarded data such as packets are also represented with the data

plane concept.

Control Plane: It represents all logic and devices that would make forwarding decisions.

Control instructions are sent from control plane to data plane via protocols like OpenFlow.

It interacts with infrastructure layer via OpenFlow protocol. Controller programs the

forwarding rules for network devices. There is one or more controller in control plane

that provides a global view of the network.
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Traditional Networks vs SDN: SDN differs from the traditional network because in

traditional networks, switches and routers perform forwarding decisions themselves by

using routing protocols. While in traditional networks network elements are not aware of

the global view of the network, in SDN environment controller is knowledgeable about

the global network. In traditional networks, forwarding decisions are IP address based

whereas in SDN, decisions are taken according to flows. The separation of control plane

and data plane overcomes many security issues in traditional networks even though new

vulnerabilities unique to SDN appear.

OpenFlow Protocol: It is the most popular communication protocol in SDN network-

ing. It allows the communication between infrastructure layer and control layer and pro-

vides the programmability of devices. OpenFlow controller installs the forwarding rules

proactively or reactively for network devices. These devices make header matching with

associated patterns. Controller performs all forwarding rules and switches only make for-

warding with predefined actions. It enables an external entity like controller to the manip-

ulation of the network flow packets (Mousavi, 2014). OpenFlow enabled switches have

the flow tables representing the ingress and egress paths of a packet for a specific switch.

OpenFlow protocol enables controller to access flow tables. This access is provided over

a secure communication channel.

Infrastructure Layer: In infrastructure layer, there are network devices such as hubs,

bridges, routers and switches. There are network resources in infrastructure layer. These

resources are stored in RDB. RDB is considered as a storage of the whole resources.

Agents in infrastructure layer are responsible for executing SDN controller instructions.

Coordinator is dependent on the OSS. OSS allocates resources for network elements by

means of coordinator and it determines policies for the management of these elements.

Network devices are instructed by the SDN Controller by Southbound Interface. Accord-

ing to these instructions, forwarding actions are performed.

Control Layer: It contains core logical programming of packet forwarding, network

switching and routing. The core instructions and decision-based information are sent

to the data plane of the network devices. The control layer has Control Layer Agents

which are responsible for connecting the Application Layer and Control Layer with some

programmable APIs.

Application Layer: It consists of various applications like IPS, IDS , security systems,

traffic monitoring services, load balancing, bandwidth management, quality of service

etc. It also contains access applications being able to access network devices.
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Figure 3.1. A Simple SDN Network with OpenFlow Switches

Figure 3.1 exemplifies a simple SDN network. In SDN architecture, network de-

vices are distributed on the data plane. These devices are managed by the controller.

Due that reason, controller gains a complete visibility on the data plane elements by uti-

lizing some network functions and the APIs. When a particular packet comes into the

switch, initially flow table is controlled for the flow rule whether the specific packet has

reached previously or not. If there is a match on the flow table, the switch will process

the flow rule. Otherwise, the incoming packet headers are forwarded to the controller.

The controller begins looking for the flow entries, in condition that the controller does

not discover the flow rule inside the SDN network, the packets are accepted as unfamiliar

packets, and are dropped. If the controller finds the matching fields, then it will send the

flow rules to the switches and then install the flow rules on the corresponding switches.

After that, the specified switch executes the actions in the flow rule according to the path

between the source and the destination given in the flow table. Figure 3.2 illustrates the

flow processing in the OpenFlow protocol.

Flow: A flow is a group of packets going from one point to another point on the managed
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Figure 3.2. Flow Processing in OpenFlow Protocol (Source: Murtuza and Asawa, 2018)

networks and having a temporary lifetime. The packets inside the flow should have the

same matching structure within its lifetime. A flow carries on the statistical parameters

like received bytes, received packets and flow duration.

Received Bytes: It represents how many bytes received with a specific flow.

Received Packets: It represents how many packets fitting the same matching structure of

the flow entry on the flow table of the switch.

Flow Duration: It represents how much time a flow exists in a flow table. Flow duration

is controlled by the idle_timeout and hard_timeout fields. These parameters are set

when a flow entry is installed on the flow table. These parameters do not change the

modification of the flow entries. During this interval time, if there is no observation for

the traffic related to the corresponding flow entry, idle_timeout will expire. The purpose

of setting hard_timeout is to set a bound for the lifetime of the flow.

3.2. OpenFlow Switch

OpenFlow switch contains one or more flow tables and a secure communication

channel with controller. OpenFlow protocol performs the secure communication over

TLS enabled channel. Each table composed of flow entries having a match field, some
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counter information and a group of instructions. The basic OpenFlow switch consists of

10 tuple for matching operation. Table 3.1 illustrates packet header fields on the flow

tables. For each table, there is a metadata field as a register information to transfer header

information from one table to another. When the packet is searched for matching, the

metadata field is used to packet transfer between the multiple tables. If a match is found,

counter statistic information will be updated and the corresponding action is assigned

to the related entry. Counter statistic information refers to the current numerical value

of real time variables like per flow entry, per table, per port and per queue (Mousavi,

2014). These parameters are shown in the Table 3.3. The actions can be look up for in

other tables, forwarding packet or drop packets, rewriting of the header fields according

to the OpenFlow specifications which is published by ONF. Supported actions are given

in the Table 3.2. For this thesis research, OpenFlow version 1.3.0 is used for the testing

purposes.

Table 3.1. Packet Header Fields on Flow Tables

Switch
Port

Mac
Src

Mac
Dest

Eth
Type

VLanId
IP
Src

IP
Dest

IP
Port

TCP
sport

TCP
dport

Table 3.2. Actions of OpenFlow Switch

Action Description
Output Output to switch port
Set VLAN VID Set the IEEE802.1q VLAN ID
Set VLAN PCP Set IEEE802.1q header
Strip VLAN Strip the IEEE802.1Q header
Set Ethernet source address Set Ethernet source address
Set Ethernet destination address Set Ethernet destination address
Set IP source address Set IP source address
Set IP destination address Set IP destination address
Set IP ToS Set IP Type of Service (ToS) service
Set TCP/UDP source port Set TCP/UDP source port
Set TCP/UDP destination port Set TCP/UDP destination port
Enqueue Output packet to a queue
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Table 3.3. Counter Statistic Information

Counter Statistics Parameters
Per-table Active Entries,Packet lookups,Packet matches

Per-flow
Received packets, Received bytes,
Duration (seconds),Duration (nanoseconds)

Per-port

Received packets, Transmitted packets, Received bytes,
Transmitted bytes, Receive drop, Transmit drops, Receive errors,
Transmit errors, Receive frame alignment errors,
Received overrun errors, Receive CRC errors, Collisions

Per-queue Transmit packets, Transmit bytes, Transmit overrun errors

While sending the packet to the controller, OFPT_PACKET_IN message is cre-

ated by the OpenFlow switch in order to report the arrival of the packet to the con-

troller. The controller should give response for the incoming message to the corre-

sponding switch. The packet is processed on the controller. Then the controller replies

OFPT_PACKET_IN message with OFPT_PACKET_OUT by setting required actions for

the incoming packet. These actions can be one of the mentioned actions previously.

3.2.1. OpenFlow Messages

OpenFlow messages can be categorized into three message types which are asyn-

chronous messages, symmetric messages and controller-to-switch messages.

Controller-To-Switch Messages: Controller-to-switch messages are initiated by the con-

troller and used to configure the switch and query its state in order to get statistical infor-

mation from the switch and manage the flow table of the switches. The functionality of

OFPT_PACKET_OUT messages is to set the packets generated the controller to the data

plane. The purpose is to install flow entries directed by the controller. Flow Mod message

is another controller-to-switch messages sent from the controller to switch to be able to

add, delete, modify the flow entries on the switch (Murtuza and Asawa, 2018).

Asynchronous Messages: Asynchronous messages are the messages that sent from the

switch to the controller to be able to inform the controller about the network state. One

example of these messages is OFPT_PACKET_IN messages. When a new packet comes

to the switch, if there is no matching on the flow table for incoming packets, it is neces-

sary for OFPT_PACKET_IN message to be sent to the controller. OFPT_PACKET_IN

message can contain the entire parcel or just a piece of the got packet. As a response to
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this message, the controller responds with the OFPT_PACKET_OUT message.

Symmetric Messages: Symmetric messages are used to ensure the activity of communi-

cation between data plane and the control plane. These messages can be sent from both

controller and switch. Echo request and hello messages can be given example for these

messages.

3.3. SDN Architecture

Software Defined Networking is a new network architecture emerging with the

needs in modern networking environments such as data centers, social networks and

cloud services. It is designed to overcome the network requirements based on the fre-

quent changes of bandwidth, topology and routing information, storage and scalability

needs of these environments and enables network administrator to manage the network

environment centrally via programmatically configured controller. The main purpose is

to separate the control plane (traffic control) from the data plane (network hardware) in

order to provide flexibility of network components and facilitate the management.

SDN is closely associated with OpenFlow application which is one of the most

well-known protocol and an interface between data layer and control layer providing ac-

cess to network devices such as routers and switches and it is a communication protocol

to interact with data plane of network devices by using the functionality of the controller.

OpenFlow protocol is basically used to analyze the traffic flow and communicating with

the hardware to forward the traffic to an appropriate direction. SDN architecture is com-

posed of different partitions with regard to be shared various tasks. These partitions are

indicated in Figure 3.3.

Southbound API: Southbound API can be considered as a bridge between infrastructure

layer and control layer. It is a way to communicate network elements with controller.

OpenFlow protocol is one example of Southbound section.

Northbound API: Northbound API is another interface that provides communication

between the controller and applications or services running over the network. REST

API can be considered as one example of that interface which does not offer an optimal

and secure method due to the lack of the management of authorization. On the other

hand, Northbound API must support the various applications, therefore it is a flexible and

transparent component in terms of compatibility of different services.
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Eastbound and Westbound API: These are used for the same purpose of managing the

distributed SDN architecture. In a distributed architecture, it is necessary for different in-

stances of the controllers to communicate and have management and control information.

There are different type of a distributed SDN architecture. One type of architecture is the

vertical or hierarchical architecture including the main controller being able to have dif-

ferent low-level controller which is responsible for management, control and monitoring.

The other type includes controllers which may have different functionalities.

The most important purpose of SDN architecture is to obtain an open standard

based, decoupled, dynamic, centrally managed, adaptable, directly programmable and

flow based manageable, and cost effective structure.

Figure 3.3. SDN Architecture

Dynamic: While hardware configurations and reconfigurations are difficult to implement,

the software can be programmed in order to keep pace with the sudden changes dynami-

cally for necessities of modern applications and devices.

Open Standard Based: In SDN architecture, many developers can develop applications

called middleboxes, these applications provide communicating with the controller and

network switches. In that condition, controller platforms are considered as open source.

Centrally Managed: With this characteristic of SDN infrastructure, network elements

are managed in one central point which is controller. In this design logic, the effects of

dynamically changed network traffic and network elements are controlled.
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Decoupled: It means that separating the data plane from the control plane or physical

network is separated from the virtual network.

Directly Programmable: It is possible for the controller to be programmed by user level

applications or middleboxes. This programmability gives rise to be accessed to the con-

troller by middleboxes. By this way, network administrators can easily audit the network.

Flow Based Management: Flow-based management is to decide the direction of the traf-

fic depending on each flow whereas IP based management concentrates on the IP address

of each host. Flow table rules in switches or firewalls reside in each flow. These flows af-

fect the whole network. In flow-based architectures, there are different kinds of messages

used for communication between switches and controller such as OpenFlow messages,

controller to switch messages, switch to controller notification messages, flow statistics,

datapath flows and symmetric messages. The symmetric messages are used with regard to

performing the information exchange in the traffic between controller and switches and to

be decided by extracting the incoming packets according to flow table rules by controller

and switches. In addition to normal switches, there are also virtual switches that process

the traffic between Network Interface Card (NIC) and VMs . Because of the processing

of that traffic by the virtual switches, VMs (Virtual Machines) are able to treat as if they

are real hosts. A central controller works with one of the virtual switches with respect to

central and logical management. SDN switches are collectively managed by the central

controller instead of performing local control of switches. However, some of the switches

may lose communication with the central controller. In that condition, switches may be

set to different modes such as interactive mode and passive mode.

3.4. Security Threats

As technological advances occur, new issues like security issues of the new tech-

nologies start to come into existence. SDN can be evaluated as one example of that

condition. SDN typically depends on both software and hardware, thus there are so many

vulnerabilities and attacks on SDN architecture. Due that reason, the security of SDN

also should be controlled. Although the vulnerabilities of SDN exist, there also exist

some sort of security control applications across these vulnerabilities such as IDS/IPS,

firewalls, policy management, auditing and access control so as to deal with these is-

sues of SDN architecture. Security threats may concentrate on both different assets and
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resources of SDN architecture and also the various components of the architecture. To

illustrate, while some attacks can be focused on switches’ flow tables including some sig-

nificant information such as routing and management information, some attacks can be

centralized to the controller which is the core of the management and control.

3.4.1. Spoofing

Spoofing is a general attack type that the attacker uses the fake network informa-

tion by hiding the real network information such as IP address and MAC address and

ARP tables consciously. Spoofing may be used to perform DDoS attacks by using fake

addresses in a zombie network.

ARP Spoofing: ARP Spoofing attack is one of the spoofing attacks where the attacker’s

MAC address is assigned to a valid IP address. The traffic that the original receiver has

is captured by the attacker and the receiver is broken out of the network. In order to de-

termine the ARP Spoofing attack, IP to MAC mapping table can be tracked (Alsmadi

and Xu, 2015). A prevention method used against ARP Spoofing attack is ARM module

which resides in the controller. Only MAC addresses of authorized users or hosts are

traced with that module. After that, the controller looks up to this ARM module and elim-

inates all of the ARP responses which are not confirmed by this module. ARP poisoning

is another issue that can happen between controller and switches if the SSL encryption is

not used. ARP cache poisoning implies that the intruder is placed with the victim to the

same subnet and by that way, the ARP tables of other components are poisoned by the

forged information. In that situation, the attacker might use a scanner in order to listen

to the traffic. In 2014, Al Shabibi has developed an anti-ARP cache poisoning switch

application in the controller to bring a solution for such attacks (Alsmadi and Xu, 2015).

When assessed the overall attack detection methods, these methods are separated into

two as low-resolution methods and high-resolution methods. Low-resolution methods are

inspected from the flow whereas the high-resolution methods are analyzed at the packet

level. In order to overcome the low-level attacks it is necessary to be known the informa-

tion detail of the flows. On the other hand, high-level resolution attacks might be solved

by the detail of the information at the packet level. That is to say, ARP spoofing and

cache poisoning attacks can be analyzed in packet level in order to be able to detect or

take precautions because of the fact that it is one of the high-level resolution attack.
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IP Spoofing: IP Spoofing is generally implemented inside the other security attacks such

as DNS tampering or amplification. IP Spoofing aims at changing the attackers’ IP ad-

dress to a fake IP address in order to hide the information belonging to the sender and

introduce the attacker to the other systems with a spoofed IP address by generating a le-

gitimate Internet Protocol packets. In DNS tampering attacks, IP Spoofing can be used

to reroute the traffic to illegitimate websites while the attacker is tampering the DNS di-

rectory. It can also be part of other security attacks. All spoofing attacks purpose to the

redirection of the traffic to illegal hosts. One way of preventing the spoofing attacks is to

use strong authentication methods which are important for countering the unauthenticated

intrusion. The other way for countering IP spoofing is to use the IP Address Validation

methods. Source Address Validation Improvement modeled by the Internet Engineering

Task Force confirms the addresses of packets to determine whether the packets have a

valid binding (Alsmadi and Xu, 2015). There is another module called Virtual Address

Validation Edge extended from Source Address Validation Improvement. This module

existing in the controller confirms the address of the outcoming packets not having any

record in the flow table. There is a decision mechanism for the flows depending on the

validation module and a dataset of white-lists to be allowed or dropped. Flows are ana-

lyzed according to the validation module and a dataset of white-lists and then are allowed

or dropped. Another approach is to extend the Virtual Address Validation Edge module

features by using OpenRouter (Alsmadi and Xu, 2015). In this scenario, each router re-

alizes the assignment and routing information of the whole network. Software Defined

Filtering Architecture is another countermeasure for IP based or router based spoofing

attacks. Flow rules are constructed, collected and added if the spoofing is detected. The

nature of networking information is dynamic because of its frequent changing character-

istics. This information can be exemplified such as IP Address, MAC Address, routing,

and topology information. An additional approach is offered as a moving target defense

approach by (Al-Shaer et al., 2012). The position of each host should always be modified

in order to be guarded against the attacker’s fury.

3.4.2. Tampering

Tampering is intentionally unauthorized access to the network information in or-

der to destruct the information. To illustrate that in this type of access, flow rules can
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be changed by the attacker and this can bring about network misbehavior. An attacker

can determine a flow rule which refuses the legal hosts and accepts the illegitimate hosts.

The other example is that an attacker may hijack the traffic from one point to another

direction. The most significant point in SDN architecture is the security of the channel

between different controllers. In 2012, a new security issue was defined as the issue of the

dynamic flow tunneling depending on the conflicts during the interpretation of the rules

by (Porras et al., 2012a). Firewall or flow table rules might seem to be a goal of security

threats. While the individual flow does not break the firewall rules, a set of rules can be

executed collectively by the intruder and then this execution can lead to the violation of

the rules. Those conflicts between the flows and firewall rules depending on the integra-

tion of the incoming flows were controlled by (Porras et al., 2012a). For the prevention of

unintended tampering at a flow level, SDN can be useful to obstruct that kind of attack.

Tampering can be degraded by auditing and monitoring at some point of the network. If

the attack is across a determined point, the rest of the network is evidence with regard to

the detection of tampering. For the protection from the tampering attack, the control of

encryption methods and legitimate connections should be managed. In virtual environ-

ments, in addition to external tampering, there is also internal modification of network

information which affects the level of correctness and integrity. Existing researches indi-

cate that different VMs in the same field can access the resources from each other due to

the fact that these machines use common physical resources.

3.4.3. Repudiation and Non-repudiation

Repudiation refers to the negation of the actions of one entity residing in a com-

munication. There is another concept which is called as non-repudiation implying that

if one entity refuses the actions which is performed, it is necessary to be proven that the

considered actions are performed by this entity. In a typical communication between two

parties, if the sender sends a packet to the receiver, the receiver wants to confirm that

packets have come from the sender. For the verification of non-repudiation, encryption

methods such as TLS and SSL are used to communicate in a secure channel and to be au-

thenticated the actual sender and receiver. PKE and digital certificates can be a solution

to the repudiation. Signal chaining can be another solution to provide non-repudiation

due that reason an audit system should contain the sequence and route steps so that it
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can be understood that a packet only can go over the channel between the sender and

receiver. The other verification method for non-repudiation is the auditing and logging

methods. All activities can be observed and traced from the flow tables. Those methods

can be accepted as a proof for traffic activities. However, it is essential to select what

exactly audits inasmuch as continuously auditing gives rise to some performance issues.

Logging and auditing methods may also be objected to security attacks. A flow-based

authentication system called as Fort-Nox offered by (Porras et al., 2012b) is designed to

handle non-repudiation verification. It is an auditing tool that uses some information such

as application Id, privilege level, flow time and date which is required to the investigation

of the instant events if any unusual condition occurs. In order to identify the activity of

the sender, the Accountable Internet Protocol is suggested as a new protocol to replace

with Internet Protocol (IP) which is offered by (Andersen et al., 2008) in 2008. The

main purpose is to bring additional information to existing information with regard to the

identification of the sender. Additional location-based identification of hosts is offered in

addition to IP address related to Public Key Encryption of the host.

3.4.4. Accountability

Accountability refers to the responsibility of each controller from its switches in

SDN architecture. It is not allowed for different controller residing in a different domain to

exchange data. Even though local controllers drop the packets belonging to the switches

in other controllers’ networks, there is necessity of communication of different controllers

via well-defined interfaces in terms of not obstructing to each other and preventing some

security problems. Identifying applications are also important because the several secu-

rity controls such as proxy system and NAT restrict the identity of hosts. Accordingly,

firewalls cannot detect the traffic source. In order to overcome this issue, Flow Tags de-

pending on the flow information is suggested to identify the applications. Applications

add the flow tag information and FlowTag module proposed by (Seyed et al., 2013) rec-

ognizes the packet header information including the flow tag in order to determine where

the packet actually comes from.
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3.4.5. Information Disclosure

Information disclosure attacks does not aim at directly corrupting the network

resources, however, the desire to observe these resources can be accepted as the main

goal of this type of attack. An attacker attributes to sniff the network resources to seize

the communication details of hosts. Network switches are controlled by the controller

application. When captured the controller application, it is possible for the attacker to

have access more than it should be. In traditional networks, data is integrated with the

control whereas in SDN architecture data is separated from the controller, switches’ flow

table carries the flow information. In that condition, if an attacker accesses those switches

via the controller, the traffic may be directed to illegitimate directions by modifying the

flow tables. At this point, it is also possible for the attacker to participate inside the

network as an observer. Man in the Middle Attack is an example of information disclosure

attack that aims at the data inside the channel. OpenFlow architecture can be exposed to

this type of attacks thanks to the applications on the Northbound section having possible

vulnerabilities.

Scanning Countermeasures: Scanning methods are used to detect the vulnerabilities

or weaknesses stemming from the information disclosure attacks in the network. The

most considerable way to resist scanning attack is the encryption methods which can be

exemplified as SSL/TLS encryption methods. Active security methods may also be used

for the detection of scanners. Flow information is used for the traffic anomaly detection

such as the detection of the worms. Due that reason, the suspicious traffic is extracted

initially and then analyzed with the help of OpenFlow based detection system. To prevent

from OpenFlow network scanning, some methods have been developed. While some

focus on responding the scanner with incorrect traffic, others perpetually alter the hosts’

identification information. NAT, VPN , proxy systems conceal the identification of hosts

even if the actual purpose does not become like that. For that problem, an OpenFlow

anonymization service called as AnonyFlow is developed by (Mendonca et al., 2012).

When the translation becomes between the virtual address and actual IP addresses, special

anonymity IDs that are visible to other hosts are used instead of IP Addresses which are

visible to other hosts.

Information Disclosure Countermeasures: The protection of private information re-

quires some actions such as whitelisting and blacklisting which are used for filtering the

traffic. In traditional networks, filtering is done according to the IP and MAC Addresses.
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However, this filtering scheme which can hinder some attacks may also be used for Open-

Flow networks. In order to decrease the effect of information disclosure attack in the

OpenFlow network, a significant suggestion is articulated by (Kloeti, 2012). This sugges-

tion depends on intelligent rules providing time out randomization. These rules generate

some obstacles for the sniffer to the disclosure of network patterns. To illustrate, the

difference in response time is so valuable information for OpenFlow networks that fake

response time can be comprehended to take action to this type of attack.

3.4.6. Denial of Service Attacks (DoS)

DoS Attacks are the most dangerous attacks targeting to decrease the network

performance and eliminate the legal packets. This type of attacks can lead to the suspen-

sion of the whole network or stop the operations on the network. In OpenFlow networks,

this attack can also be applied to interrupt the network activities between controller and

switches having a continuous communication. This interruption can be achieved by in-

jecting flow to this channel. The required information for the detection of such attack is

the flow level information. Flow based attacks such as DoS, worms, botnets and scans

are generally based on the flow header. The common characteristics of these attacks are

to have a large and unbalanced traffic. Additionally, these attacks aims at using several

widely used port numbers. These widely used ports can also be used to detect the DoS

attacks. Extracted information from the flow headers are so useful for Dos detection. The

most suitable way to detect DoS and flooding attacks are to use the methods being able

to determine the large traffic. One of the methods concentrates on the volume change

between incoming and outgoing traffic. If the traffic goes from one direction to the other

and contains multiple response packets, this can be considered as a flooding type. In

order to occupy one direction multiple SYN packets can be sent to the receiver, in that

case periodically sent multiple ACK packets can be generated by the receiver when the

sender does not care. DNS Amplification Attack is a type of DDoS attack depending on

the use of reachable DNS Servers. Attacker use these servers to flood a target system with

DNS response traffic. This attack results in the Internet corruption. In order to overcome

such attacks, monitoring and tracking recursive DNS queries can be used to detect DNS

Amplification. Another risky problem is the loop occurrence in the network leading the

packets not to reach their destination. This condition is another reason for DoS attacks.
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In SDN architecture, a large amount of traffic leads to the change of the flow attributes.

Hence, traffic generators can be used to modify the attribute values. There are two goals

for DoS attack in SDN. One of the purpose is to flood the switch flow tables and then

reorganize these tables with illegal rules. The second purpose is to provide the controller

to stay busy by directing a large traffic. Strong and reliable encryption methods provides a

secure communication between switches and controller. However, there is still a problem

with DoS and flooding because of being sent the large traffic to OpenFlow networks. Due

that reason, Avant-Guard Systems are developed by (Shin et al., 2013) to overcome DoS

attacks and get rid of their negative effects.

Detection of Denial of Service Attacks: The detection of DDoS attacks depends on the

several metrics such as Average Number of Packets in per flow, Average of Bytes per

flow, Average of Duration per flow, Percentage of Pair-flows and Growth of Single flows

(Alsmadi and Xu, 2015). The monitoring of these metrics gives rise to the degradation of

the performance of the controller. The controller performance issue is solved by adding

an extra controller working for the large amount of data arising from the monitoring pro-

cess. The most considerable method to detect such attack is to determine the volume of

traffic. This volume can be compared with the threshold value to be able to comment on

the size of the traffic. By this way, it would be possible to discover abnormal traffic on the

network. When the threshold value is violated, a new rule is added to reject the packets by

the controller. TCP connections can be targeted by the DoS attack or flooding attacks. In

such a condition, ACK messages are the indicator of the existence of the communication

between the sender and receiver. While some studies focus on an algorithm to manage

TCP ACK packets, some others concentrate on a monitoring interface to inspect the com-

munication between switches and controller. On the other hand, there also exists a DDoS

detection system for the OpenFlow network. This system evaluates the metrics in terms

of the possibility of the occurrence of DDoS attacks. However, it is possible to observe

the false positive alarms from time to time.

Countermeasures of DoS: Effective and dynamic response methods can be used to

counter DoS attacks. Monitoring and restricting the traffic by the controller are the basic

countermeasure for DoS attacks. Protection mechanisms for DoS attacks require to in-

stantly recover the negative effects of the flooding. Moreover, legitimate and illegitimate

traffic should be separated from each other. Flow rules optimizations or rule-merging is

another countermeasure method for DoS or flooding attacks. Flow tables can be targeted

to flood with rules dynamically. However, buffers and switch memories can be exceeded.
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This situation leads to the denial of service for legal traffic. Continuously, evaluating flow

table rules should be a characteristic of switches needing to be added to have a dynamic

ability.

3.4.7. Distributed Denial of Service Attacks

DDoS attacks have been recognized as an Internet network security problem by

the network security research communities since the mid-1980s. It is one of the major

threats exhausting server resources. DDoS attacks have been firstly recognized since the

CIAC announced the first DDoS attempt in the summer of 1999 (Zargar et al., 2013).

DDoS attack is an endeavor to make a machine or system asset inaccessible to the in-

tended users. Most of the attacks purpose the victim resources unavailable, leading to

revenue losses, increased costs of mitigating the attacks and repairing and restoring the

devastating services. In order to lunch a DDoS attack, an attacker compromises a set of

computers by using a set of well-known methods like back-doors, Trojan horses, etc. As

indicated in Figure 3.4, after captured hundreds or thousands of computers, the attacker

sends commands to handler computers to orchestrate the attack simultaneously. The han-

dler sends simultaneous commands to the compromised hosts as usually known zombie

network. Each bot generates traffic to the common destination point and the requests sent

from the bots convert to a giant flow going on the same destination. A victim has some

limited processing power and capacity to handle a limited amount of service requests.

Due that reason, the victim can not accomplish giant flows, as a result, the service will be

unavailable for the intended users.

Figure 3.4. DDoS Attack Structure-2
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DDoS attacks has been studied for two decades by the security researchers. This

threat is not only an issue for traditional networks, but also it threatens the SDN network

architecture in terms of several reasons such as bandwidth depletion and exhaustion of

resources. There are also other methods to perform DDoS attacks like memcached based

DDoS attack, however, in this study, we concentrated on the Botnet Based DDoS Attacks

as the category of TCP/SYN Flood. To exemplify the experienced DDoS activities in

reality, the first DDoS attack and the biggest ever attack is given below.

First DDoS Attack in History: The first DDoS attack in the history is performed in

August 1999 to disable the University of Minnesota’s network. A hacker used a tool called

Trinoo composed of compromised machines called masters and daemons. An attacker

send command to Daemons to send UDP flood. It was made no effort to hide the daemons

IP addresses. Due that reason, attack owners could easily be diagnosed in this attack

(Radware, 2017).

Biggest Ever DDoS Attack: Github has experienced with the biggest DDoS attack for

the five minutes in the history of 28 February 2018. It peaked at the record 1.35 Tbps

(Newman, 2018). There were no botnets in this attack, because it uses memcached based

amplification approach. Amplification Based DDoS attack leverages the amplification

effect of a popular database caching system known as memcached and works by sending

a forged request to the targeted memcashed server (Newman, 2018). This type of attacks

are more dangerous than the botnet based attacks because of producing larger amount

of traffic. The other biggest DDoS attack was targeted to bombarding the Dyn DNS

servers by using Mirai botnets composed of IoT devices in 21 October 2016. Dyn is a

DNS service provider company giving service to a wide range of popular companies like

Netflix, Twitter, Paypal, Spotify, Amazon and HSBC etc. This attack is also considered

as one of the biggest DDoS attack affecting its customers and peaked at 1.2 terabits per

second according to the Akamai Research.

Common Types of DDoS: Despite of the fact that the categorization of DDoS attacks

can be analyzed comprehensively in different ways, according to OSI Layer, the most

general categorization based on the three layers of OSI Layer which are Transport Layer,

Network Layer and Application Layer. A wide range of DDoS attack types has been

observed on the aforementioned layers for decades. When assessed the highest rate attack

types on these layer, the most encountered attack types can be grouped into 3 which are

UDP Flood, TCP/SYN Flood and ICMP Flood Attacks. The most popular flooding attack

types are briefly explained below.
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• UDP Flood Attack: UDP Flood Attack is known as Transport Layer attack. It is a

type of DDoS attack that sends a huge amount of UDP packets to the victim node.

Large packets are directed to random ports on the destination node. The random-

ization causes the victim machine to look for the specific application on the random

port numbers coming from the zombie network. As a response to large UDP pack-

ets, Destination Unreachable response packets are sent to the bots in condition that

any application is not found on the specified ports of attack packets.

• ICMP Flood Attack: ICMP Flood Attack is known as a Network Layer attack. It is

generally also known as a ping flood attack which is performed by sending a huge

amount of ICMP Echo Request packets to the target machine. The packets gener-

ated by the zombie network are sent simultaneously, as a consequence, the target

machine tries to reply to the incoming packets. However, the nature of simultane-

ity of the attack causes the victim machine to slow down and eventually, it will be

unavailable.

• TCP/SYN Flood Attack: TCP/SYN Flood Attack is known as a Transport Layer

DDoS attack. It exploits the weakness of three-way handshake process of TCP

connection. In TCP connection, if a sender sends a SYN request to the receiver, the

receiver should reply the packet with SYN/ACK response packets. When a large

volume of SYN packets is sent to the victim by the zombie network, the victim

node unnecessarily waits for ACK packets never responded by each compromised

host of the zombie network. The process of waiting ACK packets by the victim

leads to the use of resources by the victim machine. Consequently, the victim will

be inaccessible by its intended users.

3.4.8. Elevation of Privilege

Elevation of Privilege attack aims at enhancing the access priority of the attacker

to the resources on the system by gaining access permissions. The detection of the Ele-

vation of Privilege attacks contains powerful and intelligent auditing methods. A system

called Pedigree developed by (Ramachandran et al., 2009) is to track the executed ap-

plications with the help of the tagging information. The most considerable issue is the

scalability of auditing and logging methods which give rise to the needs of huge amounts
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of storage and memory. Privileges reside in Access Control Module. Escalation attacks

aim at getting this information on these modules to modify the content by the attacker.

Distributing permissions to hosts in a fair way is a major responsibility. With regard to

handling this type of attack, RBAC system depending on the flow based authentication

is offered to distribute the permissions in a flow basis instead of a user or host basis. This

system neither always admits any user nor refuses, thus this reduces the privilege escala-

tion problem. This system also provides the isolation of the controller from other flows.

Internal flows and external flows are separated from each other. Switches have some rules

that depend on the signature to confirm to be given permission, each flow is evaluated and

if such signature is not included in the flow table, this flow deserves the lowest permis-

sion level. However, there is still an unusual condition even if the authentication failed,

the least privilege approach allows the flows needed to be dropped ordinarily. Many at-

tacks initially have the least privilege and the privilege of the victim is used to attack or

disrupt. Privilege or permission system can be integrated into an individual module. This

module can observe the applications in order to detect the sudden changes in the network.

Some researches have been performed on the access control management systems having

different access levels. Some applications include a few amounts of levels including ad-

ministrator while some others can have a sufficient amount for the prevention of privilege

escalation. Increasing number of access levels makes access of attacker difficult to have

sufficient authority for performing such attacks.
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CHAPTER 4

ENVIRONMENT REQUIREMENTS

This chapter covers the required applications for this thesis to perform the experi-

ments on SDN.

4.1. SDN Controllers Overview

A controller is the core of the SDN architecture. It is the central point of the SDN

architecture because it handles the communication of applications and network devices

in the control layer. There are many SDN controllers developed as the open source while

some others are developed by the commercial fields. A lot of research on SDN controllers

have been purposed on improving the controller characteristics such as availability, scala-

bility, cost-effectiveness, and intelligence (Sakellaropoulou, 2017). To be able to work on

SDN, it is necessary to research on SDN controllers. Nowadays, a large number of SDN

controllers have been developed by special communities such as Linux Foundation and

ONF. For example, the first SDN technology supporting the OpenFlow protocol is known

as Nox controller developed by Nicira network in 2008. Pox is another SDN controller

that appears as a sister project and advocates the python based SDN. Beacon is also an-

other SDN Controller which is developed by David Erickson at Stanford University. It is a

Java-based OpenFlow controller handles events and multithreaded operations. OpenMUL

Controller is a lightweight SDN controller written in mostly C programming language and

designed for tieing the gap between virtual resources and physical resources and getting

high performance and reliability. The main characteristic of OpenMUL is to facilitate

deployment easier for mission-critical networks (Saikia and Malik, 2014). There are also

commercially developed SDN controllers by different vendors such as Cisco, IBM , HP

and Juniper. These vendors have preferred to give a perspective of their own ideas. How-

ever, open-source approaches are mostly used and researched by different communities.

On April 8, 2013 OpenDayLight is proposed as an open source controller developed by

Linux Foundation. It is improved on the Beacon design. It is the most deployed controller

compared to others. The design criteria of OpenDayLight is to perform several use cases
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such as operational efficiency, network programmability, Automated Service Delivery,

NRO etc. Floodlight is also a popular OpenFlow controller initially implemented on the

Beacon design. It is designed to be a platform for a wide variety of applications. The

architecture of Floodlight has a modular structure based on the BNC (Sakellaropoulou,

2017). It is designed as a concurrent system to handle the throughput among the data

centers and enterprise networks. Floodlight has a characteristic of running as a network

plugin, this enables it to be integrated with OpenStack. This feature provides lots of

researchers to dynamically visualize network resources.

4.2. ONOS

ONOS is a scalable SDN platform for service provider networks. It provides

a control plane for SDN, it can manage network components and can communicate with

clusters. The main characteristic of ONOS controller is that it is highly available and fault-

tolerant inasmuch as multiple clusters can be on different machines. In condition that one

of them is down, the other SDN controller takes over its responsibility and devices that

it manages. ONOS also enables developers and community members to use CLI and

GUI. ONOS consists of many modules and there are also lots of applications working

with ONOS controller. These applications can be activated or deactivated depending on

the requirements on the CLI and GUI. With the help of its southbound interface, it can

communicate with network devices such as switches, routers, and hosts. ONOS can run

on multiple servers in a distributed manner. ONOS services and its applications have

been written in Java, it also depends on Apache Karaf OSGi container to allow module

installation and bundling of multiple applications dynamically. ONOS is an open source

project supported by a large number of companies that are a member of ONF. Many

developers all around the world within the community try to perform different tasks and

future targets.

ONOS platforms can be deployed by using different technologies and applications

like Docker containers and Vagrant. It is also possible to deploy on physical machines.

These physical machines can act as SDN controllers. In terms of machine behaviors, three

definitions that are target machine, management machine and cluster are given below.

Cluster: Cluster is a set of target machines working together as distributed systems. By

this way, multiple clusters has shared some roles to work in better scale, this improves
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performance. Sharing of roles can be defined as load balancing.

Target Machine: Target machine is a single machine running on ONOS that is deployed

physically, virtually or as a container.

Management Machine: Management machine is a central machine that can deploy

ONOS on multiple target machines. This machine is generally used by operators. Thus,

it is optional.

In this thesis, ONOS controller is used for the management of the network devices

on the data plane. Installation processes of ONOS are fairly complex and difficult to

follow the instructions. Thus, we have given the whole set of installation processes in the

Appendix A.

4.3. Mininet

Mininet is a virtual realistic network emulator or orchestration system creating

network elements on SDN environment. It runs a collection of end hosts, switches and

links on a single Linux Kernel (Lantz et al., 2018). Thanks to Mininet, a single system can

be converted to a complete network by its virtualization mechanism. A mininet host can

act like a real host. It is possible to setup SSH connection between them and also uses any

of the programs installed on the underlying Linux operating system. Each device created

by the Mininet has different Ethernet interfaces as if they are real devices. Mininet virtual

hosts, switches, links, and controllers can be considered as actual devices created by the

software instead of hardware. This means that any topology created in real hardware net-

work can also be created by Mininet on the emulation environment. Mininet provides a

CLI to interact with network devices. It is an experimental application to experiment with

OpenFlow and SDN systems with Mininet. To experiment with SDN, in this study, we

used Mininet to create custom network topologies on the SDN controller. In Appendix B,

we have given a detailed installation and command line usage examples of Mininet on the

Linux operating system. It is highly required to carry out different attack scenarios in the

SDN environment. Mininet also allows the researchers to construct their own topologies

by creating custom topology files. After creating these files, it has a mechanism to refer-

ence a remote controller to create different topologies on the SDN controller. In addition

to all of these features of Mininet, a simple linear and custom topology examples have

been exemplified and explained in detail in Appendix B.
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4.3.1. Mininet Advantages

In this section, a group of advantages of Mininet is briefly explained.

• Fast: A previously configured network can be started up with Mininet within a few

seconds.

• Custom Topologies: It enables to create your own network by its extensible python

API.

• Run Real Program: The system programs installed on the real machine can be

used on generated virtual hosts.

• Platform Independent: Mininet can be run on a laptop, a server, in a virtual ma-

chine or in the cloud environment.

• Easy to use: It is possible to create and run experiments by Python script with a

few command.

• Open Source: It is an open source project, it is possible to pull it from GitHub and

analyze the codes of Mininet how it is implemented and contribute by fixing bugs

or errors or share information by editing its documentation.

• Customize Packet Forwarding: Custom networks designs performed on Mininet

can easily be transferred to a realistic hardware OpenFlow switches for line-rate

packet forwarding.

4.4. s-Flow & s-Flow-RT

sFlow: s-Flow is an industry standard developed by InMon to monitor network flows

going through the network. It gives a complete visibility of the packets against the secu-

rity attacks. It is a Layer 2 technology identifying how much bandwidth used by which

network element.

s-Flow-RT: s-Flow-RT is real-time and scalable platform and a traffic collector to provide

real-time visibility to SDN. It is sampling technology to analyze and interpret the flows

depending on time. s-Flow-RT analytics engine retrieves the continuous telemetry stream
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from the sflow agents deployed in the network elements. The telemetry streams are con-

verted to actionable metrics which is accessible from its RESTFlow APIs. It permits to

retrieve network parameters from the devices and set threshold values for the abnormal

traffic.

s-Flow Agent: sFlow agent is an application which is embedded within the network

devices. Agents can communicate with the collector. Agents get the real time incoming

and outgoing packets passing through themselves. The traffic information is sent from

the network device to the traffic collector. In order to handle the network visibility, it is

necessary to install sflow agents on the switches. In order to exemplify the installation of

agents on a switch, we have given a detailed example in Appendix C.

4.4.1. Interoperability of Applications

After getting installed and running ONOS, Mininet and sFlow-RT, it is necessary

to enable a group of applications of ONOS by using its GUI. These are the applications

called as OpenFlow Provider Suite, Network Config Host Provider, Network Config Link

Provider and Segment Routing (Phaal, 2018). Instead of manually installing and enabling

sFlow agents, s-Flow-RT provides a mechanism to create agents automatically by using

its sflow.py file ships with the application packets. In order to perform this process, it is

required to use sflow.py file of s-Flow-RT application. On the other hand, Mininet can

also be executed with sFlow application to create agents automatically while the network

devices are creating. In order to exemplify the executing command of both of Mininet and

s-Flow, we have given a command line example to perform this process in Appendix C.

This mechanism exemplifies how Mininet, s-Flow-RT, and ONOS are working together

and how agents send the packets to a central collector with the help of sflow.py file of

the sFlow-RT application. A previously defined Mininet topology file can be executed

with the sflow.py file. The desinged topology is created on the remote ONOS controller

by the topology file. Moreover, the topology file sends the topology information to the

ONOS controller whereas the sflow.py script enables sFlow monitoring of the network

elements and send the topology to sFlow-RT collector. Besides, ONOS has a segment

routing application using equal cost multi-path routing strategy, by that way the traffic

might be directed to alternative paths on the generated topology.
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4.4.2. RESTflow

RESTflow is a method of sFlow for transmitting flow records from OpenFlow

switch through sFlow agents to sFlow collector.

Flow Record: A flow record is defined as a series of packets that share common attributes.

A flow record contains a group of fields composed of ingress interface, source IP address,

destination IP address, IP protocol, source TCP/UDP port, destination TCP/UDP port, IP

ToS , start time, end time, packet count and byte.

Figure 4.1. Flow Cache Embedded on the Switch (Source: Phaal, 2013)

Figure 4.1 illustrates the the steps carried out by the switch for constructing flow

records. Initially, packet streams comes to the switch and each packet is sampled on the

switch and packet header fields are decoded to extract the key fields. A hash function is

executed on the key fields to search for a specific flow record in the flow cache (Phaal,

2013). If an existing flow appears in the switch for the incoming packet, its values are

updated according to the new parameters coming with incoming packet. Decoded and

hashed records are flushed after processing of each sampled packet, then it is sent for the

traffic analysis tool. As the switch operates on each incoming flow, a flow cache collects

the whole packets coming from the switches.

Figure 4.2 illustrates the packet export and flow export mechanism. Thanks to

sflow monitoring, the decode, hash and flush operations needing to be performed on the

switch are not implemented on the switch (Phaal, 2013). Switches send the packets imme-

diately to the collector and these operations performed by the traffic analysis tool. Each

switch periodically send interface counter information to the traffic analysis application.
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Figure 4.2. Packet Export and Flow Export Mechanism (Source: Phaal, 2013)

Figure 4.3. s-Flow-RT on SDN Architecture (Source: Phaal, 2013)
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Figure 4.3 indicates that sFlow-RT resides in which layer on the SDN architecture

and gives an overview to collect flow samples from data plane by the sflow protocol

which is a southbound API. While OpenFlow controller provides a complete visibility

on the network elements, sFlow protocol has also global view of the network devices on

the data plane. The generated traffic on the network devices are collected by the sflow

agents on the data plane and then forwarded to the sFlow-RT collector for the traffic

analysis. sFlow-RT collector takes place at the control plane to collect and analyze the

real-time traffic metrics and flows coming from agents. At the top of Figure 4.3, a wide

range of security control applications can be run as an external applications by using the

Northbound APIs of both ONOS and s-Flow-RT.

Defining Flow Cache: sFlow-RT analytics engine requires to define a flow cache to col-

lect the packets from the data plane. For instance, different flow caches can be defined

for different flows such as TCP flows, ICMP flows or UDP flows etc. By using s-Flow-

RT RESTAPI, flow caches can be either defined programmatically or manually from the

Linux terminal. During the execution time of sFlow-RT, s-Flow-RT caches allow obtain-

ing the whole flow records generated on the network. In order to define flow cache, we

have given a set of instructions for creating flow cache on sFlow-RT collector in Appendix

C. Additionally, Appendix C also includes a content of a python file automatically defin-

ing a TCP cache on s-Flow-RT. The mentioned code pieces in Appendix C is used to get

the whole real-time flow records inside the flow cache and it also illustrates the output of

the execution.

4.4.3. Network Wide Visibility of sFlow

The most significant specification of sFlow is to monitor the entire networks com-

posed of many switches and routers. sFlow agents are installed on every network element

to transfer flows to traffic analysis tool. Enabling sflow agents on every access switch

provides complete visibility of flows on the data plane. All ports on the network switches

are listened by the flow analyzer. By this way, a large network on data centers can be

controlled effectively. sFlow can also be implemented on both hardware and software

switches belonging to different vendors (Phaal, 2009).
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4.5. Bash Script Application

In order to automate and execute the multiple applications synchronously, we have

written a bash script application to run local or distributed applications with one move.

Application requires Guake terminal installed on the machine. Guake is top-down termi-

nal for GNOME . It provides us to open multiple terminal windows and make the oper-

ations inside the windows separately and automatically. In order to experiment different

kinds of functionality of the applications and generate different topologies on the ONOS

controller, application can make user 10 different selections which are Distributed Net-

work, SDN-IP Tutorial, SDN-IP Basic, Distributed SDN-IP, Individual Network, GRE-

Distributed Network, ONOS Installation, Distributed sFlow Test for institute configura-

tion and Distributed sFlow Test for home configuration and also Single SDN Domain for

Large Network respectively. Figure 4.4 indicates an overview for the menu of the bash

script application before executed. For the configuration of the bash script application, it

is given in Appendix D.

Figure 4.4. Bash Script Application

4.6. ONOS Cell Mechanism

Cell consists of a group of environment variables that are operated by the scripts

shipping with ONOS. It can be used for the customization of packaging operations. Cell

files make it easy to set ONOS environment variables by defining bash snippets inside
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it. Additionally, before the ONOS controller is executed, it allows to be specified the

required application needing to be activated with the execution of ONOS. With regard

to illustrate a cell definition, Appendix D exemplifies how to create a cell definition and

execute on the Linux environment.

4.7. Hping3

hping3 is a network scanning tool which is known as a free packet generator and

assembler for TCP/IP protocol. It is developed and documented by Salvatore Sanfilippo.

It is a command line oriented TCP/IP packet generator. It does not only support ICMP

echo requests, but also has ability to generate TCP, UDP, and IP protocol. It can work on

different operating systems like Windows, Linux, MacOS etc. hping3 has been mostly

used in network security field such as firewall testing, advanced port scanning, advanced

traceroute operations of supported protocols, TCP/IP stack auditing, Remote OS finger-

printing, Path MTU discovery and network performance testing. hping3 has ability to

generate random normal traffic for a network or perform security attack testing with dif-

ferent supported protocols.

4.7.1. TCP/IP Communication

Before explaining how to generate normal traffic and performing DoS attack on

the network by using hping3, it is required to examine the TCP/IP basics. TCP/IP commu-

nication basically depend on the connection establishment among the sender and receiver.

The connection establishment is handled with the process known as three-way handshake.

To illustrate, suppose that there is a client and a server on a network. Client and server

wants to communicate with each other. This communication can be a web request send-

ing to a server. In this case, the application layer protocol is HTTP protocol using the

TCP communication on the Transport Layer. Another example may be given for the file

transfer operation. A client can request a file from the server. In this case, the appli-

cation layer protocol is FTP serving on a different port number. This communication

also requires TCP connection on the transport layer. All examples given above requires

three-way-handshake for connection establishment between the client and the server.
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Three-way-handshake: Figure 4.5 illustrates the three-way handshake communication

method of TCP protocol to establish a connection. Firstly, for different reasons like web

page request, sending mail or file transfer, the client wants to communicate with the server.

As a first step, the client sends a SYN packet to the server telling that the client wants

to initiate a connection with the server. Then, the server responds the received SYN

packet with SYN/ACK packet saying that the server is available to communicate with the

client. After that, the client sends ACK packet to complete the connection establishment

with the server. These steps are known as the three-way handshake of TCP protocol.

After the completion of the connection establishment, the server can send the requested

packets by the client. Due to the fact that the three-way-handshake method is used in

TCP communication in Transport Layer, TCP protocol is accepted more reliable than

UDP protocol because of the connection establishment.

Figure 4.5. Three-way-handshake Process

4.7.2. Hping Arguments

This section lists a set of hping3 arguments and explains what they mean. This

part includes mostly used specifications of hping3 instead of giving all of them. The basic

arguments are demonstrated in Table 4.1.

4.7.2.1. Hping3 Modes

If no option is used, hping3 works on TCP mode. However, there are a group of

different modes in hping3 for different usage as shown in the Table 4.2.
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Table 4.1. Hping3 Basic Arguments (Source: Sanfilippo, 2006)

Hping3 Options Explanation
hping3 It is the name of the application binary.
–count(-c) The packet count to send is defined numerically.

–interval(-i)

This attribute waits for the specified number
of seconds or micro seconds between sending each packets.
–interval X statement waits X second before sending
each packet or –interval uX statement waits for X micro
seconds before sending each packet.

–fast 10 packets are sent for every second.

–faster
It is faster than –fast attribute, however, it can not send
packets as fast as the computer can perform according to
the signal-driven-design of the computer.

–flood
It sends packets as fast as possible without considering to
indicate the reply packets.

–interface(-I)
It specifies the interface name to use.Otherwise, the default
routing interface is used.

Table 4.2. Hping3 Modes (Source: Sanfilippo, 2006)

Usage of Modes Meaning
-0(–rawip) Raw IP mode
-1(–icmp) ICMP mode
-2(–udp) UDP mode
-8(–scan) Scan Mode
-9(–listen) Listen Mode

4.7.2.2. Hping3 Flag Options

While working in TCP mode, it is possible to specify which flag will be sent to

the destination. There are a set of flags to be used in TCP mode as indicated in the Table

4.3.

4.7.2.3. Hping3 IP Related Options

Hping3 also allows us to specify IP options for several reasons such as hiding the

IP address information of the source node, sending from random source addresses to a

destination and sending packets from one source to different destinations as explained in

Table 4.4.
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Table 4.3. Hping3 Flag Options (Source: Sanfilippo, 2006)

Flag Options Flag Type
-S Set SYN Flag
-A Set ACK Flag
-R Set RST Flag
-F Set FIN Flag
-P Set PUSH Flag
-U Set URG Flag
-X Set XMAS Flag
-Y Set YMAS Flag

Table 4.4. Hping3 IP Options (Source: Sanfilippo, 2006)

IP Options Explanation

–spoof(-a)
Hide the source IP address, this guarantees
the target will not know the real source IP address.

–rand-source
This option enables the random source mode. hping3
will send packets from random source address.

–rand-dest

This option enables the random destination mode.
hping3 will send the packets to random destinations
according to specified rule like 10.0.0.x. When using
this mode, it is required to use –interface option to
specify the outgoing interface.

4.7.2.4. TCP/UDP Related Options

Hping3 also has ability to set TCP/UDP options for some reasons like defining

different TCP/UDP parameters such as port information, sequence number information

and TCP window size as explained in Table 4.5

4.7.2.5. Common Options

Hping3 also has some common options covering the whole modes like setting

packet size. Each of the options are given on the Table 4.6. While generating traffic on

the network, it is required to set packet size for each outgoing packet. This study uses to

set packet body size to generate the network traffic by using hping3 application. Hping3

has also other options such as using file content, setting file name and setting TCP ACK

etc.
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Table 4.5. Hping3 TCP/UDP Related Options (Source: Sanfilippo, 2006)

TCP/UDP Options Explanation
-s –baseport Specify a source port. The default is assigned randomly.

-p –destport

Set destination port number, the default is zero. If + sign
precedes with the port number like +1024, this implies that
the destination port will be increased with each reply received
whereas if double + sign exists, this implies that the destination
port will be increased for each packet sent.

-w –win Set TCP window size. The default is 64.

-o –tcpoff
Set fake TCP data offset. Normal data offset is one quarter of
TCP header length.

-M –setseq Set the TCP sequence number.
-L –setack Set TCP ACK.

-Q –seqnum
This option collects the sequence number generated by the
target.

-b –badchksum Send packets with a bad UDP/TCP checksum

–tcp-timestamp
Enable the TCP timestamp option. Try to guess the timestamp
update frequency and the remote system update.

Table 4.6. Hping3 Common Options (Source: Sanfilippo, 2006)

Option Explanation
-d –data data size Set packet body size.

-E –file filename
Use filename contents to fill
packet’s data.

-e –sign signature Add signature.
-j –dump Dump received packets in hex.

-J –print
Dump received packets printable
characters.

-L –setack Set TCP ACK.

-B –safe
Enable safe protocol, by using
this option, lost packets are resent.

-u –end
In condition that –file filename
option is used, tell you when EOF is reached.
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Consequently, hping3 is used for this thesis to generate both random normal traf-

fic and abnormal traffic originating from different hosts of SDN network. Additionally,

several usage examples, installation steps of this application and organization of mostly

known attack types is given in detail on Appendix E.

In this section, we mainly explained the environment requirements of the thesis

and how different kinds of tools are used in this thesis, what they do and what addi-

tional information required to the usage of the tools. Additionally, installation processes

are included for each tool to deploy an SDN network on the ONOS platform. For the

automation of the tasks, our bash script application was briefly mentioned. And also we

explained how to create a virtual realistic network for SDN environment by using Mininet.

Then, we mentioned about the sFlow traffic analyzer tool to install s-flow agents on each

switch and forward the packets to the external flow cache. In addition to this, we men-

tioned about hping3 known as a packet generation tool in detail. Then, different options

and explanations of hping3 are given on this section. Lastly, performing a DDoS or DoS

attack with the help of hping3 is explained in detail.
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CHAPTER 5

IMPLEMENTATION

As stated in chapter 1, for this thesis, we have not put forward a novel study for

the detection algorithm. In the future works of (Lu and Wang, 2016), the authors discuss

the problem of the experiment limitations of their study, they have implemented their

detection and response schemes on the local area network within the single SDN domain.

Additionally, their approach has not been tested on the big enough network. As an aim

of this study, we designed a little bit large network containing bots and by using the same

detection mechanism, we have tested it on the emulation network by using Mininet for our

designed large network. Then, we compared the obtained result with their results. The

distributed design of a large network containing 63 hosts and 13 switches is explained

in detail in chapter 6. In this chapter, we first mention the detection mechanism of the

article. In addition to this, we also explained how to extend the distributed network of

ONOS clusters by using GRE Tunnels. There are also other mechanisms for combining

networks of one SDN controller with the networks of the other. We also briefly explained

how different approaches related to the combination of the multiple SDN controllers can

be applied.

5.1. Detection Method

According to the detection mechanism of (Lu and Wang, 2016), in order to detect

the DDoS attacks on SDN environment, it is significant to determine a metric to measure

the behavior of an attack or normal traffic. The method depends on a two dimension

metric called DCD. This metric consists of two parameters which are δ and ρ. (δ, ρ) can

be considered as a two dimension tuple. δ quantifies how many nodes sending request

to a destination for a destination flow. A destination flow of d-flow fj is defined as all

the packets having the same destination IP address (Lu and Wang, 2016). The other

metric ρ quantifies the intensity of a flow for determining another dimension. Suppose

that there are n number of nodes in a network. This can be defined mathematically as

C = {Ci|i = 1, 2, 3, . . . , n}. Here, Ci represents the i-th node on the network. Each node
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on the network has some destination flows to other nodes excluding itself. Therefore, Ci

is also a set containing destination flows and it is defined mathematically as C = {fl|l =
1, 2, 3, . . . ,m}. fl is defined as the l-th d-flow of Ci. |Ci| = m implies that there are m

number of destination flows of the i-th node Ci (Lu and Wang, 2016).

5.1.1. Calculation of δ Parameter

In order to compute δ value of d-flow fj , the Equation (5.1) and the Equation (5.2)

are used.

Suppose : A =
n⋃

i=1

Ci (5.1)

∀fj ∈ A : δj =
n∑

k=1

J(fj ∈ Ck) (5.2)

where : J(fj ∈ Ck) =

{
1 fj ∈ Ck

0 fj /∈ Ck

At this point, δj implies that how many nodes in this network are sending packet

to a destination (Lu and Wang, 2016). This metric can bring out the behavior difference of

Botnet-based DDoS attack flow and random normal flow (Lu and Wang, 2016). Suppose

that Xj is a discrete random variable and t is a time parameter.

Xj(t) = δj(t)− 1 (5.3)

The Equation (5.3) evaluates the δj value for every t instant. The subtracting one

from δj(t) implies that having destination flow to a node itself is theoretically ignored (Lu

and Wang, 2016). However, in practice, a node can send a request to itself. Here, this

condition is passed over. A random process is a random variable that varies with space or

time. In accordance with the definition, we have time-varying parameter δ for our case.

Due to the fact that Xj(t) is based on the time and according to the theory of random

process definition, Xj(t) can act as a Poisson Process (Lu and Wang, 2016). The possible

values of Xj(t) is 0, 1, . . . , n− 1. Here, it is required to find out the probability of k

users sending request to a destination within 0− t time interval. This probability could be

represented as Equation (5.4)

P{Xj(t) = k} =
λke−λ

k!
(5.4)
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5.1.2. Calculation of ρ Parameter

ρj is another dimension to evaluate the intensity of a destination flow. ρj param-

eter can be considered as a total value of a specific destination flow of a node. For the

detection process, the δj dimension by itself is insufficient, inasmuch as if a group of users

send normally request to a destination, for instance, suppose that a thousands of users to

learn the military status from electronic state application, these users can send request to

application at the same time, then the application can not serve its users, for this kind of

situation, users can not be considered as bot and the requested flows are also not consid-

ered an attack flow. Thus, it is required to determine the another dimension to measure

the intensity of a flow to ensure whether the destination flow is an attack flow or not. Us-

ing sflow technology, it is possible to get all destination flows passing over the switches

or routers on the network. We can get all flows for a certain time period. Similarly, the

controller operating system allow us to obtain the topology information related with the

network design.

For a specific node i, a function is defined to get the packet per second value of a

destination flow as indicated in Equation (5.5). Here p is a packet per second value of a

flow.

Fi(fl) = p (5.5)

In order to exemplify the situation for the real world application, it can be sup-

posed that C1 node has an IP flow from 10.0.0.1 to 10.0.0.2. Here, 10.0.0.1 is the IP

address of the C1 node considered as source node. 10.0.0.2 is the IP address of the node

C2 accepted as the destination node. This flow can be defined as F1(f1) = 100 packet-

s/sec. For a specific destination flow which is denoted as d-flow fj , the intensity value ρj

is evaluated with the following equation.

ρj =
n∑

k=1

Fk(fj) (5.6)

By the summation represented in Equation (5.6), it is possible to get the total

intensity value for each node considered as a destination node. With this calculation, we

obtain a tuple data structure which is a key value parameter (δj, ρj).
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5.1.3. Example Calculation of (δ, ρ)

Figure 5.1 illustrates a graph to get more detail understanding of (δ, ρ) calcula-

tion. Table 5.1 lists the related flow values consists of flow number, source IP address,

destination IP address, flow value, source node and destination node.

Figure 5.1. A Sample Graph of Nodes with (δ, ρ) Calculation

According to the Figure 5.1, we observe that C1 node has 6 destination flows,

however, in practice we consider f1, f3, f6 are the same flows with different values ap-

peared in any time t instant. We treat these flows as if they are the same flows by adding

individually. Then, this flow is considered as a destination flow fj from C1 to C2 which

are f1 = f3 = f6 = fj . In addition to this, C1, C2 and C3 nodes have flows coming

from at most 2 source addresses. Thus, δ value of each node on the network is equal to 2.

However, we will calculate it by executing the equations.

49



Table 5.1. Flow Table of Nodes on Figure 5.1

Flow Source Ip Destination Ip Flow Src Dest
No Address Address Value
f1 10.0.0.1 10.0.0.2 100 p/s C1 C2

f2 10.0.0.1 10.0.0.3 20 p/s C1 C3

f3 10.0.0.1 10.0.0.2 50 p/s C1 C2

f4 10.0.0.1 10.0.0.3 15 p/s C1 C3

f5 10.0.0.1 10.0.0.3 25 p/s C1 C3

f6 10.0.0.1 10.0.0.2 10 p/s C1 C2

f7 10.0.0.2 10.0.0.1 5 p/s C2 C1

f8 10.0.0.2 10.0.0.3 10 p/s C2 C3

f9 10.0.0.2 10.0.0.1 15 p/s C2 C1

f10 10.0.0.3 10.0.0.1 5 p/s C3 C1

f11 10.0.0.3 10.0.0.2 10 p/s C3 C2

f12 10.0.0.3 10.0.0.2 15 p/s C3 C2

According to the information obtained from Table 5.1, ρ value of C1 is calculated

by adding the whole flows having the 10.0.0.1 destination IP address and we observe that

f7, f9, f10 flows have this destination IP address and then we sum all flows having this

destination address. Then, ρ value of C1 is calculated as f7+f9+f10 = 25 p/s. Similarly,

the value ρ value of C2 is calculated as f1 + f3 + f6 + f11 + f12 = 185 p/s. Eventually,

the value ρ value of C3 is calculated as f2 + f4 + f5 + f8 = 70 p/s. If we execute the

Equation (5.1) and Equation (5.2) for the sample network given above, then we obtain the

following equations.

A =
3⋃

i=3

C1 = C1 ∪ C2 ∪ C3

C1 = {fl|l = 1, 2, 3, 4, 5, 6} ∪ C2 = {fl|l = 7, 8, 9} ∪ C3 = {fl|l = 10, 11, 12}.

Owing to the consideration of having the same destination IP address, the below flows

are accepted as the same flows despite of the fact that they might have different source IP

address and different flow value.

f7 = f9 = f10, f1 = f3 = f6 = f11 = f12, and f2 = f4 = f5 = f8
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δ1|3|6|11|12 =
3∑

k=1

J((f1 ∈ Ck))

= J((f1|3|6|11|12 ∈ C1) + J((f1|3|6|11|12) ∈ C2) + J((f1|3|6|11|12) ∈ C3)

= 1 + 0 + 1 = 2

Therefore, δ value of f1 = f3 = f6 = f11 = f12 destination flows would be equal

to each other. Here, we can judge that both of a node and a destination flow should have

a (δ, ρ) tuple. After the calculation of δ and ρ, we can add two columns to Table 5.1 to

present the δ and ρ value of destination flows.

For f7 = f9 = f10,

δ7|9|10 =
3∑

k=1

J((f7) ∈ Ck) = J((f7|9|10) ∈ C1) + J((f7|9|10) ∈ C2) + J((f7|9|10) ∈ C3)

= 0 + 1 + 1 = 2

Finally for f2 = f4 = f5 = f8,

δ2|4|5|8 =
3∑

K=1

J((f2|4|5|8) ∈ Ck)

= J((f2|4|5|8) ∈ C1) + J((f2|4|5|8) ∈ C2) + J((f2|4|5|8) ∈ C3) = 1 + 1 + 0

= 2

5.1.4. λ Parameter Calculation of Poisson

In order to find the probability k users together sending request to a destination, it

is required to determine λ parameter of Poisson. For a specific time interval, it is possible

to obtain δi value of any node. The δi variable is a parameter varying over time. Time is

also varying parameter from t = 1 to t = s. If we observe the variable during s second

or within any time parameter. Then, we can calculate λ parameter for each node with the

following Equation (5.7).

λ̂i =

∑s
t=1 δi(t)

s
t = 1, 2, . . . , s (5.7)
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At that point, we used maximum likelihood estimation to determine λ of any node

i at a certain time interval. This estimator represents the mean value of δi within this time

interval.

5.1.5. Threshold δ Calculation

After the λ value is determined, it is possible to choose Threshold Tδ according to

Poisson Probability function as indicated in Equation (5.8) (Lu and Wang, 2016).

H(x) = P (X ≤ x) =
x∑

k=0

λke−λ

k!
(5.8)

After threshold value is chosen, if δj > Tδ, then we could judge this d-flow j is an

attack flow with confidence level α.

5.1.6. Threshold ρ Calculation

Suppose that the maximum exit bandwidth of a protected node limited by Internet

Service Provider is defined as L and this can also be a maximum service capacity of a

node in the network (Lu and Wang, 2016). Then, the maximum service capacity unit is

the same unit with the parameter ρ. θ is defined as a sensitivity factor for the detection.

Then, threshold ρ is evaluated as Tρ = θL. After calculating (δj, ρj) tuple, this point can

be visualized on the Figure 2.1. If the point (δj, ρj) falls into area A, then this flow is

considered as a normal flow. If the point (δj, ρj) falls into area B, then it is possible to

say that a group of users are fully utilizing the bandwidth like downloading film. The

situation B is not considered as an attack. If the point (δj, ρj) falls into area C or D, then

d-flow j is considered as an attack flow.

5.1.7. The Detection Procedure

The pseudo-code of the detection algorithm is demonstrated as below. Algorithm

1 calculates the (δj, ρj) tuple for each destination flow of each node. Then, it tries to

perceive the destination flow falling into C and D regions according to the boundary of
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Threshold δ and Threshold ρ. In condition that destination flow falls into Area D, the

approach of the algorithm is that the destination flow is an attack flow with possible nor-

mal. For the Area C, the approach is that the destination flow is normal flow because of

having a normal ρ parameter. However, the large number of source addresses are related

to this flow. Due that reason, it is possible for this flow to be an attack. On the contrary,

Algorithm 1 collects and returns the (δj, ρj) tuple as a set of B for the normal situation.

Algorithm 1 Detection

1: procedure DETECTION(C1,C2,. . . ,n : d-flow set of each node )
2: C = {∀Ci, | ∃fj, j = 1, 2, · · · ,mi, j ∈ N}
3: A = ∪n

i=1Ci

4: B = ∅
5: m = |A|
6: for i =1 to m do
7: δi = 0
8: ρi = 0
9: for j =1 to n do

10: if fi ∈ Cj then
11: δi+ = 1
12: ρi+ = Fj(fi)
13: end if
14: end for
15: if δi ≥ Tδ ∧ ρi ≥ Tρ then
16: The flow is the attack flow with possible normal (Area D);
17: end if
18: if δi ≥ Tδ ∧ ρi ≤ Tρ then
19: The flow is normal flow with possible attack (Area C);
20: else
21: add(δi, ρi) to B
22: end if
23: end for
24: return B
25: end procedure

5.2. Design of the Application

By using distributed clusters of SDN environment, northbound APIs of ONOS

controller and sFlow-RT collector, it is possible to deploy a software application to ex-

ecute the detection algorithm on the designed network. The application uses the ONOS

RESTAPI to get the global topology information from ONOS controller and also uses the

sFlow-RT RESTAPI to obtain the traffic information from agent software deployed on the
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switches as indicated in Figure 5.2

Figure 5.2. Communication Structure for Application

As compared to the application of (Lu and Wang, 2016), our application is not a

modular application. However, the application consists of a console application written in

Python performing the tasks of the whole modules excluding response module because of

being not interested in the response scheme for this thesis project. The application initially

gets the topology information such as the information of all nodes in the network. Then,

the topology information is pushed to the sFlow-RT collector. sFlow-RT collector begins

to sniff the whole sflow-RT agents deployed on the switches to get the all flows from the

points that agents are installed on the network. Then, the obtained flows are separated

into the destination flows of each node. After the separation process, every individual

node has the destination flows in condition that this related node has the flow traffic from

the corresponding node’s IP address to the other destination IP addresses. After that, all

flows and all nodes are send to the detection method. The detection method analyzes the

flow and topology records by using the detection algorithm to produce the current (δ, ρ)

tuple of each destination flow. By analyzing destination flows, (δ, ρ) tuple of each node is

determined. Besides, the detection method execution is repeated for every second, then it

produces current metric value containing both the historical (δ, ρ) record stored for every

second and the observation frequency information for different δ values. According to the

produced metric values, the unknown parameter λ of Poisson distribution is estimated by

using the mean value of δ within a certain time interval. According to the number of active

nodes, the probability of k users sending request to a destination is calculated and then

presented graphically on a probability distribution plot. Furthermore, after metric values

are analyzed, the distribution collaboration plot is drawn for the total traffic sniffed within
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a certain time interval. This plot gives the detection result. Eventually, the frequency of

different δ values are given with 3D plot to observe at which frequency the δ value is

obtained for a specific time t.

Figure 5.3. Deployment Scenario for Application

In the Figure 5.3, the deployment scenario is depicted. In the deployment scenario,

we have used two ONOS controller on different physical machines. In the data plane,

there are network switches and hosts, however, hosts of the left network is a little bit larger

than the right network. Because, the network is designed to be able to used the hosts of the

controller-1 as bots of the attack organization. There are also network switches on the data

plane, the switches have sflow-RT agents installed on them. Consequently, the network

traffic is monitored via sFlow-RT agents pushing the network traffic to the central sFlow-

RT collector for different machines. Furthermore, the rightmost switch on controller-1

and the leftmost switch on the controller-2 are connected to setup a GRE tunnel between

these switches. GRE Tunnel will be explained a little bit more detail in the section 5.3. For

the experimental tests, the application just runs on the second physical machine, however,

this application can also be deployed on different machines to detect the attack on multiple

servers. Moreover, we have written the application as a Python project and for the data

visualization, we used matplotlib library of Python and additionally, PostgreSQL docker

container is used to store the flow records, node information obtained from the controller

and also attack detection metrics such as the frequency information and historical (δ, ρ)

tuples.
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5.3. Cluster Communication Methods

In this section, we examined two methods for the cluster communication. One of

them is to set up GRE Tunnels among the different network elements of different clusters.

The second method is ONOS SDN-IP application.

5.3.1. GRE Tunnels

Generally, Mininet emulates an entire network of hosts and switches in a single

computer or virtual machine. However, the system resources limit the topology size. By

extending Mininet with cross-machine virtual links, this kind of work allows researchers

to create and emulate with more network elements (Blankstein et al., 2013). A single

machine can only emulate a certain number of network elements with Mininet. Due that

reason, according to the research having been implemented by (Blankstein et al., 2013),

they extended the Mininet capability to be able to execute in a cluster by using the GRE

Tunnel capability of OpenFlow switches.

Mininet network composed of controllers, switches, hosts and links. Mininet

hosts are shell processes. Each host generated with Mininet is a child process inherit-

ing from the local machine and has its own namespace and Ethernet interface. Each link

between the nodes is a virtual Ethernet pair acting as if they are having a wired con-

nection(Blankstein et al., 2013). However, Mininet link does not support connecting the

different nodes under the clusters. For this reason, to support this kind of functional-

ity, GRE protocol has been developed by Cisco System. The GRE protocol is broadly

speaking protocol for performing encapsulation of an arbitrary network layer protocol

over another arbitrary network layer protocol (Blankstein et al., 2013). When a system

has a packet needing to be encapsulated and routed, two step processes will be performed.

The packet to be sent is encapsulated in a GRE packet as a first step and then the GRE

packet encapsulated is encapsulated again by the delivery protocol managing the actual

forwarding of the packet (Blankstein et al., 2013). Figure 5.4 illustrates the encapsulated

payload packet with GRE and delivery header.

The advantage of this protocol is that the delivery layer packets and the encap-

sulated GRE packets look same when the forwarding process is performed (Blankstein

et al., 2013). For this reason, GRE protocol is running over IP protocol to transmit the

56



Figure 5.4. Encapsulated Payload Packet

Ethernet packets. Although using GRE tunnel is possible to connect multiple remote sites

with switches, this protocol can also be constructed to connect two routers with a virtual

link. For the requirement of using this protocol, two different Mininet clustering must be

set up on different machines. In order to implement this, each instance will negotiate on

how many GRE link is created and which devices are paired. After executing two dif-

ferent scripts on different machines by setting up negotiated points, then the topology is

generated and Mininet clustering will assign a name for each GRE interface (Blankstein

et al., 2013).

Figure 5.5. A simple Two Switch Topology

To exemplify the implementation, a simple two-switch topology can be constructed

on two different machines as demonstrated in Figure 5.5. Two hosts are connected to each

switch. It is noteworthy that Switch-1, Host-1 and Host-2 are generated by the Mininet

clustering of the Machine-1 and the controller of Machine-1 is responsible for them. On

the other hand, the Switch-2, Host-3 and Host-4 are generated by the Mininet clustering of

Machine-2 and the controller of Machine-2 are responsible for them. A detailed example
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to construct GRE Tunnel for the Figure 5.5 is given on Appendix F.

5.3.2. SDN-IP Application

SDN-IP is an ONOS application that allows a SDN to connect external networks

using the BGP protocol (Hart and Koshibe, 2016). From the point of view of global

networking, the SDN network is considered as a single AS. SDN-IP application achieves

the integration mechanism between the ONOS and BGP routers which can be internal

within the SDN network or external within another AS. At the protocol level, SDN-IP acts

as a regular BGP speaker. SDN-IP allows an SDN network to peer and exchange traffic

with the adjacent external networks. It has an operational flexibility feature because it can

run on multiple ONOS clusters. It has a compatibility feature for adapting the network

with other networks using BGP protocol. SDN-IP application has also high availability

feature, inasmuch as the application continue to run until at least one SDN-IP application

running on any cluster to keep the consistent forwarding state. It is also scalable because

it can work on multiple ONOS clusters.

Figure 5.6. SDN-IP Architecture (Source: Hart and Koshibe, 2016)

Figure 5.6 illustrates SDN network describing the SDN-IP application. The net-

work consists of two ONOS nodes running SDN-IP application on each of them. Each
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external network is considered as a different autonomous system. There exist 4 external

autonomous systems and two internal BGP routers on the typical deployment scenario.

Within the SDN-IP network, there are OpenFlow switches and internal BGP speakers

needing to have at least one connection with the OpenFlow switches. The BGP speakers

might be an existing BGP router or any software router such as Quagga. The speakers

use e-BGP peering sessions to exchange the routing information with the border routers

whereas iBGP peering sessions are established among the BGP speakers and the SDN-IP

instances. The routes advertised by the external routers are received by the BGP Speak-

ers. Then, BGP speakers propagate these routes to other external routers. The routes are

processed according to the normal BGP processing (Hart and Koshibe, 2016). Similarly,

routes are also sent to the whole SDN-IP instances. The SDN-IP application converts

these routes to Application Intent Requests which are defined as network-level abstrac-

tions or policies that allow applications to control the network behavior. Then, ONOS

translates these intents requests into forwarding rules in the data plane. Forwarding rules

are used to share traffic information among different interconnected IP networks (Hart

and Koshibe, 2016). Additionally, in condition that there are several instances of ONOS

clusters where SDN-IP runs, then all SDN-IP instances receive the same number of BGP

routes while one of the instances act as a leader to install the necessary intents. In this

section, we described the SDN-IP application of ONOS. As a final remark, ONOS allows

developers to build different applications like BYON . It is possible to write a forwarding

application in ONOS, and with the help of BYON feature of ONOS, it enables to transmit

the traffic from one side to another side.

59



CHAPTER 6

EXPERIMENT AND ANALYSIS

This chapter firstly explains generating distributed networks on multiple clusters,

and covers tests performed on a single controller and multiple controllers.

6.1. Distributed Network Generation

After installing tools specified in the chapter 4, we can build a distributed SDN

network on two physical machines. As an initial process, it is required to use cell mech-

anism of ONOS to construct the environment variable of ONOS. Before executing cell

file, IPv4 addresses of two machines need to be obtained. After configuring the cell file

of each computer with the obtained IP addresses, cell file can be executed with the cell

alias as specified below.

1 $ c e l l t u t o r i a l

In case the cell file may change the ONOS_USER variable as sdn, because ONOS expects

that the machines are created with the name called as sdn. It is required to reset as the

computer username. In our case, our machines have two different names. ONOS_IP and

ONOS_ROOT variables also should be defined as specified below.

1 $ e x p o r t ONOS_USER= f a t i h

2 $ e x p o r t ONOS_IP = 1 9 2 . 1 6 8 . 1 . 1 0 1

3 $ e x p o r t ONOS_ROOT=~/ onos

Then, we change the directory from home to onos directory. Then, we start the onos with

ok clean command.

1 $ cd onos

2 $ onos $ ok c l e a n

After a while, ONOS controller will be started. Figure 6.1 demonstrates the running

ONOS applications and required installations of ONOS after the execution of ok clean

command. As soon as the ONOS controller starts, ONOS GUI will be available on

http://192.168.1.101:8181/onos/ui/index.html.
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Figure 6.1. Running ONOS Controller

Connecting ONOS CLI: After the controller is executed, it is possible to access ONOS

CLI by specifying the controller IP address with onos alias. Figure 6.2 illustrates the

CLI access to ONOS controller to activate or deactivate ONOS applications. Here, we

activated forwarding application, because in order to generate traffic among devices, it is

required for forwarding application to be enabled on ONOS to experiment ICMP traffic

on SDN network. There are a set of CLI command examples to get information of the

corresponding devices on the network or activate and deactivate a specific application on

CLI.

1 onos > app a c t i v a t e org . o n o s p r o j e c t . fwd

2 onos > app d e a c t i v a t e org . o n o s p r o j e c t . fwd

3 onos > h e l p onos

4 onos > d e v i c e s

5 onos > l i n k s

6 onos > h o s t s

7 onos > f l o w s

8 onos > p a t h s <TAB>

9 onos > i n t e n t s

When the ONOS controller stands up, we can change the directory to mininet

to execute our script existing in the mininet directory that will generate the network de-

vices of the controller running on 192.168.1.101. The script is executed with the below

command on the mininet directory.
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Figure 6.2. ONOS CLI

1 $ cd m i n i n e t

2 $ m i n i n e t $sudo mn −−custom onosTopology . py −−t opo mytopo −−c o n t r o l l e r

remote , i p = 1 9 2 . 1 6 8 . 1 . 1 0 1 , p o r t =6653 −−s w i t c h ovsk , p r o t o c o l s =

OpenFlow13

If we analyze the run script, custom topology called onosTopology.py is executed by

referencing the ONOS controller. The default OpenvSwitch port and the protocol name

is specified. After this script is executed, Figure 6.3 is observed on the terminal window.

That is to say, a mininet terminal is opened to manage the entire network devices.

Figure 6.3. Mininet CLI
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Figure 6.4 illustrates the code content of the onosTopology.py file generating net-

work design on the SDN controller.

Figure 6.4. Mininet Python File

Then we can log in to ONOS GUI with username onos and password rocks. Then,

the corresponding mininet script generates the topology on the ONOS controller as shown

in Figure 6.5.

Figure 6.5. Initial Topology View on First Controller

After the network elements are generated on the ONOS controller, the computers

connecting to the switches are not observed in the initial phase. After generating ICMP
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traffic by using the hosts and then pressing the ’h’ button on the keyboard, then the hosts

will appear as demonstrated in Figure 6.6.

Figure 6.6. Generating Traffic on ONOS

It is possible to get network device information by using dump command of

Mininet. Then, the controller, switch and host information are listed on the terminal.

It is also possible to get the controller and device information using RESTAPI of ONOS.

ONOS GUI also presents the device, cluster, host and also application information on

the GUI. After observing the device information on the Mininet console, we wonder ping

reachability of the devices, thus we execute pingall command of Mininet as exemplified in

the Figure 6.7. As soon as we execute pingall command, we observe that the host 10.0.0.2

appears on the controller GUI. Because, any traffic has not yet been directed to this host

before the pingall execution.

Up to now, we have one ONOS controller and three switches and three hosts

connected to each switch separately. In order to run another ONOS controller on another

computer, it is obligatory to set up ssh connection among different machines.

SSH Configuration of Machines: In order to set up SSH connection between controller

machines, below scripts are followed to create public key for a machine and then this key

is shared with the other machine. Below scripts indicate these steps in more detail.

1 $ ssh−keygen − t r s a

2 $ scp ~ / . s s h / i d _ r s a . pub emre@192 . 1 6 8 . 1 . 1 0 2 : ~ / . s s h / a u t h o r i z e d _ k e y s

The above script will ask to the password of the other machine, then we can successfully

connect to the other computer as specified in the Figure 6.8.
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Figure 6.7. Pingall Execution in Mininet

Figure 6.8. Connecting Other Machine with SSH
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Configuration of the Second Machine: In order to construct the distributed clusters, we

follow the same steps for the second machine. As an initial phase, we execute the cell file

of the second machine. Then, we set required environment variables of ONOS. A sample

cell file for the second machine is illustrated as below.

1 $ # LXC e n v i r o n m e n t f o r d i s t r i b u t e d t u t o r i a l

2 $ e x p o r t ONOS_NIC=" 1 9 2 . 1 6 8 . 1 . ∗ "

3 $ e x p o r t OC1=" 1 9 2 . 1 . 6 8 . 1 . 1 0 2 "

4 $ e x p o r t ONOS_OCI=" 1 9 2 . 1 6 8 . 1 . 1 0 2 "

5 $ e x p o r t ONOS_APPS=" d r i v e r s , openflow , p roxyarp , fwd , m o b i l i t y , sdn ip , c o n f i g "

Then, we execute ok clean command to run ONOS controller on the second machine. As

explained previously for the first machine, we access the ONOS CLI to activate forward-

ing application for this controller machine. ONOS applications can also be activated from

the GUI. At that point, we executed different topology script residing in mininet directory.

After the script is executed, the controller running on 192.168.1.102 can be accessed by

the GUI. The username and password are entered as onos and rocks respectively. Then,

we observe the second controller GUI on the second machine as specified in the Figure

6.9. However, for this time, we observe a different topology than the first topology im-

Figure 6.9. Initial Topology View on Second Controller

plemented. Here, we changed the name and the content of the script file to produce a

mesh topology with 10 switch and 60 hosts. Each switch connect to 6 hosts separately.

After the topology is created, we send a ping request from 10.0.0.1 to 10.0.0.2. Then, we

only observe these hosts on the network as indicated in Figure 6.10.

After that, we can get network device information from mininet to check the in-

formation of all devices and controller. Then, pingall command is executed to test the

ping reachability of devices on mininet terminal. Figure 6.11 indicates the execution re-
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Figure 6.10. Ping Test on Second Controller

sult of pingall command on the left-hand side. On the right-hand side, we can observe

that all hosts appeared and ONOS allows the topology background modification to set up

the network on different countries. At that point, we are ready to combine the distributed

SDN clusters.

Figure 6.11. PingAll Test on Second Controller

Combination of ONOS Controllers: With regard to construct the distributed ONOS

clusters, ONOS provides an alias named onos-form-cluster that can only be run under the

onos/tools/test/bin directory. The requirement for clustering is to construct ssh-connected

machines. The below script illustrates the usage of onos-form-cluster alias.

1 $onos / t o o l s / t e s t / b in$ onos−form−c l u s t e r 1 9 2 . 1 6 8 . 1 . 1 0 2 1 9 2 . 1 6 8 . 1 . 1 0 1

After executing this script, the existing topologies are destructed on both con-

trollers. The distributed clusters are prepared by the controller machines approximately 2

or 3 minutes later. Figure 6.12 indicates that the sample execution of onos-form-cluster

alias. However, while this alias is used, it is worth to say that if this command is exe-

cuted on the first machine having 192.168.1.101 IP address, the first argument coming

right after the alias should contain the other machine’s IP address. Then we again login

to ONOS GUI 2 or 3 minutes later, we can observe that the cluster has been set properly
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with each topology belonging to different controllers as shown in Figure 6.13. Then, we

resend ping to visualize the hosts again. Because, the topologies are recreated by the

onos-form-cluster alias.

Figure 6.12. Cluster Combination

Figure 6.13. Combined Topology View

Installation of s-Flow Agents: After the cluster is established, we can install sflow agent

on the whole switches on the network. Here, we install the agents just for the navy blue

switches belonging to 192.168.1.101 cluster. Before installing sflow agents, we need to

start sflow-RT collector on the localhost. We changed our directory to sflow-rt. The below

script illustrates how to start sflow on s-flow-rt directory.
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1 $ ~ / s f low− r t $ . / s t a r t . sh

The default listen port of sFlow is 6343. It will serve to the user on 8008 http port. After

starting sflow, agents can be installed on the s11, s12, s13 as shown in Figure 6.14.

Figure 6.14. Installing sFlow Agents

At that point, sflow-RT GUI is available on the localhost 8008 port. It is observed

on the page that there are a group of tabs on the user interface composed of applications,

agents, metrics, keys, flows, thresholds and events. An existing application can be run

with sFlow-RT. On the other hand, sFlow-RT allows developers to write their own ap-

plication and deploy within the app folder inside the sFlow-RT directory. Additionally,

real-time metric values are presented by means of metrics tab on the GUI and REST API

according to the defined flow cache. After analyzing the functionality of sflow GUI, it

is necessary to create a flow definition on the flows tab. This page asks the user to enter

the flow definition on the flows page. The flow definition contains name, keys and value

sections. Flow name is defined by giving a specific name for the flows. Because, after

creating the traffic on the network, then we need this name to search the name on the

agents page. Additionally, we specify the value of keys as comma separated ipsource,

ipdestination and stack. Lastly, we specify the value variable as byte. After that, if there

is any traffic on the network,flow definitions are observed with the specified name on the

agents page. We can click on this flow definition, then we visualize the flows by time

graph shown in Figure 6.15. Besides, on the mininet terminal, we can use xterm to reach

the terminal window of the network hosts.
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Figure 6.15. Flows By Time Graph of sFlow

As soon as we start the ICMP traffic, we start to observe normal ping values on

the graph shown in the Figure 6.16.

Figure 6.16. Normal ICMP Traffic Visualization on sFlow

In condition that ICMP traffic is created from 10.0.0.3 to 10.0.0.1, flows by time

graph shows how many flows as byte value are passing through the agent at that second.

After a while, we stop the ICMP traffic, then we organize an ICMP flood attack from

10.0.0.3 to 10.0.0.1 by using the below command. On the terminal window of 10.0.0.3,

we will execute the below script.
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1 $ p ing −f 1 0 . 0 . 0 . 1

Then, we can observe that while we get byte values for normal ping traffic, after creating

ICMP flood attack, then the obtained flow values are not byte values anymore, we have

flow rates up to megabytes as shown in Figure 6.17.

Figure 6.17. Attack Traffic Visualization on sFlow

Besides, it is possible to obtain the real-time megabyte value from the flow defi-

nition on the flow tab. The Figure 6.18 illustrates a sample values of the flow definition

parameters for the virtual hosts.

Figure 6.18. Flow Definition Parameters on sFlow
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In addition to this, ONOS also points out the flow values with different colors on

the GUI. If the channel has kilobyte per second value, the orange color appears on the

link shown in the Figure 6.19.

Figure 6.19. Observing Flow as Kbps value on ONOS

If the channel has a megabyte per second value, then the color will be dark green

as shown in Figure 6.20.

Figure 6.20. Observing Flow as Mbps value on ONOS

If the channel has gigabyte per second value, then the color is gradually darkened

as shown in Figure 6.21.
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Figure 6.21. Observing Flow as Gbps value on ONOS

Consequently, in this section we have completed the analysis of the distributed

network generation. At that point, this experiment enables us to judge the observation of

the abnormality between the normal traffic and attack traffic by using sFlow-RT collector

application and ONOS together.

6.2. Experiment with Multiple Controllers running on Two Physical

Computers

This section contains normal and abnormal traffic experiments performed on two

physical computers by extending the topology with GRE Tunnel between one of the

switches on the first cluster and one of the switches on the second cluster.

6.2.1. Normal Traffic Test

In this experiment, we used two physical computers. The first one has an In-

tel Core i7 2670QM processor having 2.2 GHz processor speed, 8GB RAM and it has

480GB SSD whereas the other computer has Intel Core 2 CPU having 2.8 Ghz speed

and 4GB RAM and its total HDD capacity is 230GB. In this experiment, we used 63

hosts and 13 OpenFlow switches created by a Python script. The emulation is performed
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by the Mininet application. After that, our bash script application is triggered to provide

automatically execution of all necessary applications. Then, the configuration of sFlow

agents and the flow cache definitions are automatically done by the python script with the

help of sFlow.py script shipping with the sFlow-RT application. In order to monitor the

traffic, we used this application developed by InMon. The first computer has a triangle

topology while the other has a mesh topology having 10 switches and each one of them

has 6 host as indicated in Figure 6.22. Then, we integrated these topologies by creating

a Linux GRE Tunnel on one of the switches of each cluster. After the topology is gener-

ated, hping3 application is used to generate the random normal traffic on the distributed

network.

Figure 6.22. Distributed ONOS Clusters Combined Using GRE Tunnel

Each sFlow agent collected the whole traffic for us by pushing the correspond-

ing flows passing through the agents to a central collector. After getting all flows, we

calculated (δ, ρ) tuple of the normal traffic generated by hping3 application.

In Figure 6.23, we demonstrated a three dimensional plot belonging to the normal

situation by observing the traffic within 60 seconds. We evaluated δ value and frequency

parameter for every second. On this graph, x axis represents the time as a unit of second, y

axis represents different δ values whereas, the z axis indicates the frequency information.

Then, the graph represents how many δ values are observed in which frequency for each

second. For a normal situation, while small δ values are observed at larger frequency for

every second, a limited number of big δ values are less observed as expected.
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Figure 6.23. Result In Normal Situation on Multiple Clusters

Figure 6.24. DCD Graph For Normal Situation on Multiple Clusters
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In Figure 6.24, we illustrated the distribution collaboration judgement plot of nor-

mal situation by using matplotlib library of Python. On this graph it is observed that a set

of points falls on the area A describing the normal situation having lower δ and ρ value

from both of Threshold values. Here, we observed the maximum ρ parameter as 0.025

Mb/sec. Similar to (Lu and Wang, 2016), most of the nodes does not have more than

destination flows in normal situation even though some outliers might appear. Here, it is

considered that Threshold δ is half of the nodes which are approximately 33. Threshold

ρ might be decided by looking at the total incoming flows of all nodes. According to the

TCP flow cache, it is observed that the individual flows as byte values in Figure 6.25.

Figure 6.25. TCP Normal Flow Observation on TCP Flow Cache

According to the estimated λ parameter calculated as a mean δ value for each

node, a Poisson probability distribution graph is given in Figure 6.26.

Figure 6.26. Poisson Probabilities For Normal Situation on Multiple Clusters

From the Figure 6.26, we can make a comment on approximately 23 nodes is

active on the network. Because of some of the nodes not participating to the network
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traffic, these node will have the δ value as zero, the most of probabilities is evalueated as

zero.

6.2.2. Attack Traffic Test

For the second experiment on the distributed network in SDN environment, we

organized a Botnet Based DDoS attack by using the total 62 hosts excluding one accepted

as a victim node. The attack is performed by sending TCP SYN requests from 62 hosts

to a destination of 10.0.0.61. For this experiment, we have given a result of three dimen-

Figure 6.27. Result In Attack Situation on Multiple Clusters

sional graph for the attack situation. From Figure 6.27, it is possible to observe that for

the time interval starting from 0 up to 60, the small δ values observed at the beginning are

directly proportional to the upper δ values. As the time goes on, upper δ frequency values

and also the corresponding δ values has been gradually increasing. From 40-th seconds,

we observe the δ value of 62 with the frequency of 62. As compared to the large δ values,

the count of δ value 1 is also gradually increasing with the upper values inasmuch as when

each bot sends SYN packet to the destination, the destination sends a SYN-ACK packet

as a response on experimental situation. Due that reason, each one of 62 hosts gain a δ

value of one.
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Figure 6.28. DCD Graph For Attack Situation on Multiple Clusters

Figure 6.29. Poisson Probabilities For Attack Situation on Multiple Clusters
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As indicated in Figure 6.28, the DCD graph demonstrates that the δ value of des-

tination flows of the victim falls into the area D which is considered as an attack flow,

the δ value of bots navigates around 1. The Poisson distribution graph of the attack sit-

uation is illustrated on Figure 6.29. From this graph, it is possible to observe that all of

the nodes are used to generate attack traffic on the network. Additionally, it is judged that

the probability of all users sending requests to a destination is theoretically lower than the

probability of half of the nodes sending requests to a destination.

6.3. Experiment with Large Network on the Single Controller

This section contains normal and abnormal traffic experiments performed on one

physical computer with the maximum network devices being able to be generated.

6.3.1. Initial Experiment

In this experiment, normal and attack flow scenarios are implemented on the single

SDN controller. In order to observe how many network elements can be generated on

the single SDN controller, the initial experiment is done. This experiment is started by

generating 15 switches and 135 hosts. In that condition, due to the fact that Mininet

and ONOS SDN controller utilize the main physical computer resources, it is observed

that the ping reachability of each host has been stopped after 84 hosts send ping request

to every other hosts. This condition depends on the processing power of the physical

computer. Then, the experiment is gradually repeated by reducing the network size. The

second test is executed by Mininet script having 14 switches and 119 hosts. For second

trial, it is again observed that the ping reachability of devices has no been continued

after 83 hosts can successfully ping to each other. After that, the third test is executed

by Mininet script having 13 switches and 117 hosts. For third trial, it is again observed

that the ping reachability of devices has not been continued after 70 hosts is successfully

ping to each other. By decreasing the network size, the fourth test is executed again with

12 switches and 108 hosts. Then, it is observed that after 84 hosts send ping to each

other, the ping request of the remaining devices does not arrive to the other destinations.

Then, the fifth test is executed by generating 11 switches and 99 hosts. The network is
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generated successfully on the SDN controller. However, similarly the ping reachability

of devices has been interrupted after 96 hosts send request to each other. The remaining

devices stays unreachable. As the sixth test, the experiment is executed by generating 10

switches and 90 hosts. Then, it is observed that the 64 hosts could send request to the

every other host. However, the remaining devices could not deliver the packets to every

other destination. As the last trial, the experiment is repeated with 9 switches and 81

hosts. Then, the experiment results were observed successfully. That is to say, every host

on the network was able to send every other destination. From this point, it is understood

that the maximum counts of network elements of the single controller that will be created

is approximately observed as 84 hosts and 9 or 10 switches on the physical computer

having the processor speed of 2.2 Ghz.

6.3.2. Normal Traffic Experiment

Figure 6.30. Single Controller Topology

As indicated on the Figure 6.30, for the single controller experiments, 81 hosts and

9 switches are created by the script program written in Python. On the topology, 81 hosts

are evenly shared among 9 switches. Then, the random normal traffic is generated on the

network by using hping3 program. For this traffic, it is provided by hping3 that 24 hosts

send requests to random destinations. After that, the traffic is analyzed and the related

flows are aggregated and the corresponding tuple information and frequency parameters
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are calculated. At this step, it is possible to observe for frequency information, observed

δ parameters and related time information from the Figure 6.31.

Figure 6.31. Result In Normal Situation On Single Controller

As indicated in the Figure 6.31, for the normal traffic scenario on the single SDN

controller, we demonstrated a three dimension plot by observing the traffic 60 seconds.

We evaluated the δ and observation frequency information for every second. The first

dimension represents the time and the second dimension indicates the different observed

δ values whereas the vertical axis refers to the observation frequency for each observed

δ value. The graph represents how many δ values are observed at which second. It is

observed that the small δ frequencies are much higher than the big δ frequencies. When

analyzed the actual δ parameters of destination flows, it can be seen from the Figure 6.32

that the δ values does not exceed the threshold δ value.

From the distribution collaboration plot as demonstrated in the Figure 6.32, the δ

set of destination flows are accumulated on the area A referring to the normal flow having

lower δ and ρ value from both of threshold values. Here, it is considered that Threshold

δ is half of the nodes which are approximately 40. According to the calculated λi value

of each node, the Poisson distribution plot is indicated on the Figure 6.33 meaning to the

approximately 24 hosts are used for generating random normal traffic on the network.
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Figure 6.32. DCD Graph For Normal Situation On Single Controller

Figure 6.33. Poisson Probabilities For Normal Situation On Single Controller
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6.3.3. Attack Traffic Experiment

Figure 6.34. Result In Attack Situation On Single Controller

For this experiment, the same topology is used on the single ONOS controller.

Then, we generated attack traffic on the network. Then, according to the analyzed traf-

fic information for 60 seconds, a three dimensional plot is indicated in the Figure 6.34,

the bigger δ values are initially less observed, as the bots join the attack, the bigger δ

frequency values are mostly observed approximating to the number of 80 hosts partici-

pating the botnet based attack. Then, the small δ values especially δ values equal to 1 are

observed incrementally as increased as blue line on the figure because of the SYN ACK

responses.

According to the distribution collaboration plot as indicated in the Figure 6.35,

δ value equals to 80 seems to be an outlier whereas the cumulative points fall into the

the δ value of 1 because of the SYN ACK responses. The outlier falls into the area C

referring to the possible attack condition for the detection mechanism. According to the

experiment of (Lu and Wang, 2016), the threshold δ value is considered as the half of the

nodes. Threshold ρ is calculated and decided by observing the total destination flows on

each possible destination.
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Figure 6.35. DCD Graph Attack Situation On Single Controller

All in all, in this section we tested the designed application depending on the

available detection algorithm on single and multiple SDN controllers. Compared to the

existing study performed by (Lu and Wang, 2016), we actually observed the similar re-

sults on both single and multiple controllers by using the extended network elements.

According to the available detection mechanism, while δ values of destination flows gen-

erally falls into the area A for the random normal traffic, δ values of destination flows

falls into the area C or D on the distribution collaboration graph for the attack situation.

For attack situation and normal situation, it is observed that the detection mechanism also

works on the extended networks with single and multiple controllers. The advantage of

using multiple controllers was extremely critical. Inasmuch as, we observed that a lim-

ited amount of network elements can be created on a single controller while the other

controller is useful for the extension mechanism.
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CHAPTER 7

CONCLUSION

The motivation of this thesis is to implement the detection mechanism on an ex-

tended network. We extended the network with GRE Tunnel approach on distributed

clusters. Though Botnet Based DDoS attacks may be stemmed from the same subnet, it

can also come from the different AS having a different subnet. However, no matter how

much we struggle to go outside of the same subnet, we have not achieved to go outside

of this scope. This mechanism should be tested with different ASs. As a solution to this,

ONOS has SDN-IP application routing traffic over the BGP speakers. It may be a further

study to perform the detection method on different ASs. Secondly, the distributed appli-

cation of ONOS allows writing a BYON application to forward the traffic from one side to

the other. Moreover, we used Mininet to generate the network devices of SDN, however,

we created splitted topologies by using two Mininet applications running separately on

multiple clusters whereas the Mininet Cluster Edition and Philipp Wette’s Maxinet offers

a single console to manage the distributed devices. Using this approach can be assessed

to extend the network to obtain a single console on multiple clusters as a further study.

As a consequence, in this thesis, we performed a similar study based on a detec-

tion mechanism proposed by (Lu and Wang, 2016) against Botnet Based DDoS flooding

attacks on both of multiple clusters and single cluster. By getting inspired by this study,

we implemented the same detection approach to compare the results of this study with

the result of the small network study. Then, we developed an application having similar

tasks with their application to perform this detection approach. Then, we calculated the

related parameters of the detection mechanism to observe whether this study is working

on a large network or not. According to the results of this study, the controller and devices

generated by Mininet consume the physical computer resources and it has limited capac-

ity to generate a large SDN network effectively. Thus, we extended our topology by using

another SDN network on another cluster. By that way, we have successfully extended

the network with more devices. According to observed results of the detection mecha-

nism, the results were satisfactory on the larger network and we come across the results

resembling the results of the authors on both multiple and single cluster experiments.
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APPENDIX A

INSTALLING ONOS CONTROLLER

In order to install ONOS controller, it is required to have 2 Core CPU, 2 GB

RAM, minimum 10 GB HDD on a single machine. Internet connectivity is required to

pull packets from corresponding points like GitHub or other repositories. If it is deployed

physically, it must be installed on a Linux operating system. If it is deployed virtually, it

is again required to have a Linux operating system in a virtual machine like VirtualBox

or VMware. ONOS can also be deployed on MacOS. And also it can run as multiple

Docker containers.

Java 1.8: The other requirement to install ONOS, because of being Java based platform,

Java 1.8 have to be installed and set its environment variables. We can execute the below

command to install Java 1.8 on Ubuntu machine.

1 $ sudo ap t−g e t i n s t a l l s o f t w a r e−p r o p e r t i e s −common −y && \ sudo add−ap t−
r e p o s i t o r y ppa : webupd8team / j a v a −y && \ sudo ap t−g e t u p d a t e && \

echo " o r a c l e −j ava8− i n s t a l l e r s h a r e d / a c c e p t e d−o r a c l e −l i c e n c e −v1−1

s e l e c t t r u e " | sudo debconf−s e t−s e l e c t i o n s && \ sudo ap t−g e t

i n s t a l l o r a c l e −j ava8−s e t−d e f a u l t −y

Curl: In order to perform web requests by the terminal, we need to install curl application.

1 $ sudo ap t−g e t i n s t a l l c u r l

Git: In order to pull some packages from ONOS repositories, it is required to have git

installed on the machine. On the physical computers that we have used in this project we

have used ONOS 1.12.0 Magpie version. So, it is possible to create a local repository on

any machine with the below command.

1 $ g i t c l o n e h t t p s : / / g e r r i t . o n o s p r o j e c t . o rg / onos −b 1 . 1 2 . 0

Maven and Karaf: ONOS also requires Apache Maven and Karaf, thus a folder called

Applications is created on home directory of any machine by using mkdir Applications

command. Specific ONOS versions are dependent on different Maven and Karaf versions.

The ONOS version in that project is 1.12.0, Apache Karaf and Maven versions can be ob-

tained by analyzing bash_profile file in the directory of onos/tools/dev. Then, in order
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to download Maven 3.3.9 and Karaf 3.0.8, tar.gz files are requested on the Downloads

directory. So, we change the directory to Downloads folder.

1 $ cd Downloads

2 Downloads $ wget h t t p s : / / r epo . maven . apache . o rg / maven2 / org / apache / maven /

apache−maven / 3 . 3 . 9 / apache−maven−3.3.9− b i n . t a r . gz

3 Downloads $ wget h t t p s : / / a r c h i v e . apache . o rg / d i s t / k a r a f / 3 . 0 . 8 / apache−
k a r a f −3 . 0 . 8 . t a r . gz

Then we can listed our files in Downloads directory with ls command on the terminal.

After that, we extracted tar.gz files to Applications directory.

1 Downloads $ t a r −zxv f apache−maven−3.3.9− b i n . t a r . gz −C . . / A p p l i c a t i o n s

2 Downloads $ t a r −zxv f apache−k a r a f −3 . 0 . 8 . t a r . gz −C . . / A p p l i c a t i o n s

3 Downloads $ cd

It is necessary to indicate bash_profile to the bashrc file of Ubuntu operating system.

Thus, we execute the below commands on the terminal.

1 $ echo " . ~ / onos / t o o l s / dev / b a s h _ p r o f i l e " >> . b a s h r c

2 $ c a t . b a s h r c

3 $ s o u r c e . b a s h r c

In order to ensure that the JAVA_HOME and MAVEN environment variables have been

set correctly, we execute the below command.

1 $ env | g r ep JAVA_HOME

2 $ env | g r ep MAVEN

If it is not set, we can set it executing the below command.

1 $ e x p o r t JAVA_HOME=/ u s r / l i b / jvm / j ava −8−o r a c l e

2 $ e x p o r t MAVEN=/ home / { computer_name } / A p p l i c a t i o n s / apache−maven −3 .3 .9

There are some environment parameters to install ONOS operating system. These vari-

ables are configured according to the karaf and maven requirements of ONOS 1.12.0

version.

1 $ e x p o r t KARAF_VERSION=${KARAF_VERSION: −3 . 0 . 8 }

2 $ e x p o r t KARAF_ROOT=${KARAF_ROOT:−~/ A p p l i c a t i o n s / apache−k a r a f−
$KARAF_VERSION}

3 $ e x p o r t MAVEN=${MAVEN:−~/ A p p l i c a t i o n s / apache−maven −3 .3 .9}

4 $ e x p o r t KARAF_LOG=$KARAF_ROOT/ d a t a / l o g / k a r a f . l o g

5 $ e x p o r t ONOS_ROOT=~/ onos
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6 $ s o u r c e $ONOS_ROOT/ t o o l s / dev / b a s h _ p r o f i l e

This will download onos-1.12.0 packages to opt directory and then untar the files and

renames the package as onos.

After setting environment variables of ONOS, we can change the directory to onos

with the below command and then install ONOS with skipping tests. Without skipping

tests, ONOS installation may fail. It is necessary to build success result from the below

command.

1 $ sudo ap t−g e t i n s t a l l vim

2 $ cd onos

3 onos $ mvn c l e a n i n s t a l l −D s k i p T e s t s

After a while, this command gives a build success result. Then, it is required to install

vim editor to change some configurations inside the Apache Karaf.

1 $vim $KARAF_ROOT/ e t c / o rg . apache . k a r a f . f e a t u r e s . c f g

Above command opens an editor window, it is necessary to find featureRepositories and

featuresBoot lines on that file. Then, at the end of featuresRepositories, after giving a

comma, it is necessary to add the line specified below.

1 f e a t u r e s R e p o s i t o r i e s =" . . . . . . . . . . . . . . . , mvn : o rg . o n o s p r o j e c t / onos−f e a t u r e s

/ 1 . 1 2 . 0 / xml / f e a t u r e s "

Also, it is necessary to add the below line on this file.

1 f e a t u r e s B o o t = c o n f i g , s t a n d a r d , r e g i o n , package , kar , ssh , management , onos−ap i

, onos−core− t r i v i a l , onos−c l i , onos−openflow , onos−app−fwd , onos−app−
m o b i l i t y , onos−g u i

ONOS default packages assumes that ONOS gets installed in /opt directory, in order to

be able to work onos-form-cluster command, it is necessary to follow below steps on the

machine.

1 $cd / o p t

2 o p t $ sudo wget −c h t t p : / / downloads . o n o s p r o j e c t . o rg / r e l e a s e / onos

−1 . 1 2 . 0 . t a r . gz

3 o p t $ sudo t a r x z f onos −1 . 1 2 . 0 . t a r . gz

4 o p t $ sudo mv onos −1 .12 .0 onos

After that, it is possible to check the status of onos service with the below command.

1 $ / o p t / onos / b i n / onos−s e r v i c e s t a t u s
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APPENDIX B

INSTALLING AND USING MININET

Command syntax is accepted as the following descriptions.

• $: comes before the Linux commands needing to be written on shell prompt.

• mininet>: refers to Mininet CLI to be able to run mininet commands.

• #: comes before the Linux commands needing to be written on shell prompt with a

root privilege.

In order to install Mininet, there are two choice, one of them is pre-configured VM image

and the second one is a native installation on Ubuntu, in our case, we prefer to install

native installation on a physical machine. To install Mininet, a terminal window is opened

and the following scripts are executed.

1 $ g i t c l o n e g i t : / / g i t h u b . com / m i n i n e t / m i n i n e t

2 $ cd m i n i n e t

3 m i n i n e t $ g i t t a g # l i s t a v a i l a b l e v e r s i o n s

4 m i n i n e t $ g i t c h e c k o u t −b 2 . 2 . 2 2 . 2 . 2

5 m i n i n e t $ cd . .

6 m i n i n e t / u t i l / i n s t a l l . sh −a

7 sudo mn

Above command will install all related packages related with OpenvSwitch, OpenFlow

Wireshark dissector and POX controller as default. In order to test mininet is installed,

sudo mn script can be executed to create minimal topology on CLI. Mininet has some

command line utility to perform some actions on the CLI. On Mininet CLI, with the help

of a single CLI, it is possible to manage the entire virtual network.

1 m i n i n e t > nodes # nodes command d i s p l a y a l l nodes on t h e c r e a t e d ne twork

.

2 m i n i n e t > n e t # n e t command d i s p l a y a l l l i n k s on t h e ne twork .

3 m i n i n e t > dump # a l l d e v i c e i n f o r m a t i o n i s l i s t e d on t h e M i n i n e t CLI .

4 m i n i n e t > l i n k s1 h1 down # a l i n k i s b roken .

5 m i n i n e t > l i n k s1 h1 up # a l i n k i s e s t a b l i s h e d .
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As exemplified with the above commands, link command creates a link among specified

devices. It is possible to create a link between two devices or destruct an existing link con-

nected to two devices of the network. Mininet also provides to access network elements.

In order to access the elements, xterm application is necessary to install on the machine.

Then, it is possible to execute the below command to open a new terminal window of the

created network elements. After that, this host can be used to send traffic to other hosts in

condition that there is a communication channel between these hosts.

1 $ sudo ap t−g e t i n s t a l l x te rm −y

-y flag means to install silently on the Linux operating system. If it needs to answer a

question during the installation process, it silently answers the question as yes. Then,

xterm command can be executed on the Mininet CLI to open a terminal window of the

specified device.

1 m i n i n e t > xte rm h1

It is possible to observe the IP address or MAC address information with the below com-

mand.

1 m i n i n e t > h1 i f c o n f i g −a

In order to test ping reachability of each device, it is possible to execute pingall command

to send a ping request from each host to every other hosts.

1 m i n i n e t > p i n g a l l

In some cases, it is necessary to crash all networks created, thus we use this command to

clean the whole network on Ubuntu terminal.

1 $ sudo mn −c

Mininet CLI allows to create the different types of network topologies such as

linear topology, triangle topology and so on. It is also possible to create custom network

topologies with the help of a python script.

Linear Topology: In order to create a linear topology with 4 hosts, and all switches con-

nect with a line to each other and each switch connect to a single host. Below command

is used to create a linear topology.

1 $ sudo mn −− t e s t p i n g a l l −−t opo l i n e a r , 4

Custom Topologies: Custom topologies can be created by using Python API. An example

is given below to create custom topologies. Supposing that we have a custom directory in

mininet file. Under the custom directory, we can create a new file called as custom.py.
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1 from m i n i n e t . t opo i m p o r t Topo

2 c l a s s MyTopo ( Topo ) :

3 d e f _ _ i n i t _ _ ( s e l f ) :

4 " C r e a t e custom topo . "

5 # " I n i t i a l i z e t o p o l o g y "

6 Topo . _ _ i n i t _ _ ( s e l f )

7 # "Add h o s t s and s w i t c h e s "

8 l e f t H o s t = s e l f . addHost ( ’ h1 ’ )

9 r i g h t H o s t = s e l f . addHost ( ’ h2 ’ )

10 l e f t S w i t c h = s e l f . addSwi tch ( ’ s3 ’ )

11 r i g h t S w i t c h = s e l f . addSwi tch ( ’ s4 ’ )

12 # "Add l i n k s "

13 s e l f . addLink ( l e f t H o s t , l e f t S w i t c h )

14 s e l f . addLink ( l e f t S w i t c h , r i g h t S w i t c h )

15 s e l f . addLink ( r i g h t S w i t c h , r i g h t H o s t )

16 t o p o s = { ’ mytopo ’ : ( lambda : MyTopo ( ) ) }

Above topology consists of two switch and two hosts. Left switch connect to left host

whereas the right switch connects to right host and left and right switches connect to each

other. Then, it is possible to execute this script with the below command.

1 $ sudo mn −−custom ~ / m i n i n e t / custom / custom . py −−t opo mytopo −− t e s t

p i n g a l l

Creating Network with Referencing A Remote Controller: Mininet allows us to create

the custom topologies and reference a remote SDN controller. In order to create the cus-

tom triangle topology, we can create the below python code naming it as onosTopology.py

1 from m i n i n e t . t opo i m p o r t Topo

2 c l a s s MyTopo ( Topo ) :

3 d e f _ _ i n i t _ _ ( s e l f ) :

4 " C r e a t e custom topo . "

5 # I n i t i a l i z e t o p o l o g y

6 Topo . _ _ i n i t _ _ ( s e l f )

7 #Add h o s t s and s w i t c h e s

8 S11 = s e l f . addSwi tch ( ’ s11 ’ )

9 S12 = s e l f . addSwi tch ( ’ s12 ’ )

10 S13 = s e l f . addSwi tch ( ’ s13 ’ )

11 H61 = s e l f . addHost ( ’ h61 ’ )

12 H62 = s e l f . addHost ( ’ h62 ’ )
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13 H63 = s e l f . addHost ( ’ h63 ’ )

14 #Add l i n k s

15 s e l f . addLink ( S11 , S12 )

16 s e l f . addLink ( S12 , S13 )

17 s e l f . addLink ( S11 , S13 )

18 s e l f . addLink ( H61 , S11 )

19 s e l f . addLink ( H62 , S12 )

20 s e l f . addLink ( H63 , S13 )

21 t o p o s = { ’ mytopo ’ : ( lambda : MyTopo ( ) ) }

When the network is created without referencing a controller, Mininet uses OpenFlow/S-

tanford reference controller as default. Otherwise, it is required to specify a controller

IP address on the Mininet executing command after changing the directory where the file

resides in. Then, we can execute the topology with referenced the controller. If the topol-

ogy seems on the controller GUI, it means that the topology is successfully created by the

Mininet script.

1 $ sudo mn −−custom onosTopology . py −−t opo mytopo −−c o n t r o l l e r remote , i p

= 1 9 2 . 1 6 8 . 1 . 1 0 7 , p o r t =6653 −−s w i t c h ovsk , p r o t o c o l s =OpenFlow13
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APPENDIX C

S-FLOW-RT RELATED CONFIGURATIONS

Installing sFlow-RT: s-Flow-RT requires Java 1.8 and we can install and start it by fol-

lowing the below commands. Another option is possible to run sflow as a docker con-

tainer.

1 $ wget h t t p s : / / inmon . com / p r o d u c t s / sFlow−RT / sf low− r t . t a r . gz

2 $ t a r −xvz f s f low− r t . t a r . gz

3 $cd sf low− r t

4 s f low− r t $ . / s t a r t . sh

Installing sFlow Agents on Switches: It can be installed manually from the Linux

terminal with below command. sFlow-RT works on 6343 port and localhost as default. It

can be changed by defining environment variables before executing Mininet as specified

below.

1 $ sudo env COLLECTOR= 1 9 2 . 1 6 8 . 1 . 1 0 7 mn

2 $ sudo ovs−v s c t l −− −−i d =@sflow c r e a t e s f l o w a g e n t = e t h 0 t a r g e t = \ "

1 9 2 . 1 6 8 . 1 . 1 0 7 : 6 3 4 3 \ " s a m p l i n g =10 p o l l i n g =10 −− −− s e t b r i d g e s1

s f l o w =@sflow

Installing sFlow Agents Automatically by sflow.py file: Another option to install

agents into devices use sflow.py script ships with the sFlow-RT. It can be configured

for custom topologies and executing with mininet command. Mininet can be started with

the below command to generate network elements and install sflow agents on the switch

simultaneously.

1 $ sudo env ONOS= 1 9 2 . 1 6 8 . 1 . 1 0 7 COLLECTOR= 1 9 2 . 1 6 8 . 1 . 1 0 7 mn −−custom s r . py

, s f low− r t / e x t r a s / s f l o w . py \ −− l i n k tc , bw=10 −−t opo = s r −−c o n t r o l l e r =

remote , i p =$ONOS, p o r t =6653

Defining Flow Cache on s-Flow-RT: It is necessary to install curl application on the

Linux operating system. The below command will instruct the collector running on

192.168.1.101 to construct a flow cache.

1 $ c u r l −H " Conten t−Type : a p p l i c a t i o n / j s o n " −X PUT −−d a t a ’ {" keys " : "

i p s o u r c e , i p d e s t i n a t i o n , t c p s o u r c e p o r t , t c p d e s t i n a t i o n p o r t " , " v a l u e " : "
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b y t e s " , " l o g " : t r u e } ’

2 h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 0 1 : 8 0 0 8 / f low / t c p / j s o n

In order to get existing flow definitions from the sflow-RT, the below command can be

executed.

1 $ c u r l h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 0 1 : 8 0 0 8 / f low / j s o n

In order to retrieve all TCP flows from TCP flow cache defined previously, the below

command returns all TCP flows as JSON objects according to the TCP flow cache defi-

nition.

1 $ c u r l h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 0 1 : 8 0 0 8 / f l o w s / j s o n ?name= t c p

The below python script defines TCP flow cache and retrieves all flow records continu-

ously from the TCP cache.

1 # ! / u s r / b i n / env py thon

2 i m p o r t r e q u e s t s

3 i m p o r t j s o n

4 i m p o r t s i g n a l

5 r t = ’ h t t p : / / 1 9 2 . 1 6 8 . 1 . 1 0 1 : 8 0 0 8 ’

6 name = ’ t c p ’

7 d e f s i g _ h a n d l e r ( s i g n a l , f rame ) :

8 r e q u e s t s . d e l e t e ( r t + ’ / f low / ’ + name + ’ / j s o n ’ ) ;

9 e x i t ( 0 )

10 s i g n a l . s i g n a l ( s i g n a l . SIGINT , s i g _ h a n d l e r )

11 f low = { ’ keys ’ : ’ i p s o u r c e , i p d e s t i n a t i o n , t c p s o u r c e p o r t , t c p d e s t i n a t i o n p o r t

’ ,

12 ’ v a l u e ’ : ’ f r am e s ’ ,

13 ’ l o g ’ : True }

14 r = r e q u e s t s . p u t ( r t + ’ / f low / ’ + name + ’ / j s o n ’ , d a t a = j s o n . dumps ( f low ) )

15 f l o w u r l = r t + ’ / f l o w s / j s o n ?name= ’ + name + ’&maxFlows=100& t i m e o u t =60 ’

16 f lowID = −1

17 w h i l e 1 == 1 :

18 r = r e q u e s t s . g e t ( f l o w u r l + "&flowID=" + s t r ( f lowID ) )

19 i f r . s t a t u s _ c o d e != 200 : b r e a k

20 f l o w s = r . j s o n ( )

21 i f l e n ( f l o w s ) == 0 : c o n t i n u e

22 f lowID = f l o w s [ 0 ] [ " f lowID " ]

23 f l o w s . r e v e r s e ( )
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24 f o r f i n f l o w s :

25 p r i n t s t r ( f [ ’ f lowKeys ’ ] ) + ’ , ’ + s t r ( i n t ( f [ ’ v a l u e ’ ] ) ) + ’ , ’ +

s t r ( f [ ’ end ’ ] − f [ ’ s t a r t ’ ] ) + ’ , ’ + f [ ’ a g e n t ’ ] + ’ , ’ + s t r ( f [ ’

d a t a S o u r c e ’ ] )

Sample output of the above python script would be indicated as below.

1 1 0 . 0 . 0 . 1 , 1 0 . 0 . 0 . 6 1 , 38882 , 3443 , 4000 , 98100 , 1 9 2 . 1 6 8 . 1 . 1 0 1 , 5

2 1 0 . 0 . 0 . 2 , 1 0 . 0 . 0 . 6 3 , 39046 , 22 , 837800 , 60000 , 1 9 2 . 1 6 8 . 1 . 1 0 1 , 25

3 1 0 . 0 . 0 . 2 1 , 1 0 . 0 . 0 . 6 2 , 34567 , 22 , 85143 , 60396 , 1 9 2 . 1 6 8 . 1 . 1 0 1 , 45

4 1 0 . 0 . 0 . 3 7 , 1 0 . 0 . 0 . 6 1 , 34565 , 22 , 39046 , 61800 , 1 9 2 . 1 6 8 . 1 . 1 0 1 , 19
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APPENDIX D

BASH SCRIPT APPLICATION AND ONOS CELL

CONFIGURATION

In order to run this application on Ubuntu machine, we have defined alias named

as onosrun. Our run.sh script resides in /onos directory, thus we added the below line to

the bashrc file.

1 a l i a s onos run =" ~ / onos / run . sh "

Create A Cell Definition File: cell command allows us to execute a cell script defined

in $ONOS_ROOT/tools/test/cells directory. This contains a set of environment variables

like the default address used by ONOS controller and a set of applications need to be

executed for every execution of ONOS. The content of a sample cell definition used by

the bash script application is illustrated below.

1 # LXC e n v i r o n m e n t f o r d i s t r i b u t e d t u t o r i a l

2 e x p o r t ONOS_NIC=" 1 9 2 . 1 6 8 . 1 . ∗ "

3 e x p o r t OC1=" 1 9 2 . 1 6 8 . 1 . 1 0 1 "

4 e x p o r t OCI=" 1 9 2 . 1 6 8 . 1 . 1 0 1 "

5 e x p o r t ONOS_APPS =" d r i v e r s , openflow , fwd , p roxyarp , m o b i l i t y , sdn ip , c o n f i g "

After created a cell file named tutorial, it can be executed on the shell prompt as indicated

below.

1 $ c e l l t u t o r i a l
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APPENDIX E

HPING3 INSTALLATION, USAGE AND DDOS

ORGANIZATION

Hping3 Installation: For the Linux operating system environment, hping3 can be in-

stalled with the following instructions to perform different tests on different hosts on the

network.

1 $ sudo ap t−g e t u p d a t e

2 $ sudo ap t−g e t i n s t a l l hp ing3

Hping3 General Usage Examples:

1 $hp ing3 < t a r g e t >

This type of usage will send a NULL packet having no TCP flags with a TCP header on

port number 0.

1 $ hp ing3 −c [ number o f p a c k e t s ] < t a r g e t >

The above usage will send a certain number of packets to the target.

1 $ hp ing3 −d [ s i z e o f p a c k e t ] < t a r g e t >

The above usage sends packets with certain size as bytes.

1 $ hp ing3 − i u [ t ime i n t e r v a l w i th m i c r o s e c o n d s ] < t a r g e t >

The above usage will wait for a specific time before sending the next packet.

1 $ hp ing3 −[F , S , R , P , A, U, X,Y] < t a r g e t >

It will send a packet to target by setting specified flag.

1 $ hp ing3 −[modeValue ] < t a r g e t >

This will arrange hping3 running mode. If it is chosen 1, ICMP packets are sent to the

target.

1 $ hp ing3 −1 −c [ number o f p a c k e t s ] < t a r g e t >

Above command will send as n number of ICMP packets to the targets.

1 $ hp ing3 −S −V −p [ p o r t number ] < t a r g e t >
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It will send a TCP packet with SYN flag to target machine on the specified destination

port number.

1 $ hp ing3 −S −p ++[ p o r t number ] < t a r g e t >

Hping3 will send a TCP packet with SYN flag by enhancing port numbers starting from

the specified range.

1 $ hp ing3 −a [ s p o o f e d s o u r c e a d d r e s s ] < t a r g e t >

In the above example, TCP packet will send to the target machine without specifying the

actual source address.

1 $ hp ing3 −−rand−s o u r c e < t a r g e t >

Hping3 can send each packet with different spoofed source IP address with –rand-source

alias. IP spoofing is performed with hping3, however, in this case, reply packets does not

return to actual source address. It will return to randomly spoofed IP address.

1 $ hp ing3 <x . x . x . x> −−rand−d e s t −I < i n t e r f a c e >

Hping3 can send each packet to different destination addresses with –rand-dest alias. In

this case, it is required to use an interface name like eth0.

1 $ hp ing3 < t a r g e t > − t < va lue > − t r a c e r o u t e

By using this option, custom TTL value can be set for outgoing packets.

1 $ hp ing3 −w [ window s i z e ] < t a r g e t >

Hping3 can set each TCP packet to a custom window size.

1 $ hp ing3 −b < t a r g e t >

Hping3 can send a packet with a bad TCP/UDP checksum.

1 $ hp ing3 −S −c [ number o f p a c k e t s ] −s −p [ d e s t i n a t i o n p o r t ] < t a r g e t >

A limited number of packets are sent with SYN flag from randomly chosen source port to

the target machine on the destination port.

1 $ hp ing3 −S −p [ p o r t number ] −a [ s p o o f e d i p a d d r e s s ] < t a r g e t > −I u [ t i me

t i n m i c r o s e c o n d s ]

For the above example, hping3 send TCP packet with SYN flag from hided source IP

address with a dedicated source port to the target machine. However, while sending each

packet, t amount of time is waited before sending the next packet.
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Organizing ICMP Flood Attack with hping3: In order to organize an ICMP flood

attack, hping3 can be used as specified below.It will continuously send ICMP packets

from spoofed y.y.y.y address to x.x.x.x address.

1 $ hp ing3 −1 −−f l o o d −a y . y . y . y x . x . x . x

Organizing SYN Flood Attack with hping3: In order to organize an SYN flood attack,

hping3 can be used as specified below. It will continuously send SYN packets from

spoofed y.y.y.y address to x.x.x.x address on port number 80.

1 $ hp ing3 −S −a y . y . y . y −−f l o o d −p 80 x . x . x . x

Another example can be given for SYN flood attack with –fast alias to send each

packet with 10 second interval. This usage is more appropriate to perform the attack.

Inasmuch as, the –flood option will destruct the network within a shorter time. For per-

forming attack detection test, this usage is more convenient to get the results.

1 $ hp ing3 −− f a s t −a y . y . y . y −s −p 80 x . x . x . x

2 $ hp ing3 −− f a s t −−rand−s o u r c e −s −p 80 x . x . x . x

The main difference among the above commands is that the first one organizes a DoS

attack from a spoofed source IP address to x.x.x.x destination whereas the other script

organizes a DDoS attack, because every request is sent from different spoofed source IP

addresses to the same destination.

Organizing UDP Flood Attack with hping3: In order to organize an UDP flood attack,

hping3 can be used as specified below. It will continuously send UDP packets from

spoofed y.y.y.y address to x.x.x.x address on port number 6234.

1 $ hp ing3 −−f l o o d −a y . y . y . y −2 −p 6234 x . x . x . x

Observing the Replies Coming From Target Machine: It is possible to observe the

coming reply packets after sending request to the target machine. Below script exemplifies

how to observe the reply packets of target machine with 192.168.1.107 IP address.

1 $ tcpdump −I wlan0 −n h o s t 1 9 2 . 1 6 8 . 1 . 1 0 7

2 l e n =46 i p = 1 9 2 . 1 6 8 . 1 . 1 0 7 t t l =64 DF i d =48348 s p o r t 80 f l a g s =SA seq =0 win

=65535 r t t =1 .3 ms

The above response will include a set of arguments. Table E.1 indicates the meaning of

the response parameters.
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Table E.1. The meaning of Response Parameter

Response Parameter Meaning
len The size of the incoming packet
ip The IP address of the target system
ttl The lifetime of the packet
DF Active fragmentation bit.
Id A unique identifier belonging to the IP packet.
Sport Source port that the packet has been sent.
Flags Active TCP flags.
seq Sequence number of the packet.
win Window size of the packet.
rtt Round trip time as millisecond.
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APPENDIX F

AN EXAMPLE OF CONSTRUCTING GRE TUNNEL

The first step to construct the combined topology is to split the combined topology

into two small partitions. For Figure 5.5, the topology of Machine-1 can be considered

as the first topology while the topology of Machine-2 can be considered as the second.

Suppose that the IP address of the first machine is 192.168.1.101, the IP address of the

second machine is 192.168.1.104. Then, it is possible to write two mininet scripts for

different machines.

The configuration of First Machine: The below code demonstrates how to configure s1

switch of Machine-1. First of all, SingleSwitchTopo is created to create hosts, switches

and links between them. Then, the main method creates a topology instance of this class.

After that, a controller is created and referenced to a remote controller.Then, created topol-

ogy instance and the controller is given to the Mininet object to return the related network

instance. The network object has all information of the network elements and the con-

troller. If there is an existing tunnel settings for s1 switch, a new terminal window is

opened for s1 and then the following scripts are executed to firstly remove the existing

tunnel and then create a new tunnel between s1 and s2.

1 $ i f c o n f i g s1−gre1 down

2 $ i p l i n k d e l s1−gre1

3 $ i p l i n k add s1−g re1 t y p e g r e t a b l o c a l 1 9 2 . 1 6 8 . 1 . 1 0 1 remote

1 9 2 . 1 6 8 . 1 . 1 0 4 t t l 64 key 1 . 2

4 $ i p l i n k s e t dev s1−gre1 up

1 from m i n i n e t . t opo i m p o r t Topo

2 from m i n i n e t . n e t i m p o r t M i n i n e t

3 from m i n i n e t . l o g i m p o r t s e t L o g L e v e l

4 from m i n i n e t . c l i i m p o r t CLI

5 from m i n i n e t . node i m p o r t R e m o t e C o n t r o l l e r

6 from t ime i m p o r t s l e e p

7 from m i n i n e t . l i n k i m p o r t I n t f

8 # Computer IP a d d r e s s e s on Linux O p e r a t i n g System

9 NODE1_IP = " 1 9 2 . 1 6 8 . 1 . 1 0 1 "
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10 NODE2_IP = " 1 9 2 . 1 6 8 . 1 . 1 0 4 "

11 c l a s s S i n g l e S w i t c h T o p o ( Topo ) :

12 d e f b u i l d ( s e l f ) :

13 s1 = s e l f . addSwi tch ( ’ s1 ’ )

14 h1 = s e l f . addHost ( ’ h1 ’ , mac=" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 1 " , i p ="

1 0 . 0 . 0 . 1 / 2 4 " )

15 h2 = s e l f . addHost ( ’ h2 ’ , mac=" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 2 " , i p ="

1 0 . 0 . 0 . 2 / 2 4 " )

16 s e l f . addLink ( h1 , s1 )

17 s e l f . addLink ( h2 , s1 )

18 i f __name__ == ’ __main__ ’ :

19 s e t L o g L e v e l ( ’ i n f o ’ )

20 t o p o = S i n g l e S w i t c h T o p o ( )

21 c1 = R e m o t e C o n t r o l l e r ( ’ c1 ’ , i p =NODE1_IP )

22 n e t = M i n i n e t ( t o p o = topo , c o n t r o l l e r =c1 )

23 # D e l e t e o l d t u n n e l , i f i t e x i s t s

24 s1 = n e t . g e t ( ’ s1 ’ )

25 s1 . cmd ( ’ i f c o n f i g s1−gre1 down ’ )

26 s1 . cmd ( ’ i p l i n k d e l s1−gre1 ’ )

27 # c r e a t e new GRE L2 Tunnel

28 s1 . cmd ( ’ i p l i n k add s1−g re1 t y p e g r e t a b l o c a l ’+ NODE1_IP+ ’

remote ’+NODE2_IP+ ’ t t l 64 key 1 . 2 ’ )

29 s1 . cmd ( ’ i p l i n k s e t dev s1−gre1 up ’ )

30 #Add t h e GRE i n t e r f a c e i n t o s w i t c h s1

31 I n t f ( ’ s1−g re1 ’ , node=s1 )

32 n e t . s t a r t ( )

33 s l e e p ( 5 )

34 n e t . p i n g A l l ( )

35 CLI ( n e t )

36 n e t . s t o p ( )

The configuration of Second Machine: The below code demonstrates how to configure

s2 switch of Machine-2. Here, the configuration is similar with the previous configuration.

However, for this time, Machine-2 IP address is firstly given in the script as the following

command. Because, for this time, our local address will become 192.168.1.104.

1 $ i p l i n k add s2−g re1 t y p e g r e t a b l o c a l 1 9 2 . 1 6 8 . 1 . 1 0 4 remote

1 9 2 . 1 6 8 . 1 . 1 0 1 t t l 64 key 1 . 2
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2 $ i p l i n k s e t dev s2−gre1 up

1 from m i n i n e t . t opo i m p o r t Topo

2 from m i n i n e t . n e t i m p o r t M i n i n e t

3 from m i n i n e t . l o g i m p o r t s e t L o g L e v e l

4 from m i n i n e t . c l i i m p o r t CLI

5 from m i n i n e t . node i m p o r t R e m o t e C o n t r o l l e r

6 from t ime i m p o r t s l e e p

7 from m i n i n e t . l i n k i m p o r t I n t f

8 # Computer IP a d d r e s s e s on Linux O p e r a t i n g System

9 NODE1_IP = " 1 9 2 . 1 6 8 . 1 . 1 0 1 "

10 NODE2_IP = " 1 9 2 . 1 6 8 . 1 . 1 0 4 "

11 c l a s s S i n g l e S w i t c h T o p o ( Topo ) :

12 d e f b u i l d ( s e l f ) :

13 s2 = s e l f . addSwi tch ( ’ s2 ’ )

14 h3 = s e l f . addHost ( ’ h3 ’ , mac=" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 3 " , i p ="

1 0 . 0 . 0 . 3 / 2 4 " )

15 h4 = s e l f . addHost ( ’ h4 ’ , mac=" 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 4 " , i p ="

1 0 . 0 . 0 . 4 / 2 4 " )

16 s e l f . addLink ( h3 , s2 )

17 s e l f . addLink ( h4 , s2 )

18 i f __name__ == ’ __main__ ’ :

19 s e t L o g L e v e l ( ’ i n f o ’ )

20 t o p o = S i n g l e S w i t c h T o p o ( )

21 c1 = R e m o t e C o n t r o l l e r ( ’ c1 ’ , i p =NODE1_IP )

22 n e t = M i n i n e t ( t o p o = topo , c o n t r o l l e r =c1 )

23 # D e l e t e o l d t u n n e l , i f i t e x i s t s

24 s2 = n e t . g e t ( ’ s2 ’ )

25 s2 . cmd ( ’ i f c o n f i g s2−gre1 down ’ )

26 s2 . cmd ( ’ i p l i n k d e l s2−gre1 ’ )

27 # c r e a t e new GRE L2 Tunnel

28 s2 . cmd ( ’ i p l i n k add s2−g re1 t y p e g r e t a b l o c a l ’+ NODE2_IP+ ’

remote ’+NODE1_IP+ ’ t t l 64 key 1 . 2 ’ )

29 s2 . cmd ( ’ i p l i n k s e t dev s2−gre1 up ’ )

30 #Add t h e GRE i n t e r f a c e i n t o s w i t c h s2

31 I n t f ( ’ s2−g re1 ’ , node=s2 )

32 n e t . s t a r t ( )

33 s l e e p ( 5 )
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34 n e t . p i n g A l l ( )

35 CLI ( n e t )

36 n e t . s t o p ( )
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