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ABSTRACT

POLARIZATION AND PHASE CHARACTERIZATION OF

SIDE-POLISHED OPTICAL FIBERS

In this thesis, the polarization and phase properties of the side-polished optical

fiber (SPOF) are aimed to characterize. The Linearly Polarized (LP) modes of standard

optical fibers have been affected by the side-polished geometry which breaking symmetry.

At the side-polished area guided modes couple to non-symmetric modes and phase shift

occurs due to the birefringent property of the SPOF. That kind of structure has an excellent

usage potential as a portable optical sensor or optical fiber communication device.

It was primarily concentrated on the LP modes of the standard optical fiber. LP

mode field solutions extracted from Maxwell Equations were calculated with MATLAB,

and mode intensity distributions were constructed accordingly. The calculated intensity

distributions were utilized for figuring out the mode content of the outputs of the two-

mode experiment. The recorded CCD Camera images were matched with the calculated

intensity distributions, and then the best-matched LP mode combination was selected as

output mode content.

In the single-mode experiment at the side-polished area, quasi-degenerate funda-

mental modes occur. According to the state of polarization of the modes, they suffer

attenuation and phase shift in different levels. Therefore, after the side-polished area, de-

generate fundamental modes propagate together with a particular phase difference. This

situation composes elliptical polarization at the output. Various modal polarization ro-

tation and phase shifts were observed, and then polarization ellipses were obtained with

MATLAB. The resultant ellipses demonstrate that the effect of SPOF on guided modes

varies with the angle of input polarization.
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ÖZET

KENARI İNCELTİLMİŞ OPTİK FİBERLERİN POLARİZASYON VE

FAZ KARAKTERİZASYONU

Bu tezde, kenarı inceltilmiş optik fiberlerin (SPOF) polarizasyon ve faz özellik-

lerinin karakterize edilmesi amaçlanmıştır. Standart optik fiberlerin Lineer Polarize (LP)

modları, simetriyi bozan kenarı inceltilmiş geometriden etkilenir. Kenarı inceltilmiş böl-

gede, kılavuzlanan modlar anti-simetrik modlara kuple olurlar ve SPOF’un çift kırınım

özelliğine bağlı olarak bunlar arasında faz kayması meydana gelir. Bu tür bir yapı taşına-

bilir optik sensör veya optik fiber haberleşme cihazı olarak kullanılabilmesi için büyük

bir potansiyele sahiptir.

Öncelikle standart bir optik fiberin LP modları üzerine odaklanıldı. Maxwell

Denklemlerinden çıkarılan LP mod alan çözümleri MATLAB ile hesaplandı ve mod yo-

ğunluk dağılımları buna göre oluşturuldu. İki-modlu deneyin çıktılarının mod içeriğini

belirlemek için hesaplanan yoğunluk dağılımları kullanıldı. Kaydedilen CCD Kamera

görüntüleri hesaplanan yoğunluk dağılımları ile eşleştirildi ve daha sonra en iyi eşleşen

LP mod kombinasyonu çıkışın mod içeriği olarak seçildi.

Tek-modlu deneyde kenarı inceltilmiş alanda yarı-dejenere temel modlar mey-

dana gelir. Bu modlar polarizasyon durumlarına göre farklı seviyelerde zayıflama ve faz

kayması yaşarlar. Bu nedenle, kenarı inceltilmiş alandan sonra, dejenere temel modları

belirli bir faz farkı ile birlikte yayılırlar. Bu durum çıkışta eliptik polarizasyon oluşturur.

Çeşitli modal polarizasyon rotasyonu ve faz kaymaları gözlenmiştir, ve daha sonra po-

larizasyon elipsleri MATLAB ile elde edilmiştir. Ortaya çıkan elipsler, kenarı inceltilmiş

optik fiberin kılavuzlanan modlar üzerine olan etkisinin giriş polarizasyon açısına bağlı

olarak değiştiğini göstermektedir.
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CHAPTER 1

INTRODUCTION

From the beginning of early 1980′s it is common to use polished optical fiber

in sensing refractive index [1-7]. When the first idea comes out, the measurements car-

ried out with cladding partially stripped off optical fiber by measuring the output power

[1]. Till 1990 polishing and measurements techniques had been improved, then the first

fiber optic surface plasmon resonance (SPR) technique was launched out [8], and this

invention was the reporter that determination of much smaller refractive index variation

will be achieved. Besides this sensing region development, to sense refractive index more

precisely, spectroscopic methods have been developed as a measurement technique. How-

ever, this technique uses generally bulky and expensive measurement modules. Thus, this

prevents the system being portable. To sense refractive index with portable, inexpensive

and simple system, there is an alternative method which examines birefringence effect

of the side-polished region using a non-spectroscopic technique [9]. In this method, po-

larization and phase shift properties of a clad free optical fiber are taken into account.

Intensities of phase shifted vertical and horizontally polarized fields were measured to

sense refractive index of the ambient via balance detector. In the same way, in this thesis

polarization and phase properties of the side-polished optical fiber (SPOF) due to bire-

fringence are investigated to characterize it by analyzing output intensities. As a novel

method, polarization ellipses are analyzed to detect phase difference for different polar-

ization angle according to the flat side of the planar side-polished region. And there is one

more thing must be taking into consideration; since fibers are in the scale of micrometer,

polishing fiber at the same way at every turn is almost impossible. Hence, if we want

to use a SPOF for sensing refractive index exploiting polarization ellipses, firstly each of

side-polished optical fibers to be used should be characterized in terms of polarization and

phase difference separately.
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1.1. Side-Polished Optical Fiber and Evanescent Field

In the sense of ray approach, light is guided in optical fiber core the way by the

well-known principle of total internal reflection (TIR) [10]. However, if we consider the

wave nature of the light, the small part of guided light power leaks through the core-

cladding interfaces and continue propagation through a power loss in the cladding. This

leaked light is called as evanescent field. The fields in the core and cladding feed each

other and construct a mode pattern. Employing this feature of the light is a very convenient

way to manage guided light in the core.

Figure 1.1. Side-polished optical fiber and evanescent field

By controlling evanescent field guided light properties can be changed [11-14].

To reach and control evanescent field, a section of the cladding next to core should be

removed, because fibers are generally produced with thick cladding to inhibit attenuation

caused by evanescent fields as much as possible. Removing a small part of cladding

(generally planar and parallel to the core) of optical fiber process is called side-polishing

and the fiber is called side-polished optical fiber or D-shaped optical fiber. In Figure 1.1

side-polished fiber and the evanescent field is illustrated. If removing part is planar all

along the fiber, it is also called D-shaped optical fiber.

1.2. Fiber Optic Sensors

Usage of optical fiber sensors rapidly increases day by day in many areas such

as medical industry, construction industry, aerospace industry, automotive industry etc.

Its root cause is its excessive sensitivity capacity. Additionally, it offers high bandwidth,

lightweight, low cost, ease to integrate into structures and invulnerable to interference

with electromagnetic fields [15-29]. Depending on the application areas fiber optic sen-

sors can be categorized as: physical sensors, chemical sensors, bio-medical sensors.
2



Among the many sensing quantities strain, temperature, pressure and refractive index

sensing are the most popular ones. These quantities have been sensing with modified op-

tical fiber like side-polished optical fiber by modulating intensity, polarization and phase

shift between the modes at the sensing region of the optical fiber. In this thesis side-

polished optical fiber is characterized based on its polarization and phase shift properties.

1.3. Birefringence Feature of a SPOF

Birefringence is the optical feature which occurs in anisotropic, transparent ma-

terials. Anisotropic medium in optics refers a medium which has non-uniform spatial

distribution of dielectric constant. Upon light interacting with anisotropic media, vertical

and horizontal polarized waves encounter different refractive indexes, and pass through

the media with different angles and wavelengths so that speeds differ, as well [30-34].

Figure 1.2. Side-polished optical fiber regions and the cross-sectional demonstrations

Propagating with different wavelengths leads phase difference between these two

waves and they are called ordinary and extraordinary ray depending on the molecular

structure of the material. The root cause is movement directions of the electrons in the
3



lattice. If the polarization direction of the light wave is in the same direction with the

permitted movement direction of the electron, light tends to give some of its energy to the

electron vibration, so the wave will be slowed down. According to the type of birefringent

media, vibration direction could be either in single direction or both directions (vertical

and horizontal) with exploiting different amount of energy. Consequently, at the output

of the anisotropic medium, there will be a phase difference between the linearly polar-

ized lights perpendicular to each other, unless light enters the medium in the direction of

optical axes of birefringence.

If we divide SPOF into three regions, their names would be: The input side is

region 1, the side-polished area is region 2 and the output side is region 3. In Figure 1.2,

the regions and their cross-sections are illustrated. Since, in region 2 a part of cladding is

removed, the side-polished are of optical fiber is anisotropic. Thus, SPOF is a birefringent

device. The polarization property, and phase of the input light would change in region 2.

In region 3 light propagates with the effects that occurred in region 2.

1.4. Overview of the Thesis

This thesis particularly deals with polarization and phase properties of the side-

polished optical fiber. The prior motivation of the thesis is to improve the non-spectroscopic

technique that figures out the SPOF effects on guided optical fiber modes. Besides, esti-

mating mode content of a standard optical fiber outputs with matching simulation results

is provided.

Chapter 2 includes explanation of optical waveguide theory. The exact cylindrical

Maxwell solutions of circular optical fiber allow us to compute the intensity distributions

of the Linearly Polarized LP modes. The theory of guided modes, radiation modes, LP

mode formations and brief explanation of the modes of the side-polished region provide

a theoretical background for understanding further chapters.

Chapter 3 contains discussion of mode orthogonality relation and the mode cou-

pling theory. From this discussion we can interpret the polarization rotation effects of the

perturbed optical fiber.

In Chapter 4, the computational model of experiments is formulated via Jones

Matrix. Polarization and phase effect of the model is explained in detail. Also, calculation

of elliptical polarization expressed mathematically.

In Chapter 5, experimental setups are introduced. Besides, parameters of the se-

tups and procedure are determined.

4



In Chapter 6, all of the results and presented works are discussed. Initially, mode

content estimation exploiting simulation results are explained. Next, the method of de-

tecting polarization states and phase shifts is described.

Finally, in Chapter 7, whole results are interpreted. The benefits of this work and

how it will be improved in future work are discussed.

5



CHAPTER 2

MODES OF SIDE-POLISHED OPTICAL FIBER

In this chapter, we start with electromagnetic analysis of a circular fiber mode

fields that emerged from Maxwell’s equations. Then we review polarization and phase

effects of side-polished optical fiber on fundamental mode. According to these effects,

theoretical discussions about polishing effects on degenerate fundamental modes are held.

2.1. Guided Modes of Circular Optical Fiber

Maxwell’s equations lead us to solve cylindrical optical fiber electromagnetic

fields, but even we use assumption of extending fiber cladding to infinity, it is exces-

sively hard to solve with hand. Hence, in this thesis MATLAB is utilized in order to figure

out mode fields and patterns.

Figure 2.1. Demonstration of cross-sectional cartesian and cylindrical coordinate sys-

tems

In general perspective, ’mode’ can be expressed as; Each of the (Maxwell equa-

tions) electromagnetic wave solutions depending on the geometry and optical properties

[35-38]. There are finite number of guided modes in the core and infinite number of ra-

diation modes in the cladding. The number of guided modes can be arranged by physical
6



Figure 2.2. Cut-off frequencies V − number of first seven TE, TM , HE and EH
modes with respect to propagation constant β [22]

properties of the optical fiber, i.e., refractive indexes of materials and the cross-sectional

geometry with light source’s wavelength (λ) [10]. From these parameters we can deduce

two dimensionless modal parameters that are:

U = ρ(k2n2
co − β2)1/2 (2.1)

W = ρ(β2 − k2n2
cl)

1/2 (2.2)

where β is propagation constant, ρ is radii of core (see Figure 2.1), nco is refractive index

of core, ncl is refractive index of cladding and k = 2π/λ is wavenumber in free space. If

we combine these two modal parameters:

V 2 = U2 +W 2 (2.3)

This quadratic summation gives us a new parameter:

V = ρk(n2
co − n2

cl)
1/2 (2.4)

which is called as V − number or can be considered as cut-off frequency (normalized

frequency). The parameter in the above brackets is numerical aperture:

NA = (n2
co − n2

cl)
1/2, (2.5)

and profile height parameter is defined as:

Δ =
1

2

{
1− n2

cl

n2
co

}
(2.6)
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According to V −number we can understand which modes will propagate in opti-

cal fiber. Higher order modes can be suppressed by reducing core diameter and refractive

index gap between core and cladding. This range of bound modes can be formulated by

V − number and modal parameters:

0 � U < V ; 0 < W � V, (2.7)

or propagation constant:

nclk < β � ncok. (2.8)

If mode parameters exist in these intervals, the mode will be a guided mode (or bound

mode) which means permitted to guide in optical fiber core, if not, will be radiation mode.

Due to the wave features of the rays which are suffered from TIR in the core, there

only finite number of guided modes exist. Figure 2.2 shows cut-off frequencies of the

guided modes that are: hybrid and transverse modes. In this thesis only step-profile fibers

are concerned. Its particular property is that core and cladding have uniform refractive

index profiles among themselves:

n(r) = nco, 0 � r < ρ; n(r) = ncl, ρ < r < ∞ (2.9)

To express modal fields we use cylindrical polar coordinates r, φ, z. We can write them in

the separable forms:

E(r, φ, z) = e(r, φ)exp(iβz); H(r, φ, z) = h(r, φ)exp(iβz) (2.10)

Expressions which are written bolt font indicate that it is a vector. We define er, eφ, hr,

hφ as transverse field components and ez, hz as longitudinal field components. Let ψ

represents longitudinal field components, then ψ provides:{
∂2

∂R2
+

1

R

∂

∂R
+

1

R2

∂2

∂φ2
+ U2

}
ψ = 0; 0 � R < 1, (2.11)

{
∂2

∂R2
+

1

R

∂

∂R
+

1

R2

∂2

∂φ2
−W 2

}
ψ = 0; 1 < R < ∞, (2.12)

where R = r/ρ is normalized radii. When we solve cylindrical waveguide Maxwell

equations, Bessel functions are emerging. Separable modal field solutions vary by region;

Jν(UR)cos(νφ) or Jν(UR)sin(νφ) in the core, and Kν(WR)cos(νφ) or Kν(WR)sin(νφ)

in the cladding, where ν ∈ N is mode index. The Jν denotes Bessel function of the first

kind and Kν denotes Bessel function of the second kind. To generate the exact modal

fields, we begin with selecting longitudinal components:

ez = A
Jν(UR)

Jν(U)
fν(φ), hz = B

Jν(UR)

Jν(U)
gν(φ), 0 � R < 1, (2.13)
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ez = A
Kν(WR)

Kν(W )
fν(φ), hz = B

Kν(WR)

Kν(W )
gν(φ), 1 < R < ∞, (2.14)

where A and B are constants and fν , gν are the functions that determine the mode is

whether even or odd (See Table 2.1). Now we can deduce the transverse fields from

longitudinal components

et =
i

k2n2 − β2

{
β∇tez −

(
μ0

ε0

)1/2

kẑ ×∇thz

}
, (2.15)

ht =
i

k2n2 − β2

{
β∇thz +

(
ε0
μ0

)1/2

kn2ẑ ×∇tez

}
, (2.16)

where n = n(x, y) and,

k2n2 − β2 = k2n2
co − β2 = U2/ρ2, core, (2.17)

k2n2 − β2 = k2n2
cl − β2 = −W 2/ρ2, cladding. (2.18)

These transverse fields leads the radial and azimuthal field components that are:

er =
i

p

{
β
∂ez
∂r

+

(
μ0

ε0

)1/2
k

r

∂hz

∂φ

}
, (2.19)

eφ =
i

p

{
β

r

∂ez
∂φ

−
(
μ0

ε0

)1/2

k
∂hz

∂r

}
, (2.20)

hr =
i

p

{
β
∂hz

∂r
−
(
ε0
μ0

)1/2
kn2

r

∂ez
∂φ

}
, (2.21)

hφ =
i

p

{
β

r

∂hz

∂φ
+

(
ε0
μ0

)1/2

kn2∂ez
∂r

}
, (2.22)

where p = k2n2 − β2 and n = n(r). These all fields are continuous along the core-

cladding interface. Cylindrical field components of HE, EH modes (hybrid modes) shown

in Table 2.1 on page 10, mode field components of TE, TM (transverse modes) modes

shown in Table 2.2 on page 11 and in Table 2.3 on page 12 the hybrid mode variables are

defined [10]. Circular fiber mode simulations are held by these formulations on MATLAB.

When optical fiber excited, each mode carries power. For lossless optical fiber

power flows along the fiber axis, for jth mode intensity or time-averaged Poynting vector

Sj is

Sj =
1

2
�{Ej × H∗

j · ẑ} (2.23)

where � denotes real part of the expression. Thus we obtain

(β/|β|)Pj =
1

2

∫ ∞

−∞

∫ ∞

−∞
ej × h∗

j · ẑ dx dy (2.24)

where Pj denotes power belongs to jth mode.
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2.2. Radiation Modes of Circular Optical Fiber

A circular fiber can support guided (bound) modes if equation 2.8 is satisfied.

However, there must exist other Maxwell’s solutions to reach complete set of mode so-

lutions [10]. In fact these kind of modes do exist, and they are radiation modes. Guided

modes and radiation modes together construct a complete orthogonal set. This set can

be express via series expansions of guided modes plus integral summation of radiation

modes [37].

If we envision a plane wave coming from infinite distance that runs into waveguide

core, undoubtedly a portion of the wave will be reflected at the one of the core boundary

(TIR), while the rest of refracts and penetrates through the core and travels as a plane

wave at the other side of the core. Reflection and refraction directions of these waves

can be found by applying Snell’s law. Now think a plane wave coming from above to

the core. It results in transmitted wave below the core and reflected wave above the core.

Thus the reflected waves are standing waves. These radiation fields are the solutions

of Maxwell Equations and satisfy the core-cladding boundary conditions. Therefore, in

every respect, the radiation field describes as a mode, unless it doesn’t go through total

internal reflection (TIR). This type of modes are called as radiation modes. Unlike guided

modes, their propagation constants β are continuous and there is no restrictions on angle

of incident plane wave.

For radiation modes, propagation constant is described in the interval:

−nclk � β � nclk (2.25)

and imaginary propagation constants of evanescent modes have continuous spectrum in

the range:

−i∞ < β < i∞ (2.26)

These set of modes are identified with the parameter:

ζ = (n2
clk

2 − β2)1/2 (2.27)

in the range of

0 � ζ < ∞. (2.28)

Since radiation modes have a continuous spectrum, they cannot be normalized

concerning a limited amount of power. If we derive the power expression of equation 2.24

for the radiation modes, integral diverges. To fix the normalization problem, we benefit
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from dirac delta function. In place of equation 2.24, radiation mode power requires

1

2

∫ 2π

0

∫ ∞

0

[E(ζ)× H∗(ζ ′)] · ez r dr dφ = sp(β
∗/|β|) P δ(ζ − ζ ′) (2.29)

where P is positive and real.

Compered to Equation 2.24, new features are included in this equation. The elec-

tric and magnetic fields belong to different radiation modes. And this consequences of

the difference is shown itself in the Dirac Delta Function. If the two modes are different

then the integral vanishes, if both modes are the same the statement goes to infinity.

The term β∗/|β| ensures that P remains positive for even backward propagating.

If β is imaginary then the left-hand side of Equation 2.29 becomes imaginary. As we

determined power is always real, there is no power flow along the z axis if β is imaginary.

And sp term is also used for keep P positive. Whenever β is real sp = 1, but for imaginary

β values we might have to make sp = −1 to assure P is positive.

2.3. Linearly Polarized Modes and Their Combinations

Linearly polarized modes (LPνm) of an optical fiber refer to the combinations of

hybrid HE and EH , transverse electric TE and transverse magnetic TM modes which

of them have a same cut-off frequency. Figure 2.2 shows the cut-off conditions of first

seven modes with respect propagation constant β [10].

Figure 2.3. Cut-off frequencies V − number of first four LP modes with respect to

propagation constant β [22]

14



Figure 2.4. Symbolic electric field and simulated 2D / 3D intensity distributions of the

LP01 modes

If we consider the components of the LPνm modes separately, they are not lin-

early polarized (except HE11). However, when they combined, they construct linearly

polarized modes. In this thesis only LP01 (fundamental mode) and LP11 modes being

considered. Each LP modes have two degenerate forms that are perpendicular each other

according to polarization state. The two polarization states called as even and odd modes,

e.g., vertical polarized LP V
01 and horizontal polarized LPH

01 . LP01 mode consists of just

HE11 mode. For both even and odd form of LP01 modes’ intensity distribution is the

same, there is only one lobe in the middle (see Figure 2.4). In the intensity distribu-

tion of the LP11 mode, there are two lobes symmetrical with respect to the origin of

the core. Also, the polarization directions of these lobes are 180◦ symmetrical to each

other. The two lobes rotate according to the combination of hybrid and transverse modes.

There are four possibility in formation of LP11 mode: horizontal polarized - horizontal

oriented LPHH
11 = even HE21 + TM01, vertical polarized - vertical oriented LP V V

11 =

even HE21−TM01, vertical polarized - horizontal oriented LP V H
11 = odd HE21+TE01,

horizontal polarized - vertical oriented LPHV
11 = odd HE21 − TE01. In Figure 2.5, these

combinations of LP11 modes are illustrated via symbolic electric field and simulated in-

tensity distributions.

In the optical fiber, if V − number is lower than 2.405, it means just fundamen-

tal mode is propagating, i.e., single-mode propagation. Also, if V − number is lower
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Figure 2.5. The combinations in terms of the symbolic electric field and simulated

intensity distributions of the possible four type of LP11 modes

than 3.832, it means LP01 mode and LP11 mode is propagating together, i.e., two-mode

propagation. In Figure 2.3 the cut-off frequency of first four LP modes are illustrated.

2.4. Modes in the Side-Polished Region of a SPOF

The previous derivations for mode fields are performed under the condition of ex-

tending the cladding to infinity. And we assume the refractive indexes of the cladding and

the core is uniform in everywhere [10]. In real, cladding region is limited and this situation

leads attenuation for long distance transmission. For short distance transmission, the at-

tenuation caused by the cladding that not extend to infinity is negligible. But, if we polish

cladding near to core, then the attenuation would be non-negligible. Beside, attenuation

at the polished region will not be uniform, because polishing process is planar, not circu-

lar. And also, after removing a part of cladding, refractive index of polished region will

also change. This anisotropy causes birefringence. We can separate the SPOF structure
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Figure 2.6. Demonstration of vertically and horizontally polarized modes by regions

according to propagation constant relation

into 3 regions (see Figure 1.2). In region 1 there is no perturbation, so degenerate modes

propagating without coupling to each other. Degenerate mode means that modes which

have same propagation constant but perpendicularly polarized relative to each other, e.g.,

ΨH and ΨV (see Figure 2.6). ΨH denotes horizontally polarized and ΨV denotes verti-

cally polarized modes. If degenerate modes don’t face any imperfections, they propagate

as a single mode, and their polarization directions construct a new state of polarization

according to electric field amplitude contributions of two degenerate modes. In region

2, perturbation caused by side polishing breaks the degeneracy of the modes. Then Ψ
′
H

and Ψ
′
V modes couple to each other. Based on the polishing effect a part of power of the

guided modes also couple to radiation modes. This coupling to radiation modes cause

loss in the core. At the same time according to optical axis of birefringence, there occur

phase difference between the vertically and horizontally polarized modes. Eventually,

at the region 3 side-polished region modes couple back to degenerate modes. However,
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based on the losses and phase difference occurred in the region 2, linear polarized light at

the input converts into the elliptically polarized light at the output.

To examine perturbation effects of side-polished optical fiber on the linearly po-

larized modes, we separately experimented two-mode propagation (LP01 and LP11) and

single-mode propagation. In two-mode propagation case, there occur coupling between

degenerate modes and LP01 - LP11 modes at the same time. An occurrence of coupling

between LP modes prevents us from examining the polarization and phase relation be-

tween input and output more precisely. When we use single-mode propagation, only de-

generate fundamental modes are coupled to each other. Therefore it is a more convenient

method that uses single-mode propagation to analyze polarization and phase properties of

the SPOF.
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CHAPTER 3

MODE COUPLING

3.1. Orthogonality of Modes

All of the optical fiber modes are mutually orthogonal in perfect optical fiber [37].

Orthogonality is described by aid of Equation 2.29. This equation is not only states the

normalization but also orthogonality. If E(ζ) represent a guided or radiation mode’s

electric field and H(ζ ′) represent any other guided or radiation mode, then the integral

of these modal fields’ cross product vanishes. Only if both fields belong to same mode

case makes the integral non zero. The terms ζ and ζ ′ are utilized to identify different

modes. These terms might define guided or radiation modes. The Dirac delta function in

the Equation 2.29 is valid if both ζ and ζ ′ indicate radiation modes. For guided modes,

we have to replace Dirac delta function with Kronecker delta function, which is unity if

both labels equal, otherwise zero. Now generalize the Equation 2.29 for all modes∫ 2π

0

∫ ∞

0

[Ejt × H∗
kt] · ez r dr dφ = 2sp(β

∗/|β|) P δjk (3.1)

where subscript ’t’ indicates transverse field, ’j’ and ’k’ denote different mode indexes

and the symbol δjk specify Kronecker’s delta function. We make inference from the

orthogonality statement (3.1); if we sum powers carried by all of the modes, it gives us

simply power carried by optical fiber field. Integrating Poynting vector over infinite cross-

section and sum of the powers carried by all modes (superposition) are same things that

gives total power carried by optical fiber.

In perturbed optical fiber, e.g., side-polished optical fiber, modes are not orthog-

onal to each other anymore. If modes are not orthogonal, then the modes couple to each

other. For SPOF in the region 1 modes are orthogonal to each other. The region 2 is side-

polished, thus this perturbation breaks the mode orthogonality. In this region the modes

couple to each other. Finally at the region 3, mode orthogonality re-emerges.
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3.2. Mode Coupling Caused by Perturbation

In the beginning of previous chapter, we studied Maxwell solutions of the guided

modes. These modes can propagate for long distances along the optical fiber axis without

any distortion if the waveguide is straight and homogeneous. In real, waveguides haven’t

got a perfect structure. There are imperfections like refractive index inhomogeneities and

variations of the core diameter. And these imperfections lead coupling the modes among

each other; namely energy transfer between the modes [37-41]. For our case, we call the

imperfection caused by the polished region of fiber as a perturbation. Thus, in this thesis

we deal with the mode coupling by cause of the SPOF’s perturbation.

Now consider side-polished optical fiber, there is imperfection of refractive index

inhomogeneity at the polished area. Extracted region’s refractive index is no longer ncl

but the refractive index of the external medium nex (see Figure 3.1). Due to change in

refractive index we can define refractive index by

n = n(x, y, z). (3.2)

Figure 3.1. Demonstration of external medium refractive index nex and birefringence

axises of SPOF, i.e, extraordinary ae and ordinary ao axises
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We also express the propagation constant β via functions of the modal fields

βj =

(
μ0

ε0

)1/2

k

⎛
⎜⎜⎝
∫
A∞

n2 ej × h∗
j · ẑ dA∫

A∞
n2 |ej|2 dA

⎞
⎟⎟⎠ (3.3)

where A∞ determines infinite cross section and j determines modal indice. If we separate

modal field components into transverse and longitudinal

E = Et + Ez ẑ; H = Ht +Hz ẑ, (3.4)

where all field components are z dependent. Now we define the operator ∇

∇ = ∇t + ẑ ∂/∂z (3.5)

where ∇t defined as:

∇tΨ = x̂
∂Ψ

∂x
+ ŷ

∂Ψ

∂y
(3.6)

Applying the equation 3.4 into the source free Maxwell equations and transverse compo-

nents with eliminating longitudinal components

Et =
1

kn2

{
i

(
μ0

ε0

)1/2

ẑ × ∂Ht

∂z
+

1

k
∇t × (∇t × Et)

}
, (3.7)

Ht =
1

k

{
i

(
ε0
μ0

)1/2

ẑ × ∂Et

∂z
− 1

k
∇t ×

(∇t × Ht

n2

)}
. (3.8)

Converting the field expansions into the form of:

êtj = − 1

kn2

{(
μ0

ε0

)1/2

βj ẑ × ĥtj − 1

k
∇t × (∇t × êtj)

}
, (3.9)

ĥtj =
1

k

{(
ε0
μ0

)1/2

βj ẑ × êtj +
1

k
∇t ×

(
∇t × ĥtj

n2

)}
. (3.10)

Exact mode field expansions are described as

Et(x, y, z) =
∑
j

{bj(z) + b−j(z)} êtj (x, y, βj(z)), (3.11)

Ht(x, y, z) =
∑
j

{bj(z) + b−j(z)} ĥtj (x, y, βj(z)) (3.12)

where subscript ’t’ determines the transverse components of the fields, ’j’ denotes for-

ward propagating modes, ’−j’ denotes backward propagating modes and bj(z) defines
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the modal amplitude and the phase. Note that summation includes both guided and radi-

ation modes.

b±j(z) = a±j(z)exp

{
±i

∫ z

0

βj(z)dz

}
(3.13)

where the propagation constant βj and the field components of any modes satisfy the

Equations 3.11 and 3.12 for any position of z along the fiber. If we combine the Equations

3.9, 3.10, 3.11 3.12, and orthogonality relation 3.1, it leads

dbj
dz

− db−j

dz
− iβj(bj + b−j) = −1

2

∑
k

(bk − b−k)

∫
A∞

êj × ∂ĥk

∂z
· ẑ dA, (3.14)

dbj
dz

+
db−j

dz
− iβj(bj − b−j) =

1

2

∑
k

(bk + b−k)

∫
A∞

ĥj × ∂êk
∂z

· ẑ dA, (3.15)

where subscripts ’j’ and ’k’ denote mode indices. We don’t write the subscript ’t’ any-

more, because integration is valid for only the transverse components of the modal fields.

If we add and subtract equations 3.14 and 3.15 , it gives us:

dbj
dz

− iβj bj =
∑
k

{Cjk bk + Cj−k b−k} , (3.16)

db−j

dz
+ iβj b−j = −

∑
k

{C−jk bk + C−j−k b−k} , (3.17)

where the Cjk, C−jk, Cj−k, C−j−k are the coupling coefficient of forward and backward

propagating modes defined by

Cjk =
1

4

∫
A∞

{
ĥj × ∂êk

∂z
− êj × ∂ĥk

∂z

}
· ẑ dA, j �= k; Cjj = 0. (3.18)

Alternatively we can express the coupling coefficient in the more compact form

Cjk =

(
ε0
μ0

)1/2
k

4

1

βj − βk

∫
A∞

ê∗j · êk
∂n2

∂z
dA, j �= k; Cjj = 0. (3.19)

3.3. Mode Polarization Rotation at Side-Polished Optical Fiber

LP modes mentioned in Section 2.3 are linearly polarized modes, as the name

implies. In the unperturbed fiber, light could sustain linearity of polarization. However,

if the fiber has geometric deformations or perturbed regions, the light would not main-

tain its linear state of polarization. As shown in Figure 2.6 linearly polarized degenerate

modes are propagating in region 1. However, at the region 2, perpendicularly polarized
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modes suffer from mode coupling, attenuation, and phase shifts [42-45]. For each mode,

different amount of energy couples and phase shift occurs. This situation breaks linearity

of polarization at the region 3. The polarization change through the side-polished region

can be called as a coupling between orthogonally polarized modes.

Figure 3.2. An occurrence of a phase difference between horizontally and perpendic-

ularly polarized modes

There are always two states of polarization for each LP modes that are perpen-

dicular to each other. For SPOF we set the ordinary axis ao as parallel and extraordinary

axis ae as perpendicular polarization (see Figure 3.1). The coupling coefficient equa-

tion 3.19 tells us electric fields of orthogonal modes cannot couple to each other in an

isotropic medium. When two orthogonally polarized modes are applied to Equation 3.19,

dot product of two perpendicularly polarized transverse electric fields vanishes and only

the longitudinal electric field components ez are contributed to integral.

Moreover, this anisotropy causes slightly differing the propagation constants which

belong to the similar mode but perpendicular polarized to each other. The difference be-

tween the propagation constants of the two orthogonally polarized similar modes, i.e.,

LP01 vertically polarized and LP01 horizontally polarized, generates phase shift among

them. Figure 3.2 shows how phase shift arises at the side-polished region. In the sense

of ray approach, the distinction between two modes which have different propagation

constant is reflection angle at the core-cladding boundary. In region 1 degenerate modes

propagate in phase. In region 2, phase shifts for each modes occur. In region 3, the degen-

erate modes propagate with constant phase difference. Thus, if we combine occurrence of

different loss amount and phase shift between quasi-degenerate modes at the side-polished

region, there originates mode polarization rotation at the output, i.e., elliptically polarized

light.
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CHAPTER 4

COMPUTATIONAL MODEL OF SIDE-POLISHED

OPTICAL FIBER COUPLED DEVICE STRUCTURE

4.1. Computational Model of the Device

Side-polished optical fiber breaks the circular symmetry from the beginning of the

region 2, and fiber turns into symmetrical form at the beginning of the region 3 (see Figure

1.2). This asymmetric structure causes to occur birefringence. Therefore there emerges

extraordinary and ordinary axis at the SPOF (see Figure 3.1). We define the phase shifts

generated by the birefringent SPOF extraordinary and ordinary axises as δϕe and δϕo

respectively. At the same time, according to anisotropy of the SPOF guided modes would

couple to radiation modes at a certain level. To specify loss caused by coupling, we define

attenuation coefficients as αe and αo respectively.

We can mathematically model the device with Jones Matrix method [9]. Let sepa-

rate the whole system in three regions with the matrices of M1, M2 and M3, these matrices

represent input, SPOF and the linear polarizer respectively. We decide the laboratory axis

as horizontal plane, and describe the output electric field with orthogonal components,

i.e., EH
out and EV

out. So the mathematical model is

(
EH

out

EV
out

)
= M3 · M2 · M1. (4.1)

With respect to laboratory axis we can rotate the laser, i.e., polarization direction of the

input (M1)

M1 = R(Θ)

(
1

0

)
(4.2)

where Θ is the angle of the laser rotation according to laboratory axis and R(Θ) is the

rotation matrix

R(Θ) =

(
cos(Θ) −sin(Θ)

sin(Θ) cos(Θ)

)
. (4.3)

Our initial polarization direction is horizontal. We take the positive (+) sign of rotation as
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clockwise direction. Orientation of the ordinary axis ao according to input is unknown so

we define M2

M2 = R(−Ω)

(
e−iΛ−αo 0

0 eiΛ−αe

)
R(Ω) (4.4)

where i denotes the imaginary unit, Ω is the angle between the laboratory axis and side-

polished planar surface (ao) and phase difference between two orthogonal modes is Λ =

δϕe − δϕ0. Finally Jones Matrix of the linear polarizer is described by

M3 =

(
cos2(ζ) cos(ζ)sin(ζ)

cos(ζ)sin(ζ) sin2(ζ)

)
(4.5)

where ζ is the rotation angle of the linear polarizer from laboratory axis in the counter-

clockwise direction.

4.2. Polarization Rotation Properties of the Device

When side-polished optical fiber is manufactured, its birefringence and attenua-

tion effects are unknown. To solve polarization and phase behaviour of the SPOF, we need

to characterize it. The computational model of the characterization process is explained

in the previous section. There are two parameter we can arrange in the input. First one

is arranging guided mode number in the core. And the second one is rotating input po-

larization direction. To focus more on polarization and phase characterization we let only

fundamental mode propagation.

Birefringence and attenuation effects on degenerate modes at the side-polished

region are extremely depend on polarization direction of input light [9]. So, as seen in

Equation 4.2 in M1 there is rotation matrix with respect to Θ. The angle of Θ determines

the polarization direction of the input. However, the angle Ω between the input polariza-

tion direction and the ordinary axis ao of the SPOF is unknown. Therefore in M2 (see

Equation 4.4), we rotate Ω the input to be in line with the ao axis and then rotate back −Ω

degree to turn back to laboratory axis.

At the output, there is 360◦ rotatable linear polarizer. This is our third parameter

which we can arrange. To detect polarization information of the outputs we used this

polarizer at 10◦ intervals. Then we obtain polarization of ellipses. With solving the ellip-

tical polarization equations (see Section 4.3), we found out the phase difference between

parallel and perpendicular polarized modes.
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4.3. Analytical Description of Polarization Ellipse

Polarization is a feature of electric field. It specify magnitude and direction of the

vibrating electric field of a electromagnetic wave. In linear polarization there is no phase

difference between the horizontal and vertical electric field components and direction is

depend on the magnitudes of the electric field components. If there is phase a differ-

ence between the components, the polarization type would be elliptical polarization [42].

Circular polarization is the special case that phase difference is 90◦.

To evaluate phase difference between the horizontal and vertical electric field com-

ponents from a polarization of ellipse, we first define the coordinates of ellipse: κ denotes

the major axis and η denotes the minor axis. Laboratory axises are defined as x axis and

y axis, horizontal and vertical axises respectively. Length of semi-major axis is a and

length of semi-minor axis is b. When we fit the ellipse in the rectangular (see Figure 4.1),

its coordinates are described as (a1, a2), (a1,−a2), (−a1,−a2) and (−a1, a2). The angle

γ which is measured counterclockwise from the major axis of the ellipsoid κ to the pos-

itive horizontal axis x states the orientation of the ellipse. γ can take the values between

0◦ and 180◦. χ is the shape parameter and cos(χ) is related with the eccentricity of the

ellipse. It is the angle between the hypotenuse and semi-major axis on the triangle of the

constructed by semi-major and semi-minor axis. χ can take the values between −45◦ and

45◦. And ζ indicate the angle of the instantaneous electric field vector.

Figure 4.1. Sketch of elliptical polarization with the parameters
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In the figure 4.1, an electric field vector
−→
E belongs to elliptical polarization is

shown in a random time. Its components according to x axis and y axis are Exx̂ and Eyŷ

respectively. Let define general elliptical polarization expression:

(
Ex

a1

)2

+

(
Ey

a2

)2

− 2

(
Ex

a1

)(
Ey

a2

)
cosγ = sin2δ (4.6)

where δ denotes phase difference between horizontal and vertical electric field compo-

nents. These components are defined as

Ex = a1cos(τ + δ1) (4.7)

Ey = a1cos(τ + δ2) (4.8)

where τ represents reference phase degree, δ1 is the phase of the Ex and δ2 is the phase

of the Ey. Thus, the phase difference δ is expressed via

δ = δ1 − δ2. (4.9)

Let convert the x− y coordinates system into the κ− η coordinate system

Eκ = Ex cos(γ) + Ey sin(γ) (4.10)

Eη = Ex sin(γ) + Ey cos(γ). (4.11)

Now the electric field components are

Eκ = a cos(τ + δ0) (4.12)

Eη = ±b sin(τ + δ0) (4.13)

where δ0 is the common phase of the electric field components of the κ − η coordinate.

Hence, as expected, in the coordinate system of the ellipse, there is no phase difference

between Eκ and Eη. The relation between the axises of the ellipse and lengths of rectan-

gular is

a2 + b2 = a21 + a22 (4.14)

Finally we can deduce phase relation

± ab = a1a2 sinδ. (4.15)

For alternative forms, we ought to define

a1
a2

= tan(α);
a

b
= tan(χ) (4.16)
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where α is the degree between diagonal of the rectangular and the y axis. Therefore the

phase difference δ could be also found via

tan(2γ) = tan(2α)cos(δ) (4.17)

or

sin(2χ) = sin(2α)sin(δ). (4.18)

Moreover the phase term cos(δ) is occur on the intersections of the ellipse and the

rectangular (see Figure 4.1).

The last parameter is eccentricity. It is denoted by e and describes how circular

the ellipse is. The formulation of e is:

e =

√
a2 − b2

a
. (4.19)
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CHAPTER 5

EXPERIMENTAL STUDIES ON CHARACTERIZATION

OF SIDE-POLISHED OPTICAL FIBER

In this chapter, experimental setups and the measurement technique are explained.

Besides, the components of the experiment and their parameters also described.

5.1. Experimental Procedure

Two experimental setups were performed (see Figure 5.1 and 5.2). The whole

system was placed on the optical table. First experiment was two-mode propagation and

the other was the single-mode propagation experiment. For both experiments different

lasers were used. In the cause of coupling laser output to the optical fiber input efficiently,

a 20X convex lens was placed between the laser and the optical fiber input. Side-polished

part of the step index optical fiber was approximately in the middle of the total length of

the optical fiber. To arrange the number of modes propagating, we need the exact optical

fiber parameters. As an optical fiber Corning HI 1060 was used. Its specifications are:

refractive index of the core nco = 1.464, numerical aperture NA = 0.14, core radius ρ =

2.65 μm, and the cladding radius is b = 62.5 μm according to data sheet of Corning HI1060

[46]. Planar side-polished region’s core - fiber flat side distance is 9.32 + 2.65 μm. At the

output of optical fiber a 360◦ rotatable linear polarizer was located. Measurements were

obtained for every 10◦ rotation to create polarization ellipses. Intensity distributions were

measured by a Charge Coupled Device (CCD) Camera which pixel size is 17 μm (H) ×
11 μm (V).

5.2. Two-Mode Experiment

In the Figure 5.1 schematic demonstration of the experimental setup is sketched.

As a light source He-Ne 632.8nm laser is used. According to the setup parameters V −
number is 3.684 (see Equation 2.4). When we place 3.684 in the Figure 2.3, left side of

the blue line determines the supported modes. That are LP01 and LP11 modes.
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Figure 5.1. Schematic sketch of the two-mode experiment

Initially, the output of unpolished, i.e., output of standard optical fiber was checked

with the linear polarizer. We reached that the output light is linearly polarized. Then we

set the setup with the SPOF. To investigate mode content and the polarization properties

of the SPOF, we measured the output for different angles of linear polarizer angles, e.g.,

0◦, 45◦ and 90◦ according to laboratory axis. Also the polarization direction of the laser

was 0◦, i.e., laboratory axis.

5.3. Single-Mode Experiment

In the Figure 5.2 schematic demonstration of the experimental setup is sketched.

As a light source Cs 852nmn laser was used. According to the setup parameters V −
number is 2.736 (see Equation 2.4). When we place a line to the value of 2.736 on the

horizontal axis in the Figure 2.3, it is seen there are still two modes propagating on the

left side of red line. But LP11 mode is at the near of the cut-off frequency. To provide

single-mode propagation at the side-polished region, we set the mode filter at the input

side of the fiber (see Figure 5.2). The filtering method was bending the fiber. Consider

total internal reflection (TIR) phenomena. If an optical fiber is perfectly straight, then

the modes propagating in the core with constant reflection angle. When a ray comes to

the normal of the core-cladding boundary with an angle higher than the critical angle,

it would radiate through the boundary. However, bending makes the reflection angle

increase. Since the reflection angle also increases as the cut-off frequency of the mode

increases, when we bend the optical fiber enough, the earlier radiated mode would be
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Figure 5.2. Schematic sketch of the single-mode experiment

LP11 mode.

After we reached single-mode propagation, initially the output of unpolished, i.e.,

output of standard optical fiber was checked with the linear polarizer. As expected the

output light was linearly polarized. Then we set the setup with SPOF. The output mea-

surements were taken for every 10◦ angle of the linear polarizer. These measurements

were performed for three different angles of the input polarization, e.g, 0◦, 45◦ and 90◦

according to laboratory axis.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1. Modal Field Simulations of the Guided Modes

In two-mode experiment there exist LP01 and LP11 modes together. At the output

of this experiment we can measure the total power and the intensity distribution of the

mode content. But it is not known which mode contributes what percentage to the total

power. To find out percentage of the contributions, Maxwell Equations of the guided

modes were simulated in MATLAB. Mode field simulations are performed for TM01,

TE01, HE11 and HE21 modes. Their combinations generate linearly polarized LP modes

(see Section 2.3).

The total mode content of the two-mode propagation basically depends on three

factors. These are lobe orientation and polarization state of LP11 mode, polarization state

of LP01 mode and their power contributions. There are sixteen possible mode content

combination of horizontal and vertical polarized LP01 and LP11 modes. For equal power

contributions of vertical polarized fundamental mode LP V
01 and the four forms of LP11

mode, the symbolic representations and the simulation results of eight possible combina-

tions are illustrated in Figure 6.1. The symmetrical form of these distributions are valid

for also horizontal polarized LPH
01 mode (see Figure 6.2).

In a combination, if the polarization states of the LP01 and LP11 modes are in the

same direction, this causes a destructive effect in a half side of the resultant mode content,

and constructive effect in the other half side. While the electric fields of the LP01 mode in

the same direction with the electric fields of one lobe of LP11 mode, the other lobe is in

the opposite direction. Besides, if the polarization states of the LP01 and LP11 modes are

perpendicular to each other, this causes a constructive effect in the whole resultant mode

content. This is due to vectorial addition of electric fields perpendicular to each other.
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Figure 6.1. Possible combinations in terms of the symbolic electric field and simulated

intensity distributions of LP V
01 and LP11 modes
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Figure 6.2. Possible combinations in terms of the symbolic electric field and simulated

intensity distributions of LPH
01 and LP11 modes
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6.2. Matching Experimental Data with MATLAB Simulations

In the two-mode experiment there are different mode combinations according to

input polarization. Mode contents of the measurements are unknown. To figure out the

contents, measurement results are matched with simulation results. The matching method

is finding minimum error. Firstly size and orientation of the measurement result is fit on

the simulation result. Then intensity difference, i.e., error is calculated via MATLAB. Sim-

ulated mode combination which provides minimum error determines the best-matched

mode content.

In Figure 6.3, recorded images and the matched simulation results are illustrated.

The shown CCD images belong to output of unpolished optical fiber and SPOF with

respect to different angles of linear polarizer which are 0◦, 45◦ and 90◦. The calculated

power percentages to the mode content of LP01 and LP11 modes are given in Table 6.1.

Table 6.1. Mode matching results of the two-mode experiment

Input Type Percentage of LP01 Percentage of LP11

Unpolished optical fiber %33 %67

SPOF with 0◦ linear polarizer %25 %75

SPOF with 45◦ linear polarizer %64 %36

SPOF with 90◦ linear polarizer %41 %59

The result of unpolished optical fiber shows there are two LP modes exist, and

they have only one polarization of direction, i.e., there doesn’t exist any degenerate mode

pair. Due to only one polarization direction existence in the fiber, the output intensity

distribution of the mode content concentrates to one side of the output.

However, as seen in Figure 6.3 in the two-mode SPOF experiment, for three crit-

ical angles of the linear polarizer the power never be zeroized. Also, the percentages

of the mode contributions are different for all measurements. This situation is the proof

that at the side-polished area modes couple to each other. Hence, degenerate modes and

phase shifts occur at the region 3. Since the output measurements were recorded via linear

polarizer, their intensity distributions also concentrates to one side of the output.

Due to the mode coupling between LP modes and interaction between the elec-

tric field distributions of the LP01 and LP11 modes it is hard to characterize polarization
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Figure 6.3. The recorded CCD Camera images of the two-mode propagation belong

to unpolished optical fiber and the SPOF with respect to 0◦, 45◦ and 90◦

angles of the linear polarizer with matching simulation results
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rotation and phase shift properties of the SPOF. To characterize the SPOF precisely, we

need single-mode propagation.

6.3. Polarization and Phase Characterization of the Single-Mode

Experiment

Measurement via CCD Camera provides us an image of the intensity distrubion of

the optical fiber output. If we record images for every 10◦ angle of the linear polarizer, we

reach relative power relation between the images. Since intensity of an electromagnetic

wave P is proportional to the square of the electric field E2, we can also reach to electric

field relation between the different angle of polarization. In the light of this information,

normalized electic field amplitudes of the outputs listed in Table 6.2.

Figure 6.4. The samples of the recorded CCD Camera images of the single-mode prop-

agation at the linear polarizer angles of 20◦, 50◦, 80◦, 110◦

Four images belong to the single-mode experiment with 90◦ polarization of input

illustrated in Figure 6.4. The maximum intensity occurs at the 20◦ and the minimum

occurs at 110◦ of the linear polarizer. Since light always exists in the interval of 90◦ of the

linear polarizer, SPOF generate degenerate modes with phase shift. Considering phase

shift between the degenerate LP01 modes, the state of polarization is no longer linear, but
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Table 6.2. The normalized amplitude values of the electric fields according to the

angles of the input polarization and the linear polarizer

Polarizer Angle 90◦ input polarization 45◦ input polarization 0◦ input polarization

0◦ 1.544 1.145 0.810

10◦ 1.585 1.272 0.856

20◦ 1.612 1.386 0.985

30◦ 1.583 1.484 1.091

40◦ 1.546 1.547 1.213

50◦ 1.469 1.565 1.324

60◦ 1.329 1.550 1.422

70◦ 1.240 1.481 1.469

80◦ 1.133 1.389 1.502

90◦ 1.034 1.268 1.469

100◦ 1.009 1.144 1.422

110◦ 0.969 1.086 1.324

120◦ 1.011 0.965 1.213

130◦ 1.035 0.835 1.091

140◦ 1.137 0.774 0.985

150◦ 1.238 0.831 0.856

160◦ 1.331 0.969 0.810

170◦ 1.470 1.082 0.662

180◦ 1.542 1.150 0.818

190◦ 1.582 1.273 0.857

200◦ 1.597 1.341 0.989

210◦ 1.590 1.487 1.098

220◦ 1.543 1.543 1.209

230◦ 1.467 1.559 1.321

240◦ 1.330 1.546 1.427

250◦ 1.241 1.480 1.465

260◦ 1.130 1.383 1.508

270◦ 1.031 1.267 1.463

280◦ 1.014 1.138 1.418

290◦ 0.972 1.091 1.329

300◦ 1.005 0.962 1.210

310◦ 1.038 0.830 1.096

320◦ 1.129 0.777 0.980

330◦ 1.128 0.838 0.852

340◦ 1.324 0.961 0.817

350◦ 1.465 1.088 0.658
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Figure 6.5. Experimental data and mathematical model of 90◦ input polarization angle

elliptical.

According to Table 6.2, electric field components, i.e., Ex and Ey, were plotted.

Since we obtain only intensity information from the CCD images, i.e., E2, vectorial in-

formation of the electric fields is exploited from the angle of the linear polarizer ζ . We

can figure out the electric field components via

Ex x̂ = E cos(ζ); Ey ŷ = E sin(ζ). (6.1)

Figure 6.5, 6.6 and 6.7 show the plotted experimental data and the mathematical

models of elliptical polarization. There are three different ellipses according to angle

of the input polarization, e.g., 90◦, 45◦ and 0◦. The experimental data wouldn’t create

perfect ellipses. This situation is caused by the noises which could occur because of CCD

Camera, the linear polarizer and the ambient. While creating the mathematical model

of polarization, we can eliminate the points which are distant from an elliptic scheme,

i.e., errors. After we had canceled the error points, with the rest of the points the best-
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Figure 6.6. Experimental data and mathematical model of 45◦ input polarization angle

matched ellipses were generated. This process is done with least square method LSM via

MATLAB.

From the mathematical model of ellipses (see Section 4.3) we calculated the phase

difference between the degenerate LP01 modes, eccentricity and orientation of the ellipses

that are listed in Table 6.3.

6.4. Overall Discussion

Studies were started with the two-mode experiment. The input polarization angle

of the light source is known, but at the entrance of the side-polished area the angle between

the polarization of the input light and the extraordinary axis is unknown. To investigate the

effect of this unknown angle on the output and characterize the SPOF, the rotating linear

polarizer was fitted between the output of the SPOF and the CCD Camera. Output images
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Figure 6.7. Experimental data and mathematical model of 0◦ input polarization angle

were recorded for different angles of the polarizer, and experiments were repeated for

different angles of input polarization. The resultant images were evaluated with MATLAB

and it shown there exist different mode contents for different angles of the polarizer.

Also, existence of power at the output for different angles of the polarizer prove that

output light is no longer linearly polarized. For all polarization angles of input, SOP of

the output was always elliptical polarization, which means the SPOF is a birefringent

device. Thus, it is deduced that at the side-polished area LP modes are coupled each

other and quasi-degenerate modes occur with a phase delay. After light passes the side-

polished area, degenerate LP modes propagate with different phases and for different SOP

of the light there exist different mode contents. To analyze the resultant mode contents,

recorded images were matched with computed modal intensity distributions using mode

orthogonality. The best-matched results give us estimated mode contents, relative powers

of LP modes to each other, mode orientations and information about SOP according to
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the angle of the polarizer.

Table 6.3. Phase difference, eccentricity and orientations of the mathematically mod-

eled ellipses

Polarization angle of input Phase difference Eccentricity Orientation

0◦ 82◦ 0.7442 80◦

45◦ 80◦ 0.7805 51◦

90◦ 72◦ 0.7986 19◦

Since mode coupling between LP01 and LP11 occurs in the two- mode experi-

ment, phase shift characteristic of the SPOF couldn’t be calculated accurately. Hence, to

calculate phase shift, single-mode propagation was provided in the SPOF. In the single-

mode experiment, at the side-polished area there occur quasi-degenerate modes. When

the light is passing through the polished area, some percentage of the power radiates

through the cladding- external environment interface. Due to the birefringent feature of

the SPOF, at the polished area, occurred power losses and phase delays of the parallel and

perpendicular polarized lights according to the extraordinary axis are different.

For each input polarization angle, the graphs were generated according to the

power data obtained from the images recorded at 10◦ angle ranges of the polarizer in the

single-mode experiment. Indeed, in theory, to draw an ellipse 3 points which are not linear

are enough. However, because of the errors caused by impurities of the polarizer, ambient

noise, etc., more data is needed to appear the ellipses. Thus, to draw each ellipses there

are 36 data. The formed graphics with experimental data are not exact ellipse. To compute

phase shift between degenerate modes, the data was mathematically modeled with using

least-square method and the best matched ellipses were constructed (see Figures 6.5, 6.6

and 6.7). From the obtained ellipses, phase differences were computed and the other

elliptic properties, i.e., eccentricity and orientation were also revealed (see Table 6.3).

Therefore complete characterization of the side-polished optical fiber was accomplished.

Since the side polishing process is in micrometre level, it is very difficult that

producing SPOFs having exactly the same geometry each time. Hence, depending on

production-based nanometric impurities, the characteristic features of a SPOF would dif-

fer. Thus for every SPOF, characterization process should be repeated.

Moreover, optical properties of a side-polished optical fiber are sensitive to am-

bient refractive index. Observing the optical properties of the side-polished optical fiber,
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i.e., state of polarization, phase shift etc. is widely used for designing optical fiber sensor.

Therefore, our further detailed studies on the optical properties of the SPOF would be on

improving sensing ambient refractive index and the other sensor application areas with

this non-spectroscopic method.
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CHAPTER 7

CONCLUSION

In this thesis, it is aimed to characterize polarization properties of side-polished

optical fibers in details regarding attenuation and phase effects. Initially, the exact Maxwell

modal solutions were computed with the parameters of the optical fiber used in the ex-

periments. Intensity distributions of LP01, LP11 and their combinations were obtained.

The combinations can be tuned according to power contributions of LP modes, state of

polarization and lobe orientation of LP11 mode. These LP mode intensity distributions

were matched with the recorded images by the CCD Camera to expose the mode con-

tent of the optical fiber output in two-mode experiment. The best matched results gave

us mode contents of the output. The mode contents of the output vary with the angle of

the polarizer. Besides, for different SOP of the input mode contents differ. This situation

shows that the side-polished region causes modes couple to each other in different ways

depending on their SOP.

Next, the mode coupling was utilized to understand perturbation effect of the

asymmetric geometry of side-polished optical fibers. In unpolished optical fiber, all

modes are mutually orthogonal. However, in the side-polished area mode orthogonal-

ity are no longer valid. Due to the broken symmetry, the modes are coupling to each other

and non-symmetrical modes occur. These non-symmetrical modes are affected in differ-

ent ways depending on the angle Ω between SOP of the coming light and the ordinary axis

ao (which is flat side of the SPOF). The main effects of the SPOF on the input light are

attenuation and phase shift. Since cladding is very thin at the side-polished area, attenua-

tion is caused by virtue of power flow radiated through the cladding-outside interface. On

the other hand, phase shift occurs because of the anisotropic structure of the SPOF, i.e.,

birefringence. The angle Ω specifies the mode coupling ratio between non-symmetrical

modes and the phase shifts for both polarization states (parallel and perpendicular to ex-

traordinary axis ae). However, the angle Ω is an unknown parameter. Thus, to investigate

its effect, the experiments were repeated for various orientation of input polarization.

According to the parameters of the experimental setups, a computational model

was constructed. The parameters are input polarization orientation, the angle between

polarization angle of the coming light to the beginning of the side-polished area and the

ordinary axis, attenuation coefficients of the SPOF, phase shift coefficients of the SPOF
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and the angle of the rotating linear polarizer. Since the side-polished region is a asymmet-

ric medium, in this region mode coupling occurs between LP modes. Thus, to investigate

the phase shift effect of the SPOF more precise, the single-mode experiment was held. In

the single-mode experiment, 3 set of data were collected according to 3 different SOP of

input. The output measurements were recorded in 10◦ intervals of the polarizer. When

each set of data is gathered up in different graphs, a perfect ellipse does not occur because

of the errors caused by the impurities of the polarizer, ambient noise, etc. Therefore,

to eliminate errors these data were mathematically modeled with using the least square

method and the best-matched ellipses were generated. There are 3 specific ellipses regard-

ing SOP of input. The parameters of the ellipses which are phase difference, eccentricity,

and orientation were disclosed computationally. The resultant phase differences between

the degenerate LP01 modes are 82◦, 80◦ and 72◦, eccentricity of the ellipses are 0.7442,

0.7805 and 0.7986, orientation of the ellipses are 80◦, 51◦ and 19◦ which corresponds

to the angle of the input polarization 0◦, 45◦ and 90◦ respectively. The fact that these

three ellipses are quite different from each other regarding all parameters means that the

SPOF has a nonlinear effect according to the angle of the input polarization orientation.

And this effect leads to the phase shift and power loss of the incoming light in different

amounts depending on the SOP of an input. To obtain these ellipses, 36 different intensity

measurements were recorded for each experiments. Indeed, if a more accurate system is

set up with decreased error level, a complete characterization of a SPOF can be achieved

with a few measurements. This might be helpful for better optical sensor design.

The primary advantage of this method is that it is not spectroscopic. The spectro-

scopic ones are bulky and expensive. On the other hand, the non-spectroscopic methods,

which measure output intensity of a SPOF, are not sophisticate and they are inexpensive

systems. These systems are being used to sense the refractive index of the ambient. With

our detailed study, we have provided a better understanding of phase and polarization

properties. In addition, the loss between the non-symmetrical modes in the side-polished

region has been taken into account. Therefore we expect it to contribute to the design

of more sensitive optical sensors. Furthermore, we predict that this kind of structures

have a potential to be used for a coherent communication device. The function of the

device could be phase-polarization modulator or mode converter. Modulation of phase

and polarization could be achieved by the birefringent property which can be altered by

the refractive index of the SPOF. And a mode converter could be realized with the mode

coupling feature of the side-polished optical fiber.
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