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Supervisor, Department of Electrical and Electronics Engineering
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Head of the Department of Dean of the Graduate School of
Electrical and Electronics Engineering Engineering and Sciences



ACKNOWLEDGMENTS

This work was supported in part by the ÖYP programme of the Council of Higher
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ABSTRACT

A COMPARATIVE ANALYSIS OF COHERENCE MEASURES FOR

ELECTROENCEPHALOGRAPHY

Functional connectivity is often used in brain-computer interface studies as well as

other neuroscience fields as a feature extraction method. In the functional connectivity us-

ing electroencephalography (EEG), connectivity patterns are extracted by a dependency

matrix showing the coherence between electrode pairs. A variety of dependence mea-

sures can be used to calculate this matrix. In this study, a total of 15 coherence measures

were analyzed comparatively in terms of computation time, accuracy and statistical sig-

nificance in discriminating motor/motor imagery activities. As dependence measures, in

addition to methods used in the literature for brain connectivity, five other methods used

as contrast function in independent component analysis and two novel mutual information

calculators proposed in this study were evaluated. Furthermore, a novel hierarchical clus-

tering based statistical test procedure was also proposed for motor/motor imagery activity

comparison, along with a similar statistical significance test applied on data from 103 sub-

jects on four different activity types. In experiments on real data set, significance results

of dependence measures differed according to the type of activity and time window dura-

tion of activity signals. Considering both computation time and accuracy performances on

synthetic data, a number of methods with high statistical significance and different depen-

dence characteristics were identified as feasible for a connectivity based brain-computer

interface.
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ÖZET

ELEKTROENSEFALOGRAFİ İÇİN UYUMLULUK ÖLÇÜTLERİNİN

KARŞILAŞTIRMALI ANALİZİ

Fonksiyonel bağıntılılık, diğer sinirbilim alanlarının yanı sıra beyin-bilgisayar

arayüzü çalışmalarında da bir özellik çıkarım yöntemi olarak sıklıkla kullanılmaktadır.

Elektroensefalografiyi (EEG) kullanan fonksiyonel bağıntılılık çalışmalarında, bağıntı de-

senleri elektrod çiftleri arasındaki uyumluluğu gösteren bir bağımlılık matrisi ile çıkarılmak-

tadır. Bu matrisin hesaplanmasında çeşitli uyumluluk ölçütleri kullanılmaktadır. Bu

çalışmada, toplam 15 uyumluluk ölçütü hesaplama zamanı, doğruluk ve motor/hayali mo-

tor aktivitelerini ayırmadaki anlamlılığı yönünden karşılaştırmalı olarak analiz edilmiştir.

Uyumluluk ölçütü olarak beyin bağıntılılığı literatüründe kullanılan yöntemlerin dışında,

bağımsız bileşen analizi yönteminde kontrast fonksiyonu olarak kullanılan beş ölçüt ve

bu çalışmada önerilen iki yeni ortak bilgi miktarı hesaplama yöntemi değerlendirilmiştir.

Ayrıca, dört farklı aktivite türünde 103 denekten elde edilen veriye uygulanan bir istatis-

tiksel anlamlılık testinin yanında, motor/hayali motor aktivite karşılaştırmaları için de,

hiyerarşik kümelemeye dayalı yeni bir istatistiksel test prosedürü önerilmiştir. Gerçek veri

setlerine uygulanan deneylerde kullanılan ölçütler, uygulandığı aktivite çeşidi ve zaman

aralığına göre farklı anlamlılık değerleri vermiştir. Sentetik veri üzerinde gösterdikleri

zaman ve doğruluk performansları da göz önünde bulundurularak istatistiksel anlamlılığı

yüksek ve farklı bağıntılılık karakteristiği sunan birkaç yöntem, bağlantılılık temelli beyin-

bilgisayar arayüzünde uygulanabilir olarak tanımlanmıştır.
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CHAPTER 1

INTRODUCTION

Brain, as the main part of central neural system (CNS), consists of a large number

of neurons and manages all perceptual, motor and cognitive tasks by the complex net-

work of these cells. Although there exist invasive applications, noninvasive brain imaging

techniques are mostly used since its sensitive nature in a rigid skull. The techniques such

as electroencephalography (EEG) and magnetoencephalography (MEG) receive electro-

magnetic signals caused by brain activity. Other techniques like functional magnetic reso-

nance imaging (fMRI), positron emission tomography (PET) and single photon emission

computerized tomography (SPECT) measure the brain state by benefiting from indirect

features of it. Usually, spatial and temporal resolutions of these techniques are consid-

ered to decide on which are to use in studies. Especially EEG that measures the electrical

signals over the scalp is utilized for functionality studies of the brain and brain computer

interface (BCI) applications.

Brain computer interface studies aim to control the devices around users by the

inputs of brain activity without muscular motion. As a system mostly constructed on

EEG signals, BCI is predominantly based on selectivity of attention (also named as

oddball paradigm) and neural feedback paradigms. Signals such as event related po-

tential (ERP), steady-state visual evoked potential (SSVEP) and event related synchro-

nization/desynchronization (ERS/ERD) are used for measuring external stimuli in these

paradigms. Unlike the selectivity of attention, motor imagery based BCI studies do not

need an external stimulus and the subject only imagines the movement to be performed.

These studies usually consider ERS/ERD signals (Pfurtscheller and Neuper, 2001). But

the success rate of motor imagery based BCI is relatively low despite its potential of infor-

mation transfer speed. Moreover, it requires long neural feedback based training sessions

(Graimann et al., 2010).

As a remedy to these problems, areas of the brain that activate together during

the imaginary motor functions can be identified (Delorme et al., 2002), (Hamedi et al.,

2016). Many signal processing methods are proposed to measure which channels or brain

areas work together by analyzing EEG time series. These studies are categorized in the

brain connectivity concept (Sakkalis, 2011). Among these studies, the primary methods

proposed to measure functional connectivity are linear correlation (Adey et al., 1961),

1



wavelet coherence (Lachaux et al., 2002) and phase locking value (Rosenblum et al.,

1996) methods. It should be emphasized that these methods can identify the areas working

together to a certain extent in spite of artificial dependence caused by the conductivity

properties of the scalp and the brain itself (volume conduction effect) (Srinivasan et al.,

2007). In addition to these methods, several methods are proposed to eliminate the volume

conductivity problem (Stam et al., 2007), (Nolte et al., 2004). Finally, mutual information

based methods are also used as dependence measures (Sakkalis, 2011). But the lack of

information about marginal and joint probability density functions create an obstacle for

these methods.

Another problem for the dependence measure methods are time lag of communi-

cation between channels or brain areas. Furthermore, EEG signals are stationary only for

short time intervals (declared as quasi-stationary) (Sanei and Chambers, 2007). This also

causes an inconsistency for the methods that require stationarity.

Considering the above mentioned problems, different methods have differing sets

of advantages and disadvantages on detecting connectivity patterns. The main purpose

of this thesis is to carry out a comparative analysis of dependence measures used for

functional connectivity or have the potential to be used to measure dependence for the

evaluation of motor/motor imagery signals in BCI systems.

This thesis is organized as follows. The second section consists of a brief back-

ground about brain imaging techniques, brain computer interface and the brain connec-

tivity concept. This section will help reader to understand why EEG is chosen for this

study and provide a preliminary information for the rest of the study. The following sec-

tion starts with an introduction to Physionet EEG motor/motor imagery dataset used in

the experiments and the preprocessing procedures carried out on the dataset. After that,

various dependence measure methods are described in detail. In this section, in addition

to dependence measures already used for connectivity analysis, five other methods used

in independent component analysis (ICA) technique that searches the linear transforma-

tion matrix to find independent sources are explored as potential dependence measures.

Furthermore, two new information theoretic methods are proposed as mutual information

estimators. In section 4, experimental methods and results are given. Experiments are

constructed to compare methods in terms of computational times, accuracy and statistical

significancy for discriminating motor/motor imagery tasks. For statistical significance,

a new hierarchical clustering based procedure is proposed. Another test of significancy

is implemented for selected electrode pairs. Finally in the Discussion and Conclusion

sections, experiment results are evaluated in terms of study objectives and the thesis is
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concluded with possible directions of future work.
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CHAPTER 2

BACKGROUND

2.1. Functional Brain Imaging Techniques

A number of non-invasive brain imaging tools are used in neuroscience studies.

These techniques can be divided into two groups. The first group includes techniques

that directly aim to measure brain activity. EEG and MEG are placed in this group.

The second group consists of methods like fMRI and PET that indirectly measure brain

dynamics concerning cerebral vasculature (Mitra, 2007).

The earliest and the most commonly used brain imaging technique is electroen-

cephalography (EEG). EEG measures the electrical voltage fluctuations of the brain by

electrodes placed over scalp. Detailed information about EEG is given in the next section

since the technique is used in this study.

The other method that directly measures brain activity is magnetoencephalogra-

phy (MEG). Based on the fact that electric current generates a magnetic field, the first use

of magnetic fields caused by bioelectric current sources was magnetocardiogram (Baule,

1963). After a few years, magnetic fields were used for detecting the alpha rhythms gen-

erated within the brain (Cohen, 1968). MEG measures the magnetic field produced by

electric current emerging as a result of brain activity outside of the head. But the cortical

surface of the brain consists of pyramidal neurons and these cells are predominantly di-

rected perpendicularly to the scalp. Thus, because of the right hand rule, MEG receives

the magnetic field predominantly from fissures and sulci. Additionally, magnetic fields

received from the head are relatively much smaller than the outside sources such as the

earth’s natural magnetic field and magnetic field generated by powerline sources. Al-

though various methods are used to compansate these outside magnetic sources, a mag-

netic shield or a magnetically shielded room is usually used for MEG (Laureys et al.,

2002).

Another technique is functional magnetic resonance Imaging (fMRI). It uses the

different features of atoms under a magnetic field. Three parameters are used for magnetic

resonance imaging (MRI): proton density, longitudinal magnetization time and transverse
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magnetization time. There are different methods used for MRI technique. For fMRI,

mostly blood-oxygenation level dependent (BOLD) method is used. When a part of the

brain is active, the oxygenated haemoglobin rate increases in this area and BOLD mea-

sures the oxygenated/deoxygenated haemoglobin rate with the help of different paramag-

netic features of oxygenated and deoxygenated haemoglobin. Information is transmitted

in milliseconds from one area to another in the brain, but the oxygen levels change more

slowly. Because of that, the temporal resolution of this technique is poor. MRI was firstly

used in 1973 and fMRI is invented in 1992 (Cabeza et al., 2006).

Positron emission tomography (PET) is one of the tissue autoradiography tech-

niques. Before PET imaging, a positron emitting compound called radio tracer is injected

in the vein of the patient. In a few minutes, this compound reaches the brain with the

help of the bloodstream. After interacting with an electron, the tracer emits a gamma ray

photon pair. These photons are detected by sensors placed around the patient in a ring and

a three dimensional image of the brain is constructed. Although radioactive compounds

had been used before, PET technology was developed as a brain imaging tool after com-

puted tomography (CT) was invented (Ter-Pogossian et al., 1980). Temporal and spatial

resolution of this technique is poorer than fMRI.

In addition to these methods, single-photon emission computerized tomography

(SPECT), transcranial magnetic stimulation (TMS) and near-infrared spectroscopy (NIRS)

are some of the techniques for functional brain imaging (Laureys et al., 2002).

The most significant features of brain imaging techniques are spatial and temporal

resolutions. PET and fMRI tools provide better spatial resolution where EEG and MEG

methods offer better time resolution (Figure 2.1). Especially while exploring the event

related potentials (ERP), the temporal resolution is more important than spatial resolution.

Because of that, EEG and MEG methods are used more for ERP activities. Although

MEG has an advantage in temporal resolution, EEG is preferred more in studies because

of the before mentioned direction problem of magnetic fields. Additionally, EEG is more

compatible for a brain computer interface (BCI) application, since MEG devices are more

expensive and have larger volumes because of the magnetic shielding. On the other hand,

the lack of any volume conduction effects is an advantage of MEG. Because of that, some

studies use MEG in addition to EEG (Nunes and Srinivasan, 2006).
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Figure 2.1. Temporal and spatial resolution comparison of brain imaging tools

(Source: Laureys et al. (2002))

2.2. Electroencephalography (EEG)

The central nervous system (CNS) of humans consists of nerve and glia cells.

Nerve cells (neurons) respond and transmit information by electrical impulses. Impulses

generated by neurons are called action potentials (AP) and they last about 5-10 ms (Figure

2.2). A neuron generates an AP by transition of positive Na+, K+, Ca+ and negative

Cl- ions from channels that exist on the axonal membrane. The interneuron information

transmission is not as fast as the transmission of electricity within a wire: conduction

velocity is in the interval of 1-100 m/sec (Sanei and Chambers, 2007).

Electrical activity of neurons causes an attenuated and noisy signal through the

brain and skull. The attenuation is mostly caused by the skull. On the other hand, the

noise is mostly because of the brain itself. Even though a neuron generates a potential

between -60 mV and 10 mV, the signal peaks observed over scalp are measured between

10-100 uV.

Brain signals emerge in low frequency bands (100 Hertz effective bandwidth).

These signals are analyzed in five major frequency bands: α (0.5-3.5 Hz), θ (3.5-7.5 Hz),

β (7.5-12 Hz), δ (12-30 Hz) and γ (greater than 30 Hz). EEG measures those attenuated

and noisy signals with low frequency.
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Figure 2.2. Action potential of a neuron (Source: Sanei and Chambers (2007))

The word electroencephalography means tracing electrical brain activity (electro-:

electrical, encephalo-: related to brain, graphy: tracing). Cerebral activity was discovered

long before, but the first recording of EEG was published by Hans Berger in 1929 (Berger,

1929). Early EEG signals were recorded by galvanometers. Recent EEG devices consist

of electrodes, low noise amplifiers, ADCs and filters. In studies, EEG systems with dif-

ferent sampling rates, precision, electrode number and electrode placement systems are

used. A conventional EEG system has a maximum 2000 of sample/sec rate since the

signals have low frequencies. In addition, electrode numbers and placement system vary

with the purpose of recording. Mostly used placement systems are 10/10 and 10/20 (Fig-

ure 2.3).

2.3. Brain-Computer Interface

Brain-Computer Interface (BCI) is a system that allows a user to control a device

or provides input to the device by brain signals without requiring any movement. Even

though BCI systems are typically used for disabled people such as those suffering from

ALS (Amyotrophic Lateral Sclerosis), they can be also used by healthy people in vari-

ous fields (Allison et al., 2007). A general BCI system framework is seen in Figure 2.4.

Brain signals are received by the help of sensors from the user. Preprocessing operations
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Figure 2.3. 10-20 Electrode placement of 21 electrodes (Source: Sanei and Chambers

(2007))

such as filtering, up/down sampling, artifact removing etc. are applied on these ampli-

fied signals. After that, various features of preprocessed signals are extracted and used

for classification. Finally, classification results are sent to the device in the form of com-

mands. In addition, BCI systems include a user interface to help user control devices as

in P300 speller example (Farwell and Donchin, 1988). (Bashashati et al., 2007) presented

a review of signal processing algorithms on BCI applications with EEG signals.

Most commonly used technique to receive biosignal is EEG because of its low

cost, advantage on temporal resolution and portability potential (Ranky and Adamovich,

2010). The majority of BCI studies with EEG are based on a specific paradigm on brain

signals. These signals are event related potential (ERP), steady-state visual evoked po-

tential (SSVEP) and event related synchronization/desynchronization (ERS/ERD). ERP

signals emerge as a response of the brain to outside world stimuli as in the P300 speller

procedure (Farwell and Donchin, 1988). Another approach, SSVEP is based on visual

stimulation. A visual stimulation that is shown to the subject in a particular frequency
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Figure 2.4. General BCI system framework (Source: Ahsan et al. (2009))

causes a signal at the same frequency in the users brain and in SSVEP based BCI sys-

tems stimuli with different frequencies help the user control the device (Zhu et al., 2010).

And finally, ERS/ERD signals are used by detecting the synchronization and desynchro-

nization patterns caused by different stimuli (Pfurtscheller and Neuper, 2006). Functional

brain connectivity has recently received attention in BCI systems as a feature extraction

option (Hamedi et al., 2016).

2.4. Functional Brain Connectivity

Functionality studies of the brain are carried out in two perspectives: functional

segregation and functional integration. Functional segregation studies explore the func-

tionally specialized areas for perceptual, motor, cognitive tasks etc. On the other hand,

functional integration addresses the interaction between different specialized areas that
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occurs under different conditions (Friston, 1994). Earlier neuroscience studies explored

mostly the functional segregation or localization of activities. But there has been a shift

to the functional integration topic in recent years (Friston, 2011).

Brain connectivity is categorized in three groups:

• Structural connectivity

• Functional connectivity

• Effective connectivity

Structural or anatomical connectivity looks for physical links between neurons or

neuron groups. This connection type is not used for functional integration; generally,

magnetic resonance imaging technologies are used to study structural connectivity. The

second connectivity type, functional connectivity aims to find statistically correlated or

dependent areas under certain actions. Finally, effective connectivity is concerned with

the connection where an area triggers the activation of another area. The main difference

of functional and effective connectivity is that effective connectivity requires causality

along with a model for connectivity patterns, whereas functional connectivity is only

interested in statistical relations as mentioned above (Sporns, 2010).

Brain connectivity studies have several purposes in general. One of them is to

explore neurological disorders such as dyslexia (Odegard et al., 2009), schizophrenia

(Cheung et al., 2008), autism (Belmonte et al., 2004) and epilepsy (van Diessen et al.,

2013). Other studies aim to understand how brain actually works. (Varela et al., 2001)

showed this curiosity with a question: “How does the brain orchestrate the symphony of

emotions, perceptions, thoughts and actions that come together effortlessly from neural

processes that are distributed across the brain?”. And recently, brain connectivity concept

began to be explored in another area: brain computer interface (BCI) (Daly et al., 2012).

2.5. EEG and Brain Connectivity

EEG and fMRI are the two mostly preferred brain imaging techniques for func-

tional connectivity studies. EEG is used more especially to detect relatively high speed

communications between different brain areas since fMRI suffers from poor temporal

resolution (Stam et al., 2007). For the analysis of functional connectivity with EEG, the

statistical dependence of electrodes placed in different areas over the scalp is explored,

though not directly of neuron groups.
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Figure 2.5 illustrates the procedure for functional brain connectivity studies with

EEG. Time series receieved from electrodes of EEG are used to compute a dependence

matrix. This matrix includes a dependence value for each electrode pair. For the 64

channel dataset used in this study, 2016 dependence values are computed to form the

dependence matrix. Various methods to measure dependency can be used to calculate this

matrix. These methods will be explained further in the next section since this is the main

topic of this thesis. Finally, this matrix is used to detect the connectivity patterns of the

brain.

Figure 2.5. Functional connectivity procedure for EEG signals

Dependency of EEG time series may be observed with a time lag between elec-

trodes because of inter-neuron communication delays. This causes a difficulty for mea-

suring dependency since these delays are not known a priori. On the other hand, methods

like phase locking value (PLV) take advantage of this time lag by analyzing the phase

stability of time series as a measure of dependency (Rosenblum et al., 1996). Further-

more, despite the advantage of temporal resolution, brain connectivity studies with EEG

suffer from volume conduction effects. This problem occurs because of the conductivity

of the skull and the scalp (Peraza et al., 2012). EEG signals are not received from just

neurons beneath the electrode but a linear mixing of neurons in a circle with a radius

of about 6 cm (Thatcher et al., 2004). Although contribution of neurons weakens as the

distance between electrodes grows, volume conduction problem causes information loss

for connectivity studies. Because of that, several methods that claim to eliminate vol-

ume conduction were proposed such as phase lock index (PLI) (Stam et al., 2007) and

imaginary part of coherence (iCOH) (Nolte et al., 2004).
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CHAPTER 3

MATERIAL AND METHODS

In this chapter, we provide a description of EEG motor/motor imagery dataset

used in the study and the preprocessing carried out on this dataset. After that, dependence

measures are expressed in detail. In addition to theoretical background, information about

the advantages and gaps of the measures are tried to be exposed in accordance with the

features of EEG signals.

3.1. Dataset and Preprocessing

This section elaborates on the dataset used in the study as well as the various

pre-processing steps involved in data preparation.

3.1.1. Dataset

In the study, an EEG motor movement/imagery dataset provided by the PhysioNet

database was used (Goldberger et al., 2000). In the dataset, EEG data was recorded by

a BCI2000 system (Schalk et al., 2004) with 160 Hz sample rate and the signal was

received from a 64 channel cap with an international 10-10 system electrode placement

(Figure 3.1).

There exist 14 experimental runs for each subject. The first two minute runs were

recorded as baseline (the first run with eyes open, eyes closed for the other). The other

runs have one of the tasks below and the tasks were performed multiple times in each run:

1. An indicator appears on the left or right side of the screen. The subject opens and

closes the fist at the same side. The subject is requested to rest.

2. An indicator appears on the left or right side of the screen. The subject imagines to

open and close the fist at the same side. The subject is requested to rest.

3. An indicator appears on the top or bottom of the screen. The subject opens and

closes the both fist or both feet. The subject is requested to rest.
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Figure 3.1. Electrode placement of PhysioNet dataset

4. An indicator appears on the top or bottom of the screen. The subject imagines to

open and close the both fist or both feet. The subject is requested to rest.

Each experimental run was saved as edf formatted files (14 files per subject). In

addition to each electrode data, one extra channel is used to hold the annotation, indicating

the target codes and durations for each event. Table 3.1 summarizes event type and the

target code in each experimental.

In total, 109 subjects participated in the experiment, but four subjects (subjects

88, 89, 92 and 100) were excluded from the study as their records deviate from the ex-

perimental paradigm described above. Furthermore, records of two additional subjects

(subjects 43 and 104) were also excluded due to corrupt data (Loboda et al., 2014).
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Table 3.1. Annotation and experimental run values for targets

Task Target Code Run Index
Left Fist T1 3,7,11

Right Fist T2 3,7,11

Imagine Left Fist T1 4,8,12

Imagine Right Fist T2 4,8,12

Both Fist T1 5,9,13

Both Feet T2 5,9,13

Imagine Both Fist T1 6,10,14

Imagine Both Feet T2 6,10,14

Rest T0 all

3.1.2. Filter Design

The criteria below are followed for the design of the digital filters, compatible

with the dataset:

• 0.5 - 40 Hz frequency band which includes the α, β, γ, δ and θ bands containing

most information in EEG signal, should pass with maximum -6 dB attenuation at

cutoff frequency.

• Group delay limit should be 50 ms for a real time BCI application filter.

• For the significance performance test accuracy of the dependence measures, group

delay should be constant or almost constant for the [0.5,40] Hz interval.

• To avoid the power line effects, 60 Hz frequency (50 Hz for the most of the countries

but the dataset is generated in USA) must be suppressed.

In accordance with these objectives, various infinite impulse response (IIR) and

finite impulse response (FIR) filters were evaluated. IIR filters realize magnitude response

more effectively even in low order cases. But it may cause a decline in dependence mea-

sure performance due to nonlinear phase response. On the other hand, even though FIR

filters have linear phase, higher order filters are needed especially to implement narrow

pass band and that means higher group delay (Oppenheim and Schafer, 2014).

In order to overcome the phase linearity problem of IIR, firstly a forward-backward

filter design was implemented. But finally, because of the causality issue of this method,
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an IIR and a FIR filter were used in a cascade structure to realize a band-pass filter with a

pass-band of 0.5-40 Hz in the study.

3.1.2.1. Forward-Backward Filter Design

Forward-backward filtering aims to zero the phase response of any filter design by

filtering the time-reversed signal after the first filtering process (Mitra and Kuo, 2006).

Figure 3.2. Forward-backward filtering block diagram

The block diagram of forward-backward filtering method is shown (Figure 3.2).

It can be shown that the system only effects the magnitude of system (appendix B.1).

Because of that, it is also called a zero-phase filter. For the forward-backward filtering,

while MATLAB provides filtfilt function, some connectivity tools like EEGLAB offer an

api of this method (Delorme and Makeig, 2004).

By following the method, a band pass filter design in interval of [0.5,40] Hz is

aimed and target attenuation is limited to -3dB in cutoff frequency. Since theoretically the

signal will be attenuated by the square of filter’s magnitude response as a consequence of

forward-backward filtering, a 14th order Butterworth filter that achieved -3dB attenuation

at 0.2 Hz and 42 Hz frequency levels was used.

Frequency, phase and group delay response is shown (Figure 3.3) and in Figure

3.4, frequency, phase and group delay response of forward-backward filter constructed by

cascaded and reversed linked Butterworth filters.Finally, to eliminate the effect of initial

and end conditions of filtering, the signal is extrapolated with mirroring. Mirror length

was chosen as the three times the filter order (Krauss et al., 1994).

Although the forward-backward filtering can meet all of the objectives listed above,

it cannot be implemented in a real system since it is a non-causal filter. So a mix of IIR

and FIR filter was designed and used for the preprocessing purpose.
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Figure 3.3. Response of the filter at the first stag
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Figure 3.4. Response of the total forward-backward filtering
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3.1.2.2. Butterworth IIR + Least Square FIR

A 16th order FIR filter which has a band pass between 35-45 Hz is designed by us-

ing least-squares method, when it is taken into consideration 160 Hz sampling frequency

and 50 ms group delay constraint, to suppress the high frequencies. In addition, a first

order Butterworth IIR filter with a -6dB 0.5 Hz cutoff frequency was used to eliminate the

DC component.

Figure 3.5. Response of the cascaded filter

The frequency, phase and group delay response of the cascaded filter is shown

(Figure 3.5).
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3.2. Dependence Measure Methods

A variety of methods have been proposed in the literature to evaluate the relation-

ship between different EEG channels. These methods can be described in three categories:

• Correlation based methods.

• Phase synchronization based methods.

• Information based methods.

There is no doubt that strict categorization of these methods is not possible. Still, it

is adopted here to help the description of the various methods. Finally, the method called

generalized synchronization is explained independently outside of these categories.

3.2.1. Correlation Based Methods

One of the oldest and most basic way of measuring the relationship between two

variables is Pearson product correlation (Pearson, 1920). The method simply calcu-

lates the proportion of covariance between the variables (Cxy(X, Y )) and the product

of marginal standard deviation values (σx(X), σy(Y )):

r =
Cxy(X, Y )

σx(X)σy(Y )
(3.1)

Pearson product correlation is easy to compute and used widely to measure the

linear dependence of two variables. But it is sensitive to outliers and fails to evaluate

nonlinear dependence. It should also be noted that uncorrelatedness does not guarantee

independence.

Different methods are constructed over Pearson correlation to overcome the is-

sues mentioned above: correlation in frequency domain, spectral correlation method;

two widely used rank based methods Kendall τ and Spearman ρ, a kernel based canonical

correlation method, Schweiser-Wolff method that measures the dependence by calculating

the distance from the independence case in terms of copula functions. Details of these

methods are provided below.
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3.2.1.1. Spectral Correlation Coefficient

One of the most basic ways to evaluate the association between EEG channels is

the Spectral Correlation Coefficient (SCC) method (Thatcher et al., 2004). SCC method

measures the linear dependency between EEG channels’ magnitude values in time or

inter-trials over a frequency or a frequency interval. The method is implemented in two

steps:

• Power spectra of two channels are computed for different epochs in time.

• Pearson product correlation value is calculated using the magnitude of a frequency

interval for all epochs:

r(f) =

∑N
k=1(Xk(f)−Xk(f))(Yk(f)− Y k(f))∑N

k=1(Xk(f)−Xk(f))
∑N

k=1(Yk(f)− Y k(f))
(3.2)

In the expression above Xk(f) and Yk(f) denotes the magnitude of power spectra

of signals x[n] and y[n] at frequency f where k is the index of the epoch. SCC method

has been used in brain signals for more than 50 years and it is still widely used (Adey

et al., 1961). (Maby et al., 2004) examined the correlation of Auditory Evoked Potential

(AEP) spectral contents by SCC method. (Swarnkar et al., 2007) computed SCC values

for different frequency bands to view the inter-hemispheric synchronization during sleep

apnea and EEG arousals.

3.2.1.2. Spearman’s ρ and Kendall’s τ

Spearman’s ρ (Spearman, 2014) and Kendall’s τ (Kendall, 1938) methods are two

well known and widely used rank-based correlation measurement methods. Spearman’s

ρ is the correlation of ranks of the observations of the two variables. Let X and Y be two

univariate variables with x1, x2, ..., xN and y1, y2, ..., yN their observations at N different

time instants. Let also rx[n] and ry[n] be defined as the order indices or ranks of the

respective observations. Spearman’s ρ is then calculated as the correlation between rx

and ry:

ρ =
C(rx, ry)

σrxσry
(3.3)
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(Lachaux et al., 2003) used Spearman correlation in time-frequency space to find

interaction between frequency bands of intra-cranial brain signals. Kendall’s τ , on the

other hand, is based on the concordance of sample pairs. Two samples can be stated as

concordant if and only if (xi − xj) and (yi − yj) have the same sign. τ value is then

calculated as the ratio of concordant pairs to all pair combinations:

τ =
Nc −Nd

1
2
N(N − 1)

(3.4)

In Eq.(3.4), Nc and Nd denote the concordant and discordant pair numbers where

denominator is the number of pair combination
(
N
2

)
. When compared to product corre-

lation, Kendall and Spearman methods are more robust to outliers. Moreover, they can

detect even nonlinear dependencies when the variables are monotonically related to each

other (Bonita et al., 2014). An example is given in Figure 3.6, where the variables are

related through Y = X10. Even though the variables are fully dependent, Pearson corre-

lation is 0.66 due to the nonlinearity, where Kendall’s τ and Spearman’s ρ are both 1. But

still, Kendall and Spearman correlations may give zero values even if there is a relation-

ship between variables and they provide more erratic results than pearson correlation for

different data under weak dependence even if they have the same relation degree.

(Bonita et al., 2014) compared Kendall rank correlation with Spearman, Pearson

correlations and mutual information for the discrimination of eyes open, eyes closed no

task states.

3.2.1.3. Schweizer-Wolff Measure of Dependence

Two rank based formulas described above, Spearman’s ρ and Kendall’s τ return

zero when the variables are independent, but the reverse proposition is not true: ρ and τ

may be equal to zero even if the variables are strongly dependent. Another rank based

dependence measure, Schweiser-Wolff (SW) method is proposed to address this issue

(Schweizer et al., 1981) based on copula functions of the underlying distributions rather

than rank correlations.

A two dimensional copula is a function C : [0, 1]2 → [0, 1], maps from I
2 to

I, where I denotes the interval [0, 1] (Nelsen, 2007). Let X and Y be two univariate

variables. Irrespective of the distributions of X and Y , we have the random variables

U = Fx(X) and V = Fy(X) governed by standard uniform distributions. Then, the joint

cumulative distributions of X and Y can be expressed as a copula function in terms of the
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Figure 3.6. Fully nonlinear dependent variables

marginal cumulative distributions, U and V :

C(u, v) = F
(
F−1
x (u), F−1

y (v)
)

(3.5)

When X and Y are independent, the copula function is simply calculated by the product

of U and V , C(u, v) = uv. Because of that, it is called product copula, and represented

as Π(u, v).

Schweizer-Wolff method finds a dependence value by computing the normalized

Lp norm of the difference between the product copula (independence case) and the two-

dimensional copula functions estimated from the samples. The observed value when using

the L1 norm is termed σ, L2 γ and L∞ κ. Thus, σ, γ and κ are define as

σ(X, Y ) = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv| dudv (3.6)

γ(X, Y ) =

(
90

∫ 1

0

∫ 1

0

[C(u, v)− uv]2 dudv

)1/2

(3.7)

κ(X, Y ) = 4 sup
u,vε[0,1]

|C(u, v)− uv| (3.8)
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Figure 3.7. Example copula of two gaussian variables
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Since the distributions of variables are not known, empirical copula estimation for

the two-dimensional case is carried out using

CN

(
i

N
,
j

N

)
=
nij

N
(3.9)

In Eq.(3.9), N denotes number of samples and nij is defined as the number of samples

(xk, yk) for which xk ≤ xi and yk ≤ yj . Naturally, empirical estimation of the product

copula equals i
N
· j
N

. Therefore, the σ is calculated using empirical copula functions via

σ =
12

N2 − 1

N∑
i=1

N∑
j=1

∣∣∣∣CN

(
i

N
,
j

N

)
− i

N
· j
N

∣∣∣∣ (3.10)

SW method was used previously in an independent component analysis frame-

work (SWICA) (Kirshner and Póczos, 2008). It is claimed to be robust to outliers, suffer

less from noise and be relatively easy to implement.

3.2.1.4. Kernel Canonical Correlation Analysis

Even if two variables do not have a linear relation with each other and have a

low Pearson correlation coefficient, this does not mean they are independent. As seen

in Figure 3.8, there is a strong nonlinear dependence between two circular distributed

variables even though Pearson correlation coefficient is almost zero. A kernel based cor-

relation method is introduced (Akaho, 2006) in order to detect these kinds of nonlinear

dependences.

Canonical Correlation Analysis (CCA) measures the dependence between two

multivariate variables x and y, where xεRp1 and yεRp2, (Borga et al., 1997). In CCA

procedure, two new variables u = aTx and v = bTy are generated under seperate lin-

ear transformations and a dependence measure ρ(x,y) is calculated by finding the linear

transformation vectors aεRp1 and bεRp2 that maximizes the correlation between u and v:

ρ(x,y) = max
a,b

corr(aTx,bTy)

= max
a,b

aTCxyb√
aTCxxabTCyyb

(3.11)

Taking the derivative of the correlation with respect to a and b and setting the result equal

to zero provides
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Figure 3.8. Two variables having nonlinear dependence in a circular distribution

Cxyb =
aTCxyb

aTCxxa
Cxxa (3.12)

and

Cyxa =
bTCyxa

bTCyyb
Cyyb (3.13)

Normalizing the vectors u and v by aTCxxa = 1 and bTCyyb = 1, the equations above

can be expressed in the matrix form as

[
0 Cxy

Cyx 0

][
a

b

]
= ρ

[
Cxx 0

0 Cyy

][
a

b

]
(3.14)

or equivalently as

[
Cxx Cxy

Cyx Cyy

][
a

b

]
= (1 + ρ)

[
Cxx 0

0 Cyy

][
a

b

]
(3.15)

The problem thus turns out to be a generalized eigenvalue problem and the maximum

eigenvalue is related to the correlation via λmax = 1 + ρmax.
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Unlike CCA, KCCA method effectively maps the data in a nonlinear feature space

to overcome the nonlinear dependence problem of Pearson correlation coefficient before

finding the linear transformation. This is achieved by the so-called kernel trick described

below.

If a kernel is an element of Reproducing Kernel Hilbert Space (RKHS), then it can

be expressed as:

K(x, y) = 〈φ(x),φ(y)〉 (3.16)

in terms of some transformation φ : χ → H maps the data from the observation space χ

to the corresponding feature space, andK : χ×χ→ R calculates the inner product in the

transform space H denoted by 〈., .〉. Thus, with the kernel, there is no need to know about

the feature space and even infinite dimensional features can be dealt with via kernels. This

is generally called “kernel trick”. In order to kernelize Canonical Correlation Analysis,

Eq.(3.11) is expressed over the transformed data in the transform space:

ρ(x,y) = max
a,b

corr(〈φ(x), a〉 , 〈φ(y),b〉) (3.17)

then, a and b will be redefined as a =
∑N

i=1 αiφ(x
i) and b =

∑N
i=1 βiφ(y

i). The

covariance formula is also updated as

cov(〈φ(x), a〉 , 〈φ(y),b〉) = 1

N

N∑
k=1

〈
φ(xk),

N∑
i=1

αiφ(x
i)

〉
,

〈
φ(yk),

N∑
j=1

βjφ(y
j)

〉

=
1

N

N∑
k=1

N∑
i=1

N∑
j=1

αiK(xk, xi)K(yk, yj)βj

=
1

N
αTKxKyβ

(3.18)

where Kx and Ky are Gram matrices, it is possible to shape the covariance formula in

a kernelized form without reading the actual transformation. Thus maximization can be

carried out as

ρ(x,y) = max
α,βεRN

αTKxKyβ

(αTKx
2α)

1
2 (βTKy

2β)
1
2

(3.19)

Finally, with respect to α, βεRN Eq.(3.19) can be rewritten just like Eq.(3.14) and the

value is calculated by a similar eigenvalue decomposition operation:
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[
0 KxKy

KyKx 0

][
α

β

]
= ρ

[
KxKx 0

0 KyKy

][
α

β

]
(3.20)

When KCCA is applied on the circularly distributed variables similar to (Fuku-

mizu et al., 2007) in the earlier example, after the kernelization process where a Gaussian

Radial Basis Function (RBF) kernel defined as

K(x, y) = exp

(
− 1

2σ2
(x− y)2

)
(3.21)

The correlation is maximized at α = −1 and β = 1 to the level of 0.9810. For this

specific example, Pearson correlation coefficient value forX and Y was 0.0004 indicating

no correlation (Figure 3.9).

(Bach and Jordan, 2002) used KCCA method for Kernel Independent Component

Analysis with another method called Kernel Generalized Variance. In Kernel ICA, they

improved upon the KCCA method with a regularization process and followed an algo-

rithm based on Incomplete Cholesky Decomposition. Three different kernels were used

for KCCA in kernel ICA: namely the the classical polynomial kernel of order d defined

by

K(x, y) = (r + sxy)d (3.22)

the k − th Hermite kernel of order d defined by

K(x, y) =
d∑

k=0

exp(− x2

2σ2
) exp(− y2

2σ2
)
hk(x/σ)hk(y/σ)

2kk!
(3.23)

and the Gaussian RBF kernel shown in Eq.(3.21). For classical polynomial kernel r and

s denote the coefficients, and for Hermite kernel definition hk(x) denotes the Hermite

polynomial.

3.2.2. Phase Synchronization Based Methods

Phase synchronization refers to the stability in phase difference of coupled oscilla-

tory systems (Thatcher et al., 2004). Two of the most used methods in EEG connectivity,

coherence and phase locking value (PLV) are examined in this section.

Coherence is actually constructed on the product correlation concept but it is de-

scribed here as it uses the phase information and it is easier to evaluate its similarity and

difference to the PLV method. Following these two methods, phase lag index(PLI) and
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Figure 3.9. Applying KCCA on the circular distributed variables
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imaginary part of coherence (iCOH) are also described as alternative methods proposed

to avoid volume conduction effect.

3.2.2.1. Coherence

The spectral correlation coefficient method takes into account the magnitude in-

formation only and ignores possible phase relationships. On the other hand coherence

method measures the linear relationship between two time series as a function of specific

frequency by using both magnitude and phase. The method calculates the cross spec-

trum normalized by auto-spectral density function (Sakkalis, 2011) and it evaluates phase

stability, defined as

r(f) =
|〈SXY (f)〉|2

|〈SXX(f)〉| |〈SY Y (f)〉| (3.24)

where SXY (f) denotes the cross spectrum of signals X and Y and 〈.〉 denotes the average

value across time. Cross-spectrum of two signals can be computed either by performing

the Fourier transform to the cross-correlation function or by multiplying the two signals

in frequency domain as

SXY (f) = X(f)Y ∗(f) (3.25)

In the case of absolute dependence, the coherence is 1 whereas a coherence value

of 0 indicates random phase stability. The averages required for coherence are calculated

over a number of time instants. In EEGLAB Toolbox, coherence measure is implemented

using short time fourier transform and it is referred to as Event Related Linear Coher-

ence (ERLCOH) (Delorme and Makeig, 2004). Generally, the coherence method can be

applied to stationary signals while the use of STFT somewhat relaxes the assumption of

stationarity (Sakkalis, 2011). On the downside, window length remains to be set as a

parameter for the STFT operation. The window length parameter could lead to mislead-

ing results if selected inappropriately. (Lachaux et al., 2002) proposed using wavelets for

coherence estimation and they called the method wavelet coherence (WC).
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3.2.2.2. Phase Locking Value

Phase Locking Value or Phase Coherence is used to measure phase difference

consistency of two signals in time. The method does not use amplitude information and

differs from coherence method in this regard. It was proposed by (Rosenblum et al., 1996)

to find phase synchronization between chaotic oscillators. They computed PLV over in-

stantaneous phase value obtained using Hilbert Transformation detailed in appendix B.2,

defined for a time-varying signal x(t) as

x̌(t) =
1

π
PV

∫ −∞

∞

x(t′)
t− t′

dt′ (3.26)

where PV dentotes the Cauchy Principle Value. A new complex signal

H(t) = x(t)− x̌(t) (3.27)

is formed by combining the original signal and the Hilbert transformed signal. The in-

stantaneous phase φ(t) is then calculated easily by the angle of H(t):

φ(t) = arctan

(
x̌(t)

x(t)

)
(3.28)

For discrete time signals x[n] and y[n], the difference of phase values φx[n] and

φy[n] are defined as

Δφ[n] = |φx [n]− φy [n]| (3.29)

The consistency of phase difference in time is computed as the magnitude of av-

erage value of the phase difference on the complex exponential unit circle via

PLV =

∣∣∣∣∣ 1N
N∑

n=1

ej(φx[n]−φy [n])

∣∣∣∣∣ (3.30)

In Figure 3.10, two example of instantaneous phase difference samples of time

series and their average values are drawn on the complex exponential unit circle. The

magnitude of consistent phase difference average is larger than the other one and it ap-

proaches to 1 as expected. A value of 0 means no phase coherency, while a value of 1

means total coherence.

Rosenblum applied PLV method to ECG signals with (Schäfer et al., 1999). After

that, (Mormann et al., 2000) studied phase coherence on EEG records of epilepsy pa-

tients. (Lachaux et al., 1999) measured phase locking value in brain signals by estimating
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Figure 3.10. Illustirations for low and high phase stability

instantaneous phase value with a different method. They used wavelet transformation (de-

tailed in appendix B.3) by simply computing the convolution of the signal with a complex

Gabor wavelet defined by the product of a Gaussian and a sinusoidal signal at a frequency

f, expressed as

ψ(t, f) = exp

(
− t2

2σ2
t

)
expj2πft (3.31)

So the phase value φx(t) and φy(t) of the convolution is extracted for all time bins and PLV

is again computed by the Eq. (3.30). Hilbert transformation and wavelet transformation

have different advantages and thus different areas of use: Hilbert transformation is really

good for narrow band signals but it may have some trouble for broadband signals and may

require pre-filtering. On the other hand, wavelet transform is computed in a frequency

centralized way and it is more capable at computing phase coherence around a given

frequency and for the variance of the Gabor Wavelet.

3.2.2.3. Phase Lag Index

Phase difference between two signals will either be in the interval of −π < Δφ <

0 or 0 < Δφ < π. The difference being in the positive or negative side consistently in a

time period can provide information about phase synchronization for electrode pairs. To

this end, the Phase Lag Index (PLI) can be used as a way to evaluate the asymmetry in the

distribution of phase differences between two time series (Stam et al., 2007), defined as
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PLI = |〈sign [ΔΦ (t)]〉| (3.32)

ΔΦ(t) denotes the phase difference function of the two variables over time. The

main objective of PLI method is to estimate phase synchronization while avoiding de-

pendencies caused by the volume conduction effect. Since volume conduction causes

dependencies that will have almost zero lag and zero phase difference, the phase differ-

ence value distribution will be centralized around 0 in modulo π and PLI will be close to

zero.

Although PLI is a good way to measure connectivity while avoiding volume con-

duction, it can miss possible zero lag dependencies that have phase differences close to

zero. It is defined as conservative since it ignores zero lag associations (Demuru et al.,

2013). Phase difference values can be calculated using either Hilbert Transformation or

Wavelet Transformation as in the calculation of PLV.

3.2.2.4. Imaginary Part of Coherence (iCOH)

As explained in the Background, one of the features that makes EEG hard to

process is the volume conduction effect: One source in the brain can effect multiple elec-

trodes with different amplitudes. The basic assumption about the effect is that volume

conduction causes zero-lag interaction between electrodes. Let x(t) and y(t) be two time

series affected by L independent sources, with the magnitude values of signals interpreted

as weighted sums of sources as

X(f) =
L∑

k=1

akSk(f) (3.33)

Y (f) =
L∑

k=1

bkSk(f) (3.34)

Then the cross-spectrum of the two time series is:

SXY (f) =< X(f)Y ∗(f) >=
L∑

k=1

akbk|Sk(f)|2 (3.35)

Because of the zero-lag assumption of volume conduction, as seen in Eq.(3.35),

the cross-spectrum is real valued. If the coherence is defined as the sum of imaginary

and real parts of coherence as COH(f) = R(COH(f)) + I(COH(f)), this means that

all the volume conduction artifacts will add up to the real part and the imaginary part of
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coherence will be insensitive to volume conduction effects. Thus, the imaginary part of

coherence (iCOH) is introduced as a new interaction measure (Nolte et al., 2004):

iCOH = I(COH(f)) (3.36)

Although iCOH addresses to overcome the volume conduction problem, it comes

with various other issues. Firstly, neglecting real part means neglecting possible zero-

lagged interactions. Secondly, iCOH is not normalized whereas the original coherence

method gets value within the interval [0, 1]. And finally, it may fail to detect even the

strong interactions if the real part is relatively large. Even though some methods have

been proposed in the literature like dividing the square of iCOH with (1− I(COH(f)2)

(Pascual-Marqui et al., 2011) or using Hilbert transformation of SXY (f) (Bornot et al.,

2018) to solve the normalization problem, the basic iCOH method is used in this study as

is because of its widespread use.

3.2.3. Information Theoretic Methods

Information theory begins with the 1948 paper of Claude Shannon who was a

mathematician in Bell Labs (Shannon, 1948). He is the first person to introduce the en-

tropy concept to measure the amount of information associated with a random variable X

via

H(X) =

∫ ∞

−∞
f(x) log f(x)dx (3.37)

The Shannon entropy simply calculates the expected value of the logarithm of the prob-

ability density function f(x). Furthermore, he also introduced the mutual information as

a method to determine the rate of transmission on a communication channel and defined

it as the difference between the sum of marginal entropies and the joint entropy of two

random variables X and Y , as

I(X, Y ) = H(X) +H(Y )−H(X, Y ) (3.38)

Note that the mutual information ofX and Y can also be expressed as the distance

between the joint entropy and the product of marginal entropies:

I(X, Y ) =

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
(3.39)
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Mutual information is a useful tool to measure the dependence between random

variables in many engineering areas like signal processing, machine learning and com-

munication. One thing that makes the method preferable is that it does not only detect the

dependence caused by linear covariance but the nonlinear ones as well.

After Shannon, Alfred Renyi proposed an α parameter generalization of entropy

(Rényi, 1961):

Hα(X) =
1

1− α
log

[∫
fα
x (x)dx

]
(3.40)

As α → 1, Eq.(3.40) approaches the Shannon entropy. Finally, Renyi information

is defined as

Iα(X, Y ) =
1

1− α
log

∫
fα(x, y) [fx(x)fy(y)]

(1−α) dxdy (3.41)

Information theoretic methods are highly preferred measures to study connectivity

but both Renyi and Shannon information methods are hard to compute since the estima-

tion of probability density function is a challenge in and of itself for continuous variables.

Some widely used methods (Kraskov, kernel generalized variance (KGV) and Rank Based

Graph Optimization(REGO) as information estimators are described below. In addition,

two new estimation methods (unit vector parametrization and data fitting based mutual

information method) are proposed as novel information theoretic measures for connectiv-

ity.

3.2.3.1. Kraskov Method

Kraskov’s method (Kraskov et al., 2004) is based on the Kozachenko-Leonenko

method (Kozachenko and Leonenko, 1987), which computes Shannon entropy with k-

nearest neighborhood. More specifically, Kozachenko-Leonenko method calculates an

entropy over the mean distances of the k-th nearest neighbor to each sample point xi,

i = 1, 2, ..., N :

Ĥ(X) = −φ(k) + φ(N) + log cd +
d

N

N∑
i=1

log ε(i) (3.42)

In the above expression, N is the number of total samples, φ(x) the digamma

function, d the random variable dimension, cd the volume of the d-dimensional unit cube

(area for 2-dimensions) and ε(i), is twice the distance of the k-th nearest neighbor to the

sample xi.
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(Kraskov et al., 2004) have identified two similar methods of computing informa-

tion through this entropy estimation formula. In this study, the following expression is

used for comparison, as preferred later in the mutual-information-based least dependent

component analysis (MILCA) method (Stögbauer et al., 2004):

Î(X, Y ) = φ(k)− 1

k
− 〈φ(nx) + φ(ny)〉+ φ(N) (3.43)

In Eq.(3.43), nx(i) and ny(i) are defined as the number of elements that fit the conditions:

‖xi − xj‖ ≤ εx(i)/2

and

‖yi − yj‖ ≤ εy(i)/2

where εx(i) and εy(i) are the minimum edge lengths of the rectangle that includes the

k-th nearest neighbor, and 〈.〉 is the average operator over all samples indexed by i =

1, 2, ..., N . k parameter was chosen as 1.

3.2.3.2. Unit Vector Parametrization

As already described above, it is enough to have marginal and joint entropy values

to estimate the amount of mutual information of dependent variables. There are vari-

ous methods for estimating marginal entropy in the literature (Wieczorkowski and Grze-

gorzewski, 1999). Among those methods, Vasicek entropy (Vasicek, 1976) that uses sam-

ple distances like Kozachenko-Leonenko entropy estimation (Kozachenko and Leonenko,

1987), was found to be fast and accurate (Wieczorkowski and Grzegorzewski, 1999). For

any X univariate random variable, let x1, x2, ..., xn be the samples and x(1), x(2), ..., x(n)

be the ordered values. Vasicek entropy calculates

Vm,n =
1

n

n∑
i=1

log
( n

2m

(
x(i+m) − x(i−m)

))
(3.44)

As n and m tend to infinity subject to the condition m/n → 0, Vm,n value converges to

true entropy value (Vasicek, 1976). To provide a more consistent estimator, an updated

version of equation is recommended, specifying

HV (X) = Vm,n− log(n)+log(2m)−
(
1− 2m

n

)
φ(2m)+φ(n+1)− 2

n

m∑
i=1

φ(i+m−1)

(3.45)
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In Eq.(3.45), φ(x) is defined as the digamma function similar to the Kraskov method.

HV (X) is also called as mn-spacing estimate in some studies. The method is also used

in an ICA algorithm called robust accurate direct ICA algorithm (RADICAL) (Learned-

Miller and John III, 2003). Another method that uses a segmentation algorithm based on

Voronoi regions and Delaunay cells also uses Vasicek entropy for joint entropy estimation

(Miller, 2003), but it is a complex and time consuming solution. As an alternative, the

unit vector parametrization method aims to offer a fast convergence to joint entropy and

thus mutual information, using a property of entropy under linear transformation (Çağdaş

and Karaçali, 2018). Suppose that random variables U and V are obtained by a linear

transformation with a transformation matrix A applied on variables X and Y via[
U

V

]
= A

[
X

Y

]

In this case, joint entropies, H(U, V ) and H(X, Y ) are related to each other through the

expression

H(U, V ) = H(X, Y ) + log | det(A)| (3.46)

Another property of entropy is that the joint entropy of variables is always smaller than

the sum of the marginal entropy values:

H(U, V ) ≤ H(U) +H(V ) (3.47)

From Eq.(3.46) and Eq.(3.50), it is easy to infer the following relation between the joint

entropy H(X, Y ) and the marginal entropies of variables U ,V , obtained under a linear

transformation:

H(X, Y ) ≤ H(U) +H(V )− log | det(A)| (3.48)

The above expression means that the smaller the value of the right hand side of the equa-

tion, the more the value converges to the true joint entropy value. Minimum value point of

these transformation matrices space can therefore be used as an estimate of joint entropy:

Ĥ(X, Y ) = min
A

(HV (U) +HV (V )− log | det(A)|) (3.49)

Similarly, the above expression can be used in the estimation of mutual information as

well together with Vasicek entropy estimation used to calculate the marginal entropies as

Î(X, Y ) = HV (X) +HV (Y )− Ĥ(X, Y ) (3.50)
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In this method, search of the matrix A that minimizes the joint entropy is a ma-

jor task. For this study, A matrices are generated by cosine and sine pairs like rotation

matrices:

A(θ1, θ2) =

[
cos(θ1) sin(θ1)

cos(θ2) sin(θ2)

]
(3.51)

parametrized by angles θ1, θ2ε[−π, π), and the matrix that computes minimum joint en-

tropy is searched in this matrix sub-cluster with respect to θ1, θ2.

Figure 3.11. Ĥα(X, Y ) = H(U) + H(V ) − log | det(A)| calculations for different θ
pairs

In Figure 3.11, different linear transformation matrices are applied on jointly

Gaussian random variables to estimate the joint entropy value. The case for θ1 = 0

and θ2 = 90 gives the original data. It is seen that the case for θ1 = 47 and θ2 = 138 has

the lowest calculated value, and it converges to the theoretical value of the true entropy

H(X, Y ) = 1
2
log ((2π exp)2|Σ|) = 2.5012.
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3.2.3.3. Data Fitting Based Mutual Information Calculation

Even though unit vector parametrization method provides acceptable results for

mutual information estimation between linear dependent variables, it is ill-equipped for

nonlinearly dependent variables. Data fitting based method can handle these kind of vari-

ables by trying to remove the conditionalities that can be observed between them. For

this method, a conditional entropy based expression of mutual information is used, in

accordance with Eq. (3.38):

I(X, Y ) = H(Y )−H(Y |X) (3.52)

In the independence of X and Y case, the equality H(Y |X) = H(Y ) emerges. In this

sense, in order to make Y as independent as possible from X , an option is to remove

the conditional expected value and conditional variance in relation to X from the vari-

able Y . Note that while these efforts may not provide absolute independence hidden in

higher order moments, it may help us reduce the conditional entropy sufficiently to allow

an accurate assessment of the mutual information. This produces an alternative random

variable Y ′ defined by

Y
′
=
Y −m(x))

σ(x)
(3.53)

In the expression above, m(x) and σ(y) are defined as E[Y |X = x] and
√
V ar(Y |X),

respectively. Thus an alternative approach for mutual information estimation can be ex-

pressed using two properties of conditional entropy:

1. If X and Y are two random variables, translating Y for any value of X does not

change the conditional entropy value:

H(Y + c|X = x) = H(Y |X = x) (3.54)

2. Given that X = x, multiplying Y by a constant value causes a change on the value

of conditional entropy by the logarithm of the multiplication factor:

H(aY |X = x) = H(Y |X = x) + log(a) (3.55)

When these two properties -the accuracy of which can be easily proven- are con-

sidered, a difference of expected value of logarithm of conditional standard deviation

between the conditional entropy of Y
′

and conditional entropy of Y can be obtained by
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H(Y |X) = H(Y −m(x)|X)

= H

(
Y −m(x)

σ(x)
|X

)
+ E[log σ(x)]

= H(Y ′|X) + E[log σ(x)]

(3.56)

When we also consider that H(Y
′ |X) ≈ H(Y

′
) neglecting higher-order depen-

dencies, mutual information of X and Y can be estimated by the help of Vasicek Entropy

estimation method as

Î(X, Y ) = Hv(Y )−Hv(Y
′)− E[log σ(x)] (3.57)

The process of removing the mean and variance conditionality is illustrated (Fig-

ure 3.12). For this example, at the end of these operations an exact independence between

variables is achieved.

Figure 3.12. Removing the mean and variance conditionality from Y

When Eq.(3.57) is examined, estimation of the mutual information is reduced to

the estimation of the conditional variance estimation σ(x). In this study, for variance es-

timation, running mean smoothing and polynomial regression methods are used (Bishop,

2006), (Hastie and Tibshirani, 1990). These methods are explained briefly in appendix

B.4 with the procedure followed for choosing the optimum polynomial degree parameter

of the regression and the window length parameter of the smoother.

3.2.3.4. Kernel Generalized Variance

As mentioned in KCCA measure, one of the methods used as contrast function in

Kernel ICA is Kernel Generalized Variance (KGV) (Bach and Jordan, 2002). KGV uses

the relation of CCA and mutual information of Gaussian variables.
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Let X and Y be two Gaussian variables that take values in R
p1 and R

p2 respec-

tively. Then, the mutual information of these variables is related to the correlation coeffi-

cient via

I(X, Y ) = −1

2
log

det(C)

det(Cxx) det(Cyy)
(3.58)

The expression inside the logarithm is called the generalized variance. Given the expres-

sion

[
Cxx Cxy

Cyx Cyy

][
a

b

]
= (1 + ρ)

[
Cxx 0

0 Cyy

][
a

b

]
(3.59)

for CCA, it is seen that the equation is in the form of Cξ = λDξ with λ = 1 + ρ. Then

the mutual information can be expressed as

I(X, Y ) = −1

2
log

detC

detD

= −1

2
log

p1+p2∏
i=1

(1 + ρi) = −1

2

p1+p2∑
i=1

log(1 + ρi)
(3.60)

Kernelized CCA which can also be expressed in the form ofKK

[
α

β

]
= λDK

[
α

β

]
,

and this provides the so-called kernel generalized variance:

I(X, Y ) = −1

2
log

detKK

detDK

= −1

2

p1+p2∑
i=1

log(1 + ρi) (3.61)

As seen in Eq.(3.61), KGV uses all eigenvalues of the decomposition, whereas

KCCA uses only the maximum value. (Bach and Jordan, 2002) shows that the KGV is

good at detecting independency. On the other hand, it estimates the mutual information

with a bias for high dependence cases. In Figure 3.13, KGV method using a Gaussian

kernel is applied to two variables that have known mutual information indicated by the

dashed line. The data is rotated by different angles θε[0, 90] and KGV is recalculated using

different σ parameters of the kernel (dotted lines), chosen as 0.25, 0.5, 1, 2, 4 and the solid

line represents the KGV value where σ tends to zero. It can be seen that, KGV could

detect the independence at θ = 30, but as the true mutual information value increase, the

KGV follows it with a bias.

Kernel ICA-KGV was claimed to be more successful compared to another widely

used method Fast-ICA (Hyvarinen, 1999). This suggests that it can be also a good asso-

ciation estimator for EEG signals.
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Figure 3.13. Kernel Generalized Variance values relation with mutual information for

different kernel σ parameters and different θ (Source: Bach and Jordan

(2002))

3.2.3.5. Rank-Based Renyi Information Estimation (REGO)

REGO estimates Renyi information using the relation between the Renyi entropy

of copula function and the optimized Euclidean graphs for the variables defined in the

interval [0,1] (Póczos et al., 2010). The method is completed in two steps:

• Find the empirical copula of variables

• Implement graph optimization and determine the minimum total graph length

Let X and Y be two random variables, as in Schweizer-Wolff method, and the

variables U and V be defined as the cumulative distribution functions of X and Y , U =

FX(X) and V = FY (Y ), while

C(u, v) = F (F−1
x (u), F−1

y (v)) (3.62)

is copula function. It can be shown that the Renyi information of variables U and V is

equal to the original variables X and Y (Vajda, 1989).
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Iα(X, Y ) = Iα(U, V ) (3.63)

To support this proposition, the relation between the copula and the mutual information is

given in the appendix B.5. Since the new variables, U and V are standard uniform random

variables, the marginal entropies are zero. Thus the joint entropy and the mutual infor-

mation have the same magnitude values but reverse sign with Iα(U, V ) = −Hα(U, V ),

where Renyi α entropy is given by

Hα(U, V ) =
1

1− α
log

∫
X

fα(u, v)dudv (3.64)

For the second step, the relation between the entropy and the total edge length Ln

is required. Let Gn be a complete graph consisting of n nodes (for n sampled data) and

G be a graph system of Gn. For the data Z = {U, V }, the p power of the minimum total

edge length is defined as

Ln(Z) = min
GεG

∑
((i,j)εE(G))

∥∥Zi − Zj
∥∥p

(3.65)

and the entropy estimator for n sampled dataset is given by

Ĥn(Z) =
1

1− α
log

Ln(Z)

γd,αna
(3.66)

In the expression above, γd,αn
a is defined as a universal constant that depends on

the dimension d and α. (Redmond and Yukich, 1996) proved that the estimator converges

to true entropy as the sample number n → ∞. Different graph systems can be used

for this method such as spanning tree graphs (GST ) (Hero and Michel, 1998), Hamilto-

nian cycles (GH) and k-nearest neighbor graphs (GR(k)) (Póczos et al., 2010). A software

that runs REGO algorithm by kNN graphs is published in http://www.cs.cmu.edu/ bapoc-

zos/codes/REGO with kNN.zip. γ is empirically decided by implementing Monte-Carlo

in the software. Besides (Pál et al., 2010) proved the G = GR(k) case.

3.2.4. Generalized Synchronization Index

In a system, with a driving variable x and a response variable y, a transformation

relationship can be represented as y(t) = φ(x(t)). For a simple transformation, the vari-

ables may tend to move on a line on the graphic. But for richer transformations or in a

chaotic system, the variables are observed more on an orbit and on a geometrical shape.
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The relationship on this trajectory is called generalized synchronization (Rulkov et al.,

1995).

General synchronization is hard to detect by linear correlation methods. In order

to address the issue (Arnhold et al., 1999) proposed to use the information of how the

neighborhood of one effects the the neighborhood of the other variable to measure the

mapping quality of transformation, named as generalized synchronization index or non-

linear interdependence. To measure generalized synchronization index of time series x[n]

and y[n], two vectors are formed using the samples of xn as xn = {xn, ..., xn−(m−1)∗τ}
and yn as yn = {yn, ..., yn−(m−1)∗τ}. In this notation, m is the embedding dimension and

τ is time lag value. k-nearest neighbor indices of the vectors xn and yn are represented

with rn,j and sn,j respectively, where j = 1, 2, ..., k. The mean squared euclidean distance

of the vector xn is then

R(k)
n (X) =

1

k

k∑
j=1

(
xn − xrn,j

)2
(3.67)

Y conditioned mean square distance of (xn) can be calculated using the kNN indices of

(yn) as

R(k)
n (X|Y ) =

1

k

k∑
j=1

(
xn − xsn,j

)2
(3.68)

Using the indices of the other variable always causes bigger distanceR
(k)
n (X|Y ) ≥

R
(k)
n (X). But the expected value of the two calculations are close to each other with

respect to dependency. Thus a measure of dependence is defined by the average rate of

R
(k)
n (X) and R

(k)
n (X|Y ) as

S(k)(X|Y ) =
1

N

N∑
j=1

R
(k)
n (X)

R
(k)
n (X|Y )

(3.69)

The expression in Eq.(3.69) is called the S index. The range of S is between 0 and

1. The index gets a value of 1 in full dependence, and 0 in independence cases. In effect,

S(k)(X|Y ) estimates the mapping quality of X on the variable Y . However, the inverse

values (R
(k)
n (Y ), R

(k)
n (Y |X) and S(k)(Y |X)) may not necessarily give the same value.

The value which should be accepted depends on which is the driving variable and which

is the response variable.

Other indices related to generalized synchronization method are shown in Table

3.2. Following the instruction of the S index, the H index is proposed (Arnhold et al.,
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Table 3.2. Generalized Synchronization Indices

Reference Equation Remarks

(Arnhold et al.,
1999)

S(k)(X|Y ) = 1
N

∑N
n=1

R
(k)
n (X)

R
(k)
n (X|Y )

Normalized

(Arnhold et al.,
1999)

H(k)(X|Y ) = 1
N

∑N
n=1 log

Rn(X)

R
(k)
n (X|Y )

Not normalized

May be negative

Robust against noise

(Quiroga et al.,
2002)

N (k)(X|Y ) = 1
N

∑N
n=1

Rn(X)−R
(k)
n (X)

Rn(X)
Normalized

Robust against noise

May be negative

(Andrzejak et al.,
2003)

M (k)(X|Y ) = 1
N

∑N
n=1

Rn(X)−R
(k)
n (X)

Rn(X)−R
(k)
n (X|Y )

Normalized

(Chicharro and
Andrzejak, 2009)

L(k)(X|Y ) = 1
N

∑N
n=1

Gn(X)−G
(k)
n (X)

Gn(X)−G
(k)
n (X|Y )

Normalized

Rank Based

1999). H index calculates the geometrical average rather than arithmetical one by calcu-

lating the average logarithms ofR
(k)
n (Y )/R

(k)
n (X|Y ), and offers robustness to outliers. On

the other hand, proper normalization is lost. Rn(X) is the mean in distance of k = N − 1

case as

Rn(X) =
1

N − 1

N−1∑
j=1

(
xn − xrn,j

)2
(3.70)

The other two methods (Table 3.2), N and M indices are more robust against noise than

S index again and they are also normalized. Finally, L index is the ranked based version

of S index and G
(k)
n (X) represents the rank distances between xn and its k neighbors.
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CHAPTER 4

EXPERIMENTAL SETUP AND RESULTS

Dependence measures were compared in three different aspects. First, methods

were compared in terms of their computational time. A second analysis was carried out to

evaluate their accuracy-time performance. Finally, methods were analyzed as measures

of dependence for EEG signals.

Various studies evaluate the performance of connectivity measures in different

ways. (Lee and Hsieh, 2014) compared three connectivity indices by emotional states

classification accuracy. (Silfverhuth et al., 2012) implemented a comparison of six dif-

ferent connectivity measure methods, by evaluating the ability to differentiate the direct

causal and non-causal connections on simulated EEG data which has the predefined con-

nections between the electrodes. The connection types were assessed by Chi-square tests.

Similarly (Astolfi et al., 2007) compared three cortical connectivity estimators by evalu-

ating reconstruction abilities for a generated EEG signal which have known connection

strengths. (Haufe and Ewald, 2016) used three different dependence measures on gener-

ated EEG signal again. On the other hand, as in (Fallani et al., 2014), graph analysis is

the most widely used way to analyze connectivity measure methods.

In our case, we consider the performance of these measures based on the statistical

significance of the difference between connectivity structures of right-left fist, both fist-

both feet, right-left fist imagery and both fist-both feet imagery tasks. From this point

of view, firstly a hierarchical clustering based procedure was proposed for the analysis

of measure methods. Three different signal epochs at [0.2-0.5], [0.2-1] and [0.2-2] sec

intervals were used for the analysis. Secondly, relations of channels placed in positions

responsible for motor tasks were analyzed in the scope of statistically significance again.

Finally, experiments were repeated for 5 selected methods on [0.2-4.1] sec time interval.

4.1. Computation Time Comparison

There is one thing obvious for all dependence methods in this study: the computa-

tion time of any method is unrelated to data content but the data size. So the computational

times tests are focused on comparing the methods according to the response time under
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variable data size. Test were performed on MATLAB c© (1 Apple Hill Drive Natick, MA

01760-2098 USA) using 16 channel dummy data generated randomly with variable sam-

ple number: 250, 300, 350, ..., 750. For every sample size each method was run 100 times

on the same input data. Slowest 25 time values were removed to avoid possible slowdown

caused by other processes run in computer.

A white paper including recommendations to perform a healthier test on MAT-

LAB was published earlier (McKeeman, 2016). A series of steps in that paper were

followed accordingly to run the test in a stable environment:

• Kill every process possible. Turn off any anti-virus programs.

• Close the internet and other local area connections.

• Unplug or disconnect external devices (mass storage devices and such)

• Allocate just one core for Matlab (by set affinity option in Windows). While this

helps obtain a stable test, it also disables parallel working feature of some Matlab

functions.

• Disable the boosting feature of CPU.

• Disable the automatic sleep or turn off functions of the screen.

• Do not read or write files, do not access the input data or print output.

MATLAB configuration and computer features are given in Table 4.1. In addition,

appendix C.1 shows the detailed procedure applied on Powershell application.

In Figure 4.1, time performance of methods are visualized in three groups related

to the former chapter. Generalized synchronization method is placed along with infor-

mation theoretic methods. Correlation based methods (Spearman ρ, Kendall τ , SCC)

and phase synchronization based methods (PLV, PLI) take less time as expected because

of their simplicity. Furthermore, both methods proposed in this study, UV parametriza-

tion and data fitting based estimation methods compared favorably against the alterna-

tives. However kNN based methods like Kraskov, REGO and the copula based method

of Schweiser-Wolff showed a quadratically increasing time characteristic with increasing

number of samples. Finally, although the generalized synchronization index method per-

forms well in low sample sizes, it consumes more and more time in search of neighbors

even in reasonable embedding dimensions (in this study m is chosen as 10) as the sample

size increases.
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Figure 4.1. Computation times of measures with varying sample size
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Table 4.1. MATLAB configuration and PC features

MATLAB version 9.2.0.538062 (R2017a)
MATLAB root C:\Program Files\MATLAB\R2017a
MATLAB accelerator enabled
MATLAB JIT enabled
MATLAB assertions disabled
MATLAB Desktop enabled
Java JVM enabled

Java version
Java 1.7.0 60-b19 with Oracle Corporation
Java HotSpot(TM) 64-Bit Server VM mixed mode

CPU x86 Family 6 Model 158 Stepping 9, GenuineIntel
Operating Sys. Microsoft Windows 10 Enterprise
Number of cores 4
Number of threads 4

4.2. Time-Accuracy Performance Analysis of Information Theoretic

Methods

In order to compare the information theoretic methods, different bivariate vari-

ables were generated by applying a linear transformation on the independent pair of

variables with Gaussian-Gaussian, Gaussian-uniform and Gaussian-exponential distribu-

tions. Rotation vectors with {{0,0},{10,-10},{20,-20},{30,-30},{40,-40}} angle pairs

were used as transformation vectors. In this way, bivariate variables with known mutual

information values and different degrees of dependence were obtained.

The experiments were repeated 100 times for each configuration of angle and

sample size, varying from 250 to 750. All information theoretic methods (Kraskov, data

fitting, UV parametrization, REGO and KGV) were applied on this set of data and the

results were compared. During this test, k was chosen as 1 for all kNN methods (Kraskov

and REGO). Additionally, α parameter was defined as 0.99 since mutual information was

computed and γ parameter of REGO was determined using Monte Carlo method to match

the α and k values (Póczos et al., 2010). Running mean smoothing method was used for

variance estimation in data fitting method, and finally, σ = 5 was selected empirically for

KGV.

Firstly, the methods were compared for varying dependence degrees (Figure 4.2).

The average mutual information values and the corresponding standard deviations for

each angle are shown in Figure 4.2 for methods. The sample size N was chosen as 350

for Figure 4.2 in accordance with the subsequent experiments. Finally, the mean squared
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Figure 4.2. Mutual information values of measures with varying distributions and de-

pendency
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error values of all methods in all conditions (varying sample number, angle and density)

against the average time performances are give in Figure 4.3.

Figure 4.3. Time-Accuracy comparison of methods

4.3. Hieararchical Clustering Based Evaluation

As discussed earlier, brain connectivity models are constructed and evaluated typ-

ically using graph-based methods. However, a thresholding process on the connectivity

matrice is a necessity for these methods and the threshold parameter affects the resulting

connectivity structure and significance. Since the association values are not normalized

for all connectivity measure methods, defining the optimum threshold parameter for each

method is a difficult problem.

In this study, a hierarchical clustering (HiCl) based connectivity group selection

method are proposed as in (Mammone et al., 2018). In each clustering step, obtained

clusters are evaluated and most statistically significant one is chosen among candidate

connectivity clusters. The comparison in this experiment is based on the ability of statis-

tically discriminating the four event pairs given below:

• left fist-right fist

• left fist imagery-right fist imagery
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• both fist - both feet

• both fist imagery - both feet imagery

Let S1 and S2 be the collections of epochs for such as left fist and right fist, re-

spectively. Then the procedure for each measure method on these collections are applied

as bellow:

1. Compute connectivity matrix for each epoch in S1 and S2:

A1
k : n× n connectivity matrix of the kth epoch in S1 for n channel EEG data

A2
k : n× n connectivity matrix of the kth epoch in S2 for n channel EEG data

2. Calculate the average values for all channel pairs in each event type. Let ari,j,k is the

connectivity measure value between ith and jth channels for the kth epoch of the

rth event. Then,

〈ai,j〉1 = 1
|I1|

∑
kεI1

ai,j,k

〈ai,j〉2 = 1
|I2|

∑
kεI2

ai,j,k

where I1 and I2 are the epoch index group for each event.

3. Apply hierarchical clustering (HiCl) on average connectivity matrices 〈A〉1 and

〈A〉2, defined as

(〈A〉1)i,j = 〈ai,j〉1

and

(〈A〉2)i,j = 〈ai,j〉2

Collect the clusters obtained in the successive steps of the clustering process and

group them as J1 and J2 (Figure 4.4a).

4. For each cluster in J1, find the sub-matrix that consist of this cluster’s elements in

each connectivity matrice A1
k and A2

k which belongs to kth epoch. Get the minimum

value of these sub-matrices and collect them in two vectors.

5. Apply one-tailed student’s t-test between these two vectors and get the p values

(Figure 4.4b).
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pl1 = t-test

⎧⎪⎪⎨
⎪⎪⎩
{min {ai,j,k; i, jεJ1

l } , kεI1}
vs

{min {ai,j,k; i, jεJ1
l } , kεI2}

6. Repeat step 4-5 for J2.

pl2 = t-test

⎧⎪⎪⎨
⎪⎪⎩
{min {ai,j,k; i, jεJ2

l } , kεI1}
vs

{min {ai,j,k; i, jεJ2
l } , kεI2}

7. Find the minimum p value in p1 and p2 and the cluster that provides this minimal p

value to represent the connectivity measure in question.

As seen in the procedure, one-tailed student’s t-test is used to evaluate the statisti-

cal significance. For the analysis of clusters in J1, the null hypothesis H0 is that the mean

value of the vector obtained from A1
k is less than or equal to the mean value of the vector

obtained from A2
k. The alternative hypothesis Ha is that the mean value of the the vector

obtained from A1
k is greater than the mean value obtained from A2

k. Since the clusters in

J1 are created by applying HiCl on 〈A〉1, it is expected that the connectivity measures

should be greater for the first event. As for clusters in J2, the null hypothesis and the

alternative hypothesis are reversed.

While applying HiCl method on the connectivity matrix, averaging, choosing min-

imum, maximum and some other parameters can be used to compute distance between

clusters. Since the purpose in brain connectivity studies is to detect dense cluster rela-

tions in all pairwise electrodes rather than strong individual relations, minimum associa-

tion values are chosen to represent the cluster distance values. Besides, for student’s t-test,

the minimum values are chosen to represent connectivity sub-matrix of each cluster and

epoch as explained in the procedure.

Hierarchical clustering based procedure was applied to 103 subjects after remov-

ing 6 damaged and inappropriate subject data. Recorded signals at [0.2-0.7], [0.2-1.2]

and [0.2-2.2] sec time intervals were used for comparison tests. Average p-values of 103

subjects for [0.2-1.2] time interval are given in Table 4.2. Geometrical averaging method

was preferred rather than arithmetical averaging, because larger p-values tend to mask the

other values in arithmetical averaging method.

A p-value of 0.05 for a method in evaluation of a task means that there is a %5

probability of facing the observed data, when the null hypothesis is true. This is a low

probability and it would be reasonable to reject that null hypothesis. But after repeating
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(a)

(b)

Figure 4.4. Hierarchical clustering process a) process of determining the candidate

clusters b) calculation of p-value for a cluster
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Table 4.2. Average p-values across subjects without multiple comparison correction

Left Fist
Right Fist

Left Fist Imag.
Right Fist Imag.

Both Feet
Both Fist

Both Feet Imag.
Both Fist Imag.

Spearman 0.0013 0.0016 0.0003 0.0025
Kendall 0.0012 0.0016 0.0002 0.0021
Kraskov 0.0017 0.0025 0.0005 0.0029
Uvparam 0.0013 0.002 0.0003 0.0028
DataFit 0.0016 0.0019 0.0003 0.0028
REGO 0.0019 0.0023 0.0004 0.0027
KGV 0.0029 0.0025 0.0005 0.0034
KCCA 0.0017 0.0017 0.0003 0.0027
SW 0.0013 0.0017 0.0003 0.0024
PLI 0.0007 0.0009 0.0005 0.0011
PLV 0.0013 0.0011 0.0003 0.0021
SCC 0.0024 0.0021 0.0009 0.002
Coh 0.0023 0.0019 0.0007 0.0025
iCoh 0.0009 0.001 0.0012 0.0014
Gen. Sync 0.0083 0.0055 0.0013 0.0081

the test for 124 clusters as in the procedure, it is more likely to observe improbable results

even if the method is not significant due to a multiple comparison problem. Furthermore,

choosing the most significant cluster is like rolling a die 100 times and expecting one of

them to be 6, except that the tests in this procedure are not independent. Because of that,

a correction method is needed so that the p-values can be adjusted properly.

The most widely used and the simplest way of p-value adjustment is Bonfer-

roni correction. The method finds corrected p-values by dividing each p-value by the

number of experiment as p̃(i) = kpi. In relation to Bonferroni, Sidak calculates the

corrected p-values as p̃(i) = 1 − (1 − pi)
k (Westfall and Young, 1993). Since both

methods are excessive especially for non-independent multiple experiments as in this

case, Benjamini-Hochberg method was used to adjust p-values (Benjamini and Hochberg,

1995). Benjamini-Hochberg method is implemented in to steps.

1. Sort each p-value in ascending order. Each sorted p-value p(1),p(2),...,p(k) has a

rank. The rank of smallest p-value p(1) is 1, rank of second one p(2) is 2 and the

largest p-value p(k) has the rank of k.

2. Multiply each p-value by k/i and find the minimum p-value.

p̃ = min
i
p(i)

k

i
(4.1)
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(a)

(b)

Figure 4.5. For time interval [0.2-0.7] sec a) average of logarithm of p-values for each

task b) p-values box plot of both fist - both feet task
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(a)

(b)

Figure 4.6. For time interval [0.2-1.2] sec a) average of logarithm of p-values for each

task b) p-values box plot of both fist - both feet task
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(a)

(b)

Figure 4.7. For time interval [0.2-2.2] sec a) average of logarithm of p-values for each

task b) p-values box plot of both fist - both feet task

57



Table 4.3. Average p-values of subjects after multiple comparison correction

Left Fist
Right Fist

Left Fist Imag.
Right Fist Imag.

Both Feet
Both Fist

Both Feet Imag.
Both Fist Imag.

Spearman 0.0928 0.1081 0.0212 0.1739
Kendall 0.0816 0.1106 0.0151 0.1426
Kraskov 0.1175 0.1763 0.03 0.1927
Uvparam 0.0941 0.1403 0.0242 0.1695
DataFit 0.1123 0.1399 0.0237 0.1711
REGO 0.1225 0.1452 0.0272 0.1728
KGV 0.1663 0.1726 0.0331 0.2131
KCCA 0.114 0.119 0.0212 0.1726
SW 0.0904 0.1156 0.018 0.168
PLI 0.0636 0.0745 0.0487 0.0893
PLV 0.0951 0.082 0.0275 0.1413
SCC 0.1773 0.1598 0.075 0.1667
Coh 0.1642 0.1391 0.0554 0.1927
iCoh 0.0699 0.0809 0.0854 0.1105
Gen. Sync 0.2331 0.1846 0.0453 0.2306

The geometric average of the corrected p-values is given in Table 4.3, following

Benjamini-Hochberg adjustment. For a visual illustration, the arithmetical average of the

logarithms of the corrected p-values are shown for each task (Figure 4.5a, Figure 4.6a,

Figure 4.7a). In these figures, red dashed lines show the negative logarithm of 0.05 p-

value. Note that significant differences in cluster connectivity are observed especially for

both fist-both feet task. Box plots of this task provide more information about the density

of values (Figure 4.5b, Figure 4.6b, Figure 4.7b). In box plot figures:

• Central marks for each method show the median p-values.

• Upper and lower borders of boxes indicate the 25th and 75th percentile of values.

• ’+’ markers indicate the outlier samples.

• Whiskers indicate the most extreme sample values that are not considered as outlier.

4.4. Evaluation on Selected Electrode Pairs

There are specific electrodes or electrode pairs used in BCI and conntectivity stud-

ies especially to discriminate motor and motor imagery tasks. (Nolte et al., 2004) evaluted

the performance of iCOH method on C3-C4 electrode pair. In addition, another study that
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also uses the Physionet data, implemented a BCI embedded system. Electrode pairs in

the { FC5,Fz,C3,C4} cluster (Tummala et al., 2018).

In order to evaluate the significance of the coherence between these selected EEG

channels, we carried out an additional significance test applied on the coherence measures

obtained by the implemented methods. As used in (Loboda et al., 2014), the electrodes

given below were chosen for this experiment:

• For the midline area : FCz, Cz, CPz

• For the left hemisphere: FC3, C3, CP3

• For the right hemisphere: FC4, C4, CP4

(a) (b)

Figure 4.8. Electrode pair mappings a) midline-left hemisphere b) midline-right hemi-

sphere

All possible electrode pairs were selected between midline-left hemisphere and

midline-right hemisphere group pairs (Table 4.4). Then, significance tests were applied

independently for these 18 pairs (Figure 4.8). Finally, the smallest p-value of the most sig-

nificant pair was saved for each subject. similar to the hierarchical clustering experiment

earlier, the Benjamini-Hochberg multiple comparison correction procedure was applied

for the p-values of all 18 pairs before selecting the most significant one, and average of

p-values logarithm were computed for signal durations at 0.5, 1 and 2 seconds (Figure

4.9).
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(a)

(b)

(c)

Figure 4.9. Average logarithmic p values for a) 0.5, b) 1 and c) 2 seconds duration
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Table 4.4. Electrode pairs used for evaluation

Pair Index Midline Left Pair Index Midline Right

1 FCz FC3 10 FCz FC4
2 FCz C3 11 FCz C4
3 FCz CP3 12 FCz CP4
4 Cz FC3 13 Cz FC4
5 Cz C3 14 Cz C4
6 Cz CP3 15 Cz CP4
7 CPz FC3 16 CPz FC4
8 CPz C3 17 CPz C4
9 CPz CP3 18 CPz CP4

4.5. Analysis of Selected Methods at Longer Time Interval

Both experiments on EEG signals described above showed that, especially for

both fist-both feet task, smaller p-values were observed with increasing observation time.

Because of that, a final analysis was carried out on the full [0.2-4.1] second interval fol-

lowing the same procedures. For this experiment, 5 out of 15 methods were chosen based

on their category, time performance and p-value performance characteristics. Data fit-

ting based MI calculator were chosen to represent information theoretic methods because

of its high p-values and low computational time. Kendall coefficient that had best p-

values was chosen from the correlation based methods. PLI method was added to this

experiment among the two methods that claim to avoid volume conduction effects, and

finally, coherence and PLV methods were included in the experiment due to their increas-

ing p-value characterics with increasing time interval. As mentioned above, hierarchical

clustering evaluation and analysis on selected pairs were implemented for these methods

on [0,2-4.1] sec interval. Logarithmic average and boxplot of subject p-values are shown

in Figure 4.10 and Figure 4.11.
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(a)

(b)

Figure 4.10. For time interval [0.2-4.1] sec a) average of logarithm of p-values for each

task b) p-values boxplot of both fist - both feet task
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(a)

(b)

Figure 4.11. For time interval [0.2-4.1] sec a) average of logarithm of p-values for each

task at selected pairs b) p-values boxplot of both fist - both feet task at

selected pairs
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CHAPTER 5

DISCUSSION

In this study, 15 methods, 2 of which were proposed in this study, were evalu-

ated in terms of their potential in capturing coherence between different EEG channel

pairs. First of all, the computation time of these methods were analyzed on synthetic

data. Correlation based methods, Spearman, Kendall and SCC coefficients and phase

synchronization methods, PLV and PLI took less time than the others as expected, due

to their simple structure. In addition, one of the proposed methods, data fitting based MI

estimator compares well with the methods mentioned above, although it estimates mutual

information. However, kNN based methods like Kraskov, REGO and the copula based

method of Schweiser-Wolff showed a quadratically increasing time characteristic as the

number of samples increased. Kraskov method took longer than UV parametrization for

longer data in spite of its better performance on low sample sizes. Similarly, although the

generalized synchronization index method performed well in low sample sizes, it con-

sumed more and more time in search of neighbors even in modest embedding dimension

values (in this study m was chosen as 10 and k as 1) as the sample size increased.

Secondly, a further time-accuracy analysis was implemented for information theo-

retic methods. As a result of the experiment on data with different degrees of dependence,

sizes and probability density characteristics, data fitting, UV parametrization and Kraskov

methods had better approximation to real mutual information values. As mentioned in

Chapter 4, KGV had problems with estimating the MI value for highly dependent data al-

beit its independence detection ability was good. When the methods were analyzed along

with computation times, data fitting based estimator had the best performance whereas

Kraskov needed longer times for estimation, and KGV had worse error results.

A hierarchical clustering based evaluation experiment procedure was used in order

to analyze the performance of methods as dependence or coherence measures for brain

signals. In this test p-values were obtained for varying configurations to compare the

significancy of the measures. Generally, better p values were observed for both fist - both

feet task. Similarly, (Pfurtscheller and Neuper, 2001) declared that right hand - both feet

task provides more accurate classification rather than left hand - right hand. In addition,

statistical significance of the results improved with increasing signal duration.

Information theoretic methods had similar results for 1 sec and 2 sec epoch du-
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rations except KGV: the p-value of KGV were relatively high. That may be cause of

its gap at estimating the MI of highly dependent variables. Correlation based methods,

Spearman, KCCA, Schweiser-Wolff and Kendall method showed good results for both

fist - both feet task. Especially Kendall had the best p-value geometrical average for this

task at 1 and 2 sec epoch durations. However, the standard deviation of these methods

were worse than the mutual information methods of Kraskov, data fitting based estimator

and REGO estimators. Finally, coherence and PLV methods had modest p-values. While

they had larger standard deviations, especially coherence method’s performance increased

dramatically at 2 sec epoch duration.

PLI and iCOH methods achieved better discrimination between the tasks in the

evaluation of 0.5 sec epoch although it was seen relatively high p values for other time

interval experiments. In addition, for 1 sec and 2 sec time intervals, these methods showed

better performances except for both fist-both feet task. On the other hand, although they

had lower p-values than coherence and PLV methods, PLI and iCOH (especially PLI) had

the lowest standard deviation among all measures in both fist-both feet task. There may

be two reasons for that situation : they had the lowest standard deviation because they

claim that they eliminate volume conduction effects and they had lower p-values because

they miss zero-lag connectivities aiming to eliminate volume conduction effect.

Second experiment on EEG signals were applied on selected pairs. Similarly, the

experiment that was implemented on 9 electrodes and 18 pairs, showed the best p-values

for both fist-both feet task and 2 sec time interval where coherence method had the best

p-value. In this experiment, information theoretic methods were relatively better than the

other methods except for KGV again. Finally, Kendall method had close results to infor-

mation theoretic methods. On the other hand, for this experiment PLI and iCOH methods

had worse results for all tasks and time intervals. The main reason of the situation may be

the small seach area of experiment. (Stam et al., 2007) stated that the local connections

were absent for PLI and iCOH methods and the long distance interactions were dominant.

A further analysis using [0.2-4.1] time interval were applied on selected methods.

Above mentioned experiment procedures were followed for this experiment again for 5

methods : coherence, data fitting based MI estimator, PLI, PLV and Kendall coefficient.

For HiCl based procedure Kendall coefficient had best p-value and for the analysis on

selected pairs coherence method had the best p-value. At the same time, coherence had

the lowest standard deviation among all methods. On the other hand PLV, Kendall and

data fitting based estimator methods gave similar p-values. Logarithmic p-value of PLI

was lower in HiCl experiment in spite of its small standard deviation and worst p-value for
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selected pairs again. Finally coherence method had a promising increase for both fist-both

feet imagery task for experiment on selected pairs.
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CHAPTER 6

CONCLUSION

In this thesis, fifteen methods have been used for functional connectivity or have

the potential to be used to measure dependence for the evaluation of EEG motor/motor im-

agery signals. Two of these methods (data fitting based MI calculator and UV parametriza-

tion) were proposed as a novel technique for mutual information estimation.

In experiments of computation time and accuracy, a synthetic dataset was used.

On the other hand for the statistical significance analysis Physionet EEG motor/motor im-

agery data was used. In computation time test, it was observed that information theoretic

methods performed slower than the other methods. But the two new methods proposed

in this thesis, seem to figure out this problem with their intuitive approaches. In addition,

the accuracy test showed that these novel methods can be used as an estimator for mutual

information.

Another novel technique proposed in this thesis is a hierarchical based proce-

dure for the evaluation of statistical significancy. This procedure was used along with a

similar statistical signifance test applied on the selected electrode pairs. In these tests,

better p-values were obtained for both fist - both feet task. In addition, majority of the

methods showed better performances with increasing time observed from the data. Ex-

ceptionally, PLI and iCOH methods proposed to avoid volume conduction showed better

performances than the other methods on shorter times and imaginary tasks, and they had

the lowest standard deviation although their geometric p-values were relatively high. In

conclusion of tests applied with varying configuration, five of the methods were identi-

fied with high statistical significance and different dependence characteristics considering

their computation times and accuracy performances: coherence, data fitting, Kendall, PLI

and PLV. These methods should be considered as features of data and may be preferred to

be used together rather than choosing one since these methods have different performance

characteristics for observed data with different durations and different tasks.

For the future work, considering the gap of correlation based and information the-

oretic measures with time lagged dependencies, a time delay identification system may be

utilized before applying these measures. Secondly, elucidated by the different character-

istics of the measures’ performances, a BCI classification system may be carried out by

using multiple measures for feature extraction. And finally, standard deviations of mea-

67



sures’ performances may lead us to a further subject specific analysis in order to detect

the subject features that affect the performances.
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APPENDIX A

BACKGROUND

A.1. Independent Component Analysis (ICA)

Independent component analysis is a feature extraction method that aims to re-

construct the independent source signals from the linear mixtures of these source signals.

The model of linear mixtures is:

x(t) = As(t) (A.1)

where s(t) represents the source signals vector, x is the mixture vector andA is the mixing

matrix. ICA aims to find the demixing matrix W (inverse of A).

s(t) = Wx(t) (A.2)

In search of matrix W without knowing A, W is decomposed into prewhitening

matrix V and rotation matrix R.

W = RV (A.3)

After finding prewhitening matrix, the only challenge is to find the proper rotation angle

that gives independent sources. At this step, the performance of each angle is evaluated

by the contrast functions. These contrast functions may measure either independency

or nongaussianity of reconstructed signals as the objective of ICA method. Some of

the contrast functions that measures independency such as KCCA and REGO are also

analyzed in this study as the dependence measure for brain connectivity.
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APPENDIX B

MATERIAL AND METHODS

B.1. Mathematical Background of Zero-phase Filtering

Let H(ejw) be the frequency response of any IIR filter and X(ejw be the repre-

sentation of a signal. The output signal after filtering the signal by this system is defined

as

V (ejw) = H(ejw)X(ejw) (B.1)

By following the zero-phase filter, U(ejw) is carried out after the time-reverse operation:

U(ejw) = V ∗(ejw) (B.2)

In the next W (ejw) is calculated by filtering this time-reversed signal one more time. The

relation of this signal with the original signal can be carried out by

W (ejw) = H(ejw)U(ejw) = H(ejw)H∗(ejw)X∗(ejw) = |H(ejw)|2X∗(ejw) (B.3)

In order to mathematical expression, it can be easily seen that, filter causes a change only

on the magnitude of the signal. However, the output is still in the time-reversed way.

Because of that, in the last step the signal is reversed back in time and zero-phase filter is

completed:

Y (ejw) = W ∗ (ejw) = |H(ejw)|2X(ejw) (B.4)

B.2. Hilbert Transform

Hilbert Transform of any signal g(t) is calculated by a convolution operation de-

fined as
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x̂ =
1

πt

∫
g(t′)
t− t′

dt′

=
1

πt

∫
g(t′)
t− t′

dt′
(B.5)

Fourier transform of the convolution operator is described as

1

πt
→ jsgn(f) (B.6)

which means that Hilbert transform causes a 90 degree phase shift on g(t). Because of

that the it is also called phase shifter.

B.3. Wavelet Transform

Short time Fourier transform (STFT) helps detecting the change of frequency com-

ponents of any signal x(t) in time by applying Fourier transform in time bins as

X(w, t) =

∫ ∞

−∞
x(t)[h(t− τ)e−iwτ ]dτ (B.7)

where h(t) denotes the time bin (window) that the transform is applied. For STFT method,

the window length parameter should be chosen carefully the window length affects the

time and frequency resolution, and for high frequency components, frequency resolution

is important whereas the time resolution matters more for low frequency components.

Because of that, applying an adaptive window length for corresponding frequency com-

ponent, wavelet transform provides a better transformation as

W (τ, s) =

∫ ∞

−∞
x(t)

1√|s|ψ ∗
(
t− τ

s

)
dτ (B.8)

where τ denotes the position of the wavelet in time domain and the s is the scale parame-

ter. ∗ denotes the complex conjugate of wavelet function ψ.

B.4. Variance Estimation for Data Fitting MI Calculator

Running mean smoothing (RMS) and polynomial regression methods are used

for conditional variance (σ2(Y |X)) estimation. A running mean smoother is a moving

average filter actually. It proves to see the trend of the variable (conditional variance in
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this case). The smoother output for a sample is the average of of the sample itself and

its neighborhoods. But how big to take the neighborhood affects the smoother. If large

neighborhood is chosen this causes low variance and high bias in estimator. On the other

hand, small neighborhood may cause high variance and overfitting problem.

The other method for estimation, polynomial regression aims to fit the data to a

polynomial equation. For linear regression the equation is:

σ̂2(Y |X) = α + βx (B.9)

Regression is implemented by finding the coefficients α, β that give the minimum error

on fitting. For polynomial regression, number of predictor or degree of polynomial affects

the output similar to RMS. Choosing low degree causes bias whereas high degree causes

overfitting problem.

In this study, parameters for both methods are chosen by a cross validation based

algorithm:

1. Define the candidate values.

Neighborhood of RMS (ratio to total number of samples): {0.01, 0.05, 0.1, 0.15,

0.2, 0.25, 0.3, 0.4 0.5 0.6, 0.7}
Degree of polynomial regression : {1, 2, 3, 4, 5}

2. Sort the data by X . Divide data into two groups as even and odd ranked samples.

3. For each candidate value, use odd ranked samples for estimation and even ranked

samples to calculate mean square error (mse).

4. Choose the value with smallest mse as parameter.

B.5. Relation of Copula and Mutual Information

As defined in Schweizer-Wolff and REGO methods, cumulative distribution of

two univariate variables are defined as new variables U = Fx(X) and V = Fy(X) where

the copula function isC(u, v) = F (F−1
x (u), F−1

y (v)). The copula density function c(u, v)

can be extracted easily:

c(u, v) =
∂2C(u, v))

∂u∂v
=

∂2F (x, y))

∂Fx(x)∂Fy(y)
=

∂2F (x,y))
∂x∂y

∂Fx(x)
∂x

∂Fy(y)

∂y

(B.10)
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c(u, v) =
f(x, y)

fx(x)fy(y)
(B.11)

To reformulate the mutual information by using copula density function, stan-

dard formula is multiplied by
∂Fx(x)∂Fy(y)

∂x∂y
and divide by fx(x)fy(y) by using the relation

fx(x) =
∂Fx(x)

∂x
:

I(X, Y ) =

∫
f(x, y)

fx(x)fy(y)
log

f(x, y)

fx(x)fy(y)

∂Fx(x)∂Fy(y)

∂x∂y
dxdy

=

∫
f(x, y)

fx(x)fy(y)
log

f(x, y)

fx(x)fy(y)
dFx(x)dFy(y)

(B.12)

By using the equation B.11 and place the U and V variables, new mutual infor-

mation equation based on copula density is easily written and the relation is proven:

I(X, Y ) =

∫
c(u, v) log c(u, v)dudv (B.13)

83



APPENDIX C

EXPERIMENTAL METHOD

C.1. Timing Test Procedure on Windows Powershell

To manage processes in Windows PC, a series of code in powershell interface

were used in administrator mode. First of all running processes were reached by

$instances = Get-Process

code. After that two lines of code were used to allocate core 8 for Matlab, set the priority

of Matlab as high and the others below normal:

foreach ($i in $instances)

{

if($i.ProcessName -eq "matlab") {$i.ProcessorAffinity=128 }

else

{$i.ProcessorAffinity=127}

}

foreach ($i in $instances)

{

if($i.ProcessName -eq "matlab")

{$i.PriorityClass = ’high’}

else

{$i.PriorityClass = ’BelowNormal’}

}

At last, all processes other than Matlab and powershell interface were killed:

foreach ($i in $instances)

{

if($i.ProcessName -ne "conhost"

-and $i.ProcessName -ne "powershell"

-and $i.ProcessName -ne "matlab" )

{kill -id $i.id}}
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