
 

 

 

VIRTUAL PROTOTYPING FOR ROBOT CONTROLLERS 

 
ABSTRACT 

Production of a new mechanism involves design, manufacturing and testing phases. In order 

to achieve shorter turn-around times, researchers have studied methods of shortening these 

phases. Today, structural tests and simulations conducted in virtual environments prior to 

manufacturing are a part of most of the standard production processes. However, in robot 

production not only the structural aspect of the mechanism but also its controller is required 

to be tested. This paper summarizes a versatile method to rapid prototype the robots in 

virtual environments to conduct controller tests. The verified controllers are then employed in 

actual robot prototype. The procedure is implemented in a gimbal-based joystick production 

process. 
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1. INTRODUCTION 

Robot design starts with a Computer-Aided Design (CAD) model, system assembly, and 

simulation of the system motion. It then progresses to the development of kinematic and 

dynamic model simulations, structural design, and is completed by designing a controller for 

the robot. This streamlined approach allows easy reiteration of the design process at any 

stage; thus, it allows the designer to optimize system parameters as much as possible. The 

rapid prototyping environment presented in this paper is developed by integrating 

SolidWorks©, Matlab© and their modules to create a detailed system model for use in 

simulations and controller development. Although the process is applicable to the design of 

any mechanical system, robots with their high degrees of freedom are especially suitable for 

rapid prototyping in virtual environments.   

CAD software is a tool to design any physical system either in two- or in three-dimensional 

space in a virtual environment. This tool is especially useful for designers in the design of 

multi-degree-of-freedom (DOF) robots to evaluate their performance even before 

manufacturing them. As professional software packages evolve, more functions are made 

available to the design engineers. However, to design a robotic system, usually several 

software tools are needed.  



 

SolidWorks© is a powerful CAD tool to design system parts and assemblies, and animate the 

system motion utilizing its animation tool CosmosMotion. For certain types of parallel 

mechanisms, the software performs kinematic and dynamic analysis while the robot is in 

motion to calculate various physical quantities of the system such as the forces exerted on 

joints, positions, velocities, accelerations, and so on. The capability of the software can be 

extended to robots that use serial architectures by carrying out the kinematic analysis of the 

robot externally and then importing the data to SolidWorks© for animation purposes.  

Another helpful function of the software is also addressed by transferring the robot’s data into 

the Matlab©. The visual representation of the robot is transferred to Matlab© Virtual Reality 

environment as VRML files. This enables the designer to view the robot in action while the 

simulation is running.  

In order to create simulations, Matlab© introduces the Simulink environment and 

Simmechanics blocks which can accomplish forward kinematics and dynamics modeling. 

Control algorithm of the robot can also be developed in this environment. Matlab© also 

released a new translator to translate SolidWorks© forward kinematics and dynamics 

information into Matlab© as Simmechanics blocks (Mathworks Inc., 2007). The blocks 

created are explained in the following sections.  

After the simulation environment is created, controllers are developed and evaluated for 

predefined tasks. As data is collected as a result of the simulations virtual representation of 

the robot in motion provides a better understanding of the robot operation. This completes 

the stage as called Virtual Rapid Robot Prototyping as referred in (Dede and Tosunoglu, 

2006a). The next phase is to integration of the real-time devices to the simulation. This 

enables to run real-time tests with the actual robots and their controllers.  

In the next section a brief introduction is given for animation and analysis environments used 

in this paper. These tools are then used to design a gimbal-based joystick to be used in a 

force-reflecting teleoperation application. Created simulation and the results of this simulation 

are presented as the controllers are tested. Later, integration stage is explained for real-time 

devices. Final sample test results are then given for the fully operational real-time system.   

 

2. ANIMATION AND ANALYSIS BACKGROUND 

Today’s CAD tools cannot be considered simple software tools for two- or three-dimensional 

sketching  since their capabilities allow them to be utilized as analyzers as well. The finite 

element analysis is probably the most-commonly used tool of many analysis tools that are 

available for these CAD tools. In this work, the focus is on robot design, its animation, and 

eventually its kinematic and dynamic simulations with the intent to develop and implement 



 

controllers for the designed system. To accomplish this goal, the initial aim is to develop a 

robot using one specific CAD tool; SolidWorks©, and then animate the robot in the same CAD 

environment.  

SolidWorks© is one of the capable CAD tools currently available besides Pro-Engineer©, 

AutoCad©, Unigraphics©, I-Deas© and others. Most of these programs have their own 

animation tools and they can also output VRML files to develop Virtual Reality environments. 

The significance of SolidWorks is that Matlab© recently introduced a tool to work with 

SolidWorks© so that physical properties are extracted from the SolidWorks© model and used 

automatically to create Matlab© Simulink models. The physical properties extracted include 

mass, inertia, center of gravity, position and orientation, link length and other geometric 

parameters.  

Although most of the CAD tools have mechanism design and animation capabilities, each 

has different procedures. The procedure described in this section is for SolidWorks© 

CosmosMotion mechanism design tool.  

SolidWorks© is utilized for product design purposes by many companies that range from 

aerospace and defense to automotive industries. For instance, Alliance Spacesystems, Inc. 

used SolidWorks© to develop robotic arms for NASA’s Mars Exploration Rover (MER) 

mission (Alliance Spacesystems LLC, 2007). After using the stress and thermal analysis 

tools to optimize the design, the system is further analyzed by animating the mechanism in 

the animation module.  

The U.S. Army Research Laboratory also develops their designs for military applications in 

SolidWorks©, and later uses ANSYS and CircuitWorks in the analysis stage (SolidWorks 

Corporation, 2007). In the automotive industry, Commuter Cars Corporation (Commuter Cars 

Cororation, 2007) manufactures world’s fastest urban car Tango after they have configured 

their designs in SolidWorks©.  

Currently, many robotics researchers use these CAD tools in their simulation works. For 

instance, Pap, Xu and Bronlund study kinematic simulations of a robotic human masticatory 

system using CosmosMotion (Pap, Xu, and Bronlund, 2005). Some researchers at Tokyo-

based Speecys Corp. developed their humanoid robots and their gaits using the SolidWorks© 

CosmosMotion environment (Omura, 2006).  

Robotics researchers at Florida International University (FIU) also chose to create their gaits 

using SolidWorks© and CosmosMotion (Madadi, Dede, and Tosunoglu, 2007). After creating 

the parts and assemblies for the robot, they also configured it as a mechanism to animate it 

for testing new gaits. While testing the gaits before building the robot, they also analyzed the 

design for optimization purposes. 



 

In another humanoid study at FIU, researchers developed a kinematic simulation 

environment for humanoid studies (Dede et al., 2006). The walking gaits of the humanoid are 

first created and then simulated in the program. Later, the source code to be embedded in 

the microprocessor is created automatically by this program. The main interface window of 

the program is shown in Figure 1.  

Nowadays, a number of dynamics and kinematics simulation tools are commercially 

available such as Adams©, Labview© and Matlab©. Among these, Matlab© is probably the 

most used tool for robotics researchers as it offers two separate platforms to create 

simulations. The matrix-based programming language of Matlab©, M-file, makes the software 

a popular choice for robotics engineers that perform matrix-based solutions for robot 

kinematics and dynamics. Matlab© also offers a large cluster of subroutines in its block-based 

simulation environment, Simulink. These subroutines are called blocks and they are wired 

together to form simulations. Special purpose blocks are collected together at smaller 

clusters. One of these clusters is the Simmechanics toolbox, where Matlab© offers blocks to 

configure mechanisms and robotic devices. Simmechanics blocks include a wide range of 

robot components such as actuators, sensors, bodies and joints.  

Today, majority of the robotics simulation studies presented in research articles are created 

in the Matlab© Simulink environment (Mathworks Inc., 2007). Similarly, companies 

introducing cutting-edge technologies also heavily rely on Matlab© in creating simulations to 

test their algorithms and products. For instance, Boeing engineers used Matlab© Simulink 

environment to create a system model and simulation-test the flight control laws for their X-

40A Space Maneuver Vehicle (SMV) (Boeing, 2007). Daimler Corp. also designed, tested 

and implemented the cruise controller for the Mercedes Benz trucks using the toolboxes 

offered by Matlab© (Daimler Corp., 2007). Similarly, Lockheed Martin Space Systems utilized 

Matlab© to configure their control designs and automate the development of accurate, real-

time spacecraft simulations (Lockheed Martin Space Systems Company, 2007). 

 

3. VIRTUAL PROTOTYPING STAGE 

This stage is initiated as all the design processes, with a design objective. Following this, 

conceptual designs are created and evaluated. Final design concept is selected as a result of 

this evaluation. The next step is to refine the final design concept for its functionality and 

ruggedness. In order to fine-tune the design prior to manufacturing a prototype, a CAD model 

is required. Later, tests are performed on this model to further evaluate the design. This 

completes the usual path of the design procedure. In contrast, the design of the robot 

controller starts just at this point. At this stage the model information is required to be 



 

transferred to an environment where the controller can be developed and simulation tests 

can be conducted. Matlab© Simulink is chosen as the development platform for both of these. 

This is the last phase of the virtual prototyping stage in a robot design. Following subsections 

explain these phases as applied on a gimbal-based joystick design. 

CAD Modeling Phase  

The system is designated to be used as the master system in a force-reflecting teleoperation 

application. The concept is defined as a system that is able to read operator commands in 

two Degrees-of-Freedom (DOF) and to reflect forces along the same directions. Therefore, 

servomotors are bedded on each axis. Their encoders are used to read operator demands 

while they reflect forces that are requested by the slave side of the teleoperation. Ultimately, 

the operator is to feel controlled resistive forces as he/she works with the joystick. As another 

feature designated for this system, the joystick is required to have fault tolerance. This is 

established in joint level by embedding each gimbal between two servomotors. Thus, if one 

servomotor fails during the operation the other motor takes over the operation. 

The detailed design of the joystick is explained in detail in (Dede and Tosunoglu, 2006b). 

The final design is modeled in SolidWorks© following the standard part modeling, assembly 

developing and mechanism configuring procedures as explained in (Dede and Tosunoglu, 

2006a).  

At this stage of the design, different from the standard machine element structural analysis, 

mechanism analysis tool of CAD programs can be used. In this design, this tool helped to 

calculate motion limitation of the joystick along each axis. 

Simulation Model Creation Phase 

Matlab© models of physical systems can be created in two different environments. A matrix-

based programming language called M-files is one Matlab© environment that the programmer 

can create the model by writing the code line-by-line (Mathworks Inc., 2007). Simulink is the 

other programming platform that Matlab© offers (Mathworks Inc., 2007). This platform utilizes 

a drag-and-drop graphical-user-interface; hence, it is a more user-friendly option for model 

creation and simulation purposes for the designer.  

Simulink coding utilizes previously-defined blocks instead of developing the program line-by-

line. As Simulink environment became a major simulation environment for most of the 

researchers, the platform also evolved in time providing a variety of blocks for modeling 

purposes. Realatively newer blocks that the robotics researchers are interested in are 

collected in Simmechanics blockset. This blockset offers link, joint, actuator, and sensor 

blocks to develop the simulation model of any physical system that uses these components.  



 

Creating Simmechanics Model from SolidWorks© Model: Simmechanics model of a physical 

system (such as a robot manipulator) can be created from scratch by using the blocks 

explained previously (Mathworks Inc., 2007). The mass, inertia, orientation, and center of 

gravity information for the links and joints can be input manually when creating the system 

from scratch. Although this is possible by getting this information from SolidWorks© manually, 

it is time consuming for complex systems with higher degrees-of-freedom, and prone to 

introduce errors as link/system parameters are changed during the design phase.  

Mathworks recently released a translator to translate SolidWorks© models into the 

Simmechanics environment. The end result of this translation is a forward kinematics and 

dynamics model of the system created in SolidWorks©. The model is created using 

Simmechanics blocks and all the necessary information (mass, inertia, orientation, etc.) is 

automatically transferred to these blocks. Figure 2 shows the automatically-created 

Simmechanics model of the joystick as well as. Actuation blocks are also integrated to the 

model by the designer denoted as “Revolute X Actuation” and “Revolute Y Actuation.”  

 

The custom actuator blocks contain actuators and sensors to drive each axis. The controller 

that uses the sensory information to drive these actuators is also present inside these 

custom built blocks. As these blocks are completed, the system model is ready to be 

simulation tested. The actuator and sensor blocks and the formation of the controllers are 

detailed in (Dede and Tosunoglu, 2006a). 

Creating Virtual Reality Models from SolidWorks© Models: Even in the early design stages, it 

is advantageous to the design engineers to observe the motions of a robotic system. This 

would provide them a better visual test of the system before manufacturing the robot, and 

allow them to redesign some of the parts if necessary after inspecting the animations. 

Matlab© provides this opportunity in two different ways. One is the built-in visualization tool 

that develops the visual representation of the model automatically. This tool basically draws 

straight lines from one node to another for each link. It also shows the axis system and 

Center of Gravity (COG) for each link and joint if these options are activated. All the links and 

joints are synchronized with the model, which means that as the simulation runs, the visual 

representation of the model updates itself accordingly.  

Another option to create the visual representation of the Simulink model is to use the Virtual 

Reality Toolbox. This toolbox enables the user to import the 3D CAD models into the Virtual 

Reality (VR) screen. The motion of the links and joints are then coordinated using V-Realm 

Builder and “VR Sink” block of Simulink. Once the coordination is complete, the animation of 

the 3D model is much faster and relatively smoother visually in Matlab© than in the 



 

SolidWorks© animation. Figure 3 shows the VR representation of the joystick in the Matlab© 

VR screen. 

Trajectory creation and joint motion creation in Matlab© simulations are also easier with 

respect to SolidWorks© animation creation. In SolidWorks© animation, an external software 

module should be used to solve for inverse kinematics of the mechanism to calculate each 

joint motion. Whereas in Matlab©, inverse kinematics solution can also be carried out within 

the same simulation. 

Integration of Virtual Reality Model with Simmechanics Model: VR model and the 

Simmechanics model are both created using the SolidWorks© model. These two models are 

required to be integrated and synchronized using Simulink blocks. As described previously, 

“VR Sink” block is utilized for this purpose. The inputs to this block are to be created from the 

Simmechanics block for synchronization purposes.  

The rotation centers are created as the origin (0,0,0) in the world axis system. This is not true 

for the links translated from the SolidWorks© model to VRML. The centers of rotation should 

be corrected by using the information in the “Body” blocks of the Simmechanics model.  

Figure 4 shows the “VR Sink” block parameter window when a two degree-of-freedom 

manipulator VRML is loaded. As seen in this figure, there are boxes next to some of the 

parameters that are left blank (unchecked). The value of these parameters can be provided 

from the Simmechanics blocks continuously during the simulation. For example, the boxes 

for the center of rotation and the rotation amount about any axis can be checked, and; 

therefore, controlled during the simulation to rotate the part about that center in the VR 

screen. 

After all the boxes are checked to represent the motion that the Simmechanics blocks are 

performing, the “VR Sink” block opens ports to interact with the simulation environment. 

Connecting the necessary inputs from the Simmechanics blocks to these ports, the 

integration of visual representation of the mechanism with the Simmechanics blocks is 

completed. 

As a last step before running simulations, simulation solver type and the time-step size need 

to be specified for customized use. Figure 5 shows the simulation parameter window. Gravity 

is also modeled in the environment to represent the outer world accurately and it can be 

switched on or off as required by the simulation scenario. 

 

 

 



 

4. HARDWARE IN THE LOOP TESTS 

Simulation studies can only provide knowledge of the controller performance up to a level. 

The modeling uncertainties and errors play a role in divergence from the actual system’s 

performance. The next step before building a prototype is the next phase of tests that 

integrate real-time hardware in to the simulation. These types of tests are called hardware in 

the loop tests.  

The convenience of working with Matlab© during simulation phases is that this programming 

platform also allows hardware to be integrated in the simulation. In order to achieve this, the 

simulation is required to have communication with the hardware. Although Matlab© provides 

drivers for the most common data acquisition and motion controller cards, some cards need 

to have a driver to be configure to work with simulations. Nowadays, almost all the cards 

have their own driver written in C or its variations. The interface or the driver can be created 

for Matlab© using the driver files written in C programming language. The process of writing a 

driver is explained for the joystick in (Dede and Tosunoglu, 2006b). The end result is a 

Simulink block as shown in Figure 6. The number of inputs and outputs can be adjusted 

according to the needs as the interface is written.  

In this application, the interface is used to read encoder positions from the joystick 

servomotors in both axes. The first input is spared to reset the encoders to the null position 

at the start of the manipulation. The second and the third inputs are to send torque 

commands to the servomotors. Using these inputs motion controller card generates 

necessary signals to drive the motors. The fourth input is used to disable motors in case of 

an emergency. The last input is to activate and deactivate communication between the 

motion controller card and the simulation. As it is observed from Figure 6, the interface is a 

new Simulink custom block.  

The next step is to synchronize the simulation time with the real-time clock. This can be 

achieved by either using a custom delayer to slow down the simulation process at a constant 

frequency. This method is not very useful if a smaller step size is required for calculations. At 

this point, Matlab© offers Real-Time Workshop option where the Simulink blocks are 

translated into a C code and runs real-time at a given sampling rate (has speed limitations 

due to the machine it uses). This rate is usually 1 kHz for ordinary robotics applications. The 

created can easily work at that sampling rate either in the Real-Time Windows Target or the 

xPC Target that act as targets of Real-Time Workshop. The Real-Time Windows Target 

creates the code to run in a PC that has Windows based operating system. Whereas, xPC 

Target does not require an operation system to run its code. The main computer is 



 

connected to the other PC that runs xPC Code and the interaction with the hardware in the 

loop simulation is achieved by this way.  

In the application that is considered in this paper, Real-Time Windows Target is used to 

create the real-time code. After manufacturing a prototype of the gimbal-based joystick it is 

used in the identical limited-workspace teleoperation tests. The virtual replica of the joystick 

is used as the slave manipulator in these tests. The experimental setup is presented in 

Figure 7. 

Therefore, teleoperation controllers are evaluated in the hardware in the loop simulation 

tests. Results of the teleoperation controller test at a constant time delay is presented in the 

following figures (Dede and Tosunoglu, 2007a). Two variations of a teleoperation controller 

called wave variable technique are evaluated on the same system. The position tracking 

performances are investigated in the Figures 8 and 9. 

The hardware in the loop simulation test procedure explained in this section can also be 

applied to custom simulator creation (Dede and Tosunoglu, 2007b). Figure 10 shows another 

teleoperation system where at the instant only the master system is integrated to the system 

and the mobile robot (WiRobot DRK8000) is running in a virtual environment.  

The next step is to integrate the mobile robot to the system. After the integration process, the 

production code is generated by Matlab© and this code is embedded to a controller card that 

works with data acquisition and motion controller cards.  

 

5. CONCLUSION 

Robot production is a tedious process that involves a controller design as well as mechanical 

part and mechanism designs. Numerical simulation techniques are widely used in the 

industry while prototyping a new product. This procedure saves time because tests are 

conducted even before building a prototype. In this paper, the same idea for designing parts 

is applied to building controllers for robots or any mechatronics application.  

First, a modeling phase is explained to build a virtual prototype of a robot in CAD 

environment. Then the virtual prototype is transferred to a simulation environment, Matlab©, 

as the system model. As a result of this transfer not only the mechanical and mechanism 

properties but also the virtual information of the robot is translated into Matlab© Simulink 

programming platform. After the system model is created in this platform, controllers are also 

built and simulation tests are conducted to evaluate them.  

The next step is defined as the hardware in the loop tests. In these tests the hardware is 

integrated in the simulation to further evaluate the controller performances. An example 



 

system that was created using this technique is introduced. The benefit of using this 

simulation platform, Matlab©, is that the simulation is not modified but only an interface is 

developed for hardware integration. Thus, the testing process is accelerated.  

As the simulations are completed and the controller performances are evaluated, the final 

step is creating a production code to embed in the controller card of the robot. This is also 

generated by Matlab© from the controller developed as a result of the simulation tests. 

Ultimately, the procedure described in this paper saves time and money in developing new 

robot controllers and robots. The range of savings as a result of using this method with 

respect to the customary methods of robot controller design is a future research area for this 

study. 
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FIGURES 

 
 

Figure 1. Main interface window of the Cerberus Gait Solver (Dede et al., 2006) 
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Figure 2. Simmechanics model of the gimbal-based joystcik translated from SolidWorks© 
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Figure 3. Visual representation of the joystick in VR screen 
 

 

Figure 4. VR sink block parameter window 
 

 



 

 
Figure 5. Simulation parameters window 
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Figure 6. Interface window for the gimbal-based joystick 
 

 
 

Figure 7. Identical master-slave teleoperation hardware in the loop test setup 
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Figure 8.  Position tracking performance of the identical master-slave teleoperation using the 

customary wave variable technique 
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Figure 9.  Position tracking performance of the identical master-slave teleoperation using the 

wave variable technique with position feedforward component 
 



 

 
 

Figure 10. Operator driving WiRobot DRK8000 in VR screen of the Robotics and Automation 
Laboratory at Florida International University 

 

 


