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ABSTRACT 
 

PALLADIUM CATALYZED CROSS COUPLING REACTİONS OF 
ALKENYL EPOXIDES AND ORGANOBORONIC ACID ESTERS 

 
In organic chemistry, it is a useful method to form a new allylic compounds as a 

result of 1-3 substitution reactions of allylic compounds which have a good leaving 

group. These reactions usually require a metal catalyst but one of the most challenging 

aspects of these applications is the process regio and stereo selectivity for a wide variety 

of substrate types. Other compounds such as alkenyl epoxides are also useful for 1-3 

substitution reactions.  

An advantage of using alkenyl oxirane compounds is that the oxirane ring is 

opened in the substitution step to form a hydroxyl group and resulted in the formation of 

allylic alcohols which are important intermediate product. Metal catalysed and regio-

selective reactions of terminal alkenyl epoxides with organoborons have been reported 

in the literature. However, there is no successful method for internal alkenyl oxiranes. 

Thus, in this study, 1-3 substitution reactions of alkenyl oxiranes were successfully 

applied, which yielded allylic alcohols with high regio- and stereoselectivity. 
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ÖZET 
 

ALKENİL EPOKSİTLERİN ORGANOBORONİK ASİT 
ESTERLERİYLE PALADYUM KATALİZLİ ÇAPRAZ BAĞLANMA 

TEPKİMELERİ 
 
İyi bir ayrılan gruba sahip olan alilik bileşiklerin 1-3 yer değiştirme 

reaksiyonlarının bir sonucu olarak yeni alilik bileşiklerin oluşturulması organik kimyada 

yararlı bir yöntemdir. Bu reaksiyonlar genellikle bir metal katalizörü gerektirir, ancak 

bu uygulamaların en zorlu yönlerinden biri, çok çeşitli substrat tipleri için regio ve 

stereo seçimliliktir. Alkenil epoksitler gibi diğer bileşikler de 1-3 yer değiştirme 

reaksiyonları için yararlıdır. 

Alkenil oksiran bileşiklerinin kullanımının bir avantajı, oksiran halkasının, yer 

değiştirme aşamasında açılarak allilik pozisyonda bir hidroksil grubu oluşturması ve 

bunun sonucunda önemli bir ara ürün olan allilik alkollerin oluşmasıdır. Terminal 

alkenil epoksitlerin organoborlarla metal katalizli ve regio-selektif reaksiyonları 

literatürde bildirilmiştir. Bununla birlikte, iç alkenil oksiranlar için başarılı bir yöntem 

yoktur. Bu nedenle, bu çalışmada, alkenil oksiranların 1-3 yer değiştirme reaksiyonları 

başarıyla uygulanmış, yüksek regio ve stereo-seçicilik ile allilik alkoller elde edilmiştir. 
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CHAPTER 1 

INTRODUCTION 

Transition metal catalyzed reactions with various organometallic reactants have 

received considerable interest in recent years. An example is the addition of an alkenyl 

or aryl group to an unsaturated compound which has a leaving group. In the absence of 

a metal catalyst, these compounds generally give the SN2 reaction with nucleophiles. 

However, the presence of transition metals leads the reaction to give the product of SN2’ 

reaction. 

In such unsaturated compounds, the selectivity shifts towards the SN2’ reaction 

when using hard nucleophiles such as organolithium, organozinc and grignard reagents. 

However, such hard nucleophiles are difficult to use because they are very air and 

moisture sensitive. On the other hand, organoboron compounds are easy to use in such 

reactions because of their high air and moisture stability. The diversity of organoboron 

compounds has made them usable in different coupling and substitution  reactions. They 

havebeen used at 1-3 substitution reactions over propargylic compounds providing 

allenyl compounds (Moriya et al. 1994). In 2011, the palladium-catalyzed 

SN2’’selective reaction with organoborons was first performed on 2-ene-4-carbonate 

compounds (Üçüncü et al. 2011). 

Vinyl epoxide compounds are one of the important intermediates which are 

widely used in organic synthesis. The two reactive constituents of the vinyl epoxide 

compounds are a strained epoxide ring and a conjugated carbon-carbon double bond to 

this ring. 

 

 

Figure 1.1. Reactive part of alkenyl oxirane 
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Considering these reactive elements, there are three different regioisomeric 

selectivities in the reaction of vinyloxiranes, particularly with nucleophilic 

organometallics, two of them via SN2 reactions and the other is via SN2’. The latter 

substitution type (SN2’) would form allyl alcohols which are valuable intermediates 

which are used commonly in variosu organic synthesis. 

There are very few examples of allylic arylation reactions of alkenyl oxiranes in 

the literature and most of these involve highly basic organometallic reagents, such as 

Grignard and organozinc reagents. Thus, we have decided to improve selectivity of the 

method involving reactions of organoborons and internal alkenyl. 
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CHAPTER 2 

LITERATURE WORKS 

2.1.Transition- Metal-Catalyzed Allylic Arylation Reaction of Allylic 

Compounds 

In 1994, Bäckvall reported highly regioselective reactions of allylic chlorides 

with aryl Grignard reagents in the presence of copper catalyst. In situ formed 

organocopper compounds Ar2CuMgBr and ArCu(X)MgBr were used ıt was observed 

that the reaction proceeded in SN2’ manner with 90% regioselectivity when 

ArCu(X)MgBr was used –especially when X is chloride-.(Figure 2.1.). (Bäckvall et 

al.,1994). 
 

 

Figure 2.1. Copper(I)-catalyzed arylation reaction of an alkenyl chloride with a 
Grignard Reagent ( Source: Bäckvall et al., 1994). 

 

Kacprzynski et al. (2007) accomplished the synthesis of allyl silanes with 98% 

ee via the reactions of diaryl or dialkyl zinc reagents and silicon substitued unsaturated 

phosphates in the presence of a chiralN-heterocycliccarbene-ligated copper catalyst. 

(Figure 2.2). (Kacprzynski et al., 2007). 

Asymmetric allylic substitution reaction for allyl halide compounds with aryl 

magnesium bromides was performed by Selim et al. 2008. Chiral copper-

amidophosphane complexes were used as a catalyst, first time in the literature and 

provided the SN2’ product with high ee%. (Figure 2.3.). (Source: Selim et al., 2008). 

 



4 

 

Figure 2.2. Cu-catalyzed asymmetric arylation reaction of silyl substituted alkenyl 
phosphono esters ( Source:Kacprzynski et al., 2007). 

 

 

Figure 2.3. Cu catalyzed reaction of a non-cyclic allyl bromide with phenyl grignard 
reagent (Source: Selim et al.,2008). 
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They also synthesized a chiral NHC-Cu catalyst and used in allylic arylation 

reaction of cynnamyl bromides with Grignard reagents. The reaction produced 

diarylvinylmethanes with high regio and enantioselectivity.(Figure 2.4.). (Selim et al., 

2009). 

 

 

Figure 2.4. NHC-Cu(I) catalyzed reaction of phenyl substituted alkenyl compounds 
(Source: Selim et al., 2009). 

  In 2009, Polet announced a method for asymetric allylic arylation to produce 

diaryl alkenes. They studied first Ir-catalyzed allylic substitution reaction using arylzinc 

reagents. In this study, allylic compounds which have a good leaving group such as 

carbonate were studied. The molecules which were formed by this method had high ee 

(≥99%) ,  but poor regioselectivity (Figure 2.5.). (Source: Polet et al., 2009). 

Ohmiya et al. (2008) , published a Pd-catalyzed allylic substitution reactions of 

allylic acetates with aryl boronic acids. The reactions gave rise to allyl-aryl 

couplingproducts with high γ selectivity and E/Z selectivities. (Figure 2.6.). (Source: 

Ohmiya et al., 2008).  

Whittaker et al. (2010), reported a copper-catalyzed SN2′-selective arylation 

reaction of allylic chlorides. They used Cu(I) catalyst, primary allylic electrophile and 

aryl boronic esters as a nucleophile. As compared to the hard nucleophiles such as 

grignard reagents and arylzinc compounds, aryl boronic esters provided higher 

regioselectivity. The method can be used on substrates with different functional groups 

including formyl, carbomethoxy, nitrilo, azido, chloro, bromo, and nitro groups. (Figure 

2.7.). 
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Figure 2.5. Iridium-catalyzed allylic arylation                                                          
(Source: Polet et al., 2009). 

 

Figure 2.6. Pd-catalyzed reaction of allylic acetates with arylboronic acids               
(Source: Ohmiya et al., 2008) 

 

 

Figure 2.7. Cu catalyzed 1,3-selective substitution of allylic chlorides with aryl boronic 
esters (Source: Whittaker et al., 2010). 
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Takeda et al. (2014),  reported a copper-catalyzed asymmetric allylic 

substitution reaction of disubstituted allyl phosphates with arylboronates to create 

quaternary stereocenters. They reported that when they used hydroxyl-bearing chiral N 

–heterocyclic carbene ligand the reactions had high region- and stereo-selectivities. 

(Figure 2.8.). 

 

 

Figure 2.8. Cu-catalyzed asymmetric allylic substitution of allyl phosphates with aryl 
boronates (Source: Takeda et al., 2014). 

2.2.Metal-Catalyzed Reactions of Vinyl Oxiranes with Grignard 

Reagents 

  Ueki et al. (2005), studied reaction of gem-difluorinated vinyloxiranes with hard 

nucleophiles such as RLi to provide allylic alcohols via SN2’ pathway. However, they 

realised that the regioselectivities of the reactions were not good.  Then, they made the 

reaction conditions more moderate by using soft nucleophiles,  such as organocuprates 

and obtained high regio- and stereo selectivity. (Figure 2.9.). 

Millet and Alexakis (2007) published a copper catalyzed kinetic resolution 

reaction of 1-3 cyclohexadiene monoepoxide with grignard reagents. They noticed that 

the best ligand for the method was chiral ferrocenyl-based diphosphine ligand and gave 

high regio- and enantio-selectivities in reactions. (Figure 2.10.). 

One year later, Millet and Alexakis (2008), reported another Cu-catalyzed 

kinetic resolution reaction of 1-3 cyclohexadiene monoepoxide with grignard reagents. 

In this study, they used SimplePhos ligands and reported that higher enantio- and regio-
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selectivities when compared to the chiral ferrocenyl-based diphosphine ligands. Also, 

they showed that the method is applicable to larger Grignard reagent scale. Even with 

secondary Grignard reagents, it was seen that yields were moderate and enantio- 

selectivity was very high. (Figure 2.11.). 

 

 

Figure 2.9.The Reaction of alkenyl oxiranes with grignard reagents                            
(Source: Ueki et al., 2005) 

 

 

Figure 2.10. Cu catalyzed kinetic resolution of 1,3-Cyclohexadiene monoepoxide with 
grignard reagents (Source: Millet and Alexakis 2007). 

 

Dieter et al. (2012) reported a copper catalyzed regio- and stereo- controlled 

tandem bis allylic substitution reaction with different combinations of CuCN derived 

cuprate reagents. Starting with vinyloxirane compounds, vicinal stereogenic centers 
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were formed with dialkylzinc reagents. It was seen that, this method was highly enantio-

selective for the SN2’ reaction. (Figure 2.12.). 

 

 

Figure 2.11. SimplePhos as efficient ligand for the copper-catalyzed kinetic resolution 
of cyclic vinyloxiranes with grignard reagents (Source: Millet and 
Alexakis, 2008). 

 

Figure 2.12. Copper-mediated reactions of trans-1-(tert-Butyldimethylsilyloxy)-2,3- 
epoxy-4-hexene (Source: Dieter et al., 2012) 
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Hata et al. (2010), published iron-catalyzed regio- selective reaction of γ-δ-

epoxy-α-β-unsaturated ester or amides with Grignard reagents in 2010. The reaction 

proceeded with inversion of configuration to yield homoallyl alcohols as a single 

product in good yields. (Figure 2.13.). 

 

 

Figure 2.13.The iron-catalyzed reaction of vinyl oxirane                                          
(Source: Hata et al., 2010) 

2.3.Metal-Catalyzed Reactions of Vinyl Oxiranes with Organoborons 

For the synthesis of allyl alcohols,  region- and stereo- selective substitution 

reactions of vinyl oxiranes are a good strategy. 

Tortosa and Mariola (2011)  reported copper-catalyzed SN2 reactions of allylic 

epoxides with diboronates. According to this method, enantiomerically enriched 1-4 

diol compounds can be synthesized from non-racemic epoxides. (Figure 2.14.). 

Crotti et al. (2009)  published nickel catalyzed borylative ring openning reaction 

of vinyl epoxides and aziridines. The ring openning was followed by allylation of 

aldehydes. The products formed with high stereocontrol and had three stereogenic 

centers. (Figure 2.15.). 

In 1982, Miyaura et al. published Pd-catalyzed reaction of vinyl oxiranes with 

alkenylborons. In this study, only 3,4-epoxy-1-butene was used as a vinyl epoxide 

compound and regio-selectivity of reactionwas not good with this substrate (Figure 

2.16.). 
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Figure 2.14. Cu-catalyzed borylation and oxidation sequence leading to 1,4-diol 
compounds (Source: Tortosa and Mariola, 2011). 

 

Figure 2.15.Nickel-catalyzed borylative ring opening reaction of vinyl epoxide    
(Source: Crotti et al., 2009) 

  

 

Figure 2.16. Pd-catalyzed reaction of (E)-hexenylbis(1,2-dimethylpropyl) borane with 
3,4-epoxy-1-butene (Miyaura et al., 1979). 

 



12 

Kjellgren et al. (2005) reported the Pd-Pincer complex – catalyzed reaction of 

terminal vinyl oxiranes with organoborons. The reaction proceeded with high 

regioselectivity and afforded allyl alcohols with excellent yields. (Figure 2.17.). 

 

 

Figure 2.17. Pincer complex catalyzed cross-coupling reaction of vinyl epoxides with 
boronic acids (Source: Kjellgren et al., 2005). 

Kıbrıs performed Pd-catalyzed, 1-3 substitution reaction of alkenyl oxiranes 

which contains hydroxyl groups via aryl organoborons. He started to optimization 

studies with the alkenyl epoxide which including a methoxy group. The results were not 

bad, but could be increased. (Figure 2.18.). 

 

 

Figure 2.18. 1-3 substitution reaction of vinyl oxirane containing methoxy 
group.(Source: Kıbrıs,2016) 

In the second step, the optimization studies were performed with the same vinyl 

oxirane which contains hydroxyl group. When compared with first compound, the 

results were beter. They observed that the addition of a ligand and an organic base have 

a positive effect to the reaction results. When they researched solvent scope, they found 

that the addition of some water affected the reaction time. Also, the catalytic effects of 

some of Pd complexes were examined and they observed that Pd(0) complexes were 

more effective than Pd(II) complexes. After studied with various organoborons, the 

neopentyl glycol ester boron derivative containing a phenyl group gave the best results. 

Thus, optimize conditions have been determined. (Figure 2.19.). 
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Figure 2.19. 1-3 substitution reaction of vinyl oxirane containing hydroxyl group. 
(Source: Kıbrıs,2016) 
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CHAPTER 3 

EXPERIMENTAL STUDY 

3.1 General 

  Tetrahydrofuran (THF) was purified by a solvent purification system 

(MBRAUN SPS-800). Dichloromethane (DCM)  was dried using molecular sieve 4A.  

Triethylamine (NEt3) was degased with argon before to use. Pd2(dba)3.CHCI3 was 

synthesized in the laboratory (Zalesskiy and Ananikov 2012). All reactions were 

performed under argon atmosphere. 

3.2 Synthesis of Substrates 

3.2.1Synthesis of Substrate 1a and 1b 

To a stirred solution of 1,4-butendiol (8.2 mL, 100 mmol) in THF (100 ml) at 

room temperature was added imidazole (2.24 g, 33 mmol) and TBSCl (4.53 g, 30 

mmol).The reaction was stirred at room temperature for 22 h. After that extracted with 

Et2O (x3) and washed with water and brine. The organic layer was dried over 

MgSO4,filtered and concentrated under reduced pressure. The crude product was 

purified by column chromatography (Et2O-hexane, 1:4) to yield mono-protected diol     

(4.55 g , %75 yield) as a colourless oil (S2) (Hwang, et al. 2013). 

S2: 1H NMR (400 MHz, CDCI3) δ= 5.74 – 5.62 (m, 2H), 4.25 (ddd, J = 3.4, 1.8, 

1.0 Hz, 2H), 4.19 (d, J = 5.5 Hz, 2H), 0.90 (s, 9H), 0.08 (s, 6H). 

Dess-Martin periodinane (DMP) (7.39 g, 17.4 mmol) was dissolved in 130 mL 

of DCM. A solution of S2 (3.36 g, 16.6 mmol) in 5 mL DCM was added drop by drop 

at room temperature. The mixture was stirred at room temperature for 1 hour. Then, 

aqueous NaHCO3 and Na2S2O3 solutions were added to the reaction flask and stirred 



15 

another 15 minutes. After that, the mixture was extracted with DCM and combined 

extracts were dried over MgSO4, filtered, and concentrated under reduced pressure. 

Purification by column chromatography (hexane/Et2O, 8:1) to give the aldehyde (S3) 

(2.20 g, 66%) as a colourless oil (Ding et al., 2004). According to the literature, it was 

expected that the formed product was Z isomer, but it was observed that E isomerized.  

 

 

Figure 3.1. Synthesis of substrate 1a and 1b 

To a suspension of NaH (289 mg, 12.1 mmol) in 20 mL of THF at  -780C was 

added triethylphosphonoacetate (TEPA) (2.63 mL, 13.2 mmol) drop by drop. After 1 

hour, a solution of S3 (2.20 g, 11 mmol) in THF (8 mL) was added dropwise. The 

reaction was stirred 20 hours at RT. Extracted with Et2O, washed with brine, dried over 

MgSO4, filtered, and concentrated under reduced pressure. The residue was purified by 

column chromatography with hexane-Et2O (8:1). It provided (S4) (2.58 g , 87% ) as a 

pale yellow oil (Dias et al., 2017). 

At -78 0C, the DIBAL-H solution (28.6 mmol, 1.0 M in DCM) was added 

dropwise to the solution of S4 (2.58 g, 9.54 mmol, 70 mL of DCM). The reaction 

mixture was stirred for 80 mins at the same temperature. The mixture was allowed to 

rich room temperature and extraction with DCM and washed with sodium potassium 

tartratesolutionin order to decomposethe complex formed from DIBAL-H. The 

combined extracts were dried over MgSO4, filtered, and concentrated under reduced 
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pressure. Purification was done over silica gel column using hexane-EtOAc (6:1) eluent 

to afford (S5) (2.16 g, 79%) as a colourless oil. 

S5: 1H NMR (400 MHz, CDCI3) δ= 6.31 – 6.19 (m, 2H), 5.86 – 5.73 (m, 2H), 

4.22 (d, J = 4.9 Hz, 2H), 4.18 (d, J = 5.6 Hz, 2H), 0.91 (s, 9H), 0.07 (s, 6H). 
To a solution ofS5 ( 297 mg, 1.3 mmol) in 17 mL of DCM was added NaHCO3 

(179 mg, 2.13 mmol) and m-CPBA (70-75% , 320 mg )  at 0 0C. The reaction was 

stirred at RT for 75 mins. The mixture was extracted with DCM, dried over MgSO4, 

filtered and concentrated under reduced pressure. The residue was purified by Et3N-

treated silica gel column chromatography with hexane-EtOAc (4:1) to obtain (1b) (178 

mg , 60% ) as a yellow oil (Takamura , et al.,2012). 

TBAF ( 2 mmol, 1.0 M in THF) was added dropwise to the solution of 1b ( 367 

mg, 1.5 mmol ) in 20 mL of THF at 0 0C. The reaction was stirred for 1 hour at the 

same temperature. Then, the mixture was extracted with Et2O, dried over MgSO4, 

filtered, and concentrated under reduced pressure. The substrate was purified by Et3N-

treated silica gel column chromatography with hexane: EtOAc mixture to afford (1a)     

(143 mg, 73%). 

3.2.2. Synthesis of Substrate 1c 

To the mixture of methyl propiolate S6(40 mmol), acetic acid (13.8 mL, 240 

mmol) and sodium iodide (9.6 g, 64 mmol) was stirred for 3 hour at 115 0C. After 

completion of the reaction, the mixture was extracted with Et2O, washed with aqueous 

solutions of NaHCO3, Na2S2O3, and brine. The organic phase was dried over MgSO4, 

filtered, and concentrated under reduced pressure. Purification by silica gel column 

chromotography using  hexane-EtOAc mixture provided (S7) with 84% yields (Piers, et 

al.,1994) 

S7: 1H NMR (400 MHz, CDCI3) δ =7.47 (dd, J = 8.9, 0.9 Hz, 1H), 6.91 (dd, J = 

8.9, 0.8 Hz, 1H), 3.78 (s, 3H). 

In the next step, the mixture of S7 (709 mg, 3.34 mmol), PdCI2(PPh3)2 (47 mg, 

0.067 mmol), CuI (12.8 mg, 0.067 mmol) in 17 mL of Et3N was stirred for 10 min at 

RT. Then, 1-hexyne ( 0.46 mL, 4 mmol) was added to the reaction mixture and stirredat 

RT for overnight. The reaction was controlled with GC. After completion of the 



17 

reaction, water was added and extracted with Et2O. Organic layers were dried over 

MgSO4, filtered and concentrated in vacuo.The product was purified by column 

chromatography with hexane-Et2O (8:1),which afforded (S8) (509 mg , 91%) 

(Takeuchi, et al., 2000). 

S8:1H NMR (400 MHz, CDCI3) δ= 6.15 (ddd, J = 4.7, 2.4, 1.2 Hz, 1H), 6.03 

(dd, J = 11.4, 0.4 Hz, 1H), 3.75 (s, 3H), 2.45 (td, J = 7.1, 2.4 Hz, 2H), 1.61 – 1.53 (m, 

2H), 1.50 – 1.40 (m, 2H), 0.92 (t, 3H). 
 

 

Figure 3.2. Synthesis of substrate 1c 

To the reaction flask, S8 (166 mg, 1 mmol ), in 35 mL hexane was placed. 

Lindlar catalyst (70 mg) was added. The mixture was degased with argon for 5 minutes. 

After that, H2 gas was bubbled to the reaction medium at RT for 1 hour. The reaction 

was controlled with GC. After the reaction was completed, the suspension was filtered 

through silica gel to remove the Lindlar catalyst. The solvent content was evaporated 

and purified with column chromatography (hexane/Et2O, 8:1). The product (S9) 

recovered was 139 mg with 83% yield (Chen , et al., 1986). 

S9: 1H NMR (400 MHz, CDCI3) δ= 7.29 – 7.22 (m, 1H), 6.94 (td, J = 11.8, 1.1 

Hz, 1H), 5.95 – 5.87 (m, 1H), 5.67 (d, J = 11.5 Hz, 1H), 3.72 (s, 3H), 2.30 – 2.22 (m, 

2H), 1.43 – 1.27 (m, 4H), 0.90 (t, 3H). 
S9 (98 mg, 0,58 mmol) was dissolved in 10 mL DCM. The reaction flask was 

taken to -78 0C and DIBAL-H solution (1.5 mmol, 1.0 M in DCM) was added drop by 

drop to the solution. The reaction mixture was stirred for 1 hour at the same 
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temperature. After the reaction was completed, the reaction flask was warmed to RT, 

extracted with DCM, and washed with sodium potassium tartrate solution. The organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The 

product was purified with silica gel column chromatography (hexane/EtOAc, 5:1 ) to 

yield (S10)  ( 52 mg, 64% ) . 

S10: 1H NMR (400 MHz, CDCI3) δ= 6.35 (ddd, J = 7.1, 3.7, 1.2 Hz, 1H), 6.21 

(ddd, J = 11.7, 2.4, 1.2 Hz, 1H), 5.64 – 5.49 (m, 2H), 4.29 (dd, J = 6.8, 1.3 Hz, 2H), 

2.21 – 2.12 (m, 2H), 1.38 – 1.27 (m, 4H), 0.89 (t, 3H).13C NMR (101 MHz, CDCI3) δ= 

134.84, 129.18, 125.90, 122.80, 58.78, 31.77, 27.26, 22.44, 14.07. 
In the next step, S10 ( 52 mg, 0,37 mmol ) was dissolved in 10 mL DCM and to 

this solution was added NaHCO3 (75 mg, 0,89 mmol ).  The reaction flask was taken to 

-20 0C and m-CPBA (118 mg, 0.48 mmol) was added part by part. The reaction was 

halted after 90 mins and extracted with DCM, dried over MgSO4,filtered and 

concentrated in vacuo. The substrate was column purified with Et3N-treated silica gel 

on column chromatography (hexane/EtOAc, 4:1 ) to afford (1c) ( 29 mg, 51% ) as a 

pale yellow oil.  

3.2.3. Synthesis of Substrate 1d 

DMAP (275 mg, 2.25 mmol) and acrolein (1.1 mL , ≈15 mmol) were added to a 

solution of mono-ethyl malonate (≈ 3 g, 22.5 mmol) in pyridine (8 mL). The reaction 

was performed in a sealed cup at 50 0C for 24 hours. After cooled to room temperature, 

water was added, extracted with Et2O and washed with 15% HCl, and brine. The 

organic layer was dried over MgSO4 and evaporated in vacuo. The crude product was 

purified with column chromatography by using hexane- Et2O (10:1) to afford (S11) as a 

colourless oil, ( 1.74 g, 92% ). (Polic ,  et al., 2017) 

S11: 1H NMR (400 MHz, CDCI3) δ= 7.26 (ddd, J = 11.0, 5.8, 0.5 Hz, 1H), 6.51 

– 6.41 (m, 1H), 5.91 (dd, J = 15.4, 0.6 Hz, 1H), 5.61 (dd, J = 17.0, 0.7 Hz, 1H), 5.49 

(dd, J = 10.0, 0.7 Hz, 1H), 4.21 (q, 2H), 1.30 (t, 3H). 

DIBAL-H (20 mmol, 1.0 M in DCM) was added drop by drop to the solution of 

S11 (1.26 g, 10 mmol) in DCM (100mL),  at -780C. The reaction was stirred for 1 hour 

at the same temperature. After the reaction was complete, the mixture was extracted 
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with DCM and washed with sodium potassium tartarate solution. The organic layer was 

dried over MgSO4, filtered, and concentrated under reduced pressure. The crude product 

was purified by column chromatography using hexane- Et2O (6:1) to give (S12) (546 

mg, 65%) as a colurless oil. 

S12: 1H NMR (400 MHz, CDCI3) δ= 6.41 – 6.21 (m, 2H), 5.85 (ddd, J = 15.0, 

8.6, 3.0 Hz, 1H), 5.22 (dd, J = 16.6, 1.1 Hz, 1H), 5.10 (dd, J = 9.8, 0.7 Hz, 1H), 4.19 (d, 

J = 6.5 Hz, 2H). 

 

 

Figure 3.3. Synthesis of Substrate 1d 

The S12 (117 mg, 1.4 mmol)was dissolved in DCM (30 mL ) and NaHCO3 (283 

mg, 3.36 mmol) was added. The reaction flask was cooled to  -20 0C and m-CPBA (449 

mg, 1.82 mmol) was added slowly while controlling the temperature. The reaction was 

complete after 1.5 hours and extracted with DCM. Organic layer was dried over 

MgSO4, filtered, and evaporated. The crude product was purified immediately with 

column chromatography by using Et3N treated silicagel (pentane/Et2O, 1:1) to afford 

(1d)(73 mg, 52%) as a clear oil. 
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3.2.4. Synthesis of Substrate 1e 

 

Figure 3.4. Synthesis of Substrat 1e 

To the solution of S7 (2.12 g, 10 mmol) in 3 mL toluene, 0.17 mL solution of 

hydroiodic acid (55% v/v) was added. The resulting mixture was heated to 80 0C for 8 

h. The reaction was controlled with GC. After the reaction completed, the solution was 

cooled to RT and diluted with Et2O. The organic layer was washed with saturated 

NaHCO3 solution, Na2S2O3 solution, and brine. The organic layer was dried over 

MgSO4, filtered, and concentrated under reduced pressure to afford S13 (1.4 g, 66%) as 

a yellow oil. (Zhang et al., 2009). 

S13: 1H NMR (400 MHz, CDCI3) δ=  7.90 (dd, J = 14.8, 0.5 Hz, 1H), 6.89 (dd, 

J = 14.8, 0.4 Hz, 1H), 3.75 (s, 3H). 

S13 (1.4 g, 6.6 mmol) , PdCI2(PPh3)2 (45.38 mg, 0.0066 mmol), and CuI (12.38 

mg, 0.0066 mmol) in 30 mL Et3N was stirred 10 min at RT under argon and then 1-

hexyne ( 575 mg, 7 mmol) was added dropwise at RT. The reaction was controlled with 

GC. The reaction mixture was stirred at the same temperature at 6 hours. At the end of 

the reaction, water was added and extracted with Et2O. The organic layer was dried over 

MgSO4, filtered, and concentrated under reduced pressure. The crude product was 

purified with silica gel coloumn chromatography by using Hexane- EtOAc mixture and 

provided S14 ( 681.5 mg, 62%) as a yellow oil. (Takeuchi, et al., 2000). 
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S14:1H NMR (400 MHz,CDCI3) δ= 6.69 (ddd, J = 15.8, 4.3, 2.2 Hz, 1H), 6.07 

(d, J = 15.8 Hz, 1H), 3.67 (s, 3H), 2.33 – 2.28 (m, 2H), 1.51 – 1.43 (m, 2H), 1.40 – 1.31 

(m, 2H), 0.85 (t, 3H). 

S14 (681.5 mg, 4.1 mmol) was dissolved in 60 mL hexane and then 280 mg 

Lindlar catalyst and 20 drop quinoline was added at RT. The mixture was degased with 

argon gase for 5 minutes. After this, H2(g) was bubbled to the reaction medium at the 

same temparature for 4 hours and the reaction was controlled with GC. After the 

reaction was completed, the suspension was filtered through silica gel to remove the 

Lindlar catalyst. The solvent content was evaporated and purified with column 

chromatography (hexane/Et2O) to afford S15 (563 mg, 81%) as a pale yellow oil. It 

should be noted that, during the experiment,  over hydrogenation product is formed 

slightly and it is not possible to purify our main product. 

S15:1H NMR (400 MHz, CDCI3) δ= 7.61 (ddd, J = 15.4, 11.7, 1.1 Hz, 1H), 6.11 

(dt, J= 12.2, 6.1 Hz, 1H) 5.90 – 5.82 (m, 2H), 3.75 (s, 3H), 2.34 – 2.25 (m, 2H), 1.45 – 

1.34 (m, 4H), 0.91 (t, 3H). 
DIBAL-H (7.7 mmol, 1.0 M in DCM) was added drop by drop to the solution of 

S15 (563 mg, 3.35 mmol) in DCM (35mL),  at -780C. The reaction was stirred for 1 

hour at the same temperature. After the reaction was complete, the mixture was 

extracted with DCM and washed with sodium potassium tartrate solution. The organic 

layer was dried over MgSO4, filtered, and concentrated under reduced pressure. The 

crude product was purified by column chromatography using hexane-acetone (10:1) to 

give S16 ( 280 mg, 60%) as a colurless oil. 

S16:1H NMR (400 MHz, CDCI3) δ= 6.54 (dddd, J = 15.1, 11.1, 2.7, 1.4 Hz, 

1H), 5.99 (t, J = 11.0 Hz, 1H), 5.81 (dt, J = 15.2, 5.9 Hz, 1H), 5.46 (dt, J = 10.9, 7.7 Hz, 

1H), 4.20 (dd, J = 5.9, 0.9 Hz, 2H), 2.22 – 2.15 (m, 2H), 1.37 – 1.32 (m, 4H), 0.90 (t, 

3H). 13C NMR (101 MHz, CDCI3) δ= 133.22, 131.48, 127.52, 126.89, 63.57, 31.75, 

27.46, 22.31, 13.94. 
The S16 (218 mg, 1.54 mmol)was dissolved in DCM (30 mL ) and NaHCO3 (310 

mg, 3.68 mmol) was added. The reaction flask was cooled to  -20 0C and m-CPBA (70-

75% ,  495 mg, 2 mmol) was added slowly while controlling the temperature. The 

reaction was complete after 0.5 hour and extracted with DCM. Organic layer was dried 

over MgSO4, filtered, and concentrated under reduced pressure. The crude product was 

purified immediately with column chromatography by using Et3N treated silicagel 

(hexane/EtOAc, 4:1) to afford (1e) (34 mg, 14%) as a pale yellow oil. The difficulty 
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encountered in this step is the formation of excessive amount of the epoxide degradation 

product. Although we had worked at lower temperatures, we could not prevent this 

formation and the yield was low. 

3.2.5. Synthesis of Substrate 1f 

 

Figure 3.5. Synthesis of Substrat 1f 

To the stirred solution of trans-trans-2,4-hexadien-1-ol (980 mg, 10 mmol) in 

DCM (160 mL) , Na2CO3 solution (50 mL, 25% m/v) was added.  m-CPBA (4.2 g, 17 

mmol) was added part by part to the reaction flask at 0 0C. After 1 hour, the reaction 

quenched with water and extracted with DCM. The organic layer was dried over 

MgSO4, filtered and evaporated. The crude product was purified immediately with 

column chromatography by using Et3N treated silicagel hexane/EtOAc (3:1) to afford 1f 

(342 mg, 30%) as a yellow oil. 

3.2.6. Synthesis of Substrate 1g 

MeMgBr (21 mmol, 3 M in Et2O) was added dropwise to the stirred solution of 

triethylphosphonoacetate (5 g, 22.5 mmol) in THF (120 mL) at RT and stirred for 15 

min. After that, cyclohexanecarboxaldehyde (2.24 g, 20 mmol) in THF (120 mL) was 

added dropwise to the stirred solution at the same temperature and the reaction mixture 

heated at reflux for overnight. The reaction was quenched with saturated NH4Cl 

solution and extracted with Et2O. The combined organic layers were washed with brine, 

dried over MgSO4, filtered and concentrated under reduced pressure. The crude product 

(S17) was used in next step without further purification. (Claridge, et al., 2008). 
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Figure 3.6. Synthesis of Substrat 1g 

S17:1H NMR (400 MHz, CDCI3) δ= 6.91 (ddd, J = 15.8, 6.8, 3.6 Hz, 1H), 5.75 

(dd, J = 15.8, 1.5 Hz, 1H), 4.17 (q, 2H), 2.17 – 2.06 (m, 1H), 1.79 – 1.70 (m, 4H), 1.70 

– 1.63 (m, 1H), 1.28 (t, 3H), 1.19 – 1.10 (m, 5H). 
DIBAL-H (55 mmol, 1.0 M in DCM) was added dropwise to the stirred solution 

of crude S17 in DCM (100 mL) at -78 0C and stirred for 2.5 h. The reaction quenched 

with saturated sodium potassium tartrate solution and extracted with DCM. The organic 

layer was dried over MgSO4, filtered and concentrated. The crude product (S18) was 

used in next step without further purification. 

S18:1H NMR (400 MHz, CDCI3) δ= 5.67 – 5.53 (m, 2H), 4.07 (d, J = 5.3 Hz, 

2H), 2.01 – 1.89 (m, 1H), 1.76 – 1.67 (m, 4H), 1.67 – 1.60 (m, 1H), 1.34 – 0.98 (m, 

5H). 
MnO2 (17.4 g, 200 mmol) was added to the stirred solution of S18 (1.4 g, 10 

mmol) in DCM (100 mL) at RT. The reaction was stirred 3 hours at the same 

temperature. After the reaction was completed, the reaction mixture was filtered through 

silica gel and evaporated. The crude product (S19) was used in next step without further 

purification. 
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S19:1H NMR (400 MHz, CDCI3) δ= 9.48 (d, J = 7.9 Hz, 1H), 6.76 (dd, J = 15.7, 

6.5 Hz, 1H), 6.06 (ddd, J = 15.7, 7.9, 1.4 Hz, 1H), 2.32 – 2.20 (m, 1H), 1.85 – 1.73 (m, 

4H), 1.73 – 1.65 (m, 1H), 1.39 – 1.10 (m, 5H). 
To a suspension of NaH (250 mg, 10.4 mmol) in 17 mL of THF at  -780C was 

added triethylphosphonoacetate (TEPA) (2.25 mL, 11.34 mmol) drop by drop. After 1 

hour, a solution of S19 (1.3 g, 9.45 mmol) in THF (7 mL) was added dropwise. The 

reaction was stirred 3 hours at RT. Extracted with Et2O, washed with brine, dried over 

MgSO4, filtered, and concentrated under reduced pressure. The crude product (S20) was 

used in next step without further purification. (Dias et al., 2017). 

S20:1H NMR (400 MHz, CDCI3) δ= 7.24 (dd, J= 15.3, 10.1 Hz, 1H), 6.08 (qd, J 

= 15.3, 8.1 Hz, 2H), 5.77 (d, J = 15.4 Hz, 1H), 4.22 – 4.12 (m, 2H), 2.14 – 2.00 (m, 

1H), 1.77 – 1.69 (m, 4H), 1.68 – 1.61 (m, 1H), 1.27 (t,3H), 1.24 – 1.05 (m, 5H). 
DIBAL-H (30 mmol, 1.0 M in DCM) was added dropwise to the stirred solution 

of crude S20 in DCM (100 mL) at -78 0C and stirred for 2.5 h. The reaction quenched 

with saturated sodium potassium tartrate solution and extracted with DCM. The organic 

layer was dried over MgSO4, filtered and concentrated.  The crude product was purified 

by column chromatography using hexane-EtOAc (10:1) to give S21 ( 1.17 g, 74%) as a 

colurless oil. 

S21:1H NMR (400 MHz, CDCI3) δ= 6.11 (dd, J = 15.2, 10.4 Hz, 1H), 5.93 (dd, 

J = 15.3, 10.4 Hz, 1H), 5.69 – 5.53 (m, 2H), 4.07 (d, J = 6.5 Hz, 2H), 2.02 – 1.93 (m, 

1H), 1.80 – 1.68 (m,4H), 1.67 – 1.61 (m, 1H), 1.33 – 1.01 (m, 5H). 
To the stirred solution of S21 (166 mg, 1 mmol) in DCM (10 mL), Na2CO3 

solution (4 mL, 25% m/v) was added.  m-CPBA (320 mg, 1.3 mmol) was added part by 

part to the reaction flask at 0 0C. After 0.5 hour, the reaction quenched with water and 

extracted with DCM. The organic layer was dried over MgSO4, filtered and evaporated. 

The crude product was purified immediately with column chromatography by using 

Et3N treated silicagel hexane/EtOAc (3:1) to afford 1g (113 mg, 68%) as a pale yellow 

oil. 
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3.3 Characterization of Alkenyl Oxiranes 

The synthesized reactants were analyzed by NMR techniqueswhich were 

recorded on a 400 MHz spectrometer. 

 

 

Figure 3.7. (E)-3-(3-(hydroxymethyl)oxiran-2-yl)prop-2-en-1-ol 

 

1a: 1H NMR (400MHz, CDCI3) δ= 6.10 (dt, J= 15.6, 5.1 Hz, 1H), 5.50 (dd, J= 

15.6, 8.0 Hz, 1H), 4.18 (s, 2H), 3.95 (d, 12.8 Hz, 1H), 3.69(d, 12.3 Hz, 1H) , 3.45 (dd , 

8.0 , 2.1 Hz , 1H) , 3.12- 3.07 (m , 1H) , 1.96 (s, 1H) , 1.74 (s , 1H). 13C NMR (101 

MHz, CDCI3) δ= 135.35, 127.59, 62.71, 61.19, 60.20, 55.20. 

 

 

 

Figure 3.8.(E)-(3-(3-((tert-butyldimethylsilyl)oxy)prop-1-en-1-yl)oxiran-2-yl)methanol 

 

1b: 1H NMR (400 MHz, CDCI3) δ= 6.02 (dt, J = 15.4, 4.4 Hz, 1H), 5.48 (ddt, J 

= 15.4, 8.0, 1.7 Hz, 1H), 4.19 (dd, J = 4.4, 1.8 Hz, 2H), 3.94 (dd, J = 12.7, 2.4 Hz, 1H), 

3.67 (dd, J = 12.7, 4.0 Hz, 1H), 3.43 (dd, J = 8.1, 2.2 Hz, 1H), 3.08 (dt, J = 4.4, 2.3 Hz, 

1H), 1.81 (bs, 1H), 0.90 (s, J = 1.4 Hz, 9H), 0.06 (s, 6H). 13C NMR (101 MHz, CDCI3) 

δ= 135.69, 126.11, 62.91, 61.31, 60.17, 55.41, 26.05, 18.52, -5.16. 

 

 

Figure 3.9.(Z)-(3-(hex-1-en-1-yl)oxiran-2-yl)methanol 
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1c: 1H NMR (400 MHz, CDCI3) δ= 5.76 (dt, J = 11.2, 7.6 Hz, 1H), 5.21 (ddd, J 

= 11.0, 8.3, 0.6 Hz, 1H), 3.86 – 3.64 (m, 3H), 3.34 – 3.28 (m, 1H), 2.26 – 2.13 (m, 2H), 

1.42 – 1.29 (m, 4H), 0.89 (t, 3H). 13C NMR (101 MHz, CDCI3) δ= 138.45, 122.85, 

61.36, 58.35, 53.00, 31.67, 27.65, 22.36, 14.01. 

 

 

Figure 3.10.(3-vinyloxiran-2-yl)methanol 

1d: 1H NMR (400 MHz, CDCI3) δ= 5.65 – 5.47 (m, 2H), 5.31 (dd, J = 9.6, 1.2 

Hz, 1H), 3.95 (dd, J = 12.7, 2.5 Hz, 1H), 3.69 (dd, J = 12.7, 4.0 Hz, 1H), 3.41 (dd, J = 

7.4, 2.2 Hz, 1H), 3.08 (ddd, J = 4.6, 2.7, 0.5 Hz, 1H), 1.88 (bs, 1H). 13C NMR (101 

MHz, CDCI3) δ= 134.67, 120.02, 61.11, 59.91, 55.76. 

 

 

Figure 3.11.(Z)-(3-(hex-1-en-1-yl)oxiran-2-yl)methanol 

1e:1H NMR (400 MHz, CDCI3) δ= 5.74 (ddd, J = 11.0, 9.6, 4.2 Hz, 1H), 5.07 

(ddd, J = 10.6, 2.8, 1.4 Hz, 1H), 3.97 (dd, J = 12.6, 2.4 Hz, 1H), 3.68 (ddd, J = 11.0, 

7.4, 2.6 Hz, 2H), 3.07 (dt, J = 3.9, 2.4 Hz, 1H), 2.31 – 2.11 (m, 2H), 1.84 (bs, 1H), 1.41 

– 1.30 (m, 4H), 0.9 (t, 3H).13C NMR (101 MHz, CDCI3) δ = 137.77, 125.89, 61.25, 

59.92, 51.54, 31.80, 27.62, 22.37, 14.04. 

 

 

 

Figure 3.12.(E)-(3-(prop-1-en-1-yl)oxiran-2-yl)methanol 
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1f: 1H NMR (400 MHz, CDCI3) δ= 6.01 – 5.90 (m, 1H), 5.22 (ddq, J = 15.4, 

8.3, 1.7 Hz, 1H), 3.93 (dd, J = 12.7, 2.5 Hz, 1H), 3.66 (dd, J = 12.7, 4.1 Hz, 1H), 3.37 

(dd, J = 8.3, 2.3 Hz, 1H), 3.06 (dt, J = 4.1, 2.4 Hz, 1H), 1.74 (dd, J = 6.6, 1.7 Hz, 

3H).13C NMR (101 MHz, CDCI3) δ= 132.68, 127.79, 61.43, 60.01, 55.98, 18.03. 

 

 

 

Figure 3.13.(E)-(3-(2-cyclohexylvinyl)oxiran-2-yl)methanol 

 

1g:1H NMR (400 MHz, CDCI3) δ= 5.90 (dd, J = 15.6, 6.6 Hz, 1H), 5.13 (ddd, J 

= 15.6, 8.3, 1.3 Hz, 1H), 3.94 (dd, J = 12.6, 2.5 Hz, 1H), 3.66 (dd, J= 12.6, 4.1 Hz, 1H), 

3.36 (dd, J = 8.3, 2.3 Hz, 1H), 3.09 – 3.03 (m, 1H), 2.03 – 1.94 (m, 1H), 1.76 – 1.61 (m, 

5H), 1.33 – 1.00 (m, 5H).13C NMR (101 MHz, CDCI3) δ= 143.70, 123.97, 61.47, 60.16, 

56.38, 40.59, 32.62, 32.57, 26.22, 26.04. 

3.4. General Method for Palladium-Catalyzed Reactions of Alkenyl 

Oxiranes 

Pd catalyst and arsine ligand was dissolved in THF (half of the volume 

necessary for the reaction) in the schlenk tube which was dried in oven and cooled 

under Ar gas. The mixture stirred at room temperature for 30 minutes. After this, 

respectively organoboron, base, the solution of epoxide compound in dry solvent (other 

half volume), and a quarter of the solvent amount of water was added. The reaction was 

controlled using TLC. When the reaction was completed, the mixture was filtered using 

short silica gel column and concentrated under reduced pressure. It must be noted based 

on our experience that the color of the reaction usually turned from light yellow to dark 

yellow when the reaction cycle is completed. The crude mixture was analyzed by 1H 
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NMR using benzaldehyde as the internal standard and determined the NMR yield. The 

allyl alcohol product was purified using silica gel on column chromatography. 
Pd2(dba)3.CHCl3 (5.2 mg, 2.5%) and AsPh3(14.4 mg, 22.5%) were dissolved in 

2 mL of dry THF under Ar atmosphere and stirred 30 min at room temperature. Then, 

2,2-dimethyl-5-phenyl-1,3,5-dioxaborinane (PhBneop) (114 mg, 0.6 mmol), 

diisopropylamine (40.5 mg, 0.4 mmol), vinyl oxirane (0.2 mmol) in 2 mL dry THF and 

1 mL of water were successively added at RT. The reaction vessel was stirred in a 

preheated oil bath until the reaction is over as judged by TLC analysis. The reactions 

were usualy complete within 2-3 hours.  

The synthesized products were analyzed by GC and GC-MS. NMR spectra in 

CDCI3or C6D6 were recorded on a 400 MHz spectrometer. FTIR analyses were 

performed by ATR technique. 

 

 

 

Figure 3.14.(E)-5-phenylhex-3-ene-1,2,6-triol 

 

3aa: 1H NMR (400 MHz , CDCI3) δ= 7.33-7.29 (m , 2H) , 7.26-7.19 (m , 3H) ,  

5.98 (ddd, J = 15.5, 8.4, 1.1 Hz, 1H), 5.64 (ddd, J = 15.5, 6.1, 0.6 Hz, 1H) , 4.24 (dd, J 

= 8.8, 6.1 Hz, 1H), 3.77 (ddd, J = 19.2, 10.8, 7.1 Hz, 2H), 3.65 (dd, J = 11.4, 3.3 Hz, 

1H), 3.57 – 3.46 (m, 2H). 13C NMR (101 MHz, cdcl3) δ = 140.73, 133.46, 131.42, 

128.92, 127.87, 127.11, 72.92, 66.42, 66.34,51.59, MS (EI, m/z) 208 (M+ , <1), 177 (5), 

160 (58), 147 (7), 129 (93), 121 (16), 91 (100), 77 (17), 31 (15). FTIR (υmax / cm-1): 

3350, 2923, 2853, 1601, 1123, 974, 875, 761, 700. 
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Figure 3.15.(E)-6-((tert-butyldimethylsilyl)oxy)-5-phenylhex-3-ene-1,2-diol 

 

3ba: 1H NMR (400 MHz, CDCI3) δ= 7.32 – 7.27 (m, 2H), 7.24 – 7.17 (m, 3H), 

6.04 (ddd, J = 15.6, 7.6, 1.2 Hz, 1H), 5.54 (ddd, J = 15.6, 6.1, 1.1 Hz, 1H), 4.25 (s, 1H), 

3.81 – 3.77 (m, 2H), 3.63 (d, J = 13.4 Hz, 1H), 3.51 – 3.44 (m, 2H), 0.86 – 0.82 (m, 

9H), -0.02 – -0.06 (m, 6H). 13C NMR (101 MHz, CDCI3) δ= 141.51, 134.03, 130.17, 

128.53, 128.25, 126.77, 73.10, 67.25, 66.50, 51.30, 25.99, 18.42 , -5.30, MS (EI, m/z) 

322 (M+ , <1), 265 (2), 247 (6), 207 (3), 177 (4), 143 (100), 129 (33), 117 (49), 105 

(36), 91 (37), 77 (9). FTIR (υmax / cm-1): 3351, 2927, 2856, 1493, 1471, 1255, 1102, 

775, 699. 

 

 

 

Figure 3.16. (E)-5-phenylnon-3-ene-1,2-diol 
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3ca: 1H NMR (400 MHz, CDCI3) δ= 7.23 – 7.17 (m, 2H), 7.12 – 7.05 (m, 3H), 

5.81 (dd, J = 15.5, 7.8 Hz, 1H), 5.34 (ddd, J = 15.5, 6.3, 1.0 Hz, 1H), 4.12 – 4.05 (m, 

1H), 3.48 (dt, J = 8.4, 4.2 Hz, 1H), 3.36 – 3.30 (m, 1H), 3.18 – 3.09 (m, 1H), 2.55 (bs, 

1H), 1.64 - 156 (m, 2H), 1.23 – 1.02 (m, 4H), 0.76 (t, 3H). 13C NMR (101 MHz, CDCI3) 

δ= 144.37, 137.54, 128.47, 127.76, 127.54, 126.19, 73.01, 66.51, 48.60, 35.44, 29.71, 

22.61, 14.01. 1H NMR (400 MHz, C6D6) δ= 7.17 – 7.10 (m, 2H), 7.09 – 7.00 (m, 3H), 

5.86 (ddd, J = 15.5, 7.7, 1.2 Hz, 1H), 5.37 (ddd, J = 15.5, 5.9, 1.0 Hz, 1H), 4.08 (dd, J = 

10.3, 5.8 Hz, 1H), 3.42 (dd, J = 11.2, 3.3 Hz, 1H), 3.32 (dd, J = 11.2, 8.0 Hz, 1H), 3.10 

(q, J = 7.5 Hz, 1H), 1.64 – 1.57 (m, 2H), 1.23 – 1.10 (m, 4H), 0.78 (t, 3H). 13C NMR 

(101 MHz, C6D6) δ= 145.02, 136.88, 128.83, 128.66, 128.03, 126.49, 73.33, 67.05, 

49.11, 36.01, 30.14, 23.07, 14.28, MS (EI, m/z) 234 (M+<1), 216 (2), 203 (74), 185 

(20), 174 (3), 159 (4), 147 (21), 145 (13), 133 (24), 129 (73), 117 (29), 105 (20), 91 

(100), 77 (8), 57 (19), 43(4), 39(5), 31 (7). FTIR (υmax / cm-1):3374, 2928, 2858, 1601, 

1493, 1074, 1030, 974, 874, 760, 700. 

 

 

 

Figure 3.17. (E)-5-phenylpent-3-ene-1,2-diol 

 

3da:1H NMR (400 MHz, CDCI3) δ= 7.32 – 7.27 (m, 2H), 7.24 – 7.15 (m, 3H), 

5.94 (ddd, J = 14.8, 7.1, 6.5 Hz, 1H), 5.53 (ddt, J = 15.4, 6.5, 1.3 Hz, 1H), 4.27 – 4.20 

(m, 1H), 3.65 (dd, J = 11.2, 3.5 Hz, 1H), 3.50 (dd, J = 11.1, 7.5 Hz, 1H), 3.39 (d, J = 6.8 

Hz, 2H). 13C NMR (101 MHz, CDCI3) δ= 139.69, 132.61, 129.73, 128.51, 126.21, 

72.93, 66.50, 38.70, MS (EI, m/z) 178 (M+, 1), 160 (1), 147 (37), 143 (4), 129 (100), 

117 (10), 115 (15), 105 (7), 91 (55), 87 (10), 77 (10), 75 (3), 65 (7), 51 (6), 31 (4).FTIR 

(υmax / cm-1): 3343, 2923, 2854, 1668, 1603, 1495, 1073, 1029, 971, 872, 748. 
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Figure 3.18. (E)-5-phenylnon-3-ene-1,2-diol 

 

3ea: 1H NMR (400 MHz, CDCI3) δ= 7.32 – 7.27 (m, 2H), 7.22 – 7.15 (m, 3H), 

5.89 (ddd, J = 15.5, 7.8, 1.1 Hz, 1H), 5.44 (ddd, J = 15.5, 6.6, 1.1 Hz, 1H), 4.18 (td, J = 

6.7, 3.1 Hz, 1H), 3.59 (dd, J = 11.2, 3.5 Hz, 1H), 3.45 (dd, J = 11.2, 7.6 Hz, 1H), 3.22 

(q, 1H), 2.37 (bs, 2H), 1.69 (q, 2H), 1.34 – 1.19 (m, 4H), 0.86 (t, 3H).13C NMR (101 

MHz, CDCI3) δ= 144.46, 137.85, 128.61, 127.93, 127.67, 126.34, 73.24, 66.67, 48.76, 

35.54, 29.84, 22.72, 14.12.1H NMR (400 MHz, C6D6) δ= 7.16 – 7.11 (m, 3H), 7.08 – 

7.00 (m, 2H), 5.77 (ddd, J = 15.5, 7.8, 1.2 Hz, 1H), 5.32 (ddd, J = 15.5, 6.2, 1.1 Hz, 

1H), 3.97 (ddd, J = 6.5, 5.1, 3.1 Hz, 1H), 3.37 (dd, J = 11.1, 3.5 Hz, 1H), 3.25 (dd, J = 

11.1, 7.7 Hz, 1H), 3.07 (q, 1H), 1.61 – 1.53 (m, 2H), 1.24 – 1.09 (m, 4H), 0.78 (t, 

3H).13C NMR (101 MHz, C6D6) δ= 144.98, 136.94, 128.83, 127.98, 126.52, 73.29, 

66.96, 49.11, 35.97, 30.13, 23.03, 14.25, MS (EI, m/z) 234 (M+<1), 216 (2), 203 (74), 

185 (20), 174 (3), 159 (4), 147 (21), 145 (13), 133 (24), 129 (73), 117 (29), 105 (20), 91 

(100), 77 (8), 57 (19), 43(4), 39(5), 31 (7).FTIR (υmax / cm-1): 3355, 2926, 2857, 1493, 

1452, 1072, 1028, 972, 874, 758, 698. 

 

 

 

Figure 3.19. (E)-5-phenylhex-3-ene-1,2-diol 
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3fa: 1H NMR (400 MHz, CDCI3) δ= 7.32 – 7.27 (m, 2H), 7.22 – 7.17 (m, 3H), 

5.95 (ddd, J = 15.6, 6.7, 1.0 Hz, 1H), 5.47 (ddd, J = 15.5, 6.5, 1.3 Hz, 1H), 4.21 (td, J = 

7.1, 3.3 Hz, 1H), 3.61 (dd, J = 11.2, 3.4 Hz, 1H), 3.46 (dd, J = 11.5, 7.6 Hz, 2H), 2.66 

(s, 2H), 1.36 (d, J = 7.0 Hz, 3H).  13C NMR (101 MHz, CDCI3) δ= 145.36, 138.45, 

128.60, 127.24, 127.20, 126.37, 73.16, 66.64, 42.13, 21.21. MS (EI, m/z): 192 (M+, 

1>), 174 (10), 161 (22), 143 (100), 128 (32), 115 (31), 105 (27), 91 (55), 77 (40), 55 

(26), 43 (23).FTIR (υmax / cm-1): 3365, 2924, 2854, 1492, 1452, 1377, 1120, 1076, 1028, 

972, 873, 761, 699. 

 

 

Figure 3.20. (2S,5S,E)-5-cyclohexyl-5-phenylpent-3-ene-1,2-diol 

 

3ga: 1H NMR (400 MHz, CDCI3) δ= 7.30 – 7.25 (m, 2H), 7.20 – 7.15 (m, 1H), 

7.14 – 7.10 (m, 2H), 5.94 (ddd, J = 15.4, 9.4, 1.2 Hz, 1H), 5.44 (ddd, J = 15.4, 6.2, 0.7 

Hz, 1H), 4.19 (dddd, J = 7.5, 6.2, 3.5, 1.2 Hz, 1H), 3.58 (dd, JAB = 11.2 Hz, JAX=3.5 Hz, 

1H), 3.43 (dd, JAB = 11.2 Hz, JBX= 7.6 Hz, 1H), 2.92 (t, 1H), 1.91 – 1.81 (m, 1H), 1.73 

(dd, J = 10.4, 2.5 Hz, 1H), 1.65 – 1.50 (m, 3H), 1.45 – 1.35 (m, 1H), 1.28 – 1.05 (m, 

3H), 0.97 – 0.70 (m, 2H).13C NMR (101 MHz, CDCI3) δ= 143.93, 136.27, 129.02, 

128.53, 128.04, 126.20, 73.11, 66.63, 56.22, 42.44, 31.55, 31.45,26.59, 26.47, 26.45.1H 

NMR (400 MHz, C6D6) δ= 7.16 – 7.10 (m, 3H), 7.04 – 6.99 (m, 2H), 5.84 (ddd, J = 

15.3, 9.4, 1.1 Hz, 1H), 5.31 (dd, J = 15.4, 5.8 Hz, 1H), 3.99 – 3.93 (m, 1H), 3.31 (dd, 

JAB = 11.1 Hz, JAX= 3.5 Hz, 1H), 3.21 (dd,JAB = 11.1 Hz, JBX= 7.8 Hz, 1H), 2.79 (t, 1H), 

1.87 (d, J = 13.1 Hz, 1H), 1.72 – 1.63 (m, 1H), 1.59 – 1.39 (m, 4H), 1.18 – 1.01 (m, 

3H), 0.88 – 0.72 (m, 2H).13C NMR (101 MHz, C6D6) δ= 144.47, 135.34, 129.87, 

128.76, 126.35, 73.13, 66.93, 56.55, 42.67, 31.75, 31.71, 26.91, 26.77, 26.73. 
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Figure 3.21. (2S,3R,E)-5-cyclohexyl-3-phenylpent-4-ene-1,2-diol 

4ga:1H NMR (400 MHz, CDCI3) δ= 7.34 – 7.27 (m, 2H), 7.27 – 7.17 (m, 3H), 

5.71 – 5.58 (m, 2H), 3.85 – 3.77 (m, 1H), 3.54 – 3.46 (m, 1H), 3.39 – 3.26 (m, 2H), 2.03 

– 1.94 (m, 1H), 1.76 – 1.61 (m,5H), 1.30 – 1.05 (m, 5H).13C NMR (101 MHz, CDCI3) 

δ= 141.34, 141.04, 128.90, 128.00, 126.90,126.86, 74.49, 64.30, 52.77, 40.86, 33.21, 

33.04, 26.22, 26.12, 26.09.1H NMR (400 MHz, C6D6) δ= 7.12 – 6.98 (m, 5H), 5.67 (dd, 

J = 15.4, 8.7 Hz, 1H), 5.42 (dd, J = 15.5, 6.6 Hz, 1H), 3.73 (td, J = 7.3, 3.1 Hz, 1H), 

3.43 (dd, J = 11.3, 3.0 Hz, 1H), 3.35 – 3.23 (m, 2H), 1.83 – 1.71 (m, 1H), 1.58 – 1.50 

(m, 4H), 1.34 – 1.26  (m, 1H), 1.12 – 0.91 (m, 5H).13C NMR (101 MHz, C6D6) δ= 

142.42, 139.95, 128.90, 128.46, 126.80, 75.06, 64.81, 52.77, 41.06, 33.38, 33.20, 26.46, 

26.39, 26.35. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

In this study, a number of vinyl oxiranes was synthesized and subjected to 

palladium-catalyzed 1,3-substitution reactions withorganoboronsunder the optimized 

conditions accomplished in our laboratory previously (Kıbrıs,2016). This thesis was 

continuation of that study and performed to widen the scope of the method. All the 

vinyl oxiranes synthesized in this study successfullyafforded the desired arylated allyl 

alcohols in good yields. 

4.1. General Catalytic Reactions 

 

Figure 4.1.General Palladium-catalyzedreaction of vinyl oxirane with PhBneop 

 

First of all, the reaction of avinyl oxirane with two terminal hydroxyl was 

investigated, purposedly to see how the yield and selectivity of the reaction would be, 

affected with the presence of allylic hydroxyl group (1a).The reaction for this substrate 

with neopentyl glycol ester of Phenylboronic acid (2a, PhBneop) took 2.5 h for 
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complete conversion and the SN2’substituted product was the main couplingproduct of 

the reaction, which gave rise the product (3aa) with 78% yield. The SN2 substitution 

product (4aa) was also detected to form in15% yield. (Figure 4.2.). 

 

 

Figure 4.2.  Reaction of 1a with 2a under optimized conditions according to figure 4.1. 

 

Interestingly, however, when this alkenyl epoxide was used in the form where its 

allylic hydroxyl group was silyl protected (1b) no SN2 type product (4ba) formation 

was observed to form and the desired 3ba product was recovered in 81% yield after 

reaction. (Figure 4.3.). 

 

 

Figure 4.3. Reaction of 1b with 2a under optimized conditions according to figure 4.1. 
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It is apparent that the success of the method is not dependent on the relative 

configurations of alkenyl and epoxide moieties.The alkenyl epoxide (1c with Z,Z-

configuration) converted completely in 2 h when reacted with 2a, yielding both SN2’ 

SN2 products in 78% (3ca) and 11% (4ca) yields, respectively. (Figure 4.4.). 

 

 

Figure 4.4. Reaction of 1c with 2aunder optimized conditions according to figure 4.1. 

 

Interestingly, the reaction of the alkenyl epoxide 1d with a terminal alkenyl 

moiety provided the expected product 3da in relatively low yield. ( Figure 4.5.) 

When the substrate used had E-configured epoxide moiety and Z-configured 

alkenyl moiety, the SN2’product 3ea, which is the diastereomeric form of 3ca, was the 

only product recovered in. (Figure 4.6.). 

When the reaction was performed with alkenyl oxirane which has methyl group 

on R1, SN2’ product 3fa was observed as a single product and the yield was calculated 

to 81%. (Figure 4.7.). 

Under optimizing conditions, general catalytic reaction was performed with a 

reactant which has a sterically large group such as cyclohexyl in R1. The SN2’ product 

3ga was observed with 28% yield and also SN2 product with 28% yield. (Figure 4.8.) 
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Figure 4.5. Reaction of 1d with 2a under optimized conditions according to figure 4.1. 

 

 

Figure 4.6. Reaction of 1e with 2a under optimized conditions according to figure 4.1. 
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Figure 4.7. Reaction of 1f with 2a under optimized conditions according to figure 4.1. 

 

 

Figure 4.8. Reaction of 1g with 2a under optimized conditions according to figure 4.1. 

4.2. General Mechanism of the Reaction 

The reaction is thought to begin with the opening of the oxirane ring by the 

attact of the palladium to the structure from the anti-position. It is generally known that 

palladium participates allylic compounds inthe anti-mode. (Tsuji, 2004). The resulting 
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π-allylpalladium intermediate undergoes successive transmetallation and reductive 

elimination steps to form of SN2’or SN2 products. 

 

 

Figure 4.9. The predicted mechanism of palladium-catalyzed reaction of alkenyl 
epoxides with organoborons. 

The bases for the positive effective of the pendant hydroxyl group to the reaction 

selectivity of the on the product selectivity are not yet known. However, it is possible 

that the hydroxyl group is potentially be coordinated with the center of the palladium 

and this coordination may have promoted the region- and stereo-selectivity of the 

process. 
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CHAPTER 5 

CONCLUSION 

The stereo- and region-selective arylation of alkenyl epoxides was the aim of the 

present study. In analogy to a previous study performed in this laboratory, the reactions 

of alkenyl epoxides having a pendant hydroxyl group with neopentyl gylicol ester of 

arylboronic acids in the presence of Pd/AsPh3 combination proceeded in anti manner to 

yield SN2’ majorly. 
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APPENDIX A 

1H NMR AND 13C NMR SPECTRUMS OF REACTANTS 
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1H NMR AND 13CNMR SPECTRUMS OF PRODUCTS 
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APPENDIX C 

MASS SPECTRUMS OF PRODUCTS 
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