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ABSTRACT 
Multiple sequence alignment (MSA) is a widely used 

method to uncover the relationships between the 

biomolecular sequences. One essential prerequisite to apply 

this procedure is to have a considerable amount of similarity 

between the test sequences. It’s usually not possible to 

obtain reliable results from the multiple alignments of large 

and diverse datasets. Here we propose a method to obtain 

sequence clusters of significant intragroup similarities and 

make sense out of the multiple alignments containing 

remote sequences. This is achieved by thresholding the 

pairwise connectivity map over 2 parameters. The first one 

is the inferred pairwise evolutionary distances and the 

second parameter is the number of gapless positions on the 

pairwise comparisons of the alignment. Threshold curves 

are generated regarding the statistical parameter values 

obtained from a shuffled dataset and probability distribution 

techniques are employed to select an optimum threshold 

curve that eliminate as much of the unreliable connectivities 

while keeping the reliable ones. We applied the method on a 

large and diverse dataset composed of nearly 18000 human 

proteins and measured the biological relevance of the 

recovered connectivities. Our precision measure (0.981) was 

nearly 20% higher than the one for the connectivities left 

after a classical thresholding procedure displaying a 

significant improvement. Finally we employed the method 

for the functional clustering of protein sequences in a gold 

standard dataset. We have also measured the performance, 

obtaining a higher F-measure (0.882) compared to a 

conventional clustering operation (0.827). 
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1. Introduction 
 

Exploring evolutionary relationships between genes and 

proteins of biological organisms are crucial for discovering 

the physiological and molecular mechanisms govern their 

system. This is done by taking account of the molecular 

similarities and differences between these gene and protein 

sequences. In other words, the aim is to uncover the mutual 

history of these sequences by locating and exposing the 

molecular substitutions with respect to the most probable 

alignment between the nucleic acid or amino acid 

sequences. 

The concept of sequence alignment was first applied to 

molecular biology decades ago to infer meaning from the 

complex sequential information. Alignment methods aim to 

uncover shared features between the tested sequences by 

identifying their molecular similarities. Needleman-Wunsch 

global alignment [1] and Smith–Waterman local alignment 

[2] algorithms are two basic tools used primarily in this 

manner. Nearly all current sophisticated tools are based 

upon these two pairwise alignment algorithms. Multiple 

Sequence Alignment (abbreviated and used as MSA from 

now on) algorithms are used for aligning more than two 

sequences. These tools came in the following years and still 

used widely. These methods are also based on the pairwise 

alignment procedure. A classical multiple sequence 

alignment operation basically consists of 2 steps. First one is 

the all-against-all pairwise alignment of input sequences. 

Second step is the progressive formation of the multiple 

alignment by introducing all sequences to the growing chain 

including the gaps inserted during the pairwise alignment 

step. Unlike pairwise local alignments, optimal solution is 

not guaranteed in the MSA procedure. Clustal family tools 

[3] (one of the most popular MSA methods) are for general 

use to align both nucleotide and amino acid sequences, and a 

typical example for the progressive alignment methods. 

ClustalW [3] is also used for phylogenetic tree construction. 

MUSCLE [4] incorporates iterations during which distance 

measures are refined, resulting in more accurate alignments. 

T-COFFEE [5] another common MSA method, uses the 

output from Clustal and local alignments to improve 

weighing factors. MAFFT [6] produces alignments in 

reduced computation times employing fast Fourier 

Transform [7]. A tremendous amount of progression was 

obtained in the field of sequence analysis for the past years 

thanks to these tools and they probably will serve the field 

for years to come. 

One key prerequisite to acquire a meaningful output 

from the MSA procedure is to have a considerable amount 

of similarity between the input sequences. MSA algorithms 

shape the alignments around shared sequential features and 

when one or more of the input sequences lack this feature, 

these sequences cannot be aligned to the rest accurately in 

any way. The presence of non-homologous sequences 

sometimes misleads the propagation of the alignment and 

damage the output. This condition is especially reflected as 

errors on the phylogenetic trees drawn after the alignment. 

Remote sequences usually end up on irrelevant regions on 

the tree indicating false relations. Moreover, these sequences 



may lead to inaccurate branch length predictions for the 

whole tree. As a result only the sequences that contain a 

specific feature -or features- are given to the procedure. This 

inhibits the analysis of large datasets composed of both 

similar and diverse biological sequences such as whole 

genomes or proteomes. An exhaustive preliminary study 

regarding the split of the dataset into highly similar 

sequence groups is usually necessary before the MSA 

process and this often is handled in a supervised manner 

using a BLAST like algorithm [8] and a vast database of 

confirmed known sequences. Even when there are no remote 

sequences in the dataset, the presence of fragments of 

homolog sequences (frequently encountered in online 

databases) usually leads to the same occasion due to the 

obscurity of the relations between the fragments. 

Here we propose a method to make sense out of MSAs 

of datasets composed of sequences from different families 

(including the sequence fragments) using similarity 

thresholding with probability distribution techniques. At the 

end, the sequences are split into meaningful clusters in an 

unsupervised way using no information other than the 

sequences themselves. These sequence groups (consisting of 

homolog proteins) then can be subjected to the MSA process 

separately to obtain accurate alignments.  

This is done by first, creating a new dataset by shuffling 

the elements of the original dataset and subjecting it to MSA 

procedure. Second, generating 2 D histograms consisting of 

pairwise evolutionary distances and the number of pairwise 

overlapped sites (number of positions without gaps) for the 

original and shuffled datasets separately. Third, drawing 

threshold curves on histograms using mean and standard 

deviation values of pairwise evolutionary distances. Fourth, 

calculating the probability distributions of discarding true 

and meaningless connections at each threshold; and decision 

making using a Receiver Operating Characteristics curve 

[9]. 

The method was applied on the MSA output of a large 

dataset consist of nearly 18000 human protein sequences. 

The dataset contained both similar and considerably distant -

up to 100% sequence divergence- proteins. At the end of the 

procedure, the recovered connections were compared with 

the shared Gene Ontology associations [10] of these proteins 

to observe the biological relevance of the method. Finally, 

the method was employed to solve a common real world 

task: the functional clustering of protein sequences. A gold 

standard dataset [11] was analyzed by clustering the proteins 

sequences within, measuring the clustering performance and 

comparing it with a classical clustering operation.  

The employed methods are expressed in detail in the 

next part of this article followed by the results and 

discussion part and a conclusion. 

 

 

2. Methods 
 

2.1 Shuffled Dataset Creation 

 

The flow chart of the proposed method is given in Figure 1. 

Shuffled dataset was created by shuffling the elements of 

each amino acid sequence from the original dataset 

randomly. The shuffling operation was applied on the 

sequences separately so the length and amino acid 

composition of each sequence was preserved. The shuffled 

dataset contained the same number of sequences as the 

original dataset. 

The shuffled dataset was used as a reference to 

represent unreliable connectivities that should be discarded. 

Since the elements of the sequences in this dataset were 

shuffled randomly, any inferred evolutionary relationships 

between these sequences were assumed to be emerged 

purely by chance. 

  

2.2 Pairwise Evolutionary Distance Inference and the 

Calculation of Pairwise Alignment Overlaps 

 

Right at the beginning of the procedure, we assumed that, 

there was a significant homology between all sequence pairs 

in the dataset. In other words, pairwise connectivity map 

was fully connected at the starting point. Most probably, 

some of the sequence pairs have no homology in-between, 

yet it was not known which ones at this point. What sought 

here was an indicator to measure the pairwise similarities to 

decide the existence or absence of significant homology. 

Pairwise evolutionary distance was a suitable measure to 

detect this similarity. Evolutionary distances close to zero, 

signal strong homology and as the distances increase, 

homology diminishes. Since it’s usually not possible to 

know the real evolutionary distances between biological 

sequences, they are inferred from the sequence distances 

using substitution models. In this analysis, evolutionary 

distances were inferred using Kimura amino acid 

substitution model [12] with the correction for multiple 

substitutions option. 

In the multiple alignments of large datasets, the output 

alignment is usually quite lengthy. As a result, some of the 

sequences (especially short ones) may end up on different 

parts of the output alignment. It’s not possible to infer 

evolutionary distances of these proteins. In theory these 

sequences are diverged from a common ancestor so long 

before that the accumulated mutations makes it impossible 

to infer any similarity. At some other times, two distant 

sequences have matches (or mismatches) on a few positions 

(and there are gaps at the rest of the positions). After an 

inspection it was discovered that among all pairwise 

combinations in the output multiple alignments of test 

datasets, there were many occasions that only 1 or 2 sites 

were occupied by amino acid on both sequences -in other 

words gapless positions-. If this site gave a match, the 

evolutionary distance was inferred as zero between these 2 

sequences since the remaining sites (including gaps) were 

not counted at all. However this information was not reliable 

as these sequences were not homologous. Figure 2 shows a 

sample case for this phenomenon. The rows represent 2 

protein sequences taken out from a test Multiple Sequence 

Alignment output. The position shown in green color is the 

only site available for inferring the evolutionary distance. 

Since it’s a match, the distance was calculated as zero. 



 
Figure 1. Flow diagram of the proposed method. 

 

Unreliable cases such as this one should be eliminated 

together with the connectivities with elevated pairwise 

distances. The proposed solution was eliminating the 

unreliable connections by thresholding the connectivity map 

over both pairwise evolutionary distances and the number of 

sites without gaps (pairwise overlaps). Similar to the 

pairwise evolutionary distances, the number of sites without 

gaps were calculated for each sequence pair in the original 

and the shuffled datasets. 

 

 
Figure 2. A sample case that leads to an unreliable 

evolutionary distance inference in the MSA process. 

 

 

2.3 2-D Histogram Formation 

 

A 2-D histogram is a visual representation of the distribution 

of data just like a normal histogram. It differentiates from a 

normal histogram on the number of features the data is 

distributed upon. In a 2-D histogram, the distribution of the 

data is shown at the intersection of two feature intervals. In 

the plot, the discrete intervals of feature 1 are located on the 

horizontal axis and the ones for feature 2 are located on the 

vertical axis. One bin is formed for each feature 1 and 

feature 2 discrete interval combination and the number of 

points fall between the ranges of features for that bin 

appears inside. For the sake of visuality 2-D histograms are 

often created as intensity graphs instead of bars. 

In this study, horizontal axis of the 2-D histogram 

represented the total number of gapless sites for each 

pairwise comparison -regarding the multiple alignment 

results-. Vertical axis represented the inferred pairwise 

distances. These axes were both divided into 100 discrete 

intervals making 10000 bins in total. In order to create the 

intensity contrast, grayscale colormap was chosen. More 

populated bins were represented by a darker color and 

sparsely populated bins by lighter colors. 

First, linearly scaled intervals were used for the 

colormap but resulted in visually poor plots. Later, a 

logarithmic scale was preferred for the coloring intervals 

producing satisfying visuality. Figure 3 shows 2-D 

histograms for the human protein dataset. 

 

2.4 The Thresholding Operation 

 

To create the threshold curves on the 2-D histograms, 

standard deviation and mean values of the distribution of 

‘pairwise distances’ on each ‘number of sites without a gap’ 

interval was used. Equation 1 shows the formulation of the 

threshold curves. 

 

                            (1) 

 

Ti is the i
th

 threshold curve, M is the mean pairwise 

distance –a constant value-, S is the standard deviation curve 

of the distribution of distances. 

Standard deviation curve creation was carried out 

column-wise on 2-D histograms. For each discrete ‘number 

of sites without a gap’ interval, a standard deviation value 

was generated regarding the pairwise evolutionary distances. 

These successive values formed the standard deviation 

curve. In order to eliminate the noise on the curve, a normal 

(Gaussian) distribution model was fit on the curve [13]. The 

most suitable fit was found on the third order General 

Gaussian Model shown on Equation 2. 
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Coefficients were a1=0.34, b1=-37.29, c1=139.2, 

a2=0.2989, b2=-399.1, c2=589.9, a3=121.4, b3=-41610, c3= 



16360 and for the goodness of the fit, R-square was found to 

be 0.9994. 

Use of the standard deviation curves during the 

formation of the threshold curves allowed the capturing of 

the shape of the edge of the crowded portion in the 2-D 

histogram of the shuffled dataset. This was useful for 

separating the meaningless/unreliable connections from the 

reliable ones. 

Using this method, 20 different threshold curves were 

created that scan the area below the mean distance curve. In 

addition to this set, 20 new curves were created to scan the 

area above the mean distance curve using the Equation 3 

making 40 curves in total. 

 

                             (3) 

 

To avoid confusion in curve names, all of these 40 

curves were named as σ1,2,3,....,40. Figure 4 shows the 

threshold curves on the 2-D histogram of the shuffled 

version of the human protein dataset. 

 

2.5 Decision Making Step 

 

A Receiver Operating Characteristic (ROC) curve [9] was 

employed in order to select the optimum threshold curve. 

Generally, a cut-off between the two classes (simply named 

as positives and negatives) with overlapping distributions is 

to be obtained using the ROC curve [9]. In our study, the 

positives group corresponded to the real connections from 

the original dataset whereas the negatives group 

corresponded to the random connections from the shuffled 

dataset. Motivation here is that, all connections coming from 

the shuffled dataset are assumed to be 

meaningless/unreliable; whereas, the ones from the original 

dataset contain both reliable and unreliable connections. To 

separate the reliable ones from the rest, a continuously 

increasing threshold was applied to the pairwise connections 

of both groups (using the previously generated curves) 

where the connections with the values exceeding this 

threshold were discarded. Presence of a pairwise connection 

indicates a significant homology between the sequence pair. 

When a connection is discarded, we assume that the 

corresponding sequences are non-homologs. At the optimum 

point, most of the connections from the shuffled dataset 

should be discarded and the ones left from the original set 

are accepted as the reliable connections. 

To this end; true positives (TP), false positives (FP), 

true negatives (TN) and false negatives (FN) values were 

calculated from the number of real and random connections 

discarded and remained at each threshold together with the 

total number of real and random connections. The ROC 

curve was plotted using TP and FP rates. At this point, a cut-

off should be decided regarding the slope of the ROC curve. 

For the automatic selection of the cut-off, the point where 

the slope equals to 10
5
 or the point where all of the random 

connections were eliminated (whichever comes first) was 

chosen. Figure 5 shows the ROC curve for the human 

protein test dataset. 

At this point, the connectivity map became disjointed 

due to the removal of inter-connections. This operation 

forms groups of homolog sequences. 

 

2.5 Calculation of the Statistical Performance Measures 

 

Statistical measures were employed in order to evaluate the 

performance of the method on different tasks. These 

parameters consist of Recall, Precision and F-measure. 

Recall and Precision are composed of different 

combinations of TP, FP and FN values. F-measure 

incorporates both Recall and Precision to display the 

performance on a single parameter and frequently employed 

in clustering studies [14, 15, 16, 17]. The calculation of 

Recall (Sensitivity), Precision and F-measure are given in 

equations 4, 5 and 6 respectively. 
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3. Results and Discussion 
 

3.1 Analysis of the Large Human Protein Dataset 

 

Since the sequencing of human genome [18]; functions and 

interactions of genes and its products are being studied 

extensively throughout the world. This is a crucial subject 

and the key to develop novel medical solutions to prevalent 

diseases and other medical complications. Apart from 

expensive and laborious experimental studies, fundamentals 

of bioinformatics are applied to the case to infer answers. 

Statistical approaches are tried on these sequences to seek 

significant similarities between functionally known 

(experimentally proven) and unknown ones. In our study, 

we also prefer to apply our procedure on a large dataset 

composed of human protein sequences. 

We decided to form our dataset regarding Gene 

Ontology (GO) associations [10]. Gene Ontology project 

aims the standard representation and documentation of 

genes and its products. The proteins annotated by GO have 

gone through a detailed inspection and examination process, 

as a result their functional associations are more reliable 

[10]. GO assign terms to these sequences on three main 

categories. Molecular function is the first one and represents 

the specific function of the sequence in the metabolism; 

biological process is the general operation during which this 

specific function is carried out; and cellular component is 

the location where this product functions. There is a 

hierarchical construction of these terms from broad to 

specific and a gene (or its product) is identified more clearly 

with growing number of associations. There is a clear 

indication of evolutionary and functional relatedness 



(homology) between biological sequences with shared GO 

terms. 

Up to date version of the accession numbers of Human 

proteins with GO associations were obtained from Gene 

Ontology project web site [10]. Protein sequences were 

downloaded from UniProt Database [19] via the accession 

numbers. Sequences with a length lower than 100 amino 

acids and higher than 10000 amino acids were assumed to 

be outliers and removed from the dataset. The final dataset 

consisted of nearly 18000 human protein sequences. This 

dataset was quite a hard case for any technique that relies on 

similarity measurements. Next, the shuffled dataset was 

created using randomly permuted elements of the amino 

acid sequences of the original dataset.  

ClustalW2 v2.0.10 software package [3] was used for 

the global MSA procedure for the original and the shuffled 

datasets separately with the default options. Pairwise 

evolutionary distances were inferred using the built-in 

algorithm of ClustalW2 with Kimura amino acid 

substitution model [12] (with the correction for multiple 

substitutions option). 

By comparison of the resulted alignments for the 

original and the shuffled datasets, it was observed that the 

length of the alignment was significantly shorter -in other 

words less gappy- for the shuffled dataset. This result was 

expected beforehand. Since no meaningful alignment can be 

obtained from the shuffled dataset any ways, MSA 

algorithm chose not to insert as many gaps as in the 

alignment of the original dataset in order to avoid gap costs. 

From the resulted alignments, 2-D histograms were created 

for the original and the shuffled datasets with the procedure 

described in the methods part. 

The aim of thresholding the connectivity map was to 

eliminate the unreliable pairwise connections resulting from 

distant relationships or poor alignment. In a classical case 

with the MSA of a few closely related proteins, this 

procedure would be unnecessary since the probability of 

getting inaccurate pairwise alignments between closely 

related sequences are quite low. For this case, where there 

were nearly 18000 sequences that span nearly the entire 

functional spectrum of the human proteins discovered so far, 

the resulted MSA was so long that especially some of the 

short sequences didn’t have any overlap on each other to 

calculate a pairwise distance. More misleading than that, 

some of these sequence pairs had an overlap on just 1 or 2 

residues. If there was a match on that residue -since there 

were no other mismatches-, pairwise distance between these 

sequences ended up as zero, even though the rest of the 

sequences were quite diverged from each other. To solve 

this problem we introduce the thresholding of the 

connectivity map regarding 2 parameters (pairwise 

evolutionary distances and the total number of gapless sites 

on the pairwise comparison of the aligned sequences). 

2-D histograms were created to this purpose for the 

shuffled and the original datasets. On these 2-D histograms, 

clumped regions were observed and the discrepancies 

between the histograms of the original and the shuffled 

datasets were tried to be extracted. 

Figure 3 represents the 2-D histogram of the original 

dataset on the left (a) and shuffled dataset on the right (b) -

both in log scale to increase visuality of the difference- 

where the horizontal axis represents the number of sites 

without gap intervals on pairwise comparisons and the 

vertical axis represents the pairwise evolutionary distance 

intervals. There was a visually distinct difference between 

the histograms around 0-2000 number of overlaps and 0-2 

pairwise distances. This region on the original dataset 

histogram represents the reliable connections. However the 

region was not a clear cut as the shuffled datasets histogram 

also has representatives in the region. So this gray area 

should be handled with probability distribution techniques. 

The threshold curves and the ROC curve were created 

following the procedures explained in the methods part. 

Figure 4 shows the threshold curves σ1,2,3,....,40 used for the 

creation of the ROC curve, on the 2-D histogram of the 

shuffled dataset with the same horizontal and vertical axes. 

The ROC curve (Figure 5) slope was selected to be 10
5
 

automatically for the cut-off. This point is shown with the 

black dot on the ROC curve (Figure 5). The threshold curve 

that yielded the selected cut-off was σ26. At this cut-off 270 

 
Figure 3. 2-D histograms of (a) the original and (b) the shuffled version of human protein dataset in log scale. 



meaningless (≈ 0% of the total) and 213000 real (0.14% of 

the total) connectivities were left on the connectivity map. 

At this point, it appeared like most of the connections from 

the original dataset were eliminated, however it’s crucial to 

mention that these were composed of false connections 

along with the true ones and our aim was to separate these 

two from each other.  

2-D histogram of the original dataset with the selected 

threshold curve plotted over (blue colored) is shown on 

Figure 6. All of the pairwise connectivities that had distance 

and overlap values above the curve were assumed to be 

unreliable and discarded. 

 

 
Figure 4. Threshold curves σ1,2,3,....,40 on the 2-D histogram of 

the shuffled version of human protein dataset. 

 

As expected, the threshold connectivity map became 

disjointed at this point and consisted of components with 

differing sizes. A component here is defined as a group of 

sequences that have either direct or indirect connections in-

between. A manual examination over some sample 

components revealed that, each component was composed 

of similar proteins usually with significant homology. 

 

 
Figure 5. The ROC curve for the thresholding operation of 

human protein dataset (black dot: selected threshold). 

 

At this point in the study it was clear that, most of the 

inter-group distances were quite large, unreliable and 

dumped during the thresholding operation. After the 

thresholding, 445 components were formed. The largest one 

contained 476 and the smallest ones contained 2 sequences. 

In order to examine the biological relevance of our 

grouping, we tested our recovered true connections against 

the GO associations of the input sequences. We prepared the 

reference connection map by searching for the shared GO 

terms between sequences and assuming significant 

homology (existence of a connection) between these 

sequences. Any two sequences were assumed to be 

connected (related) when there was at least one shared GO 

term in-between. By this way, connections were formed 

between 37.9% of all possible sequence pairs. We measured 

performance by counting the true and false connections 

found in our analysis regarding the reference connections. 

When we got a connection that was also present in the 

reference map, we counted a true positive (TP). When we 

have a connection that didn’t appear in the reference, it was 

a false positive (FP). We calculated the precision measure 

(positive predictive value) as given in Equation 5. A 

precision value of 1 would mean all of the recovered 

connections were accurate. Our precision output was 0.981 

whereas the same number of connections selected randomly 

resulted in 0.426 precision. Also to show how our method 

disposed meaningless connections, the same test was 

applied directly to the pairwise evolutionary distance 

(Kimura model) output of MSA procedure (a classical 1-D 

thresholding). The distance map was threshold with the 

disposal of the pairwise distances greater than 2. This was a 

reasonable value to assume homology and also the 

remaining number of connections in the map appeared to be 

nearly the same as our result providing the fair comparison 

of the performances. Precision for the classical thresholding 

over the pairwise distances was found as 0.799. The 

difference was nearly 20% in favor of our method which 

was a considerably significant improvement. 

 

 
Figure 6. 2-D histogram of the original dataset with the 

selected threshold curve (σ26) plotted over. 

 

The results supported our claim that thresholding the 

pairwise connectivity map over 2 dimensions (the number of 

positions without gaps in the pairwise comparisons of 

aligned sequences and inferred evolutionary distances) after 



the MSA procedure assures the disposal of false homology 

detections and help make sense out of multiple alignments 

of large and mixed datasets. In addition, the detection of the 

potential MSA disrupters (distant sequences and homolog 

sequence fragments in the dataset) was provided by the 

proposed method. 

 

3.2 Clustering of the Reference Dataset 

 

Clustering of biomolecular sequences is an active area of 

research where the sequences are tried to be grouped under 

evolutionary and/or functional constraints in order to infer 

the history and functions of the unknown sequences 

(regarding the known ones). Over the last decade, many 

clustering algorithms were developed employing different 

statistical approaches. Some popular methods from the 

literature are TribeMCL [20], Spectral Clustering [14 & 15], 

FORCE [16] and TransClust [21]. 

At the final step of the study, members of a standard 

dataset composed of 866 manually curated enzymes (in 91 

families) [11] were clustered and the accuracy of this 

application was measured (regarding the families that the 

sequences belong to) and compared with a classical 

thresholding operation incorporating only pairwise 

evolutionary distances. This conventional operation acting 

over 1 dimension takes part in most of the clustering 

methods (thresholding BLAST [8] e-values). This dataset is 

referred as a gold standard set in the literature and 

frequently employed in the testing of clustering algorithms 

[17, 21, 22]. By this way, the effectiveness of the proposed 

method in solving a real world task was displayed clearly. 

First of all, the sequences were obtained via online 

material published by Brown et al. [11]. Next, the shuffled 

dataset was generated and both sets were subjected to MSA 

procedure using ClustalW2 v2.0.10 software package [3] 

with the default options. Then, the pairwise evolutionary 

distances were inferred using Kimura amino acid 

substitution model [12] (with the correction for multiple 

substitutions). After that, the numbers of overlapped 

positions on alignments were calculated, 2-D histograms 

were formed, and threshold and ROC curves were drawn as 

described in the Methods part. The cut-off was selected 

automatically at the point where no connections remained 

from the shuffled dataset. After the thresholding operation, 

sequences were clustered regarding the recovered pairwise 

connections. Since the presence of a connection between a 

sequence pair indicates a significant homology/similarity, 

these sequences appear in the same cluster. All sequences 

with a direct or an indirect connection in-between were 

grouped together. This approach was similar to the widely 

used graph theory method Connected Component Analysis 

[23] that was also employed in biomolecular sequence 

clustering methods frequently. 

Figures 7 (a) and (b) show the 2-D histograms (with the 

threshold curves plotted over) of the original reference 

dataset and its shuffled version respectively (in log scale). 

The true/reliable connections are visible on Figure 7 with 

dark color just over the baseline of the x-axis. Figure 8 

shows the curves for the classical 1-D thresholding 

operation on the 2-D histogram of the original reference 

dataset. Notice the curves here are linear and parallel to x-

axis since this operation did not incorporate number of 

overlapped positions. 

 

 
Figure 7. 2-D threshold curves on the 2-D histograms of (a) 

the original and (b) the shuffled standard dataset 

 

 
Figure 8. 1-D threshold curves on the 2-D histogram of the 

original standard dataset 

 



Table 1 shows the Precision, Recall and F-measure 

values for the clustering performance of the conventional 1-

D thresholding operation (first column) and the proposed 

method (second column) using the threshold curve selected 

automatically. For a fair comparison between the proposed 

method and the conventional thresholding operation, the 

average clustering performances regarding all threshold 

curves are given in the third and fourth columns. Best F-

measures are given in bold. As seen from Table 1, the 

clustering performance was increased nearly 6.5% (F-

measure: 0.827 to 0.882) when the proposed method was 

employed instead of the conventional thresholding with the 

automatically selected threshold curve. On the other hand, 

the average clustering performance was increased around 

7.9% (F-measure: 0.712 to 0.768) with our method. These 

results indicate the effectiveness of the proposed approach 

in the functional clustering of amino acid sequences. 

 

Table 1. Clustering performance measures for the standard 

dataset after the conventional (1-D) and 2-D thresholding 

operations. 

 
At the selected curve Average of all curves 

  1-D Thres. 2-D Thres. 1-D Thres. 2-D Thres. 

Precision 0.711 0.794 0.700 0.723 

Recall 0.990 0.991 0.892 0.935 

F-measure 0.827 0.882 0.712 0.768 

 

 

4. Conclusion 
 

In this study we proposed a procedure to infer meaningful 

pairwise homology relationships and to obtain clusters of 

homolog sequences from MSAs (including the alignments 

of large datasets composed of diverged sequences). The 

pairwise connectivity map was threshold over 2 dimensions 

(inferred evolutionary distances and the number of gapless 

positions on pairwise comparisons of the aligned sequences) 

with curves considering the mean and standard deviation 

values of the random dataset. This random dataset was 

composed of the shuffled elements of the sequences of the 

original set. The method was applied on a large dataset 

composed of nearly 18000 human protein sequences. A 

precision value of 0.981 was measured for the biological 

relevance of the recovered pairwise connections. This value 

was nearly 20% higher than the precision measured right 

after the MSA. Finally, protein sequences in a gold standard 

dataset were clustered using the proposed method along 

with the measurement of the clustering performance. The 

results displayed improvement in clustering accuracy (F-

measure: 0.8819 with the automatic threshold selection) 

compared to the classical thresholding over inferred 

evolutionary distances (F-measure: 0.8274). These results 

indicate the potential of the proposed method both in 

recovering true pairwise similarity relationships after MSAs 

and the functional clustering of biomolecular sequences. In 

the time ahead, we plan to implement this thresholding 

procedure in a comprehensive method for the functional 

clustering of the sequences with the identification of the 

domain regions within. 
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