
A Semantic Based Certification and Access Control
Approach Using Security Patterns on SEAGENT

Fatih Tekbacak
Department of Computer Engineering

Izmir Institute of Technology

Urla, Izmir, Turkey 35430

Email: fatihtekbacak@iyte.edu.tr

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology

Urla, Izmir, Turkey 35430

Email: tugkantuglular@iyte.edu.tr

Oguz Dikenelli
Department of Computer Engineering

Ege University

Bornova, Izmir, Turkey 35100

Email: oguz.dikenelli@ege.edu.tr

Abstract—In this paper, we propose a security infrastructure
for communication between agents adaptable to FIPA security
specifications by employing security patterns and semantic based
policy descriptions. Security patterns are used as a generalized
approach for generating security based services. This paper
analyzes the authentication and semantic based access control
among agents by using the security patterns.

I. INTRODUCTION

Multi-agent systems(MAS), which communicate in an open

environment like Internet, face safety and security problems.

Therefore, MAS should have some strategies, policies and

mechanisms for confidentiality, integrity, authentication, non-

repudiation [1], [2], [3]. This paper proposes a security in-

frastructure intended for a FIPA compliant multi-agent system

namely SEAGENT [4], and provides a solution by using secu-

rity patterns with semantic web for policy based approaches.

SEAGENT agents demanding for secure access will be utiliz-

ing Agent Authenticator, Agent Certification Authority(ACA)
and Access Controller patterns that have been explained in

Tropos methodology [5].

II. BACKGROUND

SEAGENT is a P2P Java framework for writing Semantic

Web enabled Multi-Agent applications [4]. The main objective

of SEAGENT project is to develop an agent framework for

constructing FIPA-compliant multi-agent platforms that work

on semantic web environment. It’s communication module

supports current web based communication protocols both for

intra-platform and inter-platform communication.

Agent oriented software engineering is one of the most

natural ways of characterizing security issues in information

systems. This approach allows developers first to model the

security requirements in high-level and then incrementally ap-

ply these requirements to security mechanisms as services(or

agents) in the multi-agent systems [6], [7].

This paper uses the approach that has been detailed in [7].

The authors of Tropos merged the advantages of the agent

oriented programming and security patterns paradigms by ap-

plying both of them in the Tropos methodology. Secure Tropos

extends the agent oriented software engineering methodology

by providing a set of security-related concepts and processes

to allow developers to consider security issues throughout the

development stages. By using this methodology, agent oriented

concepts could identify a set of security requirements needed

by the system and these requirements can be transformed to

a design with the use of security patterns.

Since SEAGENT is a FIPA-based multi-agent system, FIPA

specifications have been followed throughout this work. First,

all agents must register to Agent Management System(AMS).

AMS has the responsibility to monitor the lifecycle of agents

and agents must inform AMS about their platform related

actions(register, deregister and so on). Second, software agents

must also register their service descriptions to Directory Facil-

itator(DF). During this process, a masquerading agent should

be prevented from registering its services or service descrip-

tions and at the end damaging the platform. Third, there is also

a communication layer called Agent Communication Chan-

nel(ACC) which transmits agent communication messages.

Those messages should have confidentiality, integrity, authenti-

cation and non-repudiation properties according to FIPA secu-

rity specification. This specification introduces Agent Platform

Security Manager(APSM) which defines security issues of

AMS and requires a PKI for registering agents. The speci-

fication of FIPA for message-based communication security

uses Agent Communication Language(ACL) envelope added

properties.

III. SECURITY PATTERNS

Security is often an afterthought functionality in system design

and implementation. The enterprise context and requirements

that drive system security are often not addressed explicitly

and are not incorporated into system architectures. The desired

approach is to begin to address security together with the

system design rather than the repair-service approach [3].

The basic idea behind patterns is to capture expert knowl-

edge in the form of documentation with a specific structure

containing proven solutions for recurring problems in a given

domain. In particular, security patterns can be more useful

when people responsible for systems have little or no security

expertise.

In this paper, Agent Authenticator, Agent Certification Au-
thority and Access Controller patterns have been examined in

detail. The remaining patterns defined in [7], namely Agency
Guard and Sandbox patterns are out of scope of this paper.

741



A. Agent Authenticator

Agents must be authenticated in the platform before they

are allowed for intra- and inter-platform communication. The

Agent Authenticator pattern determines the authentication pro-

cess of agents in an agency. The authentication process is

implemented by using digital signatures generated with agent’s

or agency’s secret key.

The advantage of Agent Authenticator is to check the

agent’s identity before it involves in any communication within

the agency. Authentication of the requesting agent could be

verified by Agent Authenticator. This pattern also prevents

implementation of different authentication mechanisms for

different agents.

The disadvantage of this approach is that Agent Authen-
ticator becomes a central point. So that when the Agent
Authenticator crashes, the whole system would be under risk.

The design of the agent authentication model in SEAGENT

by using SEAGENT Plan Editor is shown in Figure 1. Sup-
plyPrivateInformation behaviour takes the owner policy and

key pair of the agent. Outcome of this behaviour is passed

to SupplyPrivateKey action. Private key of the agent is used

for creating its digital signature for authentication issues in

SupplyDigitalSignature action. AuthenticationManager action

is the connection point of AgentAuthenticator with AgentCer-
tificationAuthority to obtain the related request parameters by

the issued certificate of the agent. These parameters could be

subject, issuer of the certificate, validity time of the certificate

to validate the digital signature and apply the authentication

rules to decide agent’s authentication for the communication.

AgentAuthenticator lastly takes its external provision as Re-

questParameters from AgentCertificationAuthority and passes

these parameters to AuthenticationManager by provision in-

heritance. So the Agent Authentication mechanism halts by

the decision of this behaviour’s planning activities and the

outcome of AuthenticationManager causes the authentication

decision for the requestor agent.

Fig. 1. Agent Authenticator Plan in SEAGENT (General View)

B. Agent Certification Authority

In a trusted environment, every agent is required to possess

a certificate which includes a public key. The corresponding

private key is stored by the agent in a secure manner. These

agents verify their identities by generating digital signatures

using their own private keys.

The advantage of Agent Certification Authority is the ability

to verify a requestor agent. So that the indicated public key

is proven to be really used for the communication. This

pattern helps to design an appropriate signature verification

mechanism to satisfy identity and authentication requirements

for a specific domain or situation [3]. The disadvantage of this

pattern could be scalability problem when a lot of agents want

to request for certification.

C. Access Controller

This is a pattern that restricts agent access to resources.

Agents with various privileges can exist in an agency. Agents

requesting for a resource could be denied or accepted ac-

cording to the requested action. Agents in the agency could

access the resources(or other agents) according to the response

of Access Controller. These responses have been sent to the

agents with the indicated privileges. If there is an agent’s

resource requirement instead of access to an agent, Resource
Manager behaves as a helper service to the Access Controller
and accesses the related agents’ resources.

The advantage of Access Controller is the usage of different

policies for different actions. In Figure 2, the ACA gives

Agent2 to send-to privilege for communicating with Agent1.

These privilege types could be obtained from FIPA-ACL based

message envelope by different SecurityObjects. If the Agent2
tries to take send-to privilege, the SecurityObjects for different

agents could determine the acceptance or denial of the message

with inform or refuse communicative acts in FIPA. There is

a disadvantage of this pattern that the crash of the Access
Controller makes the access protocol unusable in agency.

Fig. 2. FIPA ACL Message Example with Security Access Information

IV. SOFTWARE AGENT CERTIFICATION

The proposed approach attempts to employ security patterns

for model driven design with reusable code and suggests

utilization of semantic data on certification and policy based

agent access models. It also defines a message extension for

a new element that describes a form of the message security.

742



Essential security services explained in [8] are presented in

layers.

ACA is a security wrapper for the system that dominates the

protocol steps and supplies them to the agents. During Agent

Certification Authority [5] process time, ACA enables both

sender and receiver agents to negotiate security parameters and

then on agents will communicate using the negotiated values.

This negotiation also helps to decouple the multi agent system

from selected security approach.

Creates key pair. Request

certificate.
security parameters and

communication.
the security level of
Send expected parameters for

Share public information, policy

according to ACA based
parameters.

information with certificate

Agent 1(Requestor)
ACA creates public/private
key pair and stores its

Save certification
and policy
information.

Agent1 and ACA.
steps between
Agent2 processes the same

Agent2(Supplier)Access Controller
ACA,

certification information.

registration.
Information about certificate

Requests Access Controller
to access an agent.

database.
policy data in
semantically presented
request according to
Accepts or denies

Fig. 3. Steps of Agent Certification Mechanism

The software agent certification steps have been illustrated

in Figure 3. First, ACA creates public/private key pair and

stores its certification information(issuer, subject, owner, va-

lidity, public key with key algorithm information, signature

information, default certificate policies and policy mappings).

The storage process is based on XML data for syntactic data

compatibility and used by all agents. By default, authentication

across agents will be accomplished by the same algorithm as

the intra-platform communication. This authentication mecha-

nism will be based on ACA as mandatory authentication and

access control approach between agents. Because the access

information and related certification information for supplier

agents have to be supplied to the requestor agents by ACA.

If ACA accepts the requests of the Agent1, it sends expected

parameters for the security level of communication. ACA

accepts the certificate and registration information with policy

data from Agent1 and ACA saves certification information in

XML and policy information in OWL(Web Ontology Lan-

guage) format to its database. Then it informs the requestor

agent. The semantic data for policy information aims to collect

the policies in a tractable way by the Access Controller.

ACA shall contractually require that the subscriber indicates

acceptance or rejection of the certificate following its issuance,

in accordance with procedures established by the ACA.

Agent1 creates its key pair and stores them as explained in

the first step of ACA. Then this agent requests security pa-

rameters and certificate from ACA. All private keys and other

security related data have to be available to their owner only.

Data may not be accessible to other agents (even the agent

platform). Every agent has to keep its private data secured but

the platform based public information with certificate could

be shared between agents according to ACA based parameters.

So ACA will send certification information to the agents if the

requesting side has the right to communicate in the platform.

The certificate policies for agents are initialized in ACA by

the security engineer of the system.

Agent1 prepares certificate and requests to register it with

semantic policy information. Then the communication of

Agent1 with ACA ends for the certification and semantic data

exchange.

The access information have been stored as semantic infor-

mation shown in Section V. This access information is sent

and received with a SecurityObject. The SecurityObject can

be included as user-defined slot into the envelope (e.g. X-

Security) as used in [8], or, if standardized by FIPA, as an

optional slot (e.g. Security). Furthermore, the slot containing

the SecurityObject can contain a set of SecurityObjects, for

different security attributes applied to a message. The approach

told in this paper as adding Security slot to the message

Envelope.

ACA accepts or denies this request according to semanti-

cally presented data in its database. Information message from

ACA to Agent2 with security slot for access information in a

FIPA-ACL message example similar to [9] is shown in Figure

2.

V. SEMANTIC BASED AGENT ACCESS CONTROL

MECHANISM

After defining agent certification process details of Access
Controller mechanism have been explained in this section.

First, access control policy includes a set of rules that associate

some credentials to use capability of a right. So that the issues

with the specified credentials could supply the capability.

Credential is any property associated with an entity. When the

entity is suitable to the policy rules in the system, the required

action for this entity could be populated [10].

All agents have to digitally sign all service requests for

AMS, DF and other agents. As there is a public/private key

pair for each of the agent, the agent can be thought as

accountable by the platform. So that when an agent wants

to register to the platform, its credentials have to be checked

by Access Controller of which decision is based on security

policies that have been defined in the platform. These policies

could be defined in two levels: platform level and agent level

[11]. Platform level policies control the requests for AMS

and DF of the platform. Agent level access policies specify

who can access the services of the specified agent. A simple

message that assigns a right to an agent is shown in Figure 2.

743



When the certification steps as explained in Section IV

have been constructed, AMS controls the validity of the

certificate by the default certificate authority in the platform.

For organization wide certification, certification path could

be chained and the verification step could be processed by

the help of Agent Certification Authority. If the certificate is

valid, AMS restores agent’s policies that have to be checked

during the communication with AMS. All of these policies are

in Access Controller’s database by default. AMS and Access
Controller always communicates with each other to inform the

changing policies in the autonomous environment. So when

Access Controller has been crashed for a short time, AMS

based policy rules could still be applied by AMS with its

internal policy engine. AMS and DF have a list of conditions

that an agent must satisfy in order to contact a particular

agent or use a particular service. While AMS and DF have to

know the access privileges of agents in [11], Access Controller
mechanism have to access and know their rights. So that the

protection from the threat could be applied in a central place.

Agents could register their services in open or private

ways. In open way, the only DF based policies have to be

applied for the agents’ access to the service. In private way,

Access Controller communicates with DF and access control

mechanism have been processed for the owner of the service.

For the verification of rights, a service agent expects all the

credentials from the requestor agent at the time of the request

in order to use its services. The service agent will check its

internal knowledge base and ask for Access Controller to give

permission to the requestor agent. According to the allowance

of the semantic policy information, request could be answered

in a positive way. Otherwise, request would be denied until the

requestor agent has the suitable credentials to call this service.

VI. CONCLUSION

In this paper, security patterns that have been used in multi-

agent systems have been considered. Also policy based access

control has been determined that each entity is able to specify

and process policy by help of Access Controller or by itself for

security and privacy. In future, the specifications of policies

are planned to be fully constructed in declarative manner

and the ACL based messages to be considered in a semantic

manner. With the help of policy based semantic language, the

distributed policy management could be supplied better by

inter-platform communication by the platforms that use same

ontologies.

Future work will be based on the new version of

SEAGENT’s role based agent mechanisms. Role based agents

would have their own role based access policies for Access
Controller. Then these agents could have been prioritized

according to their goals in the platform [12].

REFERENCES

[1] Tomás Vlcek and Jan Zach, “Secure fipa compliant agent architecture
draft,” in HoloMAS, 2003, pp. 167–178.

[2] William Stallings, Cryptography and Network Security Principles and
Practices, Fourth Edition, Prentice Hall, 2005.

[3] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane Hybertson,
Frank Buschmann, and Peter Sommerlad, Security Patterns: Integrating
Security and Systems Engineering, John Wiley and Sons Ltd, 2006.

[4] Oguz Dikenelli, Riza Cenk Erdur, Ozgur Gumus, Erdem Eser Ekinci,
Onder Gurcan, Geylani Kardas, Inanc Seylan, and Ali Murat Tiryaki,
“Seagent: A platform for developing semantic web based multi agent
systems. autonomous agents and multi-agent systems,” in AAMAS, 2005,
pp. 1271–1272.

[5] Haralambos Mouratidis, Michael Weiss, and Paolo Giorgini, “Modeling
secure systems using an agent-oriented approach and security patterns,”
International Journal of Software Engineering and Knowledge Engi-
neering, vol. 16, no. 3, pp. 471, 2006.

[6] Haralambos Mouratidis, Paolo Giorgini, and Gordon Manson, “When
security meets software engineering: a case of modelling secure infor-
mation systems,” Inf. Syst., vol. 30, no. 8, pp. 609–629, 2005.

[7] Haralambos Mouratidis, Michael Weiss, and Paolo Giorgini, “Security
patterns meet agent oriented software engineering: A complementary
solution for developing secure information systems,” in ER, 2005, pp.
225–240.

[8] Petr Novák, Milan Rollo, Jirı́ Hodı́k, and Tomás Vlcek, “Communication
security in multi-agent systems,” in CEEMAS, 2003, pp. 454–463.

[9] Stefan Poslad and Monique Calisti, “Towards improved trust and
security in fipa agent platforms,” in 3rd Workshop on Deception, Fraud
and Trust In Agent Societies, 2000.

[10] Lalana Kagal, Tim Finin, and Anupam Joshi, “A policy-based approach
to security for the semantic web,” in Proc. 2nd Int’l Semantic Web Conf.
(ISWC 2003). 2003, p. 402418, Springer-Verlag.

[11] Lalana Kagal, Tim Finin, and Anupam Joshi, “Developing secure agent
systems using delegation based trust management,” in In Security of
Mobile MultiAgent Systems (SEMAS 02) held at Autonomous Agents
and MultiAgent Systems (AAMAS 02), 2002.

[12] Salvatore Vitabile, Giovanni Milici, S. Scolaro, Filippo Sorbello, and
Giovanni Pilato, “A mas security framework implementing reputation
based policies and owners access control,” Los Alamitos, CA, USA,
2006, vol. 2, pp. 746–752, IEEE Computer Society.

744


	33416519

