
Event Sequence Graph-based Feature-oriented Testing: A Preliminary Study

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

tugkantuglular@iyte.edu.tr

Abstract— This paper proposes a model-based approach for
feature-oriented testing using event sequence graphs (ESGs).
ESGs are used to generate test cases automatically for positive
and negative testing. To fit ESG models to feature-oriented
testing, two new improvements on ESGs are proposed. The
first improvement is on repetitive use of refinement ESG and
the second improvement is saving state in an ESG and passing
it to the following ESG. This is a work towards communicating
hierarchical ESGs. The preliminary results demonstrate the
feasibility of the proposed approach. The proposed approach
improves testability of features.

Keywords-model-based testing; event sequence graphs;
feature-oriented testing

I. INTRODUCTION (HEADING 1)
In Scrum, a feature is a collection of user stories.

Although a feature can actually be considered as an epic,
epic is an umbrella for features. It can be said that an epic
contains a number of features and user stories, whereas a
feature contains only a number of user stories. The
hierarchical nature of ESGs fit very well with this approach
of Scrum. The suggestion in this paper is to model epics,
features, and user stories with ESGs and call respective
ESGs as epic ESG, feature ESG, and user story ESG. An
example for all these is given in Section 3.

The paper proposes two new improvements on ESGs to
support feature-oriented testing. The first improvement is on
self-repeating node in ESG that is refined by another ESG
and the second improvement is saving state in an ESG and
passing it to the proceeding ESG. Both requirements and
their exploration in ESGs are shown with a real-life running
example in Section 3. The running example is simplified to
show the proposed approach and its feasibility.

The paper is organized as follows: In the next section, the
formal definitions of ESGs are given along with examples
and figures. In the third section, the proposed approach is
explained with an example. The fourth and last section
concludes the paper.

II. THEORETICAL BACKGROUND

A model of the system, which requires the understanding
of its abstraction, helps in testing its behavior. A formal
specification approach that distinguishes between legal and
illegal situations is necessary for testing graphical user
interfaces. These requirements are satisfied by event
sequence graphs [1].

Differing from the notion of finite-state automata (FSA),
inputs and states are merged in ESG, hence they are turned
into “events” to facilitate ease of understanding and checking
the external behavior of the system. Thus, vertices of the
ESG represent events as externally observable phenomena,
e.g., a user action or a system response. Directed edges
connecting two events define allowed sequences among
these events [1]. Definitions from 1 to 4 and related
examples and figures are taken exactly as they are from
[2,3,4,5].

Definition 1. An event sequence graph ESG = (V, E, �, �) is
a directed graph where V ≠ ∅ is a finite set of vertices
(nodes), E � V�V is a finite set of arcs (edges), �,� � V are
finite sets of distinguished vertices with � � �, and γ � Γ,
called entry nodes and exit nodes, respectively, wherein �v
� V there is at least one sequence of vertices 	ξ,v0, . . . ,vk

from each ξ � Ξ to vk = v and one sequence of vertices 	v0, . .
. ,vk,γ
 from v0 = v to each γ � Γ with (vi,vi+1) � E, for i = 0, .
. . ,k-1 and v ≠ξ,γ.

Ξ (ESG), Γ (ESG) represent the entry nodes and exit
nodes of a given ESG, respectively. To mark the entry and
exit of an ESG, all ξ � Ξ are preceded by a pseudo vertex ‘[’
� V and all γ � Γ are followed by another pseudo vertex ‘]’
� V. The semantics of an ESG is as follows. Any v � V
represents an event. For two events v, v’ � V, the event v’
must be enabled after the execution of v iff (v, v’) � E. The
operations on identifiable components of the GUI are
controlled and/or perceived by input/output devices, i.e.,
elements of windows, buttons, lists, checkboxes, etc. Thus,
an event can be a user input or a system response; both of
them are elements of V and lead interactively to a succession
of user inputs and expected desirable system outputs.

Example 1. For the ESG given in Fig. 1: V={a,b,c}, Ξ={a},
Γ={b}, and E = {(a,b), (a,c),(b,c),(c,b))}. Note that arcs
from pseudo vertex [and to pseudo vertex] are not included
in E.

Furthermore, α(initial) and ω(end) are functions to
determine the initial vertex and end vertex of an ES, e.g., for
ES= (v0, . . . ,vk) initial vertex and end vertex are α(ES)=v0,
ω(ES)=vk, respectively. For a vertex v�V, N+(v) denotes the
set of all successors of v, and N-(v) denotes the set of all

580

2018 IEEE International Conference on Software Quality, Reliability and Security Companion

978-1-5386-7839-8/18/$31.00 ©2018 IEEE
DOI 10.1109/QRS-C.2018.00102

predecessors of v. Note that N-(v) is empty for an entry ��Ξ
and N+(v) is empty for an exit ��Γ.

Figure 1. An ESG with a as entry and b as exit and pseudo vertices [,].

Definition 2. Let V, E be defined as in Definition 2. Then
any sequence of vertices 	v0, . . . ,vk
 is called an event
sequence (ES) iff (vi,vi+1) � E, for i=0, . . . ,k-1.

The function l(length) of an ES determines the number of
its vertices. In particular, if l(ES)=1 then ES=(vi) is an ES of
length 1. Note that the pseudo vertices [and] are not
considered in generating any ESs. Neither are they included
in ESs nor considered to determine the initial vertex, end
vertex, and length of the ESs. An ES = 	vi,vk
 of length 2 is
called an event pair (EP).

Definition 3. An ES is a complete ES (or, it is called a
complete event sequence, CES), if α(ES)=��Ξ is an entry
and ω(ES)=��Γ is an exit.

A CES may invoke no interim system responses during
user-system interaction, i.e., it may consist of consecutive
user inputs and a final system response. CESs represent
walks from the entry of the ESG to its exit, realized by the
form (initial) user inputs→ (interim) system responses → ···
→(final) system response.

Note that a CES may invoke no interim system responses
during user-system interaction, i.e., it may consist of
consecutive user inputs and a final system response. To keep
the size of ESGs tractable, the ESGs topmost layer can be

refined in several modularization steps resulting in a
hierarchical set of ESGs. In Fig. 2, an example of a vertex v
being refined by another ESG is given. The figure also
contains the completed version without refinement.

Definition 4. Given an ESG, say ESG1 = (V1, E1, �1, �1), a
vertex v�V1, and an ESG, say ESG2 = (V2, E2, �2, �2). Then
replacing v by ESG2 produces a refinement of ESG1, say
ESG3 = (V3, E3, �3, �3) with V3 = V1 V2 \ {v}, and E3 = E1
 E2 Epre Epost\ E1 replaced (‘\’: set difference operation),
wherein Epre =N-(v)×�2 (connections of the predecessors of v
with the entry nodes of ESG2), Epost = �2 × N+(v)
(connections of exit nodes of ESG2 with the successors of v),
and E1 replaced = {(vi,v),(v,vk)} with vi�N-(v) and vk�N+(v)
(replaced arcs of ESG1).

III. PROPOSED APPROACH

The running example is an epic of online shopping. It is
composed of two user stories, namely login and paying
shopping cart and a feature, namely doing shopping. As seen
in Fig. 3, “Do Shopping” node is refined with “Search and
Select Product” and “Add to Shopping Cart”, which may be
considered as user stories, since they can be further refined
as seen in Fig. 4 and can be tested alone. It can be said that if
a node in an ESG is refined by two levels, then it is a feature.
If a node in an ESG is refined only by one level, then it is a
user story. So, top level of Fig. 3 is an epic ESG for online
shopping epic, the “Do Shopping” node represents a feature
ESG, and the “Search and Select Product” node represents a
user story ESG. As seen in the example, ESG is a good fit in
modeling epics, features, and user stories in Scrum.

In Fig. 4, “Search and Select Product” and “Add to
Shopping Cart” are refined by two ESGs. Modelling “Do
Shopping” feature as in Fig. 4 improves testability of the
epic, since controllability and observability of each leaf ESG
representing, i.e. refining, user stories of the feature is very
high.

Figure 2. Refinement of a vertex v and its embedding in the refined ESG.

581

Figure 3. ESG for online shopping epic.

Modeling “Do Shopping” feature as in Fig. 4 introduces
two new cases for ESGs. The first one is having self-
repeating node in ESG that is refined by another ESG. The
second is saving state in one ESG and passing it to the next
ESG in execution order. Exploring these two new cases is
the novelty and contribution of this paper in addition to
fitting ESGs to epics, features, and user stories in Scrum.

Having a self-repeating vertex in ESG that is refined by
another ESG is a new property for ESGs. When explored on
ESG given in Fig. 2 by making the vertex v self-repeating,
the ESG given in Fig. 5 is obtained. The mechanism of
refining self-repetition is proposed in Definition 5.

Definition 5. Given an ESG, say ESG1 = (V1, E1, �1, �1), a
vertex v�V1, and an ESG, say ESG2 = (V2, E2, �2, �2). Then
replacing v by ESG2 produces a refinement of ESG1, say

ESG3 = (V3, E3, �3, �3) with V3 = V1 V2 \ {v}, and E3 = E1
 E2 Epre Epost\ E1 replaced (‘\’: set difference operation)
as in Definition 4. If v is a self-repeating vertex and to be
refined, then all levels are refined till up to self-repeating
vertex v and then an edge from exit node of final refinement
to entry node of final refinement is added. In case, there are
multiple exit nodes and/or multiple entry nodes of final
refinement, then each exit node of final refinement is
connected to every entry node of final refinement.

When the new Definition 5 is applied to the running
example given in Fig. 4, stepwise refinement is shown Fig. 6
and Fig. 7. At each step, one level refinement is performed.
Since there are two levels of refinement for “Do Shopping”
vertex, refinement is performed in two steps given in Fig. 6
and Fig. 7. After refinement is completed, as proposed in
Definition 5, an edge from each exit node of final refinement
to entry node of final refinement is added, which are edges
from “Add to Shopping Cart” to “Enter Product Name” and
from “Search” to “Enter Product Name”.

Saving state in one ESG and passing it to the next ESG in
execution order is a new property for ESGs. In the running
example, the shaded rectangle vertices seen in Fig. 4
represent the ESG state, which is passed to the next ESG.
The mechanism of passing state from one ESG to another is
proposed in Definition 6.

Figure 4. Refinement of ESG for “Do Shopping” feature.

582

Figure 5. Refinement of a self-repeating vertex v and its embedding in the refined ESG.

The state information vertex or vertices will become exit
node(s) for an ESG if it wants to pass state to the next ESG.
The next ESG must have the same state information vertex
or vertices as entry node(s), so that a mapping can be
achieved and both ESGs can be resolved into a single ESG
by removing state information vertices. The ability to pass
state information from one ESG to another enables ESG-
based models to be smaller and more flexible, so that they
can easily represent user stories.

Definition 6. Given an ESG, say ESG1 = (V1, E1, �1, �1), a
vertex v�V1, and an ESG, say ESG2 = (V2, E2, �2, �2).

Having �1 as state node(s) matching exactly with �2 as state
nodes then enables ESG1 to pass state information to ESG2.
So, they become communicating ESGs.

Moreover, ESG1 can be combined with ESG2 with gluing
�1 and �2 to have a combined ESG say ESG3 = (V3, E3, �3,
�3) through eliminating �1 and �2 and having �1 and �2
become �3, �3 , respectively.

Figure 6. Refinement of a self-repeating vertex v and its embedding in the refined ESG (first step).

583

Figure 7. Refinement of a self-repeating vertex v and its embedding in the refined ESG (second step).

The proposed approach improves testability of epics,
features, and user stories. User stories are expected to deliver
business value and should be able to work stand alone.
Hence, they ought to be tested stand alone and later when
combined with other user stories, they ought to be tested
together. With communicating hierarchical ESGs enabled to
model feature-oriented software, ESGs can be used for
feature-oriented testing.

IV. CONCLUSION

The paper first discusses modeling epics, features, and
user stories in ESG. With an example, it is shown that ESGs
can be a good fit in modeling epics, features, and user stories
in Scrum. Then the paper proposes two new improvements
on ESGs to support feature-oriented testing. The first
improvement is on self-repeating node in ESG that is refined
by another ESG and the second improvement is saving state
in an ESG and passing it to the proceeding ESG. This is a
work towards communicating hierarchical ESGs. The
preliminary results demonstrate the feasibility of the
proposed approach. Moreover, the proposed approach
improves testability of features in Scrum. As a future work, it
is planned to integrate ESGs with Scrum. In addition to that,

the applicability of passing ESG state to another ESG will be
further investigated.

REFERENCES

[1] T. Tuglular, F. Belli, and M. Linschulte, “Input contract testing of
graphical user interfaces,” International Journal of Software
Engineering and Knowledge Engineering, 26(02), 2016, 183-215.

[2] F. Belli and C. J. Budnik, “Test minimization for human-computer
interaction,” Applied Intelligence, 26(2), 2007, pp.161–174.

[3] F. Belli, C. J. Budnik, and L. White, “Event based modelling, analysis
and testing of user interactions: approach and case study,” Software
Testing, Verification and Reliability, 16(1), 2006, pp.3–32.

[4] B. Kruger and M. Linschulte, “Cost Reduction through Combining
Test Sequences with Input Data,” Proc. Sixth International
Conference on Software Security and Reliability Companion (SERE-
C), IEEE Press, 2012, pp. 207–216.

[5] T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte, “Event-
based input validation using design-by-contract patterns,” Proc. 20th
International Symposium on Software Reliability Engineering,
ISSRE’09, IEEE Press, 2009, pp. 195–204.

584

