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ABSTRACT

ALGEBRAIC METHODS AND EXACT SOLUTIONS OF QUANTUM

PARAMETRIC OSCILLATORS

In this thesis, we study different approaches for solving the Schrödinger equation

for quantum parametric oscillators. The Wei-Norman algebraic approach, the Lewis-

Riesenfeld invariant approach, the Malkin-Manko-Trifonov approach are investigated.

For each approach, the wave function solutions of the Schrödinger equation, the prop-

agator and dynamical invariants are found and their relations with each other are shown.

In the Wei-Norman Algebraic approach, for constructing wave functions, explicit

form of evolution operator is obtained uniquely in terms of two linearly independent clas-

sical solutions of the corresponding classical equation of motion. In Lewis-Riesenfeld

approach, quadratic invariants are found in terms of the solution of Ermakov-Pinney equa-

tion and using the eigenstates of these invariants, wave function solutions are constructed.

Setting initial values for Ermakov-Pinney solution, results of Wei-Norman and Lewis-

Riesenfeld approaches are compared, then this solution is expressed in terms of same

two linearly independent classical solutions. In Malkin-Manko-Trifonov approach, linear

invariants which are symmetry operators for the Schrödinger equation, are constructed

in terms of complex-valued solutions of the classical equation. Using these invariants,

quadratic invariants are constructed and their eigenstates are used to find wave function

solutions. Moreover, initial values for complex solutions of classical equation of motion

are posed, and comparison of the three approaches is given.
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ÖZET

KUANTUM PARAMETRİK OSİLATÖRLER İÇİN CEBİRSEL

YÖNTEMLER VE TAM ÇÖZÜMLER

Bu tezde kuantum parametrik osilatörler için Schrödinger denklemini çözmek

amacıyla farklı yaklaşımlar çalışılmıştır. Wei-Norman cebri yaklaşımı, Lewis-Riesenfeld

değişmez yaklaşımı, Malkin-Manko-Trifonov yaklaşımı incelenmiştir. Her yaklaşım için,

Schrödinger denkleminin dalga fonksiyonu çözümleri, ilerletici (propagatör) ve dinamik

değişmezleri bulunmuştur ve birbirleriyle ilişkileri gösterilmiştir.

Wei-Norman cebri yaklaşımında, dalga fonksiyonları inşa etmek için evrim op-

eratörünün tam formu, buna karşılık gelen klasik hareket denkleminin klasik iki lineer

bağımsız çözümleri cinsinden tek olarak elde edilmiştir. Lewis-Riesenfeld yaklaşımında,

ikinci dereceden değişmezler, Ermakov-Pinney denkleminin çözümü cinsinden bulun-

muştur ve bu değişmezlerin özdurumları kullanılarak dalga fonksiyonu çözümleri inşa

edilmiştir. Ermakov Pinney çözümü için başlangıç değerleri ayarlanarak, Wei-Norman ve

Lewis-Riesenfeld çözümleri karşılaştırılmış, daha sonra bu çözüm aynı klasik iki lineer

bağımsız çözümler cinsinden ifade edilmiştir. Malkin-Manko-Trifonov yaklaşımında,

Schrödinger denklemi için simetri operatörleri olan lineer değişmezler, klasik denklemin

karmaşık değerli çözümleri cinsinden inşa edilmiştir. Bu değişmezler kullanılarak, ikinci

dereceden değişmezler inşa edilmiştir ve onların özdurumları kullanılarak dalga fonksiy-

onu çözümleri bulunmuştur. Bundan başka, klasik denklemin karmaşık çözümleri için

başlangıç değerleri gösterilmiştir ve üç yaklaşımın karşılaştırılması verilmiştir.
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CHAPTER 1

INTRODUCTION

Oscillations are happening in all around and inside of us world, from the beating

of the human hearts, to vibrating atoms. Mathematically, the system is oscillating or vi-

brating, if variables determining its state are changing not monotonically, but increasing

and decreasing alternately. In the simplest case of the mechanical system, the generalized

coordinates during oscillating process are increasing and decreasing, so that mechanical

points are moving forward and backward one after another. The simplest type of oscil-

lations are harmonic oscillations of pendulum, described by periodic circular functions.

The pendulum was invented in XVII century by Galileo Galilei and studied by Christiaan

Huygens. From XVIII century, with developing of mathematical analysis and analytical

mechanics, oscillating processes started to be studied on more strong mathematical basis,

applied to more big variety of oscillations by L. Euler, D’Alembert and Lagrange. In XIX

centure K. Weierstrass solved exactly the nonlinear pendulum problem by elliptic func-

tions. More general character of oscillation theory was described in book "The Theory of

Sound" by John William Strutt (Lord Rayleigh).

With discovering quantum mechanics and the Schrödinger equation in XX cen-

tury, an exact solution of quantum harmonic oscillator becomes fundamental of quan-

tum many body theory, quantum field theory, quantum photonics, etc. It was first de-

rived in matrix mechanics by M. Born, P. Jordan, W. Heisenberg and in wave mechanics

by E. Schrödinger (Schrödinger, 1926). As was shown by Schrödinger, the Gaussian

wave packet as non-stationary solution of the Schrödinger equation is oscillating accord-

ing to classical harmonic oscillator equation. The pure algebraic way to solve quantum

harmonic oscillator by using algebraic properties of creation and annihilation operators

was proposed by P. Dirac in his PhD thesis in 1926. This approach together with the

Schrödinger factorization method (Schrödinger, 1940) becomes origin of algebraic meth-

ods for solving quantum mechanical problems. After book of Herman Weil "Quantum

mechanics and group theory" algebraic and group theoretical methods come to be impor-

tant tools in solving quantum problems.
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Between different type of oscillation motions, the special role plays the so called

parametric oscillations, or oscillations with parametric excitation. In systems with para-

metric excitation, external action influences on the system by periodic time changes of

one or several parameters. For example, the pendulum with periodically changing length

l(t). It can leads to parametric resonance, which includes a wide class of phenomena,

from children swings to cosmology, electronics, quantum optics, Casimir forces, Bose

condensates, etc.

Mathematically, oscillations with parametric excitation are described by differ-

ential equations with explicit time dependent coefficients (which frequently are periodic

functions). For one degrees of freedom oscillator with time dependent mass m = m(t) and

frequency ω = ω(t) we have equation

ẍ(t) + γ(t)ẋ(t) + ω2(t)x(t) = 0(∗)

where γ(t) = ṁ(t)/m(t). This general case can be reduced to the one with constant mass

m = constant, by replacing t′ =
∫

dt
m(t) , ω

′ = mω (Perelomov and Zel’dovich,1998). How-

ever, frequently it is convenient for analysis of the problem’s solution to preserve origi-

nal variables. And quantization of equivalent classical systems, as is known, frequently

leads to different results, since different operators order in quantum Hamiltonian. Due

to explicit time dependence, quantization of parametric oscillator leads to non-stationary

problems in quantum mechanics. Such problems can be solved exactly very seldom.

It turns out that harmonic oscillator with time dependent frequency and mass is an im-

portant example of quantum problems which can be solved explicitly (Perelomov and

Zel’dovich,1998).

There are many works devoted to solution of this problem by different methods.

It is impossible to list all of them here, so we just mention several works as the above

book of Perelomov and Zeldovich, book of Malkin and Man’ko (Malkin, 1979) and

articles (Hartley and Ray,1982), (Dattoli et al., 1997), (Dantas et al., 1992). From these

approaches we like to emphasise the Wei-Norman (WN) algebraic method (Wei and

Norman, 1963), the Lewis-Riesenfeld (LR) invariant approach (Lewis and Riesenfeld,

1969), and the Malkin-Man’ko-Trifonov (MMT) method (Malkin, 1970). Common point

for all these methods is that solution of quantum problem reduces to solution of classical
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parametric oscillator problem (*). In paper (Büyükaşık et al., 2009) the method was

proposed to solve this problem for wide class of parametric functions, such that solution

is represented by special functions of mathematical physics from class of hypergeometric

functions. This way, the wide class of quantum parametric oscillators was solved.

The aim of this thesis is to provide explicit solutions of the IVP for the Schrödinger

equation and compare these results which are found by the WN, LR and MMT-methods.

The thesis is organized as follows:

In Chapter 2, we give definitions, propositions and properties of some basic con-

cepts which will be necessary for further studies.

In Chapter 3, we discuss the simple harmonic oscillator. Considering the stan-

dard time-independent Hamiltonian Ĥ0, we introduce time-independent as well as time-

dependent Schrödinger equation. For solving both equations, we write Hamiltonian in

terms of su(1, 1) Lie algebra generators and found the solutions in terms of Hamiltonian

eigenstates. Using these eigenstates, we find the evolution operator, wave function and

propagator. Later, we obtain dynamical invariants for simple harmonic oscillator and we

also find them in Heisenberg picture.

In Chapter 4, we consider the IVP for time-dependent Schrödinger equation with

the quadratic Hamiltonian with real-valued parameters. We construct evolution operator

and expresses it explicitly in terms of two linearly independent homogeneous solutions

of the corresponding classical equation of motion. Using explicit formula of evolution

operator, we find the wave function and propagator. Later, we introduce new notation for

constructing dynamical invariants.

In Chapter 5, we study the Lewis-Riesenfeld invariant approach, which is based on

finding quadratic invariant for the system described by the time-dependent Hamiltonian.

After finding the quadratic invariant in terms of σ(t), which is solution of the Ermakov-

Pinney equation, we obtain its eigenstates. Then, multiplying these states with phase

factor, we construct solution of the IVP for the Schrödinger equation. In addition, the

propagator is obtained by using eigenstates of quadratic invariant.

In Chapter 6, we find two linearly independent invariants with time-dependent

complex-valued parameters, which are symmetry operators for the Schrödinger equation.

By using these invariants, we construct quadratic and Hermitian invariants. After that

we find the eigenstates of quadratic invariants, which we use to obtain wave function

3



and propagator. Furthermore, we give initial values for complex solutions of classical

equation of motion and compare the results obtained by three different approaches.

In Conclusion, we summarize our main results. Details of some calculations, and

required definitions are given in Appendix.
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CHAPTER 2

PRELIMINARIES

2.1. Time-dependent Schrödinger Equation and the Evolution

Operator

The evolution of a quantum system is described by the time-dependent Schrödinger

equation

i�
∂Ψ(q, t)
∂t

= ĤΨ(q, t), (2.1)

where Ĥ is a linear Hermitian operator acting in a complex Hilbert space L2
t (R), called the

Hamiltonian or energy operator, and function Ψ(q, t) characterizes the state of the system

at time t and position q.When an initial state of the quantum system at time t = t0 is given

as

Ψ(q, t0) = Ψ0(q), (2.2)

then solution of the initial value problem (IVP) (2.1), (2.2) can be found using the evolu-

tion operator Û(t, t0), that is

Ψ(q, t) = Û(t, t0)Ψ(q, t0). (2.3)
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Substituting wave function (2.3) into IVP (2.1), (2.2) one obtains that the evolution oper-

ator must satisfy the operator IVP

i�
∂

∂t
Û(t, t0) = ĤÛ(t, t0), (2.4)

Û(t0, t0) = 1̂, (2.5)

which is usually accepted as definition of the evolution operator. It follows that

Ψ(q, t2) = Û(t2, t1)Ψ(q, t1) = Û(t2, t1)Û(t1, t0)Ψ(q, t0) = Û(t2, t0)Ψ(q, t0)

showing that evolution operator satisfies the composition or group property

Û(t, t2) = Û(t, t1)Û(t1, t2), t2 < t1 < t.

Now, depending on the Hamiltonian of the system, the following two cases may arise.

Case 1:

Suppose that the quantum system is conservative, so that Hamiltonian is explicitly time-

independent. Let us denote this Hamiltonian by Ĥ0. In this case, the evolution operator is

of the form

Û(t, t0) = exp
[−i
�

(t − t0)Ĥ0

]
, (2.6)

and using it, derivative of operator Û(t, t0) with respect to time t can be defined exactly

like the derivative of ordinary function. One can verify directly that the operator (2.6)

satisfies IVP (2.4),(2.5). Since Hamiltonian Ĥ0 is Hermitian, then

Û†(t, t0) = exp[
i
h

(t − t0)Ĥ0] = Û−1(t, t0),

6



Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = 1̂,

which shows that Û(t, t0) is a unitary operator.

Case 2:

Suppose that Hamiltonian depends explicitly on time, and denote it by Ĥ(t). In this case

formal integration can be done, but since one should care about time ordering, usually the

evolution operator is written as

Û(t, t0) = τ exp
[−i
�

∫ t

t0
H(t′)dt′

]
, (2.7)

where τ denotes time-ordering operator.

In the present work, to find the evolution operator we shall use its definition given

by (2.4), (2.5) which holds also in the case when Hamiltonian depends on time explicitly.

Next proposition shows that the evolution operator is unitary even when Hamiltonian

depends on time.

Proposition 2.1 The evolution operator of a quantum system with explicitly

time-dependent Hermitian Hamiltonian is unitary.

Proof By using equation (2.4) we can write the Hermitian conjugate equation:

−i�
∂

∂t
Û†(t, t0) = Û†(t, t0)Ĥ†(t). (2.8)

Multiplying (2.4) from the left by the Û†, and (2.8) from the right by the Û, then subtract-

ing one from an other we have

i�
(
Û†
∂Û
∂t
+
∂Û†

∂t
Û

)
= (Û†Ĥ(t)Û − Û†Ĥ†(t)Û). (2.9)

Since Hamiltonian is Hermitian, the right hand side of (2.9) is zero, so that

i�
(
Û†
∂Û
∂t
+
∂Û†

∂t
Û

)
= i�

d
dt

(
Û†Û

)
= 0, (2.10)
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showing that the operator Û†(t, t0)Û(t, t0) does not depend on time. Since Û(t0, t0) = 1̂,

this product is identity operator at t = t0 and it follows that Û†(t, t0)Û(t, t0) = 1̂ at any

time. �

2.2. Symmetries and dynamical invariants of Schrödinger Equation

In this section we discuss the concept of symmetry, integrals of the motion for

quantum systems, and their relations. The symmetry of a physical system is a broad

concept both in physics and mathematics, and sometimes different meanings are assigned

to it in different contexts. In this thesis we adopt the definitions given in the work of V.I.

Man’ko, (Man’ko, 1987). These definitions and some of their elementary properties will

be formulated mostly in a way suitable for the present study of the Schrödinger equation

(2.1), and the associated Schrödinger operator

Ŝ (t) ≡ i�
∂

∂t
− Ĥ(t). (2.11)

Symmetry of Physical Systems

Definition 2.1 The dynamical symmetry of a quantum system is a collection of opera-

tors which form a Lie algebra and take a solution of the Schrödinger equation to other

solutions of the same equation (Man’ko, 1987).

According to this, the collection of symmetry operators generates the dynamical symme-

try group.

Proposition 2.2 An operator K̂(t) is a dynamical symmetry operator for SE (2.1) if it

satisfies

[Ŝ (t), K̂(t)]Ψ = 0, (2.12)

for any Ψ being arbitrary solution of the SE.
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Proof Assume [Ŝ (t), K̂(t)]Ψ = 0, that is

[Ŝ (t), K̂(t)]Ψ = Ŝ (t)K̂(t)Ψ − K̂(t)Ŝ (t)Ψ = 0.

Since Ŝ (t)Ψ = 0, the above equation becomes

[Ŝ (t), K̂(t)]Ψ = Ŝ (t)
(
K̂(t)Ψ

)
= 0,

which shows that K̂(t) is a symmetry operator for the Schrödinger equation. �

Note that an operator K̂(t) is a symmetry for SE (2.1) if it satisfies more strong

condition

[Ŝ (t), K̂(t)] = 0, (2.13)

which means the commutator is identically zero.

Proposition 2.3 Let K̂(t) be a symmetry operator for SE (2.1) and function Ψ0 satisfies

SE, that is Ŝ (t)Ψ0 = 0. Then,

a) K̂n(t) is a symmetry operator for each n = 1, 2, 3, ... and the functions defined

as Ψn = (K̂(t))nΨ0 are solutions of the SE.

b) In general, for any analytic function f , the operator f (K̂(t)) is a symmetry and

the function Ψ = f (K̂(t))Ψ0 is also solution of the SE.

Proof a) Using mathematical induction, we will show that Ŝ (t)
(
K̂n(t)Ψ0

)
= 0. For the

case n = 1, it is clear that Ŝ (t)
(
K̂(t)Ψ0

)
= 0 since K̂(t) is a symmetry operator. Now

assume that Ŝ (t)
(
K̂n−1(t)Ψ0

)
= 0. Then,

Ŝ (t)
(
K̂n(t)Ψ0

)
= Ŝ (t)K̂(t)

(
K̂n−1(t)Ψ0

)
= K̂(t)Ŝ (t)

(
K̂n−1(t)Ψ0

)
= 0,

which shows that
(
K̂n(t)Ψ0

)
= Ψn for n=1,2,3,... are solutions of the Schrödinger equa-

tion.
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b) Using part (a) and the fact that any analytic function has a power series expan-

sion, we have

Ŝ (t)
(

f (K̂(t))Ψ0

)
= Ŝ (t)

( ∞∑
n=1

cnK̂n(t)Ψ0

)
= cn

( ∞∑
n=1

Ŝ (t)K̂n(t)Ψ0

)
= 0.

Since we find Ŝ (t)
(

f (K̂(t))Ψ0

)
= 0, this shows that it is also solution of the Schrödinger

equation. �

Quantum Dynamical Invariants ( Quantum Integrals of the Motion)

Definition 2.2 An operator Î(t) acting on a state |Ψ(t)〉 of the quantum system is called a

quantum dynamical invariant (quantum integral of the motion), if its expectation value at

this state does not change with time, that is

d
dt

〈
Ψ(t)

∣∣∣∣Î(t)
∣∣∣∣Ψ(t)

〉
= 0. (2.14)

Proposition 2.4 Î(t) is a dynamical invariant for SE (2.1) if and only if

(
i�
∂Î(t)
∂t
− [Ĥ(t), Î(t)]

)
|Ψ〉 = 0, (2.15)

for any Ψ being arbitrary solution of the SE.

Proof Taking the derivative of the equation (2.14), we have

d
dt
〈Î(t)〉Ψ = ∂

∂t
〈Ψ|Î(t)|Ψ〉 = 〈∂Ψ

∂t
|Î(t)|Ψ〉 + 〈Ψ|∂Î(t)

∂t
|Ψ〉 + 〈Ψ|Î(t)|∂Ψ

∂t
〉,

= 〈 1

i�
Ĥ(t)Ψ|Î(t)|Ψ〉 + 〈Ψ|∂Î(t)

∂t
|Ψ〉 + 〈Ψ|Î(t)| 1

i�
Ĥ(t)Ψ〉,

= 〈Ψ|∂Î(t)
∂t
|Ψ〉 + 1

i�
〈Ψ|Î(t)Ĥ(t) − Ĥ(t)Î(t)|Ψ〉,

=

〈
∂Î(t)
∂t
+

1

i�
[Î(t), Ĥ(t)]

〉
Ψ

=
1

i�

〈
i�
∂Î(t)
∂t
− [Ĥ(t), Î(t)]

〉
Ψ

.

If Î(t) is a dynamical invariant, its expectation value does not change with time, i.e.,
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d
dt

〈
Ψ(t)

∣∣∣∣Î(t)
∣∣∣∣Ψ(t)

〉
= 0, so we have (2.15). Conversely if (2.15) is valid, it is clear to see

d〈Î(t)〉Ψ/dt = 0 which yields that Î(t) is a dynamical invariant for SE (2.1). �

We note that, an operator Î(t) is a dynamical invariant for SE (2.1) if it satisfies

i�
∂Î(t)
∂t
− [Ĥ(t), Î(t)] = 0, (2.16)

and this condition (2.16) is stronger than condition (2.15).

If a system has different invariants, say Î1 and Î2, then arbitrary functions of

them, and in particular their commutators [Î1, Î2], and in general for n,m positive inte-

gers [În
1 , Î

m
2 ], or anti-commutators {Î1, Î2} are also invariants.

Proposition 2.5 Eigenvalues of Hermitian dynamical invariant Î(t) are real and do not

depend on time.

Proof Let Î(t)|ϕn〉 = λn|ϕn〉, where λn is an eigenvalue of Î(t), with corresponding eigen-

vectors |ϕn〉. Consider the following equations:

〈Î(t)ϕn|ϕn〉 = 〈ϕn|Î†(t)ϕn〉 = 〈ϕn|Î(t)ϕn〉,
〈λnϕn|ϕn〉 = 〈ϕn|λnϕn〉,
λ̄n〈ϕn|ϕn〉 = λn〈ϕn|ϕn〉,(

λ̄n − λn

)
〈ϕn|ϕn〉 = 0,

where 〈ϕn|ϕm〉 =
∫ ∞
−∞ ϕ

∗
n(q)ϕm(q)dq. Since 〈ϕn, ϕn〉 � 0 , we have

(
λ̄n − λn

)
= 0 which

shows that λn is real. For showing that eigenvalues are time-independent, we will take

time-derivative of both sides of the Î(t)|ϕn〉 = λn(t)|ϕn〉 which gives

∂Î(t)
∂t
|ϕn〉 + Î(t)

∂|ϕn〉
∂t
= λ̇n(t)|ϕn〉 + λn(t)

∂|ϕn〉
∂t
. (2.17)

Using equation (2.16) we get

dλn(t)
dt
|ϕn〉 = (

Î(t) − λn(t)
)∂|ϕn〉
∂t
+

i
�

(
ÎĤ|ϕn〉 − ĤÎ|ϕn〉), (2.18)

11



and arranging the terms gives

dλn(t)
dt
|ϕn〉 = (

Î(t) − λn(t)
)(∂|ϕn〉
∂t
+

i
�

Ĥ|ϕn〉
)
, ∀n. (2.19)

Taking the inner product with 〈ϕn| gives

dλn(t)
dt

〈
ϕn|ϕn

〉
=

〈
ϕn|(Î(t) − λn(t)

)(∂ϕn

∂t
+

i
�

Ĥϕn

)〉
, ∀n. (2.20)

Since Î(t) − λ(t) is a self-adjoint, we can write

dλn(t)
dt

∣∣∣∣∣∣ϕn

∣∣∣∣∣∣2 = 〈(
Î(t) − λn(t)

)
ϕn|∂ϕn

∂t
+

i
�

Ĥϕn

〉
, (2.21)

which clearly implies λ̇n(t) = 0, so that λn(t) = λn is a constant. �

Proposition 2.6 Let Ŝ (t) = i�(∂/∂t) − Ĥ(t) be the Schrödinger operator (2.11). Then,

[Ŝ (t), K̂(t)] = 0 ⇔ i�
∂K̂(t)
∂t
− [Ĥ(t), K̂(t)] = 0. (2.22)

Proof Consider the commutation of Ŝ (t) and K̂(t), i.e.,

[Ŝ (t), K̂(t)] = Ŝ (t)K̂(t) − K̂(t)Ŝ (t) =
(
i�
∂

∂t
− Ĥ(t)

)
K̂(t) − K̂(t)

(
i�
∂

∂t
− Ĥ(t)

)
.

Applying this equality to arbitrary function f , we have

(
Ŝ (t)K̂(t) − K̂(t)Ŝ (t)

)
f =

(
i�
∂

∂t
− Ĥ(t)

)
K̂(t) f − K̂(t)

(
i�
∂

∂t
− Ĥ(t)

)
f ,

= i�K̂(t)
∂ f
∂t
+ i�
∂K̂(t)
∂t

f − i�K̂(t)
∂ f
∂t
+ [K̂(t),H(t)] f ,

=

(
i�
∂K̂(t)
∂t
− [H(t), K̂(t)]

)
f .

12



which implies

[K̂(t), Ŝ (t)] =
(
i�
∂K̂(t)
∂t
− [H(t), K̂(t)]

)
.

It follows that if K̂(t) is a symmetry operator satisfying condition (2.13), then it is also

a dynamical invariant. Conversely, if K̂(t) is a dynamical invariant satisfying condition

(2.16), then it is a symmetry operator. �

Clearly, one can consider also the weaker form of above proposition, that’s

[Ŝ (t), K̂(t)]Ψ = 0 ⇔ i�
∂K̂(t)
∂t
Ψ − [Ĥ(t), K̂(t)]Ψ = 0, (2.23)

where Ψ satisfies the SE. It shows that, in the present context a symmetry operator is

equivalent to a dynamical invariant.

2.2.1. Quantum integrals of the motion and Evolution operator

formalism

We have seen that solution of the IVP for Schrödinger equation is completely

determined by the evolution operator Û(t, t0), which carries the initial state Ψ(q, t0) into

the state Ψ(q, t) at later time t. Here, we will show the connection between the integral of

the motions and the evolution operator.

Proposition 2.7 a) Any operator Î(t) of the form

Î(t) = Û(t, t0)Î(t0)Û−1(t, t0). (2.24)

is an integral of the motion.

b) Conversely, any integral of the motion Î(t) always has the form (2.24).

13



Proof a) For the proof it is sufficient to show that the expectation value of Î(t) does not

depend on time. Indeed, using (2.24) and Ψ(t) = Û(t, t0)Ψ(t0), we have the following

〈Ψ(t)|Î(t)|Ψ(t)〉 = 〈Û(t, t0)Ψ(t0)|Û(t, t0)Î(t0)Û−1(t, t0)|Û(t, t0)Ψ(t0)〉
= 〈Ψ(t0)|Û†Û Î(t0)Û−1Û |Ψ(t0)〉,

and since Û is unitary, it follows that

〈Ψ(t)|Î(t)|Ψ(t)〉 = 〈Ψ(t0)|Î(t0)|Ψ(t0)〉, (2.25)

which shows that the expectation value does not depend on time. According to the defini-

tion of an integral of motion, we can conclude that operator Î(t) is an integral of motion.

b) Suppose that Î(t) is an integral of the motion. Then, by definition we know that

the equality (2.25) is valid. Replacing state |Ψ(t)〉 by |Ψ(t)〉 = Û(t, t0)|Ψ(t0)〉 in equation

(2.25), we get

〈Ψ(t0)|Û†(t, t0)Î(t)Û(t, t0)|Ψ(t0)〉 = 〈Ψ(t0)|Î(t0)|Ψ(t0)〉. (2.26)

From the equality (2.26) of matrix elements we get equality for the operators since it holds

for any vector |Ψ(t0)〉. Therefore we have Û†(t, t0)Î(t)Û(t, t0) = Î(t0) or the equality we

desire Î(t) = Û(t, t0)Î(t0)Û−1(t, t0). �

Proposition 2.8 The eigenvalues of integrals of the motion Î(t) do not depend on time.

Proof : Let the operator Î(t) be an integral of the motion, and assume it has eigenvectors

ϕλ(t) with corresponding eigenvalues λ(t), that is

Î(t)ϕλ(t) = λ(t)ϕλ(t). (2.27)
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Then, at time t = t0 we have

Î(t0)ϕλ(t0) = λ(t0)ϕλ(t0), (2.28)

Using Î(t0) = Û−1(t, t0)Î(t)Û(t, t0), last equality implies

Û−1(t, t0)Î(t)Û(t, t0)ϕλ(t0) = λϕλ(t0),

Î(t)Û(t, t0)ϕλ(t0) = λÛ(t, t0)ϕλ(t0),

Î(t)ϕλ(t) = λϕλ(t),

showing that the eigenvalues λ of the operator Î(t) do not depend on time by construction.

Since the integral of the motion Î(t) and operator Î(t0) are connected by a unitary evolution

operator, they have the same spectrum and therefore there are no other eigenvalues of Î(t)

different from λ. �

Proposition 2.9 If Î(t) is an integral of the motion, then În(t) for each n = 1, 2, 3, ... and

f (Î(t)) for any analytic function f are also integrals of the motion.

Proof : According to the previous proposition we have equality (2.24). Using this equal-

ity and Proposition 2.7, it follows

Î2(t) = Û(t)Î(t0)Û−1(t)Û(t)Î(t0)Û−1(t) = Û(t)Î2(t0)Û−1(t). (2.29)

By induction one can easily show that any power of an integral of the motion is again an

integral of motion. Since any analytic function f can be represented as a power series,

then f (Î(t)) is also an integral of the motion. �

Also the product of the distinct integrals of the motion with the same Hamiltonian is an

integral of the motion. It can be proved in the same way we did for the square of the

operator-integral of the motion.

Proposition 2.10 Integral of the motion takes a solution of the Schrödinger equation into

a solution of the same equation.
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Proof : Let Ψ(t) = Û(t, t0)Ψ(t0) be solution of the Schrödinger equation. We want to

show that the new function defined as φ(t) = Î(t)Ψ(t) is also a solution of the SE. Indeed,

we have

φ(t) = Î(t)Ψ(t) = Î(t)Û(t, t0)Ψ(t0)

= Û(t, t0)Î(t0)Û−1(t, t0)Û(t, t0)Ψ(t0)

= Û(t, t0)Î(t0)Ψ(t0) = Û(t, t0)φ(t0),

where we define φ(t0) = Î(t0)Ψ(t0). Thus, the new function is of the form

φ(t) = Û(t, t0)φ(t0), showing that φ(t) also becomes a solution of the Schrödinger equation.

�
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CHAPTER 3

SIMPLE HARMONIC OSCILLATOR

Consider the following Hamiltonian:

Ĥ0 =
1

2m
p̂2 +

mω2
0

2
q̂2, (3.1)

where p̂ and q̂ are momentum and position operators, respectively, m is the particle mass,

ω0 is the angular frequency and both of them are time independent. Introducing the

operators

â† =
√

mω0

2�

(
q̂ − i

1

mω0

p̂
)
, (3.2)

â =

√
mω0

2�

(
q̂ + i

1

mω0

p̂
)
, (3.3)

N̂ = â†â, (3.4)

we have

Ĥ0 = �ω0(ââ† − 1

2
) = �ω0(â†â +

1

2
) = �ω0(N̂ +

1

2
), (3.5)

By using above, we get following equalities:

p̂ = i

√
mω0�

2

(
â† − â

)
, q̂ =

√
�

2mω0

(
â† + â

)
. (3.6)

The operators â, â†, and N̂ satisfy the following commutation relations

[
â, â†

]
= 1,

[
N, â†

]
= â†,

[
N, â

]
= −â. (3.7)
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Therefore we have spectrum generating algebra {1, â†, â,N}.

3.1. Eigenvalues and Eigenstates of the Hamiltonian Ĥ0

The eigenvalue problem for Ĥ0 also known as time-independent Schrödinger equa-

tion is

Ĥ0ϕn(q) = Enϕn(q), (3.8)

where En are eigenvalues of Hamiltonian operator Ĥ0 and ϕn(q) are the corresponding

eigenstates. Eigenvalues and eigenstates of Ĥ0 can be found by an algebraic approach

(Dirac, 1982) :

Consider the number operator N̂ which is a Hermitian operator. Since it is a

Hermitian, its eigenvalues must be real. Let us denote eigenvalues of N̂ by λn and corre-

sponding normalized eigenstates by |λn〉, i.e.,

N̂|λn〉 = λn|λn〉. (3.9)

Firstly, we will show that eigenvalues of N̂ are non-negative, that’s λn ≥ 0,

0 ≤ ||â|λn〉||2 = 〈λn|â†â|λn〉 = 〈λn|N̂|λn〉 = λn〈λn|λn〉 = λn (3.10)

Next, we will see that â|n〉 is an eigenstate of N̂ with eigenvalue λn − 1, â2|λn〉 is an

eigenstate of N̂ with eigenvalue λn − 2 and so on.

N̂â|λn〉 = â(N̂ − 1)|λn〉 = (λn − 1)â|λn〉, (3.11)

N̂â2|λn〉 = â(N̂ − 1)â|λn〉 = (λn − 2)â|λn〉. (3.12)
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Now we show that eigenvalues λn must be integers and the only possible eigenstates are

|0〉, |1〉, |2〉, .... Indeed, if λn is not an integer, and we apply lowering operator consecu-

tively, eventually we would come to negative eigenvalues. But since we found that the

eigenvalues of N̂ can not be negative, it is not allowed to obtain negative eigenvalues.

So lowest possible eigenstate is |0〉 with eigenvalue 0 and thus, λn can take only integer

values, i.e., λn = n.

Since â|n〉 is an eigenstate of N̂ with eigenvalue n − 1, it must be proportional to

|n − 1〉, i.e., â|n〉 = cn|n − 1〉 where cn is a constant.

n = 〈n|â†â|n〉 = |cn|2〈n − 1|n − 1〉 = |cn|2 (3.13)

Thus we found cn =
√

n. Using this result we have â|n〉 = √n|n − 1〉 and we see that â is

a lowering operator. If we consider operator â†, we can find that â†|n〉 is an eigenstate of

N̂ with eigenvalue n+ 1, (â†)2|n〉 is an eigenstate of N̂ with eigenvalue n+ 2 and since it is

proportional to |n+1〉we can find â†|n〉 = √n + 1|n+1〉. Thus â† will be a raising operator.

Since we can express Hamiltonian Ĥ0 as given in equation (3.5), the eigenstates

of Ĥ0 are the eigenstates of N̂, and we have

Ĥ0|n〉 = �ω0(N +
1

2
)|n〉 = �ω0(n +

1

2
)|n〉. (3.14)

which shows that the eigenvalues of Ĥ0 are En = �ω0(n + 1
2
) for n=0,1,2,3,...

Eigenstates in Coordinate Representation

Since correspoding eigenstates of En are ϕn, 〈q|n〉 = ϕn(q) the equation (3.8) will be

Ĥ0ϕn(q) = �ω0(n +
1

2
)ϕn(q). (3.15)

For finding the eigenstates in coordinate representation we shall use q̂ = q and p̂ = −i� d
dq
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in Hamiltonian (3.1). So Hamiltonian becomes

Ĥ0 =
−�2

2m
d2

dq2
+

mω2
0

2
q2.

Then âϕ0(q) = 0, that’s

âϕ0(q) =

(√
mω0

2�
q +

√
�

2mω0

d
dq

)
ϕ0(q) = 0. (3.16)

Above equation is a first order differential equation. Solution of this equation is ϕ0(q) =

N0e
−mω0q2

2� . After normalization, we have

ϕ0(q) =
(mω0

π�

)1/4
e
−mω0q2

2� .

Other eigenstates can be found by applying â† to the ground state ϕ0(q). Therefore for

finding ϕn(q), one needs to apply n times â† to ϕ0(q), that is

ϕn(q) =
(â†)n

√
n!
ϕ0(q) =

(mω0

π�

)1/4 1√
n!

(√
mω0

2�
q −

√
�

2mω0

d
dq

)n

e
−mω0q2

2� .

Let ξ =
√

(mω0)/�q, then we obtain ϕn = Nne−ξ
2/2eξ

2/2(ξ − d/dξ)ne−ξ
2/2, where eξ

2/2(ξ −
d/dξ)ne−ξ

2/2 = Hn(ξ) represents the n-th order Hermite polynomial and

Nn is the normalization constant that can be found as Nn = (2nn!)−1/2(mω0/π�)
1/4. As a

result, the normalized eigenstates of the Ĥ0 are

ϕn(q) = Nne
−mω0q2

2� Hn

(√
mω0

�
q
)
, n = 0, 1, 2, ... (3.17)

where corresponding eigenvalues are En = �ω0(n + 1/2). The system {ϕn(q)}∞n=0 forms

an orthonormal basis for L2(R). Therefore any Ψ(q) ∈ L2(R) has a unique representation.
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From |Ψ〉 = ∑∞
n=0 |n〉 〈n| |Ψ〉 , we have

〈q|Ψ〉 =
∞∑

n=0

〈q|n〉 〈n|Ψ〉 , (3.18)

⇒ Ψ(q) =

∞∑
n=0

cnϕn(q) =

∞∑
n=0

〈n|Ψ〉ϕn(q), (3.19)

where cn = 〈n|Ψ〉 = 〈n|q〉 〈q|Ψ〉 =
∫ ∞
−∞ ϕ

∗
n(q)Ψ(q)dq.

3.2. The time-dependent Schrödinger Equation

Consider the IVP for the time-dependent Schrödinger equation

i�
∂Ψ(q, t)
∂t

= Ĥ0Ψ(q, t), −∞ < q < ∞ (3.20)

Ψ(q, t0) = Ψ0(q), (3.21)

where Ψ0(q) ∈ L2(R) and Ĥ0 is given by equation (3.1).

3.2.1. Solution of the IVP for the Schrödinger Equation: Standart

approach

In this approach we use the evolution operator of the Schrödinger equation (3.20)

in the form

Û0(t, t0) = e−
i
�

(t−t0)Ĥ0 (3.22)
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and that the eigenstates {ϕn(q)}∞n=0 of Ĥ0 form an orthonormal basis for L2(R). Then, any

initial condition Ψ0(q) ∈ L2(R) can be written as

Ψ0(q) =

∞∑
n=0

〈n|Ψ0〉ϕn(q), (3.23)

and solution of the IVP for the Schrödinger equation can be found by applying evolution

operator (3.22) to Ψ0(q),

Ψ(q, t) = Û0(t, t0)Ψ0(q) = e−
i
�

(t−t0)Ĥ0

( ∞∑
n=0

〈n|Ψ0〉ϕn(q)

)
, (3.24)

=

∞∑
n=0

〈n|Ψ0〉e− i
�

(t−t0)Enϕn(q), (3.25)

where we used also the spectral mapping theorem:

Ĥ0ϕn = Enϕn ⇒ f (Ĥ0)ϕn = f (En)ϕn, (3.26)

for any analytic function f.

An equivalent procedure for solving the IVP (3.20),(3.21) is first to apply the

evolution operator (3.22) to ϕn(q) and find solutions of the Schrödinger equation (3.20) as

Ψn(q, t) = Û0(t, t0)ϕn(q) = exp

[
− i
�

(t − t0)En

]
ϕn(q),

= Nn × exp

[
− i
�

(t − t0)En

]
× exp

[−mω0q2

2�

]
× Hn

(√
mω0

�
q
)

= Nn × exp

[
− iω0(t − t0)(n +

1

2
)

]
× exp

[−mω0q2

2�

]
× Hn

(√
mω0

�
q
)
, (3.27)

for each n = 0, 1, 2, 3... Since the set {Ψn(q, t)}∞n=0 is an orthonormal basis for the solution
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space of the Schrödinger equation, then any other solution of (3.20) is of the form

Ψ(q, t) =
∞∑

n=0

cnΨn(q, t). (3.28)

Here the coefficients cn are fixed by the given initial condition (3.21), Ψ(q, t0) = Ψ0(q) as

cn = 〈n|Ψ0〉. Then solution of the IVP is

Ψ(q, t) =
∞∑

n=0

〈n|Ψ0〉Ψn(q, t), (3.29)

which is same with solution (3.25).

3.2.2. Lie Algebra

In this part, we give definition and properties of a Lie algebra which will be nec-

essary for further calculations.

Definition 3.1 A Lie algebra is a vector space over a field F with a multiplication on the

vector space defined as Lie bracket and denoted by [., .], i.e., [., .] : L × L → L such that

the following properties are satisfied:

1) A Lie algebra is bilinear, i.e.,

[
aX + bY,Z

]
= a

[
X,Z

]
+ b

[
Y,Z

]
,[

Z, aX + bY
]
= a

[
Z, X

]
+ b

[
Z,Y

]
.

2) It satisfies Jacobi Identity which is

[
X,

[
Y,Z

]]
+

[
Y,

[
Z, X

]]
+

[
Z,

[
X,Y

]]
= 0.
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3) It is skew-symmetric, i.e.,

[
X, Y

]
= −

[
Y, X

]
.

for all a, b, c ∈ F and X,Y,Z ∈ L.

Example 3.1 Consider the operators

K̂− =
−i
2

∂2

∂q2
, K̂+ =

i
2

q2, K̂0 =
1

2

(
q
∂

∂q
+

1

2

)
. (3.30)

These operators are generators of su(1, 1) Lie algebra (Dattoli et al., 1997) and satisfy

the following commutation relations:

[
K̂−, K̂+

]
= 2K̂0,

[
K̂0, K̂+

]
= K̂+,

[
K̂0, K̂−

]
= −K̂−. (3.31)

For the proofs, see the Appendix A.

3.2.3. Solution of the IVP for the Schrödinger Equation using the

Wei-Norman algebraic Approach

Now, we will solve SE using Wei-Norman Algebraic approach. For this, note that

Ĥ0 can be written as a linear combination of su(1, 1) Lie algebra generators, i.e.,

Ĥ0 = +i
(−�2

m
K̂− − mω2

0K̂+

)
. (3.32)

where K̂−, K̂+, K̂0 are as defined in (3.30). It follows that we can write the evolution

operator Û0(t, t0) as a product of exponential operators, which are generators of S U(1, 1)
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Lie algebra, as Û0(t, t0) = e f0(t)K̂+e2h0(t)K̂0eg0(t)K̂− , that’s

Û0(t, t0) = exp

[
i
2

f0(t)q2

]
exp

[
h0(t)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g0(t)

∂2

∂q2

]
, (3.33)

where f0(t), g0(t), h0(t) are real-valued functions to be determined. Using the equation

(2.4), one needs to find ∂Û0

∂t and Ĥ0Û0 :

∂Û0

∂t
= ḟo(t)K̂+Û0 + ġ0(t)e f0(t)K̂+

(
e2h0(t)K̂0 K̂−e−2h0(t)K̂0

)
e2h0(t)K̂0eg0(t)K̂−Û0. (3.34)

+2ḣ0(t)
(
e f0(t)K̂+ K̂0e− f0(t)K̂+

)
Û0

Rewriting ∂Û0

∂t after using Baker-Hausdorff identity

eξÂB̂e−ξÂ = B̂ + ξ[Â, B̂] +
ξ2

2!
[Â, [Â, B̂]] +

ξ3

3!
[Â, [Â, [Â, B̂]]] + .., (3.35)

we get

∂Û0

∂t
=

([
ḟ0(t) − 2ḣ0 f0(t) + e−2h0(t)ġ0(t) f 2

0 (t)
]
K̂+

+

[
e−2h0(t)ġ0(t)

]
K̂− +

[
2ḣ0(t) − 2 f0(t)ġ0(t)e−2h0(t)

]
K̂0

)
Û0.

Since i�∂Û0

∂t must be equal to Ĥ0Û0(t, t0) and Ĥ0 is given by equation (3.32), then the

following relation must hold:

i
(−�2

m
K̂− − mω2

0K̂+
)
= i�

([
ḟ0(t) − 2ḣ0 f0(t) + e−2h0(t)ġ0(t) f 2

0 (t)
]
K̂+ +

[
e−2h0(t)ġ0(t)

]
K̂−

+

[
2ḣ0(t) − 2 f0(t)ġ0(t)e−2h0(t)

]
K̂0

)
.
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For this equality, we come up with IVP for a nonlinear system of three first-order ordinary

differential equations for f0(t), g0(t), h0(t), that’s

ḟ0 +
� f 2

0

m
+

mω2
0

�
= 0, f0(t0) = 0, (3.36)

ḣ0 +
� f0

m
= 0, h0(t0) = 0, (3.37)

ġ0 +
�e2h0

m
= 0, g0(t0) = 0. (3.38)

Notice that the equation (3.36) is a Ricatti equation and by substitution f0(t) = mẋ/�x, it

can be linearized as

ẍ(t) + ω2
0x(t) = 0. (3.39)

Therefore, solution f0(t) of equation (3.36) can be expressed in terms of the linear inde-

pendent solutions of the equation (3.39) namely x1(t) and x2(t), which satisfy the initial

conditions:

x1(t0) = x0 � 0 , ẋ1(t0) = 0, (3.40)

x2(t0) = 0 , ẋ2(t0) =
1

mx0

. (3.41)

According to this, solutions x1(t) and x2(t) will be explicitly

x1(t) = x0 cos

(
ω0(t − t0)

)
, (3.42)

x2(t) =
1

mω0x0

sin

(
ω0(t − t0)

)
. (3.43)
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By solving IVP for the nonlinear system of three first-order ordinary differential equations

we find the following system for f0(t), g0(t), h0(t) in terms of x1(t) and x2(t),

f0(t) =
mẋ1(t)
�x1(t)

=
−mω0

�
tan

(
ω0(t − t0)

)
, (3.44)

g0(t) = −�x2
0

( x2(t)
x1(t)

)
=
−�

mω0

tan
(
ω0(t − t0)

)
, (3.45)

h0(t) = − ln

∣∣∣∣∣ x1(t)
x0

∣∣∣∣∣ = − ln
∣∣∣∣ cos(ω0(t − t0))

∣∣∣∣. (3.46)

Substituting f0(t), g0(t), h0(t) into the equation (3.33) we have evolution operator as

Û0(t, t0) = exp

[
im
2�

( ẋ1(t)
x1(t)

)
q2

]
× exp

[
− ln

∣∣∣∣∣ x1(t)
x1(t0)

∣∣∣∣∣(q ∂∂q + 1

2

)]
× exp

[
i�x2

1(t0)

2

( x2(t)
x1(t)

)
∂2

∂q2

]
,

or

Û0(t, t0) = exp

[−imω0

2�
tan

(
ω0(t − t0)

)
q2

]
× exp

[
− ln

∣∣∣∣ cos
(
ω0(t − t0)

)∣∣∣∣(q ∂
∂q
+

1

2

)]
× exp

[
i�

2mω0

tan
(
ω0(t − t0)

)
∂2

∂q2

]
.

Now, we apply this evolution operator to ϕn(q), i.e.,

Ψn(q, t) = Û0(t, t0)ϕn(q) = exp

[
i
2

f0(t)q2

]
exp

[
h0(t)

(
q
∂

∂q
+

1

2

)]
× exp

[
− i

2
g0(t)

∂2

∂q2

](
Nn exp

[−mω0q2

2�

]
Hn

(√
mω0

�
q
))
.
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By using the result given in Appendix C, we have

Ψn(q, t) = Nn exp

[
i
2

f0(t)q2

]
exp

[
h0(t)

(
q
∂

∂q
+

1

2

)]
× 1

(1 + (mω0

�
g0)2)1/4

× exp

[
− i

( mω0

�
g0

1 + (mω0

�
g0)2

)
mω0

2�
q2

]
× exp

[
iω0

(
n +

1

2

)
arctan(

mω0

�
g0)

]
× exp

[
−

(
1

1 + (mω0

�
g0)2

)
mω0

2�
q2

]
× Hn

((
1

(1 + (mω0

�
g0)2)1/2

)√
mω0

�
q
)
.(3.47)

Now, we rewrite this expression by using dilatation operator (D.2) and results obtained

for f0(t), g0(t), and h0(t),

Ψn(q, t) = Nn × exp

[
− iω0(n +

1

2
)(t − t0)

]
× exp

[−mω0

2�
q2

]
× Hn

(√
mω0

�
q
)
. (3.48)

This shows thatΨn(q, t) obtained by Wei-Norman algebraic approach gives the same result

with the one obtained before (3.27).

3.3. Propagator For Standart Harmonic Oscillator

Consider the IVP for the Schrödinger equation given by equations (3.20) and

(3.21). Solution of this IVP can be found as a result of applying an integral operator

to the initial wave function. Precisely, solution can be written in the form

Ψ(q, t) =
∫ ∞

−∞
K0(q, t; q′, to)Ψ0(q′)dq′. (3.49)

where the kernel K0(q, t; q′, t0) of the integral operator is known as the "propagator" or

Green’s function for the IVP. The propagatorK0(q, t; q′, t0) satisfies the Schrödinger equa-

tion in variables q and t, with q′ and t0 fixed, and at initial time t → t0 is equal to the
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Dirac-delta function localized at q = q′, that’s

i�
∂

∂t
K0(q, t; q′, t0) = Ĥ0K0(q, t; q′, t0), (3.50)

K0(q, t; q′, t0)|t=t0 = lim
t→t0
K0(q, t; q′, t0) = δ(q − q′). (3.51)

Because of these properties, the propagator K0(q, t; q′, t0) as a function of q, can be seen

as the wave function at time t of a particle that was localized at point q′ at the initial time

t0 (Sakurai and Napolitano, 2010).

From another side, we know that the solution can be found by using the evolution operator.

Writing the initial state as

Ψ0(q) =

∫ ∞

−∞
δ(q − q′)Ψ0(q′)dq′, (3.52)

where δ(q−q′) is the Dirac-delta distribution, and substituting equation (3.52) in equation

(2.3) we get

Ψ(q, t) = Û0(t, t0)

∫ ∞

−∞
δ(q − q′)Ψ0(q′)dq′ =

∫ ∞

−∞
Û0(t, t0)δ(q − q′)Ψ0(q′)dq′.(3.53)

Comparing equations (3.49) and (3.53) we obtain the relation between the propagator and

the evolution operator as

K0(q, t; q′, t0) = Û0(t, t0)δ(q − q′), (3.54)

where t0 is initial time such that Û0(t0, t0) = 1̂.

Below, firstly we shall find explicitly the propagator K0(q, t; q′, t0) by using the

eigenstate representation of Dirac-Delta function. Secondly, we shall find the propagator

by using the representation of Û0(t, t0) given by (3.33) and applying it to Dirac-Delta

function. Details are as follows.
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3.3.1. Finding the propagator: first approach

First, we will find the propagator by using the eigenstates of Ĥ0 which are ϕn(q).

For this aim, it is required to find the representation of Dirac-delta in terms of the orthonor-

mal basis. Remember that in Section 3.1, we found that
{
ϕn(q)

}∞
n=0

forms an orthonormal

basis for L2(R). Therefore we have the following

Ψ0(q) =

∞∑
n=0

〈n|Ψ0〉ϕn(q) =

∞∑
n=0

∫ ∞

−∞
ϕ∗n(q′)Ψ0(q′)dq′ϕn(q),

=

∫ ∞

−∞

( ∞∑
n=0

ϕ∗n(q′)ϕn(q)

)
Ψ0(q′)dq′. (3.55)

It follows that

δ(q − q′) =
∞∑

n=0

ϕ∗n(q′)ϕn(q). (3.56)

Therefore, using Û0(t, t0) given by (3.22) and Dirac-Delta representation given by (3.56)

we have

K0(q, t; q′, t0) = Û0(t, t0)δ(q − q′) = e−
i
h (t−t0)Ĥ0

∞∑
n=0

ϕ∗n(q′)ϕn(q),

=

∞∑
n=0

ϕ∗n(q′)e−
i
h (t−t0)Ĥ0ϕn(q),

=

∞∑
n=0

ϕ∗n(q′)e−
i
h (t−t0)Ênϕn(q), (by spectral mapping theorem)

K0(q, t; q′, t0) =

∞∑
n=0

(
e−

i
h (t0)Ênϕn(q′)

)∗(
e−

i
h (t)Ênϕn(q)

)
=

∞∑
n=0

Ψ∗n(q′, t0)Ψn(q, t). (3.57)

30



Substituting ϕn(q) given by equation (3.17) and eigenvalue En into the equation (3.57),

we have

K0(q, t; q′, t0) =

√
mω0

π�
exp

[−mω0

2�
(q2 + q′2)

]
× exp

[
iω0(t0 − t)

2

]
×
∞∑

n=0

1

n!

(
eiω0(t0−t)

2

)n

Hn

(√
mω0

�
q′

)
Hn

(√
mω0

�
q
)
. (3.58)

For the expression under summation, we use Mehler’s formula (Zhukov, 1999), that is

∞∑
n=0

1

n!

(
1

2
τ

)n

Hn(x)Hn(y) =
1√

1 − τ2
exp

[
2xyτ − (x2 + y2)τ2

1 − τ2

]
. (3.59)

Then K0(q, t; q′, t0) will be

K0(q, t; q′, t0) =

√
mω0

π�
exp

[−mω0

2�
(q2 + q′2)

]
× exp

[
iω0(t0 − t)

2

]

× 1√
1 − e2iω0(t0−t)

exp

[2
(

mω0

�

)
qq′eiω0(t0−t) −

(
mω0

�

)
(q2 + q′2)e2iω0(t0−t)

1 − e2iω0(t0−t)

]
.

After necessary calculations and arrangements, above equation becomes

K0(q, t; q′, t0) =

√
mω0

2πi� sin
(
ω0(t − t0)

) exp

[
imω0

2� sin
(
ω0(t − t0)

)
×
(
(q2 + q′2) cos

(
ω0(t − t0)

) − 2qq′
)]
. (3.60)

The propagatorK0(q, t; q′, t0) (3.60) coincides with the propagator found in (Saku-

rai and Napolitano, 2010).

3.3.2. Finding the propagator: second approach

In this part, we will use the evolution operator Û(t, t0) which is given by equation

(3.33) to find explicitly the propagator K0(q, t; q′, t0). For this we will apply Û(t, t0) to
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δ(q − q′), i.e.,

K0(q, t; q′, t0) = Û0(t, t0)δ(q − q′),

= exp

[
i
2

f0(t)q2

]
exp

[
h0(t)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g0(t)

∂2

∂q2

]
δ(q − q′).

Using the result given in Appendix C, we have

K0(q, t; q′, t0) =
1√
2π

exp

[
i
2

f0(t)q2

]
exp

[
h0(t)

(
q
∂

∂q
+

1

2

)]√
i

g0(t)
exp

[ −i
2g0(t)

(q − q́)2

]
.

Now we need to use properties (D.1),(D.2) and substitute f0(t), g0(t) and h0(t). After

necessary calculations, K0(q, t; q′, t0) becomes

K0(q, t; q′, t0) =

√
mω0

2πi� sin
(
ω0(t − t0)

) exp

[
imω0

2� sin
(
ω0(t − t0)

)
×
(
(q2 + q′2) cos

(
ω0(t − t0)

) − 2qq′
)]
. (3.61)

Observe that the result is exactly the same with equation (3.60). Therefore we can con-

clude that, we obtained the same result for propagator as expected by using two different

approaches.

3.4. Standart Harmonic Oscillator in Heisenberg Picture

Definition 3.2 If Â is an operator in Schrödinger picture, then the corresponding opera-

tor in Heisenberg picture is defined as

ÂH(t) = Û†
0
(t, t0)ÂsÛ0(t, t0),

where Û0(t, t0) is the evolution operator of the physical system.
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According to this, using the evolution operator found in equation (3.22) and the expres-

sions of q̂ and p̂ in terms of â and â†, which are given in equation (3.6), we can find the

position and momentum operators in Heisenberg picture. For this aim and further calcu-

lations, we need to use the Baker-Hausdorff identity (3.35). For using this identity, we

need commuatation relations which are given in equation (3.7). This way, we can find the

Heisenberg operators corresponding to the simple harmonic oscillator as

âH(t) = e
i
�

(t−t0)Ĥ0 âe−
i
�

(t−t0)Ĥ0 = e−iω0(t−t0)â,

=

√
mω0

2�
e−iω0(t−t0)q̂ + i

1√
2�mω0

e−iω0(t−t0) p̂, (3.62)

â†H(t) = e
i
�

(t−t0)â†e−
i
�

(t−t0) = eiω0(t−t0)â†,

=

√
mω0

2�
eiω0(t−t0)q̂ − i

1√
2�mω0

eiω0(t−t0) p̂. (3.63)

Using equations (3.62) and (3.63), we find the position and momentum operators in

Heisenberg picture as

q̂H(t) = cos
(
ω0(t − t0)

)
q̂ +

1

mω0

sin
(
ω0(t − t0)

)
p̂, (3.64)

p̂H(t) = −mω0 sin
(
ω0(t − t0)

)
q̂ + cos

(
ω0(t − t0)

)
p̂, (3.65)

where q̂ ≡ q̂H(t0) and p̂ ≡ p̂H(t0). For q̂ and p̂, are known in the Heisenberg picture, q̂2

and p̂2 can also be calculated easily in the Heisenberg picure, as well as q̂n and p̂n, where

n is a positive integer. This way, q̂2 and p̂2 will be

q̂2
H(t) = Û†

0
(t, t0)q̂2Û0(t, t0) =

(
Û†

0
(t, t0)q̂Û0(t, t0)

)2

,

p̂2
H(t) = Û†

0
(t, t0) p̂2Û0(t, t0) =

(
Û†

0
(t, t0) p̂Û0(t, t0)

)2

.
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Using equations (3.64),(3.65), q̂2
H(t) and p̂2

H(t) then become

q̂2
H(t) = cos2

(
ω0(t − t0)

)
q̂2 +

1

m2ω2
0

sin2
(
ω0(t − t0)

)
p̂2

+
1

mω0

cos
(
ω0(t − t0)

)
sin

(
ω0(t − t0)

)(
q̂p̂ + p̂q̂

)
, (3.66)

p̂2
H(t) = m2ω2

0 sin2
(
ω0(t − t0)

)
q̂2 + cos2

(
ω0(t − t0)

)
p̂2

− mω0 sin
(
ω0(t − t0)

)
cos

(
ω0(t − t0)

)(
q̂p̂ + p̂q̂

)
. (3.67)

By this result we can see that Hamiltonian in both of the Schrödinger picture and the

Heisenberg picture are the same,

ĤH(t) =
1

2m
p̂2

H(t) +
mω2

0

2
q̂2

H(t) =
1

2m
p̂2 +

mω2
0

2
q̂2. (3.68)

One can easily check that position and momentum operators which are given by equations

(3.64) and (3.65), are the solutions of classical equations,

d2

dt2
q̂H(t) + ω2

0q̂H(t) = 0,

d2

dt2
p̂H(t) + ω2

0 p̂H(t) = 0,

and satisfy Heisenberg equations of motion,

d
dt

q̂H(t) =
p̂H(t)

m
,

d
dt

p̂H(t) = −mω2
0(t)q̂H(t).

3.5. Dynamical Invariants for Standart Harmonic Oscillator

Since we know the evolution operator, we can find the invariants corresponding to

position and momentum operators like we did in previous section by using their represen-
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tations in terms of â and â†. Firstly we find â0(t) and â†
0
(t) as following:

â(t) = Û0(t, t0)âÛ†
0
(t, t0) = e−

i
�

(t−t0)Ĥ0 âe
i
�

(t−t0)Ĥ0 = eiω0(t−t0)â,

=

√
mω0

2�
eiω0(t−t0)q̂ + i

1√
2�mω0

eiω0(t−t0) p̂, (3.69)

â†(t) = Û0(t, t0)â†Û†
0
(t, t0) = e−

i
�

(t−t0)Ĥ0 â†e
i
�

(t−t0)Ĥ0 = e−iω0(t−t0)â†,

=

√
mω0

2�
e−iω0(t−t0)q̂ − i

1√
2�mω0

e−iω0(t−t0) p̂. (3.70)

Then using equations (3.69) and (3.70), the invariants corresponding to position and mo-

mentum operators will be

q̂(t) = cos

(
ω0(t − t0)

)
q̂ − 1

mω0

sin

(
ω0(t − t0)

)
p̂,

p̂(t) = mω0 sin

(
ω0(t − t0)

)
q̂ + cos

(
ω0(t − t0)

)
p̂.

Now consider the Hamiltonian Ĥ0 =
1

2m p̂2 +
mω2

0

2
q̂2, then Î(t) = Û0(t, t0)Ĥ0Û†

0
(t, t0) = Ĥ0

is an invariant. It is clear since Ĥ0 has no time dependency,
[
Ĥ0, Û0

]
= 0.
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CHAPTER 4

QUANTUM PARAMETRIC OSCILLATOR:

WEI-NORMAN ALGEBRAIC METHOD

Consider the IVP

i�
∂Ψ(q, t)
∂t

= Ĥ(t)Ψ(q, t), (4.1)

Ψ(q, t0) = Ψ0(q), (4.2)

where q ∈ R and t ≥ 0. For time dependent Hamiltonian of quantum parametric oscillator

Ĥ(t) =
1

2μ(t)
p̂2 +

μ(t)ω2(t)
2

q2, (4.3)

where μ(t), ω(t) are real-valued functions of time, so that Ĥ†(t) = Ĥ(t).

The Wei-Norman Algebraic method (Evolution Operator method) for solving an

IVP for Schrödinger equation (4.1) was introduced in (Wei and Norman, 1963) and later

used in many works such as (Büyükaşık et al., 2009), (Dattoli et al., 1997). This method

is based on the Lie algebraic properties of the Hamiltonian (4.3), which is quadratic in p̂

and q̂ and therefore can be written as a linear superposition of generators of su(1,1) Lie

algebra. Then, the evolution operator Û(t, t0) can be written as product of exponential

operators that are elements of the corresponding SU(1,1) group. This allows us to find

explicitly the evolution operator and solution of the IVP for the Schrödinger equation. We

give the details in next sections.
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4.1. Construction of the evolution operator

The Hamiltonian given by equation (4.3) can be written as a linear superposition

of generators of su(1, 1) Lie algebra as follows

Ĥ(t) = i
(−�2

μ(t)
K̂− − μ(t)ω2(t)K̂+

)
. (4.4)

Then, the evolution operator is of the form

Û(t, t0) = e f (t)K̂+e2h(t)K̂0eg(t)K̂− , (4.5)

where f (t), g(t), h(t) are real-valued functions to be determined. Using definition of

evolution operator (2.4),(2.5), we need to find ∂Û
∂t and ĤÛ :

∂Û
∂t
= ḟ (t)K̂+Û + e f (t)K̂+2ḣ(t)K̂0e2h(t)K̂0eg(t)K̂− + e f (t)K̂+e2h(t)K̂0 ġ(t)K̂−eg(t)K̂− ,

= ḟ (t)K̂+Û + 2ḣ(t)
(
e f (t)K̂+ K̂0e− f (t)K̂+

)
Û + ġ(t)e f (t)K̂+

(
e2h(t)K̂0 K̂−e−2h(t)K̂0

)
e2h(t)K̂0eg(t)K̂−Û.

Rewriting ∂Û
∂t after using Baker-Hausdorff identity (3.35) and multiplying it with i�, we

get

i�
∂Û
∂t
= i�

([
ḟ (t) − 2ḣ f (t) + e−2h(t)ġ(t) f 2(t)

]
K̂+

+

[
e−2h(t)ġ(t)

]
K̂− +

[
2ḣ(t) − 2 f (t)ġ(t)e−2h(t)

]
K̂0

)
Û.
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Since i�∂Û
∂t must be equal to Ĥ(t)Û(t, t0) and Ĥ(t) is given by equation(4.4), then the

following relation must hold:

i
(−�2

μ(t)
K̂− − μ(t)ω2(t)K̂+

)
= i�

([
ḟ (t) − 2ḣ f (t) + e−2h(t)ġ(t) f 2(t)

]
K̂+ +

[
e−2h(t)ġ(t)

]
K̂−

+

[
2ḣ(t) − 2 f (t)ġ(t)e−2h(t)

]
K̂0

)
.

For this equality, we get IVP for a nonlinear system of three first-order ordinary differen-

tial equations for the unknown real-valued functions f (t), g(t) and h(t)(Initial conditions

are chosen as "0" because Û(t0, t0) must satisfy (2.5)).

ḟ +
� f 2

μ(t)
+
μ(t)ω2(t)
�

= 0 , f (t0) = 0, (4.6)

ḣ +
� f
μ(t)
= 0 , h(t0) = 0, (4.7)

ġ +
�e2h

μ(t)
= 0 , g(t0) = 0. (4.8)

Since equation (4.6) is a Ricatti equation, by substitution f (t) = μ(t)(ẋ/x)/�, it can be

linearized in the form of a classical damped parametric oscillator with time dependent

damping
μ̇

μ
and frequency ω(t) :

ẍ +
μ̇

μ
ẋ + ω2(t)x = 0. (4.9)

Let x1(t) and x2(t) be two linearly independent real solutions of equation (4.9), satisfying

the initial conditions

x1(t0) = x0 � 0, ẋ1(t0) = 0, (4.10)

x2(t0) = 0, ẋ2(t0) =
1

μ(t0)x0

. (4.11)
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Note that, the Wronskian of x1(t) and x2(t) at t0 is

W(x1, x2)(t0) =

∣∣∣∣∣∣∣∣ x0 0

0 1
μ(t0)x0

∣∣∣∣∣∣∣∣ = 1

μ(t0)
,

and using the Wronskian formula

W(x1, x2)(t) = W(x1, x2)(t0) exp
[
−

∫ t

t0

μ̇(s)

μ(s)
ds

]
,

we get

W(x1, x2)(t) =
1

μ(t0)
exp

[
− ln

μ(t)
μ(t0)

]
=

1

μ(t)
. (4.12)

Now, solving three first-order ordinary differential equations (4.6), (4.7) and (4.8), we find

f (t) =
μ(t)
�

( ẋ1(t)
x1(t)

)
, (4.13)

g(t) = −�x2
1(t0)

( x2(t)
x1(t)

)
, (4.14)

h(t) = − ln

∣∣∣∣∣ x1(t)
x1(t0)

∣∣∣∣∣. (4.15)

Substituting these functions into equation (4.5), we get the evolution operator

Û(t, t0) = exp

[
i
2

f (t)q2

]
exp

[
h(t)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g(t)
∂2

∂q2

]
. (4.16)

It can be also expressed in terms of x1(t) and x2(t) as follows

Û(t, t0) = exp

[
iμ(t)
2�

( ẋ1(t)
x1(t)

)
q2

]
× exp

[
− ln

∣∣∣∣∣ x1(t)
x1(t0)

∣∣∣∣∣(q ∂∂q + 1

2

)]
× exp

[
i�x2

1(t0)

2

( x2(t)
x1(t)

)
∂2

∂q2

]
. (4.17)
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4.2. The wave functions

To obtain an explicit form for evolving in time states Ψ(q, t), we will use Ψ(q, t) =

Û(t, t0)Ψ0(q). For using this equation, we need to know Û(t, t0) and Ψ0(q). We found

Û(t, t0) in equation (4.16), and for Ψ0(q), we will use the most general form of initial

wave function in L2
t (R), whose expansion is

Ψ0(q) =

∞∑
n=0

〈n|Ψ0〉ϕn(q),

where ϕn(q) are the normalized eigenstates of Ĥ0 (3.1) which are expressed in equa-

tion (3.17), with corresponding to eigenvalues En = �ω0(n + 1
2
). Substituting Ψ0(q) into

Ψ(q, t) = Û(t, t0)Ψ0(q) will give,

Ψ(q, t) = Û(t, t0)Ψ0(q) =

∞∑
n=0

〈n|Ψ0〉Û(t, t0)ϕn(q).

For finding Ψn(q, t) = Û(t, t0)ϕn(q), we use results which are given in Appendix C, the

identities (D.1),(D.2), so that we have

Ψn(q, t) = Û(t, t0)ϕn(q),

= exp

[
i
2

f (t)q2

]
exp

[
h(t)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g(t)
∂2

∂q2

]
ϕn(q),

= Nn exp

[
h(t)
2

]
exp

[
i
2

f (t)q2

]
1

(1 + (mω0

�
g(t))2)1/4

× Hn

(√
mω0

�

( 1

(1 + (mω0

�
g(t))2)1/2

)
eh(t)q

)
× exp

[−imω0

�

2

( mω0

�
g(t)

1 + (mω0

�
g(t))2

)(
eh(t)q

)2
]

exp

[
i
(
n +

1

2

)
arctan(

mω0

�
g(t))

]
× exp

[
− mω0

2�

(
1

1 + (mω0

�
g(t))2

)(
eh(t)q

)2
]
. (4.18)
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where Nn = (2nn!)−1/2(mω0/π�)
1/4. Substituting f (t), g(t), and h(t) into the equation (4.18)

and using the Wronskian W(x1(t), x2(t)) = 1/μ(t), the wave functions in terms of the

classical solutions x1(t) and x2(t) of equation (4.9) become

Ψn(q, t) =
(

1

π�2nn!

)1/2
1√
σ0(t)

× exp

[
iμ(t)ẋ1(t)
2�x1(t)

q2

]
× exp

[
i

2�
mω0�x2

1(t0)
x2(t)
x1(t)

1

σ2
0
(t)

q2

]
× exp

[
i
(
n +

1

2

)
arctan

(
− mω0x2

1(t0)
x2(t)
x1(t)

)]
× exp

[
− 1

2�σ2
0
(t)

q2

]
× Hn

(
q√
�σ0(t)

)
(4.19)

where

σ0(t) =
1√
mω0

(
x2

1(t) + m2ω2
0x4

1(t0)x2
2(t)

x2
1
(t0)

)1/2

. (4.20)

By using ρn(q, t) = |Ψn(q, t)|2, probability densities can also be calculated as

ρn(q, t) =
(

1

π�2nn!

)
× 1

σ0(t)
× exp

[
−

(
1√
�σ0(t)

q
)2]
× H2

n

(
q√
�σ0(t)

)
. (4.21)

Functions Ψn(q, t) and ρn(q, t), which are found above coincide with the results in

(Büyükaşık et al., 2009), and references given there.

Motion of Zeros

Let τ(l)
n for l = 1, 2, ....n, be the zeros of Hermite polynomial Ĥn(q), i.e., Ĥn(τ(l)

n ) = 0.

From solution (4.19), one can see that the zeros of wave function Ψn(q, t) are the zeros

of Hn

(
q/
√
�σ0(t)

)
. Then, motion of zeros of the wave function (4.19) is described by the

function

q(l)
n (t) =

√
�τ(l)

n σ0(t),

where σ0(t) is expressed in (4.20).
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4.3. Finding the Propagator using the evolution operator

From section 3.3, we know that propagator is

K(q, t; q′, t0) = Û(t, t0)δ(q − q′), (4.22)

where t0 is the initial time such that Û(t0, t0) = 1̂. Therefore, using the evolution oper-

ator obtained in equation (4.16) and applying it to δ(q − q′) will give us the propagator

explicitly. Using the result given in Appendix C, we have

K(q, t; q′, t0) = Û(t, t0)δ(q − q′),

= exp

[
i
2

f (t)q2

]
exp

[
h(t)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g(t)
∂2

∂q2

]
δ(q − q′),

=
1√
2π

√
i

g(t)
exp

[
h(t)
2

]
exp

[
i
2

f (t)q2

]
exp

[ −i
2g(t)

(eh(t)q − q′)2

]
,(4.23)

or

K(q, t; q′, t0) =
1√
2π

√ −i
�x1(t0)x2(t)

exp

[
i
2

μ(t)
�

ẋ1(t)
x1(t)

q2

]
× exp

[
ix1(t)

2�x2
1
(t0)x2(t)

(
x1(t0)

x1(t)
q − q′

)2]
. (4.24)

Now, to describe the evolution of a state from an arbitrary time t1 to t2, where t1 < t2, we

can use the evolution operator Û(t2, t1) or the propagator K(q, t2; q′, t1),

Ψ(q, t2) = Û(t2, t1)Ψ(q, t1) =

∫ ∞

−∞
K(q, t2; q′, t1)Ψ(q′, t1)dq′.

To find Û(t2, t1) explicitly we use the composition rule, Û(t2, t1)Û(t1, t0) = Û(t2, t0) which

gives Û(t2, t1) = Û(t2, t0)Û†(t1, t0). By using Û(t, t0) found in equation (4.16), Û(t2, t0)

42



and Û†(t1, t0) can be written respectively as follows

Û(t2, t0) = exp

[
i
2

f (t2)q2

]
exp

[
h(t2)

(
q
∂

∂q
+

1

2

)]
exp

[
− i

2
g(t2)

∂2

∂q2

]
,

Û†(t1, t0) = exp

[
i
2

g(t1)
∂2

∂q2

]
exp

[
− h(t1)

(
q
∂

∂q
+

1

2

)]
exp

[−i
2

f (t1)q2

]
.

Therefore, using the result given in Appendix C and identities (D.1),(D.2), we have

K(q, t2; q′, t1) = Û(t2, t1)δ(q − q′) = Û(t2, t0)Û†(t1, t0)δ(q − q′),

= exp

[
h(t2) − h(t1)

2

]
exp

[
i
2

f (t2)q2

]
exp

[
h(t2)

(
q
∂

∂q

)]
exp

[
− h(t1)

(
q
∂

∂q

)]
× exp

[
i
2

(
g(t1) − g(t2)

) ∂2

∂q2

]
× exp

[−i
2

f (t1)q2

]
δ(q − q′),

= exp

[
h(t2) − h(t1)

2

]
exp

[
i
2

f (t2)q2

]
exp

[
h(t2)

(
q
∂

∂q

)]
× exp

[
i
2

(
g(t1) − g(t2)

) ∂2

∂q2

]
exp

[−i
2

f (t1)e−2h(t1)q2

]
δ(e−h(t1)q − q′),

or

K(q, t2; q′, t1) =
1√
2π

√
i

g(t2) − g(t1)
exp

[
h(t2) − h(t1)

2

]
exp

[
i
2

(
f (t2)q2 − f (t1)q′2

)]
× exp

[ −i
2
(
g(t2) − g(t1)

) (eh(t2)q − eh(t1)q′)2

]
.

4.4. Heisenberg Picture

According to Definition 3.2, by using the evolution operator (4.16), we can find

the position and momentum operators in Heisenberg picture in terms of x1(t) and x2(t) as

Q̂H(t) = Û†(t, t0)q̂Û(t, t0) =
1

x0

x1(t)q̂ + x0x2(t) p̂, (4.25)

P̂H(t) = Û†(t, t0) p̂Û(t, t0) =
1

x0

μ(t)ẋ1(t)q̂ + x0μ(t)ẋ2(t) p̂, (4.26)
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where we note that q̂ = Q̂H(t0) and p̂ = P̂H(t0). They can also be expressed in terms of

σ0(t),

Q̂H(t) =
√

mω0 cos θ0(t)σ0(t)q̂ +
1√
mω0

sin θ0(t)σ0(t)p̂,

P̂H(t) = μ(t)
( √

mω0 sin θ0(t)
μ(t)σ0(t)

+
√

mω0 cos θ0(t)σ̇0(t)
)
q̂

+
μ(t)
mω0

( √
mω0 cos θ0(t)
μ(t)σ0(t)

+
√

mω0 sin θ0(t)σ̇0(t)
)
p̂,

where θ0(t) =
∫ t

t0
1

μ(s)σ2
0
(s)

ds. Knowing Q̂ and P̂ in the Heisenberg picture allows us to

compute easily Q̂2 and P̂2 in the Heisenberg picure, and also Q̂n and P̂n, where n is a

positive integer. For Q̂2 and P̂2 we have

Q̂2
H(t) = Û†(t, t0)q̂2Û(t, t0) =

(
Û†(t, t0)q̂Û(t, t0)

)2

,

P̂2
H(t) = Û†(t, t0)p̂2Û(t, t0) =

(
Û†(t, t0)p̂Û(t, t0)

)2

.

Rewriting Q̂2
H(t) and P̂2

H(t) by using equations (4.25) and (4.26), they become

Q̂2
H(t) =

1

x2
0

x2
1(t)q̂2 + x2

0x2
2(t)p̂ + x1(t)x2(t) {q̂, p̂} ,

P̂2
H(t) = μ2(t)

(
1

x2
0

ẋ1
2(t)q̂2 + x2

0 ẋ2
2(t) p̂ + ẋ1(t)ẋ2(t) {q̂, p̂}

)
,

where {q̂, p̂} =
(
q̂ p̂ + p̂q̂

)
is the anticommutator of q̂ and p̂. In addition, mixed terms

Q̂H(t)P̂H(t) and P̂H(t)Q̂H(t) are calculated as

Q̂H(t)P̂H(t) =
μ(t)x1(t)ẋ1(t)

x2
0

q̂2 + μ(t)x1(t)ẋ2(t)q̂ p̂ + μ(t)ẋ1(t)x2(t)p̂q̂

+μ(t)x2
0x2 ẋ2(t) p̂2,

P̂H(t)Q̂H(t) =
μ(t)x1(t)ẋ1(t)

x2
0

q̂2 + μ(t)ẋ1(t)x2(t)q̂ p̂ + μ(t)x1(t)ẋ2(t)p̂q̂

+μ(t)x2
0x2 ẋ2(t) p̂2.
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Next, we find the Heisenberg operators corresponding to damped parametric oscillator

(4.3) as

ÂH(t) = Û†(t, t0)âÛ(t, t0) = Û†(t, t0)

√
mω0

2�

(
q̂ + i

1

mω0

p̂
)
Û(t, t0),

=

(√
mω0

2�

1

x0

x1(t) + i
1√

2�mω0

1

x0

μ(t)ẋ1(t)
)
q̂

+

(√
mω0

2�
x0x2(t) + i

1√
2�mω0

x0μ(t)ẋ2(t)
)
p̂.

Similarly Â†H(t) can be calculated

Â†H(t) =
(√

mω0

2�

1

x0

x1(t) − i
1√

2�mω0

1

x0

μ(t)ẋ1(t)
)
q̂

+

(√
mω0

2�
x0x2(t) − i

1√
2�mω0

x0μ(t)ẋ2(t)
)
p̂.

One can easily check that position and momentum operators which are given by

equations (4.25) and (4.26), are the solutions of classical equations,

d2

dt2
Q̂H(t) +

μ̇(t)
μ(t)

d
dt

Q̂H(t) + ω2(t)Q̂H(t) = 0,

d2

dt2
P̂H(t) −

˙(μω2)

μω2

d
dt

P̂H(t) + ω2(t)P̂H(t) = 0,

and satisfy Heisenberg equations of motion,

d
dt

Q̂H(t) =
P̂H(t)
μ(t)
,

d
dt

P̂H(t) = −μ(t)ω2(t)Q̂H(t).
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4.5. Complex Function Representation of Dynamical Invariants

It is instructive, instead of two real independent solutions x1(t) and x2(t) of equa-

tion (4.9), to introduce one complex functions solution ε0(t) of the same equation:

ε0(t) =
x1(t)√
mω0x0

+ i
√

mω0x0x2(t), (4.27)

= σ0(t)eiθ0(t) = σ0(t)
(

cos(θ0(t)) + i sin(θ0(t))
)
, (4.28)

where

|ε0(t)| = σ0(t) =
1√
mω0

√
x2

1
(t)

x2
0

+ (mω0x0x2(t))2, (4.29)

θ0(t) =
∫ t

t0

dt′

μ(t′)|ε0(t′)|2 . (4.30)

The complex function ε0(t) defined here satisfies the equation (4.9) and the initial condi-

tions,

ε0(t0) =
1√
mω0

, ε̇0(t0) =
i
√

mω0

μ(t0)
. (4.31)

Moreover,

ε∗0(t0) =
1√
mω0

, ε̇∗0(t0) =
−i
√

mω0

μ(t0)
, (4.32)

which implies that the Wronskian is

W(ε0(t), ε∗0(t)) ≡ ε0(t)ε̇∗0(t) − ε̇0(t)ε∗0(t) = − 2i
μ(t)
. (4.33)
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Using the new notation, the evolution operator (4.17), the wave functions (4.19) and the

propagator (4.24) can be written as

Û(t, t0) = exp

[
iμ(t)
2�

( ε̇0(t) + ε̇∗0(t)
ε0(t) + ε∗

0
(t)

)
q2

]
exp

[
ln

∣∣∣∣∣ √mω0(ε0(t) + ε∗0(t))
2

∣∣∣∣∣−1(
q
∂

∂q
+

1

2

)]
× exp

[
�

2mω0

(ε0(t) − ε∗0(t)
ε0(t) + ε∗

0
(t)

)
∂2

∂q2

]
, (4.34)

Ψ(q, t) =
1(

n!
√
�π

) 1
2

1√
ε0(t)

( ε∗0(t)
2ε0(t)

)n/2

exp
[ iμ(t)

2�

ε̇0(t)
ε0(t)

q2
]
Hn

( q√
�|ε0(t)|

)
, (4.35)

K(q, t; q′, t0) =
1√

2π�i|ε0(t)||ε0(t0)| sin(θ0(t))
× exp

[ −iqq′

� sin(θ0(t))|ε0(t)||ε0(t0)|
]

× exp
[ i
2�

cot(θ0(t))
( q2

|ε0(t)|2 +
q′2

|ε0(t0)|2
)]

× exp
[ i
4�

(
μ(t)q2

|ε0(t)|2
d
dt
|ε0(t)|2

)]
. (4.36)

Since we know the evolution operator, we can find the invariants corresponding to position

and momentum operators

Q̂0(t) = Û(t, t0)q̂Û†(t, t0) = x0μ(t)ẋ2(t)q̂ − x0x2(t) p̂,

P̂0(t) = Û(t, t0) p̂Û†(t, t0) =
−μ(t)

x0

ẋ1(t)q̂ +
x1(t)
x0

p̂.

expressed in terms of new complex variable (4.27) as

Q̂0(t) =
μ(t)

2i
√

mω0

(ε̇0(t) − ε̇∗0(t))q̂ − 1

2i
√

mω0

(ε0(t) − ε∗0(t))p̂,

P̂0(t) =
−√mω0μ(t)(ε̇0(t) + ε̇∗0(t))

2
q̂ +
√

mω0(ε0(t) + ε∗0(t))
2

p̂.
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Similarly, the invariants corresponding to creation and annihilation operators in terms of

ε0(t) will be

Â0(t) = Û(t, t0)âÛ†(t, t0) =
i√
2�

(
ε0(t) p̂ − μ(t)ε̇0(t)q̂

)
, (4.37)

Â†
0
(t) = Û(t, t0)â†Û†(t, t0) =

i√
2�

(
− ε†

0
(t) p̂ + μ(t)ε̇†

0
(t)q̂

)
. (4.38)

If we consider the Hamiltonian Ĥ0 =
1

2m p̂2 +
mω2

0

2
q̂2, then corresponding invariant

Î0(t) = Û(t, t0)Ĥ0Û†(t, t0), Î0(t0) = Ĥ0,

=
1

2
ω0

(
|ε0(t)|p̂ − μ(t)|ε̇0(t)|q̂

)2

. (4.39)
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CHAPTER 5

QUANTUM PARAMETRIC OSCILLATOR:

THE LEWIS RIESENFELD INVARIANT METHOD

Consider again the Schrödinger equation,

i�
∂Ψ(q, t)
∂t

= Ĥ(t)Ψ(q, t), (5.1)

where Ĥ(t) given by equation (4.3) is a self-adjoint operator depending explicitly on time.

It was explored by Lewis and Riesenfeld in paper (Lewis and Riesenfeld, 1969), and

later it was used in other works such as (Hartley and Ray,1982), (Dantas et al., 1992).

The Lewis-Riesenfeld method for solving Schrödinger equation (5.1) is based on finding

quadratic invariant for the system described by the Hamiltonian (4.3). More precisely, it

is motivated by the basic results given in the following proposition.

Proposition 5.1 Let the operator Î(t) be a spatial self-adjoint invariant of Schrödinger

equation (5.1) defined on a Hilbert space. Assume
{
Φn(q, t)

}
is a complete set of orthonor-

mal eigenstates of Î(t) corresponding to eigenvalues
{
λn

}
. Then,

(i) The eigenvalues are time-independent, i.e.,

d
dt
λn(t) = 0. (5.2)

(ii) The wave functions defined as

ψ(L)
n (q, t) = eiνn(t)Φn(q, t), (5.3)
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where νn(t) satisfies

dνn(t)
dt
=

1

�
〈Φn

∣∣∣i� ∂
∂t
− Ĥ(t)

∣∣∣Φn〉, (5.4)

are solutions of Schrödinger equation, provided the eigenvalues λn are non-degenerate.

Proof :

(i) By the assumption we have

Î(t)Φn(q, t) = λn(t)Φn(q, t), ∀n. (5.5)

Taking time-derivative of both sides of equation (5.5) gives

∂Î(t)
∂t
Φn + Î(t)

∂Φn

∂t
= λ̇n(t)Φn(t) + λn(t)

∂Φn

∂t
. (5.6)

Using equation (2.16) we get

dλn(t)
dt
Φn =

(
Î(t) − λn(t)

)∂Φn

∂t
+

i
�

(
ÎĤΦn − ĤÎΦn

)
, (5.7)

and arranging the terms gives

dλn(t)
dt
Φn(t) =

(
Î(t) − λn(t)

)(∂Φn

∂t
+

i
�

ĤΦn

)
, ∀n. (5.8)

Taking inner product with Φn gives

dλn(t)
dt

〈
Φn

∣∣∣∣Φn

〉
=

〈
Φn(t)

∣∣∣∣(Î(t) − λn(t)
)(∂Φn

∂t
+

i
�

ĤΦn

)〉
, ∀n. (5.9)
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Since Î(t) − λ(t) is a self-adjoint, we can write

dλn(t)
dt

∣∣∣∣∣∣Φn

∣∣∣∣∣∣2 = 〈(
Î(t) − λn(t)

)
Φn

∣∣∣∣∂Φn

∂t
+

i
�

ĤΦn

〉
, (5.10)

which clearly implies λ̇n(t) = 0, so that λn(t) = λn− constant.

(ii) Since λ̇n(t) = 0, from equation (5.9) it follows that

〈
Φm

∣∣∣∣(Î − λn
)(∂Φn

∂t
+

i
�

ĤΦn

)〉
= 0, ∀n,m. (5.11)

Since equation (5.11) holds for ∀n,m and
{
Φn(q, t)

}
is an orthonormal basis, it implies that(

Î −λn
)(∂Φn
∂t +

i
�
ĤΦn

)
= 0, which means ∂Φn

∂t +
i
�
ĤΦn is an eigenstate of Î(t) corresponding

to eigenvalue λn. If the eigenspace corresponding to λn is one-dimensional, then

i�
∂Φn

∂t
− ĤΦn = cn(t)Φn, (5.12)

for some cn(t) � 0. ThusΦn(q, t) is a solution of Schrödinger equation (5.1) with modified

Hamiltonian

Ĥc(t) = Ĥ(t) + cn(t). (5.13)

This suggests that solution of Schrödinger equation (5.1) is of the form (5.3), i.e.,

ψ(L)
n (q, t) = eiνn(t)Φn(q, t),

for some real-valued function νn(t). To find νn(t),we substitute ψ(L)
n (q, t) to the Schrödinger

equation (5.1), and obtain equation (5.4). Solving this first-order differential equation

will determine νn(t) up to an arbitrary constant of integration, which can be fixed by

normalization of the state. �
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In next sections we show how one can find the dynamical invariant, its eigen-

states and phase factors explicitly . Then, we provide the corresponding solutions of the

Schrödinger equation (5.1).

5.1. Finding the Lewis-Riesenfeld Quadratic Invariant

Lewis-Riesenfeld approach for solving time-dependent SE is based on finding

self-adjoint quadratic invariant. The invariant ÎLR(t) is assumed to be a linear superposition

of generators of su(1,1) Lie algebra defined in Section 3.2.1, that is

ÎLR(t) = − i
�

(α(t)K̂+ + β(t)K̂− + γ(t)K̂0), (5.14)

where α(t), β(t), γ(t) are real-valued so that ÎLR(t) = Î†LR(t). On the other hand Hamiltonian

Ĥ(t) can also be written in terms of su(1,1) Lie algebra generators as given in equation

(4.4). Substituting equation (5.14) and (4.4) into the equation defining the dynamical

invariant operator (2.15), that is

i
∂ÎLR(t)
∂t

=
−1

�
[ÎLR(t), Ĥ(t)],

one can determine the unknown functions α(t), β(t), γ(t). For this first, we calculate

[ILR,H] using the commutation relations (3.31).

[ÎLR, Ĥ] =

[
− i

(
α(t)K̂+ + β(t)K̂− + γ(t)K̂0

)
,−i

( �2

μ(t)
K̂− + μ(t)ω2(t)K̂+

)]
,

=
�

2α(t)
μ(t)

2K̂0 − β(t)μ(t)ω2(t)2K̂0 +
�

2γ(t)
μ(t)

K̂− − γ(t)μ(t)ω2(t)K̂+. (5.15)
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Substituting above result and ∂ÎLR/∂t into equation (2.15) we have:

α̇(t)K̂+ + β̇(t)K̂− + γ̇(t)K̂0 = −
((

2
�α(t)
μ(t)

− 2
β(t)μ(t)ω2(t)

�

)
K̂0 +

�γ(t)
μ(t)

K̂−

− γ(t)μ(t)ω2(t)
�

K̂+

)
.

From last equation we get a system of three first-order ordinary differential equations:

α̇(t) − γ(t)μ(t)ω
2(t)

�
= 0, (5.16)

β̇(t) +
�γ(t)
μ(t)

= 0, (5.17)

γ̇(t) + 2�
α(t)
μ(t)
− 2β(t)μ(t)ω2

�
= 0. (5.18)

To solve this system, we introduce the auxiliary real-valued function σ(t), such that β(t) =

�
2σ2(t). Then from equation (5.17) we get γ(t) = −2�σ(t)σ̇(t)μ(t). Writing β(t) and γ(t)

in (5.18), we find α(t) in terms of σ(t) as:

α(t) = σμ2(σ̈ + μ̇
μ
σ + ω2σ

)
+ σ̇2μ2.

Now, substituting α(t) and γ(t) into equation (5.16) we have:

d
dt

(
σμ2(σ̈ + μ̇

μ
σ + ω2σ

)
+ σ̇2μ2

)
+

2σσ̇�μ2ω2

�
= 0,

d
dt

(
σμ2(σ̈ + μ̇

μ
σ + ω2σ

))
+ 2σ̇μ2

(
(σ̈ +

μ̇

μ
σ + ω2σ

)
= 0. (5.19)

Let us define y(t) = σ(t)μ2(t)
(
σ̈(t) + μ̇(t)

μ(t)σ(t) + ω2(t)σ(t)
)
. Then equation (5.19) becomes:

d
dt

y(t) + 2
σ̇(t)
σ(t)

y(t) = 0. (5.20)
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Equation (5.20) is the first-order homogeneous linear equation, and y(t) = 0 is always a

solution. It has one nonzero solution as well. Therefore, we consider two cases:

Case 5.1 When y ≡ 0, that’s

σ̈(t) +
μ̇(t)
μ(t)
σ̇(t) + ω2(t)σ(t) = 0, (5.21)

where σ(t) is real-valued by assumption. Let x(t) denote a solution of equation (5.21). In

this case α(t), β(t) and γ(t) become:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(t) = μ2(t)ẋ2(t),

β(t) = �2x2(t),

γ(t) = −2�μ(t)x(t)ẋ(t).

Now, by substituting α(t), γ(t) , β(t) into the equation (5.14), we get the special quadratic

invariant, which we denote by Îx(t)

Îx(t) = − i
�

(μ2(t)ẋ2(t))
( iq2

2

)
− i
�

(x2(t)�2)
(−i

2

∂2

∂q2

)
+

2ix(t)ẋ(t)�μ(t)
2�

(
q
∂

∂q
+

1

2

)
,

or Îx(t) =
1

2�

(
μ(t)ẋ(t)q̂ − x(t) p̂

)2

.

Case 5.2 For nonzero y(t) we solve equation (5.20) and find

y(t) = σ−2(t) =
c
σ2(t)

,

where we can choose c = 1. Now, since y(t) =
(
μ2(t)σ(t)

(
¨σ(t) + μ̇(t)

μ(t)σ(t) + ω2(t)σ(t)
))

and we found that y(t) = 1/σ2(t), we have the following equality, which is known as
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Ermakov-Pinney nonlinear differential equation,

σ̈(t) +
μ̇(t)
μ(t)
σ(t) + ω2(t)σ(t) =

1

μ2(t)σ3(t)
. (5.22)

As a result, α(t), β(t) and γ(t) can be found in terms of a solution σ(t) of equation (5.22)

as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(t) = 1
σ2(t) + μ

2(t)σ̇2(t),

β(t) = �2σ2(t),

γ(t) = −2�μ(t)σ(t)σ̇(t).

Now, by substituting α(t), γ(t) , β(t) into equation (5.14), we have the following quadratic

invariant:

ÎLR(t) =
1

2�

((
μ(t)σ̇(t)q̂ − σ(t) p̂

)2
+

q̂2

σ2(t)

)
. (5.23)

5.2. Eigenvalues and Eigenstates of the Invariant

The eigenvalues and eigenstates of the quadratic, self-adjoint invariant ÎLR(t) can

be found by an operator method that is completely analogous to the method introduced

by P. Dirac for diagonalizing the standart harmonic oscillator, as described in Chapter 3.

Here, we will show that the self-adjoint quadratic invariant ÎLR(t) has discrete spectrum

and complete orthonormal set of eigenstates. First, we will factorize ÎLR(t) given by the

equation (5.23) in the form

ÎLR(t) =
(
A†(t)A(t) +

1

2

)
. (5.24)
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After necessary calculations we can find A(t) and A†(t) as follows:

A†(t) =
1√
2�

(
q̂
σ
− i

(
σp̂ − σ̇μq̂

))
, (5.25)

A(t) =
1√
2�

(
q̂
σ
+ i

(
σ p̂ − σ̇μq̂

))
. (5.26)

The operators A†(t), A(t) and ÎLR(t) satisfy the following commutation relations

[
A(t), A†(t)

]
= 1̂,

[
ÎLR(t), A†(t)

]
= A†(t),

[
ÎLR(t), A(t)

]
= −A(t). (5.27)

We note that these commutation relations hold for every solution σ(t) of equation (5.22).

Thus, we have the spectrum generating algebra {1̂, ÎLR(t), A†(t), A(t)}. From algebraic point

of view, the integral (5.24) with algebra (5.27) is equivalent to harmonic oscillator with

Heisenberg-Weyl algebra. This allows us to construct eigenvalues and eigenstates for it

in the same way.

5.2.1. Finding the Eigenvalues

Assume that ÎLR(t) has a complete set of orthonormal eigenfunctions {|Φn〉}∞n=0, that

is

ÎLR(t)|Φn〉 = λn|Φn〉, n = 0, 1, 2, 3, .... (5.28)

where λn are the discrete real eigenvalues and 〈Φn,Φm〉 = δnm. Let us show that eigenval-

ues λn satisfy 1/2 ≤ λn which shows that they are non-negative numbers,

0 ≤ ||A|Φn〉||2 = 〈Φn|A†A|Φn〉 = 〈Φn|ÎLR − 1

2
|Φn〉 = λn − 1

2
, (5.29)

1

2
≤ λn. (5.30)
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Consider the following equations, which show that A†Φn and AΦn are eigenstates of the

ÎLR(t) :

ÎLR

(
A†|Φn〉

)
= (A†A +

1

2
)A†|Φn〉 =

(
λn + 1

)
A†|Φn〉, (5.31)

ÎLR

(
A|Φn〉

)
= (A†A +

1

2
)A|Φn〉 =

(
λn − 1

)
A|Φn〉. (5.32)

We can see that operator Â(t) lowers and the operator Â†(t) raises the energy of the system

so, Â(t) is the lowering operator and Â†(t) is the raising operator. Since we have 1/2 ≤ λn,

the energy of the system can not be negative. Thus we must have the lower limit for the

energy in the state |Φ0〉, such that A|Φ0〉 = 0, which implies

ÎLR|Φ0〉 = λ0|Φ0〉,
(A†A +

1

2
)|Φ0〉 = λ0|Φ0〉,

λ0 =
1

2
.

Applying A† to the ground state |Φ0〉 by using equation (5.31), we have

ÎLRA†|Φ0〉 = (λ0 + 1)A†|Φ0〉 =
(
3

2

)
A†|Φ0〉.

Then, applying n times A† to the ground state Φ0, we can find λn as

λn = n +
1

2
, n = 0, 1, 2... (5.33)

Therefore equation (5.28) becomes

ÎLR|Φn〉 =
(
n +

1

2

)
|Φn〉. (5.34)
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In addition, according to (5.32), Â|Φn〉 is an eigenstate of ÎLR(t) with the eigenvalue n− 1
2
,

then it must be proportional to |Φn−1〉, i.e., Â|Φn〉| = cn|Φn−1〉, where cn is a constant.

Consider the following equations:

〈Φn|A†A|Φn〉| = |cn|2 ⇒ 〈Φn|ÎLR − 1

2
|Φn〉| = |cn|2,

λn − 1

2
= |cn|2, ⇒ n = |cn|2.

Thus cn =
√

n, so the equation A|Φn〉| = cn|Φn−1〉 will be A|Φn〉| = √n|Φn−1〉. For the

eigenstate A†|Φn〉, we can also find that A†|Φn〉| =
√

n + 1|Φn+1〉. Using these results, we

can derive the next expression for eigenstate,

|Φn〉 =
(
A†

)n|Φ0〉√
n!
. (5.35)

5.2.2. Explicit derivation of the eigenstates in coordinate

representation

Now, since ÎLR is the self-adjoint operator, the eigenstates corresponding to distinct

eigenvalues are orthogonal, and the set {Φn}∞n=0 is an orthogonal basis for L2(R). To find

the eigenstates Φn(q, t) explicitly, we need to find the ground state Φ0(q, t) by solving

ÂΦ0(q, t) = 0, that’s

1√
2�

(
q
σ
+ i

(
− i�σ

d
dq
− σ̇μq

))
Φ0 = 0. (5.36)

Solving differential equation (5.36), and then doing normalization give us the ground state

wave function

Φ0(q, t) =
(

1√
�π

)1/2 1√
σ(t)

exp

[
i

2�
μ
(
σ̇

σ
+

i
μσ2

)
q2

]
. (5.37)
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Using equation (5.35) and propositions given in Appendix D, we can find wave functions

Φn(q, t) as well. Writing equation (5.35) explicitly, we have

Φn =

(
A†

)n
Φ0√

n!
=

1√
n!

(
1√
2�

(
q̂
σ
− i

(
σ p̂ − σ̇μq̂)))n((

1√
�π

)1/2 1√
σ(t)

× exp

[
i

2�
μ
(
σ̇

σ
+

i
μσ2

)
q2

])
,

=

(
1

2nn!
√
�π

)1/2
1√
σ(t)

(
1√
�

)n(
�σ(t)

)n((
1

�σ2(t)
+

iμσ̇
�σ

)
q − d

dq

)n

× exp

[
i

2�
μ
(
σ̇

σ
+

i
μσ2

)
q2

])
,

=

(
1

2nn!
√
�π

)1/2
1√
σ(t)

(
1√
�

)n(
�σ(t)

)n(
(−1)n exp

[(
1

�σ2
+

iμμ̇
�σ

)q2

2

]
×
( dn

dqn

)
exp

[
−

(
1

�σ2
+

iμμ̇
�σ

)q2

2

])
× exp

[
iμ
2�

(
σ̇

σ
+

i
μσ2

)
q2

]
,

= (−1)n

(
1

2nn!
√
�π

)1/2
1√
σ(t)

(
1√
�

)n(
�σ(t)

)n

exp

[(
1

�σ2
+

iμμ̇
�σ

)q2

2

]
×
(( dn

dqn

)
exp

[−q2

�σ2

])
.

= (−1)n

(
1

2nn!
√
�π

)1/2
1√
σ(t)

(
1√
�

)n(
�σ(t)

)n

exp

[(
1

�σ2
+

iμμ̇
�σ

)q2

2

]
×
(
(−1)n

( 1√
�σ

)n
Hn

(
q√
�σ

)
exp

[−q2

�σ2

])
.

As a result, we get

Φn(q, t) =
(

1√
�π2nn!

)1/2 1√
σ(t)

Hn

( q√
�σ(t)

)
exp

[
iμ
2�

(
σ̇(t)
σ(t)
+

i
μσ2(t)

)
q2

]
,

for n = 0, 1, 2, 3, .., where Hn are the Hermite polynomials.
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5.3. Determining the phase factor νn(t)

For the phase factor νn(t) from Proposition 5.1, we have equation (5.4),

dνn(t)
dt
= i〈Φn| ∂

∂t
|Φn〉 − 1

�
〈Φn|Ĥ(t)|Φn〉.

To evaluate νn(t), we need to compute 〈Φn|H(t)|Φn〉 and 〈Φn| ∂∂t |Φn〉. Before starting to

calculate these diagonal elements we need to write p̂ and q̂ in terms of Â and Â† using

equations (5.25) and (5.26), i.e.,

q̂ =

√
�

2
σ(t)

(
Â + Â†

)
, p̂ =

√
�√
2i

(Â − Â†)
σ(t)

+

√
�

2
μσ̇(t)

(
Â + Â†

)
. (5.38)

Now, we calculate 〈Φn|H(t)|Φn〉 as follows:

〈Φn|H(t)|Φn〉 = 〈Φn| 1

2μ
p̂2 +

μω2

2
q̂2|Φn〉 = 1

2μ
〈Φn|

( √
�(Â − Â†)

σ
√

2i
+ μσ̇

√
�
(
Â + Â†

)
√

2

)2

|Φn〉,

+
μω2

2
〈Φn|

( √
�σ

(
Â + Â†

)
√

2

)2

|Φn〉 = �
2

(
n +

1

2

)[ 1

μσ2
+ σ̇2μ + μω2σ2

]
. (5.39)

Then, we calculate 〈Φn| ∂∂t |Φn〉 by using the equality A|Φn〉 = √n|Φn−1〉, i.e.,

∂

∂t

(
A|Φn〉

)
=
∂

∂t

(√
n|Φn−1〉

)
,

or
∂A
∂t
|Φn〉 + A

∂

∂t
|Φn〉 =

√
n
∂

∂t
|Φn−1〉.
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Taking inner product of last equation with 〈Φn−1|, gives

〈Φn−1|A ∂
∂t
|Φn〉 =

√
n〈Φn−1| ∂

∂t
|Φn−1〉 − 〈Φn−1|∂A

∂t
|Φn〉,

〈A†Φn−1| ∂
∂t
|Φn〉 =

√
n〈Φn−1| ∂

∂t
|Φn−1〉 − 〈Φn−1|∂A

∂t
|Φn〉,

√
n〈Φn| ∂

∂t
|Φn〉 =

√
n〈Φn−1| ∂

∂t
|Φn−1〉 − 〈Φn−1|∂A

∂t
|Φn〉,

〈Φn| ∂
∂t
|Φn〉 = 〈Φn−1| ∂

∂t
|Φn−1〉 + 1√

n
〈Φn|∂A

†

∂t
|Φn−1〉. (5.40)

For the calculation of 〈Φn|∂A†∂t |Φn−1〉, it is needed to find ∂A†
∂t . Differentiating equation

(5.25), we have

∂A†

∂t
=

1√
2�

(−σ̇q̂
σ2
− i

(
σ̇p̂ − σ̇μ̇q̂ − σ̈μq̂

))
=

1√
2�

((−σ̇
σ2
+ iσ̇μ̇ + iσ̈μ

)
q̂ − iσ̇p̂

)
.

Using equations (5.38), we rewrite it in terms of operators Â and Â†,

∂A†

∂t
=

1

2

[(−2σ̇

σ
+ i

(
μ̇σ̇σ + μσσ̈ − μσ̇2))Â + i

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
Â†

]
.

Now we are ready to calculate 〈Φn|∂A†∂t |Φn−1〉.

〈Φn|∂A
†

∂t
|Φn−1〉 = 〈Φn|1

2

[(−2σ̇

σ
+ i

(
μ̇σ̇σ + μσσ̈ − μσ̇2))Â

+ i
(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
Â†

]
|Φn−1〉,

=
i
2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)√
n. (5.41)

By using equation (5.41), equation (5.40) takes the following form:

〈Φn| ∂
∂t
|Φn〉 = 〈Φn−1| ∂

∂t
|Φn−1〉 + i

2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
. (5.42)
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We observe that equation (5.42) is a recursion formula. So it can be used for evolution of

〈Φn−1| ∂∂t |Φn−1〉 in terms of 〈Φn−2| ∂∂t |Φn−2〉, so that

〈Φn| ∂
∂t
|Φn〉 = 〈Φn−2| ∂

∂t
|Φn−2〉 + i

2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
+

i
2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
.

The same recursion formula can be applied for the 〈Φn−2| ∂∂t |Φn−2〉. Continuing this recur-

sion n times we get:

〈Φn| ∂
∂t
|Φn〉 = 〈Φ0| ∂

∂t
|Φ0〉 + n

i
2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
. (5.43)

Since Φ0 is known and given by (5.37), we calculate 〈Φ0| ∂∂t |Φ0〉 as

〈Φ0| ∂
∂t
|Φ0〉 = i

4

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
.

Then, equation (5.43) gives:

〈Φn| ∂
∂t
|Φn〉 = i

4

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
+ n

i
2

(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
,

=
i
2

(n +
1

2
)
(
μ̇σ̇σ + μσσ̈ − μσ̇2

)
.

The calculated 〈Φn| ∂∂t |Φn〉 and 〈Φn|H(t)|Φn〉, we can substitute into equation (5.4), giving

d
dt
νn(t) =

−1

2

(
n +

1

2

)[
μσ

(
σ̈ +
μ̇

μ
σ̇ + w2σ

)
+

1

μσ2

]
.

Using the Ermakov-Pinney equation (5.22), we can simplify the right hand side of above

equation as

d
dt
νn(t) = −

(
n +

1

2

)[
1

μσ2

]
. (5.44)
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Taking integral of this equation we have

νn(t) = −
(
n +

1

2

) ∫ t

t0

dε
μ(ε)σ2(ε)

,

where νn(t0) = 0. As a result, we have shown that the Schrödinger equation (5.1) has the

set of orthonormal solutions, given explicitly in the form,

ψ(L)
n (q, t) =

(
1√
�π2nn!

)1/2

× 1√
σ(t)
× exp

[
− i

(
n +

1

2

) ∫ t

t0

dε
μ(ε)σ2(ε)

]
× Hn

( q√
�σ

)
× exp

[
iμ(t)σ̇(t)

2�σ
q2

]
× exp

[
− 1

2�σ2
q2

]
. (5.45)

where the upper script "L" denotes solutions found by the Lewis-Riesenfeld approach.

Let θ0(t) ≡ ∫ t

t0
dε

μ(ε)σ2(ε)
, θ0(t0) = 0. Then νn(t) = −

(
n + 1

2

)
θ0(t) and equation (5.45) can be

rewritten as

ψ(L)
n (q, t) =

(
1√
�π2nn!

)1/2

× 1√
σ(t)
× exp

[
− i

(
n +

1

2

)
θ0(t)

]
× Hn

( q√
�σ

)
× exp

[ iμ(t)σ̇(t)
2�σ

q2
]
× exp

[
− 1

2�σ2
q2

]
. (5.46)

The probability densities corresponding to solutions (5.46) are

ρ(L)
n (q, t) =

(
1√
�π2nn!

)
× 1

σ(t)
× exp

[
−

( q√
�σ(t)

)2
]
× H2

n

(
q√

hσ(t)

)
. (5.47)

Now, we compare this result (5.46) with the wave function (4.19) which is found by the

Evolution Operator Method. By setting θ0(t) = arctan
(
mω0x2

1(t0) x2(t)
x1(t)

)
and using the fol-

lowing proposition it can be shown that the orthonormal solutions of Schrödinger equation

which are found in both Lewis Riesenfeld and Evolution Operator Method are actually

the same.

Proposition 5.2 If x1(t) and x2(t) are two linearly independent real solutions of equation

(4.9) satisfying initial conditions (4.10) and (4.11) as defined in Wei-Norman method,
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then

σ(t) =
1√
mω0

(
x2

1(t) + m2ω2
0x4

1(t0)x2
2(t)

x2
1
(t0)

)1/2

= σ0(t),

satisfies the Ermakov-Pinney equation (5.22) with following initial conditions:

σ(t0) =
1√
mω0

, σ̇(t0) = 0. (5.48)

5.4. Finding the propagator using eigenstates of the quadratic

invariant

Since the orthonormal solutions of Schrödinger equation {ψ(L)
n (q, t)} form an or-

thonormal basis for L2
t (R), then any solution of IVP for SE (5.1) is of the form

Ψ(q, t) =
∞∑

n=0

cnψ
(L)
n (q, t). (5.49)

Let us see what will be the exact form of cn. In equation (5.1) the initial value ψL
n(q, t0) is

given. In addition, we found the exact form of ψ(L)
n (q, t) by the Lewis-Riesenfeld Invariant

Method. So let t = t0 in equation (5.49),

Ψ(q, t0) =

∞∑
n=0

cnψ
(L)
n (q, t0). (5.50)

Then, taking inner product of both side with ψ(L)
n (q, t0), the cn will be

cn = 〈ψ(L)
n (q, t0)|Ψ(q, t0)〉 =

∫ ∞

−∞
Ψ(q′, t0)ψ(L)∗

n(q′, t0)dq′. (5.51)
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Therefore Ψ(q, t) is

Ψ(q, t) =
∞∑

n=0

[ ∫ ∞

−∞
Ψ(q′, t0)ψ(L)∗

n(q′, t0)dq′
]
ψ(L)

n (q, t),

=

∫ ∞

−∞

[ ∞∑
n=0

ψ(L)
n (q, t)ψ(L)∗

n(q′, t0)
]
Ψ(q′, t0)dq′.

The expression under the summation is the propagator, that is

∞∑
n=0

ψ(L)
n (q, t)ψ(L)∗

n(q′, t0) = K(q, t; q′, to). (5.52)

So Ψ(q, t) become

Ψ(q, t) =
∫ ∞

−∞
K(q, t; q′, to)Ψ(q′, t0)dq′. (5.53)

Next, we find the closed form for propagator K(q, t; q′, to). Recall the solutions ψ(L)
n (q, t)

given by (5.46). Then
(
ψ(L)

n

)∗
(q′, t0) will be

(
ψ(L)

n

)∗
(q′, t0) = Ñn

1√
σ(t0)

exp
[
i
(
n +

1

2

)
θ(t0)

]
exp

[−iμ(t0)σ̇(t0)

2�σ(t0)
q′2

]
× Hn

( q′√
�σ(t0)

)
exp

[
− 1

2�σ2(t0)
q′2

]
.

Substituting ψ(L)
n (q, t) and

(
ψ(L)

n

)∗
(q′, t0) into the equation (5.52) we have

KLR(q, t; q′, to) =

∞∑
n=0

1√
�π2nn!

× exp
[
− i

(
n +

1

2

)
θ0(t)

]
× exp

[
i
(
n +

1

2

)
θ0(t0)

]
×Hn

( q√
�σ(t)

)
× Hn

( q′√
�σ(t0)

)
1√

σ(t)σ(t0)
× exp

[ iμ(t)σ̇(t)
2�σ

q2
]

× exp
[−iμ(t0)σ̇(t0)

2�σ(t0)
q′2

]
× exp

[
− 1

2�σ2(t)
q2

]
× exp

[
− 1

2�σ2(t0)
q′2

]
,
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KLR(q, t; q′, to) =
1√
�π

1√
σ(t)σ(t0)

× exp
[ iμ(t)σ̇(t)

2�σ
q2

]
× exp

[−iμ(t0)σ̇(t0)

2�σ(t0)
q′2

]
× exp

[
− 1

2�σ2(t)
q2

]
× exp

[
− 1

2�σ2(t0)
q′2

]
× exp

[ i
2

(
θ0(t0) − θ0(t)

)]
×
( ∞∑

n=0

1

n!

(
1

2
exp

[
i
(
θ0(t0) − θ0(t)

)])n

Hn

( q√
�σ(t)

)
Hn

( q′√
�σ(t0)

))
.

After making arrangements and using Mehler’s formula (3.59) for the expression under

the summation, we get,

KLR(q, t; q′, to) =
1√

2πi� sin(θ0(t) − θ0(t0))σ(t)σ(t0)

× exp

[
i

2�

(
μ(t)σ̇(t)
σ(t)

+
cot(θ0(t) − θ0(t0))

σ2(t)

)
q2

]
× exp

[
i

2�

(−μ(t0)σ̇(t0)

σ(t0)
+

cot(θ0(t) − θ0(t0))

σ2(t0)

)
q′2

]
× exp

[ −i
�σ(t)σ(t0)

qq′

sin(θ0(t) − θ0(t0))

]
. (5.54)

This formula for the propagator, KLR(q, t; q′, to) coincides with the one found in (Yeon et

al., 1993).

Particular Case:

For the initial values θ0(t0) = 0, σ(t0) = 1√
mω0

and σ̇(t0) = 0 given in Proposition 5.2 , the

last equation becomes

KLR(q, t; q′, to) =
1√

2πi�
mω0

sin θ0(t)σ(t)
× exp

[
i

2�

(
μ(t)σ̇(t)
σ(t)

+
cot θ0(t)
σ2(t)

)
q2

]

× exp

[
imω0

2�
cot θ0(t)q′2

]
× exp

[−i
�

√
mω0

σ(t)
qq′

sin θ0(t)

]
.
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By substituting σ(t) and σ̇(t) , the propagator is

KLR(q, t; q′, to) =
1√
2π

exp

[
− 1

2
ln

∣∣∣∣∣ x1(t)
x1(t0)

∣∣∣∣∣]
√√√√ i

−�x2
1
(t0)

(
x2(t)
x1(t)

) exp

[
ix1

2�x2
0
x2

q′2
]

× exp

[−iqq′

�x0x2

]
exp

[
iμx1 ẋ1q2

2�(x2
1
+ m2ω2

0
x4

0
x2

2
)

]
exp

[
im2ω2

0x4
0x2q2

2�x1(x2
1
+ m2ω2

0
x4

0
x2

2
)

]
× exp

[
iμm2ω2

0x4
0 ẋ1x2

2

2�x1(x2
1
+ m2ω2

0
x4

0
x2

2
)
q2

]
× exp

[
ix1

2�x2(x2
1
+ m2ω2

0
x4

0
x2

2
)
q2

]
.

By using functions f (t), g(t), and h(t) which are given by equations (4.13), (4.14) and

(4.15) we have

KLR(q, t; q′, to) =
1√
2π

exp

[
h(t)
2

]√
i

g(t)
exp

[
i f (t)

2
q2

]
exp

[ −i
2g(t)

(
eh(t)q − q′

)2
]
. (5.55)

We observe that the last equation is exactly the same as equation (4.23). Since here

we used Lewis Riesenfield’s approach to find propagator KLR(q, t; q′, to) and we found

equality of it with equation (4.23), the results obtained by the Evolution Operator method

and the Lewis Riesenfeld method coincides for the particular case with initial conditions

σ(t0) = 1/
√

mω0 and σ̇(t0) = 0, imposed on the function σ(t).
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CHAPTER 6

QUANTUM PARAMETRIC OSCILLATOR:

MALKIN-MANKO-TRIFONOV APPROACH

Here we consider again the one-dimensional time-dependent Schrödinger equa-

tion (SE)

Ŝ (t)Ψ(q, t) ≡ (
i�
∂

∂t
− Ĥ(t)

)
Ψ(q, t) = 0, (6.1)

where Ŝ (t) denotes the Schrödinger operator and the Hamiltonian is given by (4.3), that

is Ĥ(t) = (1/2μ(t)) p̂2 + (μ(t)ω2(t)/2)q̂2.

In this Chapter we describe another approach, the Malkin-Manko-Trifonov (MMT)

method for finding solutions of SE (6.1). This method was introduced in (Malkin, 1970),

and later used in other works such as (Malkin, 1971), (Dodonov and Man’ko,1979). It

is based on finding symmetries of SE (6.1), which by Definition 2.1 are operators that

map a solution of SE to an other solution of the same equation. According to Proposition

2.6, symmetry operators of SE are also dynamical invariants (integrals of motion), and

because of this MMT-method is also known as an approach based on finding dynamical

invariants linear in momentum p̂ and coordinate q̂.

6.1. Linear Dynamical Invariants

It is known that (Man’ko, 1987) all invariants of an one-dimensional system with

quadratic Hamiltonian (4.3) can be constructed from two independent linear p̂ and q̂ in-

variants of the form,

A(t) = a(t)q̂ + b(t) p̂ + c(t), (6.2)
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where a(t), b(t) and c(t) are time dependent complex-valued functions. For finding in-

variants of the form (6.2) explicitly, we will use condition [Ŝ (t),A(t)] = 0. Calculations

give

[Ŝ (t),A(t)] = i�
[ ∂
∂t
, a(t)q̂ + b(t) p̂ + c(t)

]
−

[
Ĥ(t), a(t)q̂ + b(t) p̂ + c(t)

]
= 0,

⇒ i�
[ ∂
∂t
, a(t)q̂ + b(t) p̂ + c(t)

]
−

[ p̂2

2μ(t)
, a(t)q̂ + b(t) p̂ + c(t)

]
−
[μ(t)ω2(t)q̂2

2
, a(t)q̂ + b(t)p̂ + c(t)

]
= 0,

⇒ i�(ȧq̂ + ḃ p̂ + ċ) +
i�ap̂
μ(t)
− i�μ(t)ω2(t)bq̂ = 0.

Combining terms in the last expression, we see that the following identity must hold

(
ḃ +

a
μ(t)

)
p̂ +

(
ȧ − μ(t)ω2(t)b

)
q̂ + ċ = 0, (6.3)

leading to the system of first-order differential equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ȧ(t) = μ(t)ω2(t)b(t),

ḃ(t) = − 1
μ(t)a(t),

ċ(t) = 0.

Taking derivative of second equation and then using the first one, we get

b̈ +
μ̇

μ
ḃ + ω2b = 0. (6.4)

For convenience in comparison of (6.2) with operators â and â†, we will use the following

notation b(t) ≡ (i/
√

2�)ε(t). Then a(t), b(t) and c(t) become

a(t) =
−i√
2�
μ(t)ε̇(t), b(t) =

i√
2�
ε(t), c(t) = c0 (6.5)
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and without loss of generality we take c0 = 0. As a result we obtain two independent

non-Hermitian linear invariants

A(t) =
i√
2�

(
ε(t) p̂ − μ(t)ε̇(t)q̂

)
, (6.6)

A†(t) = −i√
2�

(
ε∗(t) p̂ − μ(t)ε̇∗(t)q̂

)
, (6.7)

where ε(t) is a complex-valued solution of the linear differential equation

ε̈(t) +
μ̇

μ
ε̇(t) + ω2(t)ε(t) = 0. (6.8)

For the commutator of the linear invariants it’s convenient to impose condition

[A(t),A†(t)] = 1, which is equivalent to:

ε(t)ε̇∗(t) − ε̇(t)ε∗(t) = −2i
μ(t)
. (6.9)

We note that this condition does not fix the initial data ε(t0) and ε̇(t0), but imposes only a

relation between them. Then, any particular complex solution of equation (6.8), will give

linear invariants of the form (6.6) and (6.7).

Using the linear invariants (6.6) and (6.7), one can find time-dependent coherent

states by applying the displacement operator D̂(α) = exp(αÂ†(t) − α∗Â(t)) to a state

ψ(M)

0
(q, t) satisfyingA(t)ψ(M)

0
(q, t) = 0 and Ŝ (t)ψ(M)

0
(q, t) = 0.

In this work, we discuss the construction of wave function solutions of the para-

metric oscillator, which can be seen as generalizations of the Fock states. As we will see

in next section, in MMT-approach these solutions of SE appear as the eigenstates of a

Hermitian quadratic invariant.
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6.2. Quadratic invariants and time-dependent wave function

solutions

Using the linear invariants (6.6) and (6.7), one can easily construct quadratic Her-

mitian invariants. Indeed, we note that for the quantum system described by Ŝ (t), the

operators A(t)A†(t) and A†(t)A(t) are Hermitian quadratic invariants. That is, they sat-

isfy (
AA†

)†
= AA†,

(
A†A

)†
= A†A,

showing that operators are Hermitian. Since [S (t),A(t)] = 0, [S (t),A†(t)] = 0 it is not

difficult to show that these operators are quadratic invariants

[
Ŝ (t),A†(t)A(t)

]
= 0,

[
Ŝ (t),A(t)A†(t)

]
= 0. (6.10)

Note thatA(t)A†(t) � A†(t)A(t), and more general quadratic Hermitian invariant will be

ÎM(t) =
A†(t)A(t) +A(t)A†(t)

2
= A†(t)A(t) +

1

2
= N(t) +

1

2
, (6.11)

where N(t) = A†(t)A(t). As a result, we have found three operators A(t), A†(t), N(t)

satisfying the commutation relations

[
A(t),A†(t)

]
= 1,

[
N(t),A(t)

]
= −A(t),

[
N(t),A†(t)

]
= A†(t), (6.12)

of spectrum generating algebra for the operator N(t), and also for the quadratic invariant

ÎM(t). Since N(t) is a Hermitian operator invariant, it has a real, time-independent eigen-

values, and due to above commutation relations it acts on the states as a number operator.

On the other side, the operators A†(t) and A(t) are the raising and lowering operators,

respectively.

Now, the eigenstates of N(t) can be constructed by a standard procedure. Let

ψ(M)

0
(q, t) be such that A(t)ψ(M)

0
(q, t) = 0, where the upper script ′M′ will denote states
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obtained by the MMT-method. Then, we have

N(t)ψ(M)
n (q, t) = nψ(M)

n (q, t), n = 0, 1, 2, ..., (6.13)

and the eigenstates are

ψ(M)
n (q, t) =

(
A†(t)

)n

√
n!
ψ(M)

0
(q, t). (6.14)

Clearly, ψ(M)
n (q, t) are also eigenstates of the dynamical invariant ÎM(t), since

ÎM(t)ψ(M)
n (q, t) =

(
n +

1

2

)
ψ(M)

n (q, t). (6.15)

In general, the eigenstates (6.14) do not need to satisfy the Schrödinger equation (6.1).

However, if the function ψ(M)

0
(q, t) satisfies both equations

A(t)ψ(M)

0
(q, t) = 0 and Ŝ (t)ψ(M)

0
(q, t) = 0,

then eigenstates ψ(M)
n (q, t) defined by equation (6.14) will be also solutions of the SE, that

is Ŝ (t)ψ(M)
n (q, t) = 0. This is becauseA†(t) is a symmetry operator for Ŝ (t), and therefore(

A†(t)
)n

, for all n = 1, 2, 3.... are also symmetry operators, in other words they commute

with Ŝ (t). This shows that, by Malkin-Manko-Trifonov approach one can directly find

solutions of the Schrödinger equation, using the operators A(t) and A†(t), since they are

symmetry operators by construction. We recall that in the Lewis-Riesenfeld approach

the lowering and raising operators A(t) and A†(t) defined by equations (5.25) and (5.26),

are not invariants, and this explains some of the technical differences such as finding the

phase factor in LR-approach. In next section, we give the details of finding solutions of

Schrödinger equation by using the MMT-method.
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6.3. Solutions of Schrödinger equation in coordinate representation

In this section, we construct a function ψ(M)

0
(q, t), which satisfies both equations

A(t)ψ(M)

0
(q, t) = 0 and Ŝ (t)ψ(M)

0
(q, t) = 0. For this, writing the equationA(t)ψ(M)

0
(q, t) = 0

in coordinate representation

i√
2�

(
ε(t)(−i�

∂

∂q
− μ(t)ε̇(t)q

)
ψ(M)

0
(q, t) = 0, (6.16)

and solving it, we get ψ(M)

0
(q, t) = N0(t) exp

[
iμ(t)
2�

ε̇(t)
ε(t)q

2

]
, where N0(t) = exp[c1(t) + ic2(t)]

and c1(t) and c2(t) are arbitrary real-valued time-dependent functions. Doing normaliza-

tion we find that exp[c1(t)] = 1/
(
(�π)

1
4

√|ε(t)|), so that

ψ(M)

0
(q, t) =

1

(�π)
1
4

1√|ε(t)| exp
[
ic2(t)

]
exp

[ iμ(t)
2�

ε̇(t)
ε(t)

q2
]
. (6.17)

Now, to fix c2(t) we use condition Ŝ (t)ψ0(q, t) = 0, and find that c2(t) = −i
2

ln |ε(t)|
ε(t) . There-

fore, function (6.17) becomes

ψ(M)

0
(q, t) =

1

(�π)
1
4

1√
ε(t)

exp
[ iμ(t)

2�

ε̇(t)
ε(t)

q2
]
. (6.18)

Applying n-times the raising operatorA†(t) to the ground state (6.18) and by using propo-

sitions given in Appendix D, we find solutions of SE defined by (6.14) in coordinate

representation:
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ψ(M)
n (q, t) =

(
A†(t)

)n

√
n!
ψ(M)

0
(q, t),

=
1√
n!

( −i√
2�

(
ε∗(t)p̂ − μ(t)ε̇∗(t)q̂

))n(
1

(�π)
1
4

1√
ε(t)

exp
[ iμ(t)

2�

ε̇(t)
ε(t)

q2
])
,

=
1(

n!
√
�π

) 1
2

1√
ε(t)

( √
�ε∗(t)√

2

)n( iμε̇∗

�ε∗
q − d

dq

)n

exp
[ iμ(t)

2�

ε̇(t)
ε(t)

q2
]
,

=
(−1)n(

n!
√
�π

) 1
2

1√
ε(t)

( √
�ε∗(t)√

2

)n(
exp

[ iμ(t)
2�

ε̇∗(t)
ε∗(t)

q2
] dn

dqn exp
[−iμ(t)

2�

ε̇∗(t)
ε∗(t)

q2
])

× exp
[ iμ(t)

2�

ε̇∗(t)
ε∗(t)

q2
]
,

=
(−1)n(

n!
√
�π

) 1
2

1√
ε(t)

( √
�ε∗(t)√

2

)n

exp
[ iμ(t)

2�

ε̇∗(t)
ε∗(t)

q2
] dn

dqn exp

[ −q2

�|ε(t)|2
]
,

=
(−1)n(

n!
√
�π

) 1
2

1√
ε(t)

( √
�ε∗(t)√

2

)n

exp
[ iμ(t)

2�

ε̇∗(t)
ε∗(t)

q2
](

(−1)n
( 1√
�|ε(t)|

)n

× Hn

(
q√
�|ε(t)|

)
exp

[ −q2

�|ε(t)|2
])
,

=
1(

n!
√
�π

) 1
2

1√
ε(t)

(
ε∗(t)
2ε(t)

)n/2

exp
[ iμ(t)

2�

ε̇∗(t)
ε∗(t)

q2
]

exp

[ −q2

�|ε(t)|2
]
Hn

(
q√
�|ε(t)|

)
.

Finally, we get

ψ(M)
n (q, t) =

1(
n!
√
�π

) 1
2

1√
ε(t)

(
ε∗(t)
2ε(t)

)n/2

exp
[ iμ(t)

2�

ε̇(t)
ε(t)

q2
]
Hn

( q√
�|ε(t)|

)
. (6.19)

with corresponding probability density

ρ(M)
n (q, t) =

1

2nn!
√
π�

1

|ε(t)|H
2
n

(
q√
�|ε(t)|

)
. (6.20)

These solutions are orthonormal and any solution of SE can be written in the form

ψ(q, t) =
∞∑

n=0

〈
ψ(M)

n (q, t0)
∣∣∣∣ψ(q, t0)

〉
ψ(M)

n (q, t) =
∫

K(M)(q, t; q′, t0)ψ(q′, t0)dq′
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where the propagator is K(M)(q, t; q′, t0) =
∑∞

n=0 ψ
(M)

n(q, t)ψ(M)∗
n(q′, t0). Here, we can find

a closed form of the propagator using ε(t) in the polar coordinates

ε(t) = |ε(t)|eiθ(t), θ(t) =
∫ t

t0

dt′

μ(t′)|ε(t′)|2 . (6.21)

The calculations are as follows

K(M)(q, t; q′, t0) =

∞∑
n=0

ψ(M)
n(q, t)ψ(M)∗

n(q′, t0)

=
1√
π

1√
ε(t)

1√
ε∗(t0)

exp

[
i
2

(
ε̇(t)
ε(t)

q2 − ε̇
∗(t0)

ε∗(t0)
q′2

)]
×

∞∑
n=0

1

n!

(
1

2

|ε(t)||ε(t0)|
ε(t)ε∗(t0)

)n

Hn

(
q
|ε(t)|

)
Hn

(
q′

|ε∗(t0)|
)
.

Using Mehler’s formula (3.59) for the expression under the summation and making proper

arrangements, we find the propagator

K(M)(q, t; q′, t0) =
1√

2π�i|ε(t)||ε(t0)| sin(θ(t) − θ(t0))
× exp

[ −iqq′

� sin(θ(t) − θ(t0))|ε(t)||ε(t0)|
]

× exp
[ i
2�

cot(θ(t) − θ(t0))
( q2

|ε(t)|2 +
q′2

|ε(t0)|2
)]

× exp
[ i
4�

(
(
μ(t)
|ε(t)|2

d
dt
|ε(t)|2)q2 − (

μ(t0)

|ε(t0)|2
d

dt0

|ε(t0)|2)q′2
)]
, (6.22)

where |ε(t)| satisfies the Ermakov-Pinney equation, that is

d2

dt2
|ε(t)| + μ̇(t)

μ(t)
d
dt
|ε(t)| + ω2(t)|ε(t)| = 1

μ2(t)|ε(t)|3 .
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6.4. Comparison of Malkin-Manko-Trifonov results by those

obtained in the previous approaches

In coordinate and momentum representation by using equations (6.6) and (6.7),

the dynamical invariant of MMT-method becomes

ÎM(t) =
1

2�

(
ε(t)ε∗(t) p̂2 + μ2ε̇(t)ε̇∗(t)q̂2 − με̇(t)ε∗(t) p̂q̂ − με(t)ε̇∗(t)q̂ p̂

)
+

1

2
. (6.23)

If one takes ε(t) to be solution of (6.8), satisfying the initial conditions

ε(t0) =
1√
mω0

, ε̇(t0) =
i
√

mω0

μ(t0)
, (6.24)

then ε(t) is the same as ε0(t) defined by (4.27) in WN-method. One can see that this

invariant coincides with the one obtained by WN-method. Comparing also the raising

and lowering operators in MMT and WN-methods which are equations (6.6),(6.7) and

(4.37),(4.38) respectively, it can be seen that they are exactly the same.

Similarly, if ε(t) satisfies the conditions (6.24) and σ(t) satisfies the conditions

(5.48), one can see that invariant ÎM(t) coincides with the dynamical invariant ÎLR(t) ob-

tained by LR-method and given by (5.23). Also, in this case raising and lowering opera-

tors in LR and MMT-methods differ by a phase factor, that is

A(t) = eiθ(t)A(t),

A†(t) = e−iθ(t)A†(t).

Clearly, wave functions ψ(M)
n (q, t) given by (6.19) will depend on the particular choice

of the complex-valued solutions ε(t) of the classical equation (6.8). That is, different

choices of ε(t) will give wave function solutions of SE in the form (6.19) corresponding

to different initial states. In particular, if ε(t) satisfies initial conditions (6.24), at time

t = t0 we have ψ(M)

0
(q, t0) = Ψ0(q, t0) = ϕ0(q). In this case solutions ψ(M)

n (q, t) obtained by

the MMT-method coincide with solutions Ψn(q, t) obtained by the Wei-Norman method,
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which are given in terms of ε0(t) by equation (4.35). Also, the propagator KM(q, t; q′, t0)

given by (6.22) is the same with the propagator K(q, t; q′, t0) found by WN-approach in

(4.36), as expected.

Similarly, we can say that under conditions (6.24), the solutions ψ(M)
n (q, t) will co-

incide with solutions ψ(L)
n (q, t) obtained by Lewis-Riesenfeld method, when σ(t) satisfies

the initial conditions (5.48). This is exactly, the case σ0(t) = |ε0(t)|, and it is easy to check

that the propagator K(M)(q, t; q′, t0) given by (6.22) will be the same with the propagator

K(L)(q, t; q′, t0) given by (5.54).
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CHAPTER 7

CONCLUSION

In the present thesis, we considered time-dependent Schrödinger equation for a

quantum oscillator described by a quadratic, time-dependent hermitian Hamiltonian. We

studied three methods for solving this Schrödinger equation: the Wei-Norman algebraic

method, the Lewis-Riesenfeld method and the Malkin-Manko-Trifonov method.

The Wei-Norman algebraic method is also known as an Evolution operator ap-

proach for solving the initial value problem for the Schrödinger equation. Since the

Hamiltonian is a linear combination of generators of su(1, 1) Lie algebra, then the evo-

lution operator can be written as product of generators of the S U(1, 1) Lie group. Using

this idea, we found the evolution operator and showed that it is completely determined by

two-linearly independent real-valued solutions of the corresponding classical equation of

motion. Then, application of the evolution operator to given initial function gives us the

wave function solution of the Schrödinger equation.

The Lewis-Riesenfeld method is based on finding quadratic dynamical invariant

for the time-dependent Schrödinger equation. The quadratic invariant is found as a linear

combination of the su(1, 1) Lie algebra generators, where the time-dependent coefficients

are completely determined by a solution of the corresponding Ermakov-Pinney nonlinear

differential equation. The eigenvalues and eigenstates of the self-adjoint quadratic invari-

ant are found by the same algebraic approach used for diagonalization of the standard

harmonic oscillator. Then, the eigenstates of the invariant multiplied by a proper phase

factor give us a complete set of orthonormal solutions to the Schrödinger equation and

determine the propagator for the quantum evolution problem.

Malkin-Manko-Trifonov method is based on finding dynamical symmetries, which

by definition are operators that map solutions of the Schrödinger equation to other solu-

tions. In this approach a symmetry operator, linear in position and momentum, is com-

pletely determined by a complex-valued solution of the corresponding classical equation

of motion. Then, a successive application of the dynamical symmetry to a Gaussian type

solution of the Schrödinger equation gives us a complete set of orthonormal solutions,
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which are used also to find the propagator of the quantum system.

In the present thesis, we showed that the wave function solutions and propaga-

tors of the quantum parametric oscillator obtained by the above described different ap-

proaches are same, when in LR-approach the solution of the Ermakov-Pinney equation

and in MMT-approach the complex solution of the classical equation of motion are sat-

isfying proper initial conditions. In what follows, we write the initial-value problems

for the ordinary differential equations, whose solutions determine the same time-evolved

wave functions of the quantum problem under the same initial conditions.

Relations Between Solutions of Classical Equations of Motion

Evolution Operator Method⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
ẍ + μ̇

μ
ẋ + ω2(t)x = 0,

x1(t0) = x0 � 0, ẋ1(t0) = 0,

x2(t0) = 0, ẋ2(t0) = 1/μ(t0)x1(t0)

x1,x2−linear independent real solutions

Lewis-Riesenfeld Method⎧⎪⎪⎪⎨⎪⎪⎪⎩ σ̈(t) + μ̇
μ
σ̇(t) + ω2(t)σ(t) = 1

μ2σ3(t) ,

σ(t0) = 1√
mω0
, σ̇(t0) = 0.

σ(t)−real solution of Ermakov-Pinney

equation

Manko-Dodonov Approach⎧⎪⎪⎪⎨⎪⎪⎪⎩ ε̈(t) +
μ̇

μ
ε̇(t) + ω2(t)ε(t) = 0,

ε(t0) = 1√
mω0
, ε̇(t0) = i

√
mω0

μ(t0)
.

ε(t)−complex solution

Solutions

⎧⎪⎪⎪⎨⎪⎪⎪⎩ x1(t) =
√

mω0x0σ0(t) cos θ0(t),

x2(t) = 1√
mω0 x0
σ0(t) sin θ0(t),

where θ0(t) =
∫ t

t0
1

μ(s)σ2
0
(s)

ds.

σ(t) =
1√
mω0

√
x2

1
(t) + m2ω2

0
x4

0
x2

2
(t)

x2
0

= σ0(t)

ε(t) =
x1(t)√
mω0x0

+ i
√

mω0x0x2(t) = ε0(t)

= |ε(t)| eiθ(t) = σ(t)eiθ(t)

where θ(t) =
∫ t

t0
1

μ(s)|ε(s)|2 ds.
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APPENDIX A

UNBOUNDED OPERATORS ON HILBERT SPACES

This appendix includes basic properties of unbounded operators which are used in

the thesis.

Definition A.1 Let X and Y be normed spaces and Â : D(Â) → Y is a linear operator

where D(Â) ⊂ X. The operator Â is called an unbounded operator if there exists a se-

quence {xn} ∈ D(Â) with ||xn|| = 1 for all n ∈ N which implies ||Âxn|| → ∞ (Debnath and

Mikusiński, 2005).

Definition A.2 An operator defined in a normed space X is called densely defined if its

domain is a dense subset of X, that is, D(Â) = X.

Definition A.3 The adjoint Â† of densely defined operator Â in a Hilbert space H is the

operator defined on the set of all y ∈ H for which 〈Âx|y〉 is a continuous functional on

D(Â) such that

〈Âx|y〉 = 〈x|Â†y〉, f or all x ∈ D(Â) and y ∈ D(Â†).

Definition A.4 A densely defined unbounded operator Â in Hilbert space H is symmetric

(Hermitian) if

〈ϕ|ÂΨ〉 = 〈Âϕ|Ψ〉,

for all ϕ,Ψ ∈ D(Â).

Definition A.5 A densely defined operator Â in Hilbert space H is self-adjoint if

D(Â†) = D(Â),

and Â†ϕ = Âϕ for all ϕ ∈ D(Â).
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APPENDIX B

COMMUTATION RELATIONS OF THE LIE GROUP

GENERATORS

In this appendix, we calculate commutators (3.31). Acting on arbitrary function

f (q) we have

[K̂−, K̂+] f (q) =
−i
2

∂2

∂q2

i
2

q2 f − i
2

q2(−i
2

) ∂2

∂q2
f

=
1

4

∂

∂q
(
2q f + q2 f ′

) − 1

4
q2 f ′′

=
1

4

(
2 f + 2q f ′ + 2q f ′ + q2 f ′′

) − 1

4
q2 f ′′

=
f
2
+ q
∂

∂q
f (B.1)

Then this expression becomes,

[K̂−, K̂+] f =
(1

2
+ q
∂

∂q
)
f

which implies

[K̂−, K̂+] = 2
1

2

(1

2
+ q
∂

∂q
)

(B.2)

= 2K̂0

By the same way, other commutation relations can be calculated.
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APPENDIX C

THE FOURIER TRANSFORM

Definition C.1 The Fourier transform of an integrable function f , denoted by f̂ orF { f (x)}
is given by following integral

f̂ (ξ) = F { f (x)} = 1√
2π

∫ ∞

−∞
f (x)e−ixξdx (C.1)

Theorem C.1 (Fourier Inversion Theorem) For any integrable function f , the inverse

fourier transform can be expressed as an integral

f (x) = F −1{ f (ξ)} = 1√
2π

∫ ∞

−∞
f (ξ)eixξdξ (C.2)

Theorem C.2 Let f, g be an integrable function and constants α, β ∈ C. Then

(Linearity) F {α f (x) + βg(x)} = αF { f (x)} + βF {g(x)},
(Translation) F { f (x − a)} = f̂ (ξ)e−iaξ, a ∈ R,
(Modulation) F {eiαx f (x)} = f̂ (ξ − α),

(Scaling) F { f (αx)} = 1
|α| f̂

(
ξ

α

)
, α � 0,

(Conjugation) F { f (x)} = f (−ξ).

Proposition C.1 If g(x) = e−x2/2Hn(x), then Fourier transform of g(x) will be

F {g(x)} = (−i)n exp
[
− ξ

2

2

]
Hn(ξ) (C.3)

where Hn(ξ) is the n-th Hermite polynomial for all n=0,1,2,3,...

Proof Consider the exponential generating function of Hermite Polynomials,i.e.,

exp[−t2 + 2xt] =
∞∑

n=0

Hn(x)tn

n!
. (C.4)
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Multiplying this equation with exp(−x2/2), gives

exp[−1

2
x2 + 2xt − t2] =

∞∑
n=0

exp[−1

2
x2]

Hn(x)tn

n!
. (C.5)

Taking the Fourier transform of the left side of the above equation, we have

F
{

e−
1
2 x2+2xt−t2

}
=

1√
2π

∫ ∞

−∞
e−ixξe−

1
2 x2+2xt−t2dx,

= et2−2itξ− ξ22 ,

=

∞∑
n=0

e−
ξ2

2 Hn(ξ)
(−it)n

n!
. (C.6)

and the Fourier transform of the right side will be

F
{ ∞∑

n=0

exp[−1

2
x2]

Hn(x)tn

n!

}
=

∞∑
n=0

F
{

exp[−1

2
x2]Hn(x)

}
tn

n!
. (C.7)

Equating both sides, equation(C.6) and equation(C.7) gives

∞∑
n=0

e−
ξ2

2 Hn(ξ)
(−it)n

n!
=

∞∑
n=0

F
{

exp[−1

2
x2]Hn(x)

}
tn

n!
,

=⇒ F
{

exp[−1

2
x2]Hn(x)

}
= (−i)n exp

[
− ξ

2

2

]
Hn(ξ).

This result completes the proof. �
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APPENDIX D

EXPONENTIAL OPERATORS

This section provides the necessary calculations mostly needed to treat time de-

pendent problems. Following equalities show how operators act on a given function.

Shift(Translation) Operator:

exp

[
λ

d
dq

]
f (q) =

∞∑
n=0

λn

n!

dn

dqn f (q) =

∞∑
n=0

λn

n!
f (n)(q) = f (q + λ). (D.1)

where λ is a parameter (constant).

Dilatation Operator:

exp

[
λq

d
dq

]
f (q) = f (eλq). (D.2)

Proposition D.1 For a given function f0(q) of a real variable q, we have

exp

[
− iλ

2

∂2

∂q2

]
f0(q) = f (q, λ),

where f (q, z) satisfies the IVP for Schrödinger equation

1

2

∂2

∂q2
f (q; z) = i

∂

∂z
f (q; z), (D.3)

f (q, z)|z=0 = f (q; 0) ≡ f0(q). (D.4)

Proof : If f (q, z) satisfies (D.3), then we have also

exp

[
− iλ

2

∂2

∂q2

]
f (q; z) = exp

[
λ
∂

∂z

]
f (q; z),
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and it follows that

exp

[
− iλ

2

∂2

∂q2

]
f0(q) = exp

[
− iλ

2

∂2

∂q2

]
f (q; 0) = exp

[
λ
∂

∂z

]
f (q; z)|z=0,

= f (q; z + λ)|z=0 = f (q, λ).

�

Now, we apply Proposition C.1 for three special choices of the function f0(q).

• Let f0(q) = ϕn(q) ≡ Nne
−mω0

2� q2

Hn

(√
mω0

�
q
)
, where Nn = (2nn!)−1/2(mω0

�π
)1/4 for n =

0, 1, 2, 3, ...,. Then we need to solve the following Schrödinger equation:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
∂2

∂q2 fn(q; z) = i ∂
∂z fn(q; z),

fn(q; 0) = ϕn(q),

Taking fourier transform with respect to variable q of the above IVP we get

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂
∂z f̃n(ξ; z) = i

2
ξ2 f̃n(ξ; z),

f̃n(ξ; 0) = F
{

Nne
−mω0

2� q2

Hn

(√
mω0

�
q
)}
=

(−i)n√mω0
�

exp
[ −�ξ2

2mω0

]
Hn

( √
�ξ√

mω0

))
.

First solving this system, then taking inverse Fourier transform we can find fn(q; z)

as following:

fn(q; z) = Nn × 1

(1 + (mω0

�
z)2)1/4

× exp

[
− i

( mω0

�
z

1 + (mω0

�
z)2

)
mω0

2�
q2

]
× exp

[
i
(
n +

1

2

)
arctan(

mω0

�
z)

]
× exp

[
−

(
1

1 + (mω0

�
z)2

)
mω0

2�
q2

]
×Hn

((
1

(1 + (mω0

�
z)2)1/2

)√
mω0

�
q
)
, (D.5)

with z real and so that fn(q; 0) = ϕn(q). As a result, we have

exp

[−i
2
λ
∂2

∂q2

]
ϕn(q) = fn(q, λ).
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• If f (q; 0) = δ(q − q′) then we need to solve IVP,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[

1
2
∂2

∂q2

]
f (q; z) = i

[
∂
∂z

]
f (q; z),

f (q; 0) = δ(q − q′).

By Fourier transform we get

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂z f̃ (ξ; z) = i

2
ξ2 f̃ (ξ; z),

f̃ (ξ; 0) = F{δ(q − q′)} = 1√
2π

e−iξq′ .

Solving this system and taking inverse Fourier transform we have

f (q; z) =
1√
2π

√
i
z

exp

[−i
2z

(q − q́)2

]
. (D.6)

As a result, following equality is valid,

exp

[−i
2
λ
∂2

∂q2

]
δ(q − q′) = f (q, λ) =

1√
2π

√
i
λ

exp

[−i
2λ

(q − q′)2

]
.

• Let f (q; 0) = exp
[
−i
2

f(t)e−2h(t)q2

]
δ(e−h(t)q − q′) where f(t) and h(t) are real-valued

functions. Then we need to solve IVP,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[

1
2
∂2

∂q2

]
f (q; z) = i

[
∂
∂z

]
f (q; z),

f (q; 0) = exp
[
−i
2

f(t)e−2h(t)q2

]
δ(e−h(t)q − q′).

By Fourier transform, above IVP will be

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂
∂z f̃ (ξ; z) = i

2
ξ2 f̃ (ξ; z),

f̃ (ξ; 0) = F
{

e
−i
2 f(t)e−2h(t)q2

δ(e−h(t)q − q′)
}
= 1√

2π
exp

[
− iξeh(t)q′

]
exp

[
−i
2

f(t)q′2
]
.
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Solving this system and taking inverse Fourier transform we get

f (q; z) =
1√
2π

√
i
z

exp

[−i
2

f(t)q′2
]

exp

[−i
2z

(q − eh(t)q́)2

]
. (D.7)

As a result, we have

exp

[−i
2
λ
∂2

∂q2

]
exp

[−i
2

f(t)e−2h(t)q2
]
δ(e−h(t)q − q′) =

1√
2π

√
i
λ

exp

[−i
2

f(t)q′2
]

× exp

[−i
2λ

(q − eh(t)q́)2

]
.
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APPENDIX E

HERMITE POLYNOMIALS

Proposition E.1 For real or complex valued function ζ(t), one has operator identities

(a) ζ(t)q − ∂
∂q
= − exp

[
ζ(t)
2

q2

]
∂

∂q
exp

[−ζ(t)
2

q2

]
, (E.1)

(b)

(
ζ(t)q − ∂

∂q

)n

= (−1)n exp

[
ζ(t)
2

q2

]
∂n

∂qn exp

[−ζ(t)
2

q2

]
. (E.2)

Proof :

(a) We will directly apply RHS of the equation (E.1) to arbitrary function f (q),

− exp

[
ζ(t)
2

q2

]
∂

∂q

(
exp

[−ζ(t)
2

q2

]
f (q)

)
= − exp

[
ζ(t)
2

q2

](
− ζ(t)q f (q) exp

[−ζ(t)
2

q2

]
+ exp

[
ζ(t)
2

q2

]
exp

[−ζ(t)
2

q2

]
∂ f (q)

∂q

)
,

= ζ(t)q f (q) − ∂ f (q)

∂q
=

(
ζ(t)q − ∂

∂q

)
f (q)(E.3)

It implies the desired equality (E.1). In addition, it can be proved by using the Hausdorff

identity (3.35).

(b) Applying ζ(t)q − ∂/∂q n times and using (E.1), we get the equality (E.2). �

Proposition E.2 For α > 0, one has

dn

dqn e−αq2

= (−1)n(
√
α)nHn(

√
αq)e−αq2

, (E.4)

where Hn(
√
αq) are the Hermite Polynomials.

Proof :Mathematical induction will be used for the proof. Firstly for n = 1, we have

d
dq

e−αq2

= −2αqe−αq2

= (−1)
√
αH1(

√
αq)e−αq2

(−1)n(
√
α)nHn(

√
αq)e−αq2

(E.5)
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which shows that equation (E.4) is valid. Now we will prove that equation (E.4) holds for

n = k + 1, by assuming that it is true for n = k. Consider the following equations,

dk+1

dqk+1
e−αq2

=
d

dq

(
(−1)k(

√
α)kHk(

√
αq)e−αq2

)
,

= (−1)k(
√
α)k d

dq

(
Hk(
√
αq)e−αq2

)
,

= (−1)k(
√
α)k

(
d

dq
Hk(
√
αq) − 2αqHk(

√
αq)

)
e−αq2

. (E.6)

Now, using the recursion relation for Hermite polynomials, we have,

dk+1

dqk+1
e−αq2

= (−1)n+1(
√
α)k+1Hk+1(

√
αq)e−αq2

, (E.7)

which shows that for n = k + 1, equation (E.4) is valid. Thus, we completed the proof. �
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