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ABSTRACT

DETECTION AND LOCALIZATION OF MOTORWAY OVERHEAD
DIRECTIONAL SIGNS BY CONVOLUTIONAL NEURAL
NETWORKS TRAINED WITH SYNTHETIC IMAGES

Image classification, object detection and recognition have gone a long way in the
last decade. The competitions, starting with ImageNet, have shown that various
improving implementations of Artificial Neural Networks are the best Machine Learning
techniques at the time for such tasks. However, machine learning methods require much
training data and the such data for image related tasks come at a cost in terms of time and
effort, if it can be obtained at all. When training data is scarce or not representative of the
whole target set, synthetic data and data augmentation methods are used to increase the
training data using what is already available.

This thesis work shows that when the target classification images have a structure,
even a loose one, it is still possible to use machine learning methods, deep learning in this
case, without any real data to begin with and still produce a good detection model.

In this work, a Convolutional Neural Network model is trained to detect and
localize informative motorway lane direction signs. Starting with no real samples of the
target images, a large computer-generated training set is created to train the model. The
resulting detector can detect the required sign types with high accuracy, localizing their

position by bounding boxes and categorizing them.
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OZET

OTOYOL UST YONLENDIRICI TABELALARININ YAPAY
GORUNTULERLE EGITILEN EVRISIMLI SINIR AGLARI ILE
TESPiTI VE KONUMLANDIRILMASI

Goriintli siniflandirmasi, nesne tespit ve tanimasinda son on yil i¢inde epey bir
mesafe kat edildi. ImageNet ile baslayan yarigmalar, Yapan Sinir Aglarinin mubhtelif
gelistirmelerle uygulanmasinin, i¢ginde bulundugumuz zaman i¢in bu tarz gorevler i¢in en
uygun Yapay Ogrenme yontemi oldugunu gosterdi. Ancak yapay dgrenme ydntemleri
oldukca fazla veriye ihtiya¢ duyar ve goriintii ile ilgili islemlerde bu tarz veriler, temin
edilebilseler bile zaman ve ¢aba olarak olduk¢a maliyetlidir. Egitim verisi kisith veya tiim
hedef seti temsil edemedigi durumlarda yapay veri olusturulmasi ve veri ¢ogaltma
yontemleriyle elde olan egitim verisinin arttirilmasi yoluna gidilir.

Bu tez calismasi, hedef siniflandirma gorsellerinin gevsek de olsa bir yapiya sahip
oldugu durumlarda, herhangi bir ger¢ek veri olmasa bile yine de yapay Ogrenme
yontemlerinin (ki buradaki Ornekte derin O6grenim yontemleri kullanilmigtir)
kullanilabilecegini ve iyi bir tespit modeli olusturulabilecegini gostermektedir.

Bu calismada bir Evrisimli Sinir Ag1 modeli, bilgilendirici otoyol serit
yonlendirme isaretlerinin tespit ve konumlandirilmasi i¢in egitilmistir. Hedef gorsel
isaretlerin hicbir gercek 6rnegi olmadan yola ¢ikilarak, modeli egitmek icin bilgisayar
kodu ile genis bir egitim seti olusturulmustur. Bu set kullanilarak olusturulan tespit
sistemi, istenen isaretleri yliksek dogruluk diizeyi ile tespit ederek, goriintii icindeki

konumlarini sinirlayici kutular ile isaretleyerek siniflandirabilmektedir.
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CHAPTER 1

INTRODUCTION

1.1 A general history

Image processing and computer vision has long been a popular field. While
general image processing could easily be handled thanks to hard-coded algorithms, image
understanding required more advanced methods and computing power.

Initial works involved finding colors, geometric constructs such as lines and
circles, and finding invariants in images through specialized algorithms.

Machine learning methods were not used much not only because image libraries
were not as common but also because images and videos also carried the burden of
manual annotation. In addition, popular machine learning methods were not very suitable,
and the computing requirements were high. The world has witnessed to a great leap in the
field in less than a decade thanks to the popularization of digital imaging, sharing of
images through Internet, advancement in computing power, and most importantly the
advances in various methods and techniques in Artificial Neural Networks (ANNSs).

The theory behind ANNs was a very old idea but it was unjustly discredited for
quite a long while. Various improvements and work [1] on their techniques created a
spark for some but were still not enough to popularize them until a model, now dubbed
as AlexNet [2], using deep convolutional networks, which is a type of ANN,
outperformed others by an unexpectedly wide margin (with almost half the error rate of
the nearest competitor) in the ImageNet competition of 2012. In the years following that,
still other CNN models kept obtaining the best performances and CNN methods and
architectures started attracting everyone’s attention especially in CV. In fact, nowadays,
almost all entries in such competitions use Convolutional Neural Networks (CNNs).

The size of the datasets and the complexity of tasks grew hand in hand with
improvements of the CNN techniques. However, the amount of data still posed a problem
as the manual annotation of images was a tedious and costly work. Using data
augmentation methods, the data at hand could be reshaped and reused but this also had a

limited use. In fact, in some fields, such as learning disparity and optical flow estimation



required pixel-accurate data which could simply not be obtained by human annotation
and the ideas of using synthetic data [3] have started to be utilized.
Even when there was available data, combining real data with the synthetic

seemed to offer some advantages in modeling.

1.2 Aim and objective

The aim of this work is to show that it is possible to train a CNN with totally
synthetic data prepared with a minimal effort for target sets that can vary much but still
have a general structure. Motorway overhead directional signs are a good example for
such target data and are used as the practical application of this idea.

The resulting model performs well and does not require much data gathering,
preparation, or annotation. The testing data, however, naturally requires such work for

performance measurement.

1.3 Related work

Computer Vision, Object detection and localization are very general and popular
fields. Due to the recent commercial race in autonomous driving, traffic scenes are also
very popular. Older work (produced more than a decade ago) on traffic scenes usually
concentrated on lane detection and road-side regulatory traffic signs. On the other hand,
most of the recent work concentrates on general scene understanding and segmentation
towards autonomous driving goals. “Vision-based Road Sign Detection” [4] concentrates
on the same real-world application as this work, but uses a low-level color-based
segmentation in HSL color space.

There are work that use synthetic traffic scenes from very advanced simulations
[5], work that use computer games as simulators [6], work that use synthetic training data
for objects in indoor scenes [7] or human 3D pose estimation [8], or work that use GAN-
based virtual-to-real scene adaptations but they are all on different tracks compared to
this work.

The ResNet50 [9] architecture and the Faster R-CNN [10] techniques are used for
modeling a detector DNN in this work.



1.4 Organization of this document

The organization of the rest of this document is as follows: Part 2 gives basic
background on some technical concepts. Chapter 3 gives brief information on the
generation of the synthetic data for the application. Chapter 4 describes the methodology
used for training a model. Chapter 5 discusses experiments and their results. Chapter 6
briefly mentions some possible future extensions. And finally, Chapter 7 presents the

conclusions.



CHAPTER 2

BACKGROUND

2.1 Earlier work on traffic sign detection and recognition

Initial works on processing vision in vehicles was more on guidance systems and
concentrated on road [11] and obstacle detection as they were the first problems to be
solved for starting with vehicle guidance in non-populous areas. As the research moved
to autonomous driving in urban environments, other works on lane detection, vehicle
detection, pedestrian detection, sign detection began to emerge. New sensor technologies
brought detection using a variety of different sensors, such as mono camera, stereo
cameras [12], omnidirectional cameras [13], and more recently lidar. Naturally, sensor
fusion [14] (combining the information from different sensor types) and use of hybrid
cameras [15] have also been tested.

Sign detection usually referred to detecting danger warning signs, prohibitory or
restrictive signs, mandatory signs, or special regulation signs as these regulate the traffic.
Directional signs were not a priority as the vehicles were not expected to depend on the
signs for guidance. Directional signs had more variation in content, but the other signage
usually belonged to a finite set of fixed signs. For example, a stop sign did not have any
variations. Even the speed limit signs had a limited set of variations due to a limited set
of speed limits. In addition, regulation signs had a strict format, unlike any other object
to attract the attention of drivers: Round signs with red circles, triangular signs with a red
triangle, blue signs with fixed pictograms, etc.

Due to the nature of regulatory signs, color thresholding and segmentation was
the usual first step to detect possible positive regions. Shape analysis would come as a
likely second step to confirm the existence of signs [16], [17]. Hue-based color spaces
were usually preferred for robustness to various outdoors lighting conditions [18], [19].
For shape analysis, outer edges of the signs were usually analyzed with methods such as
edge detectors, genetic algorithms, Hough transforms [20]. The step after detection would
be classification and neural networks were suggested even before they gained their recent

popularity [16], [21], [22] but variations of other methods such as Clustering classifiers,



Nearest Neighbor Classifiers, Laplace Kernel classifiers, fuzzy classifiers [20], PCA,
Discriminant Analysis, and SVM [17] were also suggested.

As with other research examples, the research on traffic signs also caused a
various number of data sets to be formed such as Belgium Traffic Sign Dataset [23],
German Traffic Sign Recognition Benchmark (GTSC) [24], German Traffic Sign
Detection Benchmark [25].

2.2 A brief history of CNNs

The ideas of ANNs date back to 1943 when Warren McCulloch, a
neurophysiologist, and Walter Pitts, a mathematician wrote an article [26] on modeling
how neurons might be working. Donald Hebb’s contributions [27] on how neural
pathways might be strengthening as they are used paved the way to the basic idea of the
mechanism of neural networks. With the advances in computing in 1950s, these ideas
could also start to get tested as algorithms. While works on perceptrons, such as that of
Rosenblatt [28], were drawing interest along with research funding, the book on the
subject by Minsky and Papert [29] had blown a big negative impact on the field. As a
result of this impact, the term “Neural Networks” (NNs) had bad connotations for a long
time and shadowed the works of Werbos [30] and Hopfield [31].

Rumelhart, Hinton, and Williams [1] created a new spark for the research and
applications of in neural networks. Although the computing power and the available data
was not ready for a wide-spread use at the time, there were promising works, such as that
of LeCun [32]-[35] showing the capabilities of NNs in laboratory environments [36].

Availability of data is also an important factor. ANNs shine at tasks too complex
to be manually modeled but collection and labeling in fields like Computer Vision (CV)
is very costly, at least in terms of time and manual labor. Competitions like ImageNet
[37] provided a great platform both as a massive library of labeled data and as a publicly
open arena where the results of various algorithmic techniques can be compared. When a
model, now dubbed as AlexNet [2], using deep convolutional networks, which is a type
of ANN, outperformed others by an unexpectedly wide margin (with almost half'the error
rate of the nearest competitor) in the ImageNet competition of 2012, CNN methods
attracted everyone’s attention especially in CV. So much that, nowadays, almost all

entries in such competitions use Convolutional Neural Networks (CNNGs).



The size of the datasets and the complexity of tasks grew hand in hand with
improvements of the CNN techniques. As more could be done, more would start to be
expected. The Pascal Visual Object Classes (VOC) Challenge of 2005 [38] had only 4
classes, 1578 images containing 2209 objects and required classification and detection.
While the 2012 challenge had 20 classes, 11530 images containing 27450 Region-of-
Interest (ROI) annotated objects and 6929 segmentations. ImageNet had 1000 object
categories and started with a classification task in 2010; in 2017, the tasks were object
localization, object detection, and object detection from video. Microsoft COCO dataset
[39] offered photos of 91 object types with 2.5 million labeled instances in 328 thousand
images where objects are labeled in using per-instance segmentations for object
localization.

As these competitions provided a common ground for comparison of CNN
architectures, the ones with good performance have also been popularized among the
community. After the great success of AlexNet [2] in 2012, improvements with new ideas
came almost annually with ZF Net [40] in 2013, VGG Net [41] in 2014, GoogLeNet [42]
in 2015, and MS ResNet [9] again in 2015.

As more has been started to be expected, new techniques were devised to include
new functionalities. While early works started with classification of the entire input image
as a single class, the trend moved to detection and classification of a multiple number of
objects, then adding localization as well, and then changing localization from bounding
boxes to pixel segmentations. Of interest, architectures such as R-CNN [43], Fast R-CNN
[44], and Faster R-CNN [10] incorporated object localization; Mask R-CNN [45] added
an instance mask for instance segmentation; YOLO [46], YOLOvV2 or YOLO9000 [47],
YOLOV3 [48], and SSD [49] incorporated a single-pass system for speed improvements;
SqueezeNet [50] and MobileNets [51] improved on the computational costs.

As such architectures gained interest and popularity, their pre-trained versions
have started to be available. This not only saved time by eliminating the need to
reconfigure network layers from scratch for new projects but it also helped with the
training process as well due the concepts of domain adaptation and transfer learning [52],
[53]. where a pretrained network is used at the start and the training adapts the results to
a different target data set with beneficial results [54]. With the introduction of platform
exchange formats, such as ONNX [55], architectures and pre-trained data might be used

even more freely in the near future.



2.3 Some datasets for traffic scenes

The advances in CV also made its impact on other fields that benefit from it, such
as medical diagnosis and autonomous driving. While this may have driven the use of
different types of sensors and sensor fusion in areas like autonomous driving, possibly
causing them to slightly linger away from CV, it has also supported the production of
various other data sets and competitions. Some traffic scene datasets are Leuven [56],
CamVid [57], Daimler Urban Segmentation [58], KITTI [59], [60], Cityscapes [61], [62],
Oxford RobotCar Dataset [63], Mapillary Vistas [64], ApolloScape [65], Berkeley Deep
Drive [66], and nuScenes [67], as well as the synthetic data set Synthia [68].

2.4 Popular network architectures

Although they look very simple now and not used at all, LeCun’s various “LeNet”
networks must still be mentioned as an early architecture that used CNNs. LeNet-5 had
only 7 layers, 3 of which were convolutional. And the paper on gradient-based learning
[34] is considered to be a pioneering the field.

The following networks have made their popularity within very short time periods
among each other and have helped the fast evolution of the CNN architectures.

AlexNet [2] had 8 trainable layers, of which 5 were convolutional and 3 fully
connected. But it also had ReLu activation, data augmentation, dropout, overlapping

pooling, and local response normalization.
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Figure 1. Layer diagram of AlexNet (Source: [2])



ZF Net [40] in 2013 improved on AlexNet architecture by using 7x7 filters instead
of 11x11 ones and using a stride of 2 for the convolution instead of 4 to retain much more

information for the further layers of the architecture.
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Figure 2. Layer diagram of ZF Net (Source: [40])

VGG Net [41] in 2014 was a simple in that, it decreased the CNN filter sizes
further down to 3x3, but it was also deeper than its precedents, with 19 CNN layers.
GoogLeNet [42] in 2015 went even deeper with a 22 layers when counting only

layers with parameters but the overall number of layers were around 100. It introduced

the “inception module”.

Figure 3. Layer diagram (displayed sideways) of GoogLeNet (Source: [42])

MS ResNet [9] in 2015 introduced “identity shortcut connections” and offered
different versions with varying number of levels with 50, 101, and 152 being popular

sizes used in following work by others.



As the network architectures got deeper, the issue of model size, memory size and
other computational costs have also started to gain an increasing focus [69]; SqueezeNet
[50] and MobileNets [51] have provided some good solutions in such matters.

ResNet50 architecture is very popular for various CNN-related work so it is used

for the feature extraction part (until the final stages of the DNN) in this work.

2.4.1 ResNet-50

As mentioned previously, ResNet [9] was one of the successful improvements on
the CNN structures. This is mainly because it could use a deep layered network through

a new structure it introduced: identity shortcut connections or a residual network.
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Figure 4. Residual learning: a building block from ResNet (Source: [9])

The CNNs seemed to improve as they get deeper, but they also experience other
problems with the depth so an “infinitely deep” structure is not possible. Some of these
problems are vanishing gradients and degradation problem. CNNs calculate gradients and
use backpropagation to update the weights in the network; however, as the number of
layers increase, the updates for the earlier layers can get smaller and smaller. This is called

vanishing gradient. In addition to that, as the network gets deeper, every layer introduces



extra training error and the number of parameters to be optimized get larger; this
degradation in training accuracy is called the degradation problem.

The idea of residual learning adds identity shortcut connections every few layers
forming “residual modules” and they help improve on both of these problems. These
shortcuts allow better backpropagation of gradients and the weight calculation is eased as
it is no longer necessary to compute for a long line of layers but only compute the residual
weights alongside the identity shortcut connection.

Networks of various depth are tested with this architecture and the ones with 50,
101, and 152 showed a good level of accuracy. The 50-layer version, referred to as

ResNet-50, has become popular for as a base for the initial feature extraction layers.

2.5 Network architectures involving detection and localization

R-CNN [43], Fast R-CNN [44], and finally Faster R-CNN [10] have become
popular CNN architectures for detection and localization. YOLO [46], YOLOV2 or
YOLO9000 [47], YOLOV3 [48], and SSD [49] enabled real-time performance through
their “single-pass” systems.

Although a real-time implementation would make more sense for the practical
application of sign detection, this works focuses on the theory of use of completely
synthetic data so Faster R-CNN is used for ease of implementation to obtain the results.

A YOLO implementation is being considered for future real-time testing.

2.5.1 Faster R-CNN

Although all three versions of R-CNN algorithm group are mentioned together,
they were introduced within short intervals. They are, in order, R-CNN, Fast R-CNN, and
Faster R-CNN. The last version, Faster R-CNN, is the most improved one.

Faster R-CNN has become a very popular structure for performing classification
and localization together when time is not a special concern. As mentioned above,
although Faster R-CNN is not suitable for 30 frame-per-second real-world videos, it can
still serve as a proof-of-concept, showing that the main ideas of'this paper do work. Again,
as mentioned above, a future YOLO implementation can be prepared for real-time video

inputs.
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Figure 5. Structure of a Faster R-CNN network (Source: [70])

The main idea of R-CNN methods is the use of “region proposals”. Previous
methods used techniques like sliding windows of various sizes which took much time.
Both of the initial R-CNN versions used “selective search” algorithm. R-CNN proposed
a certain number of regions which it cropped, resized, and passed to the CNN for
classification. Instead of feeding the regions separately, Fast R-CNN moved the region
proposals to a further stage; it would first pass the whole image through the CNN and
then process the region proposals, avoiding multiple processing of overlapping parts of
proposed regions.

Faster R-CNN [10] further improved on this by abandoning the selective search
algorithm which slowed down the process and obtaining the region proposals through a
separate but parallel Region Proposal Network after the feature maps and before the
classification.

Although, there have been huge speed improvements to classification with
localization techniques, most importantly with YOLO [48] and SSD [49], it is a matter of

discussion how these improvement may have affected classification performance. There
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have been suggestions on both the original papers and third-party review papers [71] but
it is hard to make a definitive comparison due to differences in the original platforms,

comparisons through different data sets, and possible implementation differences.

2.6 Use of synthetic data

CNN models improve with the amount of training data; however, the production
of ground truth data for image classification problems is a very costly (at least in time and
effort) manual process. This led the consideration of the use of synthetic data and
augmentation methods of the available data.

Several different methods of use of synthetic data are proposed. Mayer et al. [3]
stress the importance of synthetic data for learning disparity and optical flow estimation,
since they require pixel-accurate data which cannot be obtained by human annotation,
and suggest multiple ways of generating such data. The Synthia dataset [68] proposes
using totally synthetic urban scenes images in combination with other publicly available
annotated urban scenes for semantic segmentation. While Tremblay et al. [72] propose
training a model with synthetic data with non-realistic random domain parameters and
then fine-tuning it on real data, Hinterstoisser et al. [73] go the other way by proposing
using a network pre-trained with real images and freezing its initial feature extraction
layers and then training the following layers through synthetic images obtained by
OpenGL rendering. As mentioned previously, there are also work that use synthetic traffic
scenes from very advanced simulations [5], that use computer games as simulators [6],
that use synthetic training data for objects in indoor scenes [7] or human 3D pose

estimation [8].

2.7 Data augmentation

As stated in the previous section, CNN models improve with the amount of
training data but the production of ground truth data for image classification problems is
costly. This led the consideration of the use of synthetic data and augmentation methods
of the available data.

Data augmentation involves using the data at hand to produce more data that fits

the real-world situation for obtaining a larger training set. It may have a longer history
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than synthetic data generation. Various methods are used for oversampling of unbalanced
numerical data in data analytics.

In image classification problems, data augmentation is even more important
because the amount of training data is very important, the collection and manual
annotation of data is costly, and data augmentation also help with generalization
(avoiding overfitting) of the data. As an additional bonus, data augmentation of images
are relatively simple operations that do not change the integrity or correctness of the data,
such as horizontal or vertical flipping, scaling, noise, rotation, cropping, shear, warp, etc.
GAN-based data augmentation methods are also being proposed increasingly. In fact,
previously mentioned superior-performing networks such as AlexNet [2], VGG [41],
GoogLeNet [42], and ResNet [9] all used data augmentation methods, turning this into
standard practice.

There are also two popular alternatives in standard practice for incorporating data
augmentation: in preparing the training data set (offline) or during training (online). These
two alternatives provide a trade-off between dedicating more memory for the training set
versus dedicating more time and computing resources during the training phase. Image
data augmentation methods are becoming part of the popular deep learning libraries and

platforms.

2.8 Color representations in digital images

There are have been various color representations (or color spaces) used for digital
images. Different representation types can be selected not only for efficient storage

purposes but also for enabling different types of analyses and manipulations.

2.8.1 RGB

RGB is probably the most popular method by far. It is based on the human
perception of color. Colors are represented by a combination of separate levels for Red,
Green, and Blue components. A mixture of various levels of these values would produce

the desired ouput.
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2.8.2 HSV

HSV color space is based on the Hue, Saturation, and Value parameters where the
hue represents a certain point in a circular color scala, saturation represents the shade of

a bright color (hue) and the value roughly represents a mixture of white or black.

2.8.3 Other

Some other popular color representations are HSL (Hue, Saturation, Lightness),
HIS (Hue, Saturation, Intensity), HCL (Hue, Chroma, Luminance), CIE L*a*b*
(Commission Internationale de 'Eclairage, Lightness*, a*, b¥).

Color spaces using Hue, such as HSV and HSL, are sometimes used in color-
based algorithms since the hue value is considered to be less affected by lighting
conditions (illumination, shadows, etc.) and easier to work with as a single hue value can
be tested for selecting areas with a certain color. They can be used for selecting a certain
group of image pixels corresponding to the desired hue values, such as the green
background of motorway signs, without being concerned on how various lighting

conditions can change.

2.8.4 Alpha (transparency) channels

Sometimes, an extra layer of information (as a fourth layer or a separate layer
from the 3-layer color channels) is used if an image is to be used over another image or

background.

2.9 Morphological operations

Morphological operations in CV are used for changing, selecting, or segmenting
the pixels in a digital image according to its neighbors and through a pre-defined shape,
called a structuring element.

Some of the basic morphological operations are erosion where larger CCs can be
“eroded” into smaller ones, dilation where smaller CCs can be “dilated” into larger ones,

opening, and closing. Morphological “opening” operation is an erosion operation
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followed by a dilation operation. Morphological “closing” operation is a dilation
operation followed by an erosion operation.

These operations are usually done in pre-planned groups in manual handling of
selection of certain groups of pixels and are usually followed by a grouping of “connected
components” (CCs) in the end. They can be used, for example, to fill in the impurities or
other elements inside a desired area, such as filling in the spaces of letters inside a selected

rectangular sign area.

2.10 Traffic sign conventions

Although various international conventions have been used, such as the United
Nations ECE’s “Convention of Road Signs and Signals” of Vienna, 1968, to provide a
degree of uniformity of traffic signs, there are still a noticeable degree of variation among
different regions and countries. Even countries that seem to have agreed on a common
standard, such as those in the European Union, can still have varying degrees of
differences in their signs. Even the categorization of traffic signs varies from country to

country.

2.10.1 A general look

Vienna Convention on Road Signs and Signals had 52 signing countries by 2004.
This convention categorizes traffic signs into eight categories, of which some are: danger
warning signs, prohibitory or restrictive signs, mandatory signs, special regulation signs.

The category that relates to this work is the “direction, position, or indication signs”.

2.10.2 Motorway and non-motorway directional signs

As the Vienna Convention did not set any standards for direction signs, they have
the most variations among different countries and regions.
Similarly, motorway signs also have a large variation. As an example, considering
the region we are in, directional signs in motorways use:
e White on green in Turkey, Greece, Bulgaria, Italy, Switzerland, Denmark
e White on blue in Germany, France, Austria, Spain, Portugal, Norway

15



In non-motorway signs, there is even a greater variation:
e White on blue in Turkey, Greece, Bulgaria, Italy, Switzerland
e White on green in France, Portugal, United Kingdom
e Black on yellow in Germany, Norway
¢ Red on white in Denmark

e Black on white in Spain

2.10.3 Overhead motorway directional signs in Turkey

This work concentrates on a very small part of the traffic signs scheme to test the
CNN training by synthetic data. That part is the overhead motorway directional signs in
Turkey. In motorways we usually see a road-side sign as the one on the right to indicate
the forward directions and the exit directions for the motorway before we come to the
exit. We can then see an exit sign, again on the side of the road, indicating where the exit
leads. We are then likely to see an overhead sign indicating the continuing lane directions

and the exit lane directions.

£.68))

Urla

1Zmir D 300

Karaburun

D300
Karaburun

1000m

Figure 6. Motorway directional information signs (two are road-side, one overhead)

We can yet have another sign at the exit point indicating the direction the exit will
lead. As can be seen in this example, although the main motorway signs are standardized
as white on green background, various other elements of different colors can also be
present. In this example, the continuing motorway is indicated with an orange colored

motorway code of “O. 32”. The exit leads to a non-motorway road which is indicated by
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white text on a blue background. Similarly, the highway code “D. 300 is also indicated
by a design of white text on a blue background. There can even be other directional
information such as black text on white background for city roads or white text on brown
background for touristic places.

This signage can be interesting because it is not fixed; in a way, it has a certain
amount of variation in each sign, including names, backgrounds, road codes, and even
the number and type of arrows used. On the other hand, it does have a certain structure as
described above: green background, arrow signs, text, and more text with possible

backgrounds of green, blue, white or brown.
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Figure 7. Motorway overhead directional information signs

2.11 A brief overview of color-based method used for comparison

The main idea is “masking” the pixels that contain the possible color ranges the
target signs may contain, doing some morphological operations to turn this “mask” into
possible areas, and going over those areas separately to determine the possibility of them

containing the target signs.
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Figure 8. A sample detection pipeline for road signs (Source: [4])

2.11.1 Color ranges to be scanned for

First of all, the RGB color space representation is converted into HSV color space.
The hue values allow us to scan for a certain color without worrying about its lighting
conditions or other variations such as shadow falling on them.

Unfortunately, this is a more tedious process than it seems. First of all,
unfortunately there is no single color to scan for. Some countries do follow a “white text
on a certain color background” strictly, Turkey is unfortunately not one of them. Although
the motorway signs are defined as “white text on green background”, some of the text
(name of places as directions) are written on different colored backgrounds on that sign.
So the green background can have other rectangles with different colored backgrounds of
blue, brown, and white.

The addition of white background complicates things even further because: 1)
white is not a color and it cannot be scanned by a hue range, and 2) the white background
also introduces black text, again not a hue-ranged color.

Furthermore, road codes can be placed on the signs and they add another new
color: orange.

So, to sum up, a color-based scan for Turkish motorway signs would include: 1)
green, 2) blue, 3) brown, 4) white, 5) black, 6) orange.

“Real” colors (green, blue, brown, orange) are mainly scanned by a hue (H) range
but the saturation (S) and value (V) ranges also need to be checked. There are different

areas of the HSV color space that are described as the chromatic area, unstable chromatic
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areas, and achromatic area [74]. The H value does not guarantee by itself that a pixel is
of a certain target color.

Similarly, white and black are not chromatic colors. They can be better scanned
by V and S values while they can contain a random H value.

So, a number of masks are produced, at least one for each color, even more for
other colors. For example, since green is the most common and important color, 5

different masks are prepared and combined together for detection.

2.11.2 Problems with color scanning

Perhaps the most important problem is that certain colors ranges can be found in
a number of places in a motorway scene image. A clear blue sky is very likely to match
our blue scans for the signs. A distant view of sea can also cause problems. Similarly, the
greenery on the side of the motorway can trigger our green scans. Different shades of
white and black can be found in even a larger number of regions but luckily, most of them

would be smaller regions.

2.11.3 Image processing and morphological operations

After the color masks are determined an initial filtering would be done based on
the location of the pixel masks. Then to get a clearer group of points median filtering
would be applied. To turn the separate pixels groups into a more robust blocks,
morphological operations would be applied. A “morphological closing” operation would

result in block of masked pixels.

2.11.4 Connected components and final processing

The resulting blocks of pixels from the previous step would be turned into separate
connected components. A great number of connected components are usually found at
this stage. Various reasonings can be used to filter them. The most obvious ones are by
size, location, and aspect ratio. Then more intricate reasoning methods can be applied

such as the ratio of specific colors in each connected component, the rate of color
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variations at the edges of the determined regions, distributions of the locations and sizes
of remaining connected components, etc.

At this point, we would have a number of connected component block which can
easily be represented by rectangular regions or bounding boxes. A separate classification
algorithm would still be needed at this stage both to make sure that the bounding boxes
contain a sign and to classify what that sign is. To achieve a more robust system, a
tracking algorithm can also be applied to smooth out any residual differences that may

result from the previous steps.
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CHAPTER 3

GENERATING THE DATA SET

3.1 Real images used

Although it is stated that the training set is created using no real data, it must be
noted that the background images used for creating the training set, as can be seen below,
are actually real images from a dashboard vehicle video camera but they do not contain

any road signs at all.

2017/07/30 16:33:02

2017/07/30 16:34:08

2017/07/30 16:34:25 2017/07/30 16:34:34

Figure 9. Some examples of the images used as background for the synthetic data
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There are 113 such background images with 1920x1080 resolution, all selected
from frames that did not contain any road signs and all from a single video recording file
recorded in July 2017. That particular recording is selected because it was taken on a part
of'the motorway where there were not many signs for a long time and because it contained
a clear sky, road side greenery (although it was not really green due to the extremely
warm July weather in izmir), and some partial view of sea scenery from far. This choice
was due to the fact that clear skies, greenery, and sea can be problematic for color-based
selections. Below are some examples of the background images used.

The background images could also have been synthetically created too or
otherwise, copied from elsewhere. However, such images are easy to obtain, and they do
not clash with the claim of “no real data” since they do not contain the targeted positive
class sign images. The signs, which are the actual focus of training for detection, are

completely synthetic.

3.2 Elements used for creating synthetic signs

Synthetic signs are created by mixing together different visual elements such as

coored backgrounds, text, arrow signs, road code signs, etc.

3.2.1 Motorway sign background

MATLAB code is used to produce a green sign background with a white border.
The sign is generated at a specific size (200x200) which can later be changed to any

desired size.

Figure 10. Computer generated sign backgrounds
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3.2.2 Other colored sign backgrounds

Similar to the green background, other sign backgrounds are prepared in blue,
brown, and white. These backgrounds can be used according to the status of the road
leading to a location. In Turkey blue is used for non-motorway roads out-of-city, white is
used for roads within the city limits, and brown is used for touristic destinations.

Note that an extra black border is added to the white sign box on the right to show
its borders in this document; the original sign does not have an extra border.

The sizes are, again, set to 200x200 to be resized again according to need.

3.2.3 Text for place names

In order to make the synthetic signs look close to the original ones, various fonts
are searched on the Internet. A font named “Overpass Bold” seemed to be close enough
although the spacings between letters were somewhat tighter than needed. Deep learning
architectures are often considered as “black box™ functions where you cannot see what
happens inside and how the data is used. Thus, it is not clear how the similarity of the

place name fonts affect the results of the detection.

3.2.4 Arrow signs
The bottom-pointing arrow signs for continuing lanes are used from another font

set specifically created for British road signs: the “Transport” font.

However, the arrow sign for exit lanes had to be recreated using PowerPoint.

3.2.5 Road code signs

Occasionally, there are road codes put on the signs such as 0.32, E.90, D.550.
Although these could as easily be generated through code, their synthetic versions already

available on the Internet were used for simplicity.
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Figure 11. Letters and numbers printed with the "Overpass Bold" font

Figure 12. Arrow sign from the "Transport" font

Figure 13. Arrow sign produced with Microsoft PowerPoint
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Figure 14. Synthetic road code sign samples from Internet
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3.3 Sign generation

For the continuing lane signs, the standard green box gets loaded, then its width
is changed to a random number within an acceptable range. The height is kept constant at
200 pixels for ease of application since the size of the whole sign will later be scaled
anyway. Then with random weights, its number of lane markers (1, 2, 3), number of
columns (single or double), the number of text lines (place names) for each column,
number of rows for each column (1, 2, 3), and background box colors, if there will be

any, are decided.
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Figure 15. Computer generated synthetic signs for continuing lanes (class 1)

The place names are randomly selected from a list of place names in the izmir
region with a chance of generating a random text as a place name to avoid overfitting text
content. Random text starts with a capital letter and is 4 to 10 characters long.

Signs for exit lanes are generated in a similar manner except there are four initial
exit arrow configuration possibilities along with their appropriate text locations.

Besides the width, the locations and sizes of text, text areas, arrows, and road code

signs are also varied randomly within certain ranges.
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Figure 16. Computer generated synthetic signs for exit lane (class 2)

The two types of signs are generated separately but combined together by placing
them next to each other as they usually are placed in motorways. Then the transformations
explained in the next section are applied equally to both signs for data augmentation. A
random distance is placed between the signs and this distance is defined as a transparent

arca.

3.4 Image transformations used for data augmentation

As mentioned earlier, there are many image transformations that can be used for
data augmentation. These transformations are applied only to the generated sign images
and not to the background image. The most popular transformations are usually horizontal
and vertical flipping but since they are not used as they are not relevant for this case. The

transformations used are as follows:

3.4.1 Scaling

Scaling is done as a whole and equally on both axes and according to the
placement on the view. If the image would be placed closer to the vertical center of the
view, then the sign would be scaled smaller as if it were farther away and closer to the

horizon. Conversely, if it would be placed higher up on the view then it would be scaled
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larger as if it were close to the camera and viewed by a vehicle that was almost about to

passed underneath it.

3.4.2 Color space variations

In order to generalize the detectors and make them more robust, some variations

are applied to the channels in the HSV color space components.

3.4.3 Gaussian noise

This is made to cause a degree of variance in the image to avoid overfitting.

However, the amount of noise used is very low.

3.4.4 Rotation

There is a limited amount of random rotation within the range of 10 degrees is
applied to cover for possible misalignment of the camera holder and lens distortion to a
degree. The starting degree of the range of rotation is determined according to the
positioning of the sign in the view, which is also random within a range function; this is,

again, for simulating the lens distortion to a degree.

3.4.5 Shear (Horizontal)

A random amount of horizontal shear is applied within a limited range to simulate
the possible effects of perspective from lens distortion. Although lens distortion is quite
non-linear and bends the lines and borders out of shape, applying a true lens distortion
effect would require much effort with a limited return. The range of shear is, again,
determined according to the positioning of the sign in the view.

Vertical shear is not used; however, it could be used in future versions since it
might be helpful in simulating the lens distortion with a minimum amount of computing

power.
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3.4.6 Darkening

To account for various differences of lighting, varying degrees of darkening is
used. This is done by converting the image into HSV color space, toning down the V
value randomly, and converting the image back to RGB color space again. As the model
is planned to be run in normal lighting conditions, making images lighter is not
considered. Darkening can be especially useful if the light source (sun) is at an angle in

the front, facing the camera, making the signs look darker.

3.4.7 Cropping

Cropping is not really applied as a transformation, although it might have been
useful for training the detector for the conditions of obfuscation. Parts of the image signs
are cropped only when those parts fall out of the visible area of the camera due to the

random positioning.

3.4.8 Transparency

There are two situations where transparency conditions are taken into
consideration. One is due to combining two signs, a continuing lane sign and an exit sign;
the other is due to rotations. Rotations usually involve a larger image to fit the rotated
original, filling in the extended parts with black pixels or they require keeping the same
image size and cropping off the rotated parts falling out of view. The former option is
used for rotations, with a transparency mask is used for the black fill-ins when the sign
images are patched on to the background. Although a similar situation exists in the case

of shears, transparency mask is not used for shear transformations for simplicity.

3.5 Training set

The background images and the video camera recording resolutions are
1920x1080. For each training sample, two random sign generators, one for the continuing
lanes and one for the exit lane, are generated, placed together with a random range of

separation, assigned a random location within an area, passed through various data
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augmentation transformations as explained above, and finally patched on to the selected
random background image. The final image, however, is reduced to a 960x540 size for
faster processing and to avoid GPU memory problems during training.

As will be explained in the next section, Faster R-CNN architecture is used to
train for both classification and localization. This requires that both the classifications and
the localizations within the training image must be provided. Since the images are patched
by a constrained random placement function, which means that images are placed
according to where they could be expected, the localization of each class of sign is also
known. One important thing here is, of course, keeping track of the size and localization
changes as various transformations are applied before the patching. For every image
generated and patched, the data for the classification and localization (in terms of the
upper left corner coordinates, width and height) are also recorded in a training data table.

Not shown in the figure is the addition of the orange road code signs as the
background. There are some signs that are very similar to the two defined classes but do
not belong to either. They can naturally be detected as a target class due to the similarity
to them and the dissimilarity to the background patterns. In order for the detector to learn
a distinction, such negative sample should be introduced in the background of the
synthetic training data. In this case, separate orange road code signs on top of the
directional information signs could have been identified as a target class since they can
be observed on the target class signs. Putting them in the background parts of synthetic

images have helped us prevent that.
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Figure 17. Examples of synthetically generated training data
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CHAPTER 4

METHODOLOGY

Although the main contribution of this work is in showing that a computer-
generated data set without any real data can be used for training a successful CNN model
for detection and localization for a somewhat constrained target set, knowing the
methodology that follows for training a detector can also be useful not only for
understanding and reproducing the work but also for examining how the data generation
parameters affect the results of the final detector.

Below are some information on the methodology and how things are set up, along

with some of the decisions made during the set up and the reasoning behind them.

4.1 Picking a CNN architecture for the final functionality

The CNN architecture should be chosen according to various aspects of the project
such as the final output required, performance, speed, available computing power,
available memory, processing speed, etc.

As classification and localization for images are required, it would be wiser to
choose an architecture with localization output. As we require simple localization and not
object segmentation, architectures with simple bounding box localizations would be
adequate.

In a real-world application for classification and localization from video,
processing speed of the architecture would also be important; however, since the main
goal of this work is presenting the possibility and practicality of a synthetically generated
training data, the speed will not be stressed.

As mentioned before, some of the choices with bounding box localization are R-
CNN [43], Fast R-CNN [44], Faster R-CNN [10], YOLO [46], YOLOvV2 or YOLO9000
[47], YOLOV3 [48], and SSD [49]. While the YOLO and SSD algorithms also provide
the added advantage of real-time processing, Faster R-CNN [10] is chosen due to
familiarity for testing of the idea and the popularity of the technique.
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4.2 Planning the feature-extraction layers

There have been various CNN implementations that achieved good performances
on well-known competitions and data sets. Most popular ones have been offered as pre-
trained, ready-to-use models. Not only using such pre-trained models can help save time
and efforts by going around the need to design an CNN architecture from scratch, but
they can also help with improving the training phase if the features to be detected for the
new application is somewhat similar to those of the pre-trained model. Therefore, it has
started to turn into standard practice to pick a well-performing pre-trained model, use a
wide (deep) range of its initial layers as a feature-extraction network, and make the
necessary changes after the so called feature-extraction layer to convert the model into
the desired architecture.

As mentioned previously, for this work, the popular ResNet50 architecture is

selected and a pre-trained ResNet50 network was used as the starting point.

4.3 Adapting ResNet50 to Faster R-CNN

The figure shows the original blocks of ResNet50 network in lighter blue and the

modifications in dark blue, red, and green.

feature extraction layer roiMaxPooling2dLayer

rcnnBoxRegressionLayer

.r‘egionProposalLayer

/

*—0—0

rpnSoftmaxLayer rpnClassifierLayer

Convolution Layers

Figure 18. Adaptation of ResNet50 into Faster R-CNN (Source: [75])
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As is the usual process in using a pre-trained network for transfer learning, the
three last layers of the network (fully connected + softmax + classification) are replaced
with new ones of the same type. These are shown as the dark blue layers in the figure.

Next, box regression layers are added for the localization output. These are shown
in red (the two at the right) in the figure. In addition, an roiMaxPooling2dLayer is added
after a feature extraction layer. This added layer is shown as the single red layer on the
left in the figure.

Finally, the Region Proposal Network (RPN) is added. RPN is a specialty of
Faster R-CNN and is used to have the network suggest the region proposals instead of
getting them from an external algorithm, such as the selective search, which would slow
down the process. These are shown as the green layers in the network. They initially take
an input from the selected feature extraction layer, they have a feed connection to the
roiMaxPooling layer, and they also have two outputs, a classification layer classifiying
each anchor as a specific object or background and a box regression layer predicting 4

box offsets for each layer.

4.3.1 Problem with anchor boxes

An important parameter while adding these layers to adapt the ResNet architecture
into a Faster R-CNN one is the anchor boxes. These are used to increase the speed and
efficiency of the detection process and define the expected scales and aspect ratios of the
objects. The RPN uses the given anchor box sizes in creating the region proposals.

One problem in this work is that there is no real data to start with. General practice
is scanning through the training data to see what sizes of bounding boxes there are for the
objects and then use an algorithm, such as k-means clustering, to decide on the number
of anchor boxes and their sizes that would cover well the data in training set, assuming
that the training set is also a good representation of the real data.

When using synthetic data, if the model that generates the synthetic data is a good
representation of the real world then this would not be a problem. When the synthetic
data is generated with the hope that it would generalize well to the real-world situations,
which is the case in this work, then the anchor boxes become another parameter to be

guessed manually.
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Another problem is the scales to be used for anchor boxes. When detecting road
signs from a moving vehicle, we have a wide variety of scales for the signs. When the
signs are far away, they are very small. As one gets closer, the size increases. As one
passes by them, they may be as wide (for the overhead signs) as the width of the view or
almost as high (for the road-side signs) as the height of the view. This calls for a very
wide range of anchor box scales. When different aspect ratios are added, the number gets
multiplied.

One possible point of elimination is using a criterion for the desired size for the
signs to be detected. When the signs are too far away, detection and classification would
not be possible for man or machine; furthermore, even if the sign can be detected and
classified, it would not be very useful if the information (text) on the sign is not legible.
That is to say, even if we can see that there is a directional information sign far away, it
is no use for us if we cannot read the text that indicates where the direction leads. In a
similar manner, if we have already read the information on a sign from a distance, there
is really no point in still reading it again over and over as it gets closer. That is to say, if
we have read where a direction leads, we do not really need to read it again as we pass it.
Thus, using a size criterion, such as the minimum or maximum pixel size for the height
or the width of a sign, for ignoring very small (very far) or very large (very very close)
signs makes sense and we can use this criterion to limit the scales of the anchor boxes to
use.

One other problem may arise when the size of the input images for the training
set and the real-world data do not match. As will be explained in the next section, this
might happen due to hardware limitations, such as the GPU memory, during the training
phase of a CNN. If we use smaller images for training, we should consider how this would
affect the resulting detector. We should also decide whether we would use the original
image sizes of the inputs or resize it to the size of the training set.

We should also consider the object sizes of the synthetically generated data. If the
original input is rescaled to a smaller size, then the detector will need to detect smaller
targets in the new scale. If the input data is not resized, then we run a risk of training with
a different size and detecting with another.

Furthermore, since the training of a CNN takes a rather long time, we might not
have the liberty of trying a wide range of options to empirically find ones that produce a

good result.
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4.4 Training set

The training set had to be prepared according to the final goal and the planned
training procedure.

By “final goal”, it is meant what signs are desired to be detected, what signs are
intended to be treated as background, and finally, what signs are not relevant, meaning
that it does not matter if they are detected or not.

To give some examples, the overhead motorway signs are intended as the target
classification groups with only two types. Sometimes, there are small orange signs on top
of these marking the road codes; these would be intended to be treated as background and
not signs. Similarly, any orange road code signs within the intended overhead directional
signs are not to be detected separately on their own. Finally, there are other motorway
signs on both sides of the road; these are signs that are not relevant. So, whether they are
detected or not, they would not count as a positive or negative detection.

How to treat the first group is obvious: examples of this group are placed in the
training set and marked by their classification and location for the training. The last group
is also somewhat easier to handle. No care is taken to see that the model would detect
them and similarly, no care would be taken to see that they would be treated as
background either. They can be left out of the results in the test set, without having them
affect the results positively or negatively. The second group is a bit more complicated. If
there are signs that we certainly do not want the model to detect as an object, we need to
provide examples of them in the training set where they are not marked as the object so
that the model would be trained to ignore them and treat them as background. This method
has been put to test in a later version of the synthetic data. The model trained with the
earlier version with no negative examples would rarely pick up the orange signs on top
of the intended directional signs, as well as, again rarely, the orange code sign within the
intended directional signs. A later version of the synthetic data generation code started
placing some orange signs in the background images randomly and this helped the model
to distinguish them as background when they are on top of other signs and as not separate
objects when they are on the intended target road signs.

Another design issue with the training set generation is the size of the training
images and the size of the classification objects on those signs. As will be mentioned in

the next section, hardware limitations might require us to use smaller sized images for
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being able to train our model with the GPU memory we have. Having the training set and
real-world input data images in different sizes would lead us to consider various other
factors such as the anchor box sizes and the minimum dimensions of the signs that need
to be detected. This would in turn lead us to consider the sizes of the target objects that
would be used in the synthetically generated training data. For example, if we do not
intend to detect sign smaller than 50 pixels in width, we would arrange both the anchor
boxes and the synthetic signs that way. But if we are required to use half the image size
for training then we would need to either include half the minimum size of the anchor
boxes for the training or we would not use twice the minimum size criterion so that they
would not be smaller than the minimum size when the image is reduced in size for the
training.

Other important factors in the test set can be the color variations in the background
and in the objects, making sure to include in the background other image patches that

might be falsely detected as objects

4.5 Training

The hardware capabilities are almost always a limiting feature in Deep Learning.
Computer memory and, even more often, GPU memory limits the amount of data that can
be processed. As such, the GPU array were not enough to train the network with the
desired parameters. The first resort to remedy the situation is usually decreasing the input
size and the second is usually decreasing the mini-batch size.

Various parameters were tested to see if the process can go through with the
training by using such parameters. The training would be run with a small number of
epochs such as 2 or 4 and if the training would complete without any memory errors then
it would be run with longer epoch parameters such as 20 or 30. Two combinations that
worked with the available hardware were:

e i input image size (480x270 pixels) and a mini-batch size of 8
e 2 input image size ((960x540 pixels) and a mini-batch size of 4

There is no set limit on the mini-batch size. It seems that various opinions indicate

that they should be in the range of 1 to 32. Both mini-batch sizes seem to work fine in

different training trials.
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The image size, however, is a different matter. When 4 reduction is used, we have
to plan the positive sample sizes in the synthetically generated sets and the anchor box
sizes carefully.

As mentioned at the end of the subsection on anchor boxes, the training takes a
considerable amount of time. With the set up available configuration it took around 14
hours to train with 2000 %% size (960x540 pixels) images. So, both the training set and the
training parameters require careful consideration as repeating the training due to bad

parameter set up is costly in time.

4.6 Test set

The regular test set is created using a video camera installed inside a vehicle. The
scenes were recorded in May 2019 on the motorways in Izmir between Bornova and
Cesme. No special consideration is taken for the setup; that is, no special cleaning is done
on the windshield, no caution is taken against reflections from the windshield. However,
the recordings were made between noon and 17:00 to make sure the lighting conditions
are not adverse or extreme.

The images are used as they are, read straight from the video file frame by frame
during the testing and used in their original 1920x1080 size.

Although initially a separate labeling code was used written through modifications
on an available code from another research, in the final stage of the work, Matlab’s
“Video Labeler” app from its Image Processing and Computer Vision Toolbox was used
for convenience. This toolbox had a KLT Tracker functionality, so it was possible to
spend less time on marking and have the app mark a great number of frames on its own
using the tracker as long as the initial marked sample was not too much bent out of shape
and the final signs in the far distance were not very small for the tracker to falsely track.
The initial manual markings were done when the signs were fairly close but not so close
that they are bent out of shape due to lens distortion. The tracking feature was used in
reverse so that the KL T Tracker would track the large sign backwards as it gets smaller
and smaller.

The model did not seem to have a serious problem with false positives so initially

only frames that contained the target signs were used.
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It was observed that the targeted overhead signs appeared when there are exits in
the motorway so the number of different instances of such signs was strictly limited to
the number of exits in the motorway route used. However, since the frames were directly
taken from a video recording, each instance of a sign would produce around a hundred
frames of testing data in different sizes and locations according the time it can be seen in
the view, considering the recordings are taken at a rate of 30 frames per second.

Other motorway signs on the side of the road were marked as “other”, a third,
non-trained category, only to be ignored in the testing so that a positive or negative
detection on this “other” class would not affect the experiment results positively or

negatively.
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CHAPTER S

EXPERIMENTS AND RESULTS

5.1 Software and hardware

Generation of the synthetic data, modeling of the Convolutional Neural Network,
training, annotation of real-world video frames, testing, and experimentation were all
performed using MATLAB (R2019a) on Windows 10.

Although the coding part was done on two laptop computers, the code was run on
a computer with Intel Core 17-8750H CPU and NVIDIA GeForce GTX 1060 GPU.

The real-world videos were recorded by a dashboard camera in 1920x1080

resolution and 300 fps.

5.2 Settings

The videos were recorded in the motorways of Izmir between Bornova and
Cesme. The videos used for testing were recorded in May 2019 mostly between the hours
of 12:00 and 17:00. The frames were fed and processed in their original resolution.

The output of the detector was passed through a very simple filter to eliminate the
obvious false results using size and position. Furthermore, the testing was done for the
ground truth elements that are neither very far, nor very near. This was due to the fact that
for practical applications, very far signs that are nor really legible are not valuable for
detection, as well as the very near signs that would have already been detected. However,
it must be stated that the elimination of the very near signs may have dropped the false
negative rates for two reasons: 1) the signs go through a more pronounced lens distortion
when they are near, and thus, towards the outer parts of the camera view, and 2) it gets
harder to detect and classify the target classes that are partially visible and partially out
of the range of view.

Initial testing was done only on frames that contained the target classes. Although
this may seem to underrepresent the false positives rate, it is worth mentioning that in the

696 frames that contained the target classes, there were only 2 false positive detections
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that were not related to signs so inclusion of frames with no signs is not expected to
change the false positive rates much. Through manual experimentation, it was observed
that false positives were only a minor problem; therefore, a lower threshold probability
of 0.3 was used for the detector instead of the generally accepted 0.5. For ruling a match
(true positive) or a mismatch (misclassification) an Intersection over Union (IoU) value

of 0.5 is used.

5.3 Initial experiments

Initial experiments are done with 4 3-minute videos. 696 frames containing 16
unique instances of the target classes from varying distances were used for testing. No
detailed filtering or tracking were applied although it was obvious that they would be easy

to implement and would improve the performance.

Table 1. Performance of initial experiments

Classl | Class2
Ground truth data 345 280
True Positives 307 151
Misclassifications 0 57
False Negatives 38 72
False Positives 20 0

The initial results indicate that the detector for class 1 is more eager. It detects
89% of its targets, misses only 11%. The false positives it generates are usually related to
other sign-related picks and only 2 of those are unexplained detections from the
background.

Class 2, when compared, is more recessive. It detects 54% of its targets, mainly
because a 20% is misclassified by a greater probability by the class 1 detector. The
remaining 26% is not detected by any detector. This is probably due to the fact that nearly

half of the class 2 signs are on the exit lane on the side of the road so that they are greatly
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affected by lens distortion and either not detected or although detected, misclassified due
to the higher probability from the other detector. Class 2 detector does not interfere with
the other class by triggering misclassifications.

We can turn this table into a detection table, rather than a classification table, by
simply treating both classes as one and treating misclassifications as true positive

detections. Then we would have the following table showing an 82% detection rate.

Table 2. Detection performance of initain experiments

Object
Ground truth data 625
True Positives 515
False Negatives 110
False Positives 20

5.4 Further refinements

Although the results are better than what can be achieved with color-based
methods, there is still much room for improvement.

First of all, the synthetic training data can be modified to be closer to the real
world. There turns out to be some class 1 objects with a 1:1 aspect ratio in the testing data
which we did not have in our synthetic set. The class 2 signs in the real-world are almost
never located on the left half of the view while our synthetic data does generate quite a
lot of class 2 objects on that side. Almost all of the class 2 signs that are misclassified as
class 1 have the sky as their background and the class 1 detector selects a portion of that
blue sky background from the right side of those signs; this maybe probably due to the
fact that the background images used for synthetic data generation were all from a certain
portion of the motorway where the right side of the road had a hill with greenery in the
background. The detector may have associated the class 1 signs with blue background of

sky, as is the right side of the background images used for generating synthetic data.
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Other color-based checks can also be done to filter most of the false positives. For
example, in some cases, the detector picks up some road construction notices with some
text on a yellow-orange background. It might be picking up “text on a solid background”
without a differentiation of the color of the background. This can be remedied either by
using some similar negative examples in the background of the synthetic data generation,
or, rather, by using a simple ratio-of-colors check on the detected regions to ensure that
they are indeed in line with what is expected.

In Figure 19, you can see two detection annotations of the same frame. The orange
road code sign was falsely detected as a sign with an earlier version of the training set
because the target signs contained such portions and there were no such negative
examples in the background. Using a refined version of the synthetic data generation
code, such orange road code images were included in some of the background images for
training. As a result, they are not falsely detected any more.

As can be seen in Figure 20, simple false positives can easily be filtered out by

using a check on the location and size of the bounding boxes.

Figure 20. Most false positives can be corrected with location and size filters
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Other types of signs can easily be falsely detected. These can be corrected either
by providing negative samples in the background of the training data or by simple post-

processing filters. The sign below can be filtered out by a color content ratio filter.
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Figure 21. Other signs require extra measures

5.5 Further testing

Further testing was done with a larger set test data which consisted of two separate
frame sets: one with positive samples and one with no positive samples. The positive
sample set had 2075 image frames that contained multiple samples of 54 unique instances
of overhead signs (20 continuing and 34 exit signs) from various distances and angles and
in various settings (inside and outside the city limits, with and without traffic, various
background scenes, etc.). These frames contained 3490 positive samples of the signs, of
which a small portion (137) were later excluded in some tests to have meaningful sized
samples. The continual / exit signs ratio was around 7 / 10.

It must be noted that some extra filters were applied for the final testing stage of
the detector. The outputs of the detector were filtered by location, size, aspect ratio, and

color content to weed out false positives.

5.5.1 . The effect of target object area

The tables below show that the area (in pixels) of the target objects affects their

detectability to a large degree as expected.
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Table 3. TP and FN rates for continuing lane signs by sign area in pixels

Cont signs | >1.000 | >2.000 | >4.000 | >8.000 | >16.000 | >32.000 | >64.000
TP 0 81 364 350 254 166 24
FN 9 109 34 0 0 0 0
TP% 0% | 43% | 91% | 100% | 100% | 100% | 100%

Table 4. TP and FN rates for exit lane signs by sign area in pixels

Exit signs | >1.000 | >2.000 | >4.000 | >8.000 | >16.000 | >32.000 | >64.000
TP 0 91 419 443 238 55 2
FN 153 409 137 13 2 0 0
TP% 0% | 18% | 75% | 97% 9% | 100% | 100%

Naturally, it gets harder to detect the signs as they get smaller. As they get larger,
a larger percentage is detected. With the continual signs, this detection rate reaches a
perfect peak very quickly, but with exit signs, it takes a bit longer. This may be due to
several reasons. One can be that as the exit signs being usually rectangular, and thus,
taking the smallest dimensions. Another can be due to the fact that half the exit signs are
located on the far right side of the view and get affected by radial lens distortion more.
As the exit lanes are a separate category, it may be that the detector was not well trained
for this category.

Since training is mentioned, this should be a good point to mention some of the
manually selected parameters for creating the training set and the hyperparameters for
training.

First, as the training set is created synthetically, the parameters used in this
creation may affect the results of the detectors. If the parameters do not match the real-
world values, we can be training our detectors to look for wrong clues.

Furthermore, there may be some hyperparameters in the training stage that may
affect the behavior of the detectors. For the Faster R-CNN, there is a hyperparameter
called “anchor box” sizes. This refers to the possible shapes and sizes of the objects and

is usually determined through a statistical manner, such as k-means clustering, from the
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real-world data in the training set. As our training set is synthetic, we do not have any
real-world values to consider for this parameter, so it is simply manually estimated.
Finally, we may not have included very small samples in our synthetic training

set so that may as well be another reason for the problem in detecting small objects.

Detection rates by target object area
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Figure 22. Sensitivity rates by target object area in pixels

5.5.2 . The effect of detector threshold

The threshold for the detector naturally affects its ability to detect correctly;
however, its effects are not very dramatic. There does not seem to be a “sweet spot” for
the threshold that would produce an “elbow point” in detection or misdetection rates. A
detector threshold of 0.3 is used in testing and comparison purposes although even a lower
rate seems to be viable.

For threshold analyses, a minimum target object height condition was applied as
explained before and the total positive sample numbers became 3353, of which 1391 were
continuing lane samples and 1962 were exit lane samples.

The “sensitivity” is also called “recall” or “true positive rate” (TPR) and is
calculated as the ratio of positive samples detected.

Precision or positive predictive value (PPV) is calculated as the ratio of true

positives to all positive predictions.

45



Sensitivity vs. Threshold
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Figure 23. Sensitivity rates with varying detection thresholds

Precision vs. Threshold
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Figure 24. Precision rates with varying detection thresholds

As seen in the previous graph, precision rate follows a rather flat pattern without
any elbow formation and has a very rate of 80% and above in general. What is more
interesting is that the false positive and false negative rates in this analysis are in fact
much better than it looks in these statistics.

Upon examining the detection boxes, it was clear that the post-detection filters
were working wonderfully and there were no false positive detections in unrelated areas
of the frames. All false positives were due to localization errors where the detection box
does contain the target object but as the box is so large, the IoU (Intersection over Union)

ratio is below the threshold, causing an increase in both false positives and false negatives.
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The false positives are made up of correct detections with bad boundaries, the
number of such false positives are still very low, making the precision statistics good.

The exit lane sign detector seems to be somewhat problematic with quite high
false negative rates accompanied by very low false positive rates. It seems that its detector
makes less detections, causing very low false positive statistics and very high false

negative statistics.

Cont sign Precision-Recall curve

0.85

0.84

0.83

0.82

0.81

Precision

0.8

0.79

0.78

077 . , . . . , . . .
074 076 078 08 082 0B84 086 088 09 092 094
Recall

Figure 25. Precision-Recall curve for continuing lane sign detections
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Figure 26. Precision-Recall curve for exit lane sign detections
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Threshold | 0,05 0,10| 0,15( 0,20| 0,25( 0,30| 0,35( 0,40| 0,45| 0,50| 0,55| 0,60| 0,65| 0,70| 0,75| 0,80| 0,85| 0,90( 0,95
TP 1289] 1275| 1266| 1250| 1244 1239| 1228 1224| 1219 1208 1200 1187 1176 1164 1153| 1139 1116 1093 1038
FP 370 356| 344| 332 321| 309 298| 288| 281| 269| 264| 260| 251| 242| 232| 226| 218| 204| 187
FN 102| 116 125| 141] 147| 152| 163| 167| 172| 183 191| 204| 215 227| 238| 252| 275| 298| 353
Sensitivity | 93%| 92%| 91%| 90%| 89%| 89%| 88%| 88%| 88%| 87%)| 86%| 85%| 85%| 84%| 83%| 82%| 80%| 79%| 75%
Precision | 78%| 78%)| 79%| 79%| 79%| 80%| 80%| 81%| 81%| 82%| 82%| 82%| 82%| 83%| 83%| 83%)| 84%| 84%| 85%
Figure 27. TP, FP, FN statistics for continuing lane sign detection
Threshold | 0,05 0,10 0,15( 0,20| 0,25( 0,30| 0,35( 0,40| 0,45| 0,50| 0,55| 0,60| 0,65| 0,70| 0,75| 0,80| 0,85| 0,90( 0,95
TP 1333] 1313| 1298| 1274| 1261 1248 1236 1225 1213| 1205 1195 1186 1171|1160 1149| 1130[ 1111{ 1076 1003
FP 66| 62| 57| 54/ 51| 53| 50| 50| 47| 48| 48| 49| 52| 50| 43| 39| 36| 35/ 35
FN 629 649| 664 688 701| 714 726 737| 749| 757| 767| 776 791| 802| 813| 832| 851| 886| 959
Sensitivity | 68%| 67%| 66%| 65%| 64%| 64%| 63%)| 62%| 62%| 61%)| 61%| 60%| 60%| 59%| 59%| 58%| 57%| 55%| 51%
Precision | 95%| 95%)| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 97%| 97%| 97%| 97%

Figure 28. TP, FP, FN statistics for exit lane sign detection

5.5.3 . The effect of post-detector filters

The main purpose of the filters is to eliminate or “filter out” the bad detections.

This carries a chance of removing true positives as well as false positives and false

negatives. The precision curves indicate that the filters work good in eliminating false

positives effectively without disturbing the true positive numbers. In addition, when

applied on their own, the location filter seems to be more effective than the color filter.

The sensitivity curves show that neither filter has much of an effect on class 1 as

all curves coincide on top of each other. For class 2, however, location filter does not

have much of an effect, its curve coinciding on top of the curve with no filters, while the

color filter eliminates a small number of true positives, decreasing the sensitivity.

The numerical data is presented in Figure 32 and Figure 33 for further reference.

The 10, f1, and 2 suffixes indicate no filters, filter 1 (location) only, and filter 2 (color),

respectively. The number before those suffixes indicate the class of the object.
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Figure 29. The effect of filters on precision statistics
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Figure 30. The effect of filters on sensitivity statistics
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Figure 31. The effect of filters on precision-recall curves
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Threshold | 0,05/ 0,10| 0,15 0,20| 0,25| 0,30| 0,35| 0,40( 0,45| 0,50( 0,55/ 0,60| 0,65/ 0,70| 0,75| 0,80| 0,85| 0,90| 0,95
TP1 1289] 1275| 1266] 1250| 1244 1239| 1228 1224 1219 1208 1200 1187 1176 1164| 1153| 1139| 1116{ 1093 1038
FP1 370] 356| 344| 332| 321| 309 298| 288| 281| 269| 264| 260| 251| 242| 232| 226| 218| 204| 187
FN1 102| 116 125| 141] 147| 152| 163| 167| 172| 183 191| 204| 215 227| 238] 252| 275| 298| 353
Sensitivity | 93%| 92%| 91%]| 90%| 89%| 89%| 88%)| 88%| 88%| 87%)| 86%| 85%| 85%)| 84%| 83%| 82%| 80%| 79%| 75%
Precision | 78%| 78%| 79%| 79%| 79%| 80%| 80%| 81%| 81%| 82%| 82%| 82%| 82%| 83%| 83%| 83%| 84%| 84%| 85%
TP1f0 1289] 1275| 1266] 1250| 1244 1239 1228 1224 1219 1208 1200 1187 1176 1164 1153| 1139| 1116 1093 1038
FP1f0 798| 648 580 538 506| 476 457| 435| 420 398| 390| 381| 357| 342| 316| 303| 286| 260| 233
FN1f0 102| 116| 125| 141| 147] 152| 163] 167| 172| 183| 191] 204| 215 227| 238| 252| 275 298| 353
Sensitivity | 93%| 92%| 91%]| 90%| 89%| 89%| 88%)| 88%| 88%| 87%)| 86%| 85%| 85%)| 84%| 83%| 82%| 80%| 79%| 75%
Precision | 62%| 66%)| 69%| 70%| 71%| 72%| 73%| 74%| 74%| 75%| 75%| 76%| 77%)| 77%| 78%| 79%| 80%| 81%| 82%
TP1f1 1289] 1275| 1266| 1250| 1244 1239| 1228 1224 1219 1208 1200 1187 1176 1164 1153| 1139| 1116 1093 1038
FP1f1 475| 425| 394 375| 354| 339| 326| 312| 304| 291| 284| 280| 266| 256| 242| 236| 228| 211| 191
FN1f1 102| 116| 125| 141| 147] 152| 163] 167| 172| 183| 191] 204| 215 227| 238| 252| 275 298| 353
Sensitivity | 93%| 92%| 91%| 90%| 89%| 89%| 88%| 88%| 88%| 87%)| 86%| 85%| 85%| 84%| 83%| 82%| 80%| 79%| 75%
Precision | 73%| 75%| 76%| 77%| 78%| 79%| 79%| 80%| 80%]| 81%| 81%| 81%| 82%| 82%| 83%| 83%| 83%| 84%| 84%
TP12 1289 1275( 1266| 1250 1244| 1239] 1228 1224| 1219] 1208 1200| 1187| 1176 1164| 1153| 1139| 1116] 1093 1038
FP1f2 375 361| 349| 337| 326 314| 303| 293| 286 274 269| 264 255| 246| 236| 230| 221| 207 189
FN1f2 102| 116| 125| 141| 147] 152| 163] 167| 172| 183| 191] 204| 215 227| 238| 252| 275 298| 353
Sensitivity | 93%| 92%| 91%| 90%| 89%| 89%| 88%| 88%| 88%| 87%)| 86%| 85%| 85%| 84%| 83%| 82%| 80%| 79%| 75%
Precision | 77%| 78%| 78%| 79%| 79%| 80%| 80%| 81%| 81%| 82%| 82%| 82%| 82%| 83%| 83%| 83%| 83%| 84%| 85%
Figure 32. TP, FP, FN statistics by filters for continuing lane sign detection
Threshold | 0,05/ 0,10/ 0,15 0,20/ 0,25| 0,30| 0,35| 0,40/ 0,45| 0,50| 0,55| 0,60| 0,65| 0,70| 0,75| 0,80| 0,85| 0,90 0,95
TP2 1333|1313] 1298| 1274 1261| 1248| 1236 1225| 1213] 1205 1195| 1186| 1171{ 1160| 1149 1130| 1111|1076/ 1003
FP2 66| 62| 57| 54/ 51| 53| 50| 50| 47| 48| 48| 49| 52| 50| 43| 39| 36| 35 35
FN2 629 649| 664 688 701| 714| 726 737| 749| 757| 767| 776 791| 802| 813| 832| 851| 886| 959
Sensitivity | 68%| 67%| 66%| 65%| 64%| 64%| 63%| 62%| 62%| 61%| 61%| 60%| 60%| 59%| 59%| 58%]| 57%| 55%| 51%
Precision | 95%| 95%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 97%| 97%| 97%| 97%
TP2f0 1354| 1333] 1318] 1291 1277| 1263| 1250 1239| 1226| 1218 1206| 1196] 1181{ 1170|1159 1140 1121{ 1086/ 1012
FP2f0 109| 93| 83| 75| 71| 72| 70| 68| 65| 65| 65/ 64| 68 65 56/ 50| 45/ 43| 41
FN2f0 608 629 644 671| 685| 699 712| 723 736 744] 756 766| 781| 792| 803| 822| 841| 876| 950
Sensitivity | 69%| 68%| 67%| 66%| 65%| 64%| 64%)| 63%| 62%| 62%)| 61%| 61%| 60%| 60%| 59%| 58%| 57%| 55%| 52%
Precision | 93%| 93%)| 94%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 95%| 96%| 96%| 96%| 96%
TP2f1 1354| 1333] 1318] 1291 1277| 1263| 1250 1239| 1226| 1218 1206| 1196] 1181{ 1170|1159 1140 1121{ 1086 1012
FP2f1 97| 83| 74| 67| 63| 64| 61| 59| 55| 56| 56| 56| 60| 58] 50| 45| 41| 38 37
FN2f1 608 629| 644 671| 685| 699 712| 723 736 744] 756 766| 781| 792| 803| 822| 841| 876| 950
Sensitivity | 69%| 68%| 67%| 66%| 65%| 64%| 64%)| 63%| 62%| 62%)| 61%| 61%| 60%| 60%| 59%| 58%| 57%| 55%| 52%
Precision | 93%| 94%)| 95%| 95%| 95%| 95%| 95%| 95%| 96%| 96%| 96%| 96%| 95%| 95%| 96%| 96%| 96%| 97%| 96%
TP2f2 1333] 1313] 1298| 1274| 1261 1248 1236 1225 1213| 1205 1195 1186 1171|1160 1149| 1130| 1111|1076 1003
FP2f2 66| 62| 57| 54/ 51| 53| 50| 50| 47| 48| 48| 49| 52| 50| 43| 39| 36| 35 35
FN2f2 629 649| 664 688 701| 714 726 737| 749] 757 767| 776 791| 802| 813| 832| 851| 886| 959
Sensitivity | 68%| 67%| 66%| 65%| 64%| 64%| 63%)| 62%| 62%| 61%)| 61%| 60%| 60%| 59%| 59%| 58%| 57%| 55%| 51%
Precision | 95%| 95%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 96%| 97%| 97%| 97%| 97%

Figure 33. TP, FP, FN statistics by filters for exit lane sign detection
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5.5.4 . A note on “other” categories

Although this work concentrated on motorway overhead directional signs, there
are still motorway signs that are not overhead or directional, as well as overhead signs
that are not directional or not specifically for motorways. Such signs are considered as
“other” categories because an extension of this work might later include such categories.

In addition, color-based methods do not distinguish the signs by their content and
the motorway signs that are not directional of overhead can also be detected without
classification. So, in this work, other motorway signs (not overhead and/or not
directional) are ignored and assigned to an “other” category to avoid confusion in the
resulting statistics. In fact, in the final stage, only scene frames with motorway overhead

directional signs were selected to avoid any confusion.

5.5.5 . The case with negative samples

The case with negative samples in object detection, localization, and multiple
object detection is slightly different from general data classifications. As previously
explained, the location and size of a detection bounding box is important as a misplaced
and/or mis sized bounding box can turn a single true positive detection into a false positive
and a false negative detection together.

Another issue is with the true negative statistics. A “true negative” case in the
setting of this work is a traffic scene frame that does not contain any positive samples.
However, in truth, localization of multiple objects in a single frame means that the
detector is already going through multiple “true negative” regions of a single frame to
detect and localize the “true positive” region in a frame with a positive sample.

Furthermore, when going through a dashboard video, a very large ratio of the
frames would not contain the determined positive sample signs. Thus, a video would
consist mainly of negative sample frames. This would result in negative samples
dominating the analysis of the detectors which would not be very informative.

As a result, most of the analysis is done with frames containing positive samples.
Since this is also leaves a part of the analysis out, a separate study is made using only

negative samples, i.e. scenes containing no positive objects.
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For this a separate set of frames with no positive samples are formed. 622 frames
are selected from the motorway from different locations, containing different scenery e.g.
trees, greenery, buildings, mountains, cars / no cars, trucks, side rails / no side rails,
overpasses, etc.

Although the detector could produce some false positives in those negative sample
set, all these false positives could easily be filtered with a post-detection filter using size,
location, and color content information. However, this was done as part of a comparison
with the color-based method so the detailed results will be presented in the following

section.

5.5.6 . The effect of the selected IoU threshold

Intersection over Union (IoU) ratio has turned to be a standard in determining the
correctness of localization of objects. However, as will be explained in the coming
section, localization problems lead to misleading true positive, false positive and false
negative statistics. The effect of this can be observed on the change in these statistics
when using the same detection methods but with different IoU thresholds for marking
localizations correct or otherwise.

As can be seen in the next figure, the detectors work fine and do not report many
false positives, partly thanks to filters. This means that they do not misdetect non-existent
objects. However, their localization can be problematic, causing the detections to be
reported as false positives and false negatives as the IoU measure can fall below the
selected criteria.

This case is confirmed in Figure 34. When the IoU ratio criterion is low (0.3 and
below), the precision statistics approach to 100%. They also approach to zero when the
criterion is very high, i.e. 90%, but this is a common issue.

It can be seen from Figure 34 that sensitivity statistics also tend to remain rather
stable for loU ratios of 40% and below.

The generally used IoU ratio of 0.5 is slightly above the two ratios of 0.3 and 0.4

mentioned above.
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5.6 A comparison with hard-coded color-based methods

“Vision-based road sign detection” paper [4] was the starting point of the hard-
coded color-based methods used for comparison. An overview of how these methods
were applied is briefly described in Chapter 2 of this work. In this section, a comparison

is made with such a method.

5.6.1 . A qualitative comparison

This use of CNNs start on the same level of input with color-based hard-coded
methods, having no initial data set for training, but they produce better results in general.
This is mainly because the color-based methods do not seem to be robust to minor changes
in the environment. Although the color-based method uses the Hue values to be more
robust, lighting conditions still affect them.

The unbeatable advantage of the Faster R-CNN architecture over color-based
methods is that it provides detection, classification, and localization, all in one go. Color-
based methods locate possible regions that might contain the object classes, but they
cannot produce the level of classification CNNs can offer.

Another interesting point is the false positives rates. Color-based methods initially
find many possible regions for the signs to be present. Many parts of a rural motorway
scene can include regions that can pass the color-based filtering, such as a clear dark blue
sky, greenery on the side of the road, a patch of blue sea in the distance, etc. That means
many false positives in the initial sweep. While these possible regions can be further
processed to eliminate the false positives, this process requires extra work and does not
always produce satisfactory results. In addition, there is always the chance of an unrelated
object having the same color mix as the overhead signs to make it past the filters as a false
positive.

There is also the complication of different colored boxes within the motorway
directional signs. Not only do blue and brown backgrounds cause a degree of separation,
white backgrounds cause even more problems as white is not a color that can be selected
on the 360-degree hue range. Sometimes such different colored boxes, the white text, and
the white arrow signs might cause a color-based system to treat a single sign as two signs

separated by those colored parts.
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In comparison, CNN techniques tend to pick their proposed detection boxes by
relying more on the texture content. This helps the detector to distinguish better among
the texture contents of the regions rather than color similarities and possible color
variations. However, CNNs can misdetect regions with different texture such as the back
windows of cars, flat and dull colored vehicle bodies, rails on the side, etc. Luckily, these
regions can easily be filtered by their location in the image and by their color content.

In addition, there is the situation of rating the likelihood of a match. CNN
techniques provide naturally a likelihood rating of a match. Color-based methods
concentrate on producing possible regions for an object, but they do not inherently have
a rating system for likelihood of a match.

The problematic part with the Faster R-CNN methods is the hyperparameters to
be selected at the time of training. Anchor boxes is one of those hyperparameters that is
very hard to judge. Normally, when real-world data is used for training, anchor box
hyperparameters can be evaluated from what is available in the training data, usually
through a k-means clustering algorithm. But without real-world data, as in our case, one
has to make estimations for the anchor box values.

This is an advantage for color-based methods. When the color of the signs are
within the expected range and the foreground is distinctively different, color-based
algorithms can clearly determine the boundaries of the regions of interest (ROI)s. The
Faster R-CNN method, however, may have to depend on the anchor box hyperparameters
defined and may not determine the boundaries as closely as expected.

But overall, color-based systems can be useful in producing possible regions or
filters for detection but for the more important part of classification and assigning
probabilities, they need to switch to other methods and algorithms, of which CNNs are
likely to be preferred. So, it is also intuitive to start with CNNs in the first place and
complete the whole process in one sweep of a single method.

The best method might be to use the best of both worlds by combining the two
methods. The color-based methods can support the CNN methods for performance
improvements. While earlier works in literature would start with a color-based filtering
and then move on to other classification methods, including CNNs, the reverse might be
productive as well. The CNNs work very good in detecting, classifying and localization
but the errors they make seem to be simple ones that can be detected by color-based

methods. So, while CNNs perform better on their own than methods that start with color-
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based operations, CNNs can still benefit from a simple color-based filtering action after

the CNN-based detection is performed.

5.6.2 Comparison through external examples

In the figure on the next page, you can find some examples scenes from the
Internet processed by a color-based code (on the left) and the Faster R-CNN trained by
synthetic data (on the right). The images are selected from the Internet to provide a
variation in size, contrast, and color in order to how the two methods generalize to
samples from different sources.

In the first two examples, it can be seen that the color-based method can have
problems in separating two signs side by side. This is a common case. The color-based
method seeks regions containing the desired color-content and selects the connected
components in such regions. If two signs are very close or have a background containing
the desired color, the regions of the two signs get merged.

In the third example, it can be seen that when a sign has too much of different
colored backgrounds, it may be treated as a different object due to filtering.

The fourth example is also interesting because color-based method misses obvious
signs; the initial color-scanning might have included the sky on the background and the
large selection might have been rejected by color-rate, size, or location filters.

The Faster R-CNN does a good job in detecting the two separate signs, as well as
another sign further away. However, it does not classify them successfully and the
bounding box areas are not very accurate as we would expect. Such accuracy problems
with the bounding boxes cause other problems with the performance statistics as we will
see in the following sections.

The worst part of the results of the color-based methods is that they tend to vary
drastically with lighting conditions and color distribution in the images. Since the coding
is done manually (assuming that we do not have any training set to start with), any

variation in the test set (direction of light, cloudiness, shadows, etc.) causes problems.
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Figure 36. Color-based and R-CNN applied to images from Internet
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5.6.3 Comparison through negative samples

As explained in the previous section, a separate data set of negative samples was
formed by selecting 622 frames on different locations of the motorway containing
different scenery and other objects.

Both the color-based detector and various variations of the Faster R-CNN
detectors were very successful with the negative samples, provided that the outputs are

passed through various filters.

Table 5. Comparison of false positives on a negative sample set

Method Color-Based | Faster R-CNN
Initial FPs NA 73
After location filter Included 16
After color filter Included 0
Final FPs 6 0

The color-based method seems to perform good. However, it must be stated that
this is not the case in general. There are usually objects or background regions that can
easily interfere with the color-based selection scheme. For example, if we were to detect
regular highway overhead signs, their blue background would usually mix up with the
blue sky in the background depending on the weather and lighting conditions. Similarly,
the greenery on the side of the road gets selected very often by the color-based algorithms.
Therefore, such algorithms should contain location, size, aspect ratio filters inside them;
otherwise, the number of false positives would really be very high.

The two false positive frames in the following figures show that there are
situations that the color-based method cannot escape from.

A high vehicle, such as a truck, with a color content similar to the target objects
can easily be detected by the color-based methods. In this case, the location of the region
in the image, size and aspect ratio of the selection, as well as the color content were all

appropriate to make this selection get past the filters.
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Figure 37. A false positive example from the color-based method

Figure 38. A false positive example from the color-based method

Furthermore, such problems with the colored sides of high vehicles would be
augmented since the vehicles causing the problem are moving in the same direction with
the camera recording. While only two frames were selected from this scene to make up

the negative sample data set, the original video recording would have numerous frames
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until the vehicle is passed. Since the vehicle is moving in the same direction, there would
be even more frames than a stationery item in the scene would have.

Faster R-CNN method trained by synthetic samples does not perform very good
on its own. There are many initial false positive outputs and a manual check reveals that
they are selections that really do not resemble the target objects. This turns out to be a
strength because then it is very easy to filter them based on their location, size, aspect
ratio, and color content.

The table in the previous page might seem to suggest that false positives are better
filtered through location/size filters but that is only because those filters are used as the

first filtering stage as it is a much faster process compared to color content filtering.

5.6.4 Comparison through positive samples

Another comparison is made using the positive samples data set used in the
previous section. Here, there are 2075 image frames, containing 3051 positive samples
obtained from 54 unique instances of signs.

As the color-based method does not distinguish between sign types, the two-class
output of the CNN detector was also combined into a single class. The comparison table

is presented below with regular IoU of 0.5 and a test [oU of 0.3.

Table 6. Comparison of performance on positive sample set

Method C-B| C-BloU3 CNN | CNN loU3
TP 1987 2245 2451 2550
FP 329 43 290 9
FN 1064 806 600 501
Sensitivity 65% 74% 80% 84%
Precision 86% 98% 89% 100%

The numbers in this table show that the CNN detector performs better than the
color-based method. But as explained before, these numbers do not reflect the exact

detection performance due to the way bounding boxes are formed. Although both
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methods seem to exhibit many false positives, the actual outputs do not contain any output
that is not associated with any signs. This is more evident from the drop in false positivies
when a lower IoU of 0.3 is used.

Color-based methods have the problem of the content of signs dispersing the
important colors and separating the detected regions. The images in the figure all show
that signs are detected by a color-based method but as the signs are far, the images are
small and the regions get separated by the content on the signs. This makes the statistics
look much worse than the performance of the algorithm. For example, for the sign on the
right, the white background and the arrow sign divides the color regions. The color-based
method outputs two regions, which are actually part of a positive sample, but this output
only results in two false positives (small portions of a sign) and one false negative (the

majority of the sign region not detected).

Figure 39. Problem of separated regions with color-based methods

Figure 40. Problem of missized bounding boxes with CNN methods
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R-CNN methods experience a similar problem due to the anchor box
hyperparameters and errors in sizing and localization. The two detection boxes above
correctly detect the signs, but the bounding box sizes were not determined correctly. In
both cases, although the detections were correct (true positive), the [oU (Intersection over
Union) criteria results in one false negative (IoU below threshold) and one false positive.

Other similar problems occur for both methods when the bounding boxes are not
set up correctly and contain the combination or parts of two signs as can be seen in the
figure below. Such problems not only increase the false positive figures, but also the false

negative ones.

color-based color-based color-based

Aydin
Ankara
5 Istanbul
Bl o W

Figure 41. Bounding box problems with both methods

5.6.5 Speed comparison

A speed comparison of the Faster R-CNN method and the color-based method is
done on the positive and negative sets. These two sets are used separately to see if the
existence of target objects may differ the processing time.

In addition to the two methods, optional pre-processing and post-detection filters

are also timed to see if their positive effects are worth their toll on the time.
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The tests are done in the MATLAB interpreter environment without any special
configurations such as compiled codes or functions; therefore, the times do not indicate
the real speed that could be reached with a compiled language. No special measure is
taken to utilize the GPU; however, MATLAB does seem to utilize it on its own. Thus,
the results here are only for comparison and should not be taken as the expected speed
with specialized software and hardware setups. Timings are measured on a single call of
the methods for each frame (rather than repeating several calls and averaging) since this
would be the regular way they would be run.

The results of the timing test on the positive set is presented in the following table.
As can be seen, The Faster R-CNN method takes 63% more time on its own. The optional
pre-processing filter takes a noticeable time so its usefulness can be reviewed. The
optional location filter takes an insignificant time as its work is done only on the location
parameters of the bounding boxes which is why this filter is applied before the color-

content filter. The optional color filter takes a very small amount of time.

Table 7. Speed measurements on the positive set

Method Cumulative time | Counts of pass | Average time

Color-based 1029,71 sec. 2075 0,49624 sec.
Faster R-CNN 1683,12 sec. 2075 0,81114 sec.
Opt. pre-processing 124,01 sec. 2075 0,05976 sec.
Opt. location filter 0,17 sec. 1857 0,00009 sec.
Opt. color filter 22,88 sec. 1847 0,01239 sec.

The results of the timing test on the negative set is presented in the following table.
The results seem to be similar for both sets. Post-filters seem to differ in terms of ratio,
but since their times are already low, it may be due to measurement errors and they do
not contribute a significant change on the overall figures anyway. In addition, there seems
to be a drop in the Faster R-CNN timing, but without going into the statistical significance
of this drop, we can conclude that it is still significantly slower than the color-based

method.
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Table 8. Speed measurements on the positive set

Method Cumulative time | Counts of pass | Average time

Color-based 312,90 sec. 622 0,50306 sec.
Faster R-CNN 474,79 sec. 622 0,76333 sec.
Opt. pre-processing 37,42 sec. 622 0,06016 sec.
Opt. location filter 0,01 sec. 70 0,00012 sec.
Opt. color filter 0,12 sec. 15 0,00821 sec.

As mentioned above, these are timings from MATLAB’s interpreter and using a
compiled version would naturally run faster. But for real-time purposes, we would still
need a faster CNN architecture such as YOLO or SSD to work with the common 30

frames per second standard.

5.7 A hybrid approach

When conditions are favorable, color-based approach can determine a more
accurate bounding box. CNN approach, on the other hand, can determine bounding boxes
that are just acceptable for an acceptable level of Intersection over Union. However, as
explained on the section on comparison through positive examples, problems with the
bounding boxes may adversely affect true positive, false positive, and false negative
statistics. A hybrid approach can improve this situation.

Color-based methods already need to use a hybrid approach for classification.
Those methods have to make a trade-off between filtering negative regions and not
missing positive regions, but after they determine the regions that are likely to contain the
target objects, a second run with another method is still needed to confirm or classify the
objects.

CNN methods, in theory, do all this by themselves: find the object, determine its
region, and classify. Some of the problems caused by bad localization can be partially
fixed by adding a color-based localization improvement after the output of the CNN. This
part can also be a more relaxed selector as at that stage, we would already have an object
and its bounding boxes and all we need is small improvements in the boundaries. At that

stage, neither mistakenly detecting a false positive, nor the possibility of eliminating a
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true positive are problems. However, there is still the possibility of messing a correct
bounding box due to parameters used in the color-based approach.

The best place to add the color-based localization would be after the location filter
and before the color-content filter. The location filter runs very fast and eliminates most
of the unwanted output from the CNN. It would eliminate most of the unnecessary
detections before applying the color-based localization corrections. On the other hand,
color-content filter uses the whole bounding box to test its color content. Having a larger
than necessary bounding box would include background parts of the box as noise and
adversely affect the results of this filter. As a result, the workflow of the hybrid approach
would be as shown in Figure 42.

The examples in Figure 43 show some instances where the localizations of the
CNNs (on the left) would normally increase both the false positive and false negative
statistics by one, due to bad localization and an loU below a 0.5 threshold. A color-based
bounding box correction step, as a hybrid approach, would improve the localization (on
the right) and change those statistics into a true positive.

If we go over the procedure for the first example, the detection on the left correctly
identifies a sign but draws a bounding box that is too wide. Here, the loU ratio goes below
0.5 and therefore, this is not marked as a true positive. Even worse, since there is a
detection that is not classified as a true positive, it is considered as a false positive.
Furthermore, since the detection was not classified as a true positive, the sign is
considered undetected and, as a result, a false negative.

However, since color-based approach does not work perfectly in all conditions,
this final improvement stage can also worsen the results in certain situations or with some
bad parameter matchings as in the example in Figure 44.

The results of running the hybrid approach over the positive sample set is
presented in the Table 9. The two columns indicate the results with the IoU ratios of 0.5

and 0.3 respectively.

Pre-processin Filter 1 Color-based Filter 2 Output
Image input pro 8 Faster R-CNN (location) localization (color-content) p
(optional) . . N (boxes & class)
(optional) improvement (optional)

Figure 42. Workflow for the hybrid approach
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Figure 43. Localizations (left) can be improved (right) by a hybrid approach

Figure 44. A hybrid approach can also worsen the situation rarely
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Table 9. Results of the hybrid approach performance on positive sample set

Method CNN | CNNIoU3 | CNN-h | CNN-hloU3
TP 2451 2550 2510 2550
FP 290 9 95 2
FN 600 501 541 501
Sensitivity 80% 84% 82% 84%
Precision 89% 100% 96% 100%

According to the test results, hybrid approach seems to improve the overall results.
As can be seen in Figure 45, filters are effective in decreasing the false positives, but a
hybrid approach takes this improvement even further. Filtering removes unrelated
matchings and decreases false positives; hybrid approach improves detection boundaries
to correct good detections (true positives) being registered as false positives due to
localization errors.

With false negatives, filters may work in the wrong direction. Filters can actually
increase false negatives if they remove good matchings. Hybrid approach, however,
works in the same with false negatives, by improving detection boundaries so that true
matchings do not get registered as false negatives due to localization errors. These
improvements show their effects on the sensitivity and precision statistics. And finally,

the improvements can naturally be observed in the precision-recall curves as well.
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Figure 45. Effect of hybrid approach on false positives
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Figure 46. Effect of hybrid approach on false negatives
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Figure 48. Effect of hybrid approach on precision



Precision-Recall curve (class 1) Precision-Recall curve (class 2)

0.95
0.9

0.85

-—

Precision

08 s

Precision
’
]

o

©

I

075 -....-,,,_."' S

0.94
0.7

........... Plain CNN
— = =CNN with filters
Hybrid with filiers

----------- Plain CNN
- = = CNN with filters.
Hybrid with fiters

0.65 0.93

0.92

0.75 08 0.85 05

Recall

09 0.55 0.6 0.65

Recall

07

Figure 49. Effect of hybrid approach on precision-recall curves

5.8 Adverse conditions

The main idea of this work revolved around the viability of using a synthetic
training set to detect and localize real objects in real-world scenes. The results were
naturally tested on regular and common real-world scenes and situations. However, there
can also be some adverse conditions, such as sun shining from ahead, cloudy and rainy
weather, and nighttime scenes. Color-based methods mostly fail in adverse conditions as
the color ranges are not robust to such changes even when the hue data is used. The CNN
methods are also not very robust in such situations, but they can still produce some
acceptable outputs. However, the post-detection filters were coded with regular
conditions in mind and usually filter the acceptable outputs in adverse conditions. Some
qualitative examples are presented below with post-detection filters disabled.

Dark weather is one of the worst adverse conditions because video camera
recordings from a moving vehicle get very blurry. When there is less blur and the signs
are illuminated, there is higher chance of detection.

However, as can be seen in Figure 51, when moving fast, night shots are usually
blurry and not very usable.

The study was done using synthesized training data on a regular day so failures
with adverse conditions are expected. Further work can be done to see if simulating
adverse conditions in the synthesized training data can improve the detection rates in such

conditions.
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Figure 50. A fine nighttime example

2017/10/03 23:04:53

Figure 51. A blurry night frame example

2017/09/26 18:58:49

Figure 52. A mildly dark example where the traffic has stopped
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2017/10/24 13:02:44

Figure 53. A cloudy weather example

2017/10/26 17:45:10

Figure 54. An example where the sun shines at the camera
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2007711 /28 13:13:57

Figure 55. An acceptable example of a rainy scene

2017/11/28 14:50:30

Figure 56. A rainy weather example not working well
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CHAPTER 6

POSSIBLE FUTURE EXTENSIONS

6.1 Faster CNN architectures for real-time detection

Current work is prototyped using the Faster R-CNN [10] architecture to show that
training a good performing DL network is possible by starting with no real data at all.
However, for the specific sample application of detecting motorway directional signs, an
architecture that can perform in real-time would be more useful. Current popular
examples of such systems are YOLO [47] and SSD [49] systems. Converting the current

architecture to such systems would be more impressive for the current application field.

6.2 Adding more sign classes

Current work is prototyped to show that training a good performing DL network
is possible by starting with no real data at all. This has been shown by using a very small
subset of road signs, specifically two categories of informative motorway directional
signs placed over the road, indicating where the lanes lead to. These signs were divided
into two groups for continuing lanes and the exit lane at the right. For the specific needs
of different applications, more subsets of specific signs can be included for the desired

sign types.

6.3 Incorporating more types of data augmentation transforms

Current work is prototyped to show that training a good performing DL network
is possible by starting with no real data at all. This has been done with a small set of data
augmentation transforms: scaling, gaussian noise, darkening, rotation, and shear. These
transforms were enough for the demonstration task at hand, detecting large signs over the
road. However, there can be at least two more data augmentation methods for improving

the possible performance for the road-side signs: obfuscation and lens distortion. In
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addition, other transformations, such as reflections, night-time view, weather conditions,

etc. can be considered to create a perfect system.

6.3.1 Obfuscation

The signs over the road usually have a clear direct sight of vision that can only be
blocked by higher-than-usual vehicles such as trucks, and usually only when the signs are
far. This blocking is usually close to full obfuscation and it is not worth including this
type of obfuscation in data augmentation transformations. However, road-side signs in
Turkey can usually be partially blocked by trees and bushes and still can be identified by
human drivers. It would make sense to include obfuscation as part of the data
augmentation transforms if the signs on the side of the road are to be added in the

detection and classification list.

6.3.2 Lens distortion

Similarly, lens distortion takes its full effect on view pixels further from the center
of the camera lens. For the common “landscape” view where image width is more than
the height, the signs on the far left and far right side of the view would suffer from the
non-linear camera lens distortion the most. Simulating such lens distortions can be
considered to be added in the data augmentation transforms, if higher performance
numbers are required. However, for practical purposes, this does not seem to be very
useful for two reasons. First, it is more important to detect and process a road sign earlier
in the process when it is still far away and, likely, not yet distorted as it is closer to the
center of the camera lens. Second, when it is close enough to be distorted radically, it is
already detected and processed anyway. In addition, at such viewpoints from a moving
vehicle, the signs are visible for only a small amount of time in their distorted form due
to the speed of the vehicle. In our example, since the objects move to the top of the
viewpoint as they get close and since the topside of a “landscape” image is still close
enough to the center of view for the camera lens, the distortion is not as much. The signs
are already detected from a distance and as they move closer to the top of the view, they

quickly move out of the field of view and disappear anyway.
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6.3.3 Reflections of light

Reflections from sunshine or vehicle headlights can rarely affect partially the
vision of road signs. These can be simulated in a similar way to obfuscation

transformations.

6.3.4 Night-time conditions

The training and testing were done for close-to-ideal lighting conditions. For
detecting the signs in night-time conditions, both the background images and the data
augmentation sets will have to be modified for night-time conditions, if this is a necessity

for the required application.

6.3.5 Adverse weather conditions

Similarly, other augmentation transforms can be considered for data augmentation
for adverse weather conditions. While it may be easier to simulate a “snowy weather” for
the augmentation transforms, other conditions such as “heavy rain” may, of course, drop
the performance of the detectors even if they could be trained with real data from such
conditions. On the other hand, it is worth noting that it is much easier to simulate such
conditions through data augmentation transformations than waiting for a day with heavy

snow or rainfall.

6.4 Fine-tuning with a limited set of real data

Although this work concentrated on showing that CNN models can be trained
with synthetic data, other work in the literature have also tried training a model with
synthetic data and fine-tuning it with real data later. It might be interesting to test how
adding a very limited set of real training data might affect the results of the model and

whether it would be worth including real data.
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CHAPTER 7

CONCLUSIONS

The frames were initially manually tested to observe any possible problems.
While these manual tests are not turned into numerical results, they provided valuable
insight both on how the model works and on locating possible problematic issues to be

fixed before a full experiment would be run.

7.1 The possibility of using entirely synthetic data

As can be seen from the literature and observed from the results, a CNN can be
trained using entirely synthetic data. In this work, “entirely” may not be fully correct as
real motorway images are used as the background. But, considering that no real objects
to be detected and classified were present in those images, we can say that the CNN was
trained for classification using entirely synthetic examples of the classes to be detected.

This method was especially practical for the application presented, detecting
highway signs, because although the signs had a degree of variance, they also had a degree
of structure; in addition, they were also easy to generate through code. More detailed
objects, such as 3D household objects, or more detailed environments, such as traffic
scenes where an OpenGL rendered 3D simulation was used for the entire traffic scenes,

would require much in part of producing the synthetic images.

7.2 The importance of synthetic data generation step

Although it might seem fairly straightforward to produce the synthetic data, it
does have intriguing details to be taken into consideration.

First of all, the real-world image background data should not contain any positive
instances of the objects to be detected; these objects would be synthetically generated and
added. This is rather obvious. What may not be so obvious at first is that we should also
include negative classification objects in the background as well. That is, if there are any

objects that we do not want to be detected and classified as targets, we need to include
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those in the background in the training set in order for our model to learn that they are
irrelevant objects in the background. The objects that look similar to our target objects
are especially important.

The range of variations in your training data may affect the range of parameters
your model can detect. An initial trial with a training set of limited “lightness” of colors
would produce a model that may fail with scenes with very good lighting. Although this
was a trivial problem that can easily be solved by preprocessing the image frames by
automatically making them darker if needed, it would still be a good idea to plan ahead

and keep a wider range of variations for the synthetic data generation.

7.3 Thresholds, false positives, and misclassifications

Thresholds, false negatives, and misclassification rates would naturally vary from
domain to domain. In this selected application of detection of motorway signs, false
positives are very rare with the CNN classifiers, thanks to post-filters. The regions a CNN
classifier might trigger a false positive in a motorway scene can be easily filtered by
location, size, aspect ratio, and color content. As a result, setting lower thresholds for
detection is possible. However, this would also depend on the background images used.
When there is an object that the network did not previously see in the training data (a
billboard, a specially shaped tree, a special vehicle, a truck with writing on the side, etc.),
the model can decide that it looks more similar to a sign than the limited backgrounds it
has seen so far.

Misclassifications, however, seem more likely since the two classes of signs look
very similar. A single sign can be classified for both classes. Overlapping classifications
can be compared to pick the right one. This is, of course, a post-processing action and a
feature of the application domain rather than a feature of the model. But it will improve

the performance of a model in this domain.
7.4 Comparison with color-based hard-coded algorithms
CNN methods are superior to color-based methods. For one thing, CNNs can

provide detection, classification, and localization, all in one pass. Color-based methods

can only present possible regions that may contain the object classes, but they cannot
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provide a satisfactory classification. The examples in literature that use color-based
detection methods, usually follow them up with other classification methods, of which
CNN s are one of the recommended alternatives.

Furthermore, color-based methods can produce too many false positives if the
target colors are likely to exist in many other areas in image frames. Although these false
positives can be filtered in the post-processing stage, the filtering is not perfect and it still
takes a toll on computing time. Similarly, since many different colors are used within
those signs in Turkey (blue, white, black, brown, orange), color-based filtering gets more
complicated and might often produce multiple separate areas for a single sign with many
colors and they will register as multiple false positives. However, both methods can also
benefit from each other. CNNs can use color-based methods to filter possible ROIs in
preprocessing or as a filter in postprocessing to weed out false positives.

CNNss also have the extra advantage of training for variations of color parameters
without having access to real data. Color-based methods depend on hard-coded rules;
they can only handle variations either through tedious work of hard-code or through some

parameter tuning with access to real-world data.

7.5 Final verdict

CNN methods have currently been widely accepted as the best way of detection,
classification, and localization in problems with images.

Their weak points in the past were the time it takes them to process, the extra time
required for localization, the large amount of data they may require, and the costly process
of manually annotating the data. Of these problems, localization and the processing time
are solved with recent techniques such as Faster R-CNN, YOLO, and SSD. The required
data and the cost of annotation can be solved with synthetic data.

This work presents a specific real-world application where the CNNs can be used
by synthetically producing both the training data and its annotations with a very
reasonable amount of work. The results are very promising show that the CNN methods

can generalize well from synthetic data to real-world tests.
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