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ABSTRACT

ALGEBRAIC METHODS AND EXACT SOLUTIONS OF QUANTUM
PARAMETRIC OSCILLATORS

In this thesis, we study different approaches for solving the Schrédinger equation
for quantum parametric oscillators. The Wei-Norman algebraic approach, the Lewis-
Riesenfeld invariant approach, the Malkin-Manko-Trifonov approach are investigated.
For each approach, the wave function solutions of the Schrodinger equation, the prop-
agator and dynamical invariants are found and their relations with each other are shown.

In the Wei-Norman Algebraic approach, for constructing wave functions, explicit
form of evolution operator is obtained uniquely in terms of two linearly independent clas-
sical solutions of the corresponding classical equation of motion. In Lewis-Riesenfeld
approach, quadratic invariants are found in terms of the solution of Ermakov-Pinney equa-
tion and using the eigenstates of these invariants, wave function solutions are constructed.
Setting initial values for Ermakov-Pinney solution, results of Wei-Norman and Lewis-
Riesenfeld approaches are compared, then this solution is expressed in terms of same
two linearly independent classical solutions. In Malkin-Manko-Trifonov approach, linear
invariants which are symmetry operators for the Schrédinger equation, are constructed
in terms of complex-valued solutions of the classical equation. Using these invariants,
quadratic invariants are constructed and their eigenstates are used to find wave function
solutions. Moreover, initial values for complex solutions of classical equation of motion

are posed, and comparison of the three approaches is given.
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OZET

KUANTUM PARAMETRIK OSILATORLER ICIN CEBIRSEL
YONTEMLER VE TAM COZUMLER

Bu tezde kuantum parametrik osilatorler i¢in Schrodinger denklemini ¢6zmek
amaciyla farklh yaklagimlar ¢alisilmistir. Wei-Norman cebri yaklagimi, Lewis-Riesenfeld
degismez yaklasimi, Malkin-Manko-Trifonov yaklasimi incelenmistir. Her yaklagim icin,
Schrodinger denkleminin dalga fonksiyonu ¢oziimleri, ilerletici (propagatdr) ve dinamik
degismezleri bulunmustur ve birbirleriyle iligkileri gosterilmistir.

Wei-Norman cebri yaklasiminda, dalga fonksiyonlar1 inga etmek i¢in evrim op-
eratoriiniin tam formu, buna karsilik gelen klasik hareket denkleminin klasik iki lineer
bagimsiz ¢oziimleri cinsinden tek olarak elde edilmistir. Lewis-Riesenfeld yaklasiminda,
ikinci dereceden degismezler, Ermakov-Pinney denkleminin ¢6ziimii cinsinden bulun-
mustur ve bu de8ismezlerin 6zdurumlar1 kullanilarak dalga fonksiyonu ¢6ziimleri inga
edilmistir. Ermakov Pinney ¢6ziimii i¢in baslangi¢ degerleri ayarlanarak, Wei-Norman ve
Lewis-Riesenfeld ¢oziimleri karsilagtirilmig, daha sonra bu ¢oziim ayni klasik iki lineer
bagimsiz c¢oziimler cinsinden ifade edilmistir. Malkin-Manko-Trifonov yaklasiminda,
Schrodinger denklemi icin simetri operatorleri olan lineer degismezler, klasik denklemin
karmagik degerli coziimleri cinsinden inga edilmistir. Bu degismezler kullanilarak, ikinci
dereceden degismezler insa edilmistir ve onlarin 6zdurumlar1 kullanilarak dalga fonksiy-
onu ¢oziimleri bulunmustur. Bundan bagka, klasik denklemin karmagik coziimleri i¢in

baslangic degerleri gosterilmistir ve ii¢ yaklagimin karsilastirilmasi verilmistir.

v
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CHAPTER 1

INTRODUCTION

Oscillations are happening in all around and inside of us world, from the beating
of the human hearts, to vibrating atoms. Mathematically, the system is oscillating or vi-
brating, if variables determining its state are changing not monotonically, but increasing
and decreasing alternately. In the simplest case of the mechanical system, the generalized
coordinates during oscillating process are increasing and decreasing, so that mechanical
points are moving forward and backward one after another. The simplest type of oscil-
lations are harmonic oscillations of pendulum, described by periodic circular functions.
The pendulum was invented in XVII century by Galileo Galilei and studied by Christiaan
Huygens. From XVIII century, with developing of mathematical analysis and analytical
mechanics, oscillating processes started to be studied on more strong mathematical basis,
applied to more big variety of oscillations by L. Euler, D’ Alembert and Lagrange. In XIX
centure K. Weierstrass solved exactly the nonlinear pendulum problem by elliptic func-
tions. More general character of oscillation theory was described in book "The Theory of
Sound" by John William Strutt (Lord Rayleigh).

With discovering quantum mechanics and the Schrodinger equation in XX cen-
tury, an exact solution of quantum harmonic oscillator becomes fundamental of quan-
tum many body theory, quantum field theory, quantum photonics, etc. It was first de-
rived in matrix mechanics by M. Born, P. Jordan, W. Heisenberg and in wave mechanics
by E. Schrodinger (Schrodinger, 1926). As was shown by Schrodinger, the Gaussian
wave packet as non-stationary solution of the Schrodinger equation is oscillating accord-
ing to classical harmonic oscillator equation. The pure algebraic way to solve quantum
harmonic oscillator by using algebraic properties of creation and annihilation operators
was proposed by P. Dirac in his PhD thesis in 1926. This approach together with the
Schrodinger factorization method (Schrodinger, 1940) becomes origin of algebraic meth-
ods for solving quantum mechanical problems. After book of Herman Weil "Quantum
mechanics and group theory" algebraic and group theoretical methods come to be impor-

tant tools in solving quantum problems.



Between different type of oscillation motions, the special role plays the so called
parametric oscillations, or oscillations with parametric excitation. In systems with para-
metric excitation, external action influences on the system by periodic time changes of
one or several parameters. For example, the pendulum with periodically changing length
(). Tt can leads to parametric resonance, which includes a wide class of phenomena,
from children swings to cosmology, electronics, quantum optics, Casimir forces, Bose
condensates, etc.

Mathematically, oscillations with parametric excitation are described by differ-
ential equations with explicit time dependent coefficients (which frequently are periodic
functions). For one degrees of freedom oscillator with time dependent mass m = m(t) and

frequency w = w(f) we have equation

#(1) + y(O) (1) + w*(0)x(f) = 0(x)

where y(t) = riu(t)/m(t). This general case can be reduced to the one with constant mass

dt

m» @ = mw (Perelomov and Zel’dovich,1998). How-

m = constant, by replacing ¢’ =
ever, frequently it is convenient for analysis of the problem’s solution to preserve origi-
nal variables. And quantization of equivalent classical systems, as is known, frequently
leads to different results, since different operators order in quantum Hamiltonian. Due
to explicit time dependence, quantization of parametric oscillator leads to non-stationary
problems in quantum mechanics. Such problems can be solved exactly very seldom.
It turns out that harmonic oscillator with time dependent frequency and mass is an im-
portant example of quantum problems which can be solved explicitly (Perelomov and
Zel’dovich,1998).

There are many works devoted to solution of this problem by different methods.
It is impossible to list all of them here, so we just mention several works as the above
book of Perelomov and Zeldovich, book of Malkin and Man’ko (Malkin, 1979) and
articles (Hartley and Ray,1982), (Dattoli et al., 1997), (Dantas et al., 1992). From these
approaches we like to emphasise the Wei-Norman (WN) algebraic method (Wei and
Norman, 1963), the Lewis-Riesenfeld (LR) invariant approach (Lewis and Riesenfeld,
1969), and the Malkin-Man’ko-Trifonov (MMT) method (Malkin, 1970). Common point

for all these methods is that solution of quantum problem reduces to solution of classical



parametric oscillator problem (*). In paper (Biiyiikasik et al., 2009) the method was
proposed to solve this problem for wide class of parametric functions, such that solution
is represented by special functions of mathematical physics from class of hypergeometric
functions. This way, the wide class of quantum parametric oscillators was solved.

The aim of this thesis is to provide explicit solutions of the IVP for the Schrodinger
equation and compare these results which are found by the WN, LR and MMT-methods.
The thesis is organized as follows:

In Chapter 2, we give definitions, propositions and properties of some basic con-
cepts which will be necessary for further studies.

In Chapter 3, we discuss the simple harmonic oscillator. Considering the stan-
dard time-independent Hamiltonian I:IO, we introduce time-independent as well as time-
dependent Schrodinger equation. For solving both equations, we write Hamiltonian in
terms of su(1, 1) Lie algebra generators and found the solutions in terms of Hamiltonian
eigenstates. Using these eigenstates, we find the evolution operator, wave function and
propagator. Later, we obtain dynamical invariants for simple harmonic oscillator and we
also find them in Heisenberg picture.

In Chapter 4, we consider the IVP for time-dependent Schrédinger equation with
the quadratic Hamiltonian with real-valued parameters. We construct evolution operator
and expresses it explicitly in terms of two linearly independent homogeneous solutions
of the corresponding classical equation of motion. Using explicit formula of evolution
operator, we find the wave function and propagator. Later, we introduce new notation for
constructing dynamical invariants.

In Chapter 5, we study the Lewis-Riesenfeld invariant approach, which is based on
finding quadratic invariant for the system described by the time-dependent Hamiltonian.
After finding the quadratic invariant in terms of o(¢), which is solution of the Ermakov-
Pinney equation, we obtain its eigenstates. Then, multiplying these states with phase
factor, we construct solution of the IVP for the Schrodinger equation. In addition, the
propagator is obtained by using eigenstates of quadratic invariant.

In Chapter 6, we find two linearly independent invariants with time-dependent
complex-valued parameters, which are symmetry operators for the Schrodinger equation.
By using these invariants, we construct quadratic and Hermitian invariants. After that

we find the eigenstates of quadratic invariants, which we use to obtain wave function



and propagator. Furthermore, we give initial values for complex solutions of classical
equation of motion and compare the results obtained by three different approaches.
In Conclusion, we summarize our main results. Details of some calculations, and

required definitions are given in Appendix.



CHAPTER 2

PRELIMINARIES

2.1. Time-dependent Schrodinger Equation and the Evolution
Operator

The evolution of a quantum system is described by the time-dependent Schrédinger

equation

0¥(q,1)
ot

ih = HY¥(q,0), 2.1)

where H is a linear Hermitian operator acting in a complex Hilbert space L?(R), called the
Hamiltonian or energy operator, and function W(qg, t) characterizes the state of the system
at time ¢ and position g. When an initial state of the quantum system at time ¢ = 7, is given

as

Y(g,10) = Yol(q), (2.2)

then solution of the initial value problem (IVP) (2.1), (2.2) can be found using the evolu-

tion operator U (1, 1), that is

W(g,1) = U(t,10)¥(g 10)- (2.3)



Substituting wave function (2.3) into IVP (2.1), (2.2) one obtains that the evolution oper-

ator must satisfy the operator [VP

Il
an
S

0
ih& U, 1) (1, 19), 2.4)

(2.5)

|
—
-

U (1o, 10)
which is usually accepted as definition of the evolution operator. It follows that
Y(q.12) = U(tr, 1)¥(q, 1)) = U(ta, 1)U (11, 10)¥(q. o) = U(t2, 10)¥(g. 1o)
showing that evolution operator satisfies the composition or group property
Ut t)=0tt)0@t,0), Hh<t <t

Now, depending on the Hamiltonian of the system, the following two cases may arise.

Case 1:
Suppose that the quantum system is conservative, so that Hamiltonian is explicitly time-
independent. Let us denote this Hamiltonian by H,. In this case, the evolution operator is

of the form
~ —1 ~
0t 10) = exp | 7t~ 1) | 2.6)

and using it, derivative of operator U(t, t,) with respect to time ¢ can be defined exactly
like the derivative of ordinary function. One can verify directly that the operator (2.6)

satisfies IVP (2.4),(2.5). Since Hamiltonian A, is Hermitian, then

U'(t, 1) = exp[%(t —t0)Ho] = U™'(t, to),



U'(t,t0)0(t, t0) = U(t, 1)U (1, 15) = 1,

which shows that U(z, 1) is a unitary operator.

Case 2:
Suppose that Hamiltonian depends explicitly on time, and denote it by H(z). In this case
formal integration can be done, but since one should care about time ordering, usually the

evolution operator is written as

U(t,to):Texp[%i f H(t’)dt’], 2.7)

where 7 denotes time-ordering operator.

In the present work, to find the evolution operator we shall use its definition given
by (2.4), (2.5) which holds also in the case when Hamiltonian depends on time explicitly.
Next proposition shows that the evolution operator is unitary even when Hamiltonian

depends on time.

Proposition 2.1 The evolution operator of a quantum system with explicitly

time-dependent Hermitian Hamiltonian is unitary.

Proof By using equation (2.4) we can write the Hermitian conjugate equation:

—ih(%UT (t,10) = U (1, 10)H' (1). (2.8)

Multiplying (2.4) from the left by the U, and (2.8) from the right by the U, then subtract-

ing one from an other we have

.00 o0 . A e
ih(UT 5 + 7U) =(UHOU -U'A'(1)0). (2.9)

Since Hamiltonian is Hermitian, the right hand side of (2.9) is zero, so that

ih(UTa—U + aif]) = ihi(fﬁf]) =0, (2.10)



showing that the operator U'(1,10)U(t, ty) does not depend on time. Since Ulto, to) = 1,
this product is identity operator at t = t, and it follows that Ut(t,10)U(t, 1) = 1 at any

time. o

2.2. Symmetries and dynamical invariants of Schrodinger Equation

In this section we discuss the concept of symmetry, integrals of the motion for
quantum systems, and their relations. The symmetry of a physical system is a broad
concept both in physics and mathematics, and sometimes different meanings are assigned
to it in different contexts. In this thesis we adopt the definitions given in the work of V.I.
Man’ko, (Man’ko, 1987). These definitions and some of their elementary properties will
be formulated mostly in a way suitable for the present study of the Schrddinger equation

(2.1), and the associated Schrodinger operator
A L0 4
S = lha_t — H(1). (2.11)

Symmetry of Physical Systems

Definition 2.1 The dynamical symmetry of a quantum system is a collection of opera-
tors which form a Lie algebra and take a solution of the Schrodinger equation to other

solutions of the same equation (Man’ko, 1987).

According to this, the collection of symmetry operators generates the dynamical symme-

try group.

Proposition 2.2 An operator K(t) is a dynamical symmetry operator for SE (2.1) if it

satisfies
[S(), KO]¥ = 0, (2.12)

for any ¥ being arbitrary solution of the SE.



Proof  Assume [S(¢), K()]¥ = 0, that is
[S@t), KO = S(K®)Y - K(1)S (1)P = 0.
Since S (1)¥ = 0, the above equation becomes
[S (1. K1Y = § (1) (R(1)¥) = 0,

which shows that K(7) is a symmetry operator for the Schrodinger equation. O

Note that an operator K() is a symmetry for SE (2.1) if it satisfies more strong

condition
[S(),K(n] =0, (2.13)

which means the commutator is identically zero.

Proposition 2.3 Let K(1) be a symmetry operator for SE (2.1) and function W, satisfies
SE, that is S (t)¥o = 0. Then,

a) K'(t) is a symmetry operator for each n = 1,2,3, ... and the functions defined
as ¥, = (K@))"¥, are solutions of the SE.

b) In general, for any analytic function f, the operator f(K(1)) is a symmetry and
the function ¥ = f (K1), is also solution of the SE.
Proof a) Using mathematical induction, we will show that S (t)(k”(t)TO) = 0. For the
case n = 1, it is clear that S‘(t)(f((t)‘l’o) = 0 since K(7) is a symmetry operator. Now
assume that $ (1) K"~'(1)'¥,) = 0. Then,

S‘(z)(k"(t)\yo) = S'(t)f((t)(f(”_l(t)‘l’o) = KR0S (t)(f("-l(t)‘yo) =0,

which shows that (IA(”(I)‘I’O) = ¥, for n=1,2,3,... are solutions of the Schrodinger equa-

tion.



b) Using part (a) and the fact that any analytic function has a power series expan-

sion, we have

SW(fRe)Py) = S(r)( > cnk"a)%) = cn( > S(t>1€"<r>%) =0.

n=1 n=1

Since we find § (t)( f (K (t))‘PO) = 0, this shows that it is also solution of the Schrédinger

equation. O

Quantum Dynamical Invariants ( Quantum Integrals of the Motion)

Definition 2.2 An operator 1) acting on a state |Y(t)) of the quantum system is called a
quantum dynamical invariant (quantum integral of the motion), if its expectation value at

this state does not change with time, that is
i{\lf(r)li(z)'\y(t)) - 0. (2.14)
dt

Proposition 2.4 1(¢) is a dynamical invariant for SE (2.1) if and only if

(ih% —[H®), i(r)]) ¥ =0, (2.15)

for any Y being arbitrary solution of the SE.

Proof Taking the derivative of the equation (2.14), we have

D oy - 2y 0D 4 cariion™
8—t<‘1’|1(t)|‘1’> = Y (DY) + (| o ) + (P ()] % ),

1 A . ol A
= (=HOY|()|¥) + (‘l’l—(t)l‘l’) + (Pl(t)|=H()YV),
ih ot ih

ol 1 . . ..
= (‘I’Ia—(t)l‘ﬂ + —(PUDOH (1) — HOI(1)|'Y),
t ih

ol 1 . . R ) () NS
<7 + %[l(l‘),H([)]>T = E<lh7 — [H(l‘),[(t)]>\y

d .
)

If f(t) is a dynamical invariant, its expectation value does not change with time, i.e.,

10



%<‘I’(r)‘f(t)“¥(t)> = 0, so we have (2.15). Conversely if (2.15) is valid, it is clear to see
d{I(t))y/dt = 0 which yields that I(t)is a dynamical invariant for SE (2.1). O

We note that, an operator 1(7) is a dynamical invariant for SE (2.1) if it satisfies

h% —[H®),1(0] = (2.16)

and this condition (2.16) is stronger than condition (2.15).
If a system has different invariants, say /; and I, then arbitrary functions of
them, and in particular their commutators [1,, 1], and in general for n, m positive inte-

gers [I{, I)'], or anti-commutators {/,, [} are also invariants.

Proposition 2.5 Eigenvalues of Hermitian dynamical invariant I(t) are real and do not

depend on time.

Proof Let/ (Olen) = Anlen), where 4, is an eigenvalue of i (1), with corresponding eigen-

vectors |¢,). Consider the following equations:

<¢n|ﬁ(t)()0n> = <Q0n|i(t)¢n>a

(@nldnpn),

A @ulen)

(Appnlen)

/in<90n|90n> = /ln<Q0n|‘;0n>a

where (@,l¢,) = f_ 0:0 0 (@)em(q)dq. Since {¢,,¢,) # 0, we have (/l_n - /ln) = 0 which
shows that 4, is real. For showing that eigenvalues are time-independent, we will take

time-derivative of both sides of the [ (Dlpny = A,(D]p,) which gives

[
9 (t)| )+ 1@‘9'9"") = L(Dlgn) + A (r)a"’””>

(2.17)

Using equation (2.16) we get

d/l (l) |()0n

lpa) = (1) — Au(2))

/RSN A

11



and arranging the terms gives

d/l (t)

len) = (I(1) = 2 (r))( o). Vn. (2.19)
Taking the inner product with {¢,| gives
D) = ol - 2% + L)), n (2.20)
Since I(t) — A(?) 1s a self-adjoint, we can write
*= (0 - )22+ L ), (221)
which clearly implies A,(¢) = 0, so that 1,(¢) = 4, is a constant. O

Proposition 2.6 Let S(r) = it(d]01) — H(7) be the Schrodinger operator (2.11). Then,

S, K0H]1=0 o haa—() —[H®),K@®)] = (2.22)

Proof Consider the commutation of S (r) and K(?), i.e.,
N N A B Aoa L0 A o0 A
[S@), K] = SOK@® - K®OS(@) = (’hE - Hn)K@®) - K (t)(lha — H(1)).

Applying this equality to arbitrary function f, we have

b0 A N0 A
(zha - H0)K®)f - K(t)(zha - H(®)f,

= ihf((t)a—f hﬂ f- zhf((t)%+[f((t),H(t)]f,

0
- (ha—() ~[HO). K(t)])f

(S K@) - K0S (t))f

12



which implies

oK (1)

[K(0),S (0] = ih— = = [H(), k(r)]).

It follows that if K(¢) is a symmetry operator satisfying condition (2.13), then it is also
a dynamical invariant. Conversely, if K(7) is a dynamical invariant satisfying condition

(2.16), then it is a symmetry operator. O

Clearly, one can consider also the weaker form of above proposition, that’s

SO, KHO¥Y=0 o ih%‘{’ —[H@®), K@Y =0, (2.23)

where W satisfies the SE. It shows that, in the present context a symmetry operator is

equivalent to a dynamical invariant.

2.2.1. Quantum integrals of the motion and Evolution operator

formalism

We have seen that solution of the IVP for Schrodinger equation is completely
determined by the evolution operator U(t, 1), which carries the initial state Y(q, tp) into
the state (g, ) at later time ¢. Here, we will show the connection between the integral of

the motions and the evolution operator.

Proposition 2.7 a) Any operator I(t) of the form
Iy = U001, 10). (2.24)

is an integral of the motion.

b) Conversely, any integral of the motion I(t) always has the form (2.24).

13



Proof a) For the proof it is sufficient to show that the expectation value of I(¢) does not

depend on time. Indeed, using (2.24) and ‘Y(7) = U(t, 10)¥(,), we have the following

(PP (U1, 1)) U1, 10) (1) U (1, 1)U (2, 10)P (1))

Y ) U Olt) U~ UM (1)),

and since U is unitary, it follows that

POHDOI D) = (P 0) (1) ¥ (1)), (2.25)

which shows that the expectation value does not depend on time. According to the defini-
tion of an integral of motion, we can conclude that operator I(7) is an integral of motion.

b) Suppose that /(7) is an integral of the motion. Then, by definition we know that
the equality (2.25) is valid. Replacing state [\ (7)) by [¥(¢)) = U(t, 1)|¥(t)) in equation
(2.25), we get

F)U (1, 1)U, 10)¥(10)y = (Pt (10)¥(10))- (2.26)

From the equality (2.26) of matrix elements we get equality for the operators since it holds
for any vector |W¥(#y)). Therefore we have Ut(t,t)I()U(1, 1) = I(ty) or the equality we
desire I(¢) = U(t, t0)1(to) U~ (1, to). O

Proposition 2.8 The eigenvalues of integrals of the motion I(t) do not depend on time.

Proof : Let the operator /() be an integral of the motion, and assume it has eigenvectors

©a(¢) with corresponding eigenvalues A(¢), that is

Iea) = ADpa). (2.27)
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Then, at time ¢ = ¢, we have

[(to)palty) = Alto)pa(to)s (2.28)

Using I(ty) = U~ (1, t)I() U (1, 1), last equality implies

U (t,t0) (Ut to)pato) = Apalto),
IOU, to)ealty) = AU, to)palto),
D) = (D),

showing that the eigenvalues A of the operator 1(f) do not depend on time by construction.
Since the integral of the motion I(¢) and operator I(t) are connected by a unitary evolution
operator, they have the same spectrum and therefore there are no other eigenvalues of 1(7)

different from A. m]

Proposition 2.9 If [(r) is an integral of the motion, then I'(¢) for each n = 1,2,3, ... and
FU(D)) for any analytic function f are also integrals of the motion.

Proof : According to the previous proposition we have equality (2.24). Using this equal-

ity and Proposition 2.7, it follows

P = U0t U 0OU®It)U (1) = UDOP ) U™ (1) (2.29)

By induction one can easily show that any power of an integral of the motion is again an
integral of motion. Since any analytic function f can be represented as a power series,

then f (I(1)) is also an integral of the motion. O

Also the product of the distinct integrals of the motion with the same Hamiltonian is an
integral of the motion. It can be proved in the same way we did for the square of the

operator-integral of the motion.

Proposition 2.10 Integral of the motion takes a solution of the Schrodinger equation into

a solution of the same equation.
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Proof : Let W(r) = U, 1))¥(1) be solution of the Schrédinger equation. We want to
show that the new function defined as ¢(7) = I(1)¥(7) is also a solution of the SE. Indeed,

we have

¢(t) = [(OP(0) = [T, 19)¥(t0)
= U(t, 1) I(t)) U™ (1, 1) U(t, 15)¥(t0)

= U1, 1)1(1))¥ (1) = U, 10)(10),

where we define ¢(y) = I(ty)¥(1o). Thus, the new function is of the form
o) = U, 10)¢(ty), showing that ¢(¢) also becomes a solution of the Schrodinger equation.

O
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CHAPTER 3

SIMPLE HARMONIC OSCILLATOR

Consider the following Hamiltonian:

(3.1)

where p and § are momentum and position operators, respectively, m is the particle mass,

wop 1s the angular frequency and both of them are time independent. Introducing the

operators
4 = mwy | . ; |
B 2h d mwop ’
R mawy - 1
a = —_— i—pl,
N = a'a,
we have

1 1 .1
Hy, =hwad" - E) = hiwo(a'a + 5) = fiwo(N + E)’

By using above, we get following equalities:

A mwoh(,\f A) A h (Af A)
p=i a' —al, qg= a' +ajl.
2mawy

The operators a, aAT, and N satisfy the following commutation relations

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7
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Therefore we have spectrum generating algebra {1, 4", a, N}.

3.1. Eigenvalues and Eigenstates of the Hamiltonian A,

The eigenvalue problem for H also known as time-independent Schrodinger equa-

tion is

Hopu(q) = Enpn(q), (3.8)

where E, are eigenvalues of Hamiltonian operator Hy and ¢,(g) are the corresponding
eigenstates. Eigenvalues and eigenstates of A can be found by an algebraic approach

(Dirac, 1982) :

Consider the number operator N which is a Hermitian operator. Since it is a
Hermitian, its eigenvalues must be real. Let us denote eigenvalues of N by A, and corre-

sponding normalized eigenstates by |4,,), i.e.,

N = ). (3.9)

Firstly, we will show that eigenvalues of N are non-negative, that’s 4, > 0,

0 <[l = (Ala'ald,) = (NI) = 2(10) = 4, (3.10)

Next, we will see that a|n) is an eigenstate of N with eigenvalue A, — 1, a%|4,) is an

eigenstate of N with eigenvalue A, — 2 and so on.

Nala,y = a(N = DI,y = (4, = Dald,), (3.11)

Na2|A,)y = alv - Dald,) = (4, — 2)ald,). (3.12)
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Now we show that eigenvalues 4, must be integers and the only possible eigenstates are
[0),11),]2), .... Indeed, if 4, is not an integer, and we apply lowering operator consecu-
tively, eventually we would come to negative eigenvalues. But since we found that the
eigenvalues of N can not be negative, it is not allowed to obtain negative eigenvalues.
So lowest possible eigenstate is |0) with eigenvalue 0 and thus, 4, can take only integer

values, i.e., A, = n.

Since aln) is an eigenstate of N with eigenvalue n — 1, it must be proportional to

|n — 1), 1i.e., aln) = c,ln — 1) where ¢, is a constant.
n=nla‘aln) = e, (n - 1ln - 1) = |c, (3.13)

Thus we found ¢, = +/n. Using this result we have dln) = n|n — 1) and we see that a is
a lowering operator. If we consider operator &', we can find that a'|n) is an eigenstate of
N with eigenvalue n + 1, (a7)?|n) is an eigenstate of N with eigenvalue n + 2 and since it is

proportional to |n+1) we can find a'|n) = Vn + 1jn+1). Thus & will be a raising operator.

Since we can express Hamiltonian H, as given in equation (3.5), the eigenstates

of I-AIO are the eigenstates of N, and we have
N 1 1
Hyln) = hwo(N + E)ln) = hwo(n + E)ln). (3.14)

which shows that the eigenvalues of H, are E,, = hiwo(n + %) for n=0,1,2,3,...

Eigenstates in Coordinate Representation

Since correspoding eigenstates of E, are ¢,, {(qln) = ¢,(g) the equation (3.8) will be

. 1
Hopu(q) = hwo(n + E)‘Pn(q)- (3.15)

For finding the eigenstates in coordinate representation we shall use g = g and p = —ih%
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in Hamiltonian (3.1). So Hamiltonian becomes

2 2
N -h" d mwy

=+
T omag " 2 1

Then agy(q) = 0, that’s

h d
ago(q) = (J%q + \/m%)sﬂo(éﬂ = 0. (3.16)

Above equation is a first order differential equation. Solution of this equation is ¢y(q) =

2
—mwoq . .
Noe 2 . After normalization, we have

m(,()o 1/4 ﬂnwoqz
@o(q) = (ﬁ) e

Other eigenstates can be found by applying &' to the ground state ¢y(g). Therefore for

finding ¢,(q), one needs to apply n times &' to ¢y(q), that is

(@) = @ ()_(mw0)1/4 1 mwy hod ne—m?hoqz
A= P =T N 2 1T\ 2mag dg '

Let & = V(mwo)/Ag, then we obtain ¢, = N,e ¢ /28 12(& — d/dé)y'e <12, where ¢ /2(& —

d/ df)”e‘fz/ 2 = H,(¢) represents the n-th order Hermite polynomial and
N, is the normalization constant that can be found as N, = (2"n!)""2(mw,/nh)"*. As a

result, the normalized eigenstates of the I:IO are

—mw, q2
0u(q) = Ny 3" H( ?q) n=0,12,.. (3.17)

where corresponding eigenvalues are E, = Tiwg(n + 1/2). The system {¢,(¢q)}>", forms

an orthonormal basis for L>(R). Therefore any W(g) € L?*(R) has a unique representation.
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From [¥) = X7, [n) (n| |¥), we have

@) = > gy nl®), (3.18)
n=0
SWg) = D caele) =) nlP) i), (3.19)
n=0 n=0

where ¢, = (n|¥) = (nlg) (qI¥) = [ ¢i(q)¥(g)dg.
3.2. The time-dependent Schrodinger Equation

Consider the IVP for the time-dependent Schrodinger equation

0¥(q,1)
ot
lP(q’ tO)

in

Hy¥(q,1), —-00<g<o (3.20)

Fo(a), (3.21)

where Wy(¢g) € L*(R) and H, is given by equation (3.1).

3.2.1. Solution of the IVP for the Schrodinger Equation: Standart

approach

In this approach we use the evolution operator of the Schrodinger equation (3.20)

in the form

Oo(t, 1) = e 10" (3.22)
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and that the eigenstates {¢,(¢q)} -, of H, form an orthonormal basis for L2(R). Then, any

initial condition Wy(g) € L*(R) can be written as
Fo(g) = ) (nl¥0)en(@), (3.23)
n=0

and solution of the IVP for the Schrodinger equation can be found by applying evolution

operator (3.22) to ¥y(q),

W(g,1)

Dot 10)¥o(q) = e‘“"’“”%( Z<n|%>son<q>), (3.24)

n=0

D @l¥oe i g, (g), (3.25)
where we used also the spectral mapping theorem:

ﬁo‘pn = Enson = f(HO)SOn = f(En)‘pm (326)

for any analytic function f.

An equivalent procedure for solving the IVP (3.20),(3.21) is first to apply the

evolution operator (3.22) to ¢,(g) and find solutions of the Schrédinger equation (3.20) as

WV.(q,1)

Uo(t, to)pn(q) = exp [—%(t - to)En]%(q),

N, X exp [—%(r - 10E,

e
cuf )

for eachn = 0, 1,2, 3... Since the set {'¥,(¢,?)} ", is an orthonormal basis for the solution

xexp[

—maw oq

N, X exp[ iwy(t — ty)(n + )

xexp[
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space of the Schrodinger equation, then any other solution of (3.20) is of the form

(o)

W(g. 0= ) V(g 1). (3.28)

n=0

Here the coefficients ¢, are fixed by the given initial condition (3.21), W(q, fy) = WYo(q) as
¢, = (n|¥y). Then solution of the IVP is

Y(g,n = Z(M%)‘I’n(f], 1, (3.29)
n=0

which is same with solution (3.25).

3.2.2. Lie Algebra

In this part, we give definition and properties of a Lie algebra which will be nec-

essary for further calculations.

Definition 3.1 A Lie algebra is a vector space over a field F with a multiplication on the
vector space defined as Lie bracket and denoted by |[.,.], i.e., [.,.] : LX L — L such that

the following properties are satisfied:
1) A Lie algebra is bilinear, i.e.,

[aX +bY, Z] X,Z

Il
Q
—
—_—

+ b[Y,Z],

[Z, aX + bY] a[z, X

—_—

+b|Z.Y].
2) It satisfies Jacobi Identity which is

[x [x7]]+ [rlz x|+ [z [x v = o0
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3) It is skew-symmetric, i.e.,
%] = frx]
foralla,b,c e Fand X,Y,Z € L.

Example 3.1 Consider the operators

N —i 0? N i N 1 0 1
K =—— K, = =¢ Ky = =(g=— + =). 3.30

These operators are generators of su(l,1) Lie algebra (Dattoli et al., 1997) and satisfy

the following commutation relations:
|R_.R.| =2k, [Ko. K| =K., [Ro.R_| = -K_. (3.31)

For the proofs, see the Appendix A.

3.2.3. Solution of the IVP for the Schrodinger Equation using the

Wei-Norman algebraic Approach

Now, we will solve SE using Wei-Norman Algebraic approach. For this, note that

I:IO can be written as a linear combination of su(1, 1) Lie algebra generators, i.e.,

. - N
Hy = +i(7K_—mw(2)K+). (3.32)

where K_, K,, K, are as defined in (3.30). It follows that we can write the evolution

operator Uy(t, o) as a product of exponential operators, which are generators of S U(1, 1)
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Lie algebra, as Uy(t, 1) = 00K+ e20®Kog800K-  thap's

2

A ] 0 1 ] 0
Uo(t, 1) = CXP[éfo(f)qz]exp[ho(l)(q%+—)]CXP[—%go(t) ] (3.33)

2 oq?

where fy(1), go(t), ho(?) are real-valued functions to be determined. Using the equation

(2.4), one needs to find a% and H,U, :

A

a(;io - fo(t)k+ UO + go(t)ef()([)k" (e2ho(t)f(of<_e—2ho(t)ko)eZho(t)f(oego(t)k- Uy,. (3.34)

+2h0(l‘)(ef°(t)f{* f{oe—fo(t)fﬁ ) UO

Rewriting % after using Baker-Hausdorff identity

o N . o 2 R A 3 R R R
¢ Be™ = B + ¢[A, B] + 5[A, [A, B]] + 5[A, [A,[A, B]]] + .., (3.35)

we get
oU. ) ; _ . o
=0 ([fo(t) = 2hofo(®) + €0 0|R.
n [e—2h0<f>go(t)]1e_ N [zhom R 2fo<t)go(t>e‘2”°<’)]1%o)Uo.
Since ihaa—lzo must be equal to HoUo(t, 7o) and Hy is given by equation (3.32), then the

following relation must hold:

32
i(%k_ - mw%fﬁ) = lh([fo(l) - 2h0f0(t) + e—zho(t)go(t)foz(t)]f(+ + [e_ZhO(l)go(f)]k_

+ [2ho(t> - 2f0(l)go(f)€_2h°(t)]f(o)-
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For this equality, we come up with IVP for a nonlinear system of three first-order ordinary

differential equations for fy(?), go(?), ho(?), that’s

. hf02 ma)%
+— + —
Jfo - -

. h
ho + 1o = 0, ho(t) =0,
m

hezho

&+

0,  fo(to) =0,

0, go(t) =0.

(3.36)

(3.37)

(3.38)

Notice that the equation (3.36) is a Ricatti equation and by substitution fy(#) = mx/hx, it

can be linearized as

¥(t) + wix(t) = 0.

(3.39)

Therefore, solution fy(#) of equation (3.36) can be expressed in terms of the linear inde-

pendent solutions of the equation (3.39) namely x;(#) and x,(¢), which satisfy the initial

conditions:

xi(t)) = x#0 , xi(t) =0,

X2(to)
mxg

According to this, solutions x;(#) and x,(¢) will be explicitly

x1(1) X0 COS (wo(f - fo)),

Xx(1) sin ((L)()(t - to)).

mawoXo

1
0 , Xo(fy) = —.

(3.40)
(3.41)

(3.42)

(3.43)
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By solving IVP for the nonlinear system of three first-order ordinary differential equations

we find the following system for fy(?), go(?), ho(?) in terms of x;(¢) and x,(¢),

_omx () —muwy B
fo(H) = S » tan(cuo(t to)), (3.44)
_ 3.2 xo(2) _ _
go(t) = hxo(_xl(t))__mwo tan(wo(t to)), (3.45)
ho(f) = —In x;(t) :—ln‘cos(wo(t—to))'. (3.46)
0

Substituting fo(?), go(t), ho(?) into the equation (3.33) we have evolution operator as

SR 1772101Vt O B BTGRP
Uoltto) = exp[Zh(m(t))q ] * exp[ " x1(fo) (qaq T 2)]
ihxi(to) (x,(1)\ 67
o[ T
or
Uo(t, ) = exP[_i;;zwo tan(“’o(t—fo))‘l2 XCXP[_ln|cos(w°(t_t0))‘(q%+%)
62
X exp p— tan (wo(f - fo))a_qz :

Now, we apply this evolution operator to ¢,(g), i.e.,

. j o 1
V.(q, 1) = Ut to)pa(q) = exp [%fo(t)qz] exp [ho(l) U + —)
g 2

~ 2 _ 2
X exp [ - %go(t);—qz](Nn exp [%]H( \/ %q))-
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By using the result given in Appendix C, we have

1
X
(1+ (B2goP)

] o 1
Yulg.) = N, eXP[%fo(f)qz] exp [hou)(qa—q + 5)

mwg
. % 80 mwy ,

x —
exp[ l(l +($g0)2) o q

_ 1 mwy 1 e
(1 + (%go)z) on ! ] ><Hn(((l + (%gO)Z)I/Z)V W ‘])(3-47)

Now, we rewrite this expression by using dilatation operator (D.2) and results obtained

for fO(t)’ gO(t)’ and hO(t)’

) 1 mwy
X exp|iwo|n + 5 arctan(Tgo)

X exp

x H( \ /%q). (3.48)

This shows that '¥,,(g, t) obtained by Wei-Norman algebraic approach gives the same result

1
Fulg.) = Nyxexp| —iwo(n+ )t~ 1o)

with the one obtained before (3.27).
3.3. Propagator For Standart Harmonic Oscillator

Consider the IVP for the Schrodinger equation given by equations (3.20) and
(3.21). Solution of this IVP can be found as a result of applying an integral operator

to the initial wave function. Precisely, solution can be written in the form

Y(g, 1) = f Ko(g. 14", 1,)¥o(q)dq'. (3.49)

where the kernel Ky(q,t; ¢, t9) of the integral operator is known as the "propagator” or
Green’s function for the IVP. The propagator Ky(q, t; ¢’, tp) satisfies the Schrodinger equa-

tion in variables g and 7, with ¢’ and 7, fixed, and at initial time ¢t — 1, is equal to the
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Dirac-delta function localized at g = ¢’, that’s

. (9 ’ 2 ’
lha«o(% tq.t) = HoKolg,t;:q 1), (3.50)
Kolg. t: 4 t)li=y, = }l_)rg Kolg.t: 4, t0) = 6(q — q'). (3.51)

Because of these properties, the propagator Ky(q, t; ¢’, ty) as a function of ¢, can be seen
as the wave function at time 7 of a particle that was localized at point ¢’ at the initial time
to (Sakurai and Napolitano, 2010).

From another side, we know that the solution can be found by using the evolution operator.

Writing the initial state as

Wolg) = f 5(q - ¢ ¥o(q)dd’, (3.52)

where d(q —¢q’) is the Dirac-delta distribution, and substituting equation (3.52) in equation

(2.3) we get

(o)

W(g,1) = Ut to) f 8(q — q)¥o(q)dq = f Uo(t, 0)5(q — ¢')¥o(q')dq' (3.53)

—00

Comparing equations (3.49) and (3.53) we obtain the relation between the propagator and

the evolution operator as

Kolg,t;q . tp) = 00(1,10)5((]—61/), (3.54)

where 7, is initial time such that Up(to, 75) = 1.

Below, firstly we shall find explicitly the propagator Ky(q, t; q’, ty) by using the
eigenstate representation of Dirac-Delta function. Secondly, we shall find the propagator
by using the representation of Uy(t, %) given by (3.33) and applying it to Dirac-Delta

function. Details are as follows.
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3.3.1. Finding the propagator: first approach

First, we will find the propagator by using the eigenstates of Hy which are ¢,(¢).
For this aim, it is required to find the representation of Dirac-delta in terms of the orthonor-
mal basis. Remember that in Section 3.1, we found that {tpn(q)}w_o forms an orthonormal

basis for L2(R). Therefore we have the following

Wolq) = Y (nl¥ohpu(q) = ) f ¢4 Yo(q)dq ¢u(q),
n=0 n=0 ¥ ~®
= f (Zwi(q’)son(q))‘l’o(q’)dq’- (3.55)
%\ n=0
It follows that
5q-q) = ), end)en(@. (3.56)
n=0

Therefore, using Uy(t, to) given by (3.22) and Dirac-Delta representation given by (3.56)

we have

Ko(g: t:d-10) = Ut 10)6(q - q') = e H7 X" 5 (g )g(g),

n=0

Lt-t9)Ho

e, (q)e” n(q),

* (t—10)E,

¢i(q)e

DM 1D

ea(q), (by spectral mapping theorem)

(=]

n=

D (e—fm%(q')) (e-f’%“)‘f"son(q)) = > ¥i(d 0%, ). (3.57)
n=0

n=0

Kolg,t: 4, 1)
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Substituting ¢,(g) given by equation (3.17) and eigenvalue E, into the equation (3.57),

we have

, mow —mw, , iwy(tg — 1)
Kolg: ;4. 10) = " eXp[ 7 (¢* +4) L]

nh 2

1 [ efwotton\" mawy mawy
Xy — H,| «|—4 |H,| \]—1q]. 3.58
Sl ) a5 e

For the expression under summation, we use Mehler’s formula (Zhukov, 1999), that is

Xexp[

(3.59)

o 1
> ;(—r) H,(x)H,(y) =

2xy7 — (X% + yz)Tz]
n=0

1-12

—0 CXP[

Then Ko(q, t; q’, ty) will be

, mow mow iwg(tg — 1)
Kolg.1:q's10) = nhoeXp[ 2 %]

1 2( mwy )CIq/ezwo(to 1 _ (ml%uo )(qZ + q/2)62iw0(to—t)
‘ ex [ ]
\ 1 _ eZin(t()—t)

YP+ | % eXp[

1 - eZiw()(l()—l)

After necessary calculations and arrangements, above equation becomes

7(0(4, L q,’ t()) = \/

mawy imawy
€X
2rifisin (ol — 1)) 7 | 27 sin (wo(t — 1))

><((612 +q'*) cos (wo( — 19)) — 26161’)]- (3.60)

The propagator Ko(q. t; ¢’, tp) (3.60) coincides with the propagator found in (Saku-
rai and Napolitano, 2010).

3.3.2. Finding the propagator: second approach

In this part, we will use the evolution operator U(t, f,) which is given by equation

(3.33) to find explicitly the propagator Ky(g,t; ¢, o). For this we will apply U(z, 1y) to
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olg—q),1.e.,

Uo(t,t0)8(q — '),
] 1
exp [%foqu] exp [hom(qzﬁi + —)
q

Kolg.t;:q . 1)
2

2

] 0
exp [ - égo(t)a—qz]a(q -4

Using the result given in Appendix C, we have

i -i
V2o P [Zgo(f) -9 ]

Now we need to use properties (D.1),(D.2) and substitute fy(¢), go(¢) and ho(t). After

1 ] a 1
Kolg, 3¢/ 10) = \/Texp[éfo(f)f] exp [ho(t)(qa—q+§)
JT

necessary calculations, Ko(q, t; ¢’, ty) becomes

7<0(C]’ t’ q,a tO) = \/

mwy ox imwo
2intsin (ot — 1)) ¥ | 27 sin (wolt — 1)

><((q2 +¢'*) cos (wo(t — 1)) — qu’)]. (3.61)

Observe that the result is exactly the same with equation (3.60). Therefore we can con-
clude that, we obtained the same result for propagator as expected by using two different

approaches.

3.4. Standart Harmonic Oscillator in Heisenberg Picture

Definition 3.2 If A is an operator in Schridinger picture, then the corresponding opera-

tor in Heisenberg picture is defined as
Au® = Ut 1A 0t 10),

where Uq(t, to) is the evolution operator of the physical system.
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According to this, using the evolution operator found in equation (3.22) and the expres-
sions of ¢ and p in terms of & and &', which are given in equation (3.6), we can find the
position and momentum operators in Heisenberg picture. For this aim and further calcu-
lations, we need to use the Baker-Hausdorff identity (3.35). For using this identity, we
need commuatation relations which are given in equation (3.7). This way, we can find the

Heisenberg operators corresponding to the simple harmonic oscillator as

&H(t) = e%(t_’())ﬁ()"e_%(f—fo)ﬂo —e—iwo(f—to)'\
) \/TO g 1 il (3.62)
V2hmwq
CAlH(t) = eh(’ 0t e —L(t—tg) _ — wolt—to)g T
= F iwo(t— l())A 1 €lw0(t_[())ﬁ. (363)
V2hmwy

Using equations (3.62) and (3.63), we find the position and momentum operators in

Heisenberg picture as

1
au(t) = cos(wo(t - 10))g + —— sin (wo(t — 10))p. (3.64)
mawy

Pu(® —maw sin (wo(t — 1))g + cos (wo(t = 1)), (3.65)

where § = gy(ty) and p = py(ty). For § and p, are known in the Heisenberg picture, §?
and p? can also be calculated easily in the Heisenberg picure, as well as §" and p", where

n is a positive integer. This way, §* and p? will be

2
a7(0) Ul(t, 104 Uo(t, to) = (US (t, 10)qUo(t, to)) :

2
A0 Uit 10)p*Uo(t, 10) = (030, t0)pUo(t, to)) :
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Using equations (3.64),(3.65), g5,(r) and ﬁ%{(t) then become

0 = <o (e =W+ i o= )
+ meO cos (wo(t — to)) sin (wo(t — 10))(ah + p). (3.66)

Pu®) = mlwpsin® (wo(t = 1)) + cos? (wolt — 10))

= mag sin (wo(t = 19)) cos (wo(t = 10))(ap + ). (3.67)

By this result we can see that Hamiltonian in both of the Schrodinger picture and the

Heisenberg picture are the same,

B =~ + "0 0 = g4 " (3.68)
2m' 1 2 2m 2

One can easily check that position and momentum operators which are given by equations

(3.64) and (3.65), are the solutions of classical equations,

2

ﬁCAIH(f) + w(z)le(f) = 0,
2

Zabu® +wipu(®) = 0,
and satisfy Heisenberg equations of motion,

d, pu(t)

— t - ,

dtqH( ) "

d ., R

(D) = —mwiDgu(@).

3.5. Dynamical Invariants for Standart Harmonic Oscillator

Since we know the evolution operator, we can find the invariants corresponding to

position and momentum operators like we did in previous section by using their represen-
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tations in terms of & and a'. Firstly we find ay(f) and a, (1) as following:

a(t) = Ut 1)alj (1, tg) = e 170 Hogen=Ho = giwni=tog,
=[O g — e py (3.69)
2h 2hmwy
&T(I) — Ao(l‘, Z‘O)CAITUS(Z‘, fo) = e 7 HopT 55 (1=10)Ho — e—iwo(t—to)&T’
mwy _; . 1 IR
— _Oe—lwo(t—to)q - ¢ iwo(t to)p’ (370)

2n \2hmwy

Then using equations (3.69) and (3.70), the invariants corresponding to position and mo-

mentum operators will be

g() = cos (wo(r - to))é ~ L i (wo(r - to))ﬁ,
mawy
p(t) = mwsin (wo(t - to))c} + cos (wo(t - to))ﬁ.

2
mwo

247, then I(t) = Uo(t, 1)) HoU{(1, 10) = Hy

Now consider the Hamiltonian H, = ﬁ P+

is an invariant. It is clear since H, has no time dependency, [I-AIO, UO] =0.
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CHAPTER 4

QUANTUM PARAMETRIC OSCILLATOR:
WEI-NORMAN ALGEBRAIC METHOD

Consider the IVP

iha\Péf’ ) @.1)
Y(g.10) = Yol@), 4.2)

where g € R and 7 > 0. For time dependent Hamiltonian of quantum parametric oscillator

. 1 (Hw? (1)
_ pz + H q2,
2u(t) 2

4.3)

where u(t), w(t) are real-valued functions of time, so that A=A (0.

The Wei-Norman Algebraic method (Evolution Operator method) for solving an
IVP for Schrodinger equation (4.1) was introduced in (Wei and Norman, 1963) and later
used in many works such as (Biiyiikasik et al., 2009), (Dattoli et al., 1997). This method
is based on the Lie algebraic properties of the Hamiltonian (4.3), which is quadratic in p
and ¢ and therefore can be written as a linear superposition of generators of su(1,1) Lie
algebra. Then, the evolution operator U(t,1,) can be written as product of exponential
operators that are elements of the corresponding SU(1,1) group. This allows us to find
explicitly the evolution operator and solution of the IVP for the Schrédinger equation. We

give the details in next sections.
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4.1. Construction of the evolution operator

The Hamiltonian given by equation (4.3) can be written as a linear superposition

of generators of su(1, 1) Lie algebra as follows

32
H(r) = i(—hf(_ - u(t)wz(z)fg). (4.4)
(1)

Then, the evolution operator is of the form
0(1‘, fo) = ef(t)fﬁ e2ll(t)f(oeg(t)1@’ (4.5)

where f(t), g(t), h(t) are real-valued functions to be determined. Using definition of

evolution operator (2.4),(2.5), we need to find % and HU :

A

ou

ot

f(l‘)fCr U + /0K« Zh(t)kerh(t)Ko e8SOK- 4 JOK: e2h(t)Kog(t)f<_ PUOLS ,

f(t) ]2'+ U + 2h(t)(ef(’)k+ ko e—f(t)lh) U+ 0 ol 0K+ ( 20K R e—2h(t)f(0) o2hOKo s OR-

Rewriting ‘96—(;] after using Baker-Hausdorft identity (3.35) and multiplying it with if, we

get

NT'.‘
Il

ih([f'(r) —2hf(r) + e—2”<f)g<t>f2<r>]1%+

+

[e-%(”g(t)]k_ ; [2})(:) ) f(z)g(z)e—2h<’>]1€0)0.
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Since ih%} must be equal to H(U(t,1,) and H() is given by equation(4.4), then the

following relation must hold:

_ 32
(T~ u0’(OR) = ih([fu) —2hf(®) +e—2h“>g<r>f2<r>]l%+ + [e-2h<’>g<t)]1%_
u(t)

; [2h(r) ) f(t)g(z)e-2h<’>]f<o).

For this equality, we get IVP for a nonlinear system of three first-order ordinary differen-
tial equations for the unknown real-valued functions f(¢), g(¢) and A(#)(Initial conditions

are chosen as "0" because U(fy, f,) must satisfy (2.5)).

hf? uwit)

F+ oRE 0 , f(tp)=0, (4.6)
i+ /% =0 . k1) =0, 4.7)

h 2h
o+ ﬁ 0 , at)=0. (4.8)

Since equation (4.6) is a Ricatti equation, by substitution f(¢) = u(¢)(x/x)/h, it can be
linearized in the form of a classical damped parametric oscillator with time dependent
damping ﬁ‘; and frequency w(?) :

i+ gx +*x = 0. (4.9)

Let x;(#) and x,(¢) be two linearly independent real solutions of equation (4.9), satisfying

the initial conditions

xi(t)) = x#0, X(1) =0, (4.10)

X (t)) = 0, Xa(to) = (4.11)

u(to)xo”
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Note that, the Wronskian of x;(7) and x,(?) at 1, is

W )t = | - L
P L )’
p(10)x0
and using the Wronskian formula
Wit = Wenxmyesp- [ 2]
to lu(s)
we get
N L ) P
W(x, )@ = o, exp| 1n# (IO)]_W). (4.12)

Now, solving three first-order ordinary differential equations (4.6), (4.7) and (4.8), we find

u()

_ Xl(f))
fo = = (—xl(t) , (4.13)
2 xz(l))
= - — 4.14
s = ~hxi)Z5) (4.14)
x1(1)
h(t) = —In . 4.15
(0 ) (4.15)
Substituting these functions into equation (4.5), we get the evolution operator
U(t, 1) = ex i‘f(t) 2 exp | A(2) ﬁ + l exp| — i (t)a—2 (4.16)
It can be also expressed in terms of x;(f) and x,(z) as follows
N iu(t)(xl(t)) ) x1(0) o 1
= S P -1 — o+ -
Ul(t, to) exp[ 7\ q° | X exp n ) (qé?q + 2)
ihxi (to) (x2(1)\ 8°

39



4.2. The wave functions

To obtain an explicit form for evolving in time states ¥(g, 1), we will use W(q, t) =
U, t0)Wo(g). For using this equation, we need to know U(t, 1) and Yo(g). We found
U(t, 1) in equation (4.16), and for ¥y(g), we will use the most general form of initial

wave function in Ltz(R), whose expansion is
Wo(g) = ) (11 ¥o)eal9),
n=0

where ¢,(g) are the normalized eigenstates of Hy (3.1) which are expressed in equa-
tion (3.17), with corresponding to eigenvalues E, = fiwy(n + %). Substituting Wy(g) into

W(g,1) = U, t9)¥o(q) will give,

(g, 1) = U1, 1)¥o(q) = Z(nl‘f’o>0(t, 10)¢n(q).
n=0

For finding W, (g, 1) = U(t, 1o)@a(q), we use results which are given in Appendix C, the

identities (D.1),(D.2), so that we have

Vu(q.) = 00 0)0g)
B il [0 i
= exp |5 /(g |exp ()qa—q+§ exp | — 58( )a—q2 en(q),
_ h(®) LI
§ N”CXP[ 2 }eXp[zf O |5 g 7

mwy 1 h(o)
. H”(V 7 (<1+(%gm>2>1/2)€ q)

—ime (e 2
h h h(t)
X
exp[ 2 (H(%g(z))Z)(e q)]exp
mdawy

_ 1 ho )
X exp[ 7 (1 " (’"“’Og(t))z)(e q) ] (4.18)

h

. 1 mawy
z(n + E) arctan(Tg(t))]
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where N, = (2"n!)""?(mwy/nh)'/*. Substituting f(), g(¢), and A(?) into the equation (4.18)
and using the Wronskian W(x;(¢), x,(¢)) = 1/u(t), the wave functions in terms of the

classical solutions x(¢) and x,(¢) of equation (4.9) become

0 = (] < %A | a0
mh2"n! \Voo(®) 2hx(1) 2h x1(1) o-(z)(t)
X exp i(n + %) arctan( - ma)oxf(to)f:—ﬁg)]
* exp[_ 2hcr13<r>q2] XH”( \/ﬁz'o(t)) 19
where
ooll) = nlmo(x%(r) + m;c:;%;‘kro)x%(r))”{ (420)

By using p,(q, t) = [¥,(q, 1)|?, probability densities can also be calculated as

1 1 1 ? q
W(q,1) = —~ H|l——]. @421
Pul.) (ﬂh2"n!) 8 oo(t) 8 eXp[ (x/ﬁao(z)q) ]X ( \/7—20'0(0) *2D

Functions ¥,,(g, t) and p,(g, t), which are found above coincide with the results in
(Biiyiikasik et al., 2009), and references given there.

Motion of Zeros

Let Tﬁ,l) for [ = 1,2,....n, be the zeros of Hermite polynomial ﬂn(q), ie., Hn(rﬁ,l)) = 0.
From solution (4.19), one can see that the zeros of wave function ¥, (g, t) are the zeros
of Hn(q/ \/7_io-o(t)). Then, motion of zeros of the wave function (4.19) is described by the
function

4Pty = VrrPoo(),

where o (?) is expressed in (4.20).
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4.3. Finding the Propagator using the evolution operator

From section 3.3, we know that propagator is

K(g.t;q 1)) = U(t,10)8(q - q), (4.22)

where 1, is the initial time such that U(f, 1) = 1. Therefore, using the evolution oper-
ator obtained in equation (4.16) and applying it to 6(q — ¢g’) will give us the propagator

explicitly. Using the result given in Appendix C, we have

K(g.t;q,t0) = Ut,1)5(q - q),
_ LIPS 9.1 LNl PO
= eXp[zf(t)q]exp[h(t)(qaq+2) exp[ 2g(t)aq2]6(q q)s
N N N EO) LIPS T,y
= o\ 20 eXP[ > ]exp[zf(I)Q]eXP[zg(I)(e q Q)],(4-23)
or
. _ 1 —i i/ﬂxl(t) 2
Kard.0 = N\ ionn e"p[z n x1<r)q]
ex [ i)Cl(t) (X](t()) _ /)2] (424)
P\ a1 | |

Now, to describe the evolution of a state from an arbitrary time #; to t,, where t; < t,, we

can use the evolution operator U (t2, t1) or the propagator K(q,t; 4, t1),

00

Y(g,) = U(tz,tl)‘P(q,ll):f K(g,t2;q',t1)¥Y(q', t1)dq .

—00

To find U (12, t1) explicitly we use the composition rule, U (12, tl)U (t1,1) = U(t,, 1) which

gives U(tr, 1) = U(ts, 1)U (11, o). By using U(t, ;) found in equation (4.16), U(t,, o)

42



and U'(#,, t) can be written respectively as follows

Ulty, 1) = L g h(ty) 9,1 —i(ta—2
(2.10) = exp|Zf(t2)q”| exp (h(rr 954 T 2)|P| " 28 2)(9q2 ,

N ] 0? 0 1 —i

U't,1) = exp[ég(tl)a—qz]exp[—h(tl)(qa—q + 5) exp[?l f(tl)qz].

Therefore, using the result given in Appendix C and identities (D.1),(D.2), we have

K(g.t:q 1) = Ultr,1)8(q—q') = Ultr, 1)U (11, 10)5(q — '),
h(t) —h j 0 0
=ewL@%J@FwBﬂmmehm@%ﬂw%—m%%ﬂ]
. 62 _ .
xexp 5(st) - 8()) 55 xmpf{ﬂﬁmﬂ&q—qx
= exp [w] exp [%f(tz)qz] exp [h(a)(q;—q)]
X exp i'(g(tl) - g(tz))a—z] exp [_—if (1 )e‘”‘(’”qz]é(e‘h(’”q -4
2 oq? 2 ’
or

K(q’lZ;C[,,fl) I [h(fz)—h(tl)

1
V2 \ &) — g(th) exp 2

(@) g — q/)z].

] exp [%(f(fz)qz - f )q’z)]

X exp [Z(g(tz) - g(1))

4.4. Heisenberg Picture

According to Definition 3.2, by using the evolution operator (4.16), we can find

the position and momentum operators in Heisenberg picture in terms of x;(#) and x,(t) as

n " N 1
Ou() = U'(t,1)qU(t, 1) = x—oxl(l)fl + XoX2(0) P, (4.25)
A AL A 1
Py(t) = U'(t,10)pU(t,19) = x—oﬂ(f)xl(f)@ + Xop(1)X2(H) P, (4.26)
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where we note that § = QH(IO) and p = Pu(ty). They can also be expressed in terms of

oo(D),

Ou(t) = ~mwycosby(t)oo(t)g +

N
u(r)(—“m”‘)smg‘m + ymag cos eo(nc'ro(r))@
Do)

N u(t) ( \mwg cos Oy (1)

mawo u(@®)oo(1)

sin G(1)oo(1) P,

Py(t)

+ \Vmawy sin Qo(t)d'o(f))ﬁ,

where 6y(1) = f ' L__ds. Knowing Q and P in the Heisenberg picture allows us to
o 1()g(s)
compute easily Q% and P? in the Heisenberg picure, and also Q" and P", where n is a

positive integer. For O and P? we have

031

2
U'(t,10)q° U(t, o) = (U f(t,1)qU, to)) ,

2
P U'(t,10)p*U(t, 1) = ( Tt 10)pU, m)) :

Rewriting 02 (7) and P2 (#) by using equations (4.25) and (4.26), they become

. 1
Qx(t) = ;ﬁ(t)flz + x35)p + x1()x2(1) 1, P} »
0
. 1
P = uz(t)(;x‘f(t)@f + x3505(0p + %1 (DD 1, p) |»
0

where {g, p} = (@ﬁ + ﬁ@) is the anticommutator of § and p. In addition, mixed terms

QAH(t)IA’H(z‘) and Py () QH(t) are calculated as

w(@)x1(2) X, (1)
0
(1) x50 32 (1D P
u(@)x1 ()X, ()
0
+Hu(1) xXgx2%2(1) P

Ou(t)Py(t) q* + p()x1(Dx(DGP + (1) i1 () x2(1) PG

Pu()On(t) §* + uOx (Dx2(0GP + u()x1 (D21 pg
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Next, we find the Heisenberg operators corresponding to damped parametric oscillator

(4.3) as

Ay Ui, 10)aU0(t, 1)) = U' (1, 1)

1 N
+1 plU(t, tp),
2h (q lmwop) (t, 1)

[ mwy 1 1 AN

( xl( ) +i—— mx—oﬂ(ﬂxl (t))q
1

(\ [ —Xoxz(f) + lmxoﬂ(f)xz(f))ﬁ-

Similarly AL(I) can be calculated

+

o 1 1 1
AL = ( %—Xl(ﬂ \/ﬁ_o'u(t)xl(t))
0
1
+ ( %xoxz(f) - imxoﬂ(f)xz(f))ﬁ-

One can easily check that position and momentum operators which are given by

equations (4.25) and (4.26), are the solutions of classical equations,

() d A
dt2 QH( ) + md—QH(l) + W' (O0u(1) = 0,
d2 2
e Py(1) - (e )d—PH(f) + W (NPy(t) = 0,

and satisfy Heisenberg equations of motion,

d . _ Py(n)

d_tQH(t) TR

d R A
EPHO) = —u@®)w*)Qu(?).
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4.5. Complex Function Representation of Dynamical Invariants

It is instructive, instead of two real independent solutions x;(¢) and x,(¢) of equa-

tion (4.9), to introduce one complex functions solution &y(¢) of the same equation:

sot) = \/;;_—C(Utzxo+i\/_mw0xoxz(t), 4.27)
= ao(t)e™ = oo(t)( cos(Bo(1)) + i sin(6o(1))), (4.28)
where

leo(D] = )= ! x%(t)+( (0)? 4.29)

&0 = Oy = \/m xg maopXoXy , .

! dl/

0o(t) = S — 4.30
oo Ioﬂ(l')|8o(l')|2 (330

The complex function &y(¢) defined here satisfies the equation (4.9) and the initial condi-

tions,
() = —— Eylty) = (431)
T Tmae T Taae) ‘
Moreover,
1 —i \mw
gty = ——, §&lt) = ———, 4.32)
oro Vma, O p(to)
which implies that the Wronskian is
W(eo(n), g5(1)) = eo(D&y(1) — &o(D)gy(1) = T (4.33)
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Using the new notation, the evolution operator (4.17), the wave functions (4.19) and the

propagator (4.24) can be written as

. ~ iu(r) (€0(0) + £5(0) Vmawo(eo(t) + &) a1
Vi) = exp [ 21 (so(z)+s;;(t))q ]CXP[IH' 2 (qa_q +3)
o (eo(t) - gy(0)\ 6°

X exp [Zma)o(so(t) +&5(1) )6_q2]’ (4.34)
Vg = — ! (83(0 )"/2 ex [Méo_(t)qz]H (—q ) (4.35)

’ (n! VAn)* Veold) \2¢0(1) 2 g0 1"\ Valeo())

, 1 —iqq’
K(g,t;q, = .
(9.1:4'-10) \2rhiley(t)]leo(to)] sin(By (7)) X exp [h Sln(eo(t))|80(f)||8o(fo)|]

i g q’
xexp| 57 CO“QO(’))(mo(r)P * lelo)? )

i (g d 2
Xexp[ﬁ(bo(t)'zalao(t)l I (436)

Since we know the evolution operator, we can find the invariants corresponding to position

and momentum operators

Qo(t) = 0(1‘, l‘o)@UT(t, t0) = Xou(D)x2(0)§ — xox2(2) P,
Putt = 0p0 . = 2200+ 20p,

expressed in terms of new complex variable (4.27) as

A _ lu(t) . _ax o~ 1 _oF A
Qo) = % m@o(ﬁ &)(1)q 2 m(go(f) £)(1)Ps
A — Vmwou(t)(&o(t) + £y(1)) . \mwo(eo(t) + £(1)) |
Po(t) = + p.

2 1 2
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Similarly, the invariants corresponding to creation and annihilation operators in terms of

&o(1) will be

Aty = Ottt (t) = v%}_l(aounﬁ - u(0)e0(0)3), (437)
A = 0.1)a 0 1) = \/%( - &0 + nE|03). (4.38)

I 2 . . .
If we consider the Hamiltonian H, = ﬁ P+ %6]2, then corresponding invariant

Ity = U@ t0)HU'(t,10), Io(to) = Hy,

1 2
Ew0(|80(t)|13 - ﬂ(t)léo(t)lfl) : (4.39)
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CHAPTER 5

QUANTUM PARAMETRIC OSCILLATOR:
THE LEWIS RIESENFELD INVARIANT METHOD

Consider again the Schrodinger equation,

ihaqjg:’ D _ a0, 5.1)

where H(f) given by equation (4.3) is a self-adjoint operator depending explicitly on time.
It was explored by Lewis and Riesenfeld in paper (Lewis and Riesenfeld, 1969), and
later it was used in other works such as (Hartley and Ray,1982), (Dantas et al., 1992).
The Lewis-Riesenfeld method for solving Schrodinger equation (5.1) is based on finding
quadratic invariant for the system described by the Hamiltonian (4.3). More precisely, it

is motivated by the basic results given in the following proposition.

Proposition 5.1 Let the operator I(t) be a spatial self-adjoint invariant of Schrodinger
equation (5.1) defined on a Hilbert space. Assume {CI),,(q, t)} is a complete set of orthonor-

mal eigenstates of 1(f) corresponding to eigenvalues {/ln}. Then,

(i) The eigenvalues are time-independent, i.e.,

d
—,(t) = 0. 5.2
2 (@) (5.2)
(ii) The wave functions defined as
WP (g, 1) = " V,(q, 1), (5.3)
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where v,(t) satisfies

0
lha_t_H(t)

dv,(t) 1
= —(D
dt h< "

D,),

(5.4)

are solutions of Schrodinger equation, provided the eigenvalues A, are non-degenerate.

Proof

(1) By the assumption we have

[(t)®,(q, ) = 1,)D.(q, 1), Vn.

Taking time-derivative of both sides of equation (5.5) gives

ol(1) . 0D, . o0,
o D, + (1) o = 4,(0)D, (1) + A,(2) P
Using equation (2.16) we get
da,( . s oo, i, .4 nn
o O = U0 - a0)—= + (IH®, - HI,),

and arranging the terms gives

dA,(1)
dt

oD, i
o +—Hc1>,,), Va.

@, (1) = (I(r) - 2,0)( -

Taking inner product with @, gives

0 h

(I(r) - An(z))(aq;" + i'1f1c1>,1)>, Vn.

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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Since 1(r) — A(¢) is a self-adjoint, we can write

dﬂn(t)| o
t n

d ’ = <(i(t) - /ln(t))q)n % + iH(I)n>, (510)

ot h

which clearly implies A,(¢) = 0, so that 1,(f) = A,— constant.

(ii) Since A,(¢) = 0, from equation (5.9) it follows that

< ® m

Since equation (5.11) holds for ¥n, m and {®,(g, 1)} is an orthonormal basis, it implies that

ov, 1 A
— 4+ —-HO® = . 1
AJat+h J>0,me 5.11)

~

(-

(I- /l,,)(ag;" + %I:Id)n) = 0, which means £ + L A®, is an eigenstate of /(t) corresponding

to eigenvalue 4,. If the eigenspace corresponding to 4, is one-dimensional, then

0D,

i
o

- HO, = ¢,())®,, (5.12)

for some c,(t) # 0. Thus ®,(q, ) is a solution of Schrodinger equation (5.1) with modified

Hamiltonian

H.(1) = H®) + ¢, (7). (5.13)

This suggests that solution of Schrddinger equation (5.1) is of the form (5.3), i.e.,

Yy P(g, 1) = "V, (q,1),

for some real-valued function v,,(¢). To find v,(f), we substitute :,b,(f

)(q, 1) to the Schrodinger
equation (5.1), and obtain equation (5.4). Solving this first-order differential equation
will determine v,(f) up to an arbitrary constant of integration, which can be fixed by

normalization of the state. O
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In next sections we show how one can find the dynamical invariant, its eigen-
states and phase factors explicitly . Then, we provide the corresponding solutions of the

Schrédinger equation (5.1).
5.1. Finding the Lewis-Riesenfeld Quadratic Invariant

Lewis-Riesenfeld approach for solving time-dependent SE is based on finding
self-adjoint quadratic invariant. The invariant /; z(¢) is assumed to be a linear superposition

of generators of su(1,1) Lie algebra defined in Section 3.2.1, that is
A i A . .
[ir() = =2 (@K, + BOK- +¥(1Ko), (5.14)

where a(t), 5(1), y(t) are real-valued so that Iir(0) = IAZR(t). On the other hand Hamiltonian
H (1) can also be written in terms of su(1,1) Lie algebra generators as given in equation
(4.4). Substituting equation (5.14) and (4.4) into the equation defining the dynamical

invariant operator (2.15), that is

ol -1 . N
i 3’;(” = lhet0), A,

one can determine the unknown functions a(t), 5(¢), y(t). For this first, we calculate
[{.r, H] using the commutation relations (3.31).

2

A oA . A 5 he A
Ui H] = [—i(a(rm+/3(r>K_+y<r)Ko),—i( K_+u<t>w2(t)1<+)],

u(z)
2 2
= B0,k - Bouw 2k, + L0k o0k, (5.15)
(1) KD
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Substituting above result and Al r /0t into equation (2.15) we have:

B s s ha(t)  BOu@OW (1)), | Ty 4
a(OR, + BOR. + (DR, = - ((2 b )Ko vy k.
y(t)u(;l)wz(t) K)

From last equation we get a system of three first-order ordinary differential equations:

2
(1) M -0, (5.16)
o
B() + u%) =0, (5.17)
2
(o) + 2h38 _ 2 (t)’;l(t)“’ - 0. (5.18)

To solve this system, we introduce the auxiliary real-valued function o(¢), such that g(¢) =
K*c(t). Then from equation (5.17) we get y(¢) = —2ho(t)c(H)u(t). Writing 5(f) and ()

in (5.18), we find a(¢) in terms of o (¢) as:
a(t) = o (G + Byt Wwo) + ol
u

Now, substituting a(#) and () into equation (5.16) we have:

. 2 . 2 2
d (0‘/12(0' +Eorw o) + 0'2/12) + 200w 0,
dt u h
d
(0’/12(0'+'u(7+w 0'))+20',u ((0’+'u0'+a) 0') = 0. (5.19)
dt H U

Let us define y(¢) = O'(I)MZ(I)(O"(I) + & 8 o(t) + w2(t)0'(t)) Then equation (5.19) becomes:

—y( 0+ 2%y(t) - (5.20)
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Equation (5.20) is the first-order homogeneous linear equation, and y(¢) = 0 is always a

solution. It has one nonzero solution as well. Therefore, we consider two cases:

Case 5.1 Wheny =0, that’s

o) + I%O'(l‘) + WA (o) = (5.21)

where o (t) is real-valued by assumption. Let x(t) denote a solution of equation (5.21). In

this case a(t), B(t) and y(t) become:

a(t) = (O,

B(t) = 12x*(2),

() = —2Ru(D)X(O().

Now, by substituting a(t), y(t), B(t) into the equation (5.14), we get the special quadratic

invariant, which we denote by 1.(t)

ING)

i 0° ) 21x(t)x(t)h/1(t)(q 0 N 1)

YNNG /5
—£(,u (% (f))(z) ( “(0)n )(262 2h dq 2

R 1 2
or L0 = S{u0iwq - x0p)

Case 5.2 For nonzero y(t) we solve equation (5.20) and find

R N
yn=o (t)_az(t)’

where we can choose ¢ = 1. Now, since y(t) = (ﬂz(t)U(t)(U(t) + & 80’(1‘) + (x)z(l‘)O'(t)))

and we found that y(t) = 1/0*(t), we have the following equality, which is known as
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Ermakov-Pinney nonlinear differential equation,

(1) + @a(z) + N0 = !

S 5.22
u(t) K)o (t) (22

As a result, a(t), B(t) and y(t) can be found in terms of a solution o(t) of equation (5.22)

as
a(t) = ;g + L),

B(1) = B2a(1),

Y(0) = =2hpu(D)o (DG (D).
Now, by substituting a(t), y(t), B(t) into equation (5.14), we have the following quadratic

invariant:

. 1 o N4
I1R(2) = ﬁ((,u(t)a(t)q - U(I)P) + 0-2(t))' (5.23)

5.2. Eigenvalues and Eigenstates of the Invariant

The eigenvalues and eigenstates of the quadratic, self-adjoint invariant [;x(f) can
be found by an operator method that is completely analogous to the method introduced
by P. Dirac for diagonalizing the standart harmonic oscillator, as described in Chapter 3.
Here, we will show that the self-adjoint quadratic invariant [;z(¢) has discrete spectrum
and complete orthonormal set of eigenstates. First, we will factorize /;x(f) given by the

equation (5.23) in the form

R ) 1
IR0 = (A'(I)A(t) + E)' (5.24)
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After necessary calculations we can find A(r) and A'(¢) as follows:

R B R SR

A1) = @(0 l(O‘p O',uq)), (5.25)
N

A(t)——m(o_+l(0'p O',uq)). (5.26)

The operators AT(£), A(¢) and Ir(0) satisfy the following commutation relations

[A(), AT (0] = 1, [Ix(), A"(0)] = A(0), [Tr(0), A()] = ~A). (5.27)

We note that these commutation relations hold for every solution o(¢) of equation (5.22).
Thus, we have the spectrum generating algebra {i, L), AT (1), A(7)}. From algebraic point
of view, the integral (5.24) with algebra (5.27) is equivalent to harmonic oscillator with
Heisenberg-Weyl algebra. This allows us to construct eigenvalues and eigenstates for it

in the same way.

5.2.1. Finding the Eigenvalues

Assume that [, z(¢) has a complete set of orthonormal eigenfunctions {|®,)} , that

(o]
n=0°

is

[rR(DI®,) = 2,|®,),  n=0,1,2,3,... (5.28)

where A, are the discrete real eigenvalues and (®,,, ®,,) = d,,,. Let us show that eigenval-

ues A4, satisfy 1/2 < A, which shows that they are non-negative numbers,

0 < [lAl®,)I?

. N 1
<(I)n|A'A|(Dn> = <(Dn|]LR - Elq)n> =4, - (529)

E’
A, (5.30)

IA

1
2
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Consider the following equations, which show that AT®, and A®, are eigenstates of the

iLR(t) :

iLR(AHch)) (ATA + %)AT D,) = (an ; 1)AT D,), (5.31)

iLR(A|c1>n>) (ATA + %)Ald)n) _ (/l,, - I)Ald)n}. (5.32)

We can see that operator A(f) lowers and the operator A'(¢) raises the energy of the system
s0, A(7) is the lowering operator and A'(¢) is the raising operator. Since we have 1/2 < A,
the energy of the system can not be negative. Thus we must have the lower limit for the

energy in the state |®y), such that A|®y) = 0, which implies

IRl®o) = Ag|Do),
1
(A*A+5)|<Do> = Ao|Do),
1
/10 = E

Applying A" to the ground state |@,) by using equation (5.31), we have
FeATI00) = (A + DAT|g) = (%)Aﬂcbo»
Then, applying n times A" to the ground state ®,, we can find A, as
Ap=n+—, n=0,1,2.. (5.33)
Therefore equation (5.28) becomes

R 1
fal®y = (n+5)|<1>n>. (5.34)
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In addition, according to (5.32), Al®,) is an eigenstate of I,x(¢) with the eigenvalue n — 1

then it must be proportional to |D,_;), i.e., Al®,)| = ¢,|®,_,), where ¢, is a constant.

Consider the following equations:

" 1
<(Dn|ATA|(Dn>| = |Cn|2 = <(Dn|]LR - Elq)n>| = |Cn|2a
1
/ln -5 = n 2’ = = [Cn 2-
> |cnl n=|c,|

Thus ¢, = +/n, so the equation A|®,)| = c,|®,_;) will be A|®,)| = +/n|®,_;). For the
eigenstate AT|®,), we can also find that AT|®,)| = Vn + 1|®,,,). Using these results, we

can derive the next expression for eigenstate,

(A7) @)

D,) =
D) W

(5.35)

5.2.2. Explicit derivation of the eigenstates in coordinate

representation

Now, since I, is the self-adjoint operator, the eigenstates corresponding to distinct
eigenvalues are orthogonal, and the set {®,}>  is an orthogonal basis for L*(R). To find
the eigenstates ®,(qg, ) explicitly, we need to find the ground state ®((q, ) by solving
Ady(g,1) = 0, that’s

1 (q ( L d
—| = +i| - iho— — O',uq))CD =0. (5.36)
m(a dq ’

Solving differential equation (5.36), and then doing normalization give us the ground state

wave function

IR i (o i),
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Using equation (5.35) and propositions given in Appendix D, we can find wave functions

®,(g,1) as well. Writing equation (5.35) explicitly, we have

@ _a)e ( | (ﬁ_i(w—c'r A)))n((L)”2 !
" Vm Va\vale PR\
i (o i,
X exp E"(Eﬂﬁ)q
1\ 1 1y "1 iuc dy'
) (2nnz«/%) «Fa(r)‘(ﬁ (ha(t)) ((W(tﬁ%)q_d_q)
i (0 i,
% exp E“(Eﬂﬁ)q :
1 1/2 1 1 n n . 1 l/l,u qz
(i) ) (o) (e em | <5005
a 1 i\ g* iy (o i\,
X(dqn)eXp [ - (W " %)ED X exp [ﬁ(& - ,P)q ]
N L YA I " 1 i\ g
= (-1 (Z"n!\/ﬂ) —O'(l‘)(%) (ha(t)) exp [(W+%)5]
a" _q2
(Ehls)
{1 N2 1y " 1 iui\¢
= (-1 (Z"n!\/ﬂ) —0'(1)(%) (h(f(t)) exp [(ﬁ+%)3]
n 1 n q _q2
(i)l e )

>

As aresult, we get

1 1721 q [i,u (1) i 2]
®,(q,1) = H, —|l—= ,
(@0 (\/hﬂZ"n!) Vo (o) (\/i_io-(t)) P 2h((r(t) ) )q

forn =0,1,2,3,.., where H, are the Hermite polynomials.
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5.3. Determining the phase factor v, (¢)

For the phase factor v, () from Proposition 5.1, we have equation (5.4),

dv, (1)
dt

= l< nl |q)n> <(I)n|ﬁ(t)|q)n>

21®,). Before starting to

To evaluate v,(), we need to compute (®,|H()|D,) and (D,|5

calculate these diagonal elements we need to write p and § in terms of A and A" using

equations (5.25) and (5.26), i.e.,

N
1= 0@ A, - \\g(A 2 N R DN

Now, we calculate (®,|H(f)|D,) as follows:

,uw > VR(A - AY V(A +AT))2
®,|H®)|D,) = q)— ) ——cbn e |D,),
(O,|H(1)|D,,) (D, — q°|D,) ( I( 2 + uo NG |D,)

Vio(A + A") _ 1 B )
+ (d)nl( N ) |D,) = E(n + E)LF + 00U+ pw o ] (5.39)

Then, we calculate {(®,, | -|@,,) by using the equality A|®D,) = \Va|®@,_1), ie.,

2(A|«I>n>)

- g( Vil 1))

0
or |<Dn> A Q) = \/ﬁgtlfbn-l)-
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Taking inner product of last equation with (®,_,|, gives

0 0A
<(Dn llAa | > = \/_<(Dn 1| |(Dn 1> <(Dn 1| ot |(Dn>’
0 0A
(A'o,_ 1'6 |,) = VD, 1| |¢>n 1) = (D 1'6 |D,,),
W(q)nla‘lq) = \/_<(Dn 1 | |(Dn 1 > <(Dn 1 | |(Dn>a
0 A
<(Dn|&|(bn> = < n— 1| |(Dn 1>+ \/—<(Dn| |(Dn 1> (540)
For the calculation of (D, | ICD,, 1), it is needed to find BA . Differentiating equation

(5.25), we have

OAT 1 (—dq
ot N

1 (/-
- i(o”ﬁ — og — d'pc})) = E((O'—Z + 0+ zow)q id'ﬁ).

o2

Using equations (5.38), we rewrite it in terms of operators A and A,

0AT  1[[-2 " s
— == (—(T + (oo + pod — uo ))A + i(/lO"O' + oo —,u(j'z) "I
ot 21\ o
Now we are ready to calculate (D, | |d>n 0.
0AT

(CI),,l |CDn D= D= [(Td-+z(,uo'0'+u0'0' o ))A

+ i(,ao"o' + uod — ud’z)AT]l(Dn_l),

= %(ﬂo‘-a + uod — ,uo"z) Vn. (5.41)

By using equation (5.41), equation (5.40) takes the following form:

<<I>n| 10 = (@, 1| 10,0) + 3 (ud0+u<f&—ud2)- (5.42)
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We observe that equation (5.42) is a recursion formula. So it can be used for evolution of

(®,-1|2|®,,) in terms of (D, 2|D, ), so that
@120y = @00 >+i(.. o .2)+i(.. o .2)
nl . 1%n = n=21"7n- —\MHOO o0 — uo —\MHO O o0 — Ho .
ot 215, 27 5 H H H 3 H H H

The same recursion formula can be applied for the ((I),,_2|§t|(l)n_2). Continuing this recur-

sion n times we get:

i

9 9
D, =|D,) = (Dol —|D
(Qul 51D} = (Dol o Do) + 15

(,acm + uod — ,uo"z). (5.43)

Since @ is known and given by (5.37), we calculate (d)olgld%) as

0 i
(@l 0o) = 5 (00 + porer - pa?)

Then, equation (5.43) gives:

5 . .
(@l 10,) = i(ﬂd‘a g — mz) + n%(ﬂo"a’ o — mz),

] 1
= %(n + 5)(,[10"0‘ + uod — ,u(fz).
The calculated (tl)n|§t|(D,,) and (®,|H(?)|®,), we can substitute into equation (5.4), giving

d -1 1 L B 2 1
EV"(I) = 7(11 + E)[,UO'(O' + ;0' +wo)+ et |

Using the Ermakov-Pinney equation (5.22), we can simplify the right hand side of above

equation as

Ly = —(n+l)[i]. (5.44)
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Taking integral of this equation we have

1\ (" de
(= —(n+§)f; u(e)o(e)’

0

where v, (fp) = 0. As a result, we have shown that the Schrodinger equation (5.1) has the

set of orthonormal solutions, given explicitly in the form,

1 12 1 de q
(L) = -
1/ (g,1) ( MZ"YL!) X W X exp[ ( ) 1o /J(E)O'Z(E)] n( \/fLO')
X exp [lﬂgi);;-_(t) q2] Xexp| — o2 qz] (5.45)

where the upper script "L" denotes solutions found by the Lewis-Riesenfeld approach.
Let 6y(r) = ft #(6)0_2(6), 6o(to) = 0. Then v,(r) = —(n + %)Go(t) and equation (5.45) can be

rewritten as

yP(g, 1) = ( \/_12%‘)1/2 « al'(t) X exp[ i(n+ )Ho(t)] x H ( \/_0_)
exp [z,u (Zt;_lg(t) ] X exp [ -3 h10'2 qz]. (5.46)

The probability densities corresponding to solutions (5.46) are

pD(g.1) = 1 ! [_ q 2] HZ( 1 ) 547
(@0 = (\/ﬁrznn!)xa(r)xeXp (\/ﬁa(t)) > Vho(t)) ©-4D

Now, we compare this result (5.46) with the wave function (4.19) which is found by the

x(0)
1)

lowing proposition it can be shown that the orthonormal solutions of Schrédinger equation

Evolution Operator Method. By setting 8y(¢) = arctan (mwoxz(to) ) and using the fol-

which are found in both Lewis Riesenfeld and Evolution Operator Method are actually

the same.

Proposition 5.2 If x,(t) and x,(t) are two linearly independent real solutions of equation

(4.9) satisfying initial conditions (4.10) and (4.11) as defined in Wei-Norman method,
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then

o) =

1 (20 + melxit)nm?
- O-O(t)a

maw, x3(to)

satisfies the Ermakov-Pinney equation (5.22) with following initial conditions:

| o
o(ty) = mwo’ d(ty) = 0.

5.4. Finding the propagator using eigenstates of the quadratic

invariant

(5.48)

Since the orthonormal solutions of Schrodinger equation { ;L)(q, t)} form an or-

thonormal basis for L>(R), then any solution of IVP for SE (5.1) is of the form

(o)

Wg. 0= ) cwP(g 0.

n=0

(5.49)

Let us see what will be the exact form of c,,. In equation (5.1) the initial value ¥%(q, to) is

given. In addition, we found the exact form of zp,(f)(q, 1) by the Lewis-Riesenfeld Invariant

Method. So let t = 1, in equation (5.49),

(o)

W(g. 1) = ) cahP(q, 1),

n=0

Then, taking inner product of both side with wﬁf)(q, 1), the ¢, will be

6 = WG )G 1) = f W W 10)dg

(5.50)

(5.51)
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Therefore Y(q, ) is

(o)

| f W 0 [y,
n=0 B

W(g,1)

I ) [ i v (g 0w (', to)]‘{’(q’, 10)dq -

n=0

The expression under the summation is the propagator, that is

> w0 (g 1) = K(q.1;q,1,). (5.52)
So ¥(g, t) become
¥(q,1) = f K(g.t:q',1,)¥P(q, t)dq . (5.53)

Next, we find the closed form for propagator K(q, t; ¢, t,). Recall the solutions ¢(L)(q, 1)
given by (5.46). Then ( DY (' 10) will be

) a0 = N exlitn + o] exp 200

% (\/_Ul(to)) p[— #Z(I())qlz]'

Substituting zp(L)(q, t) and ( ﬁ,L))*(q’, to) into the equation (5.52) we have

- 1
Koot 1) = )~ xep| =i+ )00 xexp i + )t |
n=0

-
XH"( Vi (i(t)) ( hi(;o)) 0'(t1)0'(to) XeXp[wg;‘Z(t)qz]

<o [ 1]

1
2 _ 172
2h0'2(t) ]XGXP[ 2oy ! ]
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1 W) —ito)r (i)
Vir \Vo(t)o(ty) % exp[ 2ho d ] X exp[ 2o (1) d ]

xexp| - Zhol'z(t) 7| xex] - 2ho-12(to)q,2] X xp [é(QO(tO) -6

Kir(g.t;q',1,)

’

(S b )

n=

After making arrangements and using Mehler’s formula (3.59) for the expression under

the summation, we get,

1

V2rih sin(6o(t) — Oo(to))o(£)o(to)
[ i (#(I)O" (1) Cot(90(t)—90(to))) )

20\ o) (1) 1
i(—,u(fo)d'(fo) N cot(B(?) —Qo(fo))) ”
27\ o (1) o (to) I
[ i 94’ ]
| Ao (t)o (1) sin(fo(?) — Oo(t0)) |

Kir(g,.t;q',1,)

X exp

X exp

X exp (5.54)

This formula for the propagator, K;z(g,t; q’, t,) coincides with the one found in (Yeon et
al., 1993).

Particular Case:

For the initial values 6y(ty) = 0, o(ty) = \/”%0 and J(¢y) = 0 given in Proposition 5.2 , the

last equation becomes

, 1 i (u@)o(t) cotby(t)) ,
Kir(g,t;q9',1,) = X exp [—( + )q ]
L sin6o()or(t) ZANLIUE A

imwo

X exp[ 7 cot Oy(g”?

—i ymwy  qq'
X exp [% (1) sineo(t)]'

66



By substituting o(¢) and J(¢) , the propagator is

, 1 1
Kir(q,t;q',t,) = \/TGXP[— 5 n
prs

x1()
x1(to)

[
2
—hx%(to)(ﬁ—g;) 2Ny %2

X exp [—iqcf ] ox [ ipx, %1 ¢ ] exp [ im’ wixgxaq* ]
hxoxs 21(x7 + m*wixgx3) 2hx (X7 + m*wlxgxl)

< exp ium* Wi xg X1 x; 2] b [ ixy 2]
2hx, (x3 + m2w0x0x2) 2hxy (X + mzwoxoxz)

By using functions f(z), g(¢), and h(t) which are given by equations (4.13), (4.14) and
(4.15) we have

1 h - 2
Kir(g,t;q',1,) = ECXP[ (t)] \/g(t) exp[’fz(t q ]exp[?(’t)(e“’)q - q’) ] (5.55)

We observe that the last equation is exactly the same as equation (4.23). Since here
we used Lewis Riesenfield’s approach to find propagator K;x(q,t;¢q’,t,) and we found
equality of it with equation (4.23), the results obtained by the Evolution Operator method
and the Lewis Riesenfeld method coincides for the particular case with initial conditions

o(ty) = 1/ \Jlmwy and o(#y) = 0, imposed on the function o (¢).
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CHAPTER 6

QUANTUM PARAMETRIC OSCILLATOR:
MALKIN-MANKO-TRIFONOV APPROACH

Here we consider again the one-dimensional time-dependent Schrédinger equa-

tion (SE)
N 0 .
SMY¥(g, 1) = (iha—t — H(1)¥(g,1) =0, (6.1)

where S (f) denotes the Schrodinger operator and the Hamiltonian is given by (4.3), that
is H(t) = (1/2u())p* + n)w*(0/2)q".

In this Chapter we describe another approach, the Malkin-Manko-Trifonov (MMT)
method for finding solutions of SE (6.1). This method was introduced in (Malkin, 1970),
and later used in other works such as (Malkin, 1971), (Dodonov and Man’ko,1979). It
is based on finding symmetries of SE (6.1), which by Definition 2.1 are operators that
map a solution of SE to an other solution of the same equation. According to Proposition
2.6, symmetry operators of SE are also dynamical invariants (integrals of motion), and
because of this MMT-method is also known as an approach based on finding dynamical

invariants linear in momentum p and coordinate g.
6.1. Linear Dynamical Invariants

It is known that (Man’ko, 1987) all invariants of an one-dimensional system with
quadratic Hamiltonian (4.3) can be constructed from two independent linear p and g in-

variants of the form,

A@) = a(t)g + b®)p + c(t), (6.2)
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where a(t), b(t) and c(f) are time dependent complex-valued functions. For finding in-

variants of the form (6.2) explicitly, we will use condition [S (), A()] = 0. Calculations
give

A 0 N
[S@.AW] = ih| . +bO)p + )] = |[AD. a0 + bO)p +c()| = 0.
~2

0
:>iﬂa¢mﬁ+bﬁm+c@}—b&0ﬂ0m+b@ﬁ+dﬂ

2 ~2
JHOCOT g+ b + )] = 0.
:»W@+w+@+@@—mmdwmza

u()

Combining terms in the last expression, we see that the following identity must hold
(b+—ﬁ)p+(a—mﬁw%nQQ+e=o, 6.3)
(1)
leading to the system of first-order differential equations:

a(t) = pOw*(b(),
b(t) = —a(?),
c(t) =0.

Taking derivative of second equation and then using the first one, we get
b+Eb+w=0. (6.4)
u

For convenience in comparison of (6.2) with operators & and &', we will use the following

notation b(¢) = (i/ V2h)e(t). Then a(7), b(¢) and ¢(f) become

a<r>:\;—2l;hu(r)s<t), b(z):\/%g@, ) = co 6.5)
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and without loss of generality we take ¢y = 0. As a result we obtain two independent

non-Hermitian linear invariants

A = \/%ﬁ(s(t)ﬁ—#(t)é(t)@), 6.6)
AW = %(S*O)ﬁ—u(ﬂé*(ﬂé), 6.7)

where £(¢) is a complex-valued solution of the linear differential equation
E0) + Za(t) + (0e) = 0. (6.8)
i

For the commutator of the linear invariants it’s convenient to impose condition

[A(f), A'(1)] = 1, which is equivalent to:

=2i

e(E(t) — e(e™(t) = )

6.9)

We note that this condition does not fix the initial data () and &(#y), but imposes only a
relation between them. Then, any particular complex solution of equation (6.8), will give
linear invariants of the form (6.6) and (6.7).

Using the linear invariants (6.6) and (6.7), one can find time-dependent coherent
states by applying the displacement operator D(a) = exp(aA'(f) — a*A(r)) to a state

(g, 1) satisfying AW (g, 1) = 0 and S (£ (g, 1) = 0.

In this work, we discuss the construction of wave function solutions of the para-
metric oscillator, which can be seen as generalizations of the Fock states. As we will see
in next section, in MMT-approach these solutions of SE appear as the eigenstates of a

Hermitian quadratic invariant.
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6.2. Quadratic invariants and time-dependent wave function

solutions

Using the linear invariants (6.6) and (6.7), one can easily construct quadratic Her-
mitian invariants. Indeed, we note that for the quantum system described by S (7), the
operators A(1)A(f) and A’ (1) A(r) are Hermitian quadratic invariants. That is, they sat-
isfy

T il
(ﬂﬂ*) - AA', (ﬂ*ﬂ) - AA,
showing that operators are Hermitian. Since [S (¢), A(1)] = 0, [S(®), A'(1)] = 0 it is not

difficult to show that these operators are quadratic invariants
S@), A" (z)ﬂ(z)] =0, [S ), ANA'(1)| = 0. (6.10)

Note that A(H)A'(t) # A () A(t), and more general quadratic Hermitian invariant will be

A OA() + A)A (1)

Iu(t) = 2

= A (A + % = N+ % (6.11)

where N(t) = A'(H)A(t). As a result, we have found three operators A(t), A’ (), N(t)

satisfying the commutation relations
[ﬂ(t), ﬂ*‘(t)] =1, [N(t), ﬂ(t)] = —A®), [N(t), ﬂ'*(z)] = A, (6.12)

of spectrum generating algebra for the operator N (), and also for the quadratic invariant
Iy(?). Since N(¢) is a Hermitian operator invariant, it has a real, time-independent eigen-
values, and due to above commutation relations it acts on the states as a number operator.
On the other side, the operators A’ (f) and A(f) are the raising and lowering operators,
respectively.

Now, the eigenstates of N(¢) can be constructed by a standard procedure. Let

f)M)(q, t) be such that ﬂ(t)wf)M)(q, 1) = 0, where the upper script ‘M’ will denote states
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obtained by the MMT-method. Then, we have
Ny (g, 1) = g™ (q,1), n=0,1,2,.., (6.13)

and the eigenstates are

(M) (ﬂT(l‘))n (M)
% (q’ t) = Wwo (q’ t)' (614)

Clearly, :psz)(q, t) are also eigenstates of the dynamical invariant 1(1), since

Iu(Oy,"(q,1) = (n + %)wff”)(q, f). (6.15)

In general, the eigenstates (6.14) do not need to satisfy the Schrodinger equation (6.1).

However, if the function %M)(q, 1) satisfies both equations
Ay (q.0) =0 and Sty (g.0) =0,

then eigenstates 1//§,M)(q, 1) defined by equation (6.14) will be also solutions of the SE, that
is S (t)t//i,M)(q, t) = 0. This is because AT(?) is a symmetry operator for S (1), and therefore
(.?IT(I))", for all n = 1,2, 3.... are also symmetry operators, in other words they commute
with $ (7). This shows that, by Malkin-Manko-Trifonov approach one can directly find
solutions of the Schrédinger equation, using the operators A() and A (f), since they are
symmetry operators by construction. We recall that in the Lewis-Riesenfeld approach
the lowering and raising operators A(f) and A¥(f) defined by equations (5.25) and (5.26),
are not invariants, and this explains some of the technical differences such as finding the
phase factor in LR-approach. In next section, we give the details of finding solutions of

Schrodinger equation by using the MMT-method.
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6.3. Solutions of Schrodinger equation in coordinate representation

In this section, we construct a function :p(()M)(q, 1), which satisfies both equations
ﬂ(t)tp(M)(q, f)=0and S (t)l//(M)(q, t) = 0. For this, writing the equation ﬂ(t)l/r(M)(q, fH =

in coordinate representation

0
\/_(au)( ih—=— —u(t)e(t)q)w<M><q, t) =0, (6.16)

and solving it, we get 1//<M)(q, 1) = Ny(?) exp [“;(ht) sgg qz] where Ny(7) = exp[c(?) + icx(1)]

and c;(?) and c,(?) are arbitrary real-valued time-dependent functions. Doing normaliza-

tion we find that exp[c;(£)] = 1/ ((hﬂ)% V]e(?)]), so that

v (g, 1) = [ic2(t)] exp [l” WEew o ] 6.17)

1
(hm)s V] (t (f)

Now, to fix ¢,(7) we use condition $ (Ho(g,t) = 0, and find that c,(f) = ‘l In '222' There-

fore, function (6.17) becomes

LD, ) (6.18)

(M)
Uy (g1 = 7 g(t)q

1
ot NED

Applying n-times the raising operator A’ (¢) to the ground state (6.18) and by using propo-
sitions given in Appendix D, we find solutions of SE defined by (6.14) in coordinate

representation:
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(o

(M) _ N LM
wn (q’t) - \/I’? wo (qat)a
s (s wnsoal) [ 0 &)
. M( m(e (0 - p(é <r>q)) ( = mexp[ iy g(t)q]),
_ 1 1 («/ﬁs*(r))"(iys* d)” [W(r) O ]
= —q— | exp
(nv\/ﬂ)z VeO\ 2 he dq 2h (t)
1y Vhe (r))( lﬂ(t)é*(t) A i) &) 2)
T V) VeD g(t( 2h 8*(t)q]dq” | 8*(t)q]
ipu(n) (1) ,
8 [ o & (r)q]
_ (\fs (1) ”exp[w)e(t) ]_exp[ ¢ ]
(n! Vin)? VE@) 2 &0 AlsP |
_ (\/_s(t)n i@ & , ( Ly
(nv\/ﬂ)z Ve() exp[ (l‘) ]( )(\/ﬁls(t)l)
q
g (\/_ |s(t>|) ’ [hldﬂlz_)’

1 1 (s(t))”/zexp[w(t)e(t) ]exp[ —q ]H( q )
(n! Var)? Ve)\2e() 0! AP |\ Valer)l)

Finally, we get

(M) L (E@Y"  [HOED 2 (4 6.19
(@0 = (n1 Vi) W(zs(z)) eX [Zh 8(t)q] ( \/;,|8(,)|)‘ (©.19)

with corresponding probability density
L pp——— HZ( 9 ) 6.20
D N Valen)l) (©20

These solutions are orthonormal and any solution of SE can be written in the form

v(g, 0 = Z<w2M)(q, 0|4, to)>wff”)(q, )= f K"(q, 14, 10(q’, t0)dg’

n=0
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where the propagator is KM (q,t;:q',t0) = Y52, ™ (g, O™’ (¢, ty). Here, we can find

a closed form of the propagator using £(¢) in the polar coordinates

&) = le)e™,  0@r) = f ar 6.21)

0 K@)

The calculations are as follows

(9]

K"(q, 14,10 = > w™ (g, 00"(q 10)

n=0
_ L 1 1 exp [l(g(t) ,  &(to) ,2)]
VR D V@) 2\e? T e 0!

Z (1|€(l)||8(fo)|) H( )H( q )
n'\2 e(t)e (1) le()1) "\le*(t0)l )

Using Mehler’s formula (3.59) for the expression under the summation and making proper

arrangements, we find the propagator

1

o —iqq’
V2rhile(t)lle(t)| sin(6(z) — 6(1)))

hsin(0(r) — 0(ty))le(®)lle(to)l

KM (q,t,q . ty)

exp

l' q2 q/Z
X exp [ﬁ cot(8(t) — e(to))(lg(t)l2 + |8(l‘o)|2)]
wu(r) uty) d 2
xp| - ((|8(t)|2 P - L ey 622)

where |g(?)] satisfies the Ermakov-Pinney equation, that is

f(t) d 1
dﬂ'()l @d—le(t)Hw(t)le(t)l RO
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6.4. Comparison of Malkin-Manko-Trifonov results by those

obtained in the previous approaches

In coordinate and momentum representation by using equations (6.6) and (6.7),

the dynamical invariant of MMT-method becomes

“ 1 1
Iu(t) = E(e(t)s*(t)ﬁz + WPENE DG — pe)e (1)pg — ﬂS(t)é*(t)c?ﬁ) +3. (623

If one takes &(¢) to be solution of (6.8), satisfying the initial conditions

R . iymay
&(ty) = N &(ty) = i) (6.24)

then &(7) is the same as &y(f) defined by (4.27) in WN-method. One can see that this
invariant coincides with the one obtained by WN-method. Comparing also the raising
and lowering operators in MMT and WN-methods which are equations (6.6),(6.7) and
(4.37),(4.38) respectively, it can be seen that they are exactly the same.

Similarly, if &(¢) satisfies the conditions (6.24) and o7 (¢) satisfies the conditions
(5.48), one can see that invariant I,,(f) coincides with the dynamical invariant I,x(t) ob-
tained by LR-method and given by (5.23). Also, in this case raising and lowering opera-
tors in LR and MMT-methods differ by a phase factor, that is

Al = &"PAQ),

A = eOAT).

Clearly, wave functions ¥\ (g, 7) given by (6.19) will depend on the particular choice
of the complex-valued solutions &(¢) of the classical equation (6.8). That is, different
choices of () will give wave function solutions of SE in the form (6.19) corresponding
to different initial states. In particular, if &(¢) satisfies initial conditions (6.24), at time
t = ty we have z//E)M)(q, to) = Yo(q, 1) = ¢o(q). In this case solutions ;b,gM)(q, t) obtained by

the MMT-method coincide with solutions ¥, (g, f) obtained by the Wei-Norman method,
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which are given in terms of &(¢) by equation (4.35). Also, the propagator Ky (q,t; q’, ty)
given by (6.22) is the same with the propagator K(g,t; q’,ty) found by WN-approach in
(4.36), as expected.

Similarly, we can say that under conditions (6.24), the solutions :ﬁEZM)

(L)
n

(g, 1) will co-
incide with solutions i, ”(g, t) obtained by Lewis-Riesenfeld method, when o(¢) satisfies
the initial conditions (5.48). This is exactly, the case oy(?) = |go(?)|, and it is easy to check
that the propagator K'™(q, t; ¢', ty) given by (6.22) will be the same with the propagator

K®(q,t;q . 1) given by (5.54).
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CHAPTER 7

CONCLUSION

In the present thesis, we considered time-dependent Schrodinger equation for a
quantum oscillator described by a quadratic, time-dependent hermitian Hamiltonian. We
studied three methods for solving this Schrodinger equation: the Wei-Norman algebraic
method, the Lewis-Riesenfeld method and the Malkin-Manko-Trifonov method.

The Wei-Norman algebraic method is also known as an Evolution operator ap-
proach for solving the initial value problem for the Schrodinger equation. Since the
Hamiltonian is a linear combination of generators of su(1, 1) Lie algebra, then the evo-
lution operator can be written as product of generators of the S U(1, 1) Lie group. Using
this idea, we found the evolution operator and showed that it is completely determined by
two-linearly independent real-valued solutions of the corresponding classical equation of
motion. Then, application of the evolution operator to given initial function gives us the
wave function solution of the Schrédinger equation.

The Lewis-Riesenfeld method is based on finding quadratic dynamical invariant
for the time-dependent Schrodinger equation. The quadratic invariant is found as a linear
combination of the su(1, 1) Lie algebra generators, where the time-dependent coefficients
are completely determined by a solution of the corresponding Ermakov-Pinney nonlinear
differential equation. The eigenvalues and eigenstates of the self-adjoint quadratic invari-
ant are found by the same algebraic approach used for diagonalization of the standard
harmonic oscillator. Then, the eigenstates of the invariant multiplied by a proper phase
factor give us a complete set of orthonormal solutions to the Schrodinger equation and
determine the propagator for the quantum evolution problem.

Malkin-Manko-Trifonov method is based on finding dynamical symmetries, which
by definition are operators that map solutions of the Schrédinger equation to other solu-
tions. In this approach a symmetry operator, linear in position and momentum, is com-
pletely determined by a complex-valued solution of the corresponding classical equation
of motion. Then, a successive application of the dynamical symmetry to a Gaussian type

solution of the Schrodinger equation gives us a complete set of orthonormal solutions,
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which are used also to find the propagator of the quantum system.

In the present thesis, we showed that the wave function solutions and propaga-
tors of the quantum parametric oscillator obtained by the above described different ap-
proaches are same, when in LR-approach the solution of the Ermakov-Pinney equation
and in MMT-approach the complex solution of the classical equation of motion are sat-
isfying proper initial conditions. In what follows, we write the initial-value problems
for the ordinary differential equations, whose solutions determine the same time-evolved

wave functions of the quantum problem under the same initial conditions.

Relations Between Solutions of Classical Equations of Motion

Evolution Operator Method Solutions

x+§x+w%0xza

.X](l()) =Xy ¥ 0, xl(t()) = O, X1 (l) = Vma)()X()O'()(l) COos OO(I)’
— 1 .
xa(to) = 0, (to) = 1/pa(t0)x1(10) X(1) = gy 0o(0) sin Go(0),
x1,xy—linear independent real solutions where 6y(7) = ft ; p (S)(lf% (S)ds.

Lewis-Riesenfeld Method

ot + Zéd'(t) + WX ()o(t) = ;#3(0

() = ==, 0(1p) = 0. 1 X2(t) + m2wx3x2 (1)
Vimwy o (1) = 1 _ 002 = oo(f)
mwy x;
o(t)-real solution of Ermakov-Pinney
equation
Manko-Dodonov Approach 0
| Bt) = ———— +iVmwoxoxt) = £o(1)
&) + ﬁé(t) + W (De(t) =0, VmwoXo
RN = le(®)| ™ = a(t)e™”
s(t()) - Wag(IO) =1 'u(to)o'
&(t)—complex solution where 6(t) = f,(: md&
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APPENDIX A

UNBOUNDED OPERATORS ON HILBERT SPACES

This appendix includes basic properties of unbounded operators which are used in

the thesis.

Definition A.1 Let X and Y be normed spaces and A : D(A) — Y is a linear operator
where D(A) c X. The operator A is called an unbounded operator if there exists a se-
quence {x,} € D(A) with ||x,|| = 1 for all n € N which implies lAx,|| = oo (Debnath and
Mikusinski, 2005).

Definition A.2 An operator defined in a normed space X is called densely defined if its

domain is a dense subset of X, that is, D(A) =X.

Definition A.3 The adjoint A" of densely defined operator A in a Hilbert space H is the
operator defined on the set of all y € H for which {Axly) is a continuous functional on

D(A) such that

(Axly) = (x|ATy),  for all x € D(A) and y € D(AY).

Definition A.4 A densely defined unbounded operator A in Hilbert space H is symmetric
(Hermitian) if

(PAY) = (Agl¥),
forall ,¥ € D(A).

Definition A.5 A densely defined operator A in Hilbert space H is self-adjoint if

D(A") = D(A),

and AT = Ay for all ¢ € D(A).
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APPENDIX B

COMMUTATION RELATIONS OF THE LIE GROUP
GENERATORS

In this appendix, we calculate commutators (3.31). Acting on arbitrary function

f(q) we have

>
>

[ = +]f(Q)

i, i, i O
?6—612561 f- 74 (?)a—qu

16 2 rr 12//
4aq(2qf+qf) 29/

1 / /! 24 1 '
12 +2af +2qf" + af) - Zqu

f 0
= — 4+ g—
2 q@qf
Then this expression becomes,
PN 1 0
K, ,K]f =(z+qg—
which implies
N 1.1 0
K,K.] = 2-(z+q9g—
= 21’\(0

By the same way, other commutation relations can be calculated.

(B.1)

(B.2)

83



APPENDIX C

THE FOURIER TRANSFORM

Definition C.1 The Fourier transform of an integrable function f, denoted by f or F{f(x))

is given by following integral

& = Flf(o) = \/%r f : f(x)e ™ dx (C.1)

Theorem C.1 (Fourier Inversion Theorem) For any integrable function f, the inverse

fourier transform can be expressed as an integral

1 o0 .
00 =7 17©) = = f F@)ede (C2)

Theorem C.2 Let f, g be an integrable function and constants «, 8 € C. Then
(Linearity) F{af(x) +Bg(x)} = aF {f(0)} + BF {g(1)},

(Translation) F{f(x —a)} = f(&)e ™, a € R,

(Modulation) F{e™ f(x)} = f(£ — a),

(Scaling) F{f(ax)} = ﬁf(%),a #0,

(Conjugation) F{f(x)} = f(=&).

Proposition C.1 If g(x) = e 2H,(x), then Fourier transform of g(x) will be

2
Fig(0)} = (=) exp| - %]Hn@ (C3)

where H,(§) is the n-th Hermite polynomial for all n=0,1,2,3,...

Proof Consider the exponential generating function of Hermite Polynomials,i.e.,

(o)

expl—r +2x) = 3 OO0 4

|
pr n:
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Multiplying this equation with exp(—x?/2), gives

[ee)

1 1, H,(0t"
expl-5° +2at = ] = ) exp[—ixz]ﬂ. (C.5)

|
= n:

Taking the Fourier transform of the left side of the above equation, we have

(e}
_1 2 1 _ixg 1.2 )
7_-{6 2x 24 2xt— t} — e lx‘fe 3 X“+2xt th,
V21 J-

etz 211‘{“—'—

Z Hy© (C.6)

=0

and the Fourier transform of the right side will be

T{ > exp[—— 2, (x)tn} D T{ exp[——x 1, (x)} & C.7)

n=0 n=0
Equating both sides, equation(C.6) and equation(C.7) gives

l’l

i e 5H (f)( lt)n i {exp [-=x*1H, (x)}

n=0 n=0

1 2
= 77{ exp[—ixz]Hn(x)} (—10)" exp [ - é%]Hn(f).

This result completes the proof. O



APPENDIX D

EXPONENTIAL OPERATORS

This section provides the necessary calculations mostly needed to treat time de-

pendent problems. Following equalities show how operators act on a given function.

Shift(Translation) Operator:

d o At d" 4
A1— = S = Z g = ). D.1
exp[ dq]f(q) Z;n‘ @ ;n!f @=/fg+D. O
where A is a parameter (constant).
Dilatation Operator:
d
eXp[lq@]f(q) = fle'g). (D.2)

Proposition D.1 For a given function fyo(q) of a real variable q, we have

1 6?

eXP[—%a—qz]fo(q) = flg, D,

where f(q, z) satisfies the IVP for Schrodinger equation

1 o> 0
Ea_qu(q;Z) = la—zf(q;Z), (D.3)
(@ D=0 = f(q;:0) = folq). (D.4)

Proof : If f(q,z) satisfies (D.3), then we have also

2

i1 0 0
eXp[—%a—qz]f(q;z) = eXP[ﬂa—Z]f(q;z),
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and it follows that

i1 0 o
exp[ 33 2]fo(£]) = exp[— %a—qz]f(Q;O) = exp [/la—z]f(q;z)|zzo’

f(g: 2+ D=0 = fg, D.

Now, we apply Proposition C.1 for three special choices of the function fy(g).

o Let fy(q) = pulq) = Nne'?%““qun( %1), where N, = (2"n!)"/2(%2)!/* for n =

0,1,2,3,...,. Then we need to solve the following Schrédinger equation:

VE fla:2) = i £(g32),
11(q:0) = @u(q),

Taking fourier transform with respect to variable g of the above IVP we get

s fu:2) = 18 fu&2),

fi€:0) = F{NneWHn( \/@q)} = o oxp [ 706 ﬁ))
h

First solving this system, then taking inverse Fourier transform we can find f,(q; z)

as following:

1

ma)()Z mwo
"(q:2) = N, X X - 2
f(q Z) (1 +(%Z)2)1/4 exP|: (1 +(mwo 2) Zh :|

1
xexp[_(1+(mwoz)2)mwo 2]

1 maw
XH”(((I n (%Z)2)1/2) N - Oq), (D.5)

with z real and so that f,(¢; 0) = ¢,(q). As a result, we have

X exp

1
i(n + E) arctan(%z)

2

. az]son@ = filq. D).

w3
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If f(q;0) = 6(g — q') then we need to solve IVP,

{ L]0 = i) @0,
f(g;0) =0d(q - g").

By Fourier transform we get

Lf&2) = L1810,
f&0)=Flo(g-q)} = "f‘f

Solving this system and taking inverse Fourier transform we have

32) = ——=n+/-exp|l=—(@—9)| D.6
f(g:2) m\ﬂ p[zzw q)] (D.6)
As a result, following equality is valid,

pe L .
exp [E’Aa—qz]é(q —-q)=flg, D) = Wir \/gexp [2—;((1 - q’)z]-

Let f(q;0) = exp[ Zf(f)e g ]6(@ kg — g’y where f(f) and h(f) are real-valued

functions. Then we need to solve IVP,

132 |f(@:0 = i 2] @2,
£(g:0) = exp| £ 0 o0 - ).

By Fourier transform, above IVP will be

L& 2) = 181 2),

f&0) = F{e?f<’>e'2"(')q26( g - q')} = 75 OXP [ - ife’l(”q'] exp [%if(t)q’z]-

88



Solving this system and taking inverse Fourier transform we get

1 - . .
f(g;2) = \/_2_71 \/gexp [?lf(t)qﬂ] exp [2—;(41 - eh<t>é)2], D.7)

As a result, we have

& —i 1 i —i
10 2] “hg _ gy = —— \/j —f(t)g”
exp [—2 /l—aqz] exp[ 5 (t)e q 6(eg—q") V7 exp > (g

—i )
X exXp ﬁ(q — eh(t)q)z].

&9



APPENDIX E

HERMITE POLYNOMIALS

Proposition E.1 For real or complex valued function {(t), one has operator identities

0 0 -
() gmq—%:—exp[?qz]%exp[ng} (E.1)
AN {0 L]0 - ,
(b) (ar)q aq) (-1)"e [ q] 5 nexp[—z q]. (E2)

Proof

(a) We will directly apply RHS of the equation (E.1) to arbitrary function f(g),

0 —
o 0|2 0] 0 )

—exp[ D ]( (04 (@) exp[i)q]

- 0
| o )

_l_

bs)
(afia) -0 = (Z(t)q - —)f(q)(ES)
0q 0q

It implies the desired equality (E.1). In addition, it can be proved by using the Hausdorft
identity (3.35).
(b)  Applying {(t)g — 0/0q n times and using (E.1), we get the equality (E.2). O

Proposition E.2 For a > 0, one has

d" 2

¢ = CDay Vag)e™ (E.4)

where H,(\aq) are the Hermite Polynomials.

Proof :Mathematical induction will be used for the proof. Firstly for n = 1, we have

—2age™ " = (=1)VaH,(Nag)e ™ (-1Y'(Va)'H,(Vag)e ™ (E.5)
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which shows that equation (E.4) is valid. Now we will prove that equation (E.4) holds for

n = k + 1, by assuming that it is true for n = k. Consider the following equations,

dk+1
qu+1 ¢

—agq

d 2
%((—1)’(( Vo) Hi( Vag)e™ ),

d 2
(=D \/&)k@(Hk( Vag)e™ )

d 2
(—D( \/C_V)k(%Hk( Vagq) - 2aqHy( \/c_vq))e_"" - (E.6)

Now, using the recursion relation for Hermite polynomials, we have,

dk+ 1 )

e = CUT N He (Vg (E7)

which shows that for n = k + 1, equation (E.4) is valid. Thus, we completed the proof. O
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