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ABSTRACT

DEVELOPMENT OF ENERGY-EFFICIENT PERSONALIZED
THERMAL COMFORT DRIVEN CONTROL IN HVAC SYSTEMS

Increasing thermal comfort and reducing energy consumption are two main
objectives of advanced HVAC control systems. Studies conducted in the last decade
show that intelligent HVAC systems can greatly affect thermal comfort, health,
satisfaction, and productivity of building occupants while decreasing the energy
consumption. Also, personalized thermal comfort driven control of the HVAC systems
is the most effective way of saving energy and maintaining thermal comfort.

In this thesis, an energy-efficient personalized thermal comfort control algorithm
is developed to improve HVAC control system. The thesis presents a complete system
to control algorithm which includes the deployment of wireless sensor network. First, a
novel control algorithm is developed to perceived comfort conditions of occupants and
to save energy. Then, a prototype of the personalized thermal comfort driven controller
(PTC-DC) is manufactured an tested in a case building at [zmir Institute of Technology
Campus, Izmir/Turkey. The proposed control strategy is tested between July 3%, 2017
and November 1%, 2018, and compared with conventional controller in terms of energy
savings and both energetic and exergetic approaches of thermal comfort.

The results showed that PTC-DC satisfies neutral thermal comfort for 92% of
total measurements days while AMV=0 for only 6% of total measurement days for
conventional controller. From energy consumption point of view, PTC-DC decreased

energy consumption by 13.2% compared to conventional controller.
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OZET

KiSISELLESTIRILMIS ENERJi ETKIN ISIL KONFOR BAZLI HVAC
KONTROL SISTEMLERININ GELISTIRILMESI

Akilli HVAC sistemlerinin iki 6nemli amaci 1s1l konforu iyilestirmek ve enerji
tiiketimini azaltmaktir. Son yillarda yapilan ¢alismalar, akillit HVAC sistemlerinin enerji
tiketimini diisiirdiigli gibi insan sagligini, 1s1l konforu, memnuniyeti ve bina
sakinlerinin verimliliginin gelisimini dogrudan etkiledigini gostermektedir. Bunun
yanisira, kisisellestirilmis 1s1l konfor bazli HVAC kontrol sistemleri 1s11 konforu ve
enerji tasarrufunu saglamakta en etkili yontemdir.

Bu tezde, HVAC kontrol sistemlerini iyilestirmek amaciyla kisisellestirilmis 1s1l
konfor bazli HVAC kontrol algoritmasi1 gelistirilmistir. Calismada kablosuz alic1 ag1
olusturularak biitiinlesik bir kontrol sistemi sunulmustur. Calismada Oncelikle,
kullanicilarin tercih ettigi konfor kosullarini ile birlikte enerji tasarrufunu saglayan bir
kontrol algoritmas1 gelistirilmistir. Daha sonra, bu yeni kontrol algoritmasini kullanan
kisisellestirilmis enerji-etkin 1s1l konfor bazli kontrolcii (PTC-DC) prototipi gelistirilmis
ve Izmir Yiiksek Teknoloji Enstitiisii Kampiisii'nde bulunan bir binada test edilmistir.
Testler 03.07.2017- 01.11.2018 tarihleri arasinda gerceklestirilmis ve binada mevcut
bulunan konvansiyonel kontrolcii ile enerji tasarrufu ve hem enerjetik hem de ekserjetik
151l konfor yaklagimlar1 agisindan karsilagtirilmistir.

Konvensiyonel kontrolcli nétr 1s1l konforu toplam test giinlerinin sadece
%6’sinda saglarken, PTC-DC toplam test giinlerinin %92’sinde saglamaktadir. Enerji
tiiketimi agisindan, PTC-DC konvensiyonel kontrolciiye gore %13,2 enerji tasarrufu

saglamistir.
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CHAPTER 1

INTRODUCTION

Heating, Ventilating and Air Conditioning (HVAC) systems maintain thermal
comfort for occupants of residential, commercial and industrial buildings. HVAC

systems comprise of an inside unit, air handling unit (AHU), ducts (air distrubution

system) and an outside unit.

A HVAC system provides heating and/or cooling for a space by controlling

temperature and relative humidity (Fig. 1.1).
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Figure 1.1. A simple HVAC system
(Source: Lightfootmechanical, 2018)

The AHU is an integrated piece of equipment that consists of a fan, heating and
cooling coils, air-control dampers, filters and silencers (Fig. 1.2). The outside air is
cooled or heated, after which it is discharged into the building space through a duct
system. A fan is an air pump that creates a pressure difference and causes airflow whilst
filters are to remove particles and contaminants of various sizes from the air. Cooling
coil is used to cool and dehumidify the air while heating coil sends warm air into the

space. Finally, the dampers move the air through the air-handling unit and out into the

spaces.
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Figure 1.2. Schematic of AHU unit
(Source: Cooper, 2018)

An air-conditioner is a kind of AHU which treats air in an enclosed space via
refrigeration cycle (Fig. 1.3). Compression, condensation, expansion and evaporation
are four components of refrigeration cycle which is used by all air-conditioners. The
most commonly used refrigeration cycle is vapor-compression cycle. Briefly, for a
cooling function, refrigerant enters the compressor as saturated vapor while low
pressure is increased to high pressure. Then, the refrigerant is cooled to the saturated
liquid in condenser as a result of heat rejection to the surroundings. The refrigerant is
throttled to low pressure for evaporator and finally vaporizes absorbing heat from

refrigerated space (Cengel and Bowles, 2005).
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Figure 1.3. Refrigeration cycle used in air-conditioner
(Source: Cengel and Boles, 2015)



A typical HVAC control system is depicted in Fig. 1.4. The supply air
temperature is controlled by controller C1 while the duct static pressure is controlled by

controller C2. Additionally, the zone air temperature is controlled by controller C3.
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Figure 1.4. HVAC control system
(Source: Nassif et al., 2008)

1.1. Thermal Comfort

Thermal comfort is investigated based on energetic approach and exergetic

approach which use the First and Second Law of Thermodynamics, respectively.

1.1.1. Energetic Approach

The American Society of Heating, Refrigerating and Air-Conditioning
Engineers (ASHRAE) defined “Thermal Comfort” as “the condition of the mind in
which satisfaction is expressed with the thermal environment” (ASHRAE, 2017).
Thermal comfort is dependent upon whole body sensation which is the function of six
variables: air temperature, humidity, air velocity, clothing insulation, metabolic rate and
mean radiant temperature. Obviously, thermal comfort can be measured directly by the
surveys or can be estimated by measuring the quantities of the thermal environment.
The Predicted Mean Vote (PMV) is an empirical fit to the human sensation of thermal

comfort. It is the most common metric to estimate the thermal comfort as presented in



ISO 7730 (2005a). The variables for PMV calculation are the user’s activity level (met)
and clothing insulation (clo-value), indoor air temperature (Ti), mean radiant
temperature (MRT), relative air velocity (v«) and humidity (RHi). The PMV refers to a
thermal scale that runs from cold (-3) to hot (+3), originally developed by Fanger
(1970). The scale uses thermal sensation codes as given in Table 1.1 as -3 for cold, -2
for cool, -1 for slightly cool, 0 for neutral, +1 for slightly warm, +2 for warm and +3 for
hot. According to the ISO 7730 (2005a) the values of PMV is 0 with a tolerance of +
0.5 as 90% of the occupants feel thermally satisfied. In a conditioned environment,

PMV =0+ 0.5 is the target to be achieved by a HVAC system.

Table 1.1 Thermal sensation scale
(Source: ISO 7730, 2005a)

Thermal sensations PMV
Hot +3
Warm +2
Slightly warm +1
Neutral 0
Slightly cool -1
Cool -2
Cold -3

The second thermal comfort index is the Predicted Percentage of Dissatisfied
(PPD). The PPD, which is defined in terms of PMV, predicts the percentage of
occupants that will be dissatisfied with the thermal conditions and adds no information
to that already available in PMV. An indoor environment is assumed as “thermally
comfortable” when
90% of the occupants are satisfied (or 10% dissatisfied) with their thermal environment
(ASHRAE, 2017). The PMV/PPD model calculates the thermal comfort by using six
variables listed above; nevertheless, the calculation method is complex.

In 1998, the adaptive thermal comfort model (Brager and de Dear, 1998) was
adopted in ASHRAE 55 (2017) for naturally ventilated buildings, alongside the
PMV/PPD index for buildings using HVAC equipment. Adaptive comfort model added

a little more human behavior to the thermal sensation models. The model assumes that,



if changes occur in the thermal environment to produce discomfort, the occupants
generally change their behavior and act in a way that the occupants restore their comfort
(Nicol and Humpreys, 2002). These actions include taking off clothing, reducing
activity levels or even opening a window. The main effect of such models is to increase
the range of conditions that designers can consider as comfortable, especially in
naturally ventilated buildings where the occupants have a greater degree of control over
their thermal environment. In order to consider adaptive comfort, the space must have
operable windows and no mechanical cooling system. Furthermore, occupants must

have the option of adding or removing clothing to adapt to the thermal conditions

1.1.2. Exergetic Approach

The ISO 7730 (2005a) uses PMV method which was developed based on the
First Law of Thermodynamics. As discussed in Section 1.1.1., the method uses six
parameters (air temperature, humidity, air velocity, clothing insulation, metabolic rate
and mean radiant temperature) for the calculation and refers to a thermal scale in Table
1.1 and the body is believed to be thermally satistied at PMV= 0 £ 0.5 (Fanger, 1970).
Zero PMV value (0) is accepted as thermal neutrality. However, there are many
combinations of the thermal comfort parameters that give the thermal neutrality.
Shukuya (2009) suggested another approach which is based on the Second Law of
Thermodynamics. This approach considers human body system as a complex model
with circular nodes and uses outdoor air temperature (To) and relative humidity (RHo) as
well as indoor environmental conditions; indoor air temperature (Ti) and relative
humidity (RHi), mean radiant temperature (MRT) and air velocity (v«) and then
calculates the human body exergy consumption (HBexC) rate. Consequently, Shukuya
(2009) indicated that there are limited combinations of thermal comfort parameters that

give the minimum HBexC rate value and thermal neutrality.

1.2. Energy Consumption of HVAC Systems

Energy consumption of the building sector over total final energy consumption

was 40% and 32% in 2016 for EU and Turkey, respectively (Fig. 1.5 and 1.6)



(Cucchiella et al., 2018; TUIK, 2016). Final energy consumption in residential buildings
in EU decreased by 9% between 2001 and 2015. However, in this period, 48% of
increase is recorded in the energy consumption by residential buildings in Turkey

(Atmaca, 2016).
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Figure 1.5. Energy consumption by sector in EU
(Source: Cucchiella et al., 2018)
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Figure 1.6. Energy consumption by sector in Turkey
(Source: Atmaca, 2016)

HVAC systems consume 30-50% of the building’s energy share in Europe
(Ferreira et al., 2012; E.U.Parliament, 2017) as shown in Fig. 1.7. However, 40% of
energy consumption can be saved by applying energy-efficient HVAC control systems
(Dai et al., 2016).
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Figure 1.7. Share of total energy consumption in EU buildings
(Source: E.U. Parliament, 2017)

Energy consumption of HVAC systems can be decreased by using proper
control strategy such as control systems which detect occupant-building interactions

(Hang et al., 2016).

1.3. HVAC System Control

HVAC systems are typical nonlinear time-dependent multivariable systems with
inter-related variables like Ti and v, as well as disturbances like occupants’ behavior, To
and RHo (Mirinejad et al., 2012; Dar et al., 2015; Dong et al., 2014; Chen et al., 2016).

Historically, the oldest prototype of a HVAC system control emerged in the
1930s. The developed on/off control provided only two outputs; maximum (on) or zero
(off). In the early 1980s, standard PID (proportional-integral-derivative) regulators were
commonly used as feedback controllers. The control logic is based on the computation
of the error e(t) between the desired and the measured values of the output, i.e. e(t) =
r(t)— y(t), which is fed back to the system after proportional, integral and derivative
operations. By the 1990s, computerized controllers became popular. Some of the
controllers used computer programs and could be accessed even by a web browser.
Then, many advanced control systems were introduced which used Artificial Neural
Network (ANN), Fuzzy Logic (FL), Artificial Neuro-Fuzzy Inference System (ANFIS)
and Model Predictive Control (MPC) algorithms.



Many HVAC control systems use air temperature regulators to control the
thermal environment. However, thermostatic control of a HVAC system is not aware of
occupant comfort, instead, it concentrates only on controlling room temperature. The
limitations of the traditional approach to HVAC system control have led many
researchers to design personalized HVAC control systems (Feldmeier, 2009; Jazizadeh
et al., 2014; Hossein Sagheby, 2018). Participation of the buildings’ occupants is
essential in learning their comfort profiles for personalized and comfort-driven HVAC
operations (Jazizadeh et al., 2014; Jazizadeh et al., 2018). To this aim, personalized
thermal comfort controllers deal with individual thermal sensation instead of calculating
PMYV value. The role of the personalized thermal control system is to control the HVAC
system automatically to maintain the comfort level of individual occupants when they
are actually present.

In general, HVAC control systems could be classified into two categories:
conventional controllers (on/off, PID type controllers etc.) and advanced controllers
(Fig. 1.8). PID type controllers include P, PI and PID regulators. Advanced controllers
are based on detection of nonlinear and dynamic systems. The advantage of advanced
HVAC controllers is the adaptation to the changing climate and indoor thermal
conditions of the buildings (Holland, 1975). This category of controllers includes ANN,
FL, ANFIS and MPCs.

Advanced HVAC control systems can understand the complex structure of
occupant thermal comfort. For this purpose, intelligent controllers started to be
developed in 1990s. To address the preferred thermal comfort and indoor conditions,
the authors studied ANN controllers (Guillemin and Morel, 2002; Liang and Du, 2005;
Reena et al., 2018), FL controllers (Hamdi and Lachiver, 1998; Calvino et al., 2010;
Nowak and Urbaniak, 2011; Anastasiadi and Dounis, 2018), adaptive controllers (Morel
et al., 2000; Kolokotsa et al., 2005; Jazizadeh and Jung, 2018) and MPCs (Privera et al.,
2011; May-Ostendorp et al., 2011; Garnier et al., 2014; Dong and Lam, 2014; Hilliard
etal., 2017; Yang et al., 2018).

Due to the fuzzy nature of thermal comfort, several studies concluded that FL
controllers can be used to obtain thermal comfort better than other advanced controllers
(Kolokotsa et al., 2005; Barmejo et al., 2012; Ghahramani et al., 2018). Some
researchers developed thermal comfort sensing systems and advanced HVAC
controllers together (Scheatzle, 1991; Kang and Park, 2000; Wang et al., 2007,
Ghahramani et al., 2018).
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1.4. Motivation

In the 21*' century, HVAC systems still use conventional controls such as simple
on/off and/or conventional PID controllers. However, these systems regulate only air
temperature to control the thermal environment. Thermal comfort of the occupants and
energy savings are not parameters. Moreover, conventional control logics can not detect
the presence of the occupants in a room. Hence, adjusting the set points for unoccupied
times leads to higher energy consumption. Although control algorithms of conventional
HVAC systems are simple, satisfaction of thermal comfort is the problem. While
advanced HVAC controllers offer better performance than conventional ones (Hang et
al., 2016), many advanced HVAC controllers require extra effort to develop a suitable
dynamic model. First, a proper nonlinear mathematical model of HVAC system and
thermal sensation model must be derived. This procedure requires a great knowledge of
mathematics. In particular, ANN and FL controllers rely on the learning accumulated
from off-line simulations but it is time consuming to train the model properly. For
instance, when modelling of the dynamic system can be taken into account, the MPC is
preferred; however, MPC requires an optimization procedure. For this reason, in the last
ten years, development of new generation building monitoring systems and personalized
thermal comfort control tools has accelerated (E.U. Commission, 2016). The revised
Energy Performance of Buildings Directive (EPBD, 2018) aims to accelerate the use of

smart and energy-efficient technologies in the building sector across Europe. It
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introduces a "smartness indicator" which will measure the buildings' capacity to use
new technologies and electronic systems to optimize their operation and interact with
the grid. An increase of smart technologies has potantial to decrease energy
consumption as well as to improve occupant’s thermal comfort via adjusting control
parameters in the building according to the needs of the occupant. However, smart
personalized control systems are still expensive because of the high number of pricey
sensors and optimizing the existing control system equations is computationaly-
heavy burden. Moreover, the response time of these controllers is still long. Many
sensing systems are not easy-to-use by the occupants. Dense sensing systems make
personalized thermal comfort controllers complicated. Moreover, the programming of
such a large sensor network becomes the most complicating issue.

This thesis offers a solution to the problems stated above by developing a novel
energy-efficient personalized thermal comfort control system. The major contributions
of the thesis are;

» to develop a novel personalized thermal comfort control algorithm that
aims increasing thermal comfort as well as saving energy.

» to use simple fuzzy logic rules for easy-understanding of the algorithm
by occupants.

» to develop a personalized thermal comfort controller, which uses the
novel control algorithm.

» to test the developed control system in an office building by deploying a
prototype.

» to operate HVAC system by changing set-temperature and fan speed
according to thermal preferences of the occupant (AMV) instead of
Fanger’s PMV method.

» to monitor and use indoor air quality parameters as well as thermal
comfort parameters in the controller.

» to evaluate results by exergetic approach of thermal comfort as well as

energetic approach.
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1.5. Aim of the Thesis

The aim of this thesis is to develop a novel personalized thermal comfort driven
control algorithm with simple fuzzy logic rules in order to increase thermal comfort
while decreasing energy consumption without any retrofitting on HVAC system. For
this aim, a prototype of an energy-efficient personalized thermal comfort driven
controller (PTC-DC) is developed with minimum cost of sensors and maximum
efficiency in order to obtain better thermal comfort. Additionally, the PTC-DC takes air
quality parameters into the algorithm i.e warning the occupant by easy- to- understand
signals in order to prevent poor indoor air quality and to improve thermal comfort.

The remainder of the thesis is organized as follows. Chapter 2 presents a review
of HVAC control systems. In Chapter 3, both energetic and exergetic approaches of
thermal comfort are given in detail. A detailed literature survey on HVAC controllers is
presented in Chapter 4 along with examples of personalized thermal comfort
controllers. Chapter 5 presents materials and methods for the thesis. First, development
of PTC-DC is shown, then, the case building and measurement system is introduced. In
Chapter 6, prototype of PTC-DC and the tests are presented. Comparison of proposed
algorithm with conventional controller is also given in this Chapter. Finally, Chapter 7

concludes the thesis.
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CHAPTER 2

HVAC CONTROL SYSTEMS

HVAC control systems have been investigated by various techniques such as
standard on/off control, PID-type control and advanced control methods like Artificial
Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS), Fuzzy
Logic (FL) and Model Predictive Control (MPC) approaches.

2.1. Conventional HVAC Control Systems

Several control strategies for HVAC systems still use on/off and conventional
PID (proportional, integrative and derivative) methods (Calvino et al., 2010; Mirinejad
et al., 2012).

2.1.1. On/off Control

Simplest and common control of HVAC systems is on/off control. As a common
control, fixed-speed compressor on-off operations are used to modulate the capacity
provided to some enclosed space. On/off control provides only two outputs, maximum
(on) or zero (off). The control sensor usually takes the form of an on/off thermostat,
pressure switch, humidistat, etc. and operates so that when the controlled variable is
below the set point, the contacts close or contacts made when the controlled variable is

above the setting (Harrold and Lush, 1988).

) o Air Conditioning/
e Refrigeration —
Set-point + OFF System Enclosed
space
temperature

Relay

Figure 2.1. On/off controller feedback for temperature control
(Source: Harrold and Lush, 1988)
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This process can be simply expressed as (2.1).
Switch off when T > Tu and on when T < T, (2.1)

Where T is the desired temperature and 7 and 77 are the upper and lower bound for the

controller.

2.1.2. PID-type Controllers

Standard PID (proportional-plus-integral-plus-derivative) regulators are the most
commonly used feedback controllers since the oldest prototype of a PID controller
emerged in the 1930s. PID controllers are usually understandable and reliable for the
HVAC system operators. The control logic is based on the calculation of the error e(t)
between the desired r(t) and the measured y(t) values of the output, i.e. e(t) = r(t) — y(t),
which is computed after proportional, integral and derivative operations. The
proportional action adjusts the controller output according to the size of the error, the
integral action eliminates the steady state offset and the future is anticipated via

derivative action. A typical equation that describes a PID regulator, is (2.2).

de(t)

u(t)=Kp e(t) + Ki fot e(t)dt + Ka at

(2.2)
where Kp, Ki, K4 are the PID proportional, integral and derivative gains, respectively.

The PID controller produces promising outputs based on the computation of the error

e(t).

K P et —l
Desired State  e(f) T Control Signal
—_— K I f e(t) b M
+ L
d J
K D d_fe (t )

Feedback Signal
Measured State

Figure 2.2. Block diagram of a PID controller
(Source: Mohsenizadeh et al., 2011)

13



2.2. Advanced HVAC Controllers

Advanced HVAC control systems are Artificial Intelligence (AI) based
controllers, namely, ANN controllers, FL. controllers, ANFIS controllers and MPCs
(Krarti, 2003; He et al., 2005; Soyguder and Alli, 2009; Dounis and Caraiskos, 2009;
Ferriera et al. 2012; Kumar and Sigh, 2013; Abdo-Allah et al., 2018).

2.2.1. Artificial Neural Network Controllers

ANNSs have been accepted as an alternative technology offering a way to tackle
complex and ill-defined, specially nonlinear and dynamic system control, since 1990s.
They are not programmed in a traditional way but they are trained using past history
data representing the behavior of a system (Moon et al., 2011; Kumar et al., 2013;
Turhan et al., 2014). The ANN controllers are practical and they do not require the
identification of the HVAC model. As an example, thermal comfort control equations

based on PMV values of ANN regulator is shown in (2.3-5) (Ferreira et al., 2012).

v =wiiet wizetwisb (2.3)

1
u T e——
1+exp(—v?)

(2.4)

J0E JE , OPMV ., du
= _’]"l —
aWij dPMV du aWi]'

Awij = -1y (2.5)

Here, v is the input, wij are the synaptic weights, u is summation of the weights, E is the

error, b is the bias and 7 is the learning rate.

2.2.2. Fuzzy Logic Controllers

The FL is a system that formulates approximate reasoning which was developed

by Loutfi A. Zadeh (Zadeh, 1965). It is defined with grade of membership by
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characterizing objects with a membership function. Controlling parameters like
temperature, air velocity, electric current and machine control are some of the
application areas of FL (Munataka, 1998). The main structure of FL modeling is
depicted in Fig. 2.3.

Rule Base

D; Fuzzification Defuzification |:>

Fuzzy Inference
Engine

Figure 2.3. The phrase of FL estimation model
(Source: Zadeh, 1965)

A fuzzy set is a class of ordinary set by allowing members to have degrees of
membership. The degree of membership is indicated by a number between 0 and 1. If
the degree is 0, the object is not in the set, and if 1, the object belongs 100% to the set.

In the fuzzy set, every object is represented by a degree of membership. The

membership function has values between 0 and 1 which is formally written as (2.6).

Ua (x) : X— [0, 1] (2.6)

Relationship between fuzzy sets are similar to the ordinary sets. In fuzzy
operation concept, there are four operations including union, intersection, complement,
binary relations and composition of relations as classical operations. Table 2.1 shows
three operations for fuzzy and classical sets.

In Table 2.1, a indicates the membership of subsets A and B. A graphical
explanation of two fuzzy sets and fuzzy operations is indicated in Fig. 2.4. Fuzzy logic
can be represented as fuzzy set theory. Table 2.2 indicates correspondences between fuzzy
logic and fuzzy set theory.

The basic lingual If-Then rule is shown as (2.7).

If “a” is A and “B” is B, then “y” is C (2.7)
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Here, A, B and C are corresponding linguistic values while a, f and y are the inputs of the

model.

Table 2.1 Comparison between fuzzy and classical operations
(Source: Luger, 2009; Tayfur, 2012)

Intersection Union Complement
aAnB (x) = 0AUuB (x) = 0A (x) =
) 1(x) €e AnB {1(x)eAuB {1 x) ¢ A
Classical {O(x)eEAnB 0 (x)&AUB 0 (x) €A
min (o a (x), max (o a (x),
Fuzzy l-aa(x)
as (X)) as (X))
Operator AND OR NOT

Table 2.2. Representing the correspondences between fuzzy set and fuzzy logic

Fuzzy set Fuzzy logic

Degree of membership | Truth value of proposition

n AND
U OR
Complement NOT

(2.7) can be re-written as (2.8) for any thermal comfort controller.

If the air temperature is “LOW” and clothing value is “LOW” the PMV is “-2” (2.8)

Four components are included in fuzzy logic: fuzzification, fuzzy rule base,
fuzzy output engine, and defuzzification (Zadeh, 1965). First, each input and output
variable is represented by degrees of membership via fuzzification. All fuzzy inputs and
outputs are theoretically shown as a number between 0 and 1 (Zadeh, 1965). Fuzzy rule
base is used for the basis of fuzzy logic to obtain output. Fuzzy rules are written
between all inputs and outputs. Fuzzy rules are operated using a series of if-then
statements given by IF ascendant, THEN consequent (Luger, 2009; Tayfur, 2012).
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function = 0.5)

Figure 2.4. A graphical explanation of two fuzzy sets and their union, intersection, and
complement (Source: Munakata, 1998)

Each fuzzy rule gives a representation of the truth-value of that rule. Fuzzy
inference engine uses fuzzy rules in the fuzzy rule base based on concepts of fuzzy set
theorem, fuzzy if-then rules, and fuzzy reasoning. Conventional fuzzy inference systems
are typically constructed by experts and have been used in automatic control, decision
analysis and advanced systems. Defuzzification extracts a crisp value that best
represents the fuzzy set (Hirota and Pedrycz, 1991). Two methods are used in FL; the
minimum and the product operation methods. If “°” is the operator that indicates rule of

inference, (2.9) can be written in terms of membership function for minimum operator.

°B(y) = MAX [MIN eaw), Ricy)] X € El (2.9)

Similarly, (2.10) shows a membership function for product operator.

°B(y) = MAX [raw), Reep] X € El (2.10)

Defuzzification so called rounding off is the process of producing a quantifiable

result in crisp logic, given fuzzy sets and corresponding membership degrees (Metcalf

and Reid, 1992). In literature, many defuzzification methods are used such as mean of
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maxima (MOM), center of gravity (COG)(centroid), leftmost maximum (LM),
rightmost maximum (RM), bisector of area (BOA), centre of sums and weighted
average method (Munataka, 1998; Tayfur, 2012). Centroid method is the most widely

used method as expressed in (2.11).

K; — i H (Kxi)Kxi)] Q.11
[Xin (Kxi)]
where K; is the defuzzified output value, K,; is the output value in the i subset, and

u (K,;) is the membership value of the output value in the i subset (Tayfur, 2012).

2.2.3. Adaptive Neuro-Fuzzy Inference System Controllers

The ANFIS is a hybrid algorithm that applies the combination of ANN and FL
approach. The advantages of ANFIS are self-learning ability like ANNs and simple
structure of the FL rules (Chua et al., 2007; Soyguder and Alli, 2009; Isik and Inalli,
2018). The ANFIS method uses first order Sugeno (Takagi and Sugeno, 1985) fuzzy
inference systems and its architecture is given in Fig. 2.5 (Jian and Wenjian, 2000). The
node functions in the same layer are of the same function family and the network has

totally five layers.

Layer 1 Layer2  Layer 3 Layer 4 Layer5
I N x

Figure 2.5. An adaptive network
(Source: Jian and Wenjian, 2000)
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Layer 1 represents the input variables for the model. Node functions are used to
obtain membership functions in this layer. In Layer 2, the rules are determined with the
weight of corresponding layer. Additionally, this layer generates output. Layer 3
calculates the ratio of the rule’s strength. The output of each rule is calculated in Layer
4. This layer acts as a defuzzifier. Finally, Layer 5 gives an output from the sum of each

rule (Jang, 1993; Isik and Inall1, 2018).

2.2.4. Model Predictive Controllers

The MPCs rely on dynamic and linear models of HVAC systems; however, the
models are obtained by system identification or linearization of a nonlinear plant
(Ascione et al., 2016). MPC is not a single strategy; it consists of a class of control
methods to obtain a control signal by minimizing an objective function (Sirocky et al.

2011). An example of a cost function J for optimization is given by (2.12).

k+Nc

k+N
J= k+ pWyk (e — yi)* + 2k

Wk Aui (2.12)

Here, wy,is the weighting coefficient reflecting the relative importance of the
monitored output, w, is the weighting coefficient penalizing relative big changes in ux,
Auk is the difference between ux and uk-1, Np represents the prediction horizon whilst N, is
the control horizon.

The MPC approach uses dynamic model of a process to predict future evaluation

while optimizing control horizon. Further details of MPC approach can be found e.g. in

Rossiter (2005).
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CHAPTER 3

THERMAL COMFORT APPROACHES

Thermal comfort, as discussed in Chapter 1, is a subjective sensation in which
satisfaction is expressed with the thermal environment (ASHRAE, 2017). Fanger (1970)
developed the PMV index to estimate the thermal comfort as presented in ISO 7730
(2005a). The PMYV uses six parameters as given in Fig. 3.1 and refers to a thermal scale

from -3 (cold) to +3 (hot) (Fanger, 1970).

3 hot

Air temperature
2 warm

Air relative humidity .
PMV 1 slight warm

Air velocity .
M diant ¢ . calculation 0 neutral

ean radiant temperature .
- method -1 slight cool
Activity level
-2 cool

Clothing insulation
-3 cold

Figure 3.1. Fanger’s PMV Model
(Source: Fanger, 1970)

The thermal sensation model based on Fanger’s PMV formula can be used to

calculate PMV value as shown in (3.1) (Fanger, 1970).

PMV= (0.028+ 0.3033¢ “003M) X {(M-W) — 3.05 [5.733-0.000699 (M-W) -Pa] — 0.42
[(M-W) — 58.15] — 0.0173M (5.867 - Po) — 0.0014M (34- To) — 3.96 X 105 X fel [(Tu +

273)% — (Tmre +273)%] — fel X he (Tei-Ta)) 3.1)
Here,

Te= 357 —0.028 (M-W) — 0.1551c1 {3.96X10°8X fel([(Ter + 273)* — (Tt +273)%- fel X he
(Ter-Ta)} (3.2)
and
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H :{2.38 (Tcl — Ta)®?® for 2.38(Tcl — Ta)%?5 > 12.1VVair (3.3)

12.1VVair for 2.38(Tcl — Ta)??® < 12.1VVair

where M is metabolism (W/m?), W is external work (W/m?), Pa is partial water vapor
pressure (Pa), fa is ratio of clothed body surface area to nude body surface area, Te is
surface temperature of clothing (K), I is thermal resistance of clothing (clo), he is
convective heat transfer coefficient (W/m?K).

The second thermal comfort index is the PPD which predicts the percentage of
occupants that will be dissatisfied with the thermal conditions. PPD is incorpareted into

the PMV index. The PPD equation is given in (3.4) (Fanger, 1970).

PPD = 100 — 0.95 x 6—0.03353xPMV4 +0.2179xPMV 2 (3.4)

3.1. Energetic Approach of Thermal Comfort

Fanger (1970) defines thermal comfort in the PMV/PPD model by using six
parameters which can be classified into two categories: environmental and personal
parameters. These parameters may be independent of each other, but together they
contribute to an occupant’s thermal comfort (Mclntyre, 1980).

Environmental parameters are air temperature, radiant temperature, air velocity
and relative humidity while personal parameters are clothing insulation and metabolic
activity. However, gender, age or body mass are omitted in the PMV/PPD model. In
addition, indoor air quality parameters were not included in this model. The most
commonly used parameter is air temperature since it is easy to measure. However, air
temperature alone is not an indicator of thermal comfort which must always be

considered in relation to other environmental and personal parameters.

3.1.1. Environmental Parameters

The environmental parameters are air temperature (Ti), relative humidity (RH),

mean radiant temperature (MRT) and air velocity.
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Air Temperature (T)

Air temperature is a measure of the heat which surrounds an occupant (person)
with respect to location and time. Numerous field and laboratory investigations have
proven the relationship between air temperature and thermal comfort (Berglund et al.,
1990; Seppénen et al., 1999; Lan et al.,2011; Nall, 2014). Air temperature is commonly
measured by dry bulb thermometers. Based on ASHRAE 55 (2017), dry bulb

temperature must be measured on the head, waist and ankle levels of the occupant.

Relative humidity (RH)

The RH is the ratio between the actual amount of water vapour in the air and the
maximum amount of water vapour that the air can hold at a given temperature. It affects
the heat balance of the body by determining the amount of evaporation on the skin

(Cengel and Bowles, 2005).

RH can be calculated by (3.5) (Kim, 2004; Spengler et al., 2001).

vapor partial pressure in the air

RH (%) =

x 100 (3.5)

saturation vapor partial pressure in the air

RH has greater effect on thermal comfort than air temperature. Occupants may

feel discomfort in the higher RH at the same air temperature.

Mean radiant temperature (MRT)

MRT is defined as heat radiated by any material which depends on the
temperature and emissivity of the surrounding surfaces as well as the view factor or the
amount of the surface which is “seen” by the object (ASHRAE, 2017). Measuring the
temperature of all surfaces in a space is time consuming, requires several sensors and
calculation of the corresponding angle factors is quite difficult. Instead, MRT can be

approximated by globe temperature measurements.
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(3.6) can be used to calculate MRT (ASHRAE, 2017).

MRT* =T1* Fp-1 + To* Fpo+t ...+ To* F pn (3.6)

where MRT refers mean radiant temperature whilst Tn shows the temperature of surface
“n” in Kelvins. F px is angle factor between a person and surface "n". If relatively small
temperature differences occur between surfaces of the enclosure, Eq.3.6 can be

simplified to a linear form as given in (3.7).

T:=Ti Fp-l + T2 Fp-2+ ...t Th Fp-n (37)

However, angle factors are usually difficult to determine. Nagano and Mochida

(2004) estimated the MRT by using (3.8).

MRT= 0.99 Ta- 0.01; R2=0.99 (3.8)

Where Ta is air temperature.
The MRT is one of the essential parameters that affects thermal comfort.
Occupants can feel discomfort even with the comfortable Ti values, when they are

surrounded by cold surfaces.

Air velocity (v.)

In HVAC systems, air velocity is defined as the rate of air movement at a point,
regardless from the direction. According to ASHRAE 55 (2017), it is the average
velocity of the air to which the body is exposed, with respect to location and time. Air
velocity is measured by an omni-directional anemometer. Air velocity, in general, is

preferred to be around 0 to 0.5 m/s in a mechanically controlled space.
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High air velocities cause discomfort due to dryness in the respiratory system of human.
On the other hand, proper air movement reduces the heat stress through the evaporation

on the skin in a space of low RH (Spengler et al., 2001).

3.1.2. Personal Parameters

Personal parameters are generally combined psychological parameters which are

the factors depending on the occupant.

Metabolic rate (met)

Metabolism is a set of physico-chemical processes which take place at cellular
level for the production of thermal and mechanical energy, replication, and elimination
of waste material (Nall, 2004; Spengler et al., 2001). Metabolism can be divided into
two categories; basal metabolism and actual metabolism. Basal metabolism is required
in order to maintain blood circulation, respiration, and nerve transmissions in an
organism. Every person shows different metabolic rates. According to age and activity,
overall metabolic energy release-rate in humans ranges from 0.5 W/kg in elders to 2
W/kg in children, with a typical 1 W/kg in adults. On the other hand, actual metabolism
involves muscular work. Actual metabolic rate can be measured by gas analysis in
respiration, either by oxygen consumption or by COz2 generation (and breath rate), or
estimated by heart rate. As a result, heat is generated inside the body and may be
dissipated to the environment in the form of radiation, conduction and convection
(ASHRAE, 2017). The unit of metabolic rate is W/m? or met. ASHRAE 55 (2017)

provides metabolic rates for a variety of activities as shown in Table 3.1.

Clothing Insulation (clo)

One of the thermal comfort parameters is insulating effect of clothing on the
occupant. Clothing protects heat loss by acting as the body’s insulation and helps the
skin maintain a stabilized temperature. Depending on period and place, the clothing

insulation varies. Clothing is expressed in terms of a unit called “clo” for the
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calculation of thermal comfort. 1 clo corresponds to insulating cover over the body

(ASHRAE, 2017).

Table 3.1. Metabolic rates at different activities
(Source: ASHRAE 55, 2017)

Activity met | W/m?
Sleeping 0.7 40
Seated, at rest 1.0 58

Very light work (shopping, | 1.6 93
cooking, light industry)
Medium light work (house~, | 2.0 116
machine tool ~)
Steady medium work 3.0 175
(jackhammer, social
dancing)
Heavy work (sawing, 6.0 350
planing by hand, tennis) up
to
Very heavy work (squash, 7.0 414
furnace work) up to

Table 3.2. Insulating value of clothing elements
(Source: ASHRAE, 2017)

Clothing clo | m’K/W
Naked 00 0
Shorts 0.1 0.016

Typical tropical unit 0.3 0.047

Light summer clothing | 0.5 | 0.078

Working clothes 0.8 | 0.124

Winter indoor clothing 1 0.155

Traditional business suit | 1.5 0.233
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3.1.3. Indoor Air Quality (IAQ) Parameters

Providing a good IAQ is important for thermal comfort. Many factors affect
IAQ such as the type and the amount of the contaminants (CO, NO2, Rn and SO2) and
the concentration of COz or O2 which can be measured by simple sensors.

The normal Oz concentration in the air is 20.9% whilst the acceptable highest
and lowest bound of O: concentration in a space is 23.5% and 19.5%, respectively.

Table 3.3. shows effects of Oz concentration on occupants.

Table 3.3. Effects of Oz concentration on occupants

O: concentration (%) Effects on occupant
20.9 Normal Oz concentration in air
17 -19 Increased heartbeat, accelerated
breathing
14-16 Rapid fatigue, poor muscular
coordination
6-10 Vomiting, unconsciousness
<6 Spasmodic breathing, death

02 and COz are both present in the atmosphere and when CO2 concentration
increases, O2 concentration decreases. The upper limit of CO2 concentration for indoor
environments is accepted as 1000 ppm (Toksoy, 2015; Hossein Sagheby, 2018).
Elevated CO2 concentration stimulates human respiratory system and increases the met

values.

3.2. Exergetic Approach for Thermal Comfort

The ISO 7730 (2005a) uses PMV method (as discussed in Section 3.1.) which
was developed based on the First Law of Thermodynamics. However, in the PMV
method, there are many combinations of the thermal comfort parameters that give the

neutral environment (zero value). Shukuya (2013) suggested another approach which is
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based on the Second Law of Thermodynamics. The approach considers human body
system as a complex model with circular nodes developed by Gagge et al. (1986) and
calculates the human body exergy consumption (HBexC) rate (Fig. 3.2)
(Shukuya,2013). The exergetic approach indicates that there are limited combinations of

thermal comfort parameters that give the minimum HBexC rate and thermal neutrality.
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Figure 3.2. Modelling of human body system
(Source: Shukuya, 2013)

Exergy is the capacity of energy to do physical work (Shukuya et al., 2009;
Shukuya, 2013). Energy is conservative and cannot be created/destroyed (1% Law of
Thermodynamics), while exergy is non-conservative due to the irreversibility of exergy
transfer process (2" Law of Thermodynamics). The exergy balance is shown as in (3.9)

(Shukuya, 2013).

Xin — Xout — Xconsumed = Xstored (3 9)

where Xin and Xouw are input and output exergies, respectively. Xconsumed 1S €Xxergy
consumption whilst Xstored indicates stored exergy in the system.

The exergy concept can also be applied to the human body system. The human
body works to convert energy for metabolism into other forms using personal

parameters (body mass, skin surface, activity, clothing value etc.) to provide the desired
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thermal comfort value. Taking into account the human body system, the terms in the

(3.9) are given in Table 3.4. Since main purpose of the human body system is to keep

body core temperature constant, Xswored term is very small compared to the other terms.

Exergetic approach for thermal comfort takes into account the conditioned space along

with the human body system (Fig. 3.3).

Table 3.4. Exergy balance for human body system

water generated in
the shell by
metabolism (sweat)

the surface to
the surrounding
air

Terms Xin Xout Xconsumed Xistored
(6) exergy (10) exergy
(1) exergy generated | contained in consumed | (11) exergy stored
by metabolism the exhaled by human in the core
humid air body
(7) exergy
contained in
(2) exergy contained the humid air
i1 the inhaled humid leaving the (12).exergy gtored
i body surface in the skin
air
(evaporated
water from the
sweat)
a (8) radiant
2 | (3) exergy contained exergy
< . . . .
= in the liquid water discharged
T;} generated in the through
5 body core by thesurface
metabolism (skin and
clothing)
. (9) exergy
(4). CXCIgY co'ntamed transferred by
in sum of liquid )
convectionfrom

(5) radiant exergy
absorbed through
the surface (skin and
clothing).

Thermal comfort of human body is the sum of the heat and mass transfer

processes entering or leaving the body. Heat flow leaves the human body because of

heat transmission (exhaled air), water diffusion, and sweat evaporation which cause the

evaporative mass transfer.
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Figure 3.3. Human body system and its interactions with indoor environment
(Source: Prek and Butala, 2017)

On the other hand, energy flow leaves the skin via blood flow and then returns
to the body core. Thus, exergy is transferred into the environment and controlled by the
environmental conditions via heat and mass exchange. Exergy balance of the human
body is calculated for given environmental conditions by assuming heat storage is

negligible. In this case, (3.10) is written according to the steady-state conditions;

Xin + ma,in X ea,in + mw,inx ew,in - Xconsumed = Xour + ma,out X ea,out +

mw,out X €y out (3.10)

where ;

Xio= (1= ) x M+R,, x T, x In (9) x 1h, G.11)

cr

Similarly, the human body exergy output can be calculated. Dry and evaporative
heat transfer and water dispersion into the air caused by skin diffusion, air humidifying
by breathing and sweating are included in exergy output calculation.

The exergy transfer rates are related to the convection and radiation heat

transfers, which are shown in (3.12) and (3.13).
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Xe=(1-25)x Q. (3.12)

Tsk
Ty

Xoa = (1 ——) X Qd (3.13)

Tsk

Convective and radiative heat transfer between the human body and

environment (room) is included in (3.14):

X1 X( Top= T - Trxln(TTL:)) + Abu X £X G X [Tg‘; —T# = 2x T, (T4 — T,3)]+

Xeonsumed = Cpr X ‘rhbl X ( Tsk - TT - Tr X In (ZLR)) + Apu X hc X (Tsk _ Ta) X (Ts;—lcTr) +

ADuxexcx[T;*k ~T# = 2xT, (T - Tﬁ)] (3.14)

Recalling that the First Law of Thermodynamics refers to the rate of heat
generation equals the rate of heat loss; (3.14) implies that exergy input minus exergy
consumption equals the exergy output. By using exergy balance equation, HBexC rate
is determined. HBexC occurs to maintain body temperature as constant (Shukuya,
2013).

Human body exergy balance calculation needs eight parameters as inputs; To,
RHo, Ti, MRT, RHi, vas, met and clo. The calculation method uses Gagge’s model
described in Gagge et al. (1986). Following the exergy balance equation solution, the
HBexC rate can be found which satisfies (3.9).

3.3. Actual Mean Vote (AMYV)

The AMYV is the subjective value of occupant’s actual thermal sensation votes
by using ASHRAE seven-point scale (Table 1.1). Subjective measurements are
conducted via a survey or a mobile application which is designed as an occupant
sensing application for smartphones according to ISO 10551 (1995) to obtain AMV
(Fig. 3.4). In the thermal assessment studies, a number of thermal comfort sensation
scales have been used for assessment of occupant’s perceptions including ASHRAE
thermal sensation scale (ASHRAE, 2017), Bedford comfort scale (Bedford et al., 1990),
Mclntyre 3-point preference scale (Griffits and Mclnthyre, 1974) and acceptability scale
(Brager et al., 1993).
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THERMAL ENVIRONMENT SURVEY

This survey is part of a sudy 1o evalucte the current thermal conditions of the selected building. We
appreciate your feedback in this evaluation. Please tick at the square bax where applicable

1. Gender: Male O Female ()
2 Age:
3. Occupant location:

4. Occupant’s Clothing

Please refer 10 the attached Table |. Place a check mark next to the articles of clothing that you are
currently wearing as you fill ow this shea. If you are wearing articles of clothing not listed in the
table, please enter them into the space provided below.

Clothing:
3. Occupant Activity Level (Tick the one that is most sultable)
Seated quike/wniting, 1.0met 8] Walking about, 1.7met O
Typing, 1.1met 0 Lifting/packing, 2. 1met 0
Standing relaxed/Filing(seated), 1.2met () Light machine work, 2. 2met )
Filing(standing), 1. 4met o Heavy machine work, 4.0met 0
6. How would you describe your typical level of thermal comfort?
+3 Hot 0 -1 Slightly Cool 0
+2 Warm O -2 Cool 0
+1 Slightly Warm 0 -3 Cold ()
0 Neutral 8]
Table 1
Clothing Ensembles
— Descrint
| Trousers, short-sleeve shirt
Trousers, long-sleeve shirt

| Trousers, long-sleeve shirt plus suit jacket
Trousers, long-sleeve shirt plus suit jacket, vest, T-shirt
| Trousers, long-sieeve shirt plus long sleeve sweater, T-shirt
Trousers, long-sleeve shirt plus long sleeve sweater, T-shirt plus suit jacket, long
|_underwear bottoms
Knee-length skirt, short sieeve-shirt (sandals)
Knee-length skirt, long skeeve-shin, full slip
Knee-length skirt, long skeeve-shirt, half slip, long-sleeve sweater
| Angle-length skirt, long-sleeve shirt, suit jacket
Walking-shorts, short-sleeve shirt
Long-sleeve coveralls, T-shirt
Overalls, long-sleeve shirt, T-shirt
Insulated coveralls, long-sleeve thermal underwear tops and bottoms
Sweat pants, sweat shirt

Figure 3.4. An example of survey to obtain AMV

Actual Percentage of Dissatisfied (APD) is calculated based on the PPD
definition used in ASHRAE 55 (2017) as a function of AMV bu using (3.15).

APD = 100 — 0.95 x e—0.03353AMV4 +0.2179AMV 2 (315)
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CHAPTER 4

LITERATURE REVIEW

In this section, HVAC control systems are reviewed based on conventional,

advanced and personalized thermal comfort controllers.

4.1. Conventional HVAC Control Systems

Conventional HVAC control systems use simple on/off controllers and PID-type
controllers. Chinnakani et al. (2011) studied traditional on/off controller for HVAC
systems. The authors stated that there is a dead zone between the upper and lower
values where the controller stays off position. In addition, the controller does not take
sensor delays and inertia of the HVAC system into consideration which cause tracking
errors. In another work by Erham et al. (2018), the reason of the inefficiency of the
on/off controller was given as the absence of differential values which influences both
of human thermal comfort and energy saving.

Many studies showed that the conventional control algorithms using PID-type
controllers could provide thermal comfort as well as decreasing the energy consumption
in the early 2000’s (Kulkarni and Hong, 2004; Bai and Zhang, 2007; Baia et al., 2008;
Homod, 2018). Masato et al. (1994) investigated the application of a robust PID
controller to HVAC systems for a single-zone environmental space cooling system (Fig.
4.1). The authors proposed to control temperature and they achieved to control the set-
point +/-0.3°C. Geng and Geary (1993) carried out an experimental study to investigate
the effects of disturbances and process time delays on a PID control performance. The
authors also demonstrated some of the typical nonlinear behavior of AHUs. The results

revealed that disturbances of the AHU caused mainly by inlet air temperature.
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Figure 4.1. PID controller for HVAC systems in buildings
(Source: Masato et al.,1994)

In another study by Bi et al. (2000), an advanced PID application for both
single- and multi-variable processes of HVAC system were presented. The control
algorithms were written in C++, the graphic user interface (GUI) was used in Java and
control system could be monitored through a Web browser. The auto-tuner was tested
on an HVAC pilot plant and a commercial building. The authors also demonstrated that
tuning a PID controller requires an effective controller design rule but can be a time-
consuming, expensive and difficult task. In the last decades, the authors have preferred
to compare the conventional controllers with advanced HVAC control systems (Zhou et
al., 2000; Craig and Russell, 2001; Ahn et al., 2017; Zhang et al., 2018). For instance,
Craig and Russell (2001) compared the PID controller with adaptive controllers. The
authors proved that PID controllers are not efficient for all processes and adaptive
controllers can be used for complex dynamic structures. On the other hand, adaptive
controllers can not be simply trained and require experts to develop a proper dynamic
model. Zhou et al. (2000) compared FL controller and traditional PI controller for an
inverter air-conditioner. Similarly, Wang and Dai (2004) simulated three controllers
including PID controller, FL controller and ANN controller for a central air-
conditioning system. The authors proved that PID controllers could be replaced with
more advanced HVAC controllers. Anastasiadi and Dounis (2018) developed a FL
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controller for HVAC systems to regulate thermal comfort and compared with
conventional on/off controller. The advanced controller reduced the annual mean
percentage of dissatisfaction by 33%. In another study by Afram and Sharifi (2017),
a supervisory controller which uses MPC strategy compared with conventional
controllers on a sustainable house in Toronto. The MPC saved 50% of energy compared
to conventional controller.

Another group of researchers studied hybrid systems such as advanced HVAC
controllers with conventional ones (Wang et al., 2007, Soyguder et al., 2009; Ramteke
and Parvat, 2015). Wang et al. (2007) studied the ANN and PID controllers together.
The authors exhibited that the advantages of the ANN-PID controller is the capability of
self-study and self-adaptation; however, the ANN-PID control system has
disadvantages of having static error. In another study by Soyguder et al. (2009), a self-
tuning PID-type fuzzy adaptive controller for an expert HVAC system was designed
and tested. The proposed controller had no steady-state error compared to conventional
ones; however, it had longer settling time compared to advanced HVAC controllers.
Dehghani and Khodadadi (2017) designed a neuro-fuzzy PID controller for a heating
system. The developed controller had lower overshoot, rise and settling time compared
to conventional system.

Although traditional PID controllers have been commonly used in HVAC
systems, sometimes it has been difficult to fully compensate for measurement noise and
to keep controlled variables close to set point values within the prescribed range. This
control objective often fails in achieving the primary goal of HVAC systems: a
thermally comfortable environment. Another problem is the necessity of multi-criteria
control since traditional HVAC control systems focus only on temperature control. The
main reason is that the body thermal state not only depends on indoor air temperature,
but also other environmental variables (e.g. mean radiant temperature, air velocity,
relative humidity) and personal factors such as clothing insulation and metabolic rate.
These parameters are combined in the well-known PMV comfort index developed by
Fanger (Fanger, 1970) and was discussed in the previous chapter. Additionally,
conventional controllers do not always produce fast response and have large settling

times (Turhan et al., 2017).
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4.2. Advanced HVAC Controllers

Advanced HVAC controllers have been studied by various artificial intelligence

techniques such as ANN, FL, ANFIS and MPCs in the literature.

4.2.1. Artificial Neural Network Controllers

ANN controllers were used as an alternative regulator in both thermal comfort
and temperature control of HVAC systems (Gou and Zhou, 2009; Jawed et al., 2017;
Erfani et al., 2018; Reena et al., 2018). Magnier and Haghighat (2010) used ANNs to
optimize thermal comfort and energy consumption together. PMV and heating and
cooling loads were predicted continually by a feed-forward ANN controller which
succeeded to predict with average relative error of <1% for the total energy
consumption and <4% for the average PMV. Similarly, Macarulla et al. (2017)
performed ANN controller in energy management of a commercial building (Fig. 4.2).
The inputs of predictive controller were indoor and outdoor temperatures and water
heating system temperature so that the controller easily predicted the time when boiler
turned on. The proposed ANN controller decreased energy consumption by 19.7%

without compromising thermal comfort of occupants.

Cutput —>| L }—- Predicted time

BN | MNH- tanh;

‘\\' MHy 4’{ tanhy
¥ NH, —+ tanh,

Figure 4.2. Block diagram of thermal comfort control with ANN regulator
(Source: Macarulla et al., 2017)
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The control of central air-conditioning systems mostly control indoor air
temperature but the thermal comfort is affected not only indoor air temperature and but
also air velocity, clothing insulation, occupant’s gender, health and age. The PMV index
takes all influencing factors into account comprehensively. However, the calculation of
the PMV value is not easy. Researchers have to predict PMV values by taking constants
for rate of body heat production and clothing level. For this purpose, Dong and Xinhua
(2004) optimized the control for HVAC system based on ANNs (Fig. 4.3). The PMV
index was easily estimated by ANN regulator. The result showed that prediction of

PMYV index based on ANN control could achieve better result than PID control.

amount of exercise

clothing msulation

indoor aur temperature PMV index
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Figure 4.3. Prediction model of PMV index neural network
(Source: Dong and Xinhua, 2004)

Some of the researchers used ANN method in HVAC control systems for energy
saving and thermal comfort optimization (Hagras, 2008; Nassif, 2014; Macarulla et al.,
2017). Nassif (2014) carried out an experimental study to test self-tuning HVAC
component models based on ANNs. The testing results indicated that the optimization
process can provide a cooling energy saving of 11% compared to traditional PID
controller. In another work by Macarulla et al. (2017), a building energy management
system was used to regulate operation time of a boiler with the help of ANNs. The

authors succeeded to save 19% energy.

4.2.2. Fuzzy Logic Controllers

The FL controllers are extensively used in complex non-linear processes
(Soyguder and Alli, 2009; Tayfur, 2012; Turhan et al., 2015; Ahn et al., 2017). Alcal’a
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et al. (2013) implemented a FL controller to maintain thermal comfort and tested the
controller in an experimental building in 2013. The study showed that FL controller
matched the thermal comfort level and reduced energy consumption by over 10%
compared to the traditional controllers. In 2014, Hussain et al. (2014) studied a new
method to moderate energy use and thermal comfort in a hotel. The authors used co-
simulation tool for optimizing the building control and occupant thermal comfort (Fig.
4.4). The method used a building energy simulation tool EnergyPlus (2011) to evaluate
PMV values while the controller was using SIMULINK (MATLAB, 2016). In co-
simulation algorithm, EnergyPlus (2011) exports ambient temperature, mean radiant
temperature and relative humidity to FL controller which is designed in SIMULINK
(MATLAB, 2016). The FL controller processes these data and provides heating and
cooling set point temperatures to the HVAC system. Additionally, genetic algorithm is
used for optimization process which calculates total energy used and thermal comfort
for each combination of the parameters. The FL controller decreased overall energy

consumption by 16.1% and 18.1% in case of cooling and heating, respectively.

EnergyPlus

Ambient Temperature
Mean Radiant Temperature
Relative Humidity

Heating set-point
Cooling set-point

‘\ MATLAB
SIMULINK

Lo
L0 1o

Genetic algorithm Optimization Fuzzy controller

Figure 4.4. Co-simulation example for thermal comfort control
(Source: Hussain et al., 2014)
Yan et al. (2018) developed a FL controller which regulates PMV as output
parameter (Fig. 4.5). The proposed controller used temperature, humidity and local air
velocity as inputs and the FL controller achieved 7.6% of energy savings compared to

conventional controllers. In addition to this work, Hang and Kim (2018) used an
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innovative FL controller considering both PMV index and outdoor environmental data
such as To and RHo. The authors compared proposed FL controller with conventional
controller which does not consider outdoor environmental data. The results of FL
controller showed very stable behavior, allowing effective and fast control of the indoor

thermal comfort condition.
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Figure 4.5. Architecture of the proposed FL controller
(Source: Hang and Kim, 2018)

Fuzzy regulators can control non-linear processes like HVAC systems and time-
delay processes significantly better than traditional controllers. Moreover, FL
controllers do not require complex mathematical model of HVAC system. In terms of
thermal comfort, FL controllers are more effective due to the fuzzy nature of thermal

comfort indices.

4.2.3. Adaptive Neuro-Fuzzy Inference System Controllers

ANFIS is widely used in dynamic systems for prediction of thermal parameters;
however, the application of the ANFIS controllers is very limited (Kulkarni, 2001). In a
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paper by Al-Jarrah and Al-Jarrah (2013), ANFIS controller was used to control air-
conditioning system at different pressures (60 kPa, 120 kPa and 1 atm). Heat transfer
rate and water mass flow ratev at inlet/outlet of the system was estimated by fuzzy If-
Then rules. Then, the fuzzy rules are tuned by ANFIS. Three inputs (pressure, inlet air
temperature and relative humidity) and two outputs (heat transfer rate and water mass

flow rate) were used for the ANFIS controller (Fig. 4.6).

Pressure (K)

m (Kg/ Sec)
Humidity Ratio (%) = KL
.\E
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Temperarure (K) Logical Operations
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Figure 4.6. ANFIS structure for water mass flow rate
(Source: Al-Jarrah and Al-Jarrah, 2013)

The study showed that the ANFIS predictions for heat transfer rate and mass
flow rate have a very low root mean square error (RMSE) with a moderate mean
relative error (MRE) of 2.3% and 3% respectively. Marvuglia et al. (2014) coupled
ANN and FL controllers for thermal comfort control in an office building. The authors
used ANFIS controller with HVAC systems due to the advantage of being characterized
using linguistic rules instead of complex analytical expressions.

ANFIS controllers can help HVAC systems to maintain thermal comfort while
enhancing energy savings (Lindel6f et al., 2015). However, training stage of the
controller can be computationally heavy and the controller requires classification of

many physical parameters.

4.2.4. Model Predictive Controllers

The literature proposes several studies on MPCs for HVAC systems (Ma et al.,
2011; Karlsson and Hagentoft, 2011; Ma et al., 2012; Ascione et al.,2016; Stauffer et
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al., 2017). In particular, for HVAC systems, different formulations of cost functions
and constraints have been analyzed to minimize the consumption or to guarantee a
desired comfort level. Lii et al. (2007) controlled the AHU for regulating the dry bulb
temperature which was set to 26°C (Fig. 4.7). The feedback regulation part was
designed to be added to the general predictive functional control to compensate
uncertainties of predictive model. The measurement signals for the experiments were
the water and airflow rates, on-coil air dry-bulb/wet-bulb temperature, cooling coil inlet
and outlet water temperature. The authors demonstrated that compared with the
conventional PID controller, the fuzzy predictive controller technology has

advantageous dynamical performance of less overshoot and shorter setting time.
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Figure 4.7. Comparison of PID and fuzzy-MPC of an AHU system
(Source: Lii et al., 2007)

In 2010, Morosan et al. (2010) studied a similar a predictive control structure for
thermal regulation in buildings (Fig. 4.8). To have a better comparison of the control
methods, the study imposed for the classic on/off and P/PI controllers. The MPC
scheme reduced the energy consumption by 5.5% while improving thermal comfort by
36.7%.

MPC strategy can be used for zone temperature control for thermal comfort in
buildings (Sirocky et al., 2011; Privara et al., 2011; Castilla et al., 2014; Hilliard et al.,
2017). Privera et al. (2011) succeeded to achieve 29% decrease in energy consumption
with MPC whilst maintaining same thermal comfort compared to the conventional
control methods. Researchers compared MPC also with other expert systems. For
instance, Xi et al. (2007) compared MPC with ANN controller and concluded that MPC
improved settling time by 25%.
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Figure 4.8. MPC scheme for HVAC systems
(Source: Morosan et al., 2010)

Molina et al. (2011) used optimized MPC for energy saving in HVAC systems
as well. The study reduced operational costs by 30% compared to non-optimized MPC.
In another study by Castilla et al. (2017), MPC implemented in order to control thermal
comfort (Fig. 4.9). A non-linear MPC was designed for a biblo-climatic building and
the results were compared with conventional controller. The results showed that MPC
was able to maintain thermal comfort inside a comfort zone even in the presence of
disturbances, and to reduce the energy consumption by 53% in comparison with PID

controller.
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Figure 4.9. MPC control system for thermal comfort
(Source: Castilla et al., 2017)

Yang et al. (2018) applied MPC to building automation in order to control
thermal comfort. The controller proposed to develop a PMV index by using indoor
air temperature, mean radiant temperature and humidity. Compared to the conventional
on/off controller, the MPC controller achieved 19.4% of energy savings whilst keeping
the PMV index within an acceptable comfort range. The advantages of MPCs are the
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fact that they allow the current sampling time to be optimized while keeping future

sampling times in account, moreover, MPCs anticipate future events and can take

control actions accordingly. However, MPC requires building models in terms of

equipment and dynamics. Consequently, such controllers may not be suitable for large

buildings. Table 4.1 depicts advantages and disadvantages of HVAC control systems.

Table 4.1. Comparison of HVAC control systems

(Source: Turhan and Gokgen Akkurt, 2018)

T f Output
ype o Method | Year u. Pt Advantages Disadvantages References
controller variable
Harrold and
75 Simple and Lush, 1998;
5 On/off | 1930s | Temperature P No feedback Calvino et al.,
= common L
= 2010; Mirinijad
a etal., 2012
2
4
o Do not produce '
: fast response Kulkarni and
< Hong, 2004;
% suffer a Masato et al.,
= PID-type | 1980s | Temperature | Easy to operate problem of 1994; Geng and
E overshoot Geary, 1993;
% . Craig and
S Large settling | Russell, 2001
time
Requires Kanarachos and
mathematical Difficult to find Geramanis,
g Thermal model of both proper 1998; Ferreira
E ANN 1990s HVAC system construction of etal., 2012;
= comfort .
) and thermal layers and Krarti,
E comfort neuron numbers | 2003;Liang and
% sensation Du, 2005
]
a Preferable for . Zhou et al.,
Zé Thermal HVAC systems Requires time to 2000; He et al.,
=) FL 1990s that are hard to construct rules 2005; Gouda
— comfort
< model and Danabher,
mathematically 2011

(cont. on next page)
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Table 4.1. (Cont.)

Type of Method | Year Ou.tp ut Advantages Disadvantages References
controller variable
Soyguder and

@ Self-learning Alli, 2009;
= Thermal abilit Combination of Marvuglia et
ﬂ ANFIS 1990s comfort Y ANN and FL al.,2014;
a Simple structure Turhan et
E al.,2017
=}
g Anticipate future | Require building | Ascione etal.,
e Thermal events models 2016; Ma et
;g MPC 2000s comfort o . al.,
0 Optimization Difficult to apply | 2011;Pedersen
< procedure in larger buildings etal., 2017

4.3. Personalized Thermal Comfort Controllers

Although the control algorithms of conventional HVAC systems are directly
applicable, they do not detect occupant-building interactions. Furthermore, individual
differences are neglected in conventional PMV-PPD method. However, studies in the
literature show that individual differences such as gender and age are significant on
thermal comfort (Humpreys and Hancock, 2007; Indrigandi and Rao, 2014).
Conventional HVAC system controllers merely regulate the indoor air temperature
where thermostats are used for the feedback control of temperature. But the controllers
do not take into account the occupant’s thermal comfort. On the other hand, Al-based
controllers calculate a unique standardized thermal sensation or operative temperature
for all occupants instead of taking into account individual differences. Therefore,
researchers have started exploring the ways and methods to make HVAC systems
adaptive to the occupant’s thermal sensation and individual differences instead of using
average models.

This section focuses on wireless multi-sensors studies used for thermal comfort
control. To reduce HVAC energy consumption, previous studies have proposed using
wireless occupancy sensors or even cameras for occupancy based actuation showing
energy savings up to 42% ( Feldmeir, 2009; Li et al., 2011; Brooks et al., 2014; Ranjan
and Scott, 2016; Ghahramani et al., 2018) In 2003, Lin et al. (2003) developed a
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thermal comfort control model by using multi-sensors. The study addressed this multi-
sensor, single-actuator control problem which was solved by a computer program and
optimization technique. In the study, each room equipped with multisensors and a
sensor network and the controller operated only on the temperature reading from the
room sensors. As a conclusion, the authors demonstrated that the comfort-optimal
strategy reduces energy consumption by 4% while reducing PDD from 30% to 20%. In
2009, Feldmeir (2009) created a novel air-conditioning control system which aimed at
personalized environments. The author developed an extremely low power, light
weight, wireless sensor which can measure temperature, humidity, activity and light
level directly on the occupant’s body (Fig. 4.10). The measured data were then used to
immediately infer occupant thermal comfort and to control HVAC system in order to
minimize both cost and thermal discomfort. The proposed controller decreased energy
consumption by 3% which represented the direct result of improving occupant’s thermal

comfort.

— ________‘_._/.—_-_v_/
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Figure 4.10. Sensors worn by an occupant
(Source: Feldmeir, 2009)

Similarly, in 2009, Watanabe et al. (2009) used a chair with local heating and
cooling strips and fans to ensure personalized thermal comfort (Fig. 4.11). Experiments

were conducted in a climate chamber during summer with seven healthy male college
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students. Authors concluded that even at a room temperature of 30°C, the occupants

were able to create acceptable thermal environments by using the chairs with fans.
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Figure 4.11. Personalized thermal comfort controller as a chair
(Source: Watanabe et al., 2009)

Occupancy measurements play an important role to achieve energy saving by
detecting the absence/presence of the occupant. In 2011, Li et al. (2011) studied radio-
frequency identification (RFID)-based location sensor to measure occupancy presence.
The RFID based location sensor which has two AA batteries and two antennas sent
signals to the reader and thus the authors succeeded to know the location of the
occupant. Hence, the study demonstrated that RFID based location sensors could be
used for energy-efficient driven HVAC systems. In another study by Erickson et al.
(2013), power-efficient occupancy-based energy management system was developed.
The HVAC system was controlled based on actual occupancy levels and utilizes a
purpose-built wireless network of camera sensors with a parallel network of Passive
Infrared (PIR) sensors to sense the presence of occupants to obtain the optimal
personalized thermal comfort (Fig. 4.12). The authors succeeded to save 26% of energy

consumption with occupancy based HVAC controller.
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Figure 4.12. PIR sensors used for occupancy detection
(Source: Erickson et al., 2013)

Additionally, in 2014, Brooks et al. (2014) used motion detectors with low-cost,
wireless sensor nodes (Fig. 4.13). A building in University of Florida campus which
uses 3 AHUs was selected as a test chamber. The controller used wireless sensor
network, a software infrastructure for data management and control execution
(MATLAB) and a control algorithm for computing commands. In the study, real-time
measurements were used as thermal comfort controller. A PIR sensor (for measuring
occupant presence), a CO2 sensor (for indoor air quality) and a T/RH sensor were
deployed with a microprocessor. Even though the study did not take into account CO2
sensor in the control algorithm, the experiments showed that the controller achieved

37% energy saving without sacrificing thermal comfort.

CO2 sensor T+RH
] sensor

o Ml

sensor node
(front, open) (front, closed)

Figure 4.13. Wireless sensors for thermal comfort measurement
(Source: Brooks et al., 2014)
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A number of studies on personalized thermal comfort prefer to use surveys or
mobile phone applications instead of/along with sensor measurements. In 2014,
Jazizadeh et al. (2014) implemented occupant thermal comfort profiles to the HVAC
control logic. The estimation of the profiles was done by FL approach. The controller
used user interference and thermal preference scale which is shown in Fig. 4.14. The
study used participatory sensing approach which relies on computing devices such as
notebooks and mobile phones. Occupants reported their preferences under different
indoor environmental conditions through the user interface. Thus, the controller learned
occupants thermal comfort profiles which will be used in HVAC operations. Moreover,
the results showed a 39% reduction in daily average airflow rate when the HVAC

system used personalized thermal comfort driven controller.

Location:
Building V|
Floor \ 4
Room v
| prefer:
Cooler No Change Warmer
Temperature L [ [ [

Figure 4.14. Components of user interface and thermal preference scale
(Source: Jazizadeh et al., 2014)

Ranjan and Scott (2016) used thermographic imaging technique for personalized
thermal comfort control. The controller used real-time thermal preferences of the
occupants by machine learning model (Fig. 4.15). The authors indicated that energy
could be saved if realtime thermal preferences were used rather than using standard air

temperature based control in HVAC systems.
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Figure 4.15. Thermographic data collection points
(Source: Ranjan and Scott, 2016)

In addition, Lopez et al. (2016) achieved personalized thermal comfort by
heating wrist instead of heating the whole thermal environment (Fig. 4.16). The
controller measured temperature at index finger, palm and back of the hand and
controlled the set-point temperature of HVAC system. The authors indicated that the
personalized thermal comfort controller which consumes lower energy consumption

could be used instead of conventional control systems.

Heat flow measurement setup

or (HIOKI LR8416) |

Measurement setup for hand)
and fingers

i Heat Flow Sens

L) Murata NTC Thermistor ) .-)

Figure 4.16. Sensor placement for personalized thermal comfort controllers
(Source: Lopez et al., 2016)
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Similarly, Ghahramani et al. (2018) utilized infrared thermography with the help
of sensors which is installed on eyeglass frame (Fig. 4.17). The authors proposed a
hidden Markov model learning approach to capture dynamic thermal comfort of
occupants. Surveys were conducted for four days at the same time with the
measurements and the proposed learning algorithm predicted uncomfortable conditions
with an accuracy of 82.8%. The authors concluded that real-time measurements of
personalized thermal comfort allow HVAC system controllers to optimize energy

consumption while ensuring better thermal comfort.

Figure 4.17. The infrared sensing system installed on an eyeglass frame
(Source: Ghahramani et al., 2018)

Personalized thermal comfort controllers are also used for industrial
applications. Learning thermostats adopts thermal preferences of occupants to
temperature changes (Fig. 4.18). The occupant easily changes the room temperature
from the smart thermostat and the thermostat programs itself after a week training
period. Moreover, the thermostat wants to know the occupant’s schedule thus
understands the presence/absence of occupants so that saves the energy.

Local body temperature can be more useful than core body temperatures for
personalized thermal comfort controllers (Feldmeir, 2009; Rahman and Scott, 2016).
For this reason, some companies use wearable smart thermostats (Fig. 4.19). The

occupants press “hot (red color in wrist thermostat)” or “cold (blue color in wrist

49



thermostat)” button whenever they feel uncomfortable. The wrist thermostat uses Peltier
Effect (Wang et al., 2018) and activates a comforting wave of cooling or heating on

WrIStS.

Figure 4.18. Learning thermostats
(Source: Google Nest, 2018)

Figure 4.19. Personal wristband thermostat
(Source: Embrlabs, 2018)
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The recent literature showed that personalized thermal comfort controllers can
achieve individual thermal comfort and energy saving. However, these control systems
are still expensive because of the high number of pricey sensors. Many sensing systems
are not easy-to-use by the occupants since dense sensing systems make personalized
thermal comfort controllers complicated. Moreover, the programming of such a large

sensor network becomes the most complicating issue.

4.4. Studies on Exergetic Thermal Comfort

Many authors used human body exergy balance calculation to find the
relationship between HBexC and thermal comfort. Shukuya (2013) calculated HBexC
by using exergy balance equation and indicated that the minimum rate gives the neutral
thermal comfort. Isawa et al. (2013) showed indication of correlations between thermal
comfort and HBexC. Similar to the Shukuya’s work, the authors concluded that the
lowest exergy consumption occurred at thermal neutrality (PMV=0). Prek (2005) used
thermal sensation votes (Actual Mean Vote) and found that minimum exergy
consumption rates were near neutral thermal sensation votes. The author indicated that
there are a limited number of combinations of Ti and MRT which gives the minimum
HBexC value. In another study by Prek and Butala (2017), the HBexC method was
compared with PMV method and it was indicated that the Second Law determines
thermal comfort more accurately than the First Law. Batato et al. (1990) applied human
body exergy analysis and concluded that the metabolism produces the same exergy and
energy magnitude; however, the energy losses to the environment significantly exceed
the exergy losses. Simone et al. (2011) used several sets of the thermal sensation data
from previous studies to the HBexC. The authors found that there is a second-order
polynomial relationship between thermal sensation votes and HBexC rate.

Caliskan (2013) performed energy and exergy analyses to the human body for
summer period for Izmir/Turkey. Exergy consumption rate were found as 2.56 W/m?
with PMV value of 0.028. The author recommended that the analysis should be done
with different climatic conditions and large data sets. No studies were found using large
data sets and both heating and cooling periods for investigating the relationship between

HBexC and thermal comfort in Turkey.
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This thesis is distinguished from past work by various aspects. A novel
personalized thermal comfort driven controller (PTC-DC) (software and hardware) for
air-condining systems is developed without any retrofitting at HVAC system
components. The developed control algorithm uses simple and easy-to-understand fuzzy
logic rules and operates an air-conditioner automatically according to the thermal
preferences of an occupant decreasing energy consumption compared with conventional
air-conditioner with PID controller. This technique could be generalized to other HVAC
systems. Furthermore, the thesis is tried to correlate IAQ parameters with thermal
comfort. Based on the author’s knowledge there exist a few studies on the impact of
IAQ parameters on thermal comfort in the literature (Noh et al, 2007; Grathier et al.,
2015) without any successful correlation. The developed control algorithm of PTC-DC
takes IAQ parameters (O2 and CO:2 concentration levels) into account as well as thermal
comfort parameters. Moreover, this thesis investigates exergetic approach of thermal
comfort along with energetic approach. The relationship between HBexC rate and

thermal comfort for both heating and cooling periods is shown for Izmir/Turkey.
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CHAPTER 5

METARIALS AND METHODS

The overall process of the methodology can be summarized in three major parts.
The first part gives the development procedure of PTC-DC while part two includes
measurements of environmental parameters and tests of PTC-DC. Assesment of the
results of Part 1 and 2 is presented in the third part. Fig. 5.1 illustrates the flow chart of
the methodology.

Development of PTC-DC

In the first part, the control algorithm of PTC-DC is developed and written with
C programming language. Afterwards, a wireless sensor network is deployed to
objective data (Ti, To, RHo, RHi, Oz and CO2 concentrations). In addition, the mobile
application is developed to obtain subjective data (AMV and clo value) while fuzzy
logic estimation model is developed to predict thermal preferences of occupants. The

details are provided in Section 5.2.

Measurements

A measurement campaign is designed based on occupant thermal preferences.
An office building in Izmir Institute of Technology, Izmir/Turkey is selected as a case
building for measurements and application of developed PTC-DC. The PTC-DC is
trained in the case building for one day and after training period, the controller is
operated according to occupant’s thermal preferences, automatically. Simultaneously,
PTC-DC is validated with the help of PMV and HOBO sensors (INNOVA, 2018;
Onset, 2018) (Section 5.3).
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Figure 5.1. Overview of the methodology
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Assessment

The goal of the third part is to evaluate the measurements and the performance
of the developed PTC-DC. In this last part, PTC-DC is compared with a conventional
controller in terms of energy consumption as well as energetic and exergetic approaches

of thermal comfort. The assessment techniques are provided in Section 5.4.

5.1. Case Building

The case building is located in Izmir Institute of Technology Campus
[zmir/Turkey at latitude 38.3°N and longitude 26.6°E (Fig. 5.2) which has a typical
Mediterranean climate called as “temperate humid”. The monthly average minimum
temperatures vary between 6-8°C for winter and >25°C for summer (Turkish State
Meteorological Service, 2018). The heating period is from November to May whilst

cooling period is from May to October.

Figure 5.2. Location of Izmir (left) and case building (right)

The case building consists of two office rooms which have a total dimension of
6m (width) x 6m (depth) x 2.8m (height) and is faced outside with six windows and four
external walls. Two rooms are separated with a well-insulated internal wall. However,
the internal door is kept open during the measurements. The outer views of the case
building are shown in Fig. 5.3.

The external walls of the case building consist of cement plastering, pumice
concrete and cement screed. The building is constructed on a soil-filled ground. The
innermost layers of the ground are cast concrete, floor screed and limestone. Layers of

the roof consist of plasterboard, air gap, glass wool and asphalt. All the window frames
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are PVC with double glazing (13 mm air gap). Similarly, the external door and internal
door have PVC frame (Fig. 5.4).

U

Figure 5.3. Surroundings of the case building (left) and case building-outer view (right)

Figure 5.4. The configuration of door (left) and windows (right)

The airtightness of the building is assumed as 0.5 ACH which is a moderate rate
for natural ventilated, non-shielded single-family buildings (ISO 13790, 2008). Overall
heat transfer coefficients and thicknesses of the walls, floor, doors and windows of the
case building are given in Table 5.1.

Indoor environment of the case building is controlled by an air-conditioner with
a set-temperature of 22°C from 09.00 a.m to 12:30 p.m and 13:30 p.m to 17:00 p.m
during weekdays (Fig. 5.5). The specification of the air-conditioner is given in Table

5.2.
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Table 5.1. Overall heat transfer coefficients and thicknesses of the walls, floor, doors

and windows of the case building

Parameter Thickness U value
(m) (W/m?K)

External walls 0.25 0.84
Roof 0.36 2.93
Floor 0.19 2.07
Partition wall 0.25 0.84

Windows - 1.924
Doors - 1.9

Table 5.2. Specifications of air-conditioner

Cooling 3.25
Capacity kW
Heating 3.95
Dehumidification 1t/h 1.8
Volume flow-rate m’/h 540
Energy Supply V/W/Hz | 230/1/50
Cooling 1.35
Compressor power kW
Heating 1.28
Cooling 2.40
COP -
Heating 3.08
Fan speed level Low, medium, high
Remote controller unit 38 kHz

The case building is ventilated naturally twice a day for 15 minutes at 09:00-

09:15 and 13:30-13:45. A personal computer (70 W) exists in the case building and two

fluorescent lamps (50 W each) are used for lighting.
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Figure 5.5. Inside of case building (left) and split type air-conditioner used in the case
building (right)

5.2. Development of PTC-DC

The development of PTC-DC involves following processes including:
» Software development
» Mobile application development

» Hardware development

The PTC-DC algorithm is shown in Fig. 5.6.
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Figure 5.6. Algorithm of PTC-DC
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5.2.1. Development of PTC-DC software

The PTC-DC uses a novel control algorithm to obtain personalized thermal
comfort. The control algorithm is implemented in C programming language and the
script is stored in the server of PTC-DC. The PTC-DC software combines the IR codes
of the air-conditioner, fuzzy logic estimation model, subjective and objective data
obtained from mobile application and objective sensors, respectively. The PTC-DC uses
the previously demoduled IR codes of remote controller of air-conditioner. The novel
control algorithm uses FL estimation model to predict occupant’s thermal preferences.
The reason for choosing FL algorithm for PTC-DC is simplicity (Munataka, 1998;
Luger, 2009; Tayfur, 2012). The FL algorithm does not require complex mathematical
models and it is more effective due to the fuzzy nature of thermal comfort. The FL
estimation model uses two inputs (air temperature and AMV) and two outputs (set-
temperature and fan speed). The first input “air temperature” is obtained from T&RH
measurements wheras AMV is taken from the mobile application. The PTC-DC uses
fuzzy logic model with membership functions created with MATLAB (2016)
environment. Table 5.3 shows the division of input and output parameters into fuzzy
sets membership functions whilst Fig. 5.7 depicts the membership functions used in the
fuzzy logic model of the controller.

Fuzzy rule sets permit the interaction of the membership functions of the fuzzy
logic model.

The FL algorithm is constructed with Mamdani fuzzy inference system
(Mamdani and Assilian, 1975) and defuzzified with centroid method. The model is
trained for one day and after one-day training period, PTC-DC predicts set-temperature
and fan speed of air-conditioner according to thermal preferences of the occupants. The
accuracy of the FL model outputs affects the efficiency of PTC-DC. Performance of

model is characterized by multiple correlation coefficient (R?) as given in (5.1).
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Table 5.3. Division of thermal perception index range into fuzzy sets membership function

Input variables

Linguistic terms

Membership
function type

Fuzzy sets (a,b,c)

Low (L) Trapezoid o, 20, 22
Ind i
naooratr Medium (M) Triangular 20,22, 24
temperature
High (H) Trapezoid 22,24, 0
Too Cold (TC) Trapezoid o, -1, -0.5
Cold (C) Triangular -1,-0.5,0
AMV Neutral (N) Triangular -0.5,0, 0.5
Hot (H) Triangular 0,0.5,1
Too Hot (TH) Trapezoid 0.5,1,0
Output Membershi
lf Pt Linguistic terms em. ersip Fuzzy sets (a,b,c)
variables function type
Low (L) Trapezoid o, 20, 22
Set-temperature
Medium (M) Triangular 20, 22, 24
High (H) Trapezoid 22,24, 0
Low (L) Trapezoid o,1,1.5
Fan speed Medium (M) Triangular 1,1.5,2
High (H) Trapezoid 1.5,2, 0
2 _ LU i=9)?
L@-»)? -1)

where y; is measurements and y is the standard deviation whilst § is the fuzzy logic

estimation model output.
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5.2.2. Mobile application development

The mobile application has been developed as applications for Android-based
smartphones and the values are stored in a web server. The mobile application adopts
preferences of occupants regarding comfort by inherently incorporating the sensor data
and the feedbacks of the occupant with ambient conditions. The application allows
occupants to express their preferences according to ambient conditions that have the
greatest impact on building energy consumption and occupant’s thermal comfort. The
mobile application described in the thesis focuses on the comfort preferences as a
perceptible parameter for occupants to express their perceptions regarding their thermal
comfort and to actuate the air-conditioner according to fuzzy logic estimation model
results. In order to train PTC-DC, the occupant is asked to enter name and garment once
a day and thermal preferences and whether the occupant is satisfied or not with the fan
speed when the occupant feels any discomfort with the environment. The mobile

application calculates clothing insulation of occupant by adding garments in Table 3.2.

5.2.3. Development of PTC-DC hardware

The components of PTC-DC hardware are;

» Sensors (3 items) (temperature and relative humidity, oxygen sensor, and
passive-infrared sensors)

Wi-Fi module (1 item)

Infrared (IR) transmitter and receiver (1 item)

Microcontroller (1 item)

YV V V VY

Server (1 item)

The PTC-DC stores data transferred from mobile application and sensors, learns
thermal preference of the occupant and then predicts the future desired thermal comfort
preferences of the occupant following one-day training period by using a fuzzy logic

estimation model.
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5.2.3.1. Components of PTC-DC hardware

PTC-DC uses sensors to collect objective data. The T&RH sensor provides
T&RH data to the PTC-DC, while O and CO:z sensors measure Oz and CO:2

concentration values, respectively.

Temperature/Relative Humidity Sensor

The DHT22 (AM2302) sensor is a basic, low-cost and pre-calibrated digital
T&RH sensor (Aosong Electronics, 2018). It uses a capacitive humidity sensor and a
thermistor to measure the surrounding air, and spits out a digital signal on the data pin.
Although DTHI11 is the most commonly used T&RH sensor in the literature (Tianlung,
2010; Saha et al., 2018; Kalaiarasi et al., 2018), DHT22 is more precise and accurate
and works in a larger range of T&RH. On the other hand, it is more expensive with a
larger size.

The DHT22 sensor is connected to an Arduino Mega board (Arduino, 2018),
which reads the measured T&RH data and transmits the data to a PC via a USB cable or
Wi-Fi module at one second intervals.

In order to make the readings even more precise, the DHT22 sensor was

calibrated with a HOBO sensor (Onset, 2018) and (5.2) and (5.3) were obtained:

Tant22 = 1.0078 X Thobo (°C) (5.2)
RHdht22 = 0.9356 x RH hobo (RH%) (5.3)

Oxygen Sensor

The PTC-DC includes a Grove-Gas Sensor (O;) to measure the oxygen
concentration in air (SeedStudio, 2018). The O, sensor is an organic reaction module
and provides a little current while putting the current in the air. Thus, an external power

is not needed for this sensor.
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Carbondioxide Sensor and Active Alarm Module

A COz2 sensor, MG-811 (Hanwei Electronics, 2018), is used in order to measure
CO2 concentration in the case building. The ASHRAE 62 (2016) specifies a CO2
concentration threshold of 1000 ppm for educational and office buildings. In the
literature, there exist a number of studies that are concerned with the effects of CO2
concentration on the health and productivity of occupants in office buildings and these
studies set a limit of 850 ppm to provide an alert to the occupants (Persily, 1997; Rice,
2003; Toksoy, 2015; Hossein Sagheby, 2018). The PTC-DC uses DFR0032 active
alarm module (DFRobot Electronics, 2018) and warns the occupant by a beep alert
whenever the CO: concentration raises above 850 ppm. Furthermore, the PTC-DC
displays “open the window” message on the main screen. Once CO2 concentration drops

below 850 ppm, the alert and message will vanish.

Passive Infrared Sensor

Passive Infrared (PIR) sensors are used to detect motion based on the infrared
heat in the buildings. The PIR sensors are tuned to detect IR wavelength which only
emanates when a human being arrives in proximity. Since these sensors do not have an
infrared source of their own, they are also termed as passive. The PTC-DC uses HC-
SR501PIR sensor (SunRom Electronics, 2018). When an occupant enters/leaves the
case building, the PIR sensor sends the signal to server as occupied/unoccupied. The
main problem of PIR sensors is when the tracked occupant is staying without motion. In
such moments, PIR sensor may not be actually facing towards the occupant. Therefore,

the control algorithm is introduced with a 5 minute measurement delay.

Wi-Fi Module

ESP8266-type Wi-Fi module that follows TCP/IP protocol is used to transfer
data from mobile application to the server (Espressive Systems, 2018). The module has

high storage capacity that allows to be integrated with many sensors.
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IR Transmitter and Receiver

The IR transmitter and receiver are used for the communication between PTC-
DC and air-conditioner. The system uses DP1838 IR receiver which is small size, light-
weight and consumes low energy (DaSheng Electronics, 2018). A PIN diode and a
preamplifier are assembled on lead frame, the epoxy package contains an IR filter. The
demodulated output signal is directly connected to a microcontroller for decoding.

A 5 mm led is used as an IR transmitter to send the required signal to the air-
conditioner in the PTC-DC algorithm (Everlight Electronics, 2018). PTC-DC sends IR
signals to the air-conditioner with the help of IR transmitter according to fuzzy logic
estimation model results.

The list of all components used in PTC-DC and their specification are

summarised in Table 5.4.

Table 5.4. Specifications of all components used for PTC-DC hardware

Specifications
Sensors Sensor Aim of usage
types Measurement e
Sensitivity
range
RH: +%3
‘ T: -40+80 °C (max. %S5)
P Temperature and
Lo DHT 22 | relative humidity RH: 0+100 T: <=£1°C
. %RH

HC- . . 1400
W SR50] Infrared motion 3+5m Angle: 140

o Grove- Oxygen %0+25 ('220;4(;) 1C)I
S 1 : ol.
V Gas concentration (Volumetric) (Volumetric)

(cont. on next page)
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Table 5.4. (Cont.)

% IR receiver, Wave lenght:
X DPI838 | smmunication 10m 940 nm
5 mm IR transmitter, 10 m Wave lenght:
LED communication 940 nm
Wi-Fi module Power
ESP8266 Lo 2 ms consumption<1.0
communication
mW
F Carbondioxide
MG 811 concentration 350-10000 ppm +20 ppm
DFR0032 Active alarm i )
module
INNOVA PMV T: 220:100 °C 0.1°C
1221 measurement
T: 0°C to 50°C +0.35°C
HOBO T&RH
RH: 10-90% +2.5% RH
Microcontroller

The PTC-DC uses Arduino Mega as microcontroller (Arduino, 2018). Arduino

Mega is an Arduino card that uses the ATmega2560 base which has 54 digital inputs, an

USB connection and an adaptor input (Fig. 5.8). The microcontroller executes

arithmetic and logical operations required for the operation of the PTC-DC. The
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controller can be connected to a server via USB cable to introduce PTC-DC control

algorithm.

MADE

Figure 5.8. Microcontroller for PTC-DC
(Source: Arduino, 2018)

Codes are generated to communicate with the devices. There exist two functions
in a C programming code: setup() and loop(). setup() function programmes the codes
for microcontroller which is executed when the Arduino Mega is initiated or resetted.
After initialization, the microcontroller goes to the loop mode, in which it executes the
function loop() forever. Arduino Mega is started by setting up a serial communication
socket to the PC by calling the Serial.begin(9600) line. The parameter 9600 is the baud
rate of the serial line. To communicate with the sensors, the libraries of each sensors

must be initialized.

Server

The server is used to collect and process data coming from the mobile
application, observe the data coming from objective sensors and running the fuzzy logic
estimation model. The server of PTC-DC is a PC with an Intel 15-4200U with 1.6 GHz
with turbo boost up to 2.6 GHz processor and 4GB of RAM, running Windows 10
edition. Table 5.5 depicts minumum hardware and software requirements in order to

operate PTC-DC.
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Table 5.5. Minumum requirements for PTC-DC

Hardware requirements

Software requirements

Microsoft Windows 7 or above

Visual Studio 2010 and Net

Framework 4*

Intel@Core 5, 1.6 GHz or or faster

processor

Arduino IDE**

At least 4 dedicated USB 2.0 bus

C IDE***

Wi-Fi1 serial transceiver module

4 GB Ram

* to develop software environment
** to communicate between the PTC-
DC and the Arduino microcontroller

**%* to run the PTC-DC

5.3. Measurements

The PTC-DC is tested from July 3", 2017 to November 1%, 2018 and energy

consumption and thermal comfort of occupant are compared with conventional PID

controller of the air-conditioner in the case building with a male occupant. Physical data

of the occupant is shown in Table 5.6.

Table 5.6. Physical data of the occupant

Gender Age Height

Weight Skin surface

Male 33 190 m

82 kg 2.09 m?
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The PTC-DC and PID controller was operated alternating days in order to
minimize environmental parameter changes that affect thermal comfort. In addition, the
case building is monitored with a PMV sensor to verify the results (Fig. 5.9). To, RHo,
Ti and RHi values are also recorded during the measurement campaign via HOBO
sensors (Onset, 2018). The specifications of PMV and HOBO sensors can be found in
Table 5.4.

Figure 5.9. The PMV sensor used for measuring the PMV
(Source: INNOVA, 2018)

In addition, a three phase-power analyser was installed to air-conditioner in
order to measure energy consumption in kWh (Fig. 5.10). The power analyser was
connected to a PC in order to store the data in server of PTC-DC for the comparison.

The specification of the power analyser is shown in Table 5.7.

Figure 5.10. Power analyser to measure energy consumption of air-conditioner
(Source: Extech, 2018)
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Table 5.7. Specifications of power analyser

Measurable
Instrument Specification range Accuracy
parameters
EXTECH 3-phase | Volt, Ampers, kW, 0-50°C
+29% for kWh
power analyser kWh, pf, Hz 0-80 RH%

5.4. Assessment of PTC-DC

In order to evaluate the performance of the proposed control algorithm, the PTC-
DC and PID control of the air-conditioner in the case building was operated alternating
days from July 3%, 2017 through November 1%, 2018. During the operations of the
control systems, objective and subjective measurements were conducted as given in the
previous sections. The collected data was used to compare the PTC-DC and PID

operations in terms of thermal comfort and energy consumption.

Evaluation for Energy Consumption

The PTC-DC was compared with conventional controller in terms of heating,
cooling and total energy consumptions. Recalling that the case building was occupied
from 09.00 am to 17.00 pm, the assessments of the controllers were done between these

hours. Data were collected every day and averaged over a day.

Evaluation for Thermal Comfort

The PTC-DC was analysed in terms of energetic and exergetic thermal comfort
approaches. For energetic approach, during operation of both control systems, the AMV
of the occupant was collected from mobile application with one-hour intervals based on
occupation schedule, then, daily averaged AMV values were plotted and compared for

v.1 and v.2 on heating and cooling periods.
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The exergetic analysis were applied to the human body system for measured
data including heating and cooling periods. The calculations were made with a human-
body exergy balance contour calculation tool developed by Asada (2009) which uses six
parameters given in Chapter 1-Introduction. These parameters are inputs of the tool
which calculates different combinations of Ti and MRT. Daily HBexC rates were
calculated and plotted for both PID and PTC-DC controllers. In addition to comparison
of the controllers, HBexC rate as a function of Ti and MRT was plotted for the
occupant.

Further experiments were run in order to investigate the effect of CO2
concentration on AMV for both PID controller and PTC-DC. The objective values were
set as constant during the experiment days and the occupant was asked to use mobile

application in every 5 minutes.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1. PTC-DC Software Development

While air-conditioner is operated for a set-temperature of 22°C and mostly
constant fan speed at existing PID control, PTC-DC predicts and automatically adjusts
set-temperature (v.1) and fan speed (v.2) according to thermal preferences of the

occupant (Fig. 6.1).

(Control variable: set-temparature and fan speed)
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Figure 6.1. Schema of the developed PTC-DC software

The PTC-DC uses C programming language including FL estimation model.
The model uses objective data which are sensor-based measurements and subjective

data which are obtained from mobile application. According to the results of fuzzy logic
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estimation model, the PTC-DC predicts thermal preferences of the occupant, then, the
IR transmitter transmits signals that can change the set-temperature and fan speed of the
air-conditioner. According to Table 5.3, 135 fuzzy rules are contructed and an example
set is given in Table 6.1.

IF indoor air temperature is low (L) and AMV is too cold (TC) THEN set-
temperature is High (H) and fan speed is High (H) (6.1)

Table 6.1. An example set of 135 fuzzy rules

Indoor air AMYV | Set-temperature | Fan speed
temperature
L TC H H
M C H M
M N M M
H H M L
M TH L L
H TH L L

The PTC-DC can be used for any air-conditioner. First, the controller de-
modulates IR codes of air-conditioner via IR receiver, then, uses these codes to send
required signals to the air-conditioner with the help of IR transmitter. Fig. 6.2 shows the
screenshot of the first part of PTC-DC programming.

Two versions of PTC-DC, Version 1 (v.1) and Version 2 (v.2) are developed in
the thesis. In the first stage, PTC-DC (v.1) is developed to control set-temperature of
air-conditioner according to thermal preferences of the occupant. Following the
successful operation of (v.1), another version (v.2) is developed in order to improve
thermal comfort of the occupant by controlling fan speed along with set-temperature.
Furthermore, the O2 sensor, which was modified and used in (v.1), is not used in (v.2)
algorithm, however, it can be monitored on the main screen of PTC-DC server. Instead
of O2 sensor, a CO2 sensor and an active alarm module are added to (v.2). The

differences between (v.1) and (v.2) are given in Table 6.2.
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void setup() {
Serial.begin(115200);
Serial.println("PIC-DC is starting™);
pinMode (46, OUTPUT);
dht.begin();
TCNIS = 0x0000;
OCRSA = 0x00D0;

}

void loop()
{

unsigned char data[l15]={0x14,0x63,0x00,0x10,0x10,0xFC, 0x08, 0x30,0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30} ;

unsigned char data off[6]=[0x14,0x63,0x00,0x10, 0x10,0x02}>
unsigned char i;

unsigned char j;

unsigned char a;

unsigned char binary;

if (CONTROL==0) {
float Vout =0;
Vout = readO2Vout():;
float h = dht.readHumidity();
// Read temperature as Celsius (the default)
float t = dht.readTemperature();
// Read temperature as Fahrenheit (isFahrenheit = true)
float f = dht.readTemperature (true);

Figure 6.2. Screenshot of PTC-DC programming

Table 6.2. Comparison of Version 1 and 2 of PTC-DC

PTC-DC (v.1)

PTC-DC (v.2)

Temperature/RH J

sensor

PIR sensor

Oxygen sensor

Carbon dioxide sensor

Active alarm module

IR transmitter and

2 | o 2] =2

2 | 2] 2] 2 <« =2

receiver
Wi-Fi module v v
Interfaces in mobile Name, Name,garments,AMYV,
application garments,AMV fan speed
Set-temperature and fan
Control outputs Set-temperature

speed
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6.2. Mobile Application Development

Mobile application is used to obtain thermal preferences of the occupant. Fig.
6.3 depicts the screenshots of mobile application which is used by PTC-DC. The
interface design of mobile application is limited to four questions in order to have a
successful participatory sensing approach and avoid being complicated for occupants. In
the first interface, application asks the name of the occupant in order to understand
which thermal preferences belong which occupants in case there are more than one
occupant. Then, thermal preferences (AMV) of the occupant are asked. The interface of
the mobile application is originally designed using ASHRAE sensation scale (2017)
incorporating five degrees as too cold, cold, neutral, hot and too hot for simplicity. This
phenomenon is also used by other researchers (Wong and Khoo, 2003; Humpreys and
Hancock, 2007; Jazizadeh et al., 2014). At the third interface, occupant satisfaction of
the fan speed is asked as satisfactory, stronger or weaker fan speed preferences. In
addition, the occupant is asked to report the garments by selecting clothings on the last
interface so that the mobile application easily calculates the clothing value according to
ASHRAE (2017). All collected data during the day are used to determine AMV value
and thermal preferences of the occupant. Then, the data is transferred to the server via
Wi-Fi module and processed in fuzzy logic estimation model. After one-day training
period, the PTC-DC is operated automatically. However, the PTC-DC must be re-
trained for each period.

The developed mobile application can be downloaded freely from “Google Play

Store”.

Rate Your Satisfaction

Figure 6.3. Screenshots of mobile application used by PTC-DC
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6.3. PTC-DC Hardware Development

The components of hardware are collected in a box. The box consists of a Wi-Fi
module to communicate with the mobile application, an IR transmitter and IR receiver
to communicate with the air-conditioner, a COz sensor to measure CO2 concentration, a
Oz sensor to measure oxygen concentration, a temperature and relative humidity sensor,
a PIR sensor to detect the absence/presence of the occupant, an active alarm module to
warn when the CO2 concentration is above 850 ppm and an EEPROM to store the data.
In addition, resistances are used to prevent overvoltage burns and noises in the system.
In order to produce PTC-DC box, the cables and sensors must be connected according
to the wiring and sensor diagram in Appendix A. PTC-DC box can be placed on a desk
so that the sensors are close to the occupant. In this way, accuracy of the measurements
will increase and the maximum thermal comfort would be obtained. The box is powered
by a DC adaptor or 12 V battery.

After the wiring and sensor connections, the PTC-DC is packed in a storage box.
The PTC-DC box can be produced by any 3D printer according to the technical drawing

given in Fig. 6.4 and three-view drawing in Fig. 6.5.

Figure 6.4. Technical drawing of PTC-DC, front (left), back (right)

The produced PTC-DC box is 343 gr with a dimension of 170 mm x 130 mm x
45 mm. T&RH sensor, CO2 sensor and PIR sensor are placed on the box so that the
sensors are not affected by internal heat while active alarm module is placed inside the
box (Fig. 6.6 and Fig. 6.7). The legs are added to situate the box easily on a table where
it can both detect the occupant and control the air-conditioner from maximum 10 m.

The avarege power consumption of PTC-DC is 7.4 W. The power consumption of PTC-
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DC is mainly a result of computation, sensing and Wi-Fi communications. All sensors

and modules were awake during the measurement process.

6 5 4 3 2 1
D 170 D
C C
B 3 8 B
L - -
A R N Parsonalired Thermal Comfort Driven Controller Ad A
o) S 4 2 1

Figure 6.5. Three-view drawing of PTC-DC

Figure 6.6. Front view of the prototype of PTC-DC
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Figure 6.7. Back view of the prototype of PTC-DC

Developed PTC-DC communicates with the occupant via main screen on the
server (Fig. 6.8). By this screen, occupant can follow operation steps, objective data,
presense/absence of the occupant in the building and display messages of the controller

(for instance; open the window, PTC-DC is operating etc.).

Figure 6.8. The main screen of PTC-DC
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6.4. Assessment of PTC-DC

The PTC-DC is operated from July 3™, 2017 and March 8, 2018 for v.1
and from March 8%, 2018 and November 1%, 2018 for v.2. During the operations,
measurements are taken as given in Section 5 in detail. Table 6.3 shows total
measurement days, minimum, maximum and mean outdoor temperatures, set-
temperature of PID controller and preferred temperature of PTC-DC for heating and

cooling periods.

Table 6.3. Total measurement, outdoor and preferred temperatures for measurement

period
v.l v.2
PID PTC-DC PID PTC-DC
controller controller
Total heating 46 46 18 18
meas(;‘;yesme“t cooling 40 40 67 67
éﬁ min 5 5 17 16
= max 20 21 24 22
(0]
T, (°C) - mean 13 13 19 19
min 22 22 21 20
1))
5 max 38 37 38 38
o
© mean 30 31 30 30
Preferred heatlng 22 21.9-22.6 22 21.7-22.8
tem‘zfgt“"e cooling 22 22.2-23.8 22 22.1-23.6

The occupant is asked to use mobile application for one day to obtain AMV
values. Due to the seasonal changes, the occupant is asked to use mobile application to
train the fuzzy logic estimation model for heating and cooling periods, respectively
(Table 6.4). Following the training period, the PTC-DC is operated automatically
according to the thermal preferences of the occupant. The FL estimation model has
close matches with the measurement results within R? of 0.89 and 0.86 for set-

temperature and fan speed outputs, respectively.
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Table 6.4. Training dates for PTC-DC

Training Period PTC-DC (v.1) PTC-DC (v.2)
Cooling July, 29, 2017 May, 1%, 2018
Heating November, 1%, 2017 | March, 7", 2018

Clothing value (clo) is calculated from mobile application of PTC-DC as 0.79
and 0.54 for heating and cooling periods, respectively. The metabolic rate of the
occupant is chosen to be 1 met (M = 58 W/m?) corresponding to normal work when
sitting in an office (ASHRAE, 2017). The PTC-DC and PID controllers are operated in
alternating days in order to minimize environmental parameter changes that affect

thermal comfort.

6.4.1. Evaluation of energy consumption

Power consumption of controllers changes during different periods of operation.
During transition period which is between turn-on and steady-state operation, power
consumption is high. The reasons of high power consumption are high current flow
while turning the air-conditioner on and pressure of the gas in air-conditioner which are
initially out of equilibrium. When a system reaches to steady-state condition, power
consumption drops down (Aswani et al., 2012). To be able to determine the transition
period, power consumptions in the first 100 minutes of the operation are plotted for
PTC-DC and PID controller (Fig. 6.9). The figure indicates that approximately first one
hour is the transition region and power consumption is higher than steady-state
operation.

Fig. 6.10 gives the energy consumption of the PTC-DC (v.1) and PID controllers
with respect to heating, cooling and total measurement periods. The figure shows
transition period and steady-state operation together. Total energy consumption for
more than one-year period is 374.9 kWh for PID controller and 357.7 kWh for PTC-DC
(v.1).

It is worth to note that total energy consumption decreased almost by 6% for
both PID controller and PTC-DC when transition period was disregarded. The PTC-DC
decreased energy consumption by 4.6% and 10.9% for heating and cooling periods,
respectively. Moreover, total energy consumption was decreased by 7.4% compared to
PID controller.
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Figure 6.10. Comparison of energy consumption for PID controller and PTC-DC (v.1)

Fig. 6.11 exhibits energy consumption of the PTC-DC (v.2) with PID controller

for heating, cooling and total measurement periods. Energy consumptions of transition
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and steady-state periods are also shown in the graph. PID controller consumes 317.6
kWh while energy consumption is 284.6 kWh for PTC-DC (v.2). Compared to the PID
controller, the PTC-DC (v.2) decreases the energy consumption by 10.3% and 13.7%
for heating and cooling periods, respectively. However, total energy consumption

decreased by 13.2% compared to PID controller excluding the transition period.
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Figure 6.11. Comparison of energy consumption for PID controller and PTC-DC (v.2)

Figures 6.10-6.11 indicate that PTC-DC provides a considerable energy savings
over PID controller of a single air-conditioner under given conditions and saving rates
obtained at heating, cooling and total measurement periods are summarised in Table
6.5. Total energy consumption was decreased by 7.4% and 13.2% for PTC-DC (v.1)
and PTC-DC (v.2), respectively. Considering the seasons, energy savings in the cooling
period are higher than the heating period. Even though compressor power consumption
is lower in heating period, energy consumption of PTC-DC is higher in the heating
period than cooling period. One of the reason could be the sensor locations which are
closer to the north facade. Another reason could be the occupant’s thermal perception
and the adaptation to the climate. Adaptation is defined as “the gradual lessening of the

response to repeated environmental stimulation” (Brager and de Dear, 1998). The case
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building is located at temperate climate with hot and humid summers and mild winters.
The occupant could prefer higher temperatures at both heating/cooling periods beyond
ASHRAE 55 comfort scale (Humpreys, 1996; Heideri and Sharples, 2002; Indrigandi
and Rao, 2010). Therefore, preferred higher set-temperatures cause an increase in

energy consumption in winter while a decrease is encountered in summer.

Table 6.5. Summary of energy consumption saving of PTC-DC compared to PID
controller (excluding the first one hour)

Energy saving
(%)
PTC-DC Heating Cooling Total
(v.1) 4.6 10.9 7.4
(v.2) 10.3 13.7 13.2

Compared to PTC-DC (v.1), PTC-DC (v.2) increases energy savings by 5.6%
and 2.8% for heating and cooling seasons, respectively. For total measurement period,
v.2 increases energy savings by 5.8%. The reason of higher energy savings for v.2 is
controlling of fan speed alongside the set-temperature according to thermal preferences

of the occupant.

6.4.2. Evaluation of thermal comfort

Energetic approach

Fig. 6.12 depicts the comparison of AMV values for both PID controller and
PTC-DC (v.1) for the measurement period of 86 days in total. According to ASHRAE
55 (2017), the range of £0.5 PMV (less than 10% PPD) is accepted as comfortable zone
(blue area). The purple lines (secondary y-axis) show To while black and red lines

represent AMYV values with PID controller and PTC-DC (v.1), respectively.
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Figure 6.12. AMV comparison for PID controller and PTC-DC (v.1)

While PID controller remains in the ASHRAE 55 comfort zone in 40% of total
measurement period, it does not satisfy neutral thermal comfort (AMV=0) for 95% in
the same period. However, AMV values of the occupant are generally zero in 88% of
total days during PTC-DC (v.1) operation. It is worth to note that outdoor temperatures
of the days which PTC-DC (v.1) does not satisfy AMV= 0 value are extremely higher
or lower than the rest of the period (Fig. 6.12). The outdoor temperature varies in the
range of 5-21°C and 22-37°C for heating and cooling periods, respectively.

ISO 7730 (ISO, 2005) provides criteria for thermal comfort based on
PMYV and PPD indices. However, in the study, Actual Percentage of Dissatisfied (APD)
is used instead of PPD since AMV is obtained as subjective data. APD gives the
percentage of dissatisfied occupants from indoor environment. Fig. 6.13 shows APD
values of PID controller and PTC-DC (v.1). It can be seen that APD values of PTC-DC
(v.1) are between 5% and 10% for the total measurement period. However, APD values
of PID controller reaches to 90%. The PTC-DC (v.1) reduces the actual percentage of
dissatisfied occupants by 88%.

Fig. 6.14 compares AMV values of PID controller and PTC-DC (v.2). The PTC-
DC (v.2) satisfies neutral thermal comfort in 92% of total measurement period whilst

PID controller remains on the AMV= 0 value only for 6% of total days.
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Figure 6.14. AMV comparison for PID controller and PTC-DC (v.2)

Fig. 6.15 compares APD values of PID controller and PTC-DC (v.2). APD
values of the PTC-DC (v.2) are around 5% which is the lowest bound of the APD index
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values. However, APD values of PID controller reach nearly 40%. The reason of lower
APD values in heating period than in cooling period is outdoor temperatures that vary in
the range of 16-22°C for PTC-DC (v.2). The outdoor temperatures for heating period of
v.2 are warmer than v.1. Another reason could be the shorter measurement period of
v.2 than v.1 for heating period. The PTC-DC (v.2) is tested for the heating period of
total 18 days. Table 6.5 summarizes the decrease of APD for v.1 and v.2 compared to

PID controller. The PTC-DC (v.2) decreases APD by 87.5%.
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Figure 6.15. APD comparison for PID controller and PTC-DC (v.2) for the total
measurement period

Table 6.6. Decrease in APD values compared to PID controller

Decrease of APD
(%)
PTC-DC Heating Cooling Total
(v.1) 91.0 86.0 88.0
(v.2) 52.1 88.1 87.5

Fig. 6.16 depicts the change of AMV values with respect to Ti and MRT. The

green line shows the combinations of the Ti and MRT where neutral thermal comfort
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(AMV=0) is obtained. As can be seen from the figure that there are many combinations

of Ti and MRT values which give AMV=0 in energetic approach.
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Figure 6.16. AMV value in dependence on Tiand MRT

Fig. 6.17 depicts the effect of CO2 concentration on AMYV for PID controller for
one-day measurement period. Since PID controller cannot measure CO2 concentration,
the occupant prefers to open the windows twice a day at 09:00-09:15 and 13:30-13:45.
However, at the end of the office hours CO: concentration is measured above the
threshold (>1000 ppm). As a result, the occupant feels warmer when CO2 concentration
increases. In other words, AMV increases from 0 to +0.5 with a 441 ppm increase in

CO2 concentration.
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Figure 6.17. The effect of carbon dioxide concentration on AMV for PID controller
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The effect of CO2 concentration on AMV for PTC-DC (v.2) is shown in Fig.
6.18. The occupant prefers to open windows for 5 minutes when PTC-DC (v.2) gives an
alert and displays “open the window” message on the screen indicating CO2
concentration is above 850 ppm. Thus, the PTC-DC (v.2) prevents increase in CO:2
concentration and has been able to keep the occupant’s AMV mostly at neutral AMV.
The results showed that IAQ parameters should be taken into account on thermal

comfort.
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Figure 6.18. The effect of carbon dioxide concentration on AMV for PTC-DC (v.2)

Exergetic approach

The performance of the developed PTC-DC was assessed with exergetic
approach of thermal comfort. The calculations were made with a human-body exergy
balance contour calculation tool developed by Asada (2010) which uses six parameters
(To RHo, Ti, RHi, MRT and v.) as inputs and calculates output values for different
combinations of Ti and MRT. Recalling that the minimum HBexC rate gives the neutral
thermal comfort, the results are summarized in Table 6.7 for PID controller, PTC-DC
(v.l) and PTC-DC (v.2) presenting the input and output values at the points where

HBexC rates are minumum. Additionally, measured PMV and AMYV values are given in
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the table. Simone et al. (2011) indicated that the control systems should provide thermal

comfort with the lowest possible HBexC rate.

Table 6.7. Calculated and measured parameters which give minumum HBexC rates

Controller PID | PTC-DC (v.1) | PTC-DC (v.2)
Ti (°C) 20.1 21.6 21.8
MRT (°C) 22.5 23.1 23.2
MRT- Ti(°C) 24 1.5 1.4
HBexC rate (W/m?) | 3.05 2.67 241
PMV 0.26 0.17 0.15
AMV 0 0 0

Based on the calculations, the PTC-DC provides lower HBexC rate compared to
PID controller as 2.41 W/m? (v.2) and 2.67 W/m? (v.1), and 3.05 W/m?, respectively.
The results shows that PTC-DC provides lower HBexC rate compared to PID controller.

The combinations of Ti and MRT are 20.1°C and 22.5°C in PID controller while
these values are 21.6°C and 23.1°C in PTC-DC (v.1) and 21.8°C and 23.2°C in PTC-
DC (v.2). Walikewitz et al. (2015) concluded that the differences between Ti and MRT
influence thermal comfort due to the heat stress on human body. These findings indicate
that PTC-DC decreases the difference between Ti and MRT which satisfies better
thermal comfort (Table 6.7).

The results also showed that there is a gap between AMV and PMV. PMV
values were on slightly warm side and calculated as 0.26 and 0.17 for PID controller
and PTC-DC (v.1), respectively. In addition, PMV value decreased from 0.17 to 0.15
for PTC-DC (v.2). The results of PMV calculations indicated that PTC-DC (v.2)
satisfied better indoor environment compared to v.1.

Fig. 6.19 compares HBexC rate and MRT for both PID controller and PTC-DC.
When MRT increases, HBexC rate decreases until MRT is reached the neutral
temperature where AMYV is zero. Then, HBexC rate shows an increasing trend for both
PID controller and PTC-DC. The figure is in a good agreement with the literature
(Isawa et al., 2003; Shukuya, 2013; Prek and Butala, 2017). However, the PTC-DC
(v.2) gives the lowest HBexC rate values at all MRT values.
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Figure 6.19. Comparison of PID and PTC-DC with respect to HBexC and MRT

The HBexC rate with the combination of Ti and MRT of an occupant in an
office building in temperate climate zone is plotted in the Matlab (2016) environment
for heating and cooling periods, respectively. Fine lines with numbers depict HBexC
rate whilst the neutral AMYV value is shown with red with respect to Ti and MRT on the
graph. Fig. 6.20 shows the HBexC rate of an occupant in the case building for winter
period. Environmental conditions and personal parameters are kept constant in order to
plot HBexC rate with respect to Ti and MRT (v.=0.1 m/s, RHi=50%, met=1, clo=0.79).
The lowest HBexC rate was obtained as 2.68 with a combination of Ti=22.7°C and
MRT=24.1°C (PTC-DC (v.2)).

Similarly, the HBexC rate for cooling period were plotted for constant values of
va=0.1 m/s, RHi=55%, met=1 and clo=0.54 (Fig. 6.21). The lowest exergy consumption
rate emerges at the point, where Ti and MRT equal to 21.8°C and 23.2°C (PTC-DC
(v.2)), respectively. The slope of the curves depicts the interaction of the Ti and MRT
on HBexC rate. Similar to the studies in Shukuya (2009) and Prek and Butola (2017),
there is a trend for HBexC rate to be minimum when MRT is higher than Ti. Negative
values range of AMV values are towards the lower left corner from zero AMV value
when the Ti and MRT are lowered and the occupant feel cooler. Similarly, when Ti and
MRT are increased, the AMV values are positive which indicate that the occupant feels

warmer. In addition, Fig. 6.20 and 6.21 show that the difference between Ti and MRT is
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low since vq is kept below 0.2 m/s during the experiments. This means that the impact

of Ti is greater than MRT on HBexC rate.
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Figure 6.21. HBexC rate-cooling period
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Exergetic approach gives one combination of Ti and MRT which satisfies
neutral thermal comfort (Fig. 6.20-6.21). However, there are many combinations of Ti
and MRT in energetic approach (Fig. 6.16).

The exergy balance based on (3.9) is conducted for various cases. Fig. 6.22
demonstrates an example for environmental conditions of Ti=21.8°C and RHi=55%
which gives the minimum HBexC rate on 12" of June, 2018. For an exergy input of
100%, exergy consumed, which represents HBexC rate, constitutes 60% while outgoing
exergy (convectiont+exhaled&sweat+warm radiation) has a share of 40%. The shares of
exergy flows vary with environmental conditions while outgoing exergy flows are more

significant on thermal comfort (Shukuya, 2009; Prek, 2005; Prek and Butola, 2017).
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Figure 6.22. Variation of outgoing exergy calculated for the conditions of Ti=21.8°C
and RHi=55% on 12" of June, 2018

The results showed that the PTC-DC achieved better thermal comfort and

decreased total energy consumption compared to PID controller. Main findings of the

study can be summarised as follows.

» Since the “neutral” thermal comfort is preferred by the occupants in the

office buildings, PTC-DC achieves better thermal comfort.

» The PTC-DC decreases the number of percentage of dissatisfied
ocuupants by 88% and 87.5% for (v.1) and (v2), respectively.

» The PTC-DC (v.2) decreases energy consumption by 13.2% compared to

the PID controller for total measurement period.
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The PTC-DC uses thermal preference of the occupant for thermal

comfort whilst PID controller only regulates indoor air temperature.

The sensors of PTC-DC could be situated close to the occupant which
have the possibility of being more accurate than the thermostat of the

PID controller.

The PTC-DC uses passive-infrared (PIR) sensor to detect the office
building whether if it is occupied or unoccupied. It turns the air-

conditioner off if the office is unoccupied.

The PTC-DC measures O2 and CO:2 concentrations and takes into

account these measurements to obtain better thermal comfort.

The PTC-DC warns the occupant when CO2 concentration drops under

850 ppm. So that PTC-DC satisfies indoor air quality every time.
The PTC-DC automatically turns on/off the air-conditioner, sets air

temperature and fan speed according to the thermal preferences of the

occupant.
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CHAPTER 7

CONCLUSIONS

This thesis presents the development of a novel energy-efficient personalized
thermal comfort driven controller (PTC-DC) algoritm and prototype, the tests of the
prototype with an air-conditioner in a case building and the comparison of the prototype
with a PID controller based on energetic and exergetic approaches of thermal comfort
and energy consumption.

An office building located in Izmir Institute of Technology, Izmir/Turkey is
selected as case building. The prototype of PTC-DC which uses a novel control
algorithm is installed at the case building and used to control an air-conditioner. The
PTC-DC is tested between 03.07.2018 and 01.11.2018 and compared with the PID
controller of the air-conditioner in terms of energy saving and both energetic and
exergetic approaches of thermal comfort. In addition, the effect of CO2 concentration
on AMYV values is evaluated for both PID controller and PTC-DC.

The PID controller satisfies neutral thermal comfort for only 6% of total
measurement days. However, AMV=0 for 88% and 92% of total measurement days for
PTC-DC (v.1) and PTC-DC (v.2), respectively. Compared to PTC-DC (v.1), PTC-DC
(v.2) increases thermal comfort by 4% for total measurement period. From energy
consumption point of view, PTC-DC (v.1) decreased energy consumption by 7.4%
compared to PID controller. With enhancements in PTC-DC (v.2), energy saving
reached to 13.2%. Moreover, PTC-DC (v.2) prevents the increase of CO2 concentration
which is a further improvement in thermal comfort.

A number of personalized thermal comfort systems are commercially available,
but these are expensive and not easy-to-use by occupants. The PTC-DC uses cost-
effective wireless sensors and simple fuzzy logic rules to obtain occupant’s personalized
thermal comfort level.

The PTC-DC can be improved further with controllable windows by servo-
motors. In this way, the system becomes occupant-free. Similarly, a Heat Recovery
Ventilation (HRV) system can be integrated into the PTC-DC control system. For a

heating period, HRV system takes fresh air from outside and gives pre-heated fresh air
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inside the building. Thus, CO2 concentration can be decreased automatically whenever
it reaches 850 ppm. Furthermore, HRV system increases energy savings by pre-heating
and pre-cooling the outside air (Glingor et al., 2018). Wi-Fi module of PTC-DC can also
be used to communicate between HRV system and PTC-DC.

The PTC-DC uses fuzzy logic estimation model to predict thermal preferences
of the occupants. The ANN approach could be used in the algorithm, however, training
process of the model is computationally heavy burden. Moreover, the model requires
big data sets. Similarly, MPC requires large optimization procedures which makes the
model unsuitable to use in a real-time measurement system like PTC-DC. Furthermore,
the MPC requires dynamic models of HVAC system and thermal sensation to predict
thermal preferences of the occupant. The advantage of selecting fuzzy logic approach
for PTC-DC is simplicity. The model does not require complex mathematical systems
and big data sets. The PTC-DC can predict thermal preferences of the occupant with
imprecise and incomplete data with the help of fuzzy logic. Moreover, there is no need
to re-train the model when a new data or rule is added to the system.

Mobile application of PTC-DC provides a standardized and systematic method
for assessing thermal preferences of occupants. In the thesis, the mobile application is
used with one occupant. However, the average response rate is significant for large
groups to obtain AMV via mobile application. The occupants should be encouraged to
conduct a greater response in order to increase the accuracy of the PTC-DC.

The PTC-DC calculates clothing value of the occupant for heating and cooling
periods, respectively. However, occupants have the flexibility to change their personal
parameters in order to improve thermal comfort. The occupants can arrange their
garments from the interface of mobile application to re-calculate clothing value but it is
worth to say that the processing of large data sets can become computationally heavy.
Instead, image-processing which can directly calculates clothing value from the
temperature of the clothes can be used for PTC-DC.

In the thesis, the effect of IAQ parameters on thermal comfort is investigated for
one-day measurement period. However, the results should be validated with larger data
sets and longer periods.

The PTC-DC box will be improved such as decreasing the dimensions and
adding image-processing sensors.

The PTC-DC is tested with an adult-male occupant in a relatively small office
building. However, personalized thermal comfort varies greatly depending upon gender,
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age, behaviour and location. As future works, PTC-DC will be tested in larger office

buildings in different climatic zones with a variety of occupants.
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APPENDIX A

THE WIRE DIAGRAM OF PTC-DC
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Figure Al- The wire diagram of PTC-DC
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