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Abstract—In order to enhance the ‘sustainability’ of offshore
wind farms, thus skipping unplanned maintenance operations
and costs, that can be important for offshore systems, the earlier
management of faults represents the key point. Therefore, this
work studies the development of an adaptive sustainable control
scheme with application to a wind farm benchmark consisting
of nine wind turbine systems. They are described via their
nonlinear models, as well as the wind and wake effects among
the wind turbines of the wind park. The fault tolerant (i.e.,
sustainable) control strategy uses the recursive estimation of the
faults provided by nonlinear estimators designed via a nonlinear
differential algebraic tool. These estimators are not affected by the
model uncertainty and the wake effects among the wind turbines.
This work exploits also a data-driven method used for estimating
the analytical form of these disturbance functions, which are
employed for obtaining the nonlinear fault reconstructors. Note
that purely analytic approaches, where the model nonlinearity
and the disturbance decoupling features are directly taken into
account, may lead to more complex design tools. This aspect of
the study, together with the more straightforward solution based
on a data-driven scheme, is the issue when online applications are
proposed for a viable implementation of the proposed solutions.
The benchmark is exploited to verify the features of the developed
strategies with respect to various fault situations and unavoidable
model-reality mismatch.

Keywords—Fault reconstruction; sustainable control; nonlinear
models; robustness and reliability; offshore wind farm

I. INTRODUCTION

Generally, wind turbines of important size can be quite
expensive, and thus their reliability cannot be neglected in
order to optimise their energy conversion rate and minimise the
lost production costs. This point could represent the key point
for offshore wind parks, where Operation and Maintenance (O
& M) related activities have to be reduced, since they directly
affect the final energy price. The so-called cost of the capital,
and the wind turbine load carrying structure of the installations
constitute the main term in the price of the energy, which
represents its ‘fixed cost’. On the other hand, the O & M term
is a ‘variable cost’ that affect the cost up to the 30%.

In parallel, industrial plants became more and more com-
plex with increased price, which can barely tolerate any
performance reduction to faults and disturbance, thus leading
to the decrease of the production and process safety. This
also yields to require increased levels of reliability and safety
for the control systems, as they can be subjected to system
anomalities and failures. Therefore, it is really necessary
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the Fault Detection and Diagnosis (FDD) task or the Fault
Detection and Isolation (FDI) phase, as well as the requirement
of sustainable (i.e., fault-tolerant features) for reducing any
possible performance reduction, thus avoiding any anomalous
and dangerous situations. The development of digital control
tools, computer networks and information science method-
ologies makes it possible to design new recursive diagnosis
and sustainable strategies to be applied to industrial plants.
However, it also has led to important challenges. Therefore,
this paper tries to propose the design of sustainable, i.e., a Fault
Tolerant Control (FTC) system, with an application example
to a wind park simulation model.

Quite recently, several works have been suggested for wind
turbine FDI/FDD, and the most important are represented,
e.g., by [1], [2]. In the same way, with reference to the
sustainable (FTC) problem, it was quite recently considered but
for an offshore wind turbine simulated model in [3]. Generally,
sustainable (FTC) strategies are divided into two schemes, i.e.,
Passive Fault Tolerant Control Strategies (PFTCS) and Active
Fault Tolerant Control Strategies (AFTCS), as summarised,
e.g., in [4]. In particular for PFTCS, controllers are defined
and are developed to be robust with respect to a subset of fault
situations. On the other hand, AFTCS are able to counteract
any system malfunctions in an active or adaptive way by
reconfiguring or accommodating their control laws, so that the
system stability and its required performance can be met in
despite of the modified working conditions.

With particular reference to wind parks, sustainable control
strategies were considered, e.g., in [5]. These plants have
complex and nonlinear dynamic behaviours, due to their aero-
dynamics that are nonlinear and unsteady. Moreover, their
rotors are affected by complex and turbulent wind fields
and driven by extreme fatigue loading conditions. Therefore,
the compensation of wind parks can require complex and
challenging design strategies, as described, e.g., in [6].

In particular for this work, it considers the design of an
active sustainable control scheme, (i.e., AFTCS) that includes
a reliable fault reconstruction strategy with the development of
a controller accommodation methodology. In more detail, the
strategy uses a recursive fault reconstruction provided by non-
linear fault estimators achieved with the so-called Nonlinear
Geometric Approach (NLGA) tool [8], a nonlinear differential
algebraic method already proposed by the authors in [7]. The
controller compensation method uses a further control control
loop employing the recursive reconstruction of the fault itself.
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The proposed nonlinear fault reconstruction approach is based
on the same technique addressed in [7], but it was designed
only for a single wind turbine model. Moreover, this work
suggests the development of nonlinear fault reconstructors
that are decoupled from both the disturbance terms and their
interactions among the wind turbine systems of the wind park
installation.

It is worth noting that the nonlinear fault reconstruction
scheme relies on the NLGA tool addressed at the beginning,
e.g., in [8]. However, it is not able to provide any fault
size estimation, which is strictly required for this application.
Moreover, the straightforward usage of the proposed scheme,
or any other method exploiting the analytical disturbance
decoupling approach, would be impossible, mainly due to the
wind park model formulation and its structure. In fact, the
wind turbine aerodynamic models are nonlinear functions of
the tip-speed ratio and blade pitch angle, as described, e.g.,
[6]. Moreover, this function is not known in any analytical
formulations, but it is usually describe as an approximated
two-dimensional map (look-up table).

Therefore, this study suggests to describe this function,
that represents the power conversion ratio, in an analytical
formulation as two-dimensional polynomial. This function
is thus exploited for developing the disturbance decoupled
fault reconstruction model. The same data-driven identification
estimation procedure is used for the derivation of the analytical
formulation of the wake models describing the relations among
the different wind turbines of the wind farm, this highlighting
the novel aspect of this work.

The interactions among the wind turbines of the wind
park are regarded as a disturbance terms, since, followed by
the wind model, they reduce the performances of the control
scheme. Note that different FDI/FDD solutions, which also
enhance the features the same wind park, were recently used
with application to the same wind park challenge competition,
as summarised by the contributions represented, e.g., in [9],
[10], [11].

It is worth noting also that the active nonlinear filters and
the sustainable control strategy are applied to the wind farm
benchmark simulator proposed in [6], in the presence of faults
and model-reality mismatch conditions. A similar FTC solution
proposed for the same benchmark but relying on fuzzy logic
tools was addressed in [12]. Therefore, the development of the
sustainable active strategy for the wind farm benchmark and
relying on nonlinear fault reconstructors are the novel aspects
of this contribution.

Moreover, the developed solution are compared with re-
spect to the former techniques designed by the same authors,
e.g., in [11], [12]. On one hand, the strategy described in
this work uses adaptive fault reconstructors that are able to
counteract in an recursive way any fault situations. On the other
hand, the strategy relying on the fuzzy logic tool is obtained
in a batch way, in order to compensate in a passive way all the
possible fault situations regarding the controlled process, thus
being a PFTCS solution. Moreover, it is worth observing also
that, the disturbance decoupling approach addressed in this
study has been firstly described and solved for the considered
wind park model. This issue is another key aspect of the study.

Finally, it is worth observing that this work tries to gener-
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alise the solutions proposed by the same authors, e.g., in [11],
[12] and it compares the achievements already addressed by
the same authors in [13], [14].

The paper has the following organisation. Section II de-
scribes the wind farm benchmark. Section III addresses the
fault reconstruction scheme, as well as the design of the sus-
tainable control strategy, which represents the main structure
of the AFTCS solution. The obtained results are summarised
and discussed in Section IV, where comparisons with respect
to different sustainable control schemes are also presented.
Finally, Section V ends the paper by highlighting the main
points of the paper, and it suggests open problems and future
issues that could require further investigations.

II. WIND PARK DESCRIPTION

The application benchmark consists of a small wind park
of 9 wind turbines located in a coordinate system of a square
matrix 3 x 3, as explained in [6]. The distance between two
wind turbines in both directions is 7 L, where L represents the
wind turbine rotor diameter. Two measuring devices (masts)
are placed in front of the wind turbines, and located in each
of the two wind directions, i.e., 0° and 45°. These masts,
which provide a measurement of the wind speed, are located
10 L in front of the wind park, in order to avoid the effect
of the wind park wakes. The wind turbines of the wind park
are generic 4.8 MW systems described in [3]. They are three
bladed horizontal axis, pitch controlled variable speed wind
turbines. The diagram of the wind farm is shown in Fig. 1.
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1,1 1,2 1,3
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(| 0()% ﬁom ﬁOQ Row 2
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10L 3,1 7L 32 7/ 33
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| 4.8 MW wind turbine

25 [[] Wind measuring mast

Fig. 1. The wind farm scheme.

A. Benchmark Model

The i-th wind turbine system is represented as a dynamic
model that includes control logics, variable parameters and
three state variables. Therefore, the i-th wind turbine model
produces the electrical power P;,(t), is controlled by the
collective pitch angle (3;(t), and the generator speed w; 4(%).
For each turbine, only one measured pitch angle 53; is exploited
as the i-th wind turbine controller regulates the pitch angles
in the same way [6].
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Two different wind distribution scenarios are considered for
each direction of 0° and 45, but the wind park is driven by
the same wind process v, (t), and possibly affected by a time
shift. The considered wind process contains a wind sequence
with a mean speed value increasing from 5 m/s to 15 m/s, and
with possible maximum peaks of about 23 m/s.

The simulated benchmark considered in this work contains
a simple wind farm controller that regulates the power refer-
ence Pj,¢(t). If the generated power is lower than the one
requested, the reference signals P, ;(t) are evenly distributed
among the different wind turbine controllers. More details
regarding this wind park benchmark, whose description is
beyond the scope of this work, are addressed in [6]. It is
worth observing that the description of the considered wind
park could be quite simple. However, the benchmark is able to
accurately represent realistic wind park systems, as remarked,
e.g., in [15].

The simulated benchmark is composed of three blocks. The
wake description is recalled in the following, as addressed in
[6]. It provides the mathematical formulation of the wind distri-
bution among the wind turbines of the park, thus representing
the interactions among the different wind turbines and their
wakes. This wakes distribution is a function of the different
control laws, so that up-wind turbines can affect their wakes,
thus increasing or decreasing the control actions of the down-
wind turbines.

The scheme of the wind park is represented in Fig. 2, with
v,, describing the wind speed vector, whose components are
vj, - On the other hand, vy, ,,, represents the wind speed vector
provided by the masts, whose components are v; ., . The
variable P, is the vector of the power references required by
the i-th wind turbine of the wind park, P;,. Py is the vector
containing the generated electrical powers with reference to
the i-th wind turbine, P;,. Finally, the signal § is the pitch
angle vector for each wind turbine, controlled by the signal
Bs, whilst wy is the generator speed vector from the measured
wind turbine velocities, w; 4.

Reference
Powers
»| Wind Farm
Model
Actual Wind Generated Powers
Speed Pitch Angles
Generator Speeds
Yy
Wind & Wake »| Wind Farm
Models Wind speed from Controller
T the anemometer T
Input wind Wind Farm
sequence Power Reference

Fig. 2. The overall benchmark model.

The wake distribution is described as the effect of a wind
efficacy decrease between the wind turbines of a factor 0.9.
On the other hand, the wind turbulence effect is modelled by
random process of zero mean and variance of 0.2 [6].

With reference to the two other blocks in Fig. 2, the wind
turbine systems are quite simple and modelled according to the
mathematical description addressed, e.g., in the works [3]. As
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shown in Fig. 2, each wind turbine systems consists of three
blocks: a power system, a pitch model, and a generator speed
module [6]. Finally, the benchmark includes a simple controller
that regulates the requested power. If the power required by
the wind park is lower than the generated power and below the
available power, the power reference signals are evenly sent to
the remaining wind turbine regulators.

After these considerations, the overall model of the wind
park under consideration has the form of (1):

To(t) = fel(xe(t),u(t
{y(g) = L) 0

with u(t) = [v;0(t), Vjwm(t), Pir, Bi(t)])" and y(t) =
zc(t) = |wig(t), Pig(t)]” representing the input and the
measured output signals, respectively. The subscript ¢ indicates
the generic i-th wind turbine of the wind park that is affected
by the j-th wind wake effect, with ¢, j = 1,...,9, and
i # j. fo(+) is a continuous-time nonlinear function used to
describe the nonlinear behaviour of the considered dynamic
process. A number of N sampled data u(k) and y(k), with
k =1,2,... N, will be acquired from the system of (1).
They will be used for deriving the mathematical models of the
disturbance effects depending on both the wind process vy, (t)
by means of the nonlinear aerodynamic behaviour and the
wind turbine wakes v, ,, i.e., the wind turbine interactions,
as described in Sections III and IV.

B. Fault Scenario

This wind park benchmark implements three fault cases
that affect the wind turbine measurements, i.e., the signals
Bi(t), wig(t), and P;,4(¢). It is worth noting that these fault
conditions may be diagnosed by considering the overall wind
park system, for example by comparing the different wind
turbine performances; however, they are difficult to be detected
by considering the single wind turbine models. Moreover, these
fault cases regard different wind turbines at different time
instants, as addressed in [6].

Table I summarises the relations among the fault cases
considered in the paper and the ¢-th wind turbine of the wind
farm. Section IIT will exploit this analysis and will show how
the disturbance decoupling method proposed in this work is
able to improve the fault diagnosis stage, thus employed for
the controller compensation task. This aspect highlights the
key point of the contribution of this paper.

FAULT CASES OF THE WIND FARM SIMULATOR

Fault case # | 1 2 3
Faulty wind | 2 1 6
turbine 7 5 8

TABLE 1L

In this way, Table I represents the fault effects among the
wind turbines, by considering the single fault case occurrence.

In particular, with reference to the rationale behind the
fault scenario considered in this paper, the following remarks
can be drawn. The fault Case 1 is due to the debris build-
up, i.e., the wind turbine blade dirt. This dirt modifies the
aerodynamics law of the wind turbine model, usually by
reducing the achieved power. The fault Case 2 effect derives
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form a misalignment of the wind turbine blades installed
during the installation stage of the wind park. This effect is
modelled as offset between the measured signal and real pitch
angle of one or more blades. This may induce also a dangerous
mismatch between the blade loads, thus possibly exciting the
dynamics modes of the load carrying structure. Finally, the
fault Case 3 is due to an alteration in the drive-train model
parameters produced by wear and tear.

Note that this latest fault condition is typically detected
by means of frequency methods that are able to highlight
changes in the measured frequency spectra signals from load
carrying structure vibration measurements. Obviously, it is
fundamental to understand if if similar results are achievable
by exploiting the measurements already acquired by control
purpose. For example, the related works [16], [3] report several
contributions regarding wind turbine FDI. They remarked that
basic model-based FDI solutions as described in [26] are not
able to diagnose this fault type. A more detailed description
of this fault scenario can be found, e.g., in [17], [6].

The following of this section analyses the links among the
different fault cases reported in Table I and their effects on
the measurements acquired from the simulated model of (1),
and depicted in Fig. 2. In order to describe a realistic scenario,
this system is also affected by uncertainty, measurement errors
and the well-known model-reality mismatch. This point is
fundamental when the reliability and robustness features of
the proposed solutions have to be analysed for the viable
application of the suggested methodologies. In fact, Section IV
will demonstrate how the development of the nonlinear fault
reconstructors for diagnosis purpose improves the sustainable
strategy described in this paper. This is a key point of the
proposed methodology.

In more detail, Table II reports the effects of the fault
scenario on the input and output signals acquired from the
wind farm benchmark model of (1). Moreover, these measured
signals shown in Fig. 2 are used for the development of the
nonlinear fault reconstructors addressed in Section III and
validated in Section IV.

TABLE II. RESULTS OF THE FAILURE MODE & EFFECT ANALYSIS
FOR THE WIND FARM MODEL
Fault case 1 2 3
V2w, V7w Viws Usw V6w, V8w
u Vawms V9wm V2wms V6wm V3wms UTwm
Py, B7 Py, P2 Psr, 3
Y wog, Pag wsg, Pog wsg, Prg

It is worth noting that the results summarised in Table
I were achieved by performing the Failure Mode & Effect
Analysis (FMEA), which represents an important engineering
and powerful tool applied to dynamic processes, as described
in [18]. In practice, for each fault case, the measurements
reported in Table II represent the most sensitive signals ac-
quired from the model of (1) in the presence of the considered
fault situations. Obviously, when a different fault scenario has
to be analysed, different measurements should probably be
considered.

Finally, it is worth noting that the disturbance decoupling
procedure considered in this work and addressed in Section IIT
represents the key contribution of this paper. This strategy was
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not considered in the work by the same authors [11], [12] and
that it was only partially investigated in [13], [14]. In fact, the
proposed methodology is fundamental since the disturbance
and the uncertainty effects due to the interactions among the
wind turbines of the wind farm can reduce the capabilities of
the sustainable control scheme. In fact, these disturbance terms
can mask the effects of the fault conditions regarding the wind
turbines, as highlighted in the following.

III. SUSTAINABLE CONTROL DESIGN

The proposed sustainable control scheme is developed in
three steps. The first stage concerns the identification of the
mathematical description of the nonlinear disturbance terms,
which are used for the development of the NLGA fault
reconstructors. Thus, the estimated faults are employed for
the compensation of both the measured and control signals
affected by the faults themselves.

In order to obtain reliable and robust solutions, the dis-
turbance terms affecting the model under diagnosis need to
be cancelled out. Section II shown how these terms derive
from two effects: one is due to the wind signal v;,, regarding
the i-th wind turbine system via its power coefficient factor
Cp. The elimination of this term was already addressed by
the same authors in [7] but developed only for a single wind
turbine model. The same strategy will be exploited here and
developed for the different wind turbines of the park; the
second disturbance term is generated by the interactions among
the wind turbine systems, and described by the wind signals
Vjwm(t) of the different wakes.

On one hand, in [19] it was shown that the derivation
and the cancellation of the first disturbance effect can rely
on the analytical identification of both the C), factor and the
wind velocity v,,(t). On the other hand, with reference to
the wind wakes, a new methodology using the NLGA tool
is proposed in this work. In more detail, by following the
same strategy used for the cancellation of the uncertainty
of wind speed v, (t) described in [7], this scheme needs
for the nonlinear mathematical description of the disturbance
distribution relation of the signals v; . m(t). Therefore, as
described in [7], the function C, (8, A) entering into the
aerodynamic models of the wind turbines and included in (1)
was obtained as a two-dimensional polynomial description. It
depends on the tip-speed ratio A and the blade pitch angles 5 of
the i-th wind turbine system. The same strategy was used for
removing the effect of the other inputs v; ., (t) by exploiting
the identification procedure presented for the first time in [20].

Once the disturbance distribution term has been derived
in mathematical form, the next step of the sustainable control
scheme development requires the design of the nonlinear fault
reconstructors for fault diagnosis purpose. Their models are
achieved via the disturbance cancellation strategy originally
traced back to the NLGA methodology [8]. This procedure
allows to design a coordinate transformation that highlights
a subsystem depending only on the faults but insensitive to
the disturbance signals, which represents the first step in the
development of the fault reconstructors. Note that, in this way,
the fault reconstructors do not depend on the disturbance d,
that in this paper represent the vector [v; ., Ujwm]-
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This scheme applies to the general nonlinear system of (2):

{ T n(z) + g(x)c+ L(x) f + pa(x)d
Y

with 2 € X is an open subset of R, the signal c(t) € R
represents the input vector, the term f(t) € R is the fault
signal, whilst the vector d(t) € R% is the disturbance effect,
and the vector y € R’ is the system output. The nonlinear
functions n(z), £(z), g(x), and py(z) are smooth vector fields,
whilst h(z) is a smooth map.

The derivation of the nonlinear fault reconstructors for the
fault signal f that are decoupled from the disturbance d relies
on the algorithm addressed in [21]. In that work the original
NLGA scheme of [8] was modified to be applied to the FDI
problem. By means of a suitable coordinate change, the model
of (2) is transformed into a new system in the local coordinates
(Z,y) in the form of (3) [21]:

1 = m(ZT1,22) + g1(Z1,T2) ¢ + 01 (21, T2, T3) |
Ty = no(Z1,T2,T3) + 92(T1, T2, T3) ¢+
_ +03(Z1, T2, 23) [ + p2(@1, T2, T3) d
r3 = n3(T1,T2,T3) + g3(T1, T2, Ty) ¢+
+03(Z1, T2, Z3) f + p3(T1,T2,73)d
7 o= h(z1)
Y2 = T2

3)

where ¢1(Z1, T2, Z3) is not identically zero. The system of
(3), when this transformation exists, is observable. Moreover,
it depends on the faults f and insensitive to the effect of the
disturbances d [21].

The feasibility of this transformation depends on some
fault detectability conditions, that need to be satisfied, as
remarked in [21]. Moreover, the system of (2) consists of
three submodels of (3), where this Z;-subsystem is always
insensitive to the disturbance effects d, but depending on the
fault signals f, as highlighted by the relation of (4):

T =
Y1 =
4)

where the state vector Zs in (3) can be measured, whilst
Zo in (4) is an exogenous input, that is indicated as ¥s.

n1(Z1,%2) + 91(T1,72) ¢ + €1(Z1, §2, Z3) f
h(:i‘l)

The developed nonlinear fault reconstructors obtained via
the modified NLGA tool implement the least-squares algorithm
with forgetting factor described in [22], which rely on the
adaptation law of (5):

P =pP- P2, P(0)=Py >0 )
f =Peln, f)=0

where the (0) is the estimation of the output signal, whilst
the corresponding normalised estimation error has the form of
(6): o
M f + Ms + A s
# (gls - gls)

Yis =
€ =

(6)

Note that all the variables of the adaptive fault reconstructor
of (6) are scalar. In particular, the variable A > 0 is a
parameter regarding the bandwidth of the filter. The variable
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B > 0 represents the forgetting factor, whilst N2 = 1 + .7\21'12
describes the normalisation parameter of the least-squares
method. Moreoyer, Ehe developed fault reconstructor uses the
input signals M;, M>, ¥15, that are achieved via a low-pass
processing of the variables M7, My, 415 as described by (7):

My = —XM;+ M, My(0)=0
Mg = =) Mg + Mo, MQ(O) =0 (7N
:'jls = _)‘513 + gls7 :518( ) =0

The fault reconstructor systems are adaptive filters consist-
ing of the relations of (5), (6), and (7). Note also that the
same authors in [21] showed that this adaptive filter generates
a signal f(¢) that asymptotically approximates the real fault f.
Moreover, these reconstructed faults have general models, as
remarked in [23]. Note that this methodology is valid for the
reconstruction of both actuator and sensor faults, as described
in [24].

Once the fault reconstructor block has been designed,
these reconstructed fault signals can be exploited for the
accommodation of the control signals FP,, 8, and w, that are
altered by the faults themselves of the wind park system of
Fig. 2. This step is the third stage in the development of the
complete sustainable control strategy. Moreover, the simulation
results of Section IV will be obtained by considering the
sustainable control scheme reported in Fig. 3. This scheme
implements the wind park controller developed in [6].

Control
reconfiguration

Fault diagnosis |

system
I A
f Fault f
---------------- COmpensation i.........,
. v : :
Set-point ®
— v . . v, |V
Baseline Wind turbine g l y
controller u(t) system
Output

sensors

y(t) Input
sensors

The developed sustainable control scheme.

Fig. 3.

The complete scheme reported in Fig. 3 shows that the
sustainable control scheme is implemented by integrating the
fault reconstruction task with the existing control system. This
fault reconstruction block (FDI) gives the reconstruction of the
actuator and sensor faults f, that are injected into the control
loop. In this way, they are able to accommodate the effect of
the faults themselves, that have modified the measured and
controlled signals. After this compensation, the wind turbine
controller is able to guarantee the nominal tracking of the
reference signal, as for the nominal or fault-free case.

Finally, note that in steady-state conditions, once the fault
effects are completely cancelled out, the performances of the
control scheme coincide with the fault-free situation. There-
fore, the stability issues of the sustainable control scheme have
to be considered only during the transient phases, since the
faults have not yet accommodated. In fact, during this phase,
the reconstruction errors of the faults could destabilise the
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closed-loop system of Fig. 3. However, by following, e.g., the
demonstration presented in [25], it is possible to demonstrate
that the fault reconstruction error is limited and convergent to
zero, and the stability of the overall closed-loop system is thus
achieved.

IV. SIMULATION EXPERIMENTS

This section summarises the development and the results
achieved from the sustainable control scheme applied to the
wind farm benchmark model. In more detail, the first part
of this section describes the derivation of the disturbance
distribution functions in (2).

In particular, the entries of the C,-map of the wind turbine
aerodynamic system has been described by means of two-
dimensional polynomial of (8):

Cp (N, Bi) = —0.0013 X% + 0.0003 A3 B; +0.010 A7 (8)

with reference to the i-th wind turbine system. More details
on the procedure for achieving this polynomial were described
in [20]. In the same way used for the estimation of this term,
the disturbance functions representing the p,(x) term of (2)
and derived from the wind wakes are described as Cp; in (9):

Cpi (Aj, Bj) = —0.0011 A% +0.0027 B; \? 9)

for the the j-th turbine wake affecting the ¢-th turbine of
the farm.

Note that the proposed strategy allows to derive the
mathematical formulation of the disturbance functions for all
uncertainties, and not only due to the errors from the C), entry
variations and the interferences of the wind wakes among the
wind turbines of the park. This remark is important since these
terms are exploited for the derivation of the fault reconstruction
filters, all uncertainty effects have to be taken into account.
A similar method was described in [26] but developed only
for linear time-invariant systems. Therefore, the uncertainty
distribution function py(z) entering into the nonlinear system
of (2) is obtained using the input-output data acquired from
the wind farm. An important hypothesis that has to be valid
in this situation is that the model-reality mismatch changes
slower than the effects of the disturbance terms, i.e., the signals
d in (2). Another important issue concerns the estimated
function p4(x) regarding the uncertainty structure, that should
be independent from the wind size represented by the signal
d. This means that the so-called disturbance directions are the
most important feature of the disturbance decoupling approach
proposed in this work.

In this way, the fault reconstruction adaptive filters of
(5), (6), and (7) developed via the NLGA tools generate the
estimate of the different fault signals affecting the the wind
park simulator, as shown in Section II. The development of
these fault reconstruction adaptive filters that are used for fault
compensation is summarised in the following. More analytical
details of the mathematical procedure are presented in [7] for
the single wind turbine model.

When the model of (2) is defined, the following vectors
are defined, with reference to the wind park benchmark: x =
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(21 22]T = [w; g Pig]", ¢ = [P, B3;]", and the functions below
are fixed:

n(x) = [ —% 0.0010 R3 2% — %xg —Pgen T2 }T (10)

pA 3,2
o) = [ po o 0.0083R a3 } (11
gen
and: A 5 o
0 £40.0003R®z
= 2J 1
=) [ 0 " 0.0001 } (12)

for the i-th wind turbine. Note that the subscript ¢ is
dropped. Moreover, py(x) has the following form:

0.0011 ]

£2.0.0010 R? 24
£2.0.0027 2

0.0002 13

pa(x) = [

When the model of (1) is considered, taking into account
(2), (13), (12), and (11), it can be shown that:

So = P = cl(pa()) = pa(z) (14)

Moreover, if ker{dh} = 0, it is easy to verify that
$P = P as Sy Nker{dh} = 0. Therefore, the expression
(= )l = (P)L needs to be computed. However, note that for
the system under dia%nosis, the derivation of the observability
codistribution (X)7 = (]5)l is improved by observing
(14). More analytical details are similar to the results already
addressed by the same authors for the case of the single wind
turbine, and they will not be recalled here. The interested
reader can refer to [7], [13].

Finally, as an example, with reference to the fault case 2,
the development of the nonlinear fault reconstruction adaptive
filter that generates the estimation of the fault signal f affecting
the actuator $3;(¢) has the form of (15):

U1s = Mo+ M - f (15)
with:
M, = -0.0361z; + 0.8019 2
M, = 0.775422 —0.3347 23 + 15.7897 25 + 1.0234 z2

(16)

On the other hand, the derivation of the fault reconstruction
filters for the Cases 1 and 3 is basically relying on a different
choice of the vectors of (12), which lead to other forms for the
nonlinear adaptive filter of (15). For example, with reference to
the fault case 2 reported in Table I, the nonlinear fault recon-
struction filter insensitive to the disturbance effect d describing
both the wind v,,(t) and the wake v,, ,, terms is described
by the model of (5). A proper selection of the adaptation
parameters entering in (5), (6), and (7), the nonlinear adaptive
reconstructor generates a good approximation of the fault size,
with minimal detection delay.

Therefore, the simulations reported in Fig. 4 regard the case
of the actuator fault f described as a sequence of 2 rectangular
pulses affecting 2 turbines, as described in Section II-B. In
particular, Fig. 4 reports the fault reconstruction (dashed black
line), when compared with respect to a fixed threshold used
for the FDI task (grey dotted line).
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Note that the developed fault reconstruction adaptive filters
not only allow for the fault detection and their isolation, but
also the fault estimation. Moreover, the considered faults de-
scribed as sequences of rectangular pulses have been included
in the wind farm simulator, since they can describe actual fault
situations with reference to the wind farm under investiga-
tion. However, as already highlighted, the fault reconstruction
systems can be easily modified to provide, for example, the
estimation of general signals, if the nonlinear adaptive filter
design can include the fault internal models.

Reconstruction of the fault case 2

1.5 ‘ . . . . : : :
A
P i
D

=1F «‘
A5 ‘ \ \ ‘ s s s \

0 500 1000 1500 2000 2500 3000 3500 4000

Time (s)

Fig. 4. Recursive reconstruction of the fault case 2.

A. Sensitivity Analysis and Comparisons

In order to highlight advantages and drawbacks of the pro-
posed solutions, the features of the sustainable control scheme
applied to the wind park benchmark were analysed with respect
to the per cent Normalised Sum of Squared Error (N.SSFE) and
considering different data sequences. Therefore, the achievable
performances were verified by considering the benchmark
simulator and the Monte-Carlo tool developed in the Matlab®
environment. With these remarks, Table III summarises the
nominal values of the considered benchmark model simulator
parameters with reference to realistic uncertainty values. In
fact, the Monte-Carlo analysis has been defined by describing
the reliabilities (errors) of the benchmark model parameters
as Gaussian stochastic variables, with zero-mean and standard
deviations with values as reported in Table III.

TABLE III. WIND FARM PARAMETER SIMULATED ACCURACY FOR

THE MONTE-CARLO ANALYSIS

Model Variable \ Nominal Value & Accuracy (Error)

P) 1.225 kg/m® £+ 20%

J 7.794 x 10° kg/m? + 30%
C, Cho % 50%

u uo £ 20%

Y yo £ 20%

Table IIT also considers that the input-output signals v and
y and the entries of the power coefficient C},-map are affected
by error terms described as per cent standard deviations of the
corresponding nominal values ug, Yo, and Cp .

On the basis of the simulated parameter uncertainty, the
verification of the control scheme performances relies on the
average values of the NSSE% index that is experimentally
evaluated with 500 Monte-Carlo runs. This NSSE% index is
evaluated for different combinations of the model parameter
as described in Table III.

Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

Note that Table III summarises the parameter accuracy that
are considered for analysing the robustness and the reliability
features of the developed sustainable control scheme with
reference to these parameter changes. In fact, the proposed
disturbance decoupling methodology was considered for can-
celling out the wind uncertainty and the wind wake effects, and
not for taking into account the parameter changes of Table III.

Table IV reports the simulation results achieved via the
developed Sustainable Control Method (SCM) that includes
the baseline wind turbine farm controller with respect to the
fault scenario. This approach considers the decoupling of both
the wind and the wake effects. Moreover, Table IV compares
the results from other two different methodologies, and in
particular the Active FTC only with the Wind Decoupling
(AFTCWD) as described in [13], and the Passive FTC ap-
proach relying on Fuzzy Logic (PFTCFL) proposed in [14].

TABLE IV. COMPARISON OF DIFFERENT FTC PERFORMANCES WITH
RESPECT TO THE N.SSE% INDEX AND THE FAULT CASES
Fault FTC Method
Case SMC AFTCWD PFTCFL
1 11.45% 15.33% 14.89%
2 12.67% 16.18% 15.46%
3 11.58% 16.45% 16.92%

In more detail, Table IV reports the N'SSE% performance
index values when the parameters of Table III vary according
to the Monte-Carlo tool. The performances achieved with
the methodology described in this work seem in general
better than the ones obtained with the AFTCWD scheme
presented in [7] with the simpler wind decoupling, and the
fuzzy strategy (PFTCFL) presented in [12]. Therefore, it
means that the scheme developed in this work presents better
tracking errors when compared with the other two approaches.
Further investigations will consider the analytic assessment of
the stability properties for the developed sustainable control
design, possibly applied also to real wind turbine installations.

V. CONCLUSION

This work considered the development of a sustainable
control strategy applied to a wind farm benchmark. The pro-
posed controller accommodation strategy employed the recur-
sive reconstruction of the fault signals provided by nonlinear
adaptive filters. They were obtained by means of differential
algebraic tools that allowed to achieve important disturbance
decoupling and robustness features. An identification scheme
from input-output data was also exploited for deriving the
mathematical description of the nonlinear disturbance distri-
bution functions, which were necessary for the development
of the nonlinear adaptive filters for fault reconstruction. These
aspects represent key points when recursive applications are
proposed for a viable and practical implementation of the
suggested sustainable control strategy. A realistic wind park
simulated model was used to assess the reliability and robust-
ness features of the proposed methodologies, in the presence
of model-reality mismatch effects. Finally, further studies will
consider the analysis of the proposed methods when applied
to real installations, as well as their mathematical stability and
reliability characteristics.
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