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Abstract. As big data analytics is adapted across multitude of domains and 
applications there is a need for new platforms and architectures that support 
analytic solution engineering as a lean and iterative process. In this paper we 
discuss how different software development processes can be adapted to data 
analytic process engineering, incorporating service oriented architecture, 
scientific workflows, model driven engineering and semantic technology. Based 
on the experience obtained through ADAGE framework [1] and the findings of 
the survey on how semantic modeling is used for data analytic solution 
engineering [6], we propose two research directions - big data analytic 
development lifecycle and data analytic knowledge management for lean and 
flexible data analytic platforms. 
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Modelling, Analytic Life Cycle 

1.Introduction 

Big data analytics can be defined as the process of extracting meaning from big data 
using specialized software systems. As the definition emphasises, it has three 
significant aspects: the nature of the data, the software utilized and the processes 
applied. The nature of big data refers to voluminous datasets often in the range of 
terabytes and petabytes whose size and characteristics extend beyond the ability of 
standard storage and computing capacity. Big data has distinct characteristics with 
respect to the Volume: the rate at which data is generated, Velocity: the rate at which 
data flows from different sources and the rate at which the produced data can be 
processed at maximizing its value, and Variety: the diversity in data types and their 
representation. Some challenges associated with big data can be listed as handling the 
massive amount of information streams generated from different sources, 
identifying information that is critical for decision-making, handling volatile business 
context and frequent changes in data and the ability to anticipate and respond on 
different trends. 
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In the context of this paper, we define the big data related environment as a 
combination of three systems: data source, a data publisher and value generator. It 
differs from the traditional data warehouse environment that always has a shared view 
of data. Big data environments can have multiple data sources such as Internet of 
Things (IoT) systems, different software applications, and social networks. These 
sources generate data which is stored and disseminated through different data 
providers. Analysts can use the data published by data providers to conduct analysis 
and generate value out of them. The results can be used for a variety of purposes. If 
we take an example of the financial data eco system as shown in Figure 1, financial 
institutions (e.g.- banks) and financial market systems (e.g.- Australian Stock 
Exchange) generate different data sets which are collected, stored and published by 
financial data providers such as Thomson Reuters.  A data scientist can access the raw 
data, transform them and conduct analysis to derive insights on data useful for 
financial institutions in their decision making. The outcome of the analysis can also 
be published and shared again as a new data set through the data provider.  

Data analytics requires a complex process and involves multiple steps such as 
business understanding, data acquisition, cleaning and pre-processing, integration, 
pattern recognition, analyzing and interpreting results. As with the production of any 
service or artifact, cost, timeliness and quality determines the success of the analytics 
solution. Although it is depicted as an engineering solution, the analytics processes 
and the utilization of tools are frequently conducted in an ad-hoc fashion, based on the 
experience of individuals and have no traceability. Such an approach could have been 
feasible for the analytics problems of the last decade, but today the demand and 
criticality of the requirements have already gone far beyond what can be achieved 
with ad-hoc analytics models.  

Fig 1: Financial Data Eco System 



In this paper we provide our observations on how systematic approaches can 
improve the success rates of data analytics projects. In Section 2, we outline the role 
of the field of software engineering based on lessons learnt during the last 5 decades. 
Section 3 provides an overview of new and emerging tools, techniques and systematic 
approaches for handling unstructured problems as is the case for big data analytics. In 
the conclusion, we have summarized our observations in two aspects: analytic 
solution development lifecycle and better knowledge representation.  

2. Why Software Engineering Matters 

2.1 The Knowledge Silos Problem 

To build a big data analytic solution, it is necessary for experts coming from different 
domains to be able to work together. One data analytic application may require 
application expert, social science expert, domain expert, big data specialist, statistical 
analytic and data mining specialists as well as a software engineer familiar with 
different platforms and programming techniques (see Figure 2). On one hand there are 
domain experts who understand the context, purpose and business value of the 
analytics solution. On the other hand, analytic experts specializing in statistical 
modelling, machine learning and mathematics are needed. Deploying solutions on an 
IT infrastructure requires software engineering knowledge such as data modelling, 
algorithms, modular design and abstraction which domain experts and analysts do not 
possess. 

There is no lack of 
software and tools to conduct a particular data analytic task. As an evidence, observe 
the data analytic software stack proposed by Milosevic et al. [22] in figure 3. There 
are sets of platforms suitable for different levels of data analysis and tools within one 
layer provide same or similar services.  

In many organizations, big data analytics practices are largely driven by analysts 
who tend to have expertise in using specific analysis or statistical modelling packages 
[e.g.-Weka, Tabula, SAS, Matlab]. Hence, the analysts are reluctant to design flexible 
analytics processes that align with organization’s IT infrastructure, specific 
objectives, and to use a mix of data sources and software frameworks. Most 

Fig 2: Big data analytics expertise silos 

 



organizations rely on a manual process to integrate different analytics tasks and data 
elements [7,8] which are expensive and hard to maintain in the long term [7].  
Moreover, according to No-Free-Lunch theorem [9], there is no one model that works 
best for every problem and depending on the application context and input data, 
analysts have to experiment with different analysis techniques to obtain optimum 
results. 

 

 
Although there are many tools and techniques that are usable at different levels of the 
analytic solution development process, there are only few approaches that support the 
overall development process dynamically. Most research efforts concentrate in one 
area or domain such as text mining from social media or stock-market event analysis, 
but there is a lack of “end-to-end” methods for engineering big data analytics 
solutions, with proper separation of concerns. 

 
2.2. Example of a Complex Analytics Process 
To illustrate the challenges associated with data analytic processes, we exemplify a 

case related to predictive analytics. The process of predictive analytics aims to 
forecast future outcomes based on existing historical data to drive better decision [30]. 
In other words, it can help to identify unexpected opportunities and forecast problems 
before happening. In practice, predictive analytics can address business problems 
related to multiple disciplines from churn prediction to recommender systems. It can 
also anticipate when factory floor machines are likely to break down or figure out 
which customers are likely to default on a bank loan. Predictive analytics comprise a 
variety of statistical techniques and machine learning methods. Considering the 
inherent characteristics of predictive analytics in all domains the generic process is 
shown in Fig 4, However, depend on application context and input data different 
techniques can be applied at each stage.  

Fig 3: Analytic Software Stack [22] 



 
Fig 4: Predictive Analytic Process 
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Table 1: Stages of Credit Risk Prediction Process 

Predictive Analytics Process Credit Risk Prediction 
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Handling Missing Values Removing missing values (empty, Null, N/A, none) 
 

Outlier Detection Removing outliers by applying IQR method 
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Data Leakage Identification of features that are not available at the time 
of reviewing the applicant’s request for a loan, and removing 
them from our analysis. 

Data Transformation Encoding ordinal features to numeric feature 
Binarizing nominal features 
Log Transformation for features with high skewness 
Normalization and Standardization to have measurements 

to a standard scale 
Correlation analysis Applying Pearson Correlation analysis for presenting the 

relationship of features (predictors) with respond variable 
(dependent variable) which is Loan Status 

Investigating significant difference in predictive features 
between the default and non-default borrowers 

Deriving attributes Deriving different ratios by available features. According 
to classification result, defined ratios increased the classifier 
performance 

St
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Data Profiling Summarizing dataset through descriptive statistics such as 
mean, max, min, standard deviation and range 

Plotting and visualization Depicting variables by presenting them on different plots 
and histograms 

M
od
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in
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Statistical Modeling Applying Linear Discriminant Analysis and Logistic 
Regression analysis for predicting borrower’s status 

 
Machine learning 

Modeling 
Developing classification models such as Decision Tree 

Classifier and Random Forest for identification of default and 
non-default borrowers 

E
va

l
ua

tio
n 

Performance Measures Considering confusion matrix, performance metrics such 
as False positive rate, accuracy, sensitivity and specificity has 
been addressed, Also ROC curve and AUC has been 
employed. 



One such application of predictive analytics is Credit Risk Prediction, where the 
goal is to predict true creditworthiness of potential borrower. Table 1 depicts the 
general process that needs to be adapted for credit risk domain. 

In practice, each of these analytic stages are conducted utilizing scripts or specific 
tools and integrating the data and analytic tools are done through scripts. Moreover, 
multiple experts should come together to understand and select data, to write software 
to clean and analyze them, to understand statistical and analytical models suitable for 
the task etc. This process is complex, time consuming and may have to go through 
multiple iterations before the model satisfies the evaluation criteria. Then the 
deployment and maintenance of the model in the bank environment should be 
conducted as a joint effort between system engineers, domain experts and analysts. 

3. New and Emerging Software Engineering Approaches for Big 
Data Analytics 

We discuss in this section some existing research areas in the software engineering 
space and their relevance in the field of big data analytics from different perspectives. 

3.1 Development Processes 

The best starting point for looking at the big data analytics processes from the lenses 
of a lean business is as an evolution of the software development life cycle models. 
Adapting an approach similar to Agile development can improve the analytic process 
by bringing a mixture of IT and business roles, providing rapid time to market 
strategy to model and evaluate analytic models, accepting failures and improving 
upon them and by challenging the existing practices. More specifically, the 
engineering of a big data analytics solution following an Agile method allows 
extensive collaboration, flexibility, and rapid development that fit with lean business 
practices. 

We can identify three software engineering practices suitable for data analysis 
processes: business requirement analysis, solution design and implementation. 
Business requirement analysis focuses on capturing domain knowledge and acquiring 
requirements from different stakeholders and defining functional and non-functional 
requirements. Design enables the design of artifacts to be produced/discussed at a 
high level, with no commitment to any technology or platform. The implementation 
allows testing and refining the analytic solution and validating the quality. Figure 5 
illustrates how different analytic expertise we discussed in section 2 are involved in 
these three stages of a typical Agile iteration flow. 



 

Fig 5: How expert knowledge can be leveraged in different stages of agile big data analytics 
process 

Agile methods are particularly suitable for big data analytics problems. As the 
problems cannot be formulated before the solution emerges, the early feedback loop 
between users and engineers are critical.  The iterative nature of agile methods 
enables to establish a systematic engineering approach while at the same time keeping 
the bottom up feedback loop in place.  

Literature such as such as CRISP-DM [2] and Domain-oriented data mining [3] is 
advocating the importance of considering practices related to analytics and 
establishing good understanding of data to build better analytic solutions more 
effectively. Significant limitations observed in data analytic solution engineering 
space are a lack of high-level architectural and data models to understand how to 
compose analytic pipelines, how data should flow between the different stages and 
how to create mappings between the stages and appropriate tools and data sets in the 
underlying infrastructure.  

3.2 Architectural Design 

Effectively designing, building and maintaining flexible data analytics processes from 
an architectural perspective remains to be a challenge. Service oriented architecture 
and scientific workflow techniques address the issue to a certain extent by providing 
modular, pluggable software components and a composition environment for them. 
Workflow technology as applied to big data analytics is generally called scientific 
workflow technology. It can assist in the composition of hundreds of distributed 
software components and data sources. Scientific workflow technology can be used to 
model scientists’ analysis processes, where each step typically corresponds to an 
individual activity or task. If each task is performed by a component (or a service), 
then the composition of a set of components would be equivalent to performing a 
sequence of tasks, where the sequence is determined by the scientific workflow 
model. A scientific workflow system enables the definition, management and 
execution of scientific workflow models and allows scientists to automate the 



execution and management of complex sets of computations and data analyses, 
thereby enabling science at a large-scale. 

Service-oriented architecture (SOA) is an architectural approach that advocates the 
creation of software components as autonomous, platform-independent, loosely 
coupled services that can be easily combined within and across enterprises to create 
new software applications to meet a business or scientific need [31]. Service-oriented 
technologies have a well-defined set of interfaces and consistent access protocols we 
can use to engineer data analytic solutions. In addition, business processes 
technologies can be used to provide an end-to-end analytic solution for the users by 
enabling automated or semi-automated service selection and composition. The 
concept of “data and analytics as a service” stems from a design paradigm of which 
design principles are governed by Service Oriented Architecture (SOA) [32]  This 
concept advocates accessing data and tools “where they live” – the actual platform on 
which the resource resides should not matter. Therefore, service-oriented design can 
play an important role in linking the analytic solution design to its implementation. 
We identify two types of services we can leverage: 

• Data services: hide data complexities and provide access to the data 
• Analytics services: hide underlying technologies and conduct the model 

building and execution for the users 
Although the use of SOA has improved interoperability, orchestration of web services 
into a workflow can be equally challenging for the end-user. Hence the literature 
emphasizes the necessity of better knowledge management in enterprise data analytic 
[2, 11] and scientific workflow [10] for better analytic platform development. 

3.3 Integrated Frameworks 

This section discusses integrated approaches for designing big data analytics 
processes. They generally fall under the category of model driven software 
development because they focus on models as central artifacts to provide an 
abstraction of a real-world application or system and apply model transformations to 
realise software systems from these models. Model Driven Engineering (MDE) is 
defined as the vision of constructing a model of a system that then can be transformed 
into a real artefact [24]. Use of MDE in the context of service-oriented architecture 
can deliver powerful software engineering methods [25].  

One way to provide a platform for end-to-end data analytic solution development is 
to follow an MDE approach where knowledge related to data, mining algorithms and 
analytic services are captured through models which are leveraged to derive an 
analytic solution. There is ample literature emphasizing the advantage of using 
models [23,28,29], in analytic solution space to model data, analytic requirement or 
services etc. There are only a few studies in the literatures such as Rajbhoj et. al [26] 
and Ceri et al. [27] that explores the potential of applying MDE for big data analytics, 
but they are limited to particular analytic tool or technology such as Map-Reduce 
framework [26].   

The ADAGE framework [1] specifically leverages the capabilities of service-
oriented architectures and scientific workflow management systems into data 
analysis. The main idea is that the models used by analysts (i.e. workflow, service, 



and data models) contain concise information and instructions that can be viewed as 
an accurate record of the analytics process, become a useful artefact for provenance 
tracking and ensure reproducibility of such analytics processes. As shown in Figure 6, 
the ADAGE framework consists a set of architectural patterns and operational 
guidelines. 

 

Fig 6: Adage Framework 

ADAGE architecture patterns support the definition of analysis processes in a more 
convenient manner than using generic and conventional business processes. It uses a 
reference data model closely associated with a target domain to standardize the 
representation of datasets. Adage framework uses a set of services to process the 
datasets, so as to transform them into other datasets or information. Both the reference 
data model and the ADAGE services are embedded in a service-oriented architecture 
(SOA). Figure 7 represents a definition of an end-to-end data analytic process from 
importing data into dissemination of findings, defined using the ADAGE architectural 
pattern. Figure 8 represents an application of that analytic process for the analysis of 
financial market data.  

 
Fig 7: Definition of an analytic process through the ADAGE architectural pattern 
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Fig 8: Application to the analysis of financial market data 

However, defining suitable data models to accurately represent complex business 
contexts associated with an analytic problem is not easy.  

 
3.4 Knowledge Representation 
The main critique of existing MDE approaches is that they often assume simple data 
reference models, which is unrealistic, hard to evolve and difficult to create and 
maintain when there are multiple stakeholders with conflicting viewpoints. Any 
analytic system has to recognize that different types of mental models can co-exist, 
each type of model can be particular to a community of practice, the mappings 
between concepts from different models can be subjective and the reference model 
needs to allow different interpretations of the data by different people. As an example, 
a   financial data analysis system can have two types of models: event model and 
time-series model, two communities: computer science and statistics and it is not 
possible to always map between raw data and variables consistently. 

Semantic technology, which is based on the vision of semantic web by Tim 
Berners-Lee is a new approach for modelling knowledge, data as well as their 
semantics and there is a well-developed set of standards and notations: RDF, RDSFS, 
OWL, supported by different tools for modelling, storing, querying, and inferencing 
the knowledge. Different communities have adapted semantic technologies to build 
standard ontologies related to their practices (e.g. ResMED for medical domain and 
FIBO in Finance). 

The work in [21] summaries the value of semantic technology and ontologies from 
three angles. 1. Ontology is a way of clarifying meaning and reducing unnecessary 
complexity (e.g.- a precise technical jargon) 2. Ontology is a way to improve agility 
and flexibility, 3. Ontology is a way to improve interoperability and integration by 
representing information consistently across multiple domains and machines. 

The main role of an ontology is to capture the domain knowledge, to evaluate 
constraints over domain data, to prove the consistency of domain data and to guide 
domain engineering while developing domain models [5]. Pan et. Al. [4] discuss in-
depth about how a generic software development process can be enhanced with the 
use of ontologies as ontologies provide a representation of knowledge and the 
relationship between concepts they are good at tracking various kinds of software 
development artefacts ranging from requirements to implementations code [4]. Such 
enhancements are important for the domain of data analytic where analyst have to 
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deal with heterogeneous data sets, analytic models, and continuously changing 
requirements to derive different insights from big data sets. 

Though there is multiple work done leveraging the semantic technology for 
analytics, they do not provide a complete solution that can address the challenges 
faced by analysts. Early work looked at how semantic web technology helps 
information integration [12]. Moreover, there is a body of work that uses semantic 
web technologies for Exploratory OLAP [13], mainly to address the heterogeneity of 
data. There is a lot of work done on introducing semantics to scientific workflows 
such as SADI [17] and WINGS [18], to discover services that meet user requirements. 
Yet they do not discuss how the domain knowledge can be captured and how the 
whole process of the analytics can be automated and made user-driven. The existing 
work related to semantic web services (OWL-S, WSDL, WSMO etc.) plays a 
prominent role in service composition, yet they look at the operation angle and does 
not support the incorporation of analytic domain concepts. 

Many existing applications that apply semantic technology in data analytics are 
very limited to a single domain and it is difficult to generalize and adapt them to 
design reusable architectures. For example, [14,15] are limited to urban data, [16] 
applies for agriculture domain. Largely these applications were designed and 
developed in isolation, specific to a particular need of an organization or entity. 
Moreover, the solutions are highly domain specific and extendibility for new use 
cases or adaptability of them in other domains are questionable.  

Work of Barisson and Collard [19] and Kumara et.al. [20] are focusing on using 
semantic technology for CRISP-DM [2] based data mining process. However, they 
lack the linkage between the domain knowledge and analytic tasks and proposed 
models are complex to understand, less generalizable and difficult to be used for end-
to-end analytic process development. 

4. Conclusions and Future Work 

From the discussions in the previous section, we believe that software engineering has 
a lot to offer in improving big data analytics solution. We identify two key areas of 
research work: 

• new big data analytic development lifecycle 
• better knowledge representation for analytics.  

4.1 Towards Big Data Analytics Development Lifecycle 

First we advocate the creation of a new big data analytic development process that 
maps different stages of analytic process into those of software engineering such as 
requirement analysis, design and implementation. This process is iterative and may 
follow multiple iterations to come up with the final solution. The activities followed 
under three stages are illustrated in Figure 9.  

 
 



 

 
Fig 9: Big Data Analytics Development Cycle 

At the requirements analysis stage, analyst go through analyzing the problem; 
understanding the business domain and what is the context and nature of the data 
available. Design stage consists of two parts: data processing architecture design and 
analytic architecture design. These parts are interrelated as the nature of data 
influences the kind of model suitable for the analytic problem and also the data pre-
processing and transformation should cater the input requirements and formats of the 
selected model.  

At the implementation stage, we suggest to leverage service-oriented architecture 
and workflow modeling to conduct analytic process composition and execution. 

4.2 Better Data Analytics Knowledge Management 

We identify the need and propose a framework where analytic process, services 
and scientific workflows represented by semantic technology as well as domain 
knowledge fits together to provide efficient event data analytic platforms. To explore 
the state-of-art that use semantic technology for data analytic solution engineering and 
identify its potential, we conducted a systematic literature review that explores 
literature spread over three spheres: software engineering, semantic modelling and 
data analytics. A detailed discussion of this review findings is presented in [6]. 

Through the review we answered to the questions about what knowledge related to 
data analytic process is captured by existing work- we identified four classes of 



semantic concepts: Domain, Analytic Service and Intent. Then we study how this 
knowledge (semantic concepts) is applied in analytic process development process, 
related to different development tasks such as business understanding, data extraction, 
model selection and analytic process composition. Based on the limitations we found 
form the literature survey [6] we suggest future research directions in knowledge 
enabled analytics. Mainly, the analysts should consider leveraging intent related 
models that represent business requirements and goals, as only then the solution can 
address the core problem. Furthermore, model building should not be an isolated task 
of trial and error. Analysts can leverage different analytic models to understand 
available model building methods and instantiate them.  Semantic models are useful 
in each stage of the analytic process, but state-of-art is limited to use them for a 
specific task such as data integration or model selection. Hence it is necessary to have 
good models that contain sufficient knowledge to help analysts throughout the 
development process. 

The survey [6] provides evidence to the importance of service based approaches in 
analytic solution engineering and the SOA community has multitude of research 
regarding the service modelling, selection etc. which are useful for realizing the Agile 
based big data analytics development cycle. Furthermore, the work emphasizes the 
significance of model driven analytic solution engineering, which we try to cater 
through the big data analytics development lifecycle by introducing implementation 
as the third stage and facilitating process composition. Process composition and 
execution can be of model-driven fashion once the good models are in place, for 
incorporating SOA and workflow technologies. Data quality governance is a main 
concern that needs to be addressed when realizing model driven and service based 
analytic platforms. This can be the starting point for providing analytics as a service 
where expert knowledge is captured and provided for anyone to compose their own 
analytic solution.  

Data analytics, domain expertise and software engineering communities need to 
work together to design ontologies that can support end-to-end data analytic solutions. 
Involvement of all three expert groups will result in better ontologies and it will aid to 
preserve the analytic related knowledge which exists in isolation today.  

Finally, we emphasize the necessity of incorporating analytics as part of value 
chain of a business, rather than treating it as an isolated tool used by scientists. To 
realize this objective, analytic technologies should align well with the infrastructure 
of the organization and flexible to cater changing business values. We believe that the 
Agile lifecycle and the knowledge management strategies that we advocate can 
provide means to realize effective integration of business, IT and analytic 
environments within an organization. 

References 

1. L. Yao and F. A. Rabhi, “Building architectures for data-intensive science using the adage 
framework,” Concurrency and Computation: Practice and Experience, vol. 27, no. 5, pp. 1188–
1206, 2015. 

2.  P. Chapman, J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth, “Crisp-
dm 1.0 step-by-step data mining guide,” 2000.  



3.  G. Wang and Y. Wang, “3dm: domain-oriented data-driven data mining,” Fundamenta 
Informaticae, vol. 90, no. 4, pp. 395–426, 2009. 

4.  Pan, Jeff Z., Steffen Staab, Uwe Aßmann, Jürgen Ebert, and Yuting Zhao, eds. Ontology-driven 
software development. Springer Science & Business Media, 2012. 

5. F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider (eds.), The 
Description Logic Handbook: Theory, Implementation, and Applications (Cambridge University 
Press, Cambridge, 2003). ISBN 0-521-78176-0 

6. Madhushi Bandara, Fethi Rabhi, Semantic Modelling for Engineering Data Analytic Solutions: 
A Systematic Survey (In Review) 

7. Espinosa, R., Garca-Saiz, D., Zorrilla, M., Zubco, J. J., Mazn, J. N. : Enabling non-expert users 
to apply data mining for bridging the big data divide. InInternational Symposium on Data-
Driven Process Discovery and Analysis(pp. 65-86). Springer Berlin Heidelberg, (2013). 

8. Fisher, D., DeLine, R., Czerwinski, M., Drucker, S.: Interactions with big data 
analytics.interactions,19(3), 50-59,(2012) 

9. Magdon-Ismail M., No free lunch for noise prediction. Neural computation ,12(3):547-564, 
(2000) 

10. Taylor, J. : Framing Requirements for Predictive Analytic Projects with Decision 
Modeling,(2015) 

11. Shumilov, S.,Leng, Y., El-Gayyar, M., Cremers A. B. , Distributed Scientic Work-ow 
Management for Data-Intensive Applications, pp. 65-73, (2008) 

12. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hbner, S.: 
Ontology-based integration of information-a survey of existing approaches. In IJCAI-01 
workshop: ontologies and information sharing, Vol. 2001, pp. 108-117,(2001) 

13. Abell, A., Romero, O., Pedersen, T. B., Berlanga, R., Nebot, V., Aramburu, M. J., Simitsis, A.: 
Using semantic web technologies for exploratory OLAP: a survey.IEEE transactions on 
knowledge and data engineering,27(2), 571-588,(2015) 

14. Puiu, D., Barnaghi, P., Tonjes, R., Kumper, D., Ali, M. I., Mileo, A.et al.,: City- Pulse: Large 
Scale Data Analytics Framework for Smart Cities: IEEE Access, vol. 4, pp. 1086-1108, (2016) 

15. Gao F., Ali,M. I., Mileo,A.,: Semantic discovery and integration of urban data streams: 
Proceedings of the Fifth International Conference on Semantics for Smarter Cities, vol. 1280, 
pp. 15-30 (2014) 

16. Laliwala, Z., Sorathia, V., Chaudhary, S.: Semantic and rule based event-driven services-
oriented agricultural recommendation system. 26th IEEE International Conference 
onDistributed Computing Systems Workshops, pp. 24-24, IEEE,(2006) 

17. Withers, D., Kawas, E., McCarthy, L., Vandervalk, B., Wilkinson,M.: Semantically- guided 
workow construction in Taverna: the SADI and Biomoby plug-ins: In International Symposium 
On Leveraging Applications of Formal Methods, Verication and Validation, pages 301-312. 
Springer, (2010) 

18. Gil Y., Ratnakar V., Deelman E., Mehta G., Kim J. : Wings for Pegasus:Creating large-scale 
scientic applications using semantic representations of computational workows. In Proceedings 
of the 19th National Conference on Innovative Applications of Articial Intelligence - Volume 2, 
IAAI'07, pages 1767-1774. AAAI Press (2007) 

19. Brisson, L., Collard, M.:An ontology driven data mining process. In International Conference on 
Enterprise Information Systems,pp. 54-61,(2008) 

20. Kumara, B. T., Paik, I., Zhang, J., Siriweera, T. H. A. S., Koswatte, K. R. :Ontology-
BasedWorkow Generation for Intelligent Big Data Analytics. 2015 IEEE International 
Conference on Web Services (ICWS), pp. 495-502,IEEE. (2015) 

21. M. Uschold. Making the case for ontology. Applied Ontology , 6(4):377{385,2011. 
22. Milosevic, Z., Chen, W., Berry, A. & Rabhi, F. A. 2016. Real-Time Analytics.  
23. J. Taylor. Framing analytic requirements. 2017. 
24. S. J. Mellor, T. Clark, and T. Futagami. Model-driven development: guest editors' introduction. 

IEEE software , 20(5):14-18, 2003. 
25. D. Ameller, X. Burgues, O. Collell, D. Costal, X. Franch, and M. P. Papazoglou. Development 

of service-oriented architectures using model-driven development: A mapping study. 
Information and Software Technology , 62:42-66, 2015 

26. A. Rajbhoj, V. Kulkarni, and N. Bellarykar, “Early experience with model-driven development 
of map-reduce based big data application,” in Software Engineering Conference (APSEC), 2014 
21st Asia-Pacific, vol. 1. IEEE, 2014, pp. 94–97. 



27.  S. Ceri, E. Della Valle, D. Pedreschi, and R. Trasarti, “Mega-modeling for big data analytics,” 
Conceptual Modeling, pp. 1–15, 2012. 

28. S. Luj´an-Mora, J. Trujillo, and I.-Y. Song, “A uml profile for multidimensional modeling in 
data warehouses,” Data & Knowledge Engineering, vol. 59, no. 3, pp. 725–769, 2006. 

29. H. Maci`a, V. Valero, G. D´ıaz, J. Boubeta-Puig, and G. Ortiz, “Complex event processing 
modeling by prioritized colored petrinets,” IEEE Access, vol. 4, pp. 7425–7439, 2016. 

30. A. Gandomi and M. Haider, "Beyond the hype: Big data concepts, methods, and analytics," 
International Journal of Information Management, vol. 35, no. 2, pp. 137-144, 2015 

31. Papazoglou, M. P., Traverso, P., Dustdar, S. & Leymann, F. 2007. Service-oriented computing: 
state of the art and research challenges. Computer, 38-45. 

32. Thomas, E. 2007. SOA principles of Service Design. Boston: Prentice Hall, 37, 71-75. 

 


	1.Introduction
	2. Why Software Engineering Matters
	2.1 The Knowledge Silos Problem

	3. New and Emerging Software Engineering Approaches for Big Data Analytics
	3.1 Development Processes
	3.2 Architectural Design
	3.3 Integrated Frameworks

	3.4 Knowledge Representation
	4. Conclusions and Future Work
	4.1 Towards Big Data Analytics Development Lifecycle
	4.2 Better Data Analytics Knowledge Management

	References

