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ABSTRACT

ANALYZING SOCIAL MEDIA DATA BY FREQUENT PATTERN MINING

METHODS

Data mining is a popular research area that has been studied by many researchers

and focuses on finding unforeseen and important information in large dataset. Social

media data is one of the most popular and large heterogeneous data collected from social

networking sites, microblogs, photo or video sharing sites. Social media represents the

entities and their relations. One of the popular data structures used to represent large

heterogeneous data in the field of data mining is graphs. The nodes of a graph represent

entities and the edges of a graph represent the relations between the entities. So, graph

mining is one of the most popular subdivisions of data mining. A frequent pattern is

referred to as pattern that is more frequently encountered than the user-defined threshold

in a dataset. Frequent patterns in a dataset can give important information about dataset.

Using this information, data can be classified or clustered. Frequent patterns can provide

different perspective on social media data with respect to sociology, consumer behaviour,

marketing, communities.

In this thesis, popular frequent pattern mining algorithms have been examined and

it has been observed that most algorithms are not suitable for large datasets. Since data in

today’s world, especially social networks, has very large data, the existing pattern mining

algorithms are not suitable for this data. The aim of this thesis is to implement an existing

frequent pattern mining algorithm in parallel manner and to find frequent patterns in a

social media data.
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ÖZET

SOSYAL MEDYA VERİSİNİN SIK KÜMELER MADENCİLİĞİ YÖNTEMLERİ

KULLANARAK ÇÖZÜMLENMESİ

Veri madenciliği, birçok araştırmacı tarafından incelenen ve büyük veri setinde

öngörülemeyen ve önemli bilgileri bulma üzerine odaklanan popüler bir araştırma alanıdır.

Sosyal medya verileri, sosyal ağ siteleri, mikrobloglar, fotoğraf veya video paylaşım

sitelerinden toplanan en popüler ve büyük heterojen verilerden biridir. Sosyal medya,

varlıkları ve onların ilişkilerini temsil eder. Veri madenciliği alanındaki büyük hetero-

jen verileri temsil etmek için kullanılan popüler veri yapılarından biri graftır. Bir grafın

düğümleri varlıkları, kenarları ise varlıklar arasındaki ilişkileri temsil eder. Dolayısıyla,

graf madenciliği, veri madenciliğinin en popüler alt bölümlerinden biridir. Bir sık örüntü,

bir veri kümesinde kullanıcı tanımlı eşiğe göre daha sık rastlanan örüntü olarak adlandırılır.

Veri kümesindeki sık örüntüler veri kümesi hakkında önemli bilgiler verebilir. Bu bilgiyi

kullanarak, veriler sınıflandırılabilir veya kümelenebilir. Sık örüntüler sosyoloji, tüketici

davranışı, pazarlama, topluluklar açısından sosyal medya verilerine farklı bir bakış açısı

sağlayabilir.

Bu tez kapsamında popüler sık örüntü madenciliği algoritmaları incelenmiştir

ve çoğu algoritmanın büyük veri setleri için uygun olmadığı gözlenmiştir. Günümüz

dünyasındaki veriler, özellikle sosyal ağlar çok büyük verilere sahip olduğundan, var

olan sık örüntü madenciliği algoritmaları bu veri setleri için uygun değildir. Bu tezin

amacı, mevcut bir sık örüntü madenciliği algoritmasını paralel bir şekilde uygulamak ve

bir sosyal medya verisinde sık örüntüleri bulmaktır.
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CHAPTER 1

INTRODUCTION

Data mining is the process of automatically extracting previously unknown, mean-

ingful and useful knowledge from large datasets (Han et al., 2011). In today’s world, the

data grows day by day and it is necessary to find accurate and interesting information

from this large volume of data. For this reason, data mining has become an important

area for researchers.

Social media provides a rich source of information about people and their opinion,

feelings, human relationships, any kind of information and news. Using social network-

ing sites like Facebook, people can share personal or public information with relatives,

family members, colleagues and many other friends (Barbier and Liu, 2011). This shared

information constitutes social media data. Social media data is huge, for example, Face-

book has about 2 billion users, and this data constantly changing. It is quite noisy because

it contains lots of trivial data.

The data processed in the data mining can be obtained from many sources where

different data types can be used. Examples of these different data types are text data,

sound data, image data, graph data, etc. Since graphs better represent the complex and

arbitrary relations among data attributes, they are used to represent data in many applica-

tion areas, such as users (nodes) and their relationship (edges) in social networks, atoms

(nodes) and bonds (edges) between them in chemical structures, proteins (nodes) and pro-

tein interactions (edges) in biological network, computer (nodes) and links between them

in computer networks (Chakrabarti and Faloutsos, 2006). Graph mining is a data mining

subdivision where the data is represented as graph (Rehman et al., 2012). Since the graphs

are used to represent the social media data, within the scope of this thesis, graphs are used

as patterns.

One of the important data mining tasks is the problem of finding frequent sub-

graphs in a graph. The aim of frequent subgraph mining (FSM) is to find all subgraphs

whose occurrences are at least equal to the number of user-defined threshold (Aggarwal

and Wang, 2010). In many domains it is necessary to find these common structures, be-

cause these repetitive structures can provide a better understanding of the data or give a
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different perspective about data. These frequent subgraphs are used in determining the

similarities between the graphs, clustering (Zimek et al., 2014), graph indexing Yan et al.

(2004) and classification (Acosta-Mendoza et al., 2012).

The FSM algorithm consists of two important phases: candidate generation and

frequency calculation. Candidates are generated using breath first strategy or depth first

strategy. One of the most important factors affecting the performance of the algorithm

when generating candidates is the generations of the same candidates more than once.

Since the dataset grows, number of candidates generated grow. Duplicated and redun-

dant candidates should be avoided during candidate generation for an efficient algorithm.

The second phase in the frequent mining algorithm is to calculate the frequency of the

generated candidates and to determine which are frequent among them. To calculate the

frequency of a subgraph, it is necessary to find the number of graphs that are isomorphic

to this subgraph in a dataset. The subgraph isomorphism testing is fundamental problem

of these algorithms since this problem is NP-complete (Garey and Johnson, 2002). The

cost of finding isomorphic graphs increases exponentially as the size of the graph dataset

increases.

The solutions proposed by different FSM algorithms can be divided into different

categories, depending on the algorithmic approach, algorithmic design, graph representa-

tion, input type, graph property, nature of graph and result type.

The algorithms examined in this area generally use two different algorithmic ap-

proaches. These approaches are apriori-based and pattern-growth approaches. Apriori-

based algorithms (Inokuchi et al. (2000); Kuramochi and Karypis (2004); Huan et al.

(2003)) generate candidates based on breadth first strategy and apply subgraph isomor-

phism testing to calculate frequencies of candidates. Especially when the dataset is large,

these algorithms suffer from generating too many candidates. Pattern-growth based al-

gorithms (Borgelt and Berthold (2002); Huan et al. (2003); Yan and Han (2002); Yan

and Han (2003)) generate candidates based on depth first strategy. The pattern growth

approach avoids the cost of generating and testing many candidate subgraphs. These can-

didates are generated by extending frequent subgraphs starting from minimal frequent

subgraphs by adding one edge at every step if they are still frequent. However, these

algorithms might suffer from the generation of the same candidates.

Many algorithms that solve the frequent subgraph mining problem give good re-

sults on small datasets but not suitable for working on large datasets. However, the real

datasets contain very large data and the algorithms should be able to work effectively on

2



large datasets. As the data size grows, the data cannot fit in the memory on a single ma-

chine, or it may not be an efficient and practical method to work on a single machine with

this large amount of data. For this reason, parallel algorithms have been developed to find

frequent subgraphs in large datasets (Meinl et al. (2006); Bhuiyan and Al Hasan (2015)).

The most popular methods used to represent graphs are the adjacency matrix and

adjacency list. Graphs should be represented uniquely to facilitate subgraph isomorphism

testing. Since there may be more than one adjacency matrix representing the same graph,

new methods are proposed such as canonical adjacency matrix (CAM) (Huan et al., 2003)

and mininimum DFS code (Yan and Han, 2002).

There are also two different problem statements according to the input type: The

dataset used in the algorithm may also be a single large graph or small graphs (set of

graphs) these are called transactions. In this case, the frequency calculation of a subgraph

in the single large graph dataset is different from the transactional dataset. While calcu-

lating the frequencies of candidates in a transactional dataset, the number of transactions

that contain this subgraph is calculated. However, since there is no transaction in a single

large graph dataset, different methods was proposed (Holder et al. (1994); Kuramochi and

Karypis (2005); Ghazizadeh and Chawathe (2002)).

Graphs used in FSM algorithms may have different properties from each other,

for example, graphs may be directed or undirected, multiple edges between nodes may or

may not be allowed. Most of the algorithms work with connected graphs. According to

properties of graphs, the solutions suggested for FSM are adapted.

Apart from these, graphs can be static (time invariant) or dynamic (time varying).

Static graphs do not change over time and can be stored in a database. For this reason, the

existing FSM algorithms can be applied to these graphs. Dynamic graphs are constantly

changing graphs and cannot be stored in a database. For example, streaming data comes

to a network only once and it is not possible to keep this data in the database. For this

reason, existing FSM algorithms are not suitable for these data types.

While most FSM algorithms find all subgraphs in a dataset, some algorithms find

a more meaningful superset (such as closed frequent subgraphs (Yan and Han, 2003)) of

these frequent subgraphs to reduce search space and facilitate working on large datasets.

Within the scope of this thesis, first the basic two steps of the FSM process is ana-

lyzed. The methods used in these two steps and the algorithms using these methods are ex-

amined. Then a categorization of the FSM algorithms according to the above-mentioned

properties is presented. There are detailed surveys that compare FSM algorithms ac-
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cording to their different attributes (Lakshmi and Meyyappan (2012); Jiang et al. (2013);

Muttipati and Padmaja (2015)). However, they do not capture recent algorithms focusing

on new requirements as dynamicity or volume of data. In real systems, data can change

continuously over time. For example, in a social or telecommunication network, data only

goes through once and it is very difficult to keep such data in the database. Such data is

called stream data and existing FSM algorithms are not suitable for working on stream

data. Since most FSM algorithms are also not suitable for large datasets, the algorithms

proposed in this area recently are parallel algorithms. Generally, the existing frequent

subgraph algorithms have been modified to work in parallel. Within the scope of this

thesis, dynamic and parallel algorithms are also examined.

1.1. Thesis’ Aim and Objectives

The aim of this thesis is to mine a snapshot of social media data at a time with a

parallel FSM algorithm. In this thesis, two different parallel implementations of an exist-

ing FSM algorithm have been performed. First algorithm is a multi-threaded Fork/Join

Framework based parallel algorithm. The second algorithm is a parallel algorithm based

on the Apache Spark Framework that can run both locally and on a cluster. These two

algorithms are tested on a social media data and the results are compared according to

different parameters.

1.2. Organization of Thesis

Chapter 1 gives an introduction for thesis topic. In the chapter 2 basic concepts

that should be known about the problem of frequent subgraph mining, Apache Spark

Framework and social media data are introduced. Chapter 3 gives related work of FSM.

Section 3.1 presents the process of FSM and section 3.2 presents the categorization of

FSM algorithms according to the different perspective and section 3.3 presents the popular

FSM algorithms. In the chapter 4, two parallel implementation of FSM algorithms are

addressed. In the chapter 5, the results of two parallel implementation according to the

different parameters are presented. Chapter 6 gives the conclusion of this thesis.
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CHAPTER 2

BACKGROUND

In this section, the basic concepts and terminology related to graph, Apache Spark

Framework, Fork/Join Framework and social media data are introduced.

2.1. Basic Graph Terminology

This section introduces key terms and their definitions that should be known about

graph theory within the scope of this thesis.

2.1.1. Graph

A graph G = (V,E) consists a finite set of nodes (or vertices) and set of edges

that connects these nodes each other. Figure 2.1 is a graph example. V represents a set of

nodes of the graph G and is usually expressed as V (G) or V . E represents a set of edges

of the graph G and is usually expressed as E(G) or E.

qa

qb

qc

qd qe

G

Figure 2.1. A graph (G) example.
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Edges and vertices lists that contain all edges and nodes of graph can be repre-

sented as follows:

G = (V,E)

V = { qa, qb, qc, qd, qe }
E = { { qa, qb },{ qa, qd },{ qa, qe },

{ qb, qc },{ qb, qd } ,{ qb, qe },{ qc, qd } },{ qc, qe } }

2.1.2. Graph Embedding, Edge-disjoint Embedding, Overlap Graph

Let G = (V,E) be a graph. A graph dataset may contain this graph or its par-

ticular drawing. They are called embedding of graph G = (V,E). If two embeddings

of any graph have no common edge, these embeddings are called edge-disjoint embed-

dings. In order to create overlap graph of these embeddings, a vertex is created for each

non-identical embeddings of a subgraph and edges are also created between vertices that

represent edge-disjoint embeddings. Figure 2.2 shows an example of graph embedding.

qa

qb

qc

qd qe

G

qa

qb qd
qe

qc

Gi

Figure 2.2. An example of graph (G) embedding (Gi) example.

In a graph, the edges can be traversed both direction between the nodes. This

graph is called undirected graph. In an undirected graph, the edge (x, y) is identical to

edge (y, x). Figure 2.1 is also an example of undirected and labelled graph.
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If edges of a graph have direction, that is, this graph can be traversed one direction

between nodes and this graph is called directed graph. In a directed, graph the edge (x, y)

is not identical to edge (y, x). Figure 2.3 is an example of directed and labelled graph.

qa

qb qd
qe

qc

H

Figure 2.3. A directed graph (H) example.

Edges and vertices lists that contain all edges and nodes of directed graph can be

represented as follows:

G = (V,E)

V = { qa, qb, qc, qd, qe }
E = { { qa, qb },{ qa, qd },{ qa, qe },

{ qb, qc },{ qb, qe } ,{ qc, qd },{ qc, qe } }

In a graph, edges have weight that represents cost of traversing, such graph is

called weighted graph. These weights are represented as numerical labels of the edges.

Figure 2.4 is an example of weighted graph.

If there is a path between every pair of vertices of a graph, this is called connected

graph, otherwise unconnected graph. Figure 2.1 is also connected graph examples. Fig-

ure 2.3 is also example of unconnected graph.

If a vertex in a graph is connected to itself with an edge, this is called a loop. In

a multi-edge graph, there are more than one edge between any two vertices. If a graph

is undirected and unweighted and there is no multi-edge and loop, this graph is called
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qa

qb

qc

qd qe

Gx

51

2

3

2

Figure 2.4. A weighted graph (Gx) example.

simple graph. Figure 2.5 is an example of simple graph. In the scope of this thesis,

simple, connected, labelled graphs are used.

qa

qb
qd qe

Gs

Figure 2.5. A simple graph (Gs) example.

2.1.3. Subgraph

A graph Gs is the subgraph of graph G, if only if nodes and edges of a graph Gs

(Vs, Es) are subset of nodes and edges (Vs ⊆ V and Es ⊆ E) of graph G (V,E). The

graph Gs in Figure 2.5 is also a subgraph of graph G in Figure 2.1. Edges and vertices
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lists of subgraph is represented as follows:

Gs = (V,E)

Vs = { qa, qb, qd, qe }
Es = { { qa, qb },{ qa, qd }, { qa, qe },{ qb, qd },{ qb, qe } }

2.1.4. Induced Subgraph

Let, graph Gn is subgraph of G. The vertices of subgraph Gn are a subset of the

vertices of graph G. If all edges of these vertices in the graph G are also exist in the

subgraph Gn this subgraph Gn is called induced subgraph of graph G. The Fig. 2.6 gives

both induced and non-induced graph example.

qa

qb

qd qe

Gm

qa

qb

qd

qe

Gn

Figure 2.6. Non-induced (Gm) and induced graph (Gn) examples.

2.1.5. Subgraph Isomorphism

Let G = (V ,E) and G
′

= (V
′
, E

′
) be graphs. Graph G and graph G

′
are topo-

logically identical to each other, that is, if there is a mapping between the vertices and

edges of two graphs. Thus, these two graphs G and G
′

are called isomorphic graphs. The

subgraph isomorphism problem tries to find out whether a subgraph is included by an-

other graph in a graph dataset. The detection of isomorphic subgraphs is a NP-complete
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problem (Garey and Johnson, 2002). The cost of finding isomorphic graphics grows ex-

ponentially as the size of the dataset increases. There are many subgraph isomorphism

detection techniques (Schmidt and Druffel (1976); Ullmann (1976); McKay et al. (1981);

Cordella et al. (1998)). The figure 2.7 is an example of isomorphic graphs.

qa

qb

qc

qd qe

G

q1

q3q4
q2

q5

G
′

Figure 2.7. Isomorphic graphs example.

2.1.6. Frequent Subgraph

The support σ (0 < σ < 1 ) of a subgraph is the ratio of the number of graphs that

are isomorphic to this subgraph to total number of graphs. If the support of a subgraph

satisfies the user-defined minimum support threshold, this subgraph is called frequent

subgraph. If a graph is frequent, all its subsets must be frequent. This is called downward

closure property.

2.2. Apache Spark Framework

Apache Spark Framework (Spark, 2016) is a data processing framework that work

on large amount of distributed data. Apache Spark is based on Hadoop MapReduce

(Hadoop (2009); Dean and Ghemawat (2008)). MapReduce is a programming model that
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allows a large amount of data to be processed in parallel. Hadoop is a framework based on

MapReduce programming model. It processes large amount of data that distributes across

clusters of computers. A MapReduce job distributes the input data into different chunks.

Map-Reduce consists of two steps: Map and Reduce. During the map phase, the data in

the chunks is transformed into a set of tuples (key/value pairs). The result of map phase

is written to Hadoop Distributed File System (HDFS) (Shvachko et al., 2010). During

the reduce phase, the result of map phase is read from HDFS and all intermediate values

associated with the same key are combined. The result of reduce phase is also written the

HDFS.

Apache Spark extends the MapReduce programming model and uses the HDFS

for storage. Map Reduce is not suitable for algorithms and calculations that require mul-

tiple passes. At each step there are a map and a reduce phase and the results of the map

and reduce phases for each step are written in HDFS. The result of map phase is the input

of reduce phase, the result of reduce phase is the input of next step. Each output is written

the HDFS and each input is read from HDFS. Disk access is very costly and greatly slows

down the calculation. This is a disadvantage of Hadoop MapReduce. One of the most

important features of Spark and difference from Hadoop MapReduce is that it calculates

and stores data in memory. If the data cannot fit in-memory, then it stores the data in the

disk. Spark is faster than Hadoop both in memory and disk, because it reduces the number

of reading from disk and writing to disk by storing the intermediate data in-memory.

Spark provides four libraries: Spark Streaming, Spark SQL, Spark Mlib, Spark

GraphX. Spark Streaming library provides processing of real-time streaming data. Spark

SQL provides structured data processing and SQL-like queries execution on Spark data.

Spark Mlib provides scalable and distributed machine learning library that consist of some

learning algorithms such as classification, regression, dimensionality reduction. Spark

GraphX is framework that allows parallel graph computation.

Spark provides different data types: RDD, DataFrame and GraphFrame. RDD is

a data structure of Spark which can store any data type. RDDs can be distributed over the

different partitions. A DataFrame stores the distributed data collection in named columns

as in a database table in the relational database. GraphFrame is a data structure that using

to represent the graph and the its vertices and edges represented by using DataFrame.

There are different Spark deployment ways: A Spark application can be deployed

on distributed cluster managers like YARN and Mesos or on a simple standalone server.
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2.3. Fork/Join Framework in Java

This framework (Lea, 2000) relies on the divide and conquer approach to speed up

parallel processing. It separates the job to be done into smaller tasks recursively and tries

to complete these tasks using all available processor cores. This framework has a thread

pool that contain all alive threads. Since thread creation is very costly, available threads

are used in this pool instead of creating a new thread for each sub task. This framework

is also responsible for managing the threads in the thread pool and assigning jobs to be

done to threads in the pool. It uses the work stealing algorithm to provide load balancing.

Each thread has its own deque, which is a list variable that can be accessed from both the

head and the tail. According to this algorithm, each thread takes its task from the head of

its deque. If its deque is empty, it takes task from the tail of the deque of another thread.

2.4. Social Media Data

A social media data can be represented as graph. Figure 2.8 is an example of social

media data. The nodes represent the entities and the edges represents the relationship

between them. For example, for a Facebook data, there may be a friends relation between

two users. These users are represented by nodes and friends relation is represented by an

edge. Social media data has three important characteristics.

• Social media data contains a large amount of data.

• This data is constantly changing and it is very difficult to track and keep these

changes.

• It is inevitable that such a huge dataset contains lots of unnecessary or trivial data.

The analysis of social media data can provide different perspectives for many

areas. By analyzing the social media data of a community, significant conclusions for

sociology can be discovered about that community’s characteristics. In the field of mar-

keting, a recommendation system can be constructed by analyzing people’s interests and

behavior in social media. Or analysis of the feelings, opinion and behaviors of people in
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john ellen

bobbyjuliebooks

rock a bank

married to

likes

listens to

brother of friend of

colleague of

listens to

works at

works at

Figure 2.8. Social media data example.

the social media can provide important results for the psychology field. For this reason,

social media analysis is an important field of study.

13



CHAPTER 3

RELATED WORK

This chapter first describes the FSM processes and the methods used in these pro-

cesses and provides a categorization FSM algorithm according to algorithmic approach

they use, algorithmic design, graph representation, input type, graph type, nature of graph

and result type. Finally, the popular FSM algorithms are analyzed according to both the

FSM process and their outstanding characteristics are discussed in this chapter.

3.1. Frequent Subgraph Mining (FSM) Process

The aim of FSM is to find all frequent subgraphs in a graph dataset. Generally,

FSM algorithms consists of two phases: Generation of candidate subgraphs and comput-

ing the support of this candidates to determine whether they are frequent or not.

3.1.1. Candidate Generation

FSM algorithms generate a (n+1)-edge candidate subgraph by adding a new edge

to a n-edge frequent subgraph. This process starts with 1-edge graphs and continues until

all the nodes and edges of a graph are included. The point to be noted during candidate

generation is that each candidate should be generated only once. Since the cost of the

finding isomorphic graphs grows exponentially with the number of candidates, unneces-

sary candidate generations should be avoided to narrow the search space. There are four

popular candidate generation strategies: level-wise join, extension, join and extension

and rightmost extension strategy. Table 3.1 shows the popular FSM algorithms candidate

generation approach they used.

Level-wise join strategy: In level-wise join, two k-size subgraphs are combined to gen-

erate a new (k+1)-size subgraph. These two k-size subgraphs can be joined if they have a

common (k-1)-size subgraph. This method has the following disadvantages:
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• A single join operation can generate more than one candidates.

• The different join operations can generate same candidates.

• Generated candidates may not satisfy the downward closure property.

Table 3.1. Candidate generation approaches of FSM algorithms.

Algorithms Level-wise
join Extension

Join
&

extension

Rightmost
extension

AGM
√

FSG
√

FFSM
√

MOFA
√

gSpan
√

CloseGraph
√

GERM
√

Stream FSM
Time Evolving Graph

√
Subdue

√
SEuS

√
HSIGRAM

√
VSIGRAM

√
FSM-H

√
gSpan-H

√
p-MOFA

√
p-gSpan

√

Extension strategy: In extension strategy, new connected (k+1)-size subgraph is ob-

tained by adding an edge to all possible k-size embeddings.

Join and extension strategy: The FFSM (Huan et al., 2003) algorithm presents two

new methods on the deficiencies of level-wise and extension strategies: FFSM-join and

FFSM extension. In the FSM-join method, up to two candidates are generated instead of

too many candidates. However, this method may not always enumerate all the subgraphs.

In the FFSM-extension method, a single fixed node is specified instead of candidate nodes.

The new edge is added between an additional node and this fixed node.
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Rightmost path extension strategy: In the rightmost path extension strategy, a new

(k+1)-size sub-tree is generated by adding an edge to the rightmost path of a k-size sub-

tree. This edge can be added between two existing rightmost nodes or between the exist-

ing rightmost node and a new introduced node. This method has the following disadvan-

tages:

• There may be too many nodes to which the new edge can be added.

• This method greatly increases the complexity of this algorithm.

3.1.2. Frequency Evolution

The frequency of a subgraph is the number of isomorphic graphs of this subgraph

in the graph dataset. The subgraph isomorphism problem is NP complete and the com-

putational cost increases exponentially as the problem size grows. For this reason, the

subgraph isomorphism test can be applied on small datasets. To calculate the frequency

of a graph, many frequent subgraphs algorithms perform subgraph isomorphism testing,

but some have suggested different methods to avoid this test, or some intuition to speed

up this test. The method used by the algorithms examined in this study to calculate the

frequency is given in Table 3.2.

Database scan: To calculate the frequency of candidate subgraphs, database is scanned

from begin to end to determine how many different transactions include this candidate.

This procedure is repeated for each candidate and re-scanning the entire database is not

a very efficient method. Especially scanning the large databases significantly affects the

runtime of the algorithm.

Transaction list: There is a transaction identifier list for each frequent subgraph. To

calculate the frequency of a k-size graph, the intersection of the TID (transaction identi-

fier list) lists of all its (k-1)-size subgraphs are checked. If the intersection size satisfies

the user-defined support value, the frequency is calculated by performing a subgraph iso-

morphism test on the transactions at this intersection. However, this method has a disad-

vantage. These TID lists require a lot of memory to keep them in memory. Also, these

lists may not fit in memory for large datasets.
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Embedding list: While calculating the frequency of candidate subgraphs, embedding

lists of discovered subgraphs are stored to avoid subgraph isomorphism testing. The fre-

quency of a candidate subgraph is determined from the number of different graphs in its

embedding list. Since this method requires a lot of memory to keep embedding lists in

memory, this method also is not suitable for large datasets.

Table 3.2. Frequency calculation approaches of FSM algorithms.

Algorithms Database
scan

Transaction
list

Embedding
list MIS MNI MDLP Occurrence

list
AGM

√
FSG

√
FFSM

√
MOFA

√
gSpan

√
CloseGraph

√
GERM

√
Stream FSM

Time Evolving
Graph

√

Subdue
√

SEuS
√

HSIGRAM
√

VSIGRAM
√

FSM-H
√

gSpan-H
√

p-MOFA
√

p-gSpan
√

Maximum independent set (MIS): Since there are no transactions in single large graph

that can be scanned to find the frequency of a subgraph. Firstly all the embeddings of this

subgraph in the graph are found and their overlap graph is constructed. Then, on this

overlap graph, an exact or approximate maximum independent set is found.

Minimum image based support (MNI): One of the methods used to calculate the

frequency of a candidates in a single large graph is the minimum image based measure

(Bringmann and Nijssen, 2008). In this method, the number of unique nodes in the graph

dataset that can be mapped to the for each node of candidate subgraph are found and the

minimum one is considered as the frequency of this candidate subgraph.

Minimum description length principle (MDLP): The purpose of the minimum de-

scription length principle is to reduce the description length of the entire dataset (Holder
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et al., 1994). The entire dataset is compressed by representing the graphs with bits. The

minimum description length of a graph is the number of bits used to represent this graph.

Occurence list: An occurrence list contains all the embeddings of a subgraph and infor-

mation about the graphs that correspond to these embeddings in the transactional graph

database (Bhuiyan and Al Hasan, 2015). While calculating the frequency of a k-size

graph, instead of solving the subgraph isomorphism problem, the intersection of occur-

rence lists of its (k-1)-size subgraphs is checked to avoid subgraph isomorphism checking.

3.2. Categorization of FSM Algorithms

FSM algorithms can be categorized according to the some properties: algorith-

mic approach, algorithmic design, graph representation, input type, graph type, nature of

graph and result type as shown in Table 3.3.

3.2.1. Algorithmic Approach

FSM algorithms can be divided into two different categories according to their

algorithmic approach: Apriori based approach and pattern-growth based approach.

Apriori based approach: Apriori based algorithms generally find all the connected

frequent subgraphs and consist of two steps: candidate generation and subgraph isomor-

phism test to calculate the frequencies of graphs. In the first step, these algorithms use

the level-wise strategy for candidate generation. Apriori based algorithms suffer from too

many candidate generation for large datasets. For this reason, these algorithms narrow

the search space using the downward closure property. According to this property, if a

subgraph is not frequent, an upper set containing it is not frequent. In the next step, it is

no longer necessary to check whether any candidate graph containing this subgraph is fre-

quent or not. Apriori based algorithms reduce the number of candidates significantly but,

these algorithms do not work efficiently for large datasets especially when the minimum

support threshold is small. Because too many candidates are generated, and this process

requires a lot of database scanning. Apriori based algorithms also suffer from subgraph

isomorphism testing. The figure 3.1 is an example of Apriori based growth.
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level 0

...

level n

level n+ 1

Figure 3.1. Apriori based growth.

Pattern-growth based approach: The aim of pattern-growth based algorithms is to

find all the frequent subgraphs without the candidate generation and subgraph isomor-

phism test. This approach is based on the divide and conquer method. Instead of gen-

erating all the candidates, a new edge is added to every possible position of the existing

frequent subgraph. This process is continued until there is no more frequent subgraphs.

One of the most important issues that apriori based algorithms suffer from is that they

make too many database scanning. For this reason, pattern-growth based algorithms use a

more compact and smaller data structure instead of processing in the database. The num-

ber of candidates generated in this approach are reduced considerably and the subgraph

isomorphism test is better than the apriori based algorithms. However, this approach has

a disadvantage. The same subgraph can be produced many times while adding a new

edge to every possible position in the current frequent subgraph. This problem has been

tried to be avoided by using the rightmost path extension strategy. Pattern-growth based

FSM algorithms generally use rightmost extension strategy while generating candidates

and to avoid subgraph isomorphism testing using minimum DFS code while calculating

the frequencies of subgraphs. The figure 3.2 represents the pattern based growth.

3.2.2. Algorithmic Design

Most of the algorithms that propose solutions to the frequent subgraph mining

problem are not suitable for working on large datasets. The size of the input data may

not be suitable for mining on a single machine, or generated candidates may not fit into
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...

level n

level n+ 1

Figure 3.2. Pattern-growth based growth.

the memory of single machine or it may not be an efficient method. For this reason,

algorithms that work parallel on more than one machine have been proposed. In the

parallel algorithm, the work to be done is assigned to the processes that will run parallel

to each other. In addition to FSM, there are three important issues to consider when

developing a parallel algorithm: First, a parallel algorithm should be memory scalable.

That is, process should have large enough data to fit in memory and as the number of

processes to run in parallel increases, the memory required to operate these processes

should also be enough. The second issue to consider is that the tasks should be distributed

equally in each process. A working time of a process may not always be predictable,

so a task on a process may end up before others. The last issue that needs to be taken

into consideration is the remaining task in the other processes should be dynamically

distributed to the idle processes. In this way both the idle time of the processes is reduced,

and the work is completed in a shorter time.

There are two different memory systems used when developing a parallel algo-

rithm: Shared memory systems and distributed memory systems.

Shared memory systems: Processes running on different machines share a common

memory address space in shared memory systems. The most important advantage of these

systems is that processes can communicate with each other through this memory address

space. One of the most important problems of these systems is the race conditions. The

two processes may want to access an address in the common address space and change the

20



value of an item in this address at the same time. There may be delays when the common

address is on different machines with the running process.

Distributed memory systems: In distributed memory systems, processes communicate

with each other by network transmission or writing to a file or reading a file instead of

sharing a memory space to communicate with each other. There are two programming

models used in distributed memory systems: The first is the message passing. With this

method, the processes communicate with each other by sending messages over the net-

work. For this reason, network bandwidth is one of the important factors affecting the

system and network traffic should be reduced as much as possible. The other method is

Map Reduce. The map reduce model consists of two functions: Map and Reduce. The

input of algorithm is assumed a (key, value) pair sets. The Map function implements the

map function to each (key, value) pair and emits the other (key, value) pairs. During the

reduce phase the pairs that have the same key value are aggregated after the map function.

Reduce function keeps these values in a sorted list and implements the reduce function

to this list. In the message transfer model, the communication of process in the system

is transparent to the user, but in the Map Reduce method the user does not need to have

detailed knowledge about the communication in an address field.

3.2.3. Graph Representation

There are 3 different ways to represent graphs: Adjacency matrix, adjacency list

and canonical labelling.

Adjacency matrix: In an adjacency matrix, rows and columns represent the graph

nodes. Let va and vb two nodes of a graph. If there is an edge between these two nodes,

they are called adjacent to each other and (a,b). position of an adjacency matrix is repre-

sented by 1 or edge label, otherwise this position is represented by 0. Same graph can be

represented by more than one adjacency matrix depending on the position of the vertices

in the row and column.

Adjacency list: All nodes of a graph are stored in an array. Each element (node) of this

array points a node list of all adjacent nodes to this node.
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Canonical Labelling: The purpose of canonical labelling is to uniquely identifying a

graph. A canonical label is obtained from adjacency matrix of a graph by concatenating

its rows and columns. Since there are multiple adjacency matrices representing a graph,

there can be more than one canonical label representing this graph. Since the purpose

of the canonical labelling is to uniquely identify a graph, the graphs are represented by

minimum or maximum canonical labels according to the lexicographic order. To solve the

problem of subgraph isomorphism, graphs must be represented uniquely. The canonical

labels of isomorphic graphics are the identical. In FSM algorithms, graphs are usually

represented by minimum canonical labels, and labels of two graphs are used to determine

whether two graphs are isomorphic. Several different canonical labelling methods have

been proposed:

• Canonical adjacency matrix: In a adjacency matrix, if there are labels of nodes

on diagonal entries and label of edges on off-diagonal entries, this matrix is called

canonical adjacency matrix (Huan et al., 2003). The canonical code of a subgraph

is obtained by concatenating the upper or lower triangular entries of the adjacency

matrix. Since there can be multiple adjacency matrices of this subgraph, the matrix

which has the minimum or maximum canonical code is the canonical adjacency

matrix.

• Minimum DFS code: The minimum DFS code method has been proposed to rep-

resent the graphs uniquely in the gSpan algorithm (Yan and Han, 2002). In this

algorithm, the graph is traversed using depth first search method. Since a graph

can be represented by more than one DFS code, the graph is assigned to the first

DFS code found by pre order search in the DFS code tree. This code is called the

minimum DFS code and is used as an canonical label of this graph.

3.2.4. Input Type

There are two different types of graph datasets used in frequent subgraph mining:

Transactional dataset and single large dataset. When calculating the frequency of a graph

in the transactional graphs, it is necessary to calculate the number of transactions that

contain this graph. However, since there are no transactions in the single large graph,

how the frequency of a subgraph is calculated is an important issue. While calculating
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the frequency of a subgraph in a single large graph, it is calculated how many times the

embeddings of this subgraph are encountered in the single large graph. The isomorphic

graphs to a graph in a single large dataset is called the embeddings of this graph. One of

the most important problems with single large graphs is the overlap of embeddings of a

subgraph. Because the overlap graphs can cause the failure of downward closure property

(Kuramochi and Karypis, 2005). Another feature that separates single large graphs from

transactional graphs is the need for more memory.

3.2.5. Graph Type

Graphs used in the problem of frequent subgraph mining can be undirected or

directed graphs and multiple edges can be allowed between the graph nodes. Because of

the direction between the nodes of a directed subgraph, there are more subgraphs than the

same undirected graph. For this reason, the subgraphs obtained from a directed graph are

less frequent and their computation time is shorter.

3.2.6. Nature of Graph

There are two types of graphs used in the problem of frequent subgraph mining:

Static graphs and dynamic graphs. Static graphs do not change over time and can be stored

in a database. Algorithms that provide solutions for frequent subgraph mining problems

are usually suitable for static graphs. Dynamic graphs are constantly changing graphs.

In these graphs, the change can be in the form of new nodes or edges addition, deletion

or modification of the existing nodes or edges. Since dynamic graphs vary continuously

over time, it is not predictable how much memory is needed to hold these graphs after

the changes. For this reason, it is difficult to store dynamic graphs in a database. In

frequent subgraph mining algorithms, while the occurrences of candidates are calculated,

the database is scanned from beginning to end for each candidate. Because dynamic

graphs are constantly changing, for example, when graphs are updated with a stream, it

is difficult to keep these streams in a database because each stream only arrives once, and

it is not possible to scan the database more than once while calculating the frequencies of

graphs. Another issue that needs attention in dynamic graphs is that when the incoming

23



changes are added to the graphs, each edge and node in this change must be considered

separately. Each change should be made as soon as possible. One of the most important

issues is that an infrequent subgraph may be frequent with updating later, or a frequent

subgraph may not be frequent later. The obtained frequent subgraphs should be found

with as few errors as possible.

3.2.7. Result Type

Frequent subgraph mining algorithms can be categorized according to the result

set. Some frequent subgraph mining algorithms find all frequent subgraphs. This result

set is called exact result. However, in some cases it is not useful to have all the frequent

subgraphs. Instead of finding all frequent subgraphs, smaller and more meaningful fre-

quent subgraphs such as closed frequent subgraphs (if a subgraph is closed, none of its

superset have same support value with this subgraph) or approximate frequent subgraphs

(superset of all frequent subgraph) are found.

3.3. Popular FSM Algorithms

In this section popular FSM algorithms are introduced and compared according to

the approaches they use in FSM process and categorization. Limitations and performance

comparison of algorithms are also given.

3.3.1. AGM Algorithm

The AGM algorithm (Inokuchi et al., 2000) is an apriori based algorithm that tries

to find all frequent induced subgraphs in a graph dataset. The graph dataset consists of

transactional sets and static graphs. The graphs used in this algorithm may be undirected

or directed graphs and they are represented by adjacency matrix. Labels used in this

algorithm are integer numbers, so the adjacency matrix is constructed according to the

order of these vertices labels. But this method is not enough to make the adjacency matrix

unique. In this study, canonical form is proposed for normal forms of adjacency matrices.

Since a graph can be represented by more than one adjacency matrix, it has more than one
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canonical form. A minimum canonical form according to the lexicographic order is used

to represent the graph.

• Candidate generation: AGM algorithm uses the level-wise strategy while gener-

ating candidates.

• Frequency evolution: AGM algorithm scans entire database and apply subgraph

isomorphism test for every candidate to calculate its frequency.

• Result: This algorithm finds all induced frequent subgraph.

• Limitations: Multiple database scan and not scalable.

3.3.2. FSG Algorithm

The FSG algorithm (Kuramochi and Karypis, 2004) is an apriori based algorithm

and finds all frequent connected subgraphs in a transactional dataset. The graphs used in

this algorithm are undirected, labelled, static graphs and they are represented by adjacency

list. This algorithm calculates the canonical labels of subgraphs from its adjacency matrix.

To calculate the canonical label of a graph, the algorithm first transforms the adjacency

list into an adjacency matrix and uses some heuristics, such as vertex invariants, to narrow

the complexity of finding the canonical label of a graph. It uses the minimum canonical

label according to the lexicographic order to represent the graph.

• Candidate generation: FSG algorithm uses the level-wise strategy while generat-

ing candidates.

• Frequency evolution: The algorithm uses transaction lists to calculate the fre-

quency of a graph.

• Result: This algorithm finds all connected frequent subgraphs.

• Limitations: The algorithm requires a large number of different edge labels to

facilitate calculation of canonical label. Not scalable.

When the minimum support threshold is small, the FSG algorithm requires less com-

putation time than the AGM algorithm. Both algorithms are not suitable for very large

datasets.
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Table 3.3. Categorization of FSM algorithms.

Algorithms Algorithmic
Approach

Algorithmic
Design

Graph
Representation

Input
Type

Graph
Type

Nature
of

Graph

Result
Type

AGM
apriori

based

serial

algorithm

adjacency

matrix
set of graphs

undirected/

directed

&

single edge

static

all

frequent

subgraphs

FSG
apriori

based

serial

algorithm

adjacency

list
set of graphs

undirected

&

single edge

static

all

frequent

connected

subgraphs

FFSM

apriori based

&

pattern growth

serial

algorithm
CAM set of graphs

undirected

&

single edge

static

all

frequent

subgraphs

MOFA
pattern

growth

serial

algorithm

adjacency

list
set of graphs

undirected/

directed

&

single edge

static

approximate/

all

frequent

subgraphs

gSpan
pattern

growth

serial

algorithm
min DFS code set of graphs

undirected

&

single edge

static

all

frequent

subgraphs

CloseGraph
pattern

growth

serial

algorithm
min DFS code set of graphs

undirected/

directed

&

single edge

static

all

closed

frequent

subgraphs

GERM
pattern

growth

serial

algorithm
min DFS code

single

large graph

undirected

&

single edge

dynamic

all

frequent

subgraphs

Stream FSM
serial

algorithm

single

large graph

undirected

&

single edge

dynamic

all

frequent

subgraphs

Time Evolving

Graph

pattern

growth

serial

algorithm
min DFS code

single

large graph

undirected

&

multi edge

dynamic

all

frequent

subgraphs

Subdue
pattern

growth

serial

algorithm

adjacency

matrix

single

large graph

undirected/

directed

&

single edge

static

approximate/

all

frequent

subgraph

SEuS
pattern

growth

serial

algorithm

single

large graph

directed

&

single edge

static

approximate/

all

frequent

subgraphs

HSIGRAM
apriori

based

serial

algorithm
CAM

single

large graph

undirected

&

single edge

static

approximate/

all

frequent

subgraphs

VSIGRAM
pattern

growth

serial

algorithm
CAM

single

large graph

undirected

&

single edge

static

approximate/

all

frequent

subgraphs

FSM-H
apriori

based

parallel

algorithm

adjacency

list
set of graphs

undirected

&

single edge

static

all

frequent

subgraphs

gSpan-H
apriori

based

parallel

algorithm
min DFS code set of graphs

directed

&

single edge

static

all

frequent

subgraphs

p-MOFA
pattern

growth

parallel

algorithm

adjacency

list
set of graphs

undirected

&

single edge

static

all

frequent

subgraphs

p-gSpan
pattern

growth

parallel

algorithm
min DFS code set of graphs

undirected

&

single edge

static

all

frequent

subgraphs
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3.3.3. FFSM Algorithm

The FFSM algorithm (Huan et al., 2003) is both an apriori based algorithm and a

pattern-growth based algorithm. Apriori-based algorithms use the join operation (level-

wise strategy) to generate candidates, while Pattern-growth based algorithms use the ex-

tension operation to generate candidates. The FFSM algorithm proposes two new op-

erations by using join and extension operations: FFSM-join and FFSM-extension. The

graphs in this work are single, undirected, labelled and connected/unconnected, static

graphs and they are represented by the canonical adjacency matrices(CAM). In this study,

the graphs are transformed into canonical forms to describe the graphs uniquely. A graph

can have more than one canonical form, depending on the adjacency matrices that define

it. Among these canonical forms, the maximal code according to the lexicographic order

is determined as the canonical form of this graph. This maximal code is used to determine

if two graphs are isomorphic.

• Candidate generation: FFSM algorithm uses join and extension strategy while

generating candidates.

• Frequency evolution: The algorithm uses embedding lists to calculate the fre-

quency of a graph.

• Result: This algorithm finds all connected frequent subgraphs.

• Limitations: Not scalable.

The FFSM algorithm performs better than the gSpan algorithm according to tests on real

and synthetic datasets (Huan et al., 2003).

3.3.4. MOFA Algorithm

MOFA (Borgelt and Berthold, 2002) is a pattern-growth based algorithm that finds

connected subgraphs in a transactional molecule dataset. The graphs used in this study

are static and they are represented by adjacency list.
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• Candidate Generation: All discovered embeddings are stored in an embedding

list. This algorithm uses extension strategy to generate candidates but this extension

strategy is restricted to only this embedding list.

• Frequency Evolution: This algorithm applies the subgraph isomorphism test to

embedding list to calculate the frequency of graphs and uses some pruning methods

to facilitate the frequency calculation.

• Result: This algorithm finds all frequent subgraphs.

• Limitations: Because the MOFA algorithm generates many duplicates, the fre-

quent subgraphs generated may not be frequent actually.

3.3.5. gSpan Algorithm

The gSpan algorithm (Yan and Han, 2002) is a pattern-growth based algorithm

that finds all the frequent subgraphs in a dataset. The graphs used in this study are undi-

rected simple graphs and they are represented by adjacency list. The general properties

of the Apriori-based algorithms and the problem they face are the costly candidate gener-

ation and the subgraph isomorphism test. To overcome these problems, gSpan algorithm

proposes a new frequent subgraph mining algorithm that does not generate candidate sub-

graph. The gSpan algorithm propose a new method called DFS code to represent graphs.

Since the aim is to represent a graph uniquely, minimum DFS code according to the lexi-

cographic order is used.

• Candidate generation: While apriori based algorithms are based on the breadth

first strategy to generate candidates, the gSpan algorithm constructs a hierarchical

search tree called the DFS code tree instead of generating candidates. Each node of

DFS code tree is a minimum DFS code that represents a graph. The minimum DFS

code of a graph is the first code obtained when encounter this graph while traversing

DFS-tree according to the pre-order search. The DFS code is grown by adding one

edge to each node until represent all dataset. However, each node of DFS-tree must

represent the minimum DFS code of a graph, otherwise this node is pruned. The

subgraphs are discovered by traversing DFS tree according to the pre-order.
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• Frequency evolution: The transaction lists of each discovered subgraph are stored

and these lists are used to calculate the frequency of a subgraph.

• Result: This algorithm finds all frequent subgraph.

• Limitations: Not scalable.

GSpan algorithm outperforms the FSG and MOFA algorithms.

3.3.6. CloseGraph Algorithm

The CloseGraph algorithm (Yan and Han, 2003) is an algorithm based on the

gSpan algorithm, which finds only closed frequent subgraphs. The graphs used in this

algorithm may be simple or non-simple, labelled or unlabelled, directed or undirected,

connected or unconnected graphs and they are represented by adjacency list. There can

be more than one edge between nodes. This algorithm finds only closed frequent sub-

graphs instead of all frequent subgraphs to mine large datasets more efficiently and it also

narrows the search space by suggesting two new concepts: equivalent occurrence and

early termination. The aim of the algorithm is to find all closed frequent subgraphs but,

in some cases, early termination may fail, and all closed frequent subgraphs may not be

found. The completeness of the algorithm is guaranteed by detecting situations in which

early termination may fail.

• Candidate generation: Since the CloseGraph algorithm is a gSpan based algo-

rithm, it uses the rightmost extension while generating candidate subgraphs.

• Frequency evolution: This algorithm uses the transaction lists to calculate the

frequency of a graph.

• Result: CloseGraph algorithm finds all closed frequent subgraphs.

• Limitations: Failure detection takes a lot of time.

CloseGraph algorithm outperforms the gSpan algorithm, but it may miss some important

patterns.
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3.3.7. SIGRAM Algorithm

The aim of this algorithm (Kuramochi and Karypis, 2005) is to find frequent sub-

graphs in single large sparse graphs. The graphs used in the algorithm are undirected,

labelled and connected graphs. In this study, three different formulations are used to find

frequent subgraphs. First formulation is exact discovery problem. In this formulation, all

frequent subgraphs that satisfy the specified threshold value are determined in single large

graph. Second formulation is approximate discovery. In this formulation, instead of all

frequent subgraphs in a single large graph, as many frequent subgraphs as possible that

satisfy the certain threshold values are determined. Third is upper bound discovery prob-

lem. According to this formulation, an upper limit is specified and instead of finding all

frequent subgraphs, as few frequent subgraphs as possible are determined satisfying the

upper limit. Two new methods are proposed in this study: HSIGRAM and VSIGRAM.

HSIGRAM algorithm: HSIGRAM algorithm is an apriori based algorithm and it is

applied on single large graph. Graphs are represented by canonical adjacency matrix.

This algorithm depends on the breadth first strategy.

• Candidate generation: HSIGRAM algorithm uses the level-wise strategy while

generating candidates.

• Frequency evolution: HSIRAM algorithm uses MIS method to calculate frequency

of a candidate. There are two different frequency calculation in this method exact

and approximate. The first method, frequency calculation is done as follows: The

frequency of a subgraph is equal to the size of the overlap graph of maximum inde-

pendent set of this subgraph. The second frequency calculation is done as follows:

The frequency of a k-size subgraph is equal to the frequency of the subgraph which

has the lowest frequency among all (k-1)-size subgraphs of this k-size subgraph.

The minimum value of these two frequency is determined as the frequency of the

subgraph.

• Result: HSIGRAM algorithm finds all or approximate frequent subgraphs.

• Limitations: HSIGRAM algorithm is not an efficient method.

HSIGRAM algorithms outperforms the SEuS and Subdue algorithms.
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VSIGRAM algorithm: VSIGRAM algorithm is a pattern-growth based algorithm and

it is applied on single large graph. Graphs are represented by canonical adjacency matrix.

VSIGRAM algorithm depends on the depth first search strategy.

• Candidate generation: VSIGRAM algorithm uses the extension strategy while

generating candidates.

• Frequency evolution: In the VSIGRAM algorithm based on the MIS measure

while calculating the frequency of a (k+1)-size subgraph.

• Result: VSIGRAM algorithm finds all frequent subgraphs.

Since VSIGRAM algorithm requires less subgraph isomorphism checking, VSIGRAM

algorithm outperfoms the HSIGRAM algorithm.

3.3.8. GERM Algorithm

The aim of GERM algorithm (Berlingerio et al., 2009) is to find graph evolution

rules that describe the local and structural changes in a dynamic graph that constantly

changing graphs over time. This graph evolution rules are derived from frequent sub-

graphs. Single large graphs are used as input and this graph is connected labelled graph.

Edge labels specify the time stamps that indicate first appearance of this edge. The GERM

algorithm finds frequent subgraphs that have different time stamps. That is, if two isomor-

phic subgraphs where all edges have the same time stamps, one of them is not considered

while calculating the frequency. The purpose is to find frequent subgraphs that appear in

different time snapshots. The GERM algorithm is a modification of the gSpan algorithm.

It uses the main properties of the gSpan algorithm and adapts the gSpan algorithm to a

single large graph. Since the frequency calculation for a transactional graph dataset and

single large graph are different from each other, it also adapts the frequency calculation

of gSpan algorithm.

• Candidate generation: The GERM algorithm uses the rightmost extension strat-

egy while generating candidates.

• Frequency evolution: The GERM algorithm uses the minimum image based sup-

port computation strategy while calculating the frequency of a graph.
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• Result: The GERM algorithm finds frequent subgraphs and derives graph evolution

rules from these frequent subgraphs.

3.3.9. Stream FSM Algorithm

Stream FSM algorithm (Ray et al., 2014) finds frequent subgraph in a single large

graph. The graph used in this study are undirected, labelled graph and multiple edges are

not allowed. The input of this algorithm is the single large graph with stream updates.

So, this single large graph is a dynamic graph. The algorithm is assumed that the node or

edges are not deleted or modified. Only nodes and edges are added with a new stream.

Updates come in batches and contain labelled nodes and edges. The aim of the algorithm

is to transform the single large dynamic graphs into graph transactions. These graph

transactions are mined by another frequent subgraph mining algorithms that are used

graph transactions as input to find frequent subgraphs. Whenever a new batch arrives, this

algorithm deals with the region that changes with the update of the graph, the frequent

subgraphs in the updated graph are found and reported.

In this algorithm, first, a new incoming batch of updates is added to the graph.

Each edge is selected as the anchor point and the neighborhoods around it are found.

Each edge in the neighborhood is marked as extracted so that it will not come back in the

next neighborhood. Extracted neighborhoods are considered graph transactions. Another

frequent subgraph mining algorithms that mine graph transaction is used to find frequent

subgraphs in these extracted graph transactions. Canonical labels and frequencies of these

frequent subgraphs that found after the update are stored in a dictionary data structure.

These operations are repeated for each new batch updates. At the end of each update,

frequent patterns and their frequencies are updated.

Stream FSM algorithm outperforms the GERM and Subdue algorithms.

3.3.10. Mining Interesting Patterns and Rules in a Time Evolving

Graph

The purpose of this algorithm (Miyoshi et al., 2011) can be summarized in three

steps: The first is to find the frequent subgraphs in the dynamic graphs, the second is
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to extract the graph evolution rules from these frequent patterns, and to make a graph-

based summarization of these rules. The graphs used in this algorithm are undirected and

labelled graphs. This algorithm is a modification of GERM algorithm and the input of

this algorithm is single graph. The difference between them, the graphs in this algorithm

may have multiple edges with different labels. Multiple edges are allowed between nodes

because more than one relationship may have been established at different times.

• Candidate generation: Since this algorithm based on GERM algorithm, it uses the

rightmost extension strategy while generating candidates.

• Frequency evolution: This algorithm stores occurrence lists that holds all occur-

rences of a subgraph in a single large graph. For all occurrence, the ratio of unique

vertices of this occurrence to total number of vertices in single large graph is calcu-

lated. The minimum one is the support of this subgraph.

• Result: This algorithm extracts frequent subgraphs and graph evolution rules from

these frequent subgraphs, as GERM algorithm does.

3.3.11. SUBDUE Algorithm

The Subdue algorithm (Holder et al., 1994) tries to find frequent subgraph in di-

rected or undirected single large graph. All isomorphic graphs of discovered subgraph

in the input graph is represented by a single vertex that denotes the code of discovered

subgraph. The input data is encoded and compressed in this way.

• Candidate generation: In this algorithm, the candidate generation starts with a sin-

gle vertex and a new edge is added to all possible ways as in the extension strategy.

The minimum description length of the candidate graph generated after extension

should not be less than the minimum description length of graph that prior the ex-

tension. Furthermore, other background knowledge provided by the user can be

used to narrow the search space.

• Frequency evolution: The SUBDUE algorithm uses the minimum description

length of a subgraph to calculates its frequency.

• Result: Since the SUBDUE algorithm uses the inexact graph matching while dis-

covering the graphs, finds approximate frequent subgraphs.
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3.3.12. SEuS Algorithm

SEuS algorithm (Ghazizadeh and Chawathe, 2002) tries to find frequent subgraph

in single large graph. The graphs used in this algorithm are labelled, directed graphs.

The subgraph of this single large graph should be connected. SEuS algorithm consist

of three phases: summarization, candidate generation and counting phase. Especially

for large graph, database scanning is too costly and inefficient. For this reason, int the

summarization phase, SEuS algorithm summarizes the graph dataset and stores this sum-

mary in-memory. In the candidate generation phase, the algorithm tries to find frequent

subgraph in this summarization to avoid scanning database. In the counting phase, the

frequencies of subgraphs are calculated.

• Candidate generation: SEuS algorithm generates candidates by using extension

strategy.

• Frequency evolution: The frequency calculation of the any candidate subgraph

consists of two steps. First, the estimated support is calculated by using data sum-

maries. If this estimated support satisfies the minimum support threshold, the exact

support is calculated by using pointer to the parent of this subgraph on disk.

• Result: Since the frequent subgraph are searched in a summary of graph dataset,

the output of algorithm is approximate frequent subgraphs which are the supper set

of complete frequent subgraphs.

3.3.13. FSM-H Algorithm

FSM-H algorithm (Bhuiyan and Al Hasan, 2015) is a parallel FSM algorithm

based on MapReduce, a distributed platform. MapReduce framework consist of two

phases: Map and Reduce. In the Map Phase, input data is partitioned over the worker

nodes and these worker nodes calculate local support. In the Reduce phase, the actual

support of any subgraphs is calculated by collecting local support of this subgraph from

worker nodes. The FSM-H algorithm runs iteratively. The output of iteration n is the

n-size frequent subgraphs. To calculate the (n+1)-size frequent subgraph, the output of

iteration n is used.
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The FSM-H algorithm consists of three phases: Data partition, preparation and

mining. In the data partition phase, the input is divided into partitions with equal number

of graphs. Also, at this partition, all infrequent edges are omitted from the input. During

the preparation phase, specific data structures are prepared for each partition and frequent

subgraphs of this partitions are found. Then, the output of each iteration is written in

HDFS. During the mining phase all possible frequent subgraphs are found.

• Candidate generation: To generate the candidates, this algorithm uses breadth

first strategy and extension strategy. (n+1)-size candidate subgraph is obtained by

adding a new edge between an existing node and newly introduced node, or between

two existing nodes.

• Frequency evolution: The FSM-H algorithm uses the occurrence lists to calculate

frequencies of graphs.

• Result: The FSM-H algorithm finds all frequent subgraphs.

3.3.14. gSpan-H Algorithm

The gSpan-H algorithm (Sangle and Bhavsar, 2016) is a parallel modification

of gSpan algorithm that tries to find frequent subgraphs in large datasets based on the

MapReduce method. The graphs used in the algorithm are simple, connected, labelled

and directed graphs. gSpan-H algorithm consists of three phases as in FSM-H algorithm.

The difference between the gSpan-H algorithm and the FSM-H algorithm, the gSpan-H

algorithm avoids costly candidate generation and subgraph isomorphism checking.

• Candidate generation: The gSpan-H algorithm uses breadth first strategy and ex-

tension strategy, as FSM-H algorithm does.

• Frequency evolution: The gSpan-H algorithm uses the minimum DFS code to

check whether two graphs are isomorphic, as gSpan algorithm does.

• Result: This algorithm finds all frequent subgraphs.

The gSpan-H algorithm outperforms the FSM-H algorithm.
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3.3.15. p-MOFA and p-gSpan Algorithm

The previously developed MOFA and gSpan algorithms are suitable for small

datasets. In this work, parallel versions of algorithms are proposed to work on large

datasets: p-MOFA and p-gSpan (Meinl et al., 2006). This algorithm is a thread-based

algorithm that runs on a shared memory system with 12 processors. The general con-

cepts of p-MOFA and gSpan algorithms are the same as the algorithms presented earlier

(MOFA, gSpan) and only the work to be done is distributed among multiple workers.

For each worker(thread) there is a stack that holds the nodes that have not been checked

before. Each thread tries to find frequent subgraphs in its stack and keeps these frequent

subgraphs. Since it is not known exactly how much work the thread will do, a proper load

balancing needs to be done. If any work of thread is done before the other threads, half

of the work in the stack of any running threads is assigned to empty thread. In this case,

however, there will still be a load imbalance because this thread will finish its work before

others. In the MOFA algorithm, idle threads are kept in a list that each thread can access.

Each thread checks this list when it completes its work in its main loop, and if there is an

idle thread, it sends half of the work in its stack to this idle thread. Idle threads wait the

end of work in main loop of running threads, if the threads are too busy, the idle threads

may have to wait too long. In p-gSpan algorithm, global list keeps running threads instead

of idle threads. If any thread finishes its work, it omits itself from list. It then takes half

the work of the other running thread in the list. This process is carried out iteratively. The

p-gSpan algorithm outperforms the p-MOFA algorithm.
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CHAPTER 4

PARALLEL FSM ALGORITHM IMPLEMENTATIONS

Social media data is a large dataset that have a lot of trivial data and represented

by graphs. Mining social media data may provide a different perspective and may find

previously unknown relations on this data. Frequent subgraphs on social media can be

used to detect communities and their social structure, to analyze human behavior and to

produce suggestions for a recommendation system.

According to the algorithms examined in this thesis, most FSM algorithms suffer

from too many candidate generation and subgraph isomorphism testing to calculate the

frequencies of candidates. FFSM and gSpan algorithms are the most efficient algorithms

among popular FSM algorithms. However, the FFSM algorithm has a significant disad-

vantage compared to the gSpan algorithm. The FFSM algorithm keeps all the discovered

embeddings in an embedding list to avoid the subgraph isomorphism test. This situation

requires a lot of memory usage. Especially for large datasets, these embedding may not

fit in memory. gSpan algorithm significantly reduces search space using a more compact

data structure called DFS tree instead of candidate generation. It also significantly sim-

plifies the subgraph isomorphism test with a new introduced canonical labelling system,

called minimum DFS code. Since this algorithm does not store the isomorphic graphs, it

requires less memory than the FFSM algorithm.

The general limitation of most FSM algorithms is that they are not suitable for

large datasets. The generated candidates may not fit in a single machine or working on

a single machine is not an efficient method. Because social media data is so large and

gSpan algorithm is also not suitable for very large datasets as the other FSM algorithms.

A parallel FSM algorithm is needed to mine social media data. Since the gSpan algorithm

performs better than the other FSM algorithms, in this thesis, two different parallel imple-

mentations of the gSpan algorithm have been performed. One of the implementation is a

Spark based algorithm that can operate both locally on a single machine or on a cluster.

The second algorithm is a multi-threaded algorithm based on Fork/Join framework that

works on a single machine.

The most important part of the gSpan algorithm is the construction of the DFS
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tree. For this reason, the DFS code tree is described in more detail in this section:

DFS code and DFS code tree: Using the new canonical labelling system, while travers-

ing a graph according to the depth first strategy, each vertex is assigned an edge code

according to the discovery time. Let vi and vj be two vertices with an edge between them.

i and j give information about the discovery time of these vertices. If i < j, the node vi

is the previously discovered before node vj . According to the discovery times of nodes,

each edge is represented 5-tuple (Yan and Han, 2002):

〈 node vi identifier, node vj identifier, node vi label, edge label, node vj label 〉.

A DFS code of a graph consist of all edge codes representing the edges of this

graph. At the level m in the DFS code tree, there are DFS codes belonging to (m-1)-

size subgraphs. As the DFS code tree grows, child nodes ((m + 1)-th level nodes) are

obtained by adding a new edge to the m-th level nodes. However, in this case the same

subgraphs can be obtained more than once. These graphs are called duplicated graphs.

The gSpan algorithm uses the rightmost extension technique to avoid duplicate graphs,

and only extension on the rightmost path is allowed.

The nodes that do not have the minimum DFS code in the DFS code tree are

pruned. This reduces the size of the DFS code tree and avoids the generation of redundant

candidates.

If two subgraphs are assigned the same canonical label, these two graphs are iso-

morphic to each other. In this algorithm, the DFS code growth and subgraphs isomor-

phism test are performed in a single procedure instead of a separate procedures, so that

the computation time is significantly reduced.

Both implementations are based on gSpan algorithm. Therefore, the input of these

inplementations are transactional dataset and they constructs DFS tree by using righmost

extension strategy to represent the all graphs in a dataset. The graphs used in these imple-

mentations are simple, undirected, labelled and connected graphs. Both implementations

use min DFS code strategy to facilitate the subgraph isomorphism and use transaction list

strategy to calculate the frequency of subgraphs.
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4.1. Spark based Parallel gSpan algorithm Implementation

This algorithm is a parallel modification of the gSpan algorithm implemented us-

ing the Apache Spark framework and the GraphFrame package provided by this frame-

work. This algorithm can operate both locally on a single machine with multiple threads

and on a standalone cluster of multiple machines. Algorithm 1 demonstrates the parallel

Algorithm 1 Spark based Parallel gSpan Algorithm

1: Create Spark configuration and context;
2: GF ← readData (sc, fileName); sc; � (GF represents the GraphFrames
3: GF,E ← removeInfrequents (GF,minSupport); � (E represents EdgeCodes)
4: Initialize S to empty DFS code list;
5: foreach edge code e ∈ E do
6: gf ← ConstructOneEdge (GF, e)
7: support ← size of gf
8: Initialize s with e, gf ,support � (s is DFS Code)
9: SubgraphMining (GF, S, e, s)

10: removeEdge (GF, e)
11: end foreach
12: procedure CONSTRUCTONEEDGE(GF, e)
13: foreach graph G in GF do
14: S ← all frequent one-edge frequent subgraphs that contain e in G;
15: S1 ← S1 ∪ S
16: end foreach
17: return S1

18: procedure SUBGRAPHMINING(GF, S, e, s)
19: if isMinDFScode(s) then
20: S ← S ∪ {s}
21: Enumerate(GF, s);
22: foreach child c of s do
23: if support(c) � minSupport then
24: s ← c
25: SubgraphMining(GF, S, e, s)

26: end foreach
27: procedure ENUMERATE(GF, s)
28: foreach g ∈ s.gf do � (s.gf is the GraphFrames that contain s)
29: find all children c of s occurs in g
30: foreach child c do
31: c.gf ← c.gf ∪ g.id � (c.gf is the graph id set that contain c)
32: end foreach
33: end foreach

gSpan algorithm that works as Spark application.

Step 1 (line 1): Spark properties, such as master URL, memory, cores and appli-

cation name are configured in the first step of the algorithm. Then, a Spark configuration
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is created that represents a connection to work in parallel on a Spark cluster. By default

Spark starts up in local mode on a single machine rather than distiributed environment.

Spark can also start on a Spark standalone cluster to run Spark against multiple machines.

The master url decides whether a spark application will run in a cluster or local mode. In

the Spark implementation, the collections are parallelized by using Spark context’s par-

allelize method. A distributed dataset that can be operated on in parallel is created with

specified number of partitions and spark runs one task for each partitions.

Step 2 (line 2): The graphs are read from the text document. ”t # 0” specifies a

graph with id is 0. v 0 6 indicates a vertex of the graph 0. The first entry after the expres-

sion v specifies the id of this vertex, the second entry specifies the label of this vertex. e

0 1 2” indicates an edge of the graph 0. The first entry after the expression e specifies the

id of source vertex of this edge, the second entry specifies the id of destination vertex of

this edge and the third entry specifies the label of this edge. The vertices informations,

ids and labels, are stored in a DataFrame. The edges informations, vertices ids and labels

that forming this edge and edge labels, are stored in another DataFrame. GraphFrames

are constructed by using vertex and edge DataFrames to represent the graphs in the text

document.

Step 3 (line 3): After the construction of graphs, infrequent edges and vertices that

do not satisfy the minimum support are extracted from the graph dataset. Then frequent

vertices and edges are relabelled and sort in decreasing frequency. Edge codes are created

to represent frequent edges. These edge codes are stored in the edge code set. The edge

codes that do not satisfy minimum support are removed from edge code set.

Step 4 (line 6-7): In the ConstructOneEdge (GF, e) method, for each edge that

pointed by the edgecode, all graphs that contain current edge are found in the graph

dataset. The number of these graphs indicates the support of this edge.

Step 5 (line 8): The DFS Code of current edge is constructed by using edge code,

graph sets contain this edge and its support.

Step 6 (line 9): Subgraph mining is the one of most important part of gSpan

algorithm. The first step in the subgraph mining phase is to check whether the DFS code

representing a graph is minimum. In the isMinDFSCode (s) method, the DFS tree that

represents the graphs is traversed according the pre order search.

If a code is minimum, in the Enumerate (GF, s) method, for each graph where

this DFS code takes place in the graph dataset, all forward or backward edges are found

by adding one new edge to this code. They are called children of this DFS code. In
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this method, to find the frequency of a DFS code, the number of children of this code

is calculated for each graph containing that code in the graph dataset. Each graph has a

unique id number to represent it. To find the number of children, the ids of the graphs

containing the discovered children are stored.

These children are obtained by adding a new edge to previous DFS code. If any

children are satisfied the minimum support, the edge code of new edge is added to DFS

code. This procedure continues by calling SubgraphMining (GF, S, e, s) method until all

graphs in the graph dataset are represented in the DFS code Tree.

Step 7 (line 10): The edge that corresponds the current edge code is removed

from graph dataset to reduce the search space.

Steps 4, 5, 6 and 7 are repeated for each edge code to represent the all graphs in

DFS code tree.

4.2. Multi-thread based Parallel gSpan Algorithm Implementation

This algorithm is a multi-threaded parallel modification of the gSpan algorithm

implemented using the Java Fork/Join framework that provide thread pool. The threads

and jobs to be done are managed by this framework. One of the most important differ-

ences between these two algorithms is the data structures used. The Spark Framework

provides GraphFrame data structure to represent graphs and its properties, but in this al-

gorithm, custom classes are defined to represent vertices, edges and graphs properties in

this algorithm. To create distributed collections, while the Spark context’s parallellize

method is used in the Spark implementation, but in this implementation, par method that

provided by the SCALA language is used. Apart from these, both algorithms consist of

methods which do the same work but use different data structures.

Step 1 (line 1): In the first step, thread pool is configured.

Step 2 (line 2): In the second step, the data is read from the text document and

stored using the custom classes. An instance from vertex class represents the vertex id

and its label, an instance from edge class represents the vertices ids and edge label that

form this edge.

Step 3 (line 3): Infrequent vertices and edges are removed graph set by using

removeInfrequents (GS,minSupport) method. In addition, in this method, frequent ver-

tices and edges are relabelled and edge codes are created for each frequent subgraph.
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Step 4 (line 6): All one-edge frequent subgraphs and its support are found for

each graph in the graph set that contain this edge.

Step 5 (line 8): DFS code is generated in a similar way to the previous algorithm.

Step 9 (line 9): Subgraph mining is performed in this step. First, it checks whether

the DFS code is minimum. If the code is minimum, all children of this one-edge frequent

subgraph are discovered using the Enumerate (GS, s) method. The DFS code is enlarged

by adding all children that provide the minimum support to frequent subgraph.

Step 10 (line 10): The discovered edge is removed from graph dataset to reduce

search space.

The steps between 5 and 11 are repeated for each edge code.

Algorithm 2 Multi-thread based Parallel gSpan Algorithm

1: Create threads and thread pool;
2: GS ← readData (fileName); � (GS represents graph set)
3: GS,E ← removeInfrequents (GS,minSupport); � (E represents EdgeCodes)
4: Initialize S to empty DFS code list;
5: foreach edge code e ∈ E do
6: gs ← ConstructOneEdge (GS, e)
7: support ← size of gs
8: Initialize s with e, gs,support � (s is DFS Code)
9: SubgraphMining (GS, S, e, s)

10: removeEdge (GS, e)
11: end foreach
12: procedure CONSTRUCTONEEDGE(GS, e)
13: foreach graph G in GS do
14: S ← all frequent one-edge frequent subgraphs that contain e in G;
15: S1 ← S1 ∪ S
16: end foreach
17: return S1

18: procedure SUBGRAPHMINING(GS, S, e, s)
19: if isMinDFScode(s) then
20: S ← S ∪ {s}
21: Enumerate(GS, s);
22: foreach child c of s do
23: if support(c) � minSupport then
24: s ← c
25: SubgraphMining(GS, S, e, s)

26: end foreach
27: procedure ENUMERATE(GS, s)
28: foreach g ∈ s.gs do � (s.gs is the graph set that contain s)
29: find all children c of s occurs in g
30: foreach child c do
31: c.gs ← c.gs ∪ g.id � (c.gs is the graph id set that contain c)
32: end foreach
33: end foreach
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The complexity of subgraph generation is O(2n
2
) (n is the number of vertices of

a graph). Because there are
(
n
2

)
= 1

2
n(n − 1) pairs of distinct points. If we do not allow

loops or multiple edges, each of these pairs determines one possible edge, and we can

have any subset of those possible edges. A set with
(
n
2

)
members has 2(

n
2) subsets, so

there are 2(
n
2) possible graphs without loops or multiple edges.

In the subgraph mining phase, all the children of a graph are found. And the

subgraph mining phase is repeated recursively to calculate the frequency of each child

and decide whether to add it to the DFS code tree. So, the time required for a subgraph

support evaluation is O(nm) (n is the number of graph’s vertices, m is the number of

subgraph’s vertices). Total complexity of this algorithm is O(2n
2 ∗ nm).
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CHAPTER 5

EXPERIMENTAL RESULTS

In this thesis, two different parallel gSpan algorithms are implemented. The first is

an algorithm that is thread-based and use the Fork/Join framework. The second algorithm

is based on Spark framework, that is, it can operate locally or on the cluster which is based

on the cluster manager. The performance evaluation of the parallel gSpan algorithms have

been performed on two real world datasets. First is real chemical compound dataset is

used to evaluate the performance of the parallel gSpan algorithms. As social media data,

the friendster social network dataset (Leskovec and Krevl, 2015) provided by Stanford

University is used.

Nodes for chemical compound dataset represent atoms, edges represent bonds

between atoms. In the chemical compound dataset, the edges representing bonds have

different edge labels, since different atoms have different bonds. The label of a node

represents atom name. Each node has a unique id. This dataset contains 340 graphs.

Friendster is an online gaming networking site where users can make friends with each

other, and the Friendster social network allows users to create a group that other members

can join later. The Friendster dataset needs to be transformed into the input form of

the parallel gSpan algorithm. There are about 5000 communities in this dataset and each

community is regarded as a different graph. However, all edge labels are the same because

there is only a friend relationship between the users in the friendship dataset. Nodes

represent users, and the user id is used both as a node id and as a node label.

Friendster dataset contains only one edge label. But the different edge label sig-

nificantly affects the finding isomorphic graphs in a dataset. To monitor the affect of

different edge labels, both implementations are also tested on chemical compound dataset

as well as social media dataset.

All experiments are done on two different machines. The first machine has 8GB

RAM, windows 7 operating system and i7- 6700HQ processor with 8 cores. The sec-

ond machine has 8GB RAM, a windows 10 operating system and i7-7500U processor

with 4 cores. The datasets are first tested for multi-thread-based algorithm that based on

Fork/Join framework. Second, the datasets are tested while running the Spark based al-
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gorithm locally. In addition, both algorithms have been tested on two different computers

with 8 and 4-core processors. Third, the datasets are tested for a Spark-based algorithm

running on a standalone cluster that consist of two different machines.

5.1. The Results for Chemical Compound Dataset

The chemical compound dataset is evaluated from 4 different perspectives. First,

the number of frequent subgraphs obtained according to different minimum support val-

ues is evaluated. Second, the run-time of the multi-thread based implementation is evalu-

ated. Then, run times of Spark based implementation that performs both in local and on a

cluster is evaluated for this dataset.

The number of discovered frequent subgraphs for chemical compound dataset

when minimum support changed are shown in Fig 5.1. This figure shows the number

of frequent subgraphs with at least two edges. As the minimum support threshold is in-

creased, the number of discovered frequent subgraphs decreases.

Figure 5.1. The number of frequent subgraphs for chemical dataset.

Figure 5.2 shows the run times on two different computers with 8 and 4-core

processors of the multi-threaded implementation for chemical compound dataset. The

performance of the multi-threaded implemenration is monitored according to a minimum

support value that varies over a wide range. There is no frequent subgraph when the

minimum support exceeds 0.9. But there are also frequent subgraphs when the minimum
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support value drops below 0.4. Figure 5.3 shows the run times on two different computers

Figure 5.2. Run times of multi-threaded implementation for chemical compound dataset.

with 8 and 4-core processors and run times on standalone cluster with two machines of

the Spark based implementation. The Spark implementation cannot perform when the

minimum support value drops below 0.6. For this reason, performance evaluation in a

much smaller range is possible.

Figure 5.3. Run times of Spark-based implementation on different environment for

chemical dataset.

The Spark based implementation running on the cluster has shown performance

only for very small ranges and very large thresholds. The implementation cannot perform
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when the minimum support value drops below 0.7. Table 5.1 shows the result set of two

implementations for chemical compound dataset.

Table 5.1. Result set for chemical compound dataset.

minimum
support

multi
threaded
run time
(seconds)
(8 cores)

multi
threaded
run time
(seconds)
(4 cores)

Spark
run time
(seconds)

(local)
(8 cores)

Spark
run time
(seconds)

(local)
(4 cores)

Spark
run time
(cluster)
(seconds)

# of
frequent

subgraphs

0.95 0.10 0.45 56 70 310 0
0.9 0.12 0.46 58 71 325 1

0.85 0.15 0.51 58 71 324 1
0.8 0.17 0.52 58 71 333 1

0.75 0.23 0.61 73 92 321 2
0.7 0.25 0.66 73 92 461 2

0.65 0.56 0.78 210 368 3
0.6 0.8 1.23 14

0.55 1.37 1.39 22
0.5 1.67 1.72 37

0.45 1.73 1.82 54
0.4 1.85 1.94 62

0.35 2.02 2.09 67
0.3 2.12 118.77 75

5.2. The Results for Friendster Dataset

The friendster dataset is also evaluated from 4 different perspectives according

to the number of frequent subgraphs for different minimum support threshold and the

run-times for both two different implementations on two different environments.

The number of discovered frequent subgraphs for friendster dataset according to

the different support value are shown in Fig 5.4. As the minimum support threshold

increases the number of discovered frequent subgraphs decrease, as in the chemical com-

pound dataset. The results can be monitored in the friendster dataset for very small mini-

mum support values. Frequent subgraphs are not found when the minimum support value

exceeds 0.01.

Figure 5.5 shows the run times on two different computers with 8 and 4-core pro-

cessors of the multi-threaded implementation. Since the multi-thread based implementa-

tion performs well on this dataset, performance evaluation can be done in a wide range
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Figure 5.4. The number of frequent subgraphs for friendster dataset.

for minimum support value. As the number of subgraph isomorphism test decreases with

the decrease of the support value, the run time of implementation also decreases.

Figure 5.5. Run times of multi threaded implementation for friendster dataset.

Figure 5.6 shows the run times of the Spark based implementation on two dif-

ferent computers with 8 and 4-core processors for different support values. This figure

also shows the run times of Spark based implementation on cluster. The performance of

the Spark based implementation can be tested in a very small range as in the chemical

compound data set. When the minimum support value is less than 0.007 value, the per-
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formance of the Spark based implementation cannot be observed both in locally and on

cluster. Table 5.2 shows the result set of two implementations for friendster dataset.

Figure 5.6. Run times of Spark-based implementation for friendster dataset.

Table 5.2. Result set for friendster dataset.

minimum
support

multi
threaded
run time
(seconds)
(8 cores)

multi
threaded
run time
(seconds)
(4 cores)

Spark
run time
(seconds)

(local)
(8 cores)

Spark
run time
(seconds)

(local)
(4 cores)

Spark
run time
(cluster)
(seconds)

# of
frequent

subgraphs

0.0095 0.32 1.54 1516 1573 2230 1

0.009 0.22 1.49 1602 1673 2272 2

0.0085 0.27 1.53 3437 3453 3261 7

0.008 0.31 1.61 4303 5192 3254 9

0.0075 0.33 1.65 7821 7877 5895 10

0.007 0.47 1.75 9385 11617 6783 19

0.0065 0.69 1.82 88

0.006 0.8 2.08 116

0.0055 1.22 2.17 277

0.005 2 2.65 784

0.0045 3 3.80 3170

0.004 4.71 5.61 8283

As the multi threaded algorithm gives good results for two datasets, it also tested

for different dataset sizes for friendster dataset. First, the number of frequent subgraphs

is evaluated according to different dataset sizes. The results are displayed for 6 different

sizes of friendster dataset. Then the run time of implementation is evaluated. As the size

of dataset increase, the number of frequent subgraphs and run time of implementation
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also increase. Figure 5.7 shows the number of frequent subgraphs. Figure 5.8 shows the

run times for different dataset sizes. The minimum support value during these evaluations

is assumed to be 0.003.

Figure 5.7. The number of frequent subgraphs for different dataset sizes.

Figure 5.8. Run times of multi thread implementation for different dataset sizes.

The multi thread based algorithm is also tested against different thread counts.

When the number of threads increases, the run time of the algorithm decreases. Figure

5.9 shows the run times for different thread counts.
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Figure 5.10 represents the number of frequent subgraphs according to the different

support threshold for different dataset size.

Figure 5.9. Run times of multi thread implementation for diferent thread counts.

Figure 5.10. The number of frequent subgraphs for different supports and dataset sizes.

5.3. Discussion on Results

The multi-thread based implementation performs much better than the Spark based

algorithm both datasets. For chemical compound dataset, it is roughly 100 times faster
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than spark based implementation in locally and roughly 150 times faster than spark based

implementation on cluster. For friendster dataset, multi threaded implementation is roughly

4500 times faster than spark based implementation in locally and roughly 5500 times

faster than spark based implementation on cluster. When the dataset size and the number

of vertices and edges in a graph increase, the detecting of isomorphic graphs becomes

more difficult and the run time of algorithm grows substantially. Since there are too many

factors that affect the algorithm’s running time, it is difficult to exactly know how much

better the multi threaded implementation is better than the spark implementation.

Although the chemical compound dataset contains less graph than the friendster

dataset, the run time for both algorithms is higher for the chemical dataset. This is be-

cause, while all edge labels are the same in the friendster dataset, there are multiple dis-

tinct edge labels in the chemical dataset. Multiple different edge labels also make it diffi-

cult to finding isomorphic graphs and it is significantly affects the run time of algorithm.

The performance of Spark based algorithm while running separately in local of

two computers is better than while running on a cluster with these two computers. Since

the computer are in distiributed environment on the cluster, the communication of com-

puters requires extra time. Spark framework is suitable not suitable for FSM on trans-

actional dataset and it gives bad results. Because the Spark framework performs better

on large datasets rather than small datasets. The size of these datasets is not enough for

Spark framework to give good results. However when we increase the dataset size, the

number of subgraph isomorphism tests and complexity increases exponentially. Because

subgraph isomorphism problem is an NP-complete problem.

When the processor core count increases the number of available threads that run

at the same time increases. 8 threads are executed on the 8-core machine, 4 threads are

executed on the 4-core machine. So the performance of both algorithms is better on a

computer with an 8-core processor for both sets of data. The thread counts also affect

the run time of implementation because when we increase the thread counts, run time of

multi threaded algorithm decreases.
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CHAPTER 6

CONCLUSION

A frequent pattern is a pattern that has more than a certain number of occurrences

in a data set. Frequent patterns provide a different perspective by discovering the unfore-

seen, meaningful information and relations in huge dataset. Social media is an important

example of huge datasets and mining a social media data provides interesting information

about human behavior and human interaction. Generally itemsets, sequences and graphs

are used as patterns in frequent pattern mining area. However, since the graphs are better

represent the social media data, they are used as the pattern in social media mining area.

In this thesis, FSM on social media data is focused. The processes of FSM and the

methods used in these processes are examined. In addition, a categorization is presented

by examining popular subgraph algorithms and considering the different aspects of these

algorithms. Within the scope of this thesis, by considering limitations of algorithms and

the challenges of the FSM as the too many candidate generation and subgraph isomor-

phism test, an existing FSM algorithm has been re-implemented based on two different

parallel implementations to overcome these deficiencies.

The algorithms have been tested on two different real datasets. Frequently encoun-

tered chemical compounds are discovered in chemical compound dataset. By applying

the frequent subgraph mining algorithms to the friendster dataset, that is a social media

dataset, frequent friendship associations between two or more users in all communities

are discovered.

It has been observed that the performance of a multi-thread based algorithm on a

single machine is better than the two performances of the Spark based algorithm that run

on both single machine and distributed environments, since the size of datasets are not

sufficient to see the advantage of Spark framework.

It has been also observed that the multi-threaded algorithm based on the Fork/Join

framework is suitable for large datasets and subgraph mining algorithms, whereas the al-

gorithm based on the Spark framework is not suitable for the subgraph mining algorithms

on transactional dataset. It has been also observed that the dataset size and thread counts

also affects the run time of this implementation.
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As a future work, since the social media data is constantly changing, these data can

be represented by dynamic graphs or streams. Existing FSM algorithms can be extendend

to work with both dynamic and static graphs or new FSM algorithm can be proposed.

Within the scope of this thesis transactional dataset has been studied. But most social

network are represented by single large graph. An existing FSM algorithm that work with

single large graph can be re-implemented to work with in parallel manner. And simple

graphs are used in this algorithm, that is there is at most one edge between two nodes.

But in any social network there can be different edges between two nodes. Existing FSM

algorithms can be modified to allow multiple edges between graphs.
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