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ABSTRACT

A CASE STUDY ON SETTLEMENT ANALYSIS OF GEOTHERMAL
POWER PLANT FOUNDATION

Foundation settlement criteria are highly sensisitive for geothermal
power plants. In geotechnical literature there are several settlement analyses
which can be done by using elastic approaches, in-situ test results or
numerical methods. Unfortunately, all these methods cannot give close
results with each other. As a result, the unrepresentative analyses influence
the safety, economy and time of the projects.

In this study, the settlement of the geothermal power plant located in
Aydm / Incirliova which constructed on a raft foundation was investigated.
According to soil investigations, the raft foundation is located on multilayer
soil profile and a compacted high qualified fill layer is placed under the raft
foundation. Soil parameters were obtained from in-situ tests (standard
penetration tests, cone penetration tests, pressuremeter tests and plate load
test and) and laboratory experiments.

Settlement results were obtained by 1D stress — strain analyses and 3D
continuum numerical analyses (Hardening Soil Model with Small Strain
Stiffness and Mohr Coulomb Soil Model) using the commercially available
Settle 3D and Plaxis 3D software, respectively. The results of these analysis
were also compared with the field monitoring data. The results show that
Hardening Soil Model with Small Strain Stiffness gave more accurate result
than other models due to the representation of real soil behavior, obtaining
non-uniform stress distribution of foundation and obtaining effective stress

depth accurately for settlement.



OZET

VAKA ANALIZI: BIR JEOTERMAL ENERJI SANTRALINE AIT
TEMEL OTURMASI

Temel oturma kriterleri jeotermal enerji santralleri i¢in oldukca
hassastir. Geoteknik literatiirde elastik yaklasimlari, saha test sonuglarini ya
da niimerik yontemleri kullanan bir ¢ok oturma analiz yOntemi vardir.
Maalesef bu yotemler birbirlerine yakin sonuclar verememektedir. Saha
oturmasini temsil etmeyen analizler projelerin giivenligini, ekonomisini ve
zamanini etkilemektedir.

Bu c¢alismada, Aydin/Incirliova’da yer alan ve radye temel iizerine
insa edilmis bir jeotermal enerji santralinin oturmasi incelenmistir. Zemin
arastirma calismalarina gore, radye temel ¢cok tabakali zemin profili izerinde
yer almaktadir ve temelin altinda sikistirilmis nitelikli zemin dolgusu
bulunmaktadir. Zemin parametreleri saha testlerinden (standard penetrasyon
testi, koni penetrasyon testi, presiyometre testi ve plaka yiikeleme testi) ve
laboratuvar deneylerinden elde edilmistir.

Oturma sonuglar1 tek boyutlu gerilme birim deformasyon analizleri ve
tic boyutlu stirekli niimerik analizleri (Hardening Soil Model with Small
Strain Stiffness ve Mohr Coulomb Soil Model) ile elde edilmistir. Bu
analizler sirasiyla ticari olarak ulagilabilen Settle 3D ve Plaxis 3D yazilimlari
kullanilarak yapilmistir. Analiz sonuglar1 sahada 6lgiilen oturma degerleri ile
kiyaslamali olarak verilmistir. Oturma analiz sonuglar1 sunu gostermistir:
Hardening Soil Model with Small Strain Stiffness niimerik analizi zemin
davranigini, temel altindaki farkli gerilme dagimlarini ve oturmanin
gerceklesecegi etkili derinligi daha dogru temsil etmesinden dolayr diger

analizlerden daha kesin sonu¢ vermistir.
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CHAPTER 1

INTRODUCTION

1.1 General

Geothermal power plants produce energy with using hydrothermal resources
which include high water vapor pressure in the temperature range between 120° C and
320° C. The geothermal energy resources are renewable and are seen in 10% of earth
show that it has a vital importance.

Vapor pressure, which has high temperatures, is transported with the help of steel
pipelines. Especially in the part of the turbine where electricity is produced pipe stresses
must be limited for safety concepts. Pipe stresses are affected by internal and external
factors. Settlement of turbine foundation is an external effect which causes to stress in the
pipes. Not only geothermal power plants but also other type power plants analyzing of
settlement is very important. For example, in this total settlement values do not exceed
0.01 m to 0.02 m after piping and differential settlements ratio do not exceed 1/1000.

In this study, it has been investigated which of the settlement analysis methods
will give more accurate results in projects with precise settlement criteria. But the
selection of correct soil models is not sufficient also determination of soil parameters
which are used in models, analyzing of stress distribution on soils and obtaining effective
depth level of soils where stress increment decrease zero are just as important as
settlement analysis methods.

Due to the non-uniform soil layer, settlement analysis based on in situ tests and
empirical methods were not reasonable. Project soil profile in the order and thickness of
the units as follows: silty clay 2.5-meter silty sand 4.5-meter silty clay 11.5-meter silty
sand 3-meter silty clay 5.5-meter and clayey silt 2-meter. To analyze multilayer soil
settlement correctly 1D Stress — Strain Relation analyses and 3D continuum numerical
analyses (Hardening Small Strain Stiffness Soil Models and Mohr Coulomb Soil Models)
was used.

The soil parameters to be used in the model were selected with the help of
prominent correlations in the geotechnical literature by controlling their compatibility

with one of the in situ tests, which were standard penetration tests, cone penetration tests,
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pressuremeter tests and plate load tests. For cohesive soils the compatibility of cone
penetration tests and pressuremeter tests were examined and for cohesionless soils the
compatibility of cone penetration tests and standard penetration tests were examined.
Moreover, related laboratory works were evaluated.

In the project, nearly 220 points loads were applied on the raft foundation so that
to obtain correct settlement value determination of soil structure interaction was
important. Numerical continuum soil models were used to obtain the distribution of stress
on soils. Moreover, effective depth level was evaluated with traditional methods and

numerical continuum models.

1.2 Problem Statement

The analysis of the results that do not evaluate real settlements value directly
affect the projects in terms of safety, time and economy. Especially, in power plant
projects settlements criteria highly sensitive and lots of project choose soil improvement
methods according to unrepresentative settlement results so that owners risk time
commitments and project costs increase. The settlement analyses must have some criteria
for such sensitive structures. In this study may provide how to evaluate necessary

condition to obtain accurate settlement results.

1.3 Organization of the Thesis

The thesis consists of six chapters. The first chapter is the introduction includes
general information, problem statement and organization of the thesis. The second
chapter is background information includes differential settlement and total settlement of
shallow foundation, determination of soil stiffness parameters and stress increment
methods. The third chapter is the geothermal power plant project includes investigation
area, the geology of the project area and site investigation tests and laboratory
experiments. The fourth chapter is settlement analysis of the foundation which includes
project information for settlement analyses, data analyses, settlement analyses with 1D
stress — strain relation and settlement analyses with numerical methods, the fifth chapter

is result and discussion includes settlement for stage loads, comparison of stress



increment methods, the differential settlement result and determination of oedometric

stress strain modulus of clay. The final chapter is conclusions and recommendations.



CHAPTER 2

BACKGROUND INFORMATION

2.1 Introduction

Service loads and own weight of structures statically generate compression which
cause to sinking of structures into the underlying soil is described as settlement. (Terzaghi
et al, 1996). Total settlement and differential settlement criteria should be checked for
settlement analyses. In the project total settlement values should not exceed 0.01 m to
0.02 m after piping and differential settlements ratio should not exceed 1/1000. As a
result, the shallow foundation is used to decrease differential settlement values, structure
stresses on soils and balance hydrostatic uplift pressure.

In this chapter, firstly, the literature review about the settlement of shallow
foundations for cohesive and cohesionless soils was presented. Then, the evaluation of
soil stiffness parameters (stress strain modulus and Poisson’s Ratio) from consolidation
test, plate load test, standard penetration test, cone penetration test, the pressuremeter test
and laboratory experiments were introduced. Finally, determination of the stress

increment due to applied load at any depth was presented.

2.2 Differential Settlement of Shallow Foundation

Differential settlement is a different amount of settlement within the same
structure. Figure 2.1 represents that points A — E on the same line but after settlement
occurred point B was displaced more than other points.

Differential settlement in a structure is more undesirable than the total settlement
or uniform settlement. Angular distortion the is ratio between vertical difference and
displacement of two points. In Figure 2.1, maximum angular distortion is between point
A and point B. Bjerrum (1963) classified limiting angular distortion in Figure 2.2. When
foundation has no uniform loads disruption and nonhomogeneous soil stratum, continuum

numerical methods are necessary to obtain an accurate differential settlement.
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Figure 2.1 Representation of Differential Settlement
(Source: Kim, 2015)
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Figure 2.2 Limiting Angular Distortion for Structures
(Source: Bjerrum, 1963)

2.3 Total Settlement of Shallow Foundation

The magnitude of the service loads and own weight of the structure, size of the
foundation, soil conditions and gradation, soil stiffness and soil strength affect the
settlement of shallow foundation. In saturated fine soils, time and excess pore water
pressure have significant effect on settlement rate depending gradation of soil.
Consolidation settlement of the foundation increase with time during excess pore water

dissipation (Becker and Moore, 2006).



Total settlement of shallow foundation usually categorized as initial settlement,
primary consolidation settlement, and secondary consolidation settlement. Initial
settlement (immediate / elastic settlement) is generally seen as occurring just after the
implementation of the service loads and own weight of the structure. (Smith, 2014). In
cohesionless soils the elastic settlement is the main part of the total settlement, however
in the saturated cohesive soils primary consolidation settlement is the main part of the
total settlement. Secondary consolidation settlement must be taken into consideration for
plastic clays and organic soils. In overconsolidated inorganic clays, the secondary

consolidation index is very small and of less practical importance. (Das, 2014)

""ZEFDBFD_""""‘['DW

settlement

time

Figure 2.3. Parts of Total Settlement

S,=S.+8S,+8, @2.1)

Where;
St= Total Settlement, S;=Initial Settlement, Sc = Primary (Consolidation)
Settlement

Ss = Secondary (Consolidation) Settlement

2.3.1 Initial Settlement

Although total settlement calculation is divided into three parts for cohesive and

cohesionless soil, some theoretical settlement analysis methods can be performed for each
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parts in view of the fact that the soil condition is drained or undrained. Theory of elasticity
(Timoshenko and Goodier, 1951) mostly is used for initial (elastic or immediate)
settlement calculations. The initial settlement has a big fraction rate in total settlement for
cohesionless soil; on the contrary, it has a small fraction for normally consolidated
cohesive soil. There are various formulations for initial settlement calculation, for
example, Janbu et al. (1956) developed an equation for the flexible foundation on
saturated clay soils or cohesionless soil settlement can be evaluated by strain influence
factor proposed by Schmertmann et al. (1978). Most of these formulations are based on
homogenous soil deposits so that cumulative elastic strain approach is introduced for the

nonhomogeneous nature of soil deposits.

2.3.1.1 One Dimensional Cumulative Elastic Strain Approach

The initial settlement can be calculated by summing the vertical strains from the
increase in effective stresses of sub layers. For multilayer nonhomogeneous soil deposits,
cumulative elastic strain approach is useful and this calculation can be performed quickly

using spreadsheet computer programs (Becker and Moore, 2006).

Ao
E (2.2)

N

E =

S =¢.H (2.3)

1

Where;
€ = strain, Ac = the change in vertical total stress, Es = stress strain modulus, H =

depth of layers, S;= Immediate or undrained settlement

The settlement of the i™ point is then the settlement of the point below (i+1) plus

the settlement in sublayers i:

& H, (2.4)



Figure 2.4. The Settlement of Any Soil Layer
2.3.1.2 Three Dimensional Cumulative Elastic Strain Approach

Poulos and Davis (1968) proposed using Eq. (2.5) to obtain an accurate initial
settlement result because in a soil particular under one directional stress, strains occur in
three directions. Three-dimensional cumulative elastic strain approach can be used for

both cohesionless soils and overconsolidated cohesion soils.

Si=2%[Acz-v(Acx+Acy] h (2.5)

Where;

Si = Immediate or undrained settlement, Acx = Stress increment in x direction, Acy
= Stress increment in y direction, Ac, = Stress increment in z direction, E = Drained or
undrained stress strain modulus, 6h = Unit height difference, v = Undrained or drained
Poisson’s Ratio

The immediate or undrained settlement with mean stress can be used instead of

Eq. (2.5) to perform more accurate three dimensional analyses.

Si=2%[(1+V)Ac-3Acm] 5h 2.6)
Where;

1
Gm :zg (Gxx +ny+czz)



Si = Immediate or undrained settlement, Acm = Mean stress increment, E =
Drained or undrained stress — strain modulus, v = Undrained or drained Poisson’s Ratio,

Ao = Total vertical stress increment

2.3.2 Primary Consolidation Settlement

In the previous chapter initial settlement was introduced for undrained cohesive
soil and drained cohesionless soil. Primary consolidation settlement is only valid for fine
cohesive soil in drain condition. In the primary settlement, 1D consolidation theory and
degree of consolidation terms have an important place for understanding of the settlement
of fine grained cohesive soil in time. Immediately after an applying a stress increment on
the fine grained cohesive soil in fully saturated condition, the primary settlement will not
be seen because water will carry whole stress increment. Sometime later, water starts to
expel from soil pores and primary settlement starts to come to fruition. Piston Spring

Analogy, which is given in Figure 2.5, is a good example to explain consolidation.

P Flow
l r
Zom iz MY l l ‘
" = | ’,.
? “'\-\/_ -_';} - .?; ‘
() (2) @) (
U=,
=P b
o =(0), L= mb o u=ng
u=1ty+Au 50 o =(c),+Ac,
u=1u,+Ag, o, T
Ac',=Ac, — Au
Ac’',=0

Figure 2.5. Piston Spring Analogy (Source: Likos, 2016)

Permeability, the thickness of stratum and the length of drainage path determine
the expelling time of water and this time directly affect the rate of consolidation for a fine

grained cohesive soil. (Budhu, 2010).



2.3.2.1 1D Consolidation Theory

Terzaghi (1944) developed the rate of 1D consolidation with some assumptions
which are given below.
e Homogeneous clay layer.
e Fully saturated clay layer
e Accepting of Darcy’s Law
e 1D compression is valid
¢ During consolidation process the coefficient of consolidation does not change.

Combining Darcy’s law and volume change of soil element with time gives the equation;

kOu_ a Ou_ 0u

— = =m, 2.7
v, 0z, l+e ot ot

Where;
u= excess pore water pressure (Time and depth dependent), t=time, z=depth, k =

permeability of soil, yw = unit weight of water, ay = coefficient of compressibility, e =

void ratio of soil, my - coefficient of volume compressibility
Volumetric Change
When consolidation load is applied on soil body, volume of soil will change in

drain condition. Difference between initial volume (V1= e + 1) and final volume (V2 =

e» + 1) over initial volume gives volumetric change.

Vl 'Vz — i)
V, l+e,

AV = (2.8)

Coefficient of compressibility (av)
During consolidation compressibility of soil change and increasing of effective

stress decreases soil compressibility. The rate of the void ratio — effective stress relation

gives the coefficient of compressibility (av).
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a, =-— (2.9)

Coefficient of volume compressibility (mv)

The coefficient of volume compressibility represents compression of a soil, per
unit thickness, because of increasing pressure. Coefficient of compressibility over initial

volume of soil gives the coefficient of volume compressibility.

m, =-—t (2.10)

Excess pore water pressure (Au)

To find excess pore water pressure at any time and depth after stress increment
applied, the partial differential equation (2.7) can be solved with using separation of
variable and with using boundary conditions. Moreover, Fourier series constant A, can
be determined with using orthogonality. Then excess pore water pressure equation is

obtained as below;

= 2 2

= . nmz nrxT
U= E A sin ex !
—_" 2H p( 4

) @2.11)

Where;

u = excess pore water pressure (Time and depth dependent)

1% . nxz dyCt .
A =— J. u,sin——dz (Constant), T, = ——--(Time Factor)
H 2H

Yodx H?
k . o
C,= —— (Coefficient of consolidation)
Ty My,

t = time, z = depth, H = Stratum height (drainage type dependent)

Log of time method (Casagrande’s Method), square root of time method (Taylor’s
Method), and some empirical methods can be used for determination of the coefficient of

consolidation (Cy). If u; is constant with depth Eq. (2.11) is determined as given below;
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& 2u, . Mz
u=y ﬁosmgexp(—Mva) (2.12)

m=0

Where;
M=(2m +1)

2.3.2.2 Degree of Consolidation

The degree of consolidation (U,) is a ratio between current pore water pressure
and initial excess pore water pressure and effective stress increment is equal to difference
between current and initial excess pore water pressure. The degree of consolidation at a

point is obtained with Eq. (2.13) or related chart is given in Figure 2.6.

m=o0
U. =1 2 oin M cxp(-M°T 2.1
. =1- ) —sin—exp(— ) (2.13)
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Degree of consolidation, U,

Figure 2.6. U, , Z and T Relationship
(Source: Ameratunga et al, 2016)

In most cases, the average degree of consolidation is needed for the entire layer.
The average degree of consolidation for a layer is obtained with Eq. (2.14) or related chart
is given in Figure 2.7.

m=00 2
U,, =1- zo Wexp(—MzT) (2.14)
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Where;

T=210> for U <52.6%
4 avg avg

T=1.781-0.93310og (100-U,,) for U, >52.6%

avg

1 EnamEEEE
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Figure 2.7. Uayg and T Relationship
(Source: Ameratunga et al, 2016)

2.3.2.3 Consolidation (Oedometer) Test

In consolidation test a soil sample is confined with a steel ring commonly has 75
mm diameter and 20 mm thick (ASTM D 2435-04). The consolidation test apparatus is
given in Figure 2.8. Porous discs are placed at the top and bottom position of the soil
sample for purpose of water expelling. Before the application of loading steps water is
used for preventing pore suction. After that, compression is applied step by step with a
load increment, which has commonly 0.25 kg/cm?, 0.5 kg/cm?, 1.0 kg/cm?, 2.0 kg/cm?,
4.0 kg/cm? (depending on project stresses), and periodically vertical settlement of soil
sample is measured with the aid of transducer when settlement is over, the other load
increment is passed (Figure 2.8.b). The consolidation test continues until reaching the
required project stress levels and fully consolidation is achieved. For each increment steps
void ratio of the specimen can be obtained and void ratio versus effective pressure graph
can be drawn from test results as shown in Figure 2.9 a (Smith, 2014). Unloading process
can be performed to obtain dilatation characteristic of the soil sample with releasing of

the load in 24 hours intervals. Unloading process can be performed to obtain dilatation
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characteristic of the soil sample with releasing of the load in 24 hours intervals. Figure

2.9 b shows the expansion and recompression curves.
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(a) Consolidation apparatus (b} Typical test results

Figure 2.8. Consolidation Test Apparatus and Results
(Source: Smith, 2014)
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Figure 2.9. Void Ratio - Effective Pressure Graph
(Source: Smith, 2014)

Preconsolidation Pressure
Soil has a memory and remember the history of the past loading. If stress
increment is in recompression zone, soil remembers past loading and less settlement will

occur but in virgin compression, soil firstly is exposed to maximum stress level so that

more settlement will occur as compared to recompression zone.

14



Preconsolidation pressure (o. ) is equal to maximum past loading effective stress.
Moreover, it is the midpoint recompression slope to compression slope. Preconsolidation
pressure can be estimated with using Casagrande (1936)’s procedure, which has 4 steps
given below.

e Extending the PR line from Point P which is the point of maximum curvature
e Drawing a horizontal line from Point P

e Drawing TS line as bisector of the angle

e The intersection point of bisector line and extending line (Slope = C¢) gives

point T, its log stress component is equal to preconsolidation pressure

Void ratio, e

Figure 2.10. Preconsolidation Pressure
(Source: DAS, 2013)

The present effective overburden pressure is higher than the preconsolidation
pressure which means that soil is normally consolidated. Normally consolidated soil

volume is decreased by the increasing applied pressure. (Figure 2.11)
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Figure 2.11. Void Ratio - Effective Stress Increment for NC Soil
(Source DAS, 2013)
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If the present effective overburden pressure is lower than the preconsolidation
pressure, the soil is overconsolidated and overconsolidation ratio is the ratio between the

present effective overburden pressure and the preconsolidation pressure Eq. (2.15).

OCR = 2 (2.15)
Oy

In overconsolidated soils volume change is calculated as cumulative of void ratio

differences both recompression and virgin parts. (Figure 2.12)
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Figure 2.12. Effective Stress Increment in Recompression and Virgin Compression
(Source: DAS,2013)

Compressibility Index (Cc, Cr)

In figure 2.11 slope of recompression slope and virgin compression slope gives
compressibility index of soil. Compressibility index can be calculated also with some

empirical correlations which are given in Table 2.1.

A
Cc = ,—e (2.16)
logo, - logo,

Ae

T (2.17)
logo - logo,

16



Table 2.1. Correlations for Compression Index
(Source: DAS,2013)

Reference Relation Comments
Terzaghi and Peck (1967) C. = 0.009(LL - 10) Undisturbed clay
C.= 0.007(LL- 10) Remolded clay
LL = liquid limit (%)
Arzouz et al. (1976) C.= 001w, Chicago clay
w,, = natural moisture content (%)
C.=0.0046(LL - 9) Brazilian clay
LL = liquid limit (35)
C_ = 1.21+1.005(e, — 1.87) Motley clays from
Sao Paulo city
e, = in situ void ratio
C.=0.208e, + 0.0083 Chicago city
e, = in situ void ratio
C. = 0.01 15w, Organic soil, peat

W, = natural moisture content (%)
Empirically recompression index (Cy) is equal to 0.1 C. — 0.2 C.
2.3.2.4 Calculation of Consolidation Settlement
Basically, the settlement is calculated by multiplying strain with height of the soil.
Strain depends on overconsolidation ratio of soil, stress increment, and compressibility
index of soil. With using these factors three formulation can be used for primary

consolidation settlement analysis.

1. Normally consolidated soil (OCR <= 1) and stress increment in the range of virgin

compression zone (Look Figure 2.11)

S =

C

Ce logOh (2.18)
I+e, G,

2. Overconsolidated soil and stress increment in the range of recompression zone

(Look Figure 2.12)

€ logdH (2.19)
e, Oy

S =

C
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3. Overconsolidated soil and stress increment in the range of compression zone

(Look Figure 2.12)

S=—1 (€. log2l+C, log2e) (2.20)
1+ c

S c Oy

These three formulas vary with stress level. Another formula can be used for
constant stress level as using an average coefficient volume compressibility (my). These

formula reduce the effects of nonlinearity. (Das, 2014).
S.=m, HAc (2.21)

Poulos (1968) asserts that to obtain more accurate settlement analysis the three
dimensional stress — strain modulus should be used and it can be derived with the given

formula.

L _ = (I+v) 1-2v) E
m, (1-v)

(2.22)

Where:
my = Coefficient volume compressibility, E = Stress strain modulus, Eeed =

Oedometric stress strain modulus, v = Poisson’s Ratio

2.4 Determination of Soil Stiffness Parameters

The stress-strain modulus (Es) and Poisson's ratio (v) are elastic properties of soil,
which are widely used in the analysis of foundation settlements. (Bowles, 1997). In-situ
tests and laboratory experiments were performed for determination of soil stiffness
parameters for drained and undrained conditions. In this part of the thesis the
Consolidation Test, Plate Load Test, Standard Penetration Test, Cone Penetration Test
and the Pressuremeter Test are introduced for determination of stress-strain modulus of

soils. Separately, determination of Poisson’s ratio is given in 2.4.6.
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2.4.1 Stress — Strain Modulus from Consolidation Test

Details of the consolidation test are given in the part of chapter 2.3.2.3.
Oedometric stress — strain modulus of soil is obtained from consolidation test and it used
for both initial and primary settlement calculations. Drained stress — strain one
dimensional modulus can be obtained with the inverse of the coefficient of volume
compressibility Eq. (2.23) from consolidation test or directly taken from the correlation

of in-situ tests.

1 ,
— =D (2.23)
mV
Where;

D’: Oedometric Stress — Strain Modulus
2.4.2 Stress — Strain Modulus from Static Plate Load Test

In plate load tests, likely the consolidation test, load increment is applied step by
step in the field. ASTM D1195 and TS 5744 are some related standards for static plate
load tests. Load source is (truck or heavy construction equipment) applied incrementally
on a rigid plate and periodically vertical settlement of soil or fill materials is measured
with the aid of transducer. These data give the stress — strain modulus of soil or fill
materials. Consists of applying a supposedly even pressure to the surface of the ground
by means of a rigid plate. (Monnet, 2015) The size of the rigid plate affect settlement
depth. (Two times diameter of plate equal to the depth of settlement). The depth of the
test is the base level in buildings, unless stated otherwise; the upper level of the base for
transportation structures.

Applied stress is not to exceed 1/10 project stress. Stress should be applied at least
30 s. The pressure should be changeless until the deformation is constant (<0.02 mm in
15 s). Then the settlement is measured as As. Then, stress is increased with the same value
as before and the same procedure is applied. When loading value is reached project stress,
which is increased by a safety factor, the unloading process can be applied to obtain
unloading stress — strain deformation modulus. The related formula is given below for

both cases. (TS 5744, 1988)
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_0.75D Ao

EV
As

(2.24)

Where;
E, = Stress — Strain Modulus, D = Plate diameter (300 mm, 600 mm and 762 mm),

Ac = Stress increment (kPa, kg/cm? ....), As = Settlement value (mm, cm ...)

Reaction loaded truck
Rotation Axis bya
f/”'_ _“\x
- |._ _.:
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Figure 2.13. Installation of Plate Load Test
(Source: Monnet, 2015)
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Figure 2.14. Plate Load Test Result Example
(Source: Monnet, 2015)
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2.4.3 Stress — Strain Modulus from Standard Penetration Test

There are various site investigation methods in the geotechnics. The standard
penetration test (SPT) still is the most popular site investigation testing all around the
world due to simple performing, penetration into dense layers, gravel, and fill, common
equipment and operators. (Schnaid, 2009). Penetration tests do not give soil stiffness
directly because stress — strain values are not measured during tests so that empirical
correlations are needed. Especially, for coarse — grained soils, stress strain modulus is
obtained from in-situ tests due to difficulties of taking undisturbed sample for laboratory
works.

In standard penetration test, a sample tube is driven into the soil layers by a
hammer, its weight 63.5 kg, falling through 760 mm distance. The sampler’s average
outside diameter is 51 mm, inside diameter is 35 mm and length is greater than 457mm.
(Figure 2.15). ASTM D 1586-99:1999, British BS 1377-9:1990 and TS 5744 are some
related standards for SPT.

Crown sheave(s)
or pulley(s)

Typically 25mm diameatar
Manila rops

Donut hammer Ratating cathead
L
::1::);. __l:.l
™ S
TEZmm | [
fal | Slip or guide pipe R
! - Al gr'd
- r=_r _ [II
/ —  Load call and ;o |
Aoquisibon ||| ecoslerometers 7
Il rod J'_j | ==
Ground surface
___Borehale

Sampler

Figure 2.15. Equipment of Standard Penetration Test
(Source: Schnaid, 2009)
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In geotechnical engineering most of the SPT correlations are related with SPT

blow counts (N), which is total for the last 300 mm numbers of falling. SPT is applied

commonly 1.5m depth interval. Theoretical penetration energy is higher than the

measured energy due to implementation a factors so that some corrections are needed as

factor of overburden pressure (for cohesive soil), a factor of energy ratio, a factor of

borehole diameter, a factor of rode length and factor of sampling method, which are given

in Figure 2.16.

v 2CuCpCeCrN

Where;

6 0.6

(N1)60 = N60'CN

Neo = Corrected SPTN-Value for field procedures

(N1)6o = Overburden Pressure Correction (for cohesionless soil)

Factor Variable equipment |(Term| Correction
' Y05
Overburden pressure Cn gﬂ%ﬂ"'ﬂ)ﬂol
Energy ratio Donut hammer Cg 0.5-1.0
Safety hammer 0.7-1.2
Automatic hammer 0.8-1.5
Borehole diameter | 65-115 mm Cp 1.0
150 mm 1.05
200 mm 1.15
Rode length -4 m Cp 0.75
4-6m 0.85
&10m 0.95
10-30 m 1.0
>30m <1.0
Sampling method Standard sampler 1.0
Sampler without liners| Cg 1.1-1.3

Figure 2.16. Correction Factors for SPT blow counts, N

(Source: Monnet, 2015)

Determination of Stress — Strain Modulus from SPT for Cohesionless Soil

(2.25)

(2.26)

Standard penetration tests do not give soil stiffness directly because stress and

strain is not measured during test application so that empirical correlations are needed. In
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Table 2.2 related correlations in the geotechnical literature were given for cohesionless
soils but when these formulations are used soil consistency should take be into

consideration.

Table 2.2. Correlations between SPT(Ngo) and Stress - Strain Modulus

Year and Researcher Modulus (kPa) Description
Webb (1969) E; = 484(N + 15) Sand (Below Water Table)
Schmertmann (1970) | E; = 766 N Sand (Saturated)
Bowles ( 1996) E; =500 (N + 15) Sand Normally Consolidated
Bowles ( 1996) E; =300 (N+6) Sandy Silt or Clayey Silt

FHWA (2002) E, = 400N Sandy Silt

1%}

Kulhawy and Mayne | E o =5 for sand with fines; 10 for

—=aN
(1990) a clean sand (NC)

*Bowles used Nss *Schmertmann, Webb, Kulhawy and Mayne used N
FHWA used Neo

[%]

2.4.4 Stress — Strain Modulus from Cone Penetration Test

The other popular in-situ test method is the cone penetration test (CPT). ASTM
D3441 - 98 BS 1377-7:1990 and TS 5744 are some related standards for a cone
penetration test. The cone penetration test was first used in 1934 to determine the location
of the sand layers in soft alluvial clay deposits and the extent of these layers for pile design
in the Dutch. (Erol and Cekinmez, 2014). In the CPT, a cone pushed into the soil layers
with the aid of series of rods and during penetration continuous measurement are taken
by the resistance of cone tip and surface sleeve. The CPT has enhanced versions such as
the piezocone (CPTu), which is shown in Figure 2.17, and seismic cone penetration test
(SCPT). CPTu is used for measurement of excess pore water pressure and SCPT is used
to find dynamic soil parameters such as shear wave velocity (Vs). The main terminology
of CPTu is given in Figure 2.19. Total forces are separated as two parts as cone tip force
(Qc) and friction sleeve force (Fs). These forces can represent qc and fs with using cone
area and surface area. (Robertson and Cabal, 2012).

Like all site investigation tests, CPT has some advantages and disadvantages. The

main advantages of the CPT tests are (a) getting rapid and continuous soil profiling, (b)
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repeatability and reliability of the data, and (c) economic. The disadvantage of CPT are
(a) Requiring skilled operators, (b) not able to take a soil sample and (c) restriction in

gravel/cemented layers.

Friction | Cone
sleeve penetrometer

Pore pressure
filter location:

E— 2

Cone

Figure 2.17. CPTu Probe
(Source: Robertson, 2012)

Figure 2.18 gives numerous semi-empirical correlation’s reliability and
applicability as like that 1 is equal to High, 2 is equal to High to Moderate, 3 is equal to
Moderate, 4 is equal to Moderate to Low, 5 is equal to Low Reliability.

SoilType | D, |w |K.|OCR | S | s | ¢ [EG | M |G | k | &
Coarse- 5 |23 % 5 L B I R O e I O 2
gained
(sand)
Fine- 1 1 1] 11 4 14 | -3 | 24| 2-3 ) 13
grained
(clay)
Where:
D,  Relative density & Peak friction angle
k4 State Parameter Ka  In-situ stress ratio
E.G Young's and Shear moduli Go  Small stram shear moduly
OCE Ower consolidation ratio M 1-D Compressibility
Sy Undrained shear strength 5, Sensitivity

ey Coefficient of consolidation  k Permeabality

Figure 2.18. Reliability of Soil Parameters Obtained from CPT
(Source: Robertson, 2012)
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Figure 2.19. Test Procedure of CPT

Cone penetration tests do not give soil stiffness directly because stress and strain

are not measured during test application so that empirical correlations are needed. In

Table 2.3 related correlations in the geotechnical literature were given but when these

formulations are used, soil consistency should take be into consideration.

Soil profiling and soil type can be obtained from CPT applications by using cone

resistance and friction ratio (fs/qc) (Figure 2.20). Typically, the cone resistance for sands

1s high and for clays is low, (q) is high in sands) and low in clays, and the friction ratio

(Rf). Moreover, the equivalent SPT N¢o values were estimated using Table 2.4, which was

suggested by Robertson (1986).

| T T TTT

g

|. TTTTT

=

I IIIIIII}

CONE RESISTANCE. q_/p,

111 j1il ' il

R
=

s

1
FRICTION RATIO, Ry

Zone

Soil Beliavior Type

@ G O b b b e

Sensitive, fine grained
Crganic soils - clay
Clay — silty elay ro elay
Sile mixtures — elayey silt to silty clay
Sand mixtures — silty sand to sandy silt
Sands — clean sand to silty sand
Gravelly sand to dense sand
Very stiff sand to clayey sand*
Very stiff fine grained*

Figure 2.20. Soil Behaviour Type Chart
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Table 2.3. Correlations between CPT (qc) and Stress - Strain Modulus

Stress-Strain Cone Resistance
Description of Soil Type

Researcher Modulus (kPa) Interval (kPa)
Bowles (1996) | E; = (1to2) q, Sandy Silt or Clayey Silt
Bowles (1996) | E; = (2to4) q, Normally Consolidated Sand
Schmertmann E; = 2q, Axisymmetric cases
(1978) Es =3.5¢, Plain strain cases

E,eq =10t03.0q q. <2MP,
Sanglerat (1972) oed ‘ ‘ ¢ Low Plasticity Silt

E,eq3.0t0 6.0 g, qc. > 2 MP,

E;=15q, q. > 4MPa Sand and Sandy Gravel
Bogdanovi E;=15to01.8q, 2MP, <q.<4MP, Silty Saturated Sand
(1973) E;=18to025q, 1MP, <q. <2MP, Clayey Silt with Silty Sand

E;=25t03.0q, q. <1MP, Silty Saturated Sand

Eyeq = 3.0t08.0q. | q. < 0.7 MN/m? Low Plasticity Clay

Ejeq =2to5¢q 0.7MP, < q. < 2MP, Low Plasticity Clay
Sanglerat (1972) oed ‘ ¢ ‘ ¢ o

Ejeq =10to25q. | q.>2MP, Low Plasticity Clay

Epeq =2.0t06.0q, | q. <2MP, High Plasticity Clay

0.20MP, < q,

Epeq =4.0to 12 < 0.75MP, High Plasticity Cla
Erol (2004) oed dc a g " y y

Epeq = 2.7to4.7q. | 0.75MP, < q, Low Plasticity Clay

< 2.40MPF,

Table 2.4. Formulation for The Equivalent SPT Ngo values (Robertson,1986)

Zone Soil Behavior Type (SBT) %

N a0
1 Sensitive fine grained 2.0
2 Organic soils — clay 1.0
3 Clavs: clay to siltv clay 1.5
4 Silt mixtures. clavey silt & siltv clay 2.0
5 Sand mixtures: siltv sand fo sandy silt 3.0
6 Sands: clean sands to siltv sands 5.0
7 Dense sand to gravellv sand 6.0
8 Very stiff sand to clavey sand* 5.0
9 Verv stiff fine-grained* 1.0
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2.4.5 Stress — Strain Modulus from Pressuremeter Test

The pressuremeter test (PMT) was developed in 1956 by Louis Menard in France.
ASTM D4719 — 07 and BSI BS 5930 are some related standards for pressuremeter test.
PMT results are empirically related to geotechnical characteristic of soil and weak rock
parameters, which are used directly in foundation analysis.

The principal of the PMT is giving pressure in lateral direction and measurement
volume change of cylindrical membrane, which is installed in the ground before giving
pressure. With using pressure and volume change relation soil and weak rock parameters
can be obtained as shear modulus, undrained strength for clays or weak rocks, angle of
shearing resistance for sands, angle of dilation for sands. (Mair and Wood,1987). Table
2.5 shows reliability and applicability of that soil geotechnical parameters’ reliability and
applicability, which are obtained from PMT test results and Figure 2.21 gives schematic
of PMT.

In the test procedure, fixed pressure increments are applied as commonly 15
kN/m? - 50 kN/m? for soft to stiff clays, 50 kN/m? - 100 kN/m? for weak rock and very
stiff clays. Each pressure increment is applied for 15 secs, 30 secs, 60 secs and 120 secs
and volume change is recorded. Three distinct zones are commonly obtained from tests
in the soil, as given in Figure 2.22. The initial curved portion (expansion of membrane)
1s attributed to expansion of the membrane until it touch fully borehole’s sides, the second
curved portion (pseudo-elastic behaviour) has deformation of any softened zone and it is
approximately linear until the starting point of the third curved portion which is in a
plastic condition (plastic behavior)

The shear modulus, G, can be obtained from the slope of the pseudo- elastic

behavior part and the related formula is given below;

V, dp
dv

(2.27)

Where;
G = Shear (Menard) Modulus, Vo= Initial Volume, dp = pressure change, dV =

volumetric change

Pressuremeter modulus can be obtained with Eq. (2.28) and typical pressuremeter

test curve given in Figure 2.23.
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E, =2(1+v)(V, +V, AP/ AV)

Where:

(2.28)

Ep, = Pressuremeter (Menard) Modulus, v = Poisson’s Ratio, Vo + Vi, = Volume

of probe, AV = Volume increase in straight- line portion of test curve, AP = Pressure

increase corresponding to AV volume increase.

It was observed that the settlements found by Menard based on the pressuremeter

modulus were more than the measured real settlements so that a corrected factor (a) is

suggested in Table 2.6. This factor (o) is useful to find stress — strain modulus (E) from

Menard modulus (Em).
E=E_/a

Table 2.5. Geotechnical Parameters from PMT
(Source: Mair and Wood,1987)

consolidation. ¢,

Parameter Clays Sands Weak rocks
MPM 58P PIP (3.4) MPeM SBP PIP (3.4) MPM SBP (5) PIP
In-situ horizomal stress, o, {1} M NfA N/A * N/A N/A N/A
Elastic shear modulus. G N/A N/A
Undrained shear strength, ¢, 2y - . N/A N/A N/A N/A N/A
Pore pressure, u, (3) - {3} (3) e (3) (3) N/A N/A
Angle of shearing resistance. ¢’ (3) (3) {3) - e * N/A N/A N/A
Aagle of dilation, ¢ N/A N/A N/A . - C N/A N/A N/A
Horizontal coefficient of (3) A {3) N/A N/A N/A N/A N/A N/A

(2.29)

(1) MPM only suitable for stiff clays with linear elastic response and certain rocks. (2) Only suitable for certain stiff clays and rocks

(3) Little or no experience. (4) Greatest advantage of PIP is offshore when MPM and SNP are neither nor feasible or economic

(5) There is very little experience with SBP in weak rocks, Highest potential indicated by *** and N/A = Not applicable
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Figure 2.21. Schematic of PMT
(Source: Mair and Wood,1987)
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Figure 2.23. Typical Pressuremeter Test Curve

Table 2.6. Menard Factors

Sand and
Peat Clay Silt Sand Gravel
Soil Type
% D e % % f p¥
E /pf o« E/p o E/pf o E/pf o EpE o«
Over— > 16 1 > 14 2/3 > 12 1/2 = 10 1/3
consolidated
Normally 1 9-16 2/3 8-14 1/2 7-12 1/3 6-10 1/4
consolidated
Weathered -
and/for 7-9 1/2 1/2 1/3 /4
remoulded
Rock Extremely Slightly fractured
fractured Other or extremely
weathered
o= 1/3 o= 1/2 o= 2/3
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2.4.6 Poisson’s Ratio

It is difficult to determine the Poisson ratio in the laboratory. Poisson’s ratio is
defined as the ratio of axial strain (&y) to lateral strain (er) and it is used commonly for
settlement analysis of foundation. Poisson’s ratio can be obtained from triaxial test or
related charts. Mayne and Poulos (1999) assert that drained Poisson’s ratio (v’) for elastic
approach between 0.1 to 0.2 for all soil types and undrain Poisson’s ratio (v ) for fine

soils is equal to 0.5. Table 2.7 shows Poisson’s ratio values for different soil types.

v=e, /g, (2.30)

Table 2.7. Poisson's Ratio for Soil Type
(Sources: Bowles,1996)

Clay, saturated 0.4-0.5

Clay, unsaturated 0.1-0.3

Sandy clay 0.2-0.3

Silt 0.3-0.35

Sand, gravelly sand ~0.1-1.00
commonly used 0.3-04

Rock 0.1-0.4 (depends somewhat on

type of rock)

Loess 0.1-03

Ice 0.36

Concrete 0.15

Steel 0.33

2.5 Stress Increment Methods

Settlement calculations are basically related to the stress-strain relationship of
soils. Stress increment in a soil layer is happened due to adding load of external factors
such as buildings, bridges, and embankments. These stress increments decrease
throughout soil depth and settlement calculations start the point where stress is applied
and finish the point where stress is ended. In this part three methods (Boussinesq's
Method, Westergaard’s Method and 2:1 Method), which are commonly used for

calculation of stress increment in any depth of soil stratum, is presented.
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2.5.1 The Boussinesq's Method

The Boussinesq's Method assumes the soil throughout the depth is semi-infinite,
homogenous, isotropic and weightless. In 1885 Boussinesq solved the decreasing of a
point load, which is applied on the surface, throughout the depth of soil, which is the
semi-infinite, homogenous, isotropic and weightless, with depth position. His equation
based on the Theory of Elasticity. Not only a point load on the surface, uniform loads on
the rectangular and circular areas can be solved with the derivation of Boussinesq’s

Method (Bowles,1996).

Vertical Stress Due to Surface Loading

Figure 2.24 shows a rectangular area of length L and width B subjected to a
uniform vertical load of q per unit area. The vertical stress increase at point P, which is

located at a depth z below the rectangular area, can be obtained by using Eq. (2.31),

c,=q.1 (2.31)
Where;
1 | 2mn(m® +n*> +1)"? m* +n° +2 L 2mn(m* +n* +1)"
[=— 2 2 2 2 2 2 +tan 2 2 2 2
Az | m“+n"+mn - +1 m +n" +1 m +n" —mn +1
B L
m= — n= —
z z

2.5.2 Westergaard’s Method

In 1938 Westergaard solved the decreasing of a point load, which is applied on
the surface, throughout the depth of soil. In Westergaard solution soil is not assumed
homogenous therefore thin rigid reinforcements are placed in an elastic solid medium.
This assumption represents stratified soils, where soft layers are strengthened by stiff or
dense soil layers. Therefore, this method can be used for pavement or layered with clay

and sand stratum of soil.
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Vertical Stress Due to Surface Loading

A rectangular area of length L and width B subjected to a uniform vertical load of

g per unit area. The vertical stress increase at a depth z below the rectangular area, can be

obtained by using equation (2.32),

05
_ 1 1 1
o, = %{cot ! {772 (W +?j +n' [m2n2 j:| } (2.32)

=
I

&)
<
N | oy
NN

2.5.3 2:1 Method

2:1 method is an approximated method to determine the increase in stress with
depth caused by the construction of a foundation. The increase in stress at depth z is given

by using Eq. (2.33) and the representative figure is given below.

o= doBL (2.33)
(B+z).(L+2)
f L b

1Uniform vertical load.. %+ ++ -
¥ - f . e oa M
17, glunitarea -t a0

-
------

I Pio, 0, z)

Figure 2.24. Area Load on the Surface
(Source: DAS, 2013)
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CHAPTER 3

GEOTHERMAL POWER PLANT PROJECT

3.1 Introduction

Geothermal power plants product energy with using hydrothermal resources
which include high water vapor pressure in the temperature range between 120° C and
320° C. The geothermal energy resources are renewable and are seen in 10% of earth
shows that it has vital importance.

The geothermal power plant project is placed in Aydin, Turkey. The power plant
project has 6 production wells and 6 re-injection wells. The energy production capacity
of the project is 25MW and total investment cost is amount 84 million USD.

In this chapter, first, the area of the investigation is introduced with the geology
of the project. Than performed site investigations and laboratory experiments are

presented in detail.
3.2 Investigation of Project Area
Investigation area is 11 km away from Aydin province. Investigation area is at the

south of Izmir — Aydin Highway, at the northwest of Acarlar Neighborhood and
Osmanbiikii Neighborhood. Location of the project is shown in Figure 3.1 and Figure 3.2.

Figure 3.1. Location of The Project (Source: Google Earth Pro)
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Figure 3.2. Location of The Project (Source: Google Earth Pro)

3.2.1 Environmental Information

In the study area, the characteristics of the temperate is Mediterranean climate,
which has warm and rainy winters as well as hot and dry summers. The rains in this region
are mostly downpours and short - heavy rainfalls. According to meteorological

measurements, the average annual temperature is about 17.1 °C

3.2.2 Project Information

Production energy in the geothermal power plant comes true in five steps which
are given in Figure 3.3. For settlement analysis the main part of the project is Air Cooler
Condenser and Turbine Generator part due to having static and dynamic heavy loaded

structural and mechanical elements.

Injection
well

5

Figure 3.3. Organization Chart of the Geothermal Power Plant
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The Air Cooler Condenser and Turbine Generator’s area is around 7700 m?2.
Vapor pressure, which has high temperatures, is transported with the help of pipelines.
Shallow foundation (mostly raft foundation) is preferred to avoid differential settlement
of pipelines. The project’s raft foundation height is 90 cm beneath of Turbine — Generator
Part. The maximum loaded element is 1615 kN as dead load. Detailed project loads are

given in Chapter 4.

Figure 3.4. Air Cooler Condenser and Turbine-Generator

3.3 Geology of The Project Area

3.3.1 General Geology

A parcel of Menderes, which has complex mass nappe that is formed by
compressive tectonic of Ge¢ Alpin, is exposed in the west of Anatolia. This complex
crystal is separated into two main parts, namely, Pan — African and Paleozoic Early.
Paragneisses and mica schists are seen in the main parts of Parcel and Menderes. In
Cenozoic of Erathemn mid Miocene is formed by marly sandstone, top Miocene and
Miocene is formed by sandstone and claystone, in quaternary of erathemn Pleistocene are
formed by gravel and sandstone and Holocene is formed by alluvial deposit (Siniflama

and Kurallar1,1986). Stratigraphic section of the project area was given in Figure 3.5.
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Figure 3.5. Stratigraphic Section of Project Area

3.3.2 Engineering Geology

The surveying area drilling logs works shows that the whole project area has old
quaternary alluvium. The old quaternary is formed by the accumulation of alluvial
deposit (sand, silt and clay) which is transported by Buyuk Menderes and its streamlets.

In surveying area drilling works shows that yellowish brown, brownish grey and
greenish grey mid — high plastic silty clay (CL), greyish brown mid dense silty sand (SM)
and brownish grey, greenish grey, nonplastic clayey sandy silt (ML) are seen. SPTN
values are commonly 3 — 13 for first 7 m — 10 m depth and 13 — 44 for remained depth.

The altitude above sea level of the project area is 23 m — 24 m. The ground water

level is seen at the depth of 1.8 m and 2.0 m from ground level. Depending on the
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geological conditions, the site has not been observed to have a large topographic anomaly

or mass movement (landslide, soil flow, rockfall, etc.) is not observed in the site.

3.4 Site Investigation Tests and Laboratory Experiments

The site investigation tests include Standard Penetration Test, Cone Penetration
Test, Pressuremeter Test and Plate Load Test. The disturbed and undisturbed samples
were collected to perform consolidation tests and physical tests at the laboratory. The
physical properties of the soils were obtained by performing tests on disturbed samples.
The consolidation tests were performed on undisturbed samples. In this part of Chapter
3, the details of in-situ tests and laboratory tests and essential soil parameters, which were

obtained from these tests and experiment for settlement analysis, are presented

3.4.1 Standard Penetration Test

In Chapter 2 the procedure and uses of the standard penetration tests were given
with details. In this part of Chapter 3 implementation of the standard penetration tests and
its results were given. According to the layout plan of boreholes which are given in Figure
3.6, 9 drilling works were done with SPT for each 1.5 m depth in the ACC and Turbine
Generator Zone. Totally, 264.5m drilling works were done. The depth of the boreholes
was between 26 m and 30.5 m, the number of the SPT was 168 and 7 undisturbed samples
were collected. The tables in Appendix A2 show the corrected N values at 1.5m depth

intervals.

Figure 3.6. The Layout Plan of Boreholes
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Figure 3.7. Standard Penetration Test in the Geothermal Project

These number of blows (Neo) were used to determine the consistency and relative
density (D;) of soils. Terzaghi and Peck suggests Table 3.1 and Table 3.2 for
determination of soil consistency for clays and relative density for granular soils,
respectively. Thus, the consistency of clay and relative density of granular soils were
estimated using the SPT-N data. SPT logs were given in Appendix Al - A2.

As a result of the drilling works, alluvial ground layers formed by alternation of
silt, clay and sand units are located along the depths of the boreholes. It was generally
observed in yellowish brown, brownish gray, and greenish gray. The clay unit, which had
a wide spread in the field, was yellowish brown, grayish brown and brown. As a result of
the USCS classification, it was determined that the clay units have low plasticity (CL),
medium plasticity (CI) and high plasticity (CH). In general clays include silt layers and
sand layers. The silt unit observed in the study area was gray and brown. According to
the USCS classification, it was determined that silt units were medium, high plastic and
non-plastic in ML and MI types. Gray silt units were clayey, sandy, and in some cases
had fine sand layer, while brown silt units were observed as sandy, clayey. Sand units
were observed in greenish gray, grayish and brownish gray colors. Sand units contain silt

and clay and there were clay layers in the unit. In addition, yellowish and blackish traces
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were observed in brownish sand units. According to the USCS classification tests, SM,

SP-SM type sand units were determined.

Table 3.1. The Relation Between Ngo and Consistency
(Source: Terzaghi and Peck,1967)

q. (kPa)
Consistency Very Soft Soft Medium Suff Very Stiff Hard
Nia <2 24 4-8 B-15 15-30 =30
G <25 25-50 50100 100-200 200400 =400

Table 3.2. The Relation Between Ngo and Relative Density
(Source: Terzaghi and Peck,1967)

No. of Blows, Ny Relative Density

(= Very loose
4-10 Lonose
10-30 Medium
30-50 Dense

Ower 50 Very dense

3.4.2 Cone Penetration Test

In Chapter 2 the procedure and uses of the cone penetration tests (CPT) were given
in details. In this part of the thesis implementation of the CPT tests and its results were
given. CPT tests layout plan were given in Figure 3.8. Two CPT tests were performed at
Air Cooler Area (ACC) and Turbine Generator Region. CPT1 at a depth of 36m test was
conducted at Turbine Generator Region. Cone resistance and skin friction results,
dynamic pore pressure, equivalent SPT Ngo value and soil classification detailed results

were given in Appendix B1 and Appendix B2.
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Figure 3.9. Application of CPT in The Geothermal Project

3.4.3 Pressuremeter Test

In Chapter 2 the procedure and uses of the pressuremeter tests (PMT) was given
with details. Normally, only 1 PMT test was conducted in the ACC — Turbine generator
parts (labeled as SK 7). However, SK 14, SK 16 and SK 19-20 pressuremeters tests results
were also given because same alluvial soil types were seen in all regions of the
Geothermal Power Plant Project. Stress — strain modulus and limit pressure for each PMT

were given in Appendix C.
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Figure 3.11. Application of PMT in The Geothermal Project

3.4.4 Plate Load Test

In Chapter 2 the procedure and uses of plate load tests (PLT) were given in detail.
In this part of the chapter implementation of the load test and its results (applied pressure
and settlement values) are given. Only one plate load test was applied for high quality
filled material which underlies the foundation of the power plants in ACC Turbine

Generator area. Three 30 mm thick circular plates with a diameter of 450 mm, 600 mm
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and 762 mm were placed at the top of the fill material and a 30-ton weight excavator was
used as a load source and plate load test were applied for fill material. The photo of the

PLT was given in Figure 3.12.

The pressure was increased up to 2.1 t/m? which is three times higher than
maximum service stresses and settlement readings were given in Table 3.3 and the graph

of applied pressure — plate settlement was given in Figure 3.13.

Figure 3.12. Plate Load Test in The Geothermal Project
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Figure 3.13. The Graph of Applied Pressure - Plate Settlement
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Table 3.3. Plate Load Test Readings

Pressure Settlement Pressure Settlement

(kg/cm?) (mm) (kg/cm?) (mm)
0.00 0.00 0.70 3.25
0.40 0.16 1.10 3.44
0.70 0.55 1.40 3.60
1.10 1.25 1.80 3.78
1.40 2.10 2.10 3.93
1.80 3.33 1.40 391
2.10 3.67 0.70 3.73
1.40 3.65 0.00 2.92
0.70 3.50
0.00 2.67
0.40 3.00

In Appendix D, PLT results were given in details. Stress — strain modulus for high

qualified fill material under raft foundation was calculated as 57000 kPa.

3.4.5 Consolidation Test

In Chapter 2 the procedure and uses of consolidation tests were given with details.
In this part of Chapter 3 implementation of the consolidation tests and its results were
given. Totally, three undisturbed samples were taken during borehole drilling and
consolidation tests were performed on these samples. The first undisturbed samples
obtained from SK 2 at 6 m depth. The consolidation test result and related graph were

given in Table 3.4 and in Figure 3.14.
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Figure 3.14. Pressure Void Ratio Graph for SK 2 at 6 m
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Table 3.4. The Consolidation Test Results for SK 2 at 6 m

Applied Pressure | Settlement Void my Cc
(kg/cm?) (cm) Ratio (cm?/kg)
0 0 0.921 0.22
0.25 0.070 0.854 0.140
0.50 0.122 0.804 0.107
1 0.183 0.745 0.065
2 0.260 0.671 0.042
4 0.348 0.586 0.025
8 0.425 0.513 0.011
1 0.435 0.503
0.25 0.392 0.544

The first undisturbed samples obtained from SK 2 at 6 m depth. The consolidation

test result and related graph were given in Table 3.5 and in Figure 3.15.
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Figure 3.15. Pressure Void Ratio Graph for SK 6 at 16.5 m

Table 3.5. The Consolidation Test Results for SK 6 at 16.5 m

Applied Pressure | Settlement Void my Cc
(kg/cm?) (cm) Ratio (cm*kg)
0 0 0.794 0.182
0.25 0.07 0.73 0.142
0.5 0.132 0.675 0.128
1 0.19 0.623 0.061
2 0.262 0.559 0.039
4 0.345 0.484 0.024
8 0.461 0.38 0.017
1 0.438 0.401
0.25 0.388 0.445
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The third undisturbed samples obtained from SK 25 at 4.5 m. The consolidation
test result and related graph were given in Table 3.6 and in Figure 3.16.
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Figure 3.16. Pressure Void Ratio Graph for SK 25 at 4.5 m

Table 3.6. The Consolidation Test Results for SK 25 at 4.5 m

Applied Pressure Settlement Void Ratio mv Cc
(kg/cm?) (cm) (cm?/kg)
0 0 0.923 0.26
0.25 0.08 0.844 0.164
0.5 0.114 0.813 0.067
1 0.173 0.757 0.0526
2 0.244 0.688 0.039
4 0.378 0.559 0.038
8 0.494 0.448 0.0179
1 0.456 0.484
0.25 0.401 0.445

3.4.6 Soil Experiments

The physical properties of the soils were obtained from the disturbed samples
collected from ACC and Turbine Generator Region’s boreholes (SK1 — SK9). The
plasticity index (PI), soil classification (USCS), water content (w), unit weight (g) and
specific gravity (Gs) of the soils were determined. In Table 3.7 the physical properties of
soils collected from SK1-SK3 were given. In Table 3.8 the physical properties of soils
collected from SK4-SK6 were given. In Table 3.9 the physical properties of soils
collected from SK7-SK9 were given.
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Table 3.7. The Physical properties of the soils SK1 — SK 3

Atterberg Limits Sieve Analysiz
Borehole Sample Depth wn - o Classml:.atmn
No of Soils
LL PL Pl 10+ | 200 ()
S5K-1 SPT 3.00-3.45 | 35.3 52.1 | 20.6 | 31.5 [+ 95.8 CH
5K-1 up 4.50-400 | 32.1| 18.2 M.P MN.P MN.P 0 9.2 5P-5M
S5K-1 SPT 9.00-9.45 | 25.2 M.P N.P N.P [+ 47.6 5M
5K-1 SPT [16.50-15.84 44.5 55.4 28 31.4 0 58.6 CH
S5K-1 SPT  [21.00-21.44 31.5 37.2 | 189 | 183 | 0.33 [ 93.73 Cl
5K-1 SPT [25.50-25.8H 33 58.4 | 247 | 23.7 0 27.7 CH
S5K-1 SPT  [28.50-28.84 28.83 M.P N.P N.P [+ 62.2 ML
5K-2 SPT 2.00-2.45 | 30.6 516 | 20.1 | 215 0 a2 CH
5K-2 U 600650 | 303 | 181 | 2.7 343 | 21.3 13 [+ 97.2 CL
5K-2 SPT 5.00-2.45 | 25.3 M.P MN.P MN.P 0 34.6 5M
5K-2 SPT  [15.00-15.44 28.3 M.P N.P N.P 6.7 44 5M
5K-2 SPT  [21.00-21.44 31.4 264 | 13.2 | 17.2 0.3 96 Cl
5K-2 SPT  [27.00-27.44 34.6 33.4 20 E 0.3 93 CL
5K-3 SPT 2.00-2.45 | 23.7 29 20 9 0 93.7 CL
5K-3 SPT 9.00-2.45 | 33.3 37.3 | 21.9 | 154 0.2 90.7 Cl
5K-3 SPT [13.50-12.89 238 37.5 | 23.2 | 142 0 97.9 Cl
5K-3 SPT  [16.50-16.824 32.83 459 | 20.6 | 29.3 [+ 81.3 Cl
5K-3 SPT  [21.00-21.44 25.3 204 | 21.4 2.5 0 52.8 CL
5K-3 SPT  [28.50-28.9Y 30.9 31.2 21 10.1 [+ 83 CL

Table 3.8. The Physical properties of the soils SK 4 — SK 6

Atterberg Limits Sieve Analysis
Borehole Sample Depth wn - G Classlfu:.atmn
No of Soils
LL PL Pl 10+ | 200 (<)
SK-4 SPT 1.50-1.85 | 31 514 | 203 | 311 0 90.3 CH
SK-4 SPT 6.00-6.45 | 32.2 52.4 | 202 | 314 0 90.1 CH
SK-4 SPT 5.00-3.45 | 43.2 451 | 183 | 2628 0 58.1 Cl
SK-4 up  [12.00-12.5Q 27 | 185 N.P MN.P MN.P 0.16 | 288 5M
SK-4 5PT  |18.00-18.45 25.7 N.P MN.P MN.P 0 51.6 ML
SK-4 SPT  |21.00-21.45 23.4 N.P MN.P MN.P 0 20.4 5M
5K-4 5PT  |25.00-25.45 27.3 32.4 | 17.3 15 [t 91 CL
5K-5 5PT 1.50-1.95 | 36.8 486 | 184 | 30.2 | 0.14 | 33.1 Cl
5K-5 5PT  |10.50-10.85 35.82 2.7 a7 21 16 [t 99.5 Cl
5K-5 5PT  |16.50-16.95 44.6 66.2 | 24.1 42 [t 98.9 CH
5K-5 S5PT |22.50-22.85 211 N.P N.P N.P 0 81.5 ML
5K-5 5PT |25.50-25.95 25.2 N.P N.P N.P 032 | 77.1 ML
5K-5 5PT |30.00-30.45 30.7 N.P N.P N.P 0.14 23 ML
SK-6 SPT 1.50-1.95 [ 37.5 56.7 | 238 | 328 0 99 CH
SK-& SPT 4.50-4.85 | 25.6 N.P MN.P N.P 0 7.8 SP-5M
5K-B 5PT  J10.50-10.85 37.4 44.9 19 259 0 87.3 Cl
5K-B uD  |15.50-17.00 42.8 | 18.1 55.1 4 21 0 99.3 CH
5K-B 5PT |18.50-18.85 32.5 27 12.32 | 187 0 54.5 Cl
5K-B SPT  |21.00-21.45 28.4 N.P MN.P MN.P 0 44.4 SM
5K-6 5PT |25.50-25.85 35.6 58.7 | 26.3 | 32.4 [t 93.2 CH
5K-6 5PT  |30.00-30.45 25.6 N.P MN.P M.P [t 59.1 ML
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Table 3.9. The Physical properties of the soils SK 7 — SK 9

Atterberg Limits

Sieve Analysis

Borehole Sample Depth wn - Ge Classml:-atmn
No of Soils
LL FL Fl 10+ | 200 (<)
SK-7 SPT 1.50-1595| 31 52 138 | 32.2 | 0.22 | 386 CH
SK-7 SPT 450-4595 | 32.2 52.2 | 208 | 313 0 99 CH
SK-7 SPT 5.00-9.45 | 43.2 376 | 23.4 | 141 0 85 Cl
SK-7 up  [15.00-15.4§ 27 | 17.8 MN.P N.P N.P 0 75.6 ML
SK-7 SPT |18.50-19.9§ 25.7 MN.P N.P N.P 0 73.2 ML
SK-7 SPT |24.00-24.445 23.4 66.2 | 23.1 | 431 [t 87 CH
SK-7 SPT  |30.00-30.45 27.3 M.P N.P N.P Q 75 ML
SK-B SPT 3.00-3.45 | 36.8 44 21.1 | 229 Q 95.1 Cl
SK-B SPT 7.50-7.95 | 35.8 34.2 | 17.1 17 Q 91.8 CL
SK-8 SPT  |10.50-10.34 446 27 26.3 18 8.2 0 73.1 CL
SK-8 up  [15.00-15.44 21.1 | 17.8 N.P N.P N.P 0 94.1 ML
SK-8 SPT  |21.00-21.4§ 25.2 46.2 | 17.4 | 288 0.5 98.7 Cl
SK-8 SPT  |24.00-24.45 30.7 30.4 20 10.4 0.4 97 CL
SK-8 SPT 4.50-4595 | 37.5 32.6 | 187 | 115 0.5 82.7 CL
SK-8 SPT |10.50-10.84 25.6 37.1 | 206 | 164 0 99.3 Cl
SK-8 SPT  |16.50-15.84 37.4 §5.2 | 241 | 411 0 58.8 CH
5K-9 UD |25.50-25.94 42.8 M.P N.P MNP Q 23.4 5M
5K-9 SPT  |20.00-30.49 32.5 M.P N.P N.P 0.2 84.8 ML
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CHAPTER 4

SETTLEMENT ANALYSIS OF THE RAFT FOUNDATION

4.1 Introduction

Vapor pressure, which has high temperatures, is transported with the help of
pipelines in the geothermal power plant project. Pipes are affected by internal and external
factors such as temperature, pressure and settlement of foundation and these cause to extra
stress in pipelines. Especially, pipe stresses must be limited for safety concepts in the

turbine and generator area, where electricity is produced.

Settlement problem is considered as total settlement and differential settlement
from the point of geotechnical engineering. Shallow foundation (especially raft
foundation) is selected to decrease settlements due to decreasing structure stress and
balancing hydrostatic uplift pressure. In this project raft foundation is selected with height

is 90 cm beneath of Turbine — Generator Part.

In this chapter, settlement analysis of the foundation in Turbine — Generator Area
was performed with using soil stiffness parameters (stress — strain modulus and Poisson’s
ratio) soil stratum information and service loads. Settlement analyses were performed
with Settle 3D software based on 1-D stress — strain relation and with Plaxis 3D software
based on advanced numerical continuum models (Mohr Coulomb Soil Model and

Hardening Soil Model with Small Strain Stiffness)

4.2 Soil Properties

In this part of the chapter soil properties were determined with the correlations
detailed in Chapter 2 and the results of field tests and laboratory experiment detailed in
Chapter 3. In the geothermal area, there were three types of soil (silty sand, sandy silt and

silty clay), and one types of qualified fill material (PMT).
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4.2.1 Stress Strain Modulus

In real soil behavior, commonly observed phenomena of increasing stiffness
modulus with increasing confining stress or increasing depth but related some stiffness
formulations (SPT correlations) in Chapter 2 does not take account of this. Soil
consistency also is related to the stress level of soil for normally consolidated soil.
Consistency is increased with depth so that typical values of stress — strain modulus and
consistency for cohesionless and cohesive materials are given in Table 4.1 and Table 4.2.
These tables were used to check stress — strain modulus from correlations that were given

in Chapter 2.

Table 4.1. Stress — Strain Modulus of Cohesionless with Consistency
(Source: Kezdi 1974 and Prat et al. 1995)

UsSCS Description Loose Medium Dense
W, 3W Gravels/Sand well-graded 30-30 80-160 160-320
SP Sand. uniform 10-30 30-50 50-80
GM, SM Sand/Gravel silty 712 12-20 20-30

Table 4.2. Stress — Strain Modulus of Cohesive with Consistency
(Source: Kezdi 1974 and Prat et al. 1995)

USCS  |Description VY SO0 |ytegium |50 YEY [harg
ML Silts with slight plasticity 25-8 10-15 15 -40 4080
ML CL  |Silts with low plasticity 15-6 510 10 - 30 30 -60
oL S';gt?c}gt“ low-medium 05-5 5.3 530 30-70
CH Clays with high plasticity 035-4 |47 7-20 20-32
oL Crganic silis 05-5

CH Crganic clays 05-4

Atterberg limits show that silty sand layers were non plastic (NP) so that the silty
sand layers were considered as cohesionless. SPT and CPT correlations were used to

determine stress-strain modulus at several depths. Figure 4.1a shows the stress-strain
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modulus with depth using the SPT test data with correlations Webb (1969), Bowles
(1996), Schmertmann (1970), Kulhawy and Mayne (1990) and Figure 4.1b shows the
stress-strain modulus with depth using the CPT test data with correlations Bowles (1996),
Schmertmann (1978), Bogdanovi (1990). The consistency of sand layers, which were
classified as SP and SM, were loose and medium dense soils. SPT and CPT stiffness
results for silty sand materials were almost compatible with expected stiffness in Table
4.1.

Atterberg limits show that sandy silt layers were non plastic (NP) so that the sandy
silt layers were considered as cohesionless. SPT and CPT correlations were used to
determine stress-strain modulus at several depths. Figure 4.2a shows the stress-strain
modulus with depth using the SPT test data with FHWA (2002), Bowles (1996), Kulhawy
and Mayne (1990) correlations and Figure 4.2b shows the stress-strain modulus with
depth using the CPT test data with Bowles (1996), Bogdanovi (1990) and Sanglerat
(1972) correlations. The consistency of silt layers, which were classified as ML, were
stiff to very stiff. SPT and CPT stiffness results for silty sand materials were almost
compatible with stiffness in Table 4.1.

For cohesive soil obtaining drained stress strain modulus is complicated because
in-situ tests are quick but cohesive soil needs time to dissipate water; otherwise, undrained
condition affect the test results. Although consolidation tests are suitable for drained
stiffness parameters, generally obtained stiffness parameters value are lower than actual
value due to difficulties in obtaining undisturbed samples, working on very small volume
of soil particles and operator errors. When pressuremeter test results were taken into
consideration as undrained stress — strain modulus, these values are four times greater
than consolidation drained stress — strain modulus but for normally consolidated medium
clays undrained / drained stress — strain modulus ratio is expected to be in the value range
of 1.07 to 1.34 (Truty and Obrzud, 2011). As a result, CPT results were used to make
comparesion. Oedometric stress — strain modulus is obtained from multiplying cone
resistance with a factor for cohesive soil (Table 2.3). The a factor ranges from 2 to 12
and it is not consensus. The a factor was taken as 7 to be compatible with undrained stress
— strain modulus and settlement results, related work was given in Chapter 5. In this part
PMT results was given in Figure 4.3 and oedometric stress — strain modulus from CPT
and Consolidation Test were given in Figure 4.4. According to PMT and CPT results,
undrained / drained stress — strain modulus ratio was compatible with the value range of

1.07 to 1.34.
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Table 4.3. Fill Material Stress Strain Modulus

Deformation Module: *Ex=[ 0,75 xD x ( AG/ AS ) ], ke/em®

Oz Ty Ag . 3 AS *E. *Ea
keflem” | keflem” | keflem’ cm cm cm Mpa Mpa
*E., 1.80 1.10 0.70 0.333 0.263 0.070 £7.00
*E. 1.40 0.70 0.70 0.363 0.330 0.015 266.00
EI.'L'IEl'l = -I-,ﬁ:r

4.2.2 Compressibility Index

Compressibility indexes were obtained from consolidation test and related
Terzaghi and Peck’s (1967) correlations which were given in Chapter 2. Mean
compressibility index data, which were obtained by using liquid limits and water contents,

were given in Figure 4.5. Consolidation tests results are compatible with correlation.

Silty Clay Compressibility Index

o
'S
1

o
o«

-~ Terzaghi and Peck (1967)

-& Azzouz et all (1976)
-+ Consolidation Test

10 20 30
Depth (m)

Compresibility Index
_ﬂ (=]
- (]

(=]
o

(=]

Figure 4.5. Compressibility Index of Silty Clay
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4.2.3 Void Ratio

Direct measurement of void ratio in the laboratory is a difficult task. Therefore,
void ratios for silty clay were obtained from undisturbed samples by using specific gravity
and water content for fully saturated case. The void ratio values in the range of 0.80 to

0.96 for silty clay were given in Figure 4.6.

Void Ratio - Depth Graph for Silty Clay
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Figure 4.6. Void Ratio for Silty Clay

4.3 Project Information for Settlement Analysis

In this part of Chapter 4 determination of stratum of the soil in the project area
and introduction service loads of the project is given. These data directly affect the

settlement analyses.

4.3.1 Stratum of the Soils in the Project

A stratum of the soil in the project gives useful information such as boundary
condition (drain or undrain) for consolidation, determination of soil consistency which
affect the selection of settlement types (initial settlement, primary settlement, and
secondary settlement), selection of soil stiffness parameters (stress — strain modulus and
Poisson’s ratio). The plan view of the A-A cross, the cross sectional views of Section A-
A in Figure 4.7. The side view of A-A cross section was given in Figure 4.8. Logs of
borehole SK 1, SK6 and SK 5 were used. The representative soil profile with soil stiffness

parameters was given in Figure 4.9. For cohesive layers, void ratio also was given.
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It is clearly seen from Figure 4.8 that first depth of 25 m silty clay layers were
divided with layers of silty sand and sandy silt and between depth of 25 m a silty layer
was encountered. Due to the existence of sand and silty layers at silty clay consolidation

time of clays is supposed to be short.

4.3.2 Service Loads of the Project

In the project, structural and mechanical elements loads, which is shown in Figure
4.10, divided as Recuperator Loads, Air Cooler Condenser Loads, Pipe Support Loads,
Heat Exchanger Loads, and Turbine and Generator Loads. For settlement analyses death

loads, which were given in between Table 4.4 and Table 4.8.
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Figure 4.10. Structural and Mechanical elements loads

Table 4.4 Heat Exchanger Loads

Description Index Fy [N]
Condensate  Separator | CS1 -34,777.9
Tank CS2 -32,777.9
Condensate  Separator | CS3 -31,254.5
Tank CS4 -30,254.5
Preheater P1 -583,432

P2 -548,201
Preheater P3 -602,720
P4 -590,436
Vaporizer V1 -1,377,466
V2 -1,615,961
Vaporizer V3 -1,359,876
V4 -1,435,348
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Table 4.5. Air Cooler Condenser Loads

ACC Load Case Fx [N] Fy, [N] F, [N]
AC1/5 TDW -21,128.4 -188,294.3 -15,640.2
AC1/6 TDW -21,120.7 -186,485.3 -14,744.9
AC1/7 TDW -21,070.3 -187,332.6 -15,184.5
AC1/8 TDW -21,114.1 -188,304.5 -15,706.0
AC1/9 TDW -20,960.7 -185,374.0 -15,091.4
AC1/10 TDW -21,134.9 -188,082.8 -15,197.0
AC1/11 TDW -21,116.5 -186,292.8 -14,661.6
AC2/5 TDW -24,703.1 -168,406.2 -14,192.3
AC2/6 TDW -24,697.0 -167,019.3 -13,504.6
AC2/7 TDW -24,611.0 -167,841.1 -13,847.5
AC2/8 TDW -24,674.9 -167,872.5 -14,023.2
AC2/9 TDW -24,373.6 -166,074.0 -13,705.4
AC2/ 10 TDW -24,741.6 -168,596.3 -13,960.1
AC2/11 TDW -24,693.2 -166,729.5 --13,365.6
Table 4.6. Turbine and Generator Loads
L (Normal)
Description Mark
Fx [N] Fy [N]
. T1 -2,893 -40,972
Turbine L1 T2 2,893 | -13,916
Turbine L2 T3 -2,893 -40,972
T4 -2,893 -13,916
G1 -12,115 -102,110
G2 -12,115 -137,110
G3 -12,115 -150,110
Generator G4 -12,115 -87,110
G5 -12,115 -72,110
G6 -12,115 -73,110
G7 -12,115 -78,110
G8 -12,115 -69,110
L1 Feed Pump FP1-2 11,139 ~50,890
8,394
L2 Feed Pump FP3-4 10,210 38,647
10,718
Generator Cooling GC 129 -1,350
Pumps
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Table 4.7. Pipe Support Loads

Pipe Supports | Load Case Fx(N) Fy(N) F,(N)
S1 TDW 0 -13,424 -110
S2 TDW 205 -3,026 -524
S4 TDW -861 -35,286 -1,860
S7 TDW 5,494 -36,698 6,790
S8 TDW -49,722 -77,529 -29,642
S9 TDW 184 -2637 -632

S16 TDW -5,283 -59,803 16,916
517 TDW -2,114 -31,845 9,436
S34 TDW -1,766 -75,049 2,462
S41 TDW 5,963 -25,125 -2,186
S42 TDW -1,006 -11,854 843
S46 TDW -23,178 -55,208 66,217

Table 4.8. Recuperator Loads

Recuperator | Load Case Force

FxN F,N F.N
R1 TDW 1,171.6 -184,926.0 0.0
R2 TDW -1,1663 -184,869.1 -0.7
R3 TDW -22.4 -4,020.5 -76.5
R4 TDW -23.1 -4,343.1 79.4
R5 TDW 1,219.4 -187,205.0 -7.9
R6 TDW -1,179.1 -186,422.9 5.8

4.4 Settlement Analysis with 1D (Vertical) Stress — Strain Relation

In geotechnical literature many methods can be used for settlement analysis,
however, many of methods are based on homogenous soil types such as only sand layer
or clay layer. For example, Schmertmann (1977) developed a settlement analysis and
influence factor for sand layers. Woefully, most of the cases stratums are formed with
different soil types. In this project, silty clay layers are divided by sandy silt layers and
silty sand layers. For such a multilayer (non-homogenous) soils using vertical stress strain

relation with convenient stress distribution factor such as Boussinesq’s method can
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provide closed solution for settlement analysis. In chapter 2, detailed formulations are
based on vertical stress strain relation for elastic and consolidation settlement and next
part of this chapter settlement analyses with vertical stress strain relation were done with

Settle 3D Software.

4.4.1 Settle 3D Software

Settle 3D is a user friendly software for analysis of vertical consolidation
settlement, foundation settlement, and embankment settlement analysis due to easily
creation of complex soil stratum, selection of loading conditions, and obtaining results in
3D. Moreover, construction stages can be defined, time intervals can be used for primary
and secondary settlement analysis and pre-load fill height or required time is obtained
with back analysis option.

Although Settle 3D makes sense using 3D stress strain relation, the software uses
only 1D vertical stress strain relation but Settle 3D take into consideration 3D effects such
as using modified stress strain modulus with Eq. 2.22, using loads effects in 3D format

and using 3D non-homogeneous soil stratums.

4.4.2 The Selected Soil Parameters for Settle 3D Software

In the geothermal area, there were three types of soil (silty sand, sandy silt and
silty clay), and one types of qualified fill material (PMT). It is pointed out an important
matter that soil physical and stiffness properties such as void ratio, compressibility index,
stress strain modulus and Poisson’s ratio can change with depth for the same type of soil.
For accurate analysis soil types should be divided into groups and each group has depth
dependent physical and stiffness properties. The depth dependent stress — strain modulus,
Poisson’s ratio, compression index, void ratio and overconsolidation ratio were given in

Table 4.9.

4.4.3 Modelling of Project in Settle 3D for Settlement Analysis

In this part of chapter 4, modelling the of project in Settle 3D is given with four

subtitles as project settings, soil layers and properties, services load and auto field grids

59



Project Settings

In Project Settings dialog stress computation methods (Boussinesq, Westergaard
and 2:1 Method), time dependent consolidation, SI and British Units, staging,
groundwater properties and advanced settings are found. In the project four steps were
applied as the application of fill, settlement due to fill, application of foundation load and

application of service loads.

Project Settings ? >

General Stages Groundwater Advanced  Project Summary

Stress Computation Method Units
Shress
(®) Boussinesq :
| tetric, stress az kPa w |
Oz
(O Muitiple Layer Settlement
(O Westergaard |Meters v|

[] Time-dependent Consolidation Analysis

Time Uritz:  Fears | Pemeability Urits: | metersdvear ~

Figure 4.11. Project Settings in Settle 3D Software
Soil Layers and Properties
Seven soil layers were defined as fill material, silty clay 1, silty sand 1, silty clay

2, silty sand 4, sandy silt 4 and silty clay 4. Moreover, the height of each layers was
defined in Figure 4.12.

Saoil Layer Columin
0m

4

5.5

20
23

8.5
0.5 m

Figure 4.12. Soil Layers of Project
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Primary consolidation is activated for clay layers and immediate settlement is
activated for silts and sands layer in Figure 4.13. For clay layers linear and nonlinear
options can be selected. Linear analysis uses coefficient of volume compressibility Eq.
(2.21) and nonlinear analysis use Eq. (2.18), Eq. (2.19) and Eq. (2.20). The coefficient of
volume compressibility was obtained from in-situ tests as inverse of stress — strain
modulus and compression index was taken from consolidation tests results so that this
gave the possibility to compare the settlement results obtained with the field test data with

the settlement results obtained from the consolidation test.

Soil Properties 7 X

B FilMaterial @ SityClay1 O SikySand1 B SityClay2 O SibySand4 B SandySil 4 *

Marne: |Bi|ty Clay 1 | Colar: ~  Hatch:
Urit weight (kN/m3p<3I[17.8 | Sat Unitwht (kN/m3)3B1[18 | Poisson Ratio: <321[0.33 |

[ immediate Settlement

10000 10000

Primany Consolidation

b aterial Type: Maon-Linear ~
Bz 2| OPckPa; 100
e e (COCM kPl O

Figure 4.13. Soil Properties of Project

Services Loads and Auto Field Point Grid

Foundation loads and service loads are main loads for settlement. Moreover,
application of fill material cause settlement on soil layers. Unit weight of foundation
should be specified as subtracting the unit soil weight from the real unit weight of plate
because of the fact that the foundation does not occupy any volume and overlaps with the
soil elements. Foundation height is 90 cm and decreased unit weight of foundation is
15.5 kN/m? so that foundation pressure calculated as 0.9 x 15.5 = 14 kPa as given in
Figure 4.14. Raft foundation (which is used to decrease differential settlement)
dimensions higher than strip footing; on the other hand, last stress increment level is
increased under same stress because Boussinesq’s, Westergaard’s and 2:1 method
depends on length and width of foundation. Normally, length of foundation is 55 m and

width of foundation is 27 m, but width is chosen as 10 m and length is chosen 20 m in
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order to obtain accurate last stress increment level which was obtained from numerical

continuum model. In Chapter 5, relation between foundation dimensions and settlement

results were given.

Edit Load ? pd
Rectanagle Properties
e Length [l 20 - ;-i'-.ngle from 4 aRis:
1 width [m]; 10 = I: =
Load Properties
Load Type: Rigid e
(®) Pressure (kPal;, |14 [ ] ariable:
(O Force (kM) 1 0 0
Figure 4.14. Foundation Load Input
Table 4.9. Soil Parameters for Settlement Analyses
Depth Soil Type | Stress-Strain Oedometric | Poisson | Compres. | Void OCR
Interval Modulus E Modulus Eoed Ratio Index Ratio
(m) (kPa) (kPa) v Cc €o
3-10 Silty Clay 6250 8150 0.33 0.25 0.90 1
10-15 Silty Clay 7250 9000 0.31 0.225 0.87 1
15-20 Silty Clay 8250 9800 0.29 0.2 0.83 1
20-25 Silty Clay 10000 12500 0.27 0.185 0.80 1
0-5 Silty Sand 7500 10000 0.30 1

5-10 Silty Sand 10000 12750 0.28 1
10-20 | Silty Sand 13500 16500 0.26 1
20-30 | Silty Sand 17000 20000 0.23 1
10-15 Sandy Silt 7500 10100 0.30 1
15-20 | Sandy Silt 10000 12800 0.28 1
20-25 Sandy Silt 12000 15000 0.27 1
25-30 | Sandy Silt 15000 18350 0.26 1
0-1.5 Fill 55000 61000 0.2 1
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4.5 Settlement Analysis with Numeric Methods

For a complete theoretical solution, the equilibrium, compatibility, material
constitutive behavior and boundary conditions should be satisfied. A closed form
analytical solution cannot satisfy real constitutive soil behavior which include four
fundamental requirements. On the other hand, numerical methods can provide
information for design requirements and complete construction history (Potts et al, 2001).

Most numerical techniques such as finite difference method and finite element
method are based on the principle of discretization which means that a complex problem
is divided, or discretized, into smaller equivalent units, or components. In these methods,
real soil behavior is defined with some material models which include elastic and plastic
strain contribution, yield surfaces and soil strength parameters. (Townsend et al, 2001),

In this part of the chapter, introduction to Finite Element Method, Plaxis 3D
software, Mohr Coulomb and Hardening Soil with Small Stiffness soil models, selected

soil parameters for each soil model and input steps for the settlement analysis were given.
4.5.1 Finite Element Method (FEM)

Generating a finite element (FE) mesh is the first stage in any FE analysis. A mesh
consists of elements connected together at nodes. Calculations are done in the nodes
which were given in Figure 4.15, and some sort of mathematical equation are used to
estimate the solution inside the elements. In geotechnical problems, finite element method

mostly is based on finding displacement. (Potts and Zdravkovi¢, 2001)

oL

J
Figure 4.15. Three Noded Element
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Displacement equations for three noded triangular element are given below:
u=a, +a,x+a,y (4.1)

v=b +bx+b,y (4.2)

The equations are solved in terms of the nodal displacements uj, uj, um, vi, vj, and

vm Which are given below:

{u} = [N]{ul. u; u, v, v, Vm} (4.3)

Where:
[N] is known as the matrix of shape functions.
Briefly, element equations combine the compatibility, equilibrium and

constitutive conditions in the Eq.(4.4)
[K:]{ad}, = {AR,] (4.4)

Where:
[K.]= IV I[B]T [D][B]dVol = Element stiffness matrix;
{ARE} = IVOI[N]T [AF]dVol + IVOI[N]T {AT} dSrf = Right hand side load vector

[B] = derivatives of the shape functions, [D] = constitutive matrix, AFT = Body

Forces, ATT = Surface Tractions (Line Loads, Surcharges)
4.5.2 Plaxis 3D Software

Plaxis, one of the worldwide geotechnical design software, use finite element
method (FEM) to obtain analysis of deformation, stability and groundwater flow in
geotechnical engineering. Plaxis has products such as Plaxis 2D, Plaxis 3D, Dynamics,

Plaxflow, Thermal and Plaxis Vip.
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The Plaxis’s development began in 1987 at Delft University. Initially 2D finite
element code was developed to analysis lowlands Holland’s river embankments on the
soft soil. In following years, Plaxis was introduced in many geotechnical engineering
areas due to continuously expanding activities. Extended to cover most other areas of
geotechnical engineering. Because of continuously growing activities. Plaxis was
founded as a company in 1993 as a result of these developments. Plaxis 3D is a full three-
dimensional finite element program which combines an easy to use interface with full 3D
modelling facilities. The first Plaxis 3D program was released in 2010.

Non-linear, time-dependent and anisotropic behavior of soils or rock are
simulated as a constitutive model with Plaxis. Moreover, pore pressures and (partial)
saturation in the soil are introduced with multi-phase soil layer properties in Plaxis. Soil
structure interaction is very important issue for geotechnical project and Plaxis involves
the modelling of structure and the interaction between the soils and structures. Plaxis
carries out various aspects of complex geotechnical requirements (Brinkgreve, 2017).
Plaxis has sufficient soil models, namely, Linear Elastic, Mohr-Coulomb, Hardening Soil,
Hardening Soil Model with Small Strain Stiffness, Soft Soil, Soft Soil Creep, Jointed
Rock and Modified Cam — Clay. Mohr-Coulomb, Hardening Soil, Hardening Soil Model

with Small Strain Stiffness were used in analyses.

4.5.3 Mohr Coulomb Material Model

The Mohr-Coulomb model is a linear elastic perfectly plastic model. This model
1s widely used to determine soil strength, estimation of the ultimate limit state (e.g.
stability analyses) or modeling of less influential, massive soil bed layers, and a first
approximation of soil behavior where the number of soil tests and the parameter database
are limited. (Truty and Obrzud, 2011). The linear elastic part of the Mohr-Coulomb model
is based on Hooke’s law of isotropic elasticity.

In the Mohr-Coulomb constant elastic stiffness parameters are used. In figure
4.16, it is seen that deviatoric stress strain curve (Young Modulus) is constant until the
yield point, after reaching yield stress perfectly strain is obtained. Moreover, unloading

stiffness (Eur) has the same curve with loading condition.
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vield
surface

Figure 4.16. Mohr Coulomb Soil Model
(Source: Truty, 2009)

The Mohr-Coulomb model needs two elastic stiffness parameters (Young
Modulus, E and Poisson’s ratio, v) and three strength parameters (cohesion, ¢, friction

angle, ¢, and dilatancy angle, ).

4.5.3.1 The Selected Soil Parameters for Mohr Coulomb Model

Soil parameters which are obtained from field and laboratory works were given
below for Mohr Coulomb Soil Model. Stress strain modulus and Poisson’s ratio were
taken from Table 4.7. Determination of cohesion, friction angle and dilatancy angle is

same with Hardening Soil Model with Small Strain Stiffness.

Table 4.10. The Selected Mohr Coulomb Parameters

(kP ¥ (o)
Silty Clay 1 6250 0.33 4 24 0
Silty Sand 1 7500 0.30 1 33 0
Silty Clay 2 7250 0.31 5 26 0
Silty Sand 4 17000 0.23 4 35 0
Silty Clay 4 10000 0.27 7 30 0
Sandy Silt 4 15000 0.26 6 32 0
Fill Material 55000 0.20 0 40 0

E’: Stress - strain modulus, v: Poisson's ratio, ¢: Cohesion, ¢: Friction

angle, y: Dilatancy angle,
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4.5.4 Hardening Soil Model with Small Strain Stiffness (HSMSSS)

Soil behavior is non-linear when subjected to changes in stress or strain. In reality,
the stiffness of soil depends at least on the stress level, the stress path and the strain level.
Some such features are included in the advanced soil models. (Brinkgreve, 2017). The
hardening soil model is an advanced soil model which was designed by Schanz in 1998.
The hardening soil standard model covers densification, stress dependent stiffness, soil
stress history, plastic yielding, dilatation in details. In Figure 4.17(a), hardening

mechanism was given. In Figure 4.17b plastic yielding and unloading stiffness was given.

q Enffness

¥
NOMN-LINEAR elastic domain =

Figure 4.17. HS-Small Strain Soil Model (a) Hardening Mechanism, (b) Plastic
Yielding and Unloading Stiffness (Source: Truty, 2009)

The Hardening Soil with Small Stiffness is an improved version of the Hardening
Soil Standard by Benz (2007). Two important soil behavior was included. The first
behavior is strong stiffness variation with increasing shear strain (Figure 4.18) and the
second one is hysteretic soil behavior (Figure 4.19). These features mean that the
HSMSSS is a useful soil model with these properties to produce a more accurate and
reliable approximation of displacements for dynamic analysis or unloading case such as
deep excavations with retaining walls and tunnels. The HSMSSS parameters were
reference shear modulus at very small strain (G,), threshold shear strain (y,,), secant

=/, tangent stiffness for primary oedometer

stiffness in standard drained triaxial test (E
loading (E.") , unloading / reloading stiffness from drained triaxial test (E¢/), Poisson's
ratio for unloading-reloading v,,,, power for stress-level dependency of stiffness (m),

cohesion (c) , friction angle (¢), dilatancy angle ().
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Figure 4.18. Stiffness Variation and Shear Strain for Geotechnical Analysis
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Figure 4.19. Hysteretic Soil Behavior

4.5.4.1 Parameter Determination for HSMSSS

The HSMSSS parameters can be obtained by laboratory tests such as oedometer
test and triaxial shear test. However, most of the time testing natural soil is difficult due
to sampling problem and soil characteristic. For example, dependently site condition

getting undisturbed sample from cohesionless soils under groundwater level is so difficult
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or low permeable clay’s drainage time is so long. Therefore, some model parameters can
be derived directly from the experimental curves or using correlations from in-situ test
results. In this part, the determination of soil parameters for cohesionless and cohesive

materials were given.
Reference shear modulus (Gg)

Biarez and Hicher (1994) proposed a simple relationship for all soils with w; <50 %:

140 p

G,= )3/ (2(14v,,)) (4.5)

ref

Where;

pret: reference pressure, p : mean effective stress, e: void ratio
Threshold shear strain (yq7)

In a more practical point of view, the reference threshold shear strain defines the
beginning of significant stiffness degradation. (Santos and Correia,2001). A well-known
experimental database was reported by Vucetic and Dobry (1991) illustrates the

relationship between yo.7 and plasticity index (PI < 100) for cohesive soils.

Yor=7ed +5.10°IP forPI<15 (4.6)
Vor= 10M15020P)51 g0 PT > 15 4.7)
753 (1,=0)=10"" (4.8)

Darendeli and Stokoe (2001) suggests threshold shear strain as given below for

cohesionless soil:

69



, 0.35
Yor= Yoo + (iJ (4.9)

a

7 (p,)=126x10" (4.10)

Stiffness Modulus (E;gf E;Z E;ﬁf ) and Stiffness Exponent (m)
Experimentally ratio between unloading stiffness modulus and secant stiffness
modulus is given below for lack of triaxial tests and the oedometric modulus can be

approximately taken as secant stiffness modulus.

ref
% =3 to 6 (4 can be taken for cohesive soil) (4.11)
50
ref
ﬁ =210 6 (3 can be taken for cohesionless soil) (4.12)
50
EY = EY (4.13)

An important point is that the secant stiffness modulus is determined by using
static deformation modulus (Es) and mean effective stress (p’) in equation 4.14. In chapter
2, the determination of static deformation modulus (Es) is given in detail with using in
situ tests (SPT, CPT, PMT and PLT). Moreover, the depth of modulus is also known so
that with using the coefficient of in situ of earth pressure at rest (Ko), mean effective stress

can be obtained as;

E=EY _p'tccotd (4.14)
D,y TC COtQ
Mayne and Kulhawy (1982) and Meyerhof (1976) suggested stiffness exponent
as given below

m = sin ¢’ (for cohesive soil) (4.15)

m = 0.5 (for cohesionless soil) (4.16)
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Friction Angle and Cohesion
The exception of cemented soils, in drained condition cohesion value is small and

it is known that in effective stress condition clay’s strength is frictional. In Table 4.11,

representative clay’s friction angle values are given by Carter and Bentley (1991).

Table 4.11. Friction Angle of Clay

Soil Type USCS o)
Silty Clays, Sand — Silt Mix SM 34
Clayey Sands, Sandy — Clay Mix SC 31
Silts and Clayey Silts ML 32
Clays of Low Plasticity CL 28
Clayey Silts MH 25
Clays of High Plasticity CH 19

In drained condition cohesion value is zero for cohesionless soils. In Table 4.12,

friction angle of sands is given by Peck at al. (1974) and Meyerhof (1956).

Table 4.12. Friction Angle of Sand

Soil Type Neo Peck at al. (p)  Meyerhof (¢)
Very Loose Sand <4 <30 <29
Loose Sand 4-10 29 -30 30-35
Medium Sand 10 -30 30 —-36 35—-40
Dense Sand 30-50 36 —41 40 — 45
Very Dense Sand > 50 > 41 > 45

Failure Ratio
Failure ratio is the ratio between asymptotic deviatoric stress and ultimate
deviatoric stress. In Figure 4.21, hyperbolic stress — strain relation in primary for a

standard drained triaxial test shows asymptote and failure line.
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R, =2 (4.17)

Rrvalue is experimentally in the range of 0.75 and 1.00. (Truty and Obrzud, 2011).

deviatoric stress
lrq — 3

gal - o asymptote
{ _.----failure line

Qf----- il Sl e e S

/ Y.
axial strain - =4

Figure 4.20. Hyperbolic Stress — Strain Relation in Primary for a Standard Drained
Triaxial Test

Dilatancy Angle

Dilatation is an occurrence of negative volumetric strains under shear stress. For

cohesive soils dilatancy angle depends on the preconsolidation ratio, which was chosen

by Truty and Obrzud (2011) as given below:

y = 0° for NC and LOC (4.18)
y =¢’/6 for OC (4.19)
y =¢’/3 for HOC (4.20)

Dilatation is seen in very dense sand and its value is equal to 1/3 of the peak
friction angle.

y = ¢’/3 for Dense Sand (4.21)
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4.5.4.2 The Selected Soil Parameters for HSMSSS

Soil parameters which are obtained from field and laboratory works are given

below for HS-Small Stiffness Material Model.

Table 4.13. The Selected Soil Parameters for HSMSSS

Silty Clay 1 14000 14000 42000 74000 4 24 0 | 2ex10* 0.2 100 05| 09
Silty Sand 1 12600 12600 37800 | 100000 1 33 0 1.4x10+ 0.2 100 05| 09
Silty Clay 2 3000 8000 24000 77000 5 206 0 | 23xl10® 0.2 100 05| 09
Silty Sand 4 15500 15500 46500 77000 4 35 0 | 2.1xl0* 0.2 100 05| 09
Silty Clay 4 8500 8500 25000 85000 7 30 0 | 26x10* 0.2 100 05| 09
Sandy Silt 4 12000 12000 36000 | 104000 6 32 0 | 35x10+ 0.2 100 05| 09
Fill Material | 135000 | 155000 | 153000 | 465000 0 40 0 | 2.6x10* 0.2 100 05| 09

Gy: Reference shear modulus at very small strain , yo,: Threshold shear strain , E;

drained triaxial test , EZ?Z: Tangent stiffness for primary oedometer loading , E:;f : Unloading / reloading stiffness

from drained triaxial test , v,,: Poisson's ratio for unloading-reloading, m: Power for stress-level dependency of
stiffness ¢: Cohesion , @: Friction angle , y: Dilatancy angle, Rr: Failure Ratio

gf . Secant stiffness in standard

4.5.5 Modelling of Project in Plaxis 3D for Settlement Analysis

In this part of chapter 4, modelling of the project in Plaxis 3D is given with seven
subtitles as properties of the project, the geometry of project, borehole of project, soils of

project, structural elements and projects loads, mesh generation and staged construction.
Properties of the Project

In project properties option, length and force units can be chosen as English
system of units and the SI (Systems International) system of units. Furthermore, earth

gravity and unit weight of water are defined manually and contour limits can be defined

manually as it is shown in Figure 4.21.
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Figure 4.21. Properties of Project

Geometry of the Project

Points, surfaces, volumes, and soil volumes can be generated in Plaxis 3D. In this
project points were used as points loads, volumes were used as excavation and fill

volume, soil volumes used as soil layers as it is shown in Figure 4.22.

Figure 4.22. Geometry of the Project

Borehole of Project

The instrumentation system for observation of settlement was placed under the

supports which were exposed to carry maximum service loads of around 1600 kN, and
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borehole SK6 was drilled in the same area where the service loads were maximum. As a
result, SK6 borehole data was used to define the soil layers defined as it is shown in

Figure 4.23.

Ea Modify soil layers

SK6 -
X 28.00 2 -
y 23.00 Soil layers  water Initial conditions  Surfaces  Field data
Head -1.500 Layers SKE
# Material Top Bottom
. 1 Sity Clay 1 0,000 -4,000
2 SitySand 1 -4,000 -3.500
! 3 sityClay 2 -8.500 -20.00
4 sity sand 4 -20.00 -23.00
Bl 5 sity Clay 4 -23.00 -28.50
B 6 | Sandy Sit 4 -23.50 -30.50

Figure 4.23. Defining Borehole SK6

Soils of Project

Soil layers were defined as Silty Clay 1, Silty Sand 1, Silty Clay 2, Silty Sand 4,
Silty Clay4, Sandy Silt 4 and Fill Material. Material model is HSMSSS with drainage
type. In parameter option, selected soil parameters given in part 4.5.4 were defined for all

soil types as it was shown in Figure 4.24.

General Parameters Flow parameters  Interfaces  Initial

Property Unit Value
Material set ~
Identification Silty Clay 1
Material model HS small
Drainage type Dirained w
Colour RGE 134, 234, 162
Comments

General properties
- 3
Tr= kM fm 17.50
kMjm 3 18.50

T s

Figure 4.24. Defining Soil Types and Parameters
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Structural Elements and Project Loads

In the model, plate and points are used as structural element. The plate is defined
as a foundation with concrete properties and points are defined as point loads. Moreover,

there were 217 points loads, its details were given in 4.3.2, as it is shown in Figure 4.25.

Figure 4.25. Structural Elements and Project Loads

Mesh Generation

37556 soil elements were obtained in mesh generation as it was shown in Figure
4.26. Element distribution can be chosen from very coarse to very fine. The very fine
mesh was selected for analysis. Although calculation time is increased with very fine

mesh, more accurate analyses were performed.

Figure 4.26. Very Fine Mesh Generation of Project
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Staged Construction

In the project four steps were applied as application of fill, settlement due to fill,
application of foundation load and application of service loads. In the application of fill

stage a 0.5 m height soil was excavated as it is shown in Figure 4.27.

Figure 4.27. The Application Of Fill Stage

Then, a 1.5m height high qualified fill material was placed in the first stage
(Figure 4.27).

Figure 4.28. High Qualified Fill Material Application
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In the application of foundation’s loads, a 90 cm height foundation was

constructed on the high qualified fill material as it was shown in Figure 4.39.

Figure 4.29. Construction of Foundation

In the application of service loads stage, the service loads were generated on the

foundation. (Figure 4.30)

Figure 4.30. Application of Service Loads
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CHAPTER 5

SETTLEMENT ANALYSES RESULTS AND DISCUSSION

5.1 Introduction

In this chapter, the settlement results of 1-D stress — strain relation and numerical
continuum model were given for all stages of the project; namely, settlement due to fill
material, settlement due to foundation weight, settlement due to service loads. 1D total
settlement analyses were performed separately by using stiffness parameters based on in-
situ tests and consolidation tests for cohesive layers. Mohr Coulomb Material Model and
Hardening Soil Model with Small Strain Stiffness were used for numerical analyses. For
each stages four analyses were performed and results were compared with measured field
settlement data. Differential settlement value was obtained with HSMSSS. Moreover,
stress increment levels and settlement relation with traditional methods (Boussinesq,
Westergaard and 2:1) were compared with the 3D numerical continuum model. Finally,

settlement and stress strain modulus relation for cohesive layer was presented.

5.2 Settlement Due to Fill Material

At the site, high qualified fill materials were compacted at 30 cm intervals and
total height of fill layer was 1.5 m. Application of fill material increased stresses on the
soil; thus, application of fill material caused settlement. All settlement analyses results
were compared in Figure 5.1. As a result, maximum settlement value was 3.5 cm that was
obtained from 1 D total settlement analysis based on consolidation test results (1D
TSBCT). Second high value was 1.8 cm that is obtained from Mohr Coulomb Model. 1D
total settlement analysis based on in-situ test results (1D TSBIT) gave settlement value
as 0.85 cm and minimum settlement value was 0.35 cm in HS-Small Strain Stiffness
Model. It is clear that maximum settlement obtained from 1D TSBCT and minimum
settlement from the HSMSSS. The measurement system started to read settlement value
after this application so that which model gave accurate result was not known. It is clearly
seen that though TSBIT has not solved with numerical method, it gave more accurate

result with HSMSSS then Mohr Coulomb Model.
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Figure 5.1. Settlement Values Due to Application of Fill Material

5.3 Settlement Due to Foundation Weight

In the site, foundation thickness was 90 cm under the turbine generator region,
which is the most critical part of project for differential settlement criteria. Settlement
analyses results were given in Figure 5.2. As a result, maximum total settlement value
was 6.7 cm that was obtained from 1D total settlement analysis based on consolidation
test results (1D TSBCT). Second high total value was 0.53 cm that was obtained from
Mohr Coulomb Model. 1D total settlement analysis based on in-situ test results (1D
TSBIT) gave total settlement value as 0.020 m and minimum total settlement value was
0.014 m in Hardening Soil Model with Small Strain Stiffness Model. The measured
settlement was 0.008 m for this stage and minimum settlement value was 0.0105 in
HSMSSS. Similar to the previous stage, 1D TSBIT gave a more accurate result with
HSMSSS.

Settlement - Depth

0.08 -
3-D HS-Small Strain Stiffness

1-D Total Settlement (In-Situ Tests)

1-D Total Settlement (Consolidation Tests)
3-D Mohr Coulomb

Measured

L2 B O K

Settlement (m)

0 5 10 15 20 25 30 35 40
Depth (m)

Figure 5.2. Settlement Values Due to Foundation Weight
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5.4 Settlement Due to Service Loads

In the project, foundation thickness is 90 cm under the turbine generator region,
which is the most critical part of project for differential settlement criteria. Settlement
analyses results are given in Figure 5.3. As a result, the maximum total settlement value
was 0.134 m obtained from 1 D total settlement analysis based on consolidation test
results (1D TSBCT). Second high total value was 0.055 m obtained from Mohr Coulomb
Model. Total settlement analysis based on in-situ test results (1D TSBIT) gave total
settlement value as 0.033 m and minimum total settlement value was 0.022 m in
Hardening Soil Model with Small Strain Stiffness. The measured total settlement was
0.018 m. The measured settlement was 0.01 m for this stage and minimum settlement
value was 0.008 m in HSMSSS. Similarly, previous stage 1D TSBIT gave more accurate
result with HSMSSS. Difference between measured settlement value and HSMSSS was
equal to 0.004 m, which is close to equal first settlement value of Hardening Soil Model

with Small Strain Stiffness.

Settlement - Depth

3-D HS-Small Strain Stifness

3-D Mohr Coulomb

1-D Total Settlement (In-Situ Tests)

1-D Total Settlement (Consolidation Tests)
Measured

ot ¢

Settlement (m)

0 5 10 15 20 25 30 35 40
Depth (m)

Figure 5.3. Settlement Values Due to Service Loads

The settlement measurement system (Figure 5.4) was set in the turbine area to
measure the settlement by time. It was a simple system to measure the settlement during
and after the construction of the foundation and the construction of the mechanical
equipments. A steel reinforcement fixed into a concrete prism with 40 cm x 40 cm x 15
cm diameters and a plastic pipe isolated the steel from soils for free movement. Top of

steel reinforcement was measured until the end of the settlement.
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Figure 5.4. The Settlement Measurement System

The settlement has been measured for 8 months. Measured values were given with

dates in Table 5.1.

Table 5.1. Construction Application and Measured Settlement by Time

Date Construction Application Measured | Settlement
Value
11.12.2017 25.802
12.12.2017 | Construction of Foundation 25.799 0.003 m
11.01.2018 - 25.794 0.008 m
17.01.2018 - 25.794 0.008 m
10.03.2018 | Service Loads (Turbine Area) 25.790 0.012m
16.04.2018 | Service Loads (Turbine Area) 25.784 0.014 m
15.05.2018 - 25.785 0.017 m
18.06.2018 - 25.784 0.018 m
13.08.2018 - 25.784 0.018 m

The summary of the settlement values for each stages were given in Table 5.2.
Field measurement system started to read settlement after the applying fill material stage
but there is an unknown settlement value which is represented by letter of x. Logically, if
the first stage of field settlement value is close to HSMSSS, total settlement of foundation

almost equal to result of HSMSSS.
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Table 5.2. The Settlement Results For Each Stage

Stage | Stage Name TSBCT | MOHR.C | TSBIT | HS- FIELD
SMALL | DATA
# m m m m m
1 Fill Material 0.035 0.018 0.0085 | 0.0035 X
2 Found. Weight | 0.067 0.053 0.020 0.014 0.008 +x
3 Service Load 0.134 0.055 0.033 0.022 0.018 +x

5.5 Stress Increment Level and Settlement

Raft foundation (which is used to decrease differential settlement) dimensions are

higher than strip footing; on the other hand, last stress increment level is increased under

same stress because Boussinesq’s, Westergaard’s and 2:1 method depends on length and

width of the foundation. In Table 5.3, settlement and last stress increment level were

calculated using all given methods. It was seen that 2:1 method gave a more accurate

result with 10 m width and 20 m length in dimensions than Boussinesq’s and

Westergaard’s methods. Last accurate stress increment level obtained from the numerical

continuum model was 30.5 m.

Table 5.3. Stress Increment Level and Settlement by 2:1 Method, Boussinesq and

Westergad Methods
2:1 METHOD BOUSSINESQ WESTERGAARD
Length | Width | Stress Inc. | Settlement | Stress Inc. | Settlement | Stress Inc. | Settlement

(m) (m) Level (m) (m) Level (m) (m) Level (m) (m)
55 27 62 0.069 63 0.092 62 0.078
40 20 52 0.057 53 0.076 53 0.065
30 15 42 0.047 45 0.063 43 0.053
20 10 30.5 0.033 35 0.046 31.5 0.039

Another important point is that there are lots of non-uniform loading area and

these distributions were obtained with the help of numerical continuum model which were

given in Figure 5.5. The contours in the figure shows per unit load value.
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Figure 5.5. Non Uniform Stress Distribution on Project Area

5.6 Differential Settlements’ Results

Differential settlement values were given in Figure 5.6. Maximum differential
settlement value is 0.43 x 10~ m for 50 m distance in Hardening Soil Model with Small
Strain Stiffness Model. Differential settlement ratio is 0.86/1000 and this value is smaller
than 1/1000, which is the limit value of differential settlement criteria. Mohr Coulomb
Model and HSMSSS give the differential settlement values directly because these models
used soil structure interaction; however, 1 D total settlement analyses cannot include soil

structure interaction.
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Figure 5.6. Differential Settlement Results in HS-Small Strain Stiffness Model

84



5.7 Drained Oedometric Stress Strain Modulus for Clay Layer

For cohesive soil obtaining drained stress strain modulus is complicated because
in-situ tests are quick but cohesive soil needs time to dissipate water; otherwise, undrained
condition affect the test results. Although consolidation tests are suitable for drained
stiffness parameters, generally obtained stiffness parameters value are lower than actual
value due to difficulties in obtaining undisturbed samples, working on very small volume
of soil particles and operator errors. When pressuremeter test results were taken into
consideration as undrained stress — strain modulus, these values are four times greater
than consolidation drained stress — strain modulus but for normally consolidated medium
clays undrained / drained stress — strain modulus ratio is expected to be in the range of
1.07 to 1.34. As a result, cone penetration tests results were used to make compression.
Oedometric stress — strain modulus was obtained from multiplying cone resistance with
a factor for cohesive soil Drained and undrained oedometric stress strain modulus for

silty clay layers were given in Table 5.4.

Table 5.4. Undrained and Drained Oedometric Stress Strain Modulus for Silty Clay

Consolidation | Pressuremeter
Cone Penetration Test

Test Test

Clay Type
Eoed (a=5) Eoed ((l=6) Eoed ((l=7) Eoed E,
(kPa) (kPa) (kPa) (kPa) (kPa)

Silty Clay 1 5821 6985 8150 1660 6875
Silty Clay 2 6428 7714 9000 3200 8190
Silty Clay 3 7000 8400 9800 4166 9570
Silty Clay 4 8928 10714 12500 5500 11900

The a factor ranges from 2 to 12 and it is not consensus. Settlement results for
each oedometric stress — strain modulus and maximum — minimum value of clay’s
undrained / drained stress — strain modulus ratio were given in Table 5.5. Settlement
analysis were performed HSMSSS and the a factor was taken as 7 to be compatible with

undrained stress — strain modulus.
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Table 5.5. Settlement Value for Each Oedometric Stress — Strain Modulus

Oedometric | Obtained From | Material Settlement | (E./E) (E/E)
Modulus Model (m) min max
Eoea (0=5) CPT HS-Small | 0.035 1.54 1.66
Eoea (0=6) CPT HS-Small | 0.027 1.28 1.38
Eoea (0=7) CPT HS-Small | 0.022 1.10 1.19
Eoed Consolidation T. | HS-Small 0.065 2,16 4,14
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CHAPTER 6

CONCLUSIONS

6.1. Summary of Findings

The aim of this study was to provide how to evaluate selection of representative
soil models, determination of soil parameters, analyzing of stress distribution and
obtaining effective depth level of soils to obtain accurate settlement results for geothermal
power plant foundation where total settlement and differential settlement criteria are so

sensitive. The most important conclusions are summarized as below:

e 1D Stress — Strain analyses and 3D continuum numerical analyses can be used for
settlement analyzes for multilayer soil profile.

e Hardening Soil Model with Small Strain satisfies a complete theoretical solution,
the equilibrium, compatibility, material constitutive behavior and boundary
condition. Moreover, hardening mechanism with small strain accurately
represents real soil behaviors, which are elastic and plastic strain contribution,
yield surfaces and soil strength parameters. As a result, measured settlement value
was most compatible with Hardening Soil Model with Small Strain Stiffness.

e Although the Mohr-Coulomb soil model is used to determine a first
approximation of soil behavior, it does not represent the stress-dependency in true
soil behavior. According to the analysis result, Mohr-Coulomb soil model’s total
settlement value approximately three times greater than the actual total settlement
value so that it should not be preferred to use in the sensitive analysis of
settlement.

e If stress distribution of foundation and last stress increment level of soils are
obtained correctly, 1D total settlement analyzes based on in-situ test results will
give more accurate settlement results than classical calculation method.

e 1D total settlement analyzes based on consolidation test results gave over
settlement results due to the lower oedometric modulus.

e Cone Penetration Test was compatible with Standard Penetration Test for

cohesionless soil and Cone Penetration Test was compatible with Pressuremeter
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Test for cohesive soil to determine soil stiffness parameters. Reasonably, soil
stiffness parameters become stronger with increasing depth for each in situ tests.

e In terms of obtaining non-uniform stress distribution, 3D continuum numeric
analyses are reasonable without soil structure interaction analyses, actual stress
distributions on soils cannot be obtained so that both total settlement and
differential settlement values cannot be obtained correctly.

e Length and width of geothermal power plant foundation are increased as
compared to spread footing or continuous footing. For that reason, stress
increment level in Boussinesq’s method, Westergaard’s method and 2:1 method
were higher than continuum numerical models. As a result, these methods cannot
be suggested for such a case situation.

e According to measured settlement value consolidation time of clays is supposed
to short with related to the coefficient of consolidation (0.015 — 0.016 cm?/sec).
The reason is that the silt and sand layers that cut the clay layer work as horizontal
drainage and shorten the drainage way distance.

e Unit weight of foundation should be specified as subtracting the unit soil weight
from the real unit weight of plate because of the fact that the foundation does not
occupy any volume and overlaps with the soil elements. More accurate settlement
value was obtained with using this criteria in all analyses.

e The geothermal power plant’s foundation type depends on the characteristics of
soils and structure loads. Particularly shallow foundation type can be used to
decrease structure stresses on soils and balance hydrostatic uplift pressure. For
these reasons, the shallow foundation was selected for turbine parts of the

geothermal power plant to decreasing total and differential settlement.

6.2. Suggestions

Based on the research done in this thesis several recommendations can be
formulated for future research. The recommendations for further research are summarized

below:
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In this study, analyzes shows that stress strain modulus value from in-situ tests
higher than from consolidation tests. It is advised to control this result is valid for
the general case.

Initial shear modulus obtained with using void ratio and mean effective stress but
there are lots of correlation in geotechnical literature. It is advised to make
comparison between them to find accurate initial shear modulus for cohesive and

cohesionless soils.
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Figure A1.5. Log of Borehole SK 3 from 0 m to 20 m
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Figure A1.7. Log of Borehole SK 4 from 0 m to 20 m
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Figure A1.9. Log of Borehole SK 5 from 0 m to 20 m
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Figure A1.10. Log of Borehole SK 5 from 20 m to 30 m
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Figure Al.11. Log of Borehole SK 6 from 0 m to 20 m
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12. Log of Borehole SK 6 from 20 m to 30 m
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Figure A1.13. Log of Borehole SK 7 from 0 m to 20 m
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14. Log of Borehole SK 7 from 20 m to 30 m
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Figure A1.15. Log of Borehole SK 8 from 0 m to 20 m
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Figure A1.17. Log of Borehole SK 9 from 0 m to 20 m
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APPENDIX A2

THE CORRECTED VALUE OF Neo

Sonda] vasS perdnllk | sPTM | oVi BT e gz00| LL |wn, %| SPT/M Darbe sayis dlzenme Katsayidan a B ™ilser
Barehole | GWTlevel Depth Carre ction fa ctorsfor SPT/N blow counts L
No m (m) Cu (1) [Ce (2] |Ca (3] Ga Cs - “ 14)
s 200 1.50 3 0.324 azi0 | 958 |52.2 170 | 080 | 100 [075| 100 | 3 [500| 1.2 8
21 200 300 1 0484 0540 | 958 |522 (364 | 147 | 080 | 100 075 100 | 9 (500 1.2 15
K1 200 6.00 5 0.704 1,080 83 (00 [321| 119 |080 | 100 |0.85| 100 | 4 [0.64 | 1018 4
KA 200 7.50 15 0.624 1350 83 (00 [252| 110 |080 [ 1.00 |0985| 100 | 12 |064|1.018 12
8K-1 200 9.00 16 0944 1620 | 476 (00 [252| 103 |080 | 100 |085| 100 | 12 [S00| 1.2 1
a1 200 10.50 16 1.084 1890 | 987 |59.4 057 |o0s0 | 100|100 100 | 12 [500| 1.2 13
gl 200 12.00 13 1184 2160 | AT [58.4 0.82 | 080 | 1.00 [1.00| 100 | 9 |500| 12 15
KA 200 13.50 13 1.304 2430 | 987 [ 594 0.88 (080 (100 |1.00| 100 | 8 [500| 1.2 15
K 200 15.00 13 1.424 2700 | 947 | 594 0.84 (080 | 1.00 |1.00| 100 | 12 [500| 1.2 18
A 200 16.50 18 1.544 2570 |97 (594 |ad46| 080 |080 100 |100| 100 | 11 [s00| 12 18
e 200 18.00 16 1.664 3240 | 9AT |59.4 078 | 080 | 100 [1.00| 100 | 9 |S00| 12 15
&K 200 18,50 20 1784 1510 | 987 |s594 075 |080 (100 |100| 100 | 11 [S00| 1.2 b1
a1 200 21.00 16 1.904 3780 | 837 (373 (35| o072 [080 100 [1.00| 100 | 8 (500 1.2 15
x4 200 22.50 18 2024 4050 | 937 (373 070 |080 | 100 [100] 100 | 10 |500 | 12 17
8K 200 24,00 18 2144 4320 | 937 (373 068 | 080 | 1.00 (1.00| 100 | § |500| 1.2 15
8K 200 2550 13 2.264 4590 |B7.8 (585 |330| 066 |0.80 | 1.00 |1.00| 1.00 | 10 [500| 1.2 7
skt | 200 27.00 30 2384 4880 | BT.B [585 065 | 080 | 100 [1.00| 100 | 15 |500| 12 i}
Siet l 200 28.50 1 2504 5130 | 622 (00 |288| 03 |0B0 100 [1.00| 100 | 168 [500| 1.2 -]
K | 200 30,00 27 2624 5400 | 622 |00 |288| 062 | 080 | 100 [1.00| 100 | 13 |500| 12 2
|m.aama 10 %
Figure A2.1. Neo Values for SK 1
Sondaj YASS Derintik | spTmy | av.tsf o B lg00| L |wn, %| SPTAN Darbe sayrs dlzenme latsayian | (N | o [ (M)ases
Borehole | GWT level Depth Comrection faciors for SPTIN blow counts
L m ml G M) |G (2} [Ca (3] G [« ul L] 4
sK-2 1.80 150 3 0324 0270 | 820 |57 170 | 080 (100 (075 100 | 3 [500| 12 8
SK-2 1,80 100 1 0.444 0540 |820 |517(307| 1.5 |0.80 | 1.00 [075( 100 | 11 (500 | 12 18 I
SK2 1.80 4.50 5 0.564 0810 83 |57 133|080 | 1.00 (085 100 | 4 |064 |L018 4 l
K2 1,80 6.50 6 0.724 1170 | 820 (344 (30| 118 |080 | 1.00 (085 100 | 5 |500 | 1.2 11 l
K2 180 7.50 12 0804 1350 | 97.3 |44 112 | 080 | 1.00 (085 100 | 11 [500| 12 18 I
-2 1.80 9.00 28 0.924 1620 | 973 |00 [253| 104 | 08B0 |1.00 0S5( 100 | 22 |5.00 | 1.2 k1] I
K2 1.80 10.50 16 1.044 1890 ME | 00 nsa 0.80 | 1.00 |1.00| 1.00 12 | 49 [1.194 19 l
K2 180 1200 14 1164 2160 | 346 | 00 053 | 080 100 |100| 100 | 10 |49 1194 16 l
SK2 1.60 13.50 13 1284 2430 | 346 | 00 0.88 |080 |100 [100( 100 | 5 |ass [118 15 I
SK-2 1.80 15.00 o 1.404 2700 |441 |00 (288| 0.84 |0.80 | 1.00 |[1.00| 100 | 13 |500 | 12 20 l
SK2 180 16.50 18 1.524 2870 | 961 | 365 081 | 080 | 1.00 [1.00| 100 | 12 500 12 19 l
SK-2 1.80 1E,ﬂT ) 164 3240 96D | 65 o078 0.80 | 1.00 |1.00| 1.00 13 (500 12 20 l
SK2 180 19.50 35 1784 3510 | 9.0 |365 075 | 080 |1.00 (100 100 | 21 |500| 12 30 I
SK-2 180 21.00 7 1.884 1780 |@60 |365|315| 073 | 080 |1.00 (100 100 | 12 [500| 12 18 !
SK2 180 250 26 2004 4050 | 960 |365 071 | 080 |1.00 (100 100 | 14 [500| 12 2
SK2 1.80 24.00 18 2124 4320 | 960 |365 069 |0.80 |1.00 (.00 100 | 10 [500| 1.2 17
a2 1.80 2550 38 2244 4590 | 960 |365 067 | 0.80 |1.00 |1.00| 1.00 | 20 [500| 1.2 28
K2 180 Z7.00 33 2364 4860 | 960 (334 |346| 065 |080 (100 [100| 100 | 17 |500( 12 25
SK2 1.80 28,50 34 2484 5130 | %60 |34 063 | 0.80 | 100 (100 200 | 34 [500| 1.2 E
SK-2 1.80 30.00 35 2604 5.400 96.0 | 124 0B2 0.80 | 1.00 |100| 200 52 |500| 1.2 E7
ortzama 15 23
R

Figure A2.2. Ngo Values for SK 2
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Sondaj Yass Deriniik | sprm | oVt oVt e ga00| LU |wn, %] SPTINDarbe saps dizeltme katmayplan | MY | o
Borehole GWT level Depih Correction factors for SPT/N blow counts
No m L] G (GGt c| & [
K3 200 1.50 3 0.324 0.270 3.7 | 29.0 1.70 | 0.80 | 1.00 (075 | 100 3 |s00
3 200 3,00 8 0.484 0540 |937 (29.0(23.7| 147 |[0.80 |1.00 (075 1.00 | 7 500
K3 200 4.50 8 0.584 0810 | 947 |29.0 131 |0.80 | 1.00 uasZ 100 | 7 [500
=3 200 650 [ 0.744 1470 | 937 [29.0 116 | 080 | 100 085 1.00 | 5 |&00
sK3 200 750 10 0.824 135 |87 (2.0 110 [0.80 | 1.00 |085) 100 | B |500
SK-3 200 9.00 19 0.944 1620 | 90.8 (374|334 | 103 | 080 | 1.00 (085 100 | 14 |500
SK-3 200 10.50 1 1.084 1830 | 908 [37.4 0.57 |0.80 |1.00 (100 100 | B [500
SK.3 200 1200 1 1184 2160 | 30.8 |37.4 082 |080 | 100 (100| .00 | B |476
SK3 200 1150 14 1304 2430 | 979 (375 |280| 088 | 0.80 | 1.00 (100 100 | § |S500
SK.3 200 15.00 17 1424 2700 | 979 |35 084 |080 | 100 (100| 100 | 11 |5.00
| SK.3 200 1650 z 1.544 25970 |B13 (499|328 | 080 |080 | 1.00 (1.00| 1.00 | 17 |s5.00
SK3 200 18.00 w7 1664 3240 | 813 (499 078 | 080 |1.00 [100| 100 | 22 (500
’ SK-3 200 19.50 28 784 3510 | 813 |49 | 075 |0.80 | 1.00 [1.00( 100 | 16 [5.00
SK-3 200 21.00 1 804 3780|928 |304|283| o072z |o080 100 [1.00| 100 | 19 |s00
SK3 200 250 o 2024 4050 | 928 304 070 | 080 | 100 (1.00| .00 | 15 |5.00
a3 200 2400 2 2144 4320 |928 |304 068 |080 | 100 (1.00| 1.00 | 14 |s.00
1 ®a 200 2550 z 2284 4530 |gz8 |04 066 | 080 [1.00 [100| 100 | 11 |5.00
I ®a 200 27.00 38 2384 4860 | 928 |30.4 065 |080 |1.00 (1.00| .00 | 20 |S5.00
| K3 200 850 36 2504 5130 |89 (312|308 | 063 |080 |1.00 ([1.00| 200 | 36 |5.00
| SK3 200 30.00 29 2624 5400 | B9 [31.2 062 | 080 |100 (1.00| 100 | 42 |500
lmaiama 15
Figure A2.3. Neo Values for SK 3
Sonda) Y55 Derinlik | sprn [ ov.tsf oIS e 4200 | LL |wn. %| SPT/N Darbe says dozeltme katsayian | Niles | o B Mydocs
Borehole | GWT ievel | Depth Correction Betors for SPTIN blow counts
No m m) Cut) [Sem[Cem| G | e ‘w | e m
Sk 200 1.50 6 0.324 0.270 | 903 515|301 170 |0.BO | 1.00 |0.75| 100 | 6 (500 | 12 12
SK.4 200 300 9 0.464 0.540 903 [ 515 147 0.80 | 100 |0.75| 1.00 i 500 | 1.2 13
| SK4 200 450 8 0.584 0.B10 | 90.3 [51.5 131 ||o.B0 | 100 (0BS| 100 | 7 500 | 1.2 13
| Sk 200 6.00 5 0.704 1.080 | 902 525|323 | 113 |0.BO | 1.00 [085| 1.00 | 4 (500 | 1.2 9
sK.4 200 7.50 13 0.824 1350 | 90.2 525 110 |[0.80 | 1.00 [0.95| 100 | 10 |500 | 1.2 7
| SK-4 200 2.00 12 0944 1620 |98.2 (452|422 | 103 |0.BO | 1.00 |0.85| 100 | 9 [ED0 | 1.2 15
SKd 200 1050 15 1.064 1890 | 385 | 0.0 057 | 080|100 (100 100 | 11 |00 | 1.2 18
3K.4 200 12.50 18 1.304 2430 | 389 (oo (270 088 |00 | 1.00 [1.00| 100 | 12 (500 | 1.2 13
| SK4 200 15.00 16 1.424 2700 | 385 | 0.0 084 |/0.80 | 100 (100 100 | 10 |500 | 1.2 17
| sk 200 16.50 21 1544 2970 | 383 | 0o 080 |[0.80 | 100 (100( 100 | 13 |5D0 | 1.2 20
SK4 200 18.00 B 1.664 3240 |51.2 |00 |267| o078 |/oeo [1.00 (100 100 | 20 |500 (| 1.2 2
| SK.4 200 19.50 ] 1.784 3510 | 204 | 0o 075 | 080|100 [1.00| 100 | 14 |368 |1.082 18
| SK4 200 21.00 a1 1.504 1780 | 204 | 0.0 ([215| 072 |0B0 | 100 [100| 100 | 23 |366 |1.082 28
SK-4 200 2250 32 2.024 4050 |204 | 0o 070 | 0.80 | 1.00 (100 100 | 17 |3.68 |1.082 22
Sia 200 24.00 15 2144 4.320 91.7 | 324 0.68 0.60 | 1.00 |1.00| 1.00 B |500 | 12 14
| SK4 200 26.50 n 2284 4690 | 917 |324|274| o066 | 0.80 | 100 [1.00| 100 | 12 |500| 12 19
olaama 11 18

Figure A2.4. Neo Values for SK 4
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Figure A2.6. N¢o Values for SK 6

Sonda] YASS Dernii | sprm | -t ot lo2200| LL |wn, %| SPTIN Dame sayim onrenme kamayian | Piks | o
Borehole | GWT level Depm Comection factors for SPTIN biow counts L
No m im) Cu [1) |Ce 12} |Ca {3)| Ca [a® ]
SKS 200 150 7 0.324 0270 |962 (486|369 170 |00 | 100 [07s| 100 | 7 [s00
200 300 ] 0.464 0.540 982 (4B.6 1.47 0.B0 | .00 |0.75( 1.00 5 500
200 450 5 0.584 0.810 98.2 (4B.6 1.3 0.B0 | .00 |0.B5| 1.00 4 500
200 650 ] 0744 1170 98.2 |4B.6 1.16 0.B0 | .00 |0.55| 1.00 5 500
200 750 " 0.624 1360 | 982 |486 110 | 0.80 | 1.00 [085| 100 | 1 |s00 | 12 18
200 9.00 12 0.944 1620 | 982 |486 103 | 0.80 | 1.00 [0.95| 100 | 9 |s00| 12 15
200 10.50 10 1,064 1890 | 996 (371 (389 | 057 | 080 |1.00 |[1.00| 1.00 | 7 (500 1.2 17
200 12.00 13 1184 2160 | 989 (663|447 | 0S2 | 080 | 1.00 [1.00| 1.00 | 8 (500 1.2 15
200 1350 14 1304 2430 | 989 |663 0.88 | 0.80 | 1.00 (1.00| 1.00 [ 5 |500( 1.2 15
200 15.00 " 1.424 2700 | 889 |663 084 | 080 |1.00 (100 1.00 | 7 |500| 1.2 1
200 1650 17 1544 2970 | %89 |663 0.80 | 080 | 1.00 1.00| 1.00 | B |S00| 12 14
200 18.00 2 1684 3240 | SRS |663 078 | 080 | 1.00 |1.00| 1.00 | 13 [So0 | 12 20
200 19.50 22 1784 1510 |s8sg 663 0.76 | 080 [1.00 [1.00| 1.00 | 13 |500| 12 20
200 21.00 3% 1904 780 B15 [ 0D 072 0.80 | 1.00 |1.00| 1.00 20 |500( 12 2
200 2250 44 2024 4.050 B15 (00 | 211 0.70 0.B0 | 1.00 | 1.00 | 1.00 24 |500( 12 33
200 24.00 2 2144 4.320 B15 (0D 0E8B 0.B0 | 1.00 | 1.00 | 1.00 15 | 500 ( 12 2
200 2550 32 2284 4590 |[77.2 |00 (253 066 | 080 |1.00 [1.00| 100 |17 |500| 12 =
200 28.50 kL 2504 5130 |77.2 |00 063 | 080 |1.00 100 1.00 |16 |5.00( 1.2 Pl
200 30.00 M 28624 5400 (8.0 (00 (307 062 | 080 [1.00 |1.00| 200 |33 |s00( 12 «
otalama 12 19
Figure A2.5. Neo Values for SK 5
Sonda] YASS Dernlik SPTIN av’. ol o 15 e gong| LL |wn % SPTIN Darbe sayis dlzeime kataydan | Mg | = 8 Mikses
Borehole | GWTlevel Depth Conrection factors for SPT/N blow counts
No m ml Cu M) [Ce (A [Co PI| Cu Cs (L] L] 4
SK6 200 1.50 4 0324 0z | 990 567|376 | 170 | 080 | 100 |o7s| 100 | 4 |500 12 9
SKE 200 3.00 5 0.464 0.540 | 99.0 | 567 147 | 080 | 100 |076| 100 | 4 [S00( 1.2 9
SKE 200 4.50 8 0584 0810 | 79 |00 [257| 131 |080 100 |08s| 100 | 7 (0271012 7
SK6 200 6.00 10 0.704 1080 | 78 | 0.0 119|080 | 100 |0B85| 100 | 8 |D.281.012 8
SK6 200 7.50 8 0824 1350 | 7.9 | o0 110 |080 | 100 |085| 100 | & [028]1.012 [
SK6 200 9.00 7 0.944 1620 | 87.4 | 449 103 |00 | 100 (085| 100 | 5 (500 12 1
SK6 200 10.50 [ 1.084 1890 |87.4 (449|374 | 087 |080 [100 [100| 100 | 4 |500| 12 9
SKE 200 1200 12 1184 2160 B74 | 4489 os2 080 | 1.00 |1.00| 1.00 9 500 ( 12 15
8KE 200 1350 18 1.304 243 |87.4 449 088 | 080|100 (100 100 | 12 500 12 19
SKE 200 15.00 19 1424 2700 99.3 | 552 | 42.8 084 080 ( 1.00 |1.00| 1.00 12 | 500 | 12 19
SK6 200 18.00 18 1.664 J.240 993 | 552 oTe 080 ( 1.00 |1.00| 1.00 9 500 ( 1.2 15
SKE 200 18.50 17 1.784 510 945 | 37.0 | 325 075 080 | 1.00 |1.00| 1.00 10 |5.00 | 1.2 17
SKe 200 21.00 16 | 1904 | 3780 |444 |00 284 072 |080 100 [100| 100 | 9 [500 1.2 15
SK6 200 2250 20 2024 4050 | 932 |58.7 070 |0.80 [ 1.00 [1.00| 100 [ 1 |5.00 | 1.2 18
SK6 200 24.00 13 2.144 4320 |92 (%87 068 | 080 | 1.00 [1.00| 1.00 | 10 |500 | 12 17
SK.6 200 25.50 18 2264 45s0 |932 |58.7|356| o066 |080 | 1.00 |100| 100 | & 500 12 14
SKE 200 .00 21 2384 4860 | 932 |58.7 0.65 |080 | 100 [100] 100 | 10 |s00| 12 17
SK6 200 28.50 23 2504 5130 | 584 |00 063 080|100 [100| 100 | 11 |s00] 12 18
SKE 200 30.00 2624 5400 | 591 | 0.0 062 080|100 [100] 100 | 11 [s00] 12 18
onanma & b0
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Sonda) vass Derinilk | SPTm | oV oVtS o ga00| LU |wn.%| SPTIN Dare says dlzeitme katsayian | Mk | o | 8 [Maleses
Borehole | GWT level e pith Corre ction factors for SPTIN blow counts

No m Im) Cw (1) [Ce(2) |G {3)| Ca Cs 4 L] (o]
SK-T 200 1.50 4 0324 0.0 986 |52.1 | JGD 170 080 | 1.00 (075 1.00 4 500 | 1.2 9
SK-7 200 3.00 4 0.464 0.540 986 | 521 147 0B0 | 1.00 (075 1.00 3 500 | 1.2 8
SKT 200 4.50 B 0.584 o.e10 991 |52.2 | &5 1M 080 ( 1.00 (0.B5( 1.00 5 5.00 1.2 1
SK-7 200 E.00 4 o704 1.080 991 | 522 1139 08B0 | 1.00 (0.B5( 1.00 3 500 | 12 8
SK-T 200 7.50 T 0824 1.350 991 | 522 1.10 080 ( 1.00 (095 1.00 5 5.00 12 1
SK-T 200 9.00 B 0,844 1.620 950 | 7.6 | 28.5 1.03 080 ( 1.00 (095 1.00 4 §.00 | 1.2 9
SK.T 200 10.50 B 1.064 1.850 950 | 7.6 0s7 080 | 1.00 (1.00( 1.00 6 §00 | 12 12
SK.T 200 12.00 | 1184 2160 950 | 37.6 [%:F 080 ( 1.00 (1.00 ( 1.00 & 500 | 1.2 12
SK-T 200 11.50 15 1304 2430 757 | 00 282 0.88 0B0 ( 100 (1.00 | 1.00 10 500 | 12 7
SK7 200 16.50 ] 1544 2.970 757 | 00 | 282 0.Bo 080 | 1.00 (1.00( 1.00 5 5§00 | 12 1
SK-T 200 18.00 13 1664 3.240 757 | 0.0 |2B.2 o078 080 ( 1.00 (1.00 ( 1.00 B 500 | 1.2 14
SK-7 200 19.50 35 1784 3510 733 | 0D | 274 075 080 | 1.00 (1.00 ( 1.00 20 | 500 1.2 -]
aKT 200 21.00 33 1904 3780 [733 |00 072 |080 100 |100| 100 | 19 [500| 12 7
K7 200 2250 20 2024 4050 | 733 | 00 070 | o080 |1.00 [1.00| 100 | 11 |500| 12 18
SK-7 200 24.00 15 2144 4320 97.0 | 662 | 350 n.ea 080 ( 1.00 (1.00( 1.00 8 5§00 | 12 14
K7 200 2550 ) 2284 4590 | 9.0 | 63 066 | 080 | 100 |100| 100 | 8 |s00]| 12 14
SKT 200 7.0 4 2384 4860 | 97.0 | 663 065 |080 | 100 [100| 100 | 7 |S00( 12 12
SK-7 200 28.50 18 2504 5130 780 | 0O 06 080 | 1.00 (1.00( 1.00 9 5§00 | 12 15
SK-7 200 30.00 21 2624 5400 79.0 | 0O o.62 080 ( 1.00 | 100 | 100 10 500 | 1.2 17
ortalama 8 14

Figure A2.7. Neo Values for SK 7

Sonda] YASS Derinlik | spTn | ov.ist oVt lewang| LL |wn,%| SPTIN Darbe sayis dozenme katsayian | Niks | o B Mlges
Borehole GWT level Depth Correction factors for SPTIN blow counts
No m 1 Cu (1) [Ce @) |Ca (3| G s L] 1) L]
sK-8 200 1.50 4 0324 0270 | 952 |44 170 | 080 [1.00 |0.75| 100 | 4 |500 | 1.2 9
g 200 3.00 5 0.454 0540 | 952 (441|293 | 147 | 080 [1.00 |0.75| 100 | 4 |S00 [ 12 9
SK.8 200 450 5 0.584 0810 | 952 |441 1.3 |080 |1.00 [085| 100 [ 4 |500| 12 ]
SKe-g 2.00 6.00 4 0.704 1080 | 952 |44 148 | 080 [1.00 |0.85| 100 | 3 |500| 1.2 8
Sk 200 7.50 | 0.824 1350 | 91.8 |34.3(330( 110 | 080 [1.00 (095 100 [ 4 |500| 1.2 9
sk 200 .00 7 0.544 1620 | 918|343 103 | 080 |1.00 |0.95| 100 | 5 |500| 1.2 il
SK.8 200 10.50 7 1.064 1890 | 732 (263 (30.8| 057 | 080 [1.00 {1.00| 100 | 5 |500( 1.2 1
1 SK-8 200 12.00 8 1.184 2,160 732 | 283 052 | 080 |1.00 (100 100 | 5 |500| 1.2 1
SK-8 2.00 13.50 12 1.304 2430 941 ( 00 osse 0.80 | .00 | 100 | 1.00 B 500 | 1.2 14
SK-8 200 16.50 10 1544 2570 941 [ 00 (345 oso 0.80 | 1.00 | 1.00 | 1.00 B 500 ( 1.2 12
| SK-8 200 18.00 9 1.664 3.240 | 987 |46.3 078 | 080 |1.00 (100 100 | 5 |500| 1.2 1
SK-8 200 19.50 14 1.784 3510 98.7 (463 ors 0.80 | .00 | 1.00 | 1.00 B 500 1.2 14
SK-B 200 21.00 18 1.904 3.780 98.7 (463 (24.8 orz 0.80 | 1.00 | 1.00 | 1.00 10 (500 | 1.2 17
|_9<4, 200 22.50 15 2024 4.050 98.7 | 46.3 070 | 080 [ 1.00 |[1.00| 100 | B |500| 1.2 14
SK-8 200 24.00 13 2144 4.320 97.0 (304 (385 0.68 0.80 | 1.00 | 1.00 | 1.00 T 500 ( 1.2 13
SK-8 200 25.50 17 2.264 4.590 97.0 | 30.4 0.66 0.80 | .00 | 1.00 | 1.00 9 500 | 1.2 15

Figure A2.8. Ngo Values for SK 8
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Derinlik

SPTIN Darbe sy dizeltme kamayilan

1.80

EBorehole GWT level De pth Cormection factors for SPTIN blow counts
No m im) Cult) [Ce@[Co (| G| G T W 14
8K-0 180 1.50 5 0.324 0zi0 | 828 |328 170 | 080|100 [075| 100 | 5§ |500| 1.2 11
SK-9 1.80 lo00 16 0.444 0.540 B28 |328 150 0.80 | 1.00 (075 | 1.00 14 5.00 1.2 Al
1.80 450 7 0.564 0.810 B28 (325 | 359 133 0.80 1.00 (0B85| 1.00 & 5.00 1.2 12
1.80 6.00 B 0684 1.080 B28 |328 121 0.80 | 1.00 (0.85| 1.00 & 5.00 1.2 12
1.80 7.50 k-] 0.804 1.350 B28 |328 142 0.80 | 1.00 (095 | 100 7 5.00 1.2 12
SK-9 180 9.00 ] 0924 1.620 B2.8 (328 1.04 0.80 | 1.00 (095 | 100 4 5.00 12 a9
180 10.50 9 1.044 1.890 994 (37.2) 381 098 0.80 | 1.00 (100 | 100 7 5.00 12 12
180 1200 ] 1.164 2160 9.4 (372 093 0.80 | 1.00 (1.00| 100 & 5.00 1.2 12
180 1350 12 1284 2430 99.4 (372 0.88 0.80 | 1.00 (100 | 100 B 5.00 1.2 14
15.00 12 1.404 .70 994 (372 0.84 0.80 | 1.00 (100 | 100 B 5.00 12 14

Figure A2.9. Neo Values for SK 9
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APPENDIX B1

CONE PENETRATION TEST 1

—— Cone resistance in MPa (qc) —> &—— Friction ratio (%)
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Figure B1.1. Cone Resistance and Skin Friction from 0 m to 24 m
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—— Cone resistance in MPa (qc) — &—— Friction ratio (%) —

2 4 6 8 10 12 14 16 18 20 10 8 6 4 2

¢— Depth in m to refereice level (NAP)

0.10 0.20 0.30 0.40 0.50
—— Sleeve friction (fs) in MPa —

Figure B1.2. Cone Resistance and Skin Friction from 24 m to 36 m
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—— Dynamic pore pressure (u) in MPa
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Figure B1.3. Dynamic Pore Pressure from 0 m to 24 m
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—— Dynamic pore pressure (u) in MPa —
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Figure B1.4. Dynamic Pore Pressure from 24 m to 36 m
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—— Equivalent SPT N60 Value —>

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

GL.: 0.00 mNAP

¢— Depth in m to reference level (NAP)

Figure B1.5. Equivalent SPT N60 Value from 0 m to 24 m
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Depth in m to reference level (NAP)
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—— Equivalent SPT N80 Value ——
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Figure B1.6. Equivalent SPT N60 Value from 24 m to 36 m
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&— Depth in m below gruund level (G.L.)

-20

21

—— Soil Classification (using Fr) —>
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Figure B1.7. Soil Classification from 0 m to 24 m
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¢— Depth in m below gruund level (G.L.)
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—— Soil Classification (using Fr) —>
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Figure B1.8. Soil Classification from 24 m to 36 m
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APPENDIX B2

CONE PENETRATION TEST 2

; —— Cone resistance in MPa (qc) —> &— Friction ratio (%)
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Figure B2.1. Cone Resistance and Skin Friction from 0 m to 24 m
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—— Cone resistance in MPa (qc) — &— Friction ratio (%) ——
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Figure B2.2. Cone Resistance and Skin Friction from 24 m to 36 m
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—— Dynamic pore pressure (u) in MPa ——
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Figure B2.3. Dynamic Pore Pressure from 0 m to 24 m
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<— Depth in m to refereince level (NAP)
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Figure B2.4. Dynamic Pore Pressure from 24 m to 36 m
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<— Depth in m to reference level (NAP)

—— Equivalent SPT N60 Value —
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Figure B2.5. Equivalent SPT N60 Value from 0 m to 24 m
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¢— Depth in m to refereiice level (NAP)

—— Equivalent SPT N60 Value —
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Figure B2.6. Equivalent SPT N60 Value from 24 m to 30 m
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—— Soil Classification (using Fr) —>
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Figure B2.7. Soil Classification from 0 m to 24 m
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Soil Classification (using Fr) —>
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Figure B2.8. Soil Classification from 24 m to 31 m
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APPENDIX C

PRESSUREMETER TEST

SONDAJ NO / BOREHOLE NO : SK-7 TARIH / DATE : 22-28,06,2017
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Figure C.1. Pressuremeter Test Results at SK-7
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SONDAJ NO / BOREHOLE NO : SK-14 TARIH / DATE : 04-05,07,2017
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Figure C.2. Pressuremeter Test Results at SK-14
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SONDAJ NO /BOREHOLE NO : SK-16 TARIH / DATE : 06-07.07.2017
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Figure C.3. Pressuremeter Test Results at SK-16
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07-10.07.2017
Menard GA

TARIH / DATE :
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Figure C.4. Pressuremeter Test Results at SK-19-20



APPENDIX D

PLATE LOAD TEST

Plate Load Test: Plot of Settlement v. Pressure Page : 1
Location: The Geothermal Project Ground Elevation :
Site : ACC - Turbine Generator Plate Diameter : 76.00cm
Plate Depth : 0,50m Date : 11.10.2017
ther Sunny Dry / Wet: Dry
Test No: PMT
Applied Pressure {kgfcm2 )
0.00 0.50 1.00 1.50 2.00 2.50
0.00
1.00 =
E 2.00
£
w
-
=
]
£
g ‘\
v
2 3.00 & ™
k-] \\\
) \\
\\\A _-—*
4.00 =
5.00
Remarks
Deformation Module: *Ev=[0,73xDx(Ag/AS)], k.g/cm2
Ge2 Got A Sy Sy AS Eq *E,,
kgf/cm2 kgf/cm2 kgf/cm2 om om cm Mpa Mpa
*Ea1 1.80 1.10 0.70 0.333 0.263 0.070 57.00
*Eya 1.40 0.70 0.70 0.365 0.350 0.015 266.00
Ev2/Ev = 4.67
Deformation Module: *Ev = [ 0,75 x D x (Ac /AS ) |, kg/am”
O Go1 A 8, Sy AS *Evs *Euy
kgf/cmZ kgf/crnz kgf/cmZ cm om cm Mpa Mpa
*E.s 1.80 1.10 0.70 0.378 0.344 0.034 117.35
*Eoy 1.40 0.70 0.70 0.391 0.373 0.018 221.67
Eva/Evs = 1.89

Performed by : Hakan ELMAS

Checked By:Mumin Sen|

Figure D.1. Plate Load Test Results
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APPENDIX E

CONSOLIDATION TESTS

'KONSOLIDASYON DENEY RAPORU

Ring No | 1 Rirq+Yas Num abuig] 13308 |Ozqul Asilik  Gs (eriem’} 270 Rapor No* EF1716516
SAYFA LD 7
ISONDAS NO: K2 Rapor Tanhi 02082017
Cap fem) 6.35 |RingsKuruNumAfwiq 16046 |19 NUMUNE NO: ubD PAFTA 0
H = W, /ggA (cm) 1.041 DERINLIK: 6.00-5.50 ADA 0
Kesit Alant A {em’) 31,65 |Ring Agahd [gr) 71,51 |Bogluk Oram e ={h_-h,) 0322 PARSEL U]
+cxwmxvl L T 2,00 [Kuru Hum AW, (gr} 8835 |Sumuhtevasi Wo=wy, AW, 3667% i AYDIN
Haom V fem’) 6331 |Su afuiy W, ar) 3262 |Doyguniuk Derecesi ILCE INCIRUOVA f OSMANBUKU MAH
Binm Agr{gicm ) 1820 Sr= Gg Wofe, (%) 107 44% BRH:13046522
Tatbik Numune | Bosluk Bosluk Bosgiuk Basing Sidastrma Hacimsal Cturma Konsoldasyon Permeabilite
Edilen tutma YOksekhigr! Yokseki§l  Crani Crani Attigt Kat Sayisi Sikigma Zamam Katsayisi k=mv.ev.g,, Duguniceler
Basmg h=h.- & | h=h-h, e=hy/h, Degigimi kglem® a=¢es Kalsayist an Cvicm®#sn)
giem’ em em . eming Mv=avil1-¢} 00490 p212n° emisn
emilkg | ko g taa @t
2 o 2 0.9532 09216
0.25 0,0703 1.9297 | 0.8888 0.8541 0.0675 0.25 0.2702 0.1406 45 0.0175 246654056
0.5 01222 1.8778 | 08370 0.8042 0.0483 025 0.1335 01075 43 0.0166 17.8714408
1 0.1832 18168 0.7760 0.7456 0.0586 05 01172 0.0650 45 00155 10,1028473
2 0.2603 1.7383 0.6987 06713 00743 1 00743 0,0425 60 0.0107 45488943
4 0 3486 16514 | 0.6108 0.5867 0.0846 2 00423 00253 60 00036 24401170
8 0 4252 15748 | 0.5340 0.5131 0.0736 4 00184 00116 60 00088 1.0161362
1 0.4355 1,5645 05237 0.5032 -0,0098 k| -0.0098
0.25 0.3522 1.6078 0.5670 0.5448 0.0416 0.25 0.1664 —
0.25 0.5 1 2 4 [} 1 025
0.8541 08042 0,7456 06713 05867 0,513 05032 05448

Figure E.1. Consolidation Test Results for SK-2
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Figure E.2. Consolidation Test Graph for SK-2

131



159%°0 LOF0 909¢'0 £pav o 26550 96790 §5£9°0 60£L'0
520 L g v z s s'o S2'0
) 18410 Sz0 1pv00 | IS0 | B95v0 | ZLL9h 88880 0
50200 I 50200 1L0F0 | 0Zp¢0 | PI9SH 98E% 0 T
GIZELOP'L 78000 09 SI100 65200 r 26010 90860 | Zvzv'0 | 99€SL PL9p 0 g
IPIE0ZET £6000 09 0v20°0 vIE0°0 4 8v.00 £p8v0 | B6ES O | ZvS9L 85vE 0 r
91SZEEZ’y 20100 09 L6£0°0 ?p90°0 L »p90'0 26550 | 26290 | 9LtL't ¥Z29Z°0 z
95E06VS 6 ¥5L0°0 [ 6L90°0 IE0L 0 S0 61500 9£Z9°0 | 05650 | »508't 90610 L
50585042 D] S 15210 912z o [ §550'0 $51900 | 8zSL0 | Zi99% 8ZE10 50
PLEGZE BT $L100 [ 0z9L'0 8rsz o SZ0 28900 60£L0 | 9vi90 | 0626t 01200 s2'0
6.0 | 95880 z 0 0
L e o | | Byfy w3
usiul MZIZO NG00 | (Bt aR=AW a!nEu ] wa wa ..r.L.__u__
{usrwaks us : 1sihesiey s/ oy | mwisfeq | Myfyza | Muusty | @ Y=y Suiseq
@@uning M6 ADAW=Y 1sthesiey yeweyz vwbipg 151ARG JB) 1Sy PL{le} weiy  |Byyasxaa [Gixasuna | ewinio ud|ip3
ETUIL L R URASEPHOSUON 'wINO |eswioep ewindyg Suiseg ansog wnfog ynjdog | sunwny wngle)
 Z299FOCLiNGE e 4L {5) “arom *0 =13 859't {_wopb) 1By wmg
HYA OHOBNYNSO / YAOTHION( I 15233130 yunBAoal  8g'Lz T BEeng| 1£e9 {{waPAwney
NIJAY Al w9’z TS M=OM IserRIgnW NG| G666 (16} "an By way riny|  00°2 B30y e s A
o T3SUVA g5L°0 ='w/('y-"y)="a weiQ ynisog|  LS'LL {16) 1Gngy Bury | 6oL (.wa) v weyy nsay
0 vav 00°£1-05'9L dnEIal vt (way By 'm=H
0 vidvd an ON INIHNIIN| 61| 9¥'29L P)iny wonnndebuid|  5E'D (w2} ded
£402'80°20 wque lodey 948 'ON r'vaNos
K DN V4AYS
9159412143 o todey 'z TWarm) 5D ANIGY INDZO|  vh 688 |0 10V WRN SeA-GUm | 1 |ozuSm_

NAOdYY AINIA NOASYAITOSNOA

Figure E.3. Consolidation Test Results for SK-6
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Figure E.5. Consolidation Test Results for SK-25
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APPENDIX F

SOIL EXPERIMENTS
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Figure F.1. Soil Experiment Results for SK1 — SK3
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Figure F.2. Soil Experiment Results for SK4 — SK6
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Figure F.3. Soil Experiment Results for SK7 — SK9






