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We propose a finite element method of Petrov–Galerkin type for a singularly perturbed convection diffusion problem
on a discretization consisting of rectangular elements. The method is based on enriching the finite-element space with
a combination of multiscale and residual-free bubble functions. These functions require the solution of the original
differential problem, which makes the method quite expensive, especially in two dimensions. Therefore, we instead
employ their cheap, yet efficient approximations, using only a few nodes in each element. Several numerical tests confirm
the good performance of the corresponding numerical method.
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1. INTRODUCTION

The convection–diffusion equation may exhibit boundary and/or internal layers when the convection process signifi-
cantly dominates the diffusion. In such cases, the application of the standard Galerkin finite-element method (FEM)
with a partition scale that is too big to compute the layers, produces oscillations spreading all over the domain, leading
a numerical approximation completely unrelated to the true solution. To accurately resolve the layers, the mesh size
must be of the same size as the ratio between the diffusion and the modulus of the convection term. However, that
requires an extremely small mesh size, which is not affordable in practical computations in many problems.

Many stabilization techniques were proposed to improve the standard Galerkin FEM in the convection-dominated
case, among which, the streamline-upwind Petrov/Galerkin introduced by (Brooks and Hughes, 1982) is one of the
most popular. This method corresponds to adding a consistent term providing additional diffusion in the streamline
direction to improve the numerical stability of the Galerkin method without compromising accuracy. A wide variety
of applications of this method to many interesting problems can be found in the literature (Brezzi and Douglas, 1988;
Franca and Frey, 1992; Franca et al., 1992; Franca and Valentin, 2000; Harari and Hughes, 1994; Hughes et al., 1986).
However, the amount of additional diffusion should be carefully chosen by the user through a stabilization parameter
τ, which is usually seen as a drawback of the method.

One of more recent strategies based on the enrichment of the finite-element spaces, in order to capture the small
scales is known as the residual-free bubble (RFB) method introduced by Brezzi and Russo (1994) (see also Brezzi et al.
(1998a), Franca et al. (1998), Brezzi et al. (1999), Sangalli (2000)). The RFB strategy maintains the Galerkin method
but enhances the polynomial spaces by so-called RFB functions, which satisfy a differential equation inside each ele-
ment and vanish on its boundary. However, the vanishing boundary condition along interelement boundaries in higher
dimensions may lead to inaccuracies in the numerical solution since the approximate solution is still interpolated by
polynomials along the element’s edges. In fact, the RFB method in advection-dominated problems is less accurate at
the outflow boundaries compared to other stabilized methods Franca et al. (2005b). Thus, an improvement in the RFB
method is required. Alternatively, a different strategy based on enriching the test space with bubble functions and the
trial space with so-called multiscale functions, which satisfy the same differential equation with the RFBs but do not
vanish on the element edges, was proposed by Franca et al. (2005a,b,c). However, contrary to the RFBs, the internal
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layers are not well captured by the latter algorithm if the mesh is not aligned with the convection field. Therefore,
Franca and his co-workers combined these two approaches and reported that employing the multiscale functions in
elements connected to the outflow boundaries and the RFB functions in the rest of the domain increases the accuracy
of the numerical approximations considerably Franca et al. (2005c). The common point of these two approaches is
that either they employ the exact solutions of the equations defining the enriching functions (those are the bubble
functions or the multiscale functions) or their approximations using a very fine mesh inside each element, both of
which make the numerical method less practical. Regarding the RFBs, the implementation of the method requires the
solution of a local boundary value problem, which may not be easier to solve than the original problem. Therefore,
owing to the simplicity of element geometry, researchers have proposed several numerical methods to compute an
inexpensive approximate solution to the local problem on a specially chosen subgrid consisting of a few nodes, yet
the approximate counterpart of the RFB functions retain the crucial features of the exact RFBs from the convergence
point of view Brezzi et al. (2003) and Brezzi et al. (2005).

In this work, we extend the aforementioned idea to the multiscale functions and propose a stable, fully discrete,
yet inexpensive numerical method for convection–diffusion problems on rectangular grids. As we simply enrich the
test space by bubble functions, to enrich the trial space, we employ the multiscale functions in elements connected
to the outflow boundaries and the RFB functions in the rest of the domain. However, the numerical method proposed
suggests using suitable approximate counterparts of enriching functions, whose significant feature is that they retain
the stabilizing feature of the exact ones. This feature is achieved by using a specially chosen subgrid with a single
internal node in the interior of each element in the approximation of the RFBs, which are also known as pseudo-RFBs
(PRFBs) (Nesliẗurk, 2010). Regarding the multiscale functions, they only differ along the element’s edges from the
bubbles; therefore, we use the same strategy in the element’s interior. Along the element’s edges, we apply the same
method reduced to one dimension, which uses a single additional node per edge to approximate the restriction of the
multiscale function on the element’s edges. The resulting algorithm numerically performs well and the results are
comparable with previous ones found in the literature.

The layout of the paper is as follows. In Section 2 we review enriching the polynomial finite-element spaces by the
multiscale functions and recall the corresponding numerical method. In Section 3 we display how to approximate those
multiscale functions and their use in the associated numerical method. Numerical results are presented in Section 4.

2. MULTISCALE METHOD

Consider the following linear elliptic convection–diffusion problem in a bounded polygonal domainΩ ⊂ R2:

Lu := −ϵ∆u+ β.∇u = f in Ω, u = 0 on ∂Ω (1)

We assume that diffusion coefficientϵ is a positive constant. LetTh be a standard partition ofΩ into rectanglesK
where the intersection of any two elements is a vertex, or an edge, or empty. As usual, the outflow boundary is a subset
of ∂Ω given by

∂Ωout := {x ∈ ∂Ω|β.n(x) > 0}

wheren is the outward normal to∂Ω. We denote byTout
h the set of elements inTh that has at least one boundary

intersecting with∂Ωout. We introduce the mesh diameterh = max
K∈Th

{diam(K)} and assume that the source function

f and the convection fieldβ = (β1,β2) are piecewise constants with respect to the decompositionTh. Without loss of
generality we take components ofβ are positive in each elementK. As usual, we denote the inner product inL2(D)
by (., .)D, whereD is an open subset ofΩ. To simplify the notation for the caseD = Ω, we just write(., .).

The weak formulation of problem (1) reads: Findu ∈ H1
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω) (2)

where the bilinear forma : H1
0 (Ω)×H1

0 (Ω) → R is given by

a(u, v) := ϵ(∇u,∇v) + (β.∇u, v) (3)
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Due to the coercivity of the bounded bilinear forma(., .) overH1
0 (Ω), the weak problem (2) is well posed by the

Lax–Milgram theorem. We choose a finite-dimensional subspaceV 1(Ω) of H1
0 (Ω) as

V 1(Ω) = {v ∈ H1
0 (Ω) : v|K is a bilinear polynomial ∀K ∈ Th} (4)

in order to obtain the standard Galerkin method associated with the weak problem (2), so that it reads: Finduh ∈
V 1(Ω) such that

a(uh, vh) = (f, vh), ∀vh ∈ V 1 (5)

It is well known that method (5) yields a poor approximation whenϵ ≪ |β|h and produces spurious oscillations
polluting all over the domain. Since we are interested in finding a finite-element discretization for Eq. (2) that is both
stable and accurate on coarse meshes, we enrich the finite-element spaces in the Petrov–Galerkin framework, so that
we redefine the trial and test spaces, respectively, as

Uh(Ω) : = V 1(Ω)⊕ Eh(Ω) (6)

Wh(Ω) : = V 1(Ω)⊕Bh(Ω) (7)

where
Bh(Ω) := {v ∈ H1

0 (Ω) : v|K ∈ H1
0 (K), ∀K ∈ Th} (8)

and the multiscale spaceEh(Ω) ⊂ H1
0 (Ω) will be defined later. Problem (5) now reads: Finduh ∈ Uh(Ω) such that

a(uh, vh) = (f, vh), ∀vh ∈ Wh(Ω) (9)

Since typical memberuh of Uh(Ω) can be split into a bilinear partu1 ∈ V 1(Ω) and a multiscale partue ∈ Eh(Ω),
solving (9) is equivalent to findinguh = u1 + ue ∈ V 1(Ω)⊕ Eh(Ω) such that

a(uh, v1) = (f, v1), ∀v1 ∈ V 1(Ω) (10)

a(uh, vb) = (f, vb), ∀vb ∈ Bh(Ω). (11)

We note that the last equation is automatically satisfied if we chooseue such that for allK ∈ Th

Lue = f − Lu1 in K (12)

However, in order to findue uniquely, we should impose an appropriate boundary condition and that condition is
given by the solution of the following differential equation:

L∂Kue = f − L∂Ku1 on ∂K, ue = 0 at the vertices ofK (13)

whereL∂K is a differential operator defined on∂K and explicitly given by

L∂Kw := −ϵ∂
2w

∂s2
+ P(β, s)

∂w

∂s
(14)

Here,s is a variable that parameterizes∂K by arc length andP(β, s) is the usual projection of the convection field
onto∂K. Now we introduceEh(Ω) with its basis set{ϕi}i∈I0 ∪{ϕf}, whereI0 is the set of indexes of internal nodal
points with respect to the discretization ofΩ andϕi andϕf are enriching basis functions, defined by the following
auxiliary problems. Denoting the bilinear basis functions byψi{

Lϕi = −Lψi in K
ϕi = νi on ∂K

where

{
L∂Kνi = −L∂Kψi on ∂K

νi = 0 at the vertices ofK
(15)

and {
Lϕf = f in K
ϕf = νf on ∂K

where

{
L∂Kνf = f on ∂K

νf = 0 at the vertices ofK
(16)
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Then,uh ∈ Uh(Ω) can be represented in terms of enriched basis functions

uh = u1 + ue =
∑
i∈I0

uiλi + ϕf (17)

whereλi := ϕi + ψi. We note that the computation ofλi is more practical than the computation ofϕi. Therefore,
we directly calculateλi and use them in Eq. (10) so that the final form of the discrete formulation of the multiscale
method reads: Findui such that ∑

i∈I0

a(λi,ψj)ui = (f,ψj)− a(ϕf ,ψj) (18)

Before we solve problem (18), we have to findλi ∈ Uh(Ω) for all i ∈ I0 andϕf , explicitly. In the literature, this
task was accomplished by either exactly solving Eqs. (15) and (16) in strong form or using an expensive numerical
method to approximateλi on a fine mesh set inside each element, both of which leads to unpractical implementations.
Therefore, we want to compute those basis functions by using a cheap, yet efficient approximation method and use
the resulting approximate basis functions in Eq. (18) in place of their exact counterparts. The explicit computation of
such approximate basis functions is the subject of the following section.

3. COMPUTING ENRICHED FUNCTIONS

In this section we will present how to construct the approximate basis functions, which we compute on a specially
chosen subgrid defined in a typical elementK (see Fig. 1). Without loss of generality, we may assume that the lower-
left vertex of the element is located at the origin and corresponds to theith node in the discretization. We only display
the computation ofλi, as the other enriched functions can be found in exactly the similar manner.

Let us rewrite problem (15) in terms of the enriched basis functionλi

Lλi = 0 in K, λi = θi on ∂K (19)

Here,θi is the restriction ofλi to ∂K; that is

θi := ψi|∂K + ϕi|∂K (20)

and
L∂Kθi = 0 on ∂K, θi = ψi at the vertices ofK (21)

FIG. 1: A typical elementK.
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Sinceλi and its restriction to∂K satisfy Eqs. (19) and (21), the solution can be written as

λi(x, y) = λ
x
i (x)λ

y
i (y) (22)

where
λxi (x) := θi|z1 and λyi (y) := θi|z4 (23)

and the single variable functionsλxi andλyi satisfy

L∂K |z1λxi = −ϵd
2λxi
dx2

+ β1
dλxi
dx

= 0 for x ∈ (0, hx), λxi (0) = 1 and λxi (hx) = 0 (24)

L∂K |z4λ
y
i = −ϵd

2λ
y
i

dy2
+ β2

dλyi
dy

= 0 for y ∈ (0, hy), λ
y
i (0) = 1 and λyi (hy) = 0 (25)

However, those functions should be brought to the form of bubble functions before we suggest a suitable subgrid.
That is, they should vanish at the boundary of the domain where the equations are posed, without upsetting the nature
of the differential operator. To bring that end, let us define two auxiliary functionsαx

i andαy
i by

αx
i (x) := λ

x
i (x)−ψi(x, 0) (26)

α
y
i (y) := λ

y
i (y)−ψi(0, y) (27)

that, from Eqs. (24)–(27), obviously satisfy

−ϵd
2αx

i

dx2
+ β1

dαx
i

dx
=
β1

hx
for x ∈ (0, hx), αx

i (0) = α
x
i (hx) = 0 (28)

−ϵd
2α

y
i

dy2
+ β2

dαy
i

dy
=
β2

hy
for y ∈ (0, hy), α

y
i (0) = α

y
i (hy) = 0 (29)

Now we can add specially chosen internal nodes into domains(0, hx) and(0, hy), on which we approximateαx
i and

α
y
i , so that the resulting approximations, sayα̃x

i andα̃y
i , retain the stabilizing features ofαx

i andαy
i . The location of

the additional node is crucial for the stabilization and its choice depending on different configurations can be found in
the literature (Brezzi et al., 2003; Neslitürk, 2006). A straightforward application of the asserted approach to problem
(28) results in

α̃x
i (x) =


β1(hx − P )x

2hxϵ
, x ≤ P

β1P (hx − x)

2hxϵ
, x > P

where P =

{
hx − 2ϵ/β1, ϵ ≤ β1hx/4
hx/2, otherwise.

(30)

whereα̃y
i (y) is similarly obtained by replacingx by y, hx by hy andβ1 by β2 in Eq. (30). Thus, recalling Eqs. (22),

(26), and (27), the approximate basis functionλ̃i can be written as

λ̃i(x, y) = [α̃x
i (x)−ψi(x, 0)] [α̃

y
i (y)−ψi(0, y)] (31)

A comparison ofλi and its approximate counterpartλ̃i is given on a patch of four rectangular elements in Figs. 2–4
for decreasing values ofϵ. It is remarkable that although a few additional nodes are used in each element, the results
are very comparable with the exact solution. Therefore, it is quite reasonable to employ the approximate enriched
functionsλ̃i to solve Eq. (18) in place ofλi, which we call the pseudo-multi-scale method (PMS).
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FIG. 2: λi (left) andλ̃i (right) for ϵ = 0.1.

FIG. 3: λi (left) andλ̃i (right) for ϵ = 0.01.

FIG. 4: λi (left) andλ̃i (right) for ϵ = 0.001.

4. NUMERICAL RESULTS

4.1 Experiment 1

We examined the numerical method presented here on a benchmark problem posed on the unit square, subject to the
nontrivial boundary conditions as depicted in Fig. 5. The basic mesh was made up of20× 20 rectangles, whose edges
were parallel to the coordinate axes. The only exception is in Fig. 6 (right), in which we used20 × 10 rectangular
elements. We tested the method for high Peclet numbers (that is,ϵ = 10−6) and three different convection fields:
β = (1, 2), β = (1, 1), andβ = (2, 1). Since the basis functions in both the multiscale and the PMS method are
comparable (see Figs. 2–4), they produce almost the same results. Therefore, we only display the numerical results
obtained by the PMS method due to its little cost.
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FIG. 5: Problem description on square domain

FIG. 6: PMS approximations on nonaligned(left) and aligned(right) uniform rectangular mesh withβ = (1, 2).

4.1.1 Case 1.f = 0

In nonaligned meshes, we observed that the PMS method produced accurate results at the outflow boundaries, yet it
did not capture well internal layers [Fig. 6 (left)]; in which case, the numerical solution presents oscillations in some
parts of the domain close to the internal layer. Contrary to the PMS method, the PRFB method captures internal layers
well; however, it displays some unphysical oscillations around the outflow (Brezzi et al., 1998b; Neslitürk, 2010).
Motivated by this observation, the mix method RFB-MS, which has been proposed by Franca et al. (2005b), is based
on the idea that the multiscale functions are used in the elements connected to the outflow boundaries and the RFB
functions are used in the rest of the domain. We then applied the same strategy, yet, the approximate counterparts of
the multiscale and RFB functions are used. The resulting numerical method is denoted by PRFB-PMS. In order to
display the performance of our method, we compare it with the PRFB method on the uniform mesh in Figs. 7–9 and
nonuniform mesh in Fig. 10. It is obvious that the proposed algorithms improve over the PRFB method.
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FIG. 7: PRFB(left) and PRFB-PMS(right) approximations withβ = (1, 2).
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FIG. 8: PRFB(left) and PRFB-PMS(right) approximations withβ = (1, 1).

4.1.2 Case 2.f = 1

In this part, we report some results for convection diffusion problem with nonzero source term. In order to approximate
the enriching functionϕf in Eq. (16), we decomposeϕf = ϕ1

f + ϕ2
f such that

Lϕ1
f = f in K, ϕ1

f = 0 on ∂K (32)
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FIG. 9: PRFB(left) and PRFB-PMS(right) approximations withβ = (2, 1).

FIG. 10: PRFB(left) and PRFB-PMS(right) approximations on nonuniform mesh withβ = (2, 1).

and

Lϕ2
f = 0 in K, ϕ2

f = νf on ∂K (33)

Sinceϕ1
f vanishes on the element boundary, the PRFB method on the rectangular elements can be applied to Eq. (32)

(Neslitürk, 2010). On the other hand, we skip the contribution ofϕ2
f from algorithm (18) as our computational

experiments show that its effect is negligible. Thus, the resulting modified scheme reads: Findui such that
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∑
i∈I0

a (λi,ψj)ui = (f,ψj)− a
(
ϕ1

f ,ψj

)
for all j ∈ I0 (34)

We remark that this modified method is also a consequence of choosing the boundary condition as

L∂Kue = −L∂Ku1 on ∂K, ue = 0 at the vertices ofK (35)

instead of Eq. (13). Thus, we employ the approximation ofϕ1
f instead ofϕf in the mixed PRFB-PMS algorithm. In

Figs. 11 and 12 we again compare the PRFB and PRFB-PMS methods forf = 1 and the convection fieldsβ = (1, 1)
andβ = (2, 1). As predicted, the PRFB-PMS method performs better than the PRFB in each case.

FIG. 11: PRFB(left) and PRFB-PMS(right) approximations withβ = (1, 1) andf = 1.

FIG. 12: PRFB(left) and PRFB-PMS(right) approximations withβ = (2, 1) andf = 1.
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4.2 Experiment 2

We then tested the proposed algorithm for a nonconstant flow field on an L-shaped domain with the boundary con-
ditions depicted in Fig. 13(left). We takeβ = (y, 1 − x), ϵ = 0.005 andf = 0. The exact solution of the problem
exhibited boundary layers near the outflow boundaries that are the upper side, right-upper side and below the corner
of the domain Brezzi et al. (1998b). We discretized the domain into 300 uniform rectangular elements [Fig. 13(right)].
In computations, we used the average value of the flow field over the whole element; that is

β̄i|K =
1

|K|

∫∫
K

βi dxdy for i = 1, 2.

We applied the same approach used in Experiment 1 and observed that PRFB-PMS method was still able to
produce better approximations than the PRFB for more complicated problem configurations (Figs. 14 and 15).

FIG. 13: Problem description on L-shape domain and the mesh employed.

FIG. 14: PRFB(left) and PRFB-PMS(right) approximations on L-shape domain.
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FIG. 15: Contour-lines of PRFB(left) and PRFB-PMS(right) approximations on L-shape domain.
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