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Abstract: In this paper, an operator splitting method is used to analyze nonlinear Benjamin–Bona–Mahony-type

equations. We split the equation into an unbounded linear part and a bounded nonlinear part and then Lie–Trotter

splitting is applied to the equation. The local error bounds are obtained by using the approach based on the differential

theory of operators in a Banach space and the quadrature error estimates via Lie commutator bounds. The global error

estimate is obtained via Lady Windermere’s fan argument. Finally, to confirm the expected convergence order, numerical

examples are studied.
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1. Introduction

Nonlinear phenomena play a fundamental role in applied mathematics and physics. Here we study the initial

value problems of nonlinear Benjamin–Bona–Mahony (BBM)-type equations in the form

ut = (1− ∂2
x)

−1K(∂x)u+
1

2
(1− ∂2

x)
−1∂x(u

2), u|t=t0 = u0, (1)

where x ∈ R , 0 ≤ t ≤ T , and K is a polynomial of degree d ≥ 2 satisfying Re
(
K(iξ)

)
≤ 0 for all ξ ∈ R .

Moreover, the equation corresponds to the generalized BBM equation when d = 2, and to the KdV-BBM

equation when d = 3; see [3, 5, 8, 18].

In 1972, Benjamin et al. improved the Benjamin–Bona–Mahony equation as an alternative to the

Korteweg-de-Vries equation for modeling the unidirectional propagation of weakly long dispersive waves [4].

Many researchers have introduced various numerical methods to solve the BBM equation. Al-Khaled et al.

[1] implemented Adomian’s decomposition method for obtaining numerical solutions of the BBM equation.

Tari and Ganji [19] have applied variational iteration and homotopy perturbation methods in order to derive

approximate explicit solutions for the BBM equation. El-Wakil et al. [9] used the exp-function method to obtain

generalized solitary solutions and periodic solutions. Dutykh et al. [8] used the finite volume method to solve

unidirectional dispersive waves. Furthermore, finite element method and spectral method solution techniques

can be found in [2, 7, 15].
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ZÜRNACI et al./Turk J Math

Lie–Trotter and Strang splitting are commonly used techniques that give advantages when you are

interested in the solutions of complicated nonlinear problems. The idea is based on splitting equations into

two parts such as linear and nonlinear and then solving each one with suitable techniques in time. Lie–Trotter

is a two-step method; the other one is three-step. Both have advantages and disadvantages. When you are

working with Lie–Trotter you spend less time and easily construct error bounds but have less accuracy. Strang

splitting takes a long time and is hard work but gives better accuracy. During the 2000s many papers focused

on the convergence analysis of these methods with different nonlinear equations [6, 10–14, 16, 17, 21]. In [11],

a convergence analysis for Lie–Trotter and Strang splitting in time of the KdV equation is given. They use

solutions of the KdV equation remaining bounded in a Hs space and this guarantees the existence of a uniform

choice of time step ∆t that prevents the solution from any Burgers’ step from blowing up. In [12], Burgers-

type equations are studied. Here the local errors are obtained as quadrature errors via Lie commutators for

Strang splitting. In [13, 14], they identify the local error of quadrature errors estimated via bounds of the

Lie commutator for operator splitting for linear evolution and for nonlinear Scrödinger equations, respectively.

Similar convergence analyses are studied for operator splitting methods for various equations such as BBM-

type equations, Burgers–Huxley equation, Airy equation, viscous Burgers equation, KdV equation, and Fisher’s

equation in [6, 10, 16, 21].

In this paper, we employ Lie–Trotter splitting to Eq. (1) in time. Firstly, Eq. (1) is split into two

subequations with an unbounded linear and a bounded nonlinear operator, respectively, i.e.

ut = (1− ∂2
x)

−1K(∂x)u and wt =
1

2
(1− ∂2

x)
−1∂x(w

2).

Then with the operators

Au = (1− ∂2
x)

−1K(∂x)u and B(w) =
1

2
(1− ∂2

x)
−1∂x(w

2),

the Lie–Trotter solution at time t = n∆t , as ∆t → 0, is un+1 = Θ∆t(un) = Φ∆t
A ◦ Φ∆t

B (un), where Φ∆t
A and

Φ∆t
B are the exact solution operators and Θ∆t is Lie–Trotter splitting solution operator.

In the present paper, we provide an error analysis for Lie–Trotter splitting in time for Benjamin–Bona–

Mahony-type equations. A similar approach to [10] is followed. They study error analysis for Strang splitting

for BBM-type equations, but here the error bounds for the Lie–Trotter method for BBM-type equations are

constructed, which are more effective and require less computational time. We assume that the initial data and

solutions of Eq. (1) are bounded in the Sobolev spaces (Hs ) for a fixed time T , i.e.

∥u0∥Hs+d−2 ≤ α, ∥u(t)∥Hs+d−2 ≤ β (2)

for 0 ≤ t ≤ T , d ≥ 2, where α and β are any constants and s is any positive integer.

2. Regularity analysis

In this section, we start with the introduction of Lemma 2.1 and Lemma 2.2, which have smoothing effects on

nonlinear terms of Eq. (1). The proof of Lemma 2.1 in L2 norm is given in [18] and the proof of Lemma 2.2 in

Hs Sobolev norm is given in [10]. During this study, Lemma 2.2 is used while constructing stability and local

error bounds for Lie–Trotter splitting for BBM equations. In Lemma 2.3 the boundedness of nonlinear flow is
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proved in the local bases. Lemma 2.4 proves a sufficient continuity. Similar Lemmas can be seen in a thesis

[16], but since the nonlinear term is Burgers’ nonlinearity they present different proofs.

Lemma 2.1 Let u, v ∈ L2(R) . Then ∥∂x(1− ∂2
x)

−1(uv)∥L2 ≤ ∥u∥L2∥v∥L2 .

Proof See ([18]). 2

Lemma 2.2 Let u, v ∈ Hs(R) . Then ∥(1− ∂2
x)

−1∂x(uv)∥Hs ≤ K∥u∥Hs∥v∥Hs .

Proof See ([10]). Expansion in Hs norm and using Lemma 2.1 for each expanded terms yield Lemma 2.2. 2

Lemma 2.3 If ∥u0∥Hs ≤ M , then there exists t̄(M) > 0 such that ∥ΦB(u0)∥Hs ≤ 2M for 0 ≤ t ≤ t̄(M) .

Proof A similar proof to [11, 12, 16] is followed. Assume that w(t) = Φt
B(u0), which satisfies the equality

∥w∥Hs

d

dt
∥w∥Hs =

1

2

d

dt
∥Φt

B(u0)∥2Hs = (w,wt)Hs

=

s∑
j=0

∫
∂j
xw∂

j
x

(
1

2
(1− ∂2

x)
−1∂x(w

2)

)
dx

=
1

2

s∑
j=0

∫
∂j
xw(1− ∂2

x)
−1∂x

(
j∑

k=0

(
s

k

)
∂k
xw∂

j−k
x w

)
dx.

Each of the terms can be bounded using Lemma 2.2 for each j ≤ s and yields

∣∣∣∣∣
∫

∂j
xw(1− ∂2

x)
−1∂x

(
j∑

k=0

(
j

k

)
∂k
xw∂

j−k
x w

)
dx

∣∣∣∣∣ ≤ C∥w∥3Hs ,

where C is any constant. Moreover, we obtain

d

dt
∥w∥Hs ≤ C∥w∥2Hs ,

whose result follows by comparing with the differential equation y′ = cy2 . 2

Lemma 2.4 If ∥u0∥Hs ≤ M then there exists t̄ depending on M such that the solution of BBM-type equations

(1) with initial data u0 , w(t) = Φt
B(u0) satisfies

w ∈ C2([0, t̄],Hs). (3)

Proof Recall Lemma 2.3; if ∥u0∥Hs ≤ M then ∥w(t)∥Hs = ∥ΦB(u0)∥Hs ≤ 2M for t ∈ [0, t̄] and we can define

w̃(t) = u0 + tB(u0) +

∫ t

0

(t− s)dB
(
w(s)

)
[B
(
w(s)

)
]ds,
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where dB
(
w
)
[B
(
w
)
] = 1

2 (1 − ∂2
x)

−1∂x
(
w(1 − ∂2

x)
−1∂x(w

2)
)
. Since w̃tt = dB

(
w
)
[B
(
w
)
] = B(w)t , w̃t(0) =

B(u0) = wt(0) and w̃(0) = u0 = w(0), we have w̃ = w . Now we have to show that w̃ ∈ C2([0, t̃],Hs). Start

with

∥w̃tt∥Hs = ∥dB
(
w
)
[B
(
w
)
]∥Hs =

1

2
∥(1− ∂2

x)
−1∂x

(
w(1− ∂2

x)
−1∂x(w

2)
)
∥Hs

≤K1

2
∥w∥Hs∥(1− ∂2

x)
−1∂x(w

2)∥Hs

≤K2

2
∥w∥Hs∥w∥Hs∥w∥Hs .

Hence ∥w̃tt∥Hs ≤ K2

2 ∥w∥3Hs and Lemma 2.3 completes the proof. 2

3. Stability analysis

In this section, we present the stability of Lie–Trotter splitting method when applied to the BBM-type equations

(1).

Lemma 3.1 Let v, w be the Lie–Trotter splitting solutions of the BBM-type equations (1) with initial data

v0, w0 ∈ Hs , respectively. Then

∥v − w∥Hs ≤ eL∆t∥v0 − w0∥Hs , (4)

where L = K
2 max{∥v∥Hs , ∥w∥Hs} .

Proof Since the linear flow is preserved, we only concentrate on nonlinear flow. Let v, w be the nonlinear

flows satisfying the initial value problems

vt =
1

2
(1− ∂2

x)
−1∂x(v

2), v(0) = v0

wt =
1

2
(1− ∂2

x)
−1∂x(w

2), w(0) = w0.

After subtraction and integrating from 0 to t , it yields

v − w = v0 − w0 +
1

2

∫ t

0

(1− ∂2
x)

−1∂x(v − w)(v + w)ds, (v − w)(0) = v0 − w0.

After taking Hs norm by using Lemma 2.2 and by applying Grönwall’s lemma, it yields

∥v − w∥Hs ≤ eL∆t∥v0 − w0∥Hs ,

where L = max{∥v∥Hs , ∥w∥Hs}. 2

4. Local error analysis

In this section, the local error bound for Lie–Trotter splitting for the BBM equation is constructed. Proof is

similar to [10], but they use Strang splitting, which is a three-step method. It requires more calculation and

more computational time. That is why in this paper we prefer Lie–Trotter splitting, which is a two-step method.
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Theorem 4.1 The local error of Lie–Trotter splitting applied to the BBM-type equations (1) is

∥Θ∆t(u0)− Φ∆t(u0)∥Hs ≤ C∆t2, (5)

where C depends on α .

Proof The BBM-type equations (1) can be written as

ut = Au+B(u),

where Au = (1− ∂2
x)

−1K(∂x)u and B(u) = 1
2 (1− ∂2

x)
−1∂x(u

2).

The exact solution on [0,∆t] is

u(∆t) = e∆tAu0 +

∫ ∆t

0

e(∆t−s)AB
(
u(s)

)
ds. (6)

This is similar to formula φ(t)− φ(0) =
∫ t

0
φ̇(s)ds when φ(s) = e(t−s)Au(s).

The second part of Eq. (6) can be written by taking φ(ρ) = B(e(s−ρ)Au(ρ)); then we get

B(e(s−t)Au(t))−B(esAu0) =

∫ s

0

dB(e(s−ρ)Au(ρ))[e(s−ρ)AB(u(ρ))]dρ, (7)

or

B(u(s)) = B(esAu0) +

∫ s

0

dB(e(s−ρ)Au(ρ))[e(s−ρ)AB(u(ρ))]dρ. (8)

After inserting Eq. (8) into Eq. (6), we get

u(∆t) = e∆tAu0 +

∫ ∆t

0

e(∆t−A)B(esAu0)ds+ E1,

where

E1 =

∫ ∆t

0

∫ s

0

e(∆t−s)AdB(e(s−ρ)Au(ρ))[e(s−ρ)AB(u(ρ))]dρds.

The Lie–Trotter splitting solution for [0,∆t] interval can be written as

u1 = Θ∆t(u0) = Φ∆t
B (e∆tAu0). (9)

The first-order Taylor expansion yields

Φ∆t
B (v) = v +∆tB(v) + ∆t2

∫ 1

0

(1− θ)dB(Φθ∆t
B (v))[B(Φθ∆t

B (v))]dθ,

where v = e∆tAu0 ∈ Hs . Hence, Eq. (9) becomes

u1 = e∆tAu0 +∆tB(e∆tAu0) + E2

with

E2 = ∆t2
∫ 1

0

(1− θ)dB(Φθ∆t
B (e∆tAu0))[B(Φθ∆t

B (e∆tAu0))]dθ.
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The local error is

u1 − u(∆t) = ∆tB(e∆tAu0)−
∫ ∆t

0

e(∆t−A)B(esAu0)ds+ (E2 − E1). (10)

In order to represent the error bounds in Hs, we rearrange the differences of terms of Eq. (10). The difference

of the first two terms can be written as a quadrature error in first-order Peano form, i.e.

∆th(∆t)−
∫ ∆t

0

h(s)ds = ∆t2
∫ 1

0

κ(θ)h′(θ∆t)dθ, (11)

where κ is a bounded kernel, h(s) = e(∆t−A)B(esAu0) and h′(s) = −e(∆t−s)A[A,B](esAu0). Here, the Lie

commutator [A,B] is

[A,B](v) = dA(v)[B(v)]− dB(v)[Av],

where v = esAu0. Each of the terms is equal to

dA(v)[B(v)] =
1

2
(1− ∂2

x)
−1K(∂x)(1− ∂2

x)
−1∂x(v

2),

dB(v)[Av] =(1− ∂2
x)

−1∂x(v(1− ∂2
x)

−1K(∂x)v),

respectively. After taking Hs norm of each of the terms with the help of Lemma 2.1 and Lemma 2.2, we get

∥dA(v)[B(v)]∥Hs =∥1
2
(1− ∂2

x)
−1K(∂x)(1− ∂2

x)
−1∂x(v

2)∥Hs

≤1

2
∥(1− ∂2

x)
−1∂x(v

2)∥Hs+d−2

≤C1∥v∥2Hs+d−2 ,

∥dB(v)[Av]∥Hs =∥(1− ∂2
x)

−1∂x(v(1− ∂2
x)

−1K(∂x)v)∥Hs

≤C2∥v∥Hs∥(1− ∂2
x)

−1K(∂x)v∥Hs

≤C2∥v∥2Hs+d−2 ,

where C1 and C2 are any constants. Since etA does not increase the Sobolev norms, it follows that

∥h′(s)∥ ≤ C∥u0∥2Hs+d−2

Thus, the integral (11) is bounded as

∆t2
∫ 1

0

κ(θ)h′(θ∆t)dθ ≤ C∥u0∥2Hs+2∆t2.

The third and fourth terms can be bounded as follows:

∥E1∥Hs ≤
∫ ∆t

0

∫ s

0

∥e(∆t−s)AdB(e(s−ρ)Au(ρ))[e(s−ρ)AB(u(ρ))]∥Hsdρds,

1476



ZÜRNACI et al./Turk J Math

where

dB(e(s−ρ)Au(ρ))[e(s−ρ)AB(u(ρ))] = (1− ∂2
x)

−1∂x(e
2(s−ρ)Au(ρ)B(u(ρ))).

After rearranging, we get

∥E1∥Hs ≤
∫ ∆t

0

∫ s

0

∥e(∆t−s)A(1− ∂2
x)

−1∂x(e
2(s−ρ)Au(ρ)B(u(ρ)))∥Hsdρds

≤
∫ ∆t

0

∫ s

0

∥e(∆t−s)A(1− ∂2
x)

−1∂x(e
2(s−ρ)Au(ρ)

1

2
(1− ∂2

x)
−1∂x(u(ρ)

2))∥Hsdρds

≤
∫ ∆t

0

∫ s

0

∥(1− ∂2
x)

−1∂x(e
2(s−ρ)Au(ρ)(1− ∂2

x)
−1∂x(u(ρ)

2))∥Hsdρds

≤C

∫ ∆t

0

∫ s

0

∥u(ρ)∥Hs∥(1− ∂2
x)

−1∂x(u(ρ)
2))∥Hsdρds

≤C

∫ ∆t

0

∫ s

0

∥u(ρ)∥3Hsdρds

≤C∆t2β3.

For the last term, taking Hs norm of E2 yields

∥E2∥Hs ≤ ∆t2
∫ 1

0

(1− θ)∥dB(Φθ∆t
B (e∆tAu0))[B(Φθ∆t

B (e∆tAu0))]∥Hsdθ,

where
dB(Φθ∆t

B (e∆tAu0))[B(Φθ∆t
B (e∆tAu0))] = (1− ∂2

x)
−1∂x(Φ

θ∆t
B (e∆tAu0)B(Φθ∆t

B (e∆tAu0))).

After rearranging, we get

∥E2∥Hs ≤∆t2
∫ 1

0

(1− θ)∥(1− ∂2
x)

−1∂x(Φ
θ∆t
B (e∆tAu0)B(Φθ∆t

B (e∆tAu0)))∥Hsdθ

≤∆t2
∫ 1

0

∥(1− ∂2
x)

−1∂x(Φ
θ∆t
B (e∆tAu0)B(Φθ∆t

B (e∆tAu0)))∥Hsdθ

≤C∆t2
∫ 1

0

∥Φθ∆t
B (e∆tAu0)∥Hs∥B(Φθ∆t

B (e∆tAu0))∥Hsdθ

≤C∆t2
∫ 1

0

∥Φθ∆t
B (e∆tAu0)∥Hs∥(1− ∂2

x)
−1∂x(Φ

θ∆t
B (e∆tAu0))

2∥Hsdθ

≤C∆t2∥Φθ∆t
B (e∆tAu0)∥3Hs ,

where C is any constant and ∥(Φθ∆t
B (e∆tAu0)∥Hs is a bounded nonlinear flow.

Hence the quadrature error is O(∆t2) in the Hs norm for u0 ∈ Hs+d−2 . 2

5. Global error analysis

Theorem 5.1 The global error of Lie–Trotter splitting applied to the BBM-type equations (1) is

∥Θ∆t(un−1)− Φ∆t(un−1)∥Hs ≤ G∆t, (12)

where G depends on α, β and T.
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Proof The Lady Windermere’s fan argument is used in the proof.

Here u(tn) = Φ∆t(u(tn−1)) is the exact solution at time tn with initial data u(tn−1), and un = Θ∆t(un−1) is

the Lie–Trotter splitting solution, which can be written as

un = Θ∆t(un−1) = Φ∆t
B ◦ Φ∆t

A (un−1), n = 1, 2, 3, · · · .

Subtraction of the exact solution from the Lie–Trotter solution yields

Θ∆t(un−1)− Φ∆t(un−1) =

n−1∑
k=0

Φ(n−k−1)∆tΘ∆t(u(tk))− Φ(n−k−1)∆tΦ∆t(u(tk)). (13)

After taking Hs norm of Eq. (13), using the local error bound given in Theorem 4.1, stability given in Lemma 3.1,

and the boundedness assumptions given in Eq. (2) yields

∥Θ∆t(un−1)− Φ∆t(un−1)∥Hs ≤
n−1∑
k=0

eL(n−k−1)∆t∥Θ∆t(u(tk))− Φ∆t(u(tk))∥Hs

≤
n−1∑
k=0

eLTC∆t2

≤neLTC∆t2

≤T eLTC∆t,

where eL(n−k−1)∆t ≤ eLT and n∆t ≤ T. 2

6. Numerical experiment

In this section, we focus on the numerical performance of Lie–Trotter splitting for BBM-type equations using

MATLAB. Two examples are studied. We present error results in different norms and the convergence rates

obtained by Lie–Trotter in tables and also CPU times are presented in seconds for various values of time step.

Example 6.1 We consider a BBM–Burgers (BBMB) equation corresponding to the case d = 2 in Eq. (1), i.e.

ut − uxxt − uxx + ux + uux = 0 (14)

with the initial condition

u(x, 0) =
1

2
+

1

4
sin(x). (15)

and periodic boundary conditions in the space domain [0, 2π] . The Fourier transform is used in space discretiza-

tion with N = 256 and the Lie–Trotter splitting method is used in time on [0, T ] interval. The exact solution

is computed numerically by using classical explicit fourth-order Runge–Kutta methods relying on the method of

integrating factors given in [20] for a sufficiently small time step.

In Table 1, we exhibit the L1, L2 , and L∞ errors of the Lie–Trotter splitting for the various time steps.

Table 2 presents the convergence orders of Lie–Trotter splitting. It is confirmed that the expected convergence

orders are obtained.

Figure 1(a) and Figure 1(b) present the reference and Lie–Trotter solutions of Eq. (14). Figure 2 presents

the convergence orders taken with different time steps.
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Table 1. Estimated errors using L1, L2 , and L∞ norms at T = 1.

Lie–Trotter
Time steps

L1 L2 L∞
0.2000 0.0252 1.7505e− 003 1.5937e− 004
0.1250 0.0158 1.0964e− 003 9.992e− 005
0.0833 0.0105 7.3188e− 004 6.674e− 005
0.0556 7.0324e− 003 4.8835e− 004 4.455e− 005
0.0370 4.6911e− 003 3.2576e− 004 2.972e− 005
0.0244 3.0905e− 003 2.1461e− 004 1.959e− 005
0.0161 2.0443e− 003 1.4196e− 004 1.296e− 005
0.0108 1.3631e− 003 9.4660e− 005 8.64e− 006

Table 2. Numerical convergence rates of Lie–Trotter splitting with different time steps at T = 1.

Lie–Trotter
Time steps

L1 L2 L∞
0.2000
0.1250 0.9954 0.9954 0.9933
0.0833 0.9968 0.9969 0.9955
0.0556 0.9978 0.9978 0.9969
0.0370 0.9985 0.9985 0.9979
0.0244 0.9990 0.9990 0.9986
0.0161 0.9993 0.9993 0.9991
0.0108 0.9996 0.9996 0.9994

Example 6.2 The next test problem is for the case d = 3 in Eq. (1), i.e.

ut − uxxt + uxxx + ux + uux = 0 (16)

with the initial condition

u(x, 0) = e−10 sin2( x
2 ) (17)

0
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x
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Figure 1. (a) Reference solutions generated by fourth-order Runge–Kutta method. (b) Lie–Trotter solutions.
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Figure 2. Convergence orders of the Lie–Trotter splitting solutions.

and periodic boundary conditions in the space domain [0, 2π] . We use the same procedure as in the first example

to obtain the reference and splitting solution.

In Table 3, we show the L1, L2 , and L∞ errors of Lie–Trotter splitting for the various time steps. Table 4

presents the convergence orders of Lie–Trotter splitting. It is obtained that the numerical convergence rates for

∆t followed the theoretical results.

Table 3. Estimated errors using L1, L2 , and L∞ norms at T = 1.

Lie–Trotter
Time steps

L1 L2 L∞
0.2000 0.6252 0.0469 6.9067e− 003
0.1250 0.3905 0.0292 4.2693e− 003
0.0833 0.2603 0.0194 2.8228e− 003
0.0556 0.1735 0.0129 1.8782e− 003
0.0370 0.1157 8.6115e− 003 1.2487e− 003
0.0244 0.0752 5.6679e− 003 8.2078e− 004
0.0161 0.0504 3.7468e− 003 5.4212e− 004
0.0108 0.0149 1.1057e− 003 3.6112e− 004

Figure 3(a) and Figure 3(b) present the reference and Lie-Trotter solutions of Eq. (16). Figure 4 shows

the convergence orders taken with different time steps.

For the given numerical examples, CPU times of the method are illustrated for various values of time

step in seconds in Table 5.

7. Conclusion

In this paper, the BBM equation was studied by using Lie–Trotter splitting. Theoretical results reveal that the

method is stable and has a first-order convergence rate as expected. We confirm these theoretical results by

considering two numerical test problems. In addition, Lie–Trotter splitting needs a shorter time of computation

than Strang splitting does. This is because it has two subequations that need to be solved in each time step.
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Table 4. Numerical convergence rates of Lie–Trotter splitting with different time steps at T = 1.

Lie–Trotter
Time steps

L1 L2 L∞
0.2000
0.1250 1.0010 1.0079 1.0235
0.0833 1.0002 1.0048 1.0151
0.0556 1.0001 1.0031 1.0101
0.0370 1.0000 1.0020 1.0067
0.0244 1.0000 1.0013 1.0045
0.0161 1.0000 1.0009 1.0029
0.0108 1.0000 1.0006 1.0020
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Figure 3. (a) Reference solutions generated by fourth-order Runge–Kutta method. (b) Lie–Trotter solutions.
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Figure 4. Convergence orders of the Lie–Trotter splitting solutions.

1481
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Table 5. CPU times in seconds of the Lie–Trotter splitting for various values of time step.

CPU(s)
Time steps

Example 6.1 Example 6.2
0.1 0.0156 0.0312
0.01 0.0312 0.0624
0.001 0.2028 0.2652
0.0001 2.0124 2.0592
0.00001 19.5001 19.7185
0.000001 196.7797 195.9060

This gives us a motivation to solve the BBM equation with Lie–Trotter splitting rather than Strang splitting.

As a result, the Lie–Trotter method is an easier and more robust method to apply to variable nonlinear partial

differential equations.
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[10] Gücüyenen N. Strang splitting method to Benjamin-Bona-Mahony type equations: analysis and application. J

Comput Appl Math 2017; 318 (C): 616-623.

[11] Holden H, Karlsen K, Risebro N, Tao T. Operator splitting for the KdV equation. Math Comput 2011; 80: 821-846.

[12] Holden H, Lubich C, Risebro N. Operator splitting for partial differential equations with Burgers nonlinearity. Math

Comput 2013; 82: 173-185.

[13] Jahnke T, Lubich C. Error bounds for exponential operator splitting. BIT 2000; 40: 735-744.

[14] Lubich C. On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations. Math Comput

2008; 77: 2141-2153.

[15] Nguyen HY, Dias F. A Boussinesq system for two-way propagation of interfacial waves. Physica D 2008; 237:

2365-2389.

[16] Nilsen EB. On operator splitting for the viscous Burgers’ and the Korteweg-de Vries equations. MSc, Norwegian

University of Science and Technology, Trondheim, Norway 2011.

1482



ZÜRNACI et al./Turk J Math
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