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ABSTRACT

SHORT TIME BEHAVIOUR OF DAM BREAK FLOW INVOLVING

TWO LIQUIDS

The two dimensional dam break problem for wet bed case is investigated. The

leading order and the second order problem are stated in nondimensional form. Solution

to the leading order problem by using three different methods is given and explained in

detail. Both Fourier series method and Galerkin method have difficulties on its own be-

cause of the singularity at the triple point. Although the singularity is ignored in Galerkin

method, the method does not work except for the interface. Thus conformal mapping tech-

niques is preferred because of the convenience and the strength of the complex analysis.

The velocity profiles at whole boundary are obtained by using this conformal mapping.

The second order solution of velocities are also obtained by using the same conformal

mapping.

On the other hand, the domain decomposition method (DDM) is applied for the

second order dam break problem of dry bed case. The leading order solution helped to

determine the suitable parameters for DDM. The leading order and second order solution

of the free surfaces give a more realistic shape using the Lagrangian solution at the upper

corner point.

We assume this work contains useful and applicable methods in it for gravity

driven flows and it will wake up different perspectives in readers mind.
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ÖZET

İKİ SIVI İÇEREN BARAJ YIKILMASI AKIŞININ KISA ZAMAN

DAVRANIŞI

İki boyutta ıslak zemin için baraj yıkılması problemi incelenmiştir. Birinci mer-

tebeden ve ikinci mertebeden problem boyutsuz olarak ifade edilmiştir. Birinci mertebe-

den problemin çözümü üç farklı method kullanılarak verilmiş ve ayrıntılarıyla açıklanmıştır.

Köşe noktadaki tekillik, Fourier serisi ve Galerkin yöntemlerinin her ikisinde de kendi

içinde sıkıntılar meydana getirmiştir. Galerkin yönteminde tekillik ihmal edilmesine

raǧmen, yöntem arayüzey dışında işe yaramamıştır. Nitekim kompleks analiz tekniklerinin

gücü ve uygunluǧu nedeniyle, konformal dönüşüm tekniǧi tercih edilmiştir. Bu confor-

mal mapping kullanılarak tüm sınırlarda hız profilleri elde edilmiştir. İkinci mertebeden

hızların çözümleri de yine aynı conformal mapping kullanılarak elde edilmiştir.

Diǧer taraftan, ikinci mertebeden kuru zemin için baraj yıkılması problemine alan

ayrıştırma (domain decomposition, DDM) yöntemi uygulanmıştır. Birinci mertebe prob-

lemin çözümü DDM yöntemi için uygun parametreleri belirlemize yardım etmiştir. Bir-

inci mertebeden ve ikinci mertebeden serbest su yüzeyi çözümleri, üst köşe noktadaki

Lagrangian çözümü kullanılarak daha gerçeǧe uygun bir şekil elde edilmiştir.

Bu çalışmanın, yerçekimi etkisi altındaki akışlar için kullanışlı ve uygulanabilir

yöntemler içerdiǧini ve okuyucunun aklında farklı bakış açıları uyandıracaǧını umuyoruz.
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CHAPTER 1

INTRODUCTION

In this thesis, we examine the motion of two liquids interacting under the effect

of gravity. The gravity driven flow starts when a vertical thin plate between the two

flow regions abruptly removed. The sudden change in pressure leads to a singularity at

velocities in the neighbourhood of the triple point (the upper point of the interface of the

two liquids) and the bottom point (the lower point of the interface of the two liquids).

The illustration in Fig. 1.1 makes these singularities understandable which are seen as

jet-formation in real life. It is assumed in this thesis that the fluids are incompressible,

inviscid and irrotational, and that initially fluids are at rest. For small times it is known

that viscosity can be ignored Dressler (1952).

Figure 1.1. Scheme of the dam-break flow: (a) initially two liquids are at rest and

separated with a vertical thin plate (dam); (b) the dam is removed at t′ = 0+

and flow starts; (c) Expected formation of a jet at the triple point

This idealized dam-break flow has a significant importance in civil engineering

since the behaviour of jets at early stages provides foresight in developing the required

design of a dam. A dam can be protected from the damages of natural or unnatural

causes in emergency with the investigation of the early time evolution of the velocity

profiles. Thus the motion of a fluid interacting with a solid body with a free surface
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has a long history in fluid mechanics. The most interesting and important feature of this

area is jet formations. “Mathematically, this results from the confluence of two analytical

boundary conditions. Physically, this is not suprising, in view of the “splashing” which

occurs when, for example, a falling body impacts with the free surface” Lin (1984). This

makes the computation of the velocities and free surface displacements difficult near the

point of intersection of the free surface and a moving body. The studies of gravity-driven

flows due to dam breaking were started in 19. century by Ritter (1892) and confirmed by

Pohle (1950) and Whitham (1892). Stoker extended the studies of Ritter to wet bed case

J.J.Stoker (1958).

It is convenient to use potential theory to describe such jet-like formations when

the initial stages of motion is considered. There are two approaches to describe the mo-

tion of a fluid and its related properties; Lagrangian description and Eulerian description.

Studies by Pohle and Stoker used the Lagrangian description of motion. Pohle and Stoker

stated that “The Lagrangian representation, has the far-reaching advantage that the inde-

pendent space variables are the initial coordinates of the particles: the region occupied

by the fluid is therefore a fixed region.” But this is not suitable for the moving bound-

ary problems since the exact location of liquid particles near the intersection points is

unknown. This makes rather adequate to use Eulerian variables based on potential the-

ory for the free-boundary problems. In the paper written by Pohle, Taylor expansion in

time t′ is applied to liquid displacement and the hydrodynamic pressure and the leading-

order problem is analysed. Thus Pohle derived an early time solution close to the bottom

point in Lagrangian variables which ignores the physical shape of the liquid free surface.

Calculations in Eulerian variables also involve power series in time but represents the be-

haviour of the liquid free surface close to the bottom precisely. In both Lagrangian and

Eulerian cases this solution will be the outer solution which needs to be corrected by an

inner solution to provide a complete description of many extreme motion problems such

as dam-break problem.

Another interesting wavemaker problem was carried out by Peregrine (1983) the-

oretically. This problem was a linearised model of the motion of a dam during an earth-

quake. Peregrine developed an outer solution by using a moving coordinate system which

is fixed on the wavemaker. A similar analytical outer solution is obtained by Chwang

(1983) by using a stationary coordinate system and identified the logarithmic singularity

of the free surface at the intersection point. This paper emphasizes the nonlinear effect of

the hydrodynamic pressure on an accelerating vertical plate. Both Chwang and Peregrine

were aware of the necessity of the inner (local) solution valid near the corner point but

2



unable to determine it. The experimental contribution to this incomplete problem was

achieved by Greenhow and Lin (1983). Greenhow took various photographs with dif-

ferent speeds and clarified the streamlines to provide inspiration for local solution. The

singular behaviour of the leading order solution in time was also confirmed by Lin (1984)

experimentally and numerically. Comparison of the experimental, numerical and analyt-

ical results is also given. Lin predicted that it is essential to study the problem in a small

wavetank which makes the physical phenomena understandable. The numerical results

help to describe the local behaviour of the free surface close to the intersection point. In

the paper Lin (1984) used a new algorithm to overcome the numerical difficulties associ-

ated with the singularity by using sparse collocation point near the singularity anticipated

grids. It is concluded that the pressure in the thin jet is very low and its contribution to the

force can be ignored. But unfortunately, the analytical inner solution was still unknown.

These studies are extended by Joo (1989) for general types of wavemaker velocities in-

cluding capillary effects and for large time behaviour. However, such an analytical inner

solution was successfully derived in a relevant problem concerning a uniformly accel-

erating wavemaker by King (1994) using matched asymptotic expansions and integral

transform techniques. They obtained the thickness of the free surface as O(−t2 log t) by

equating the magnitude of the retained terms to the terms neglected in the dynamic bound-

ary condition. This order of the magnitude of the jet thickness was the main motivation

to construct an inner solution as discussed in Greenhow (1987). It was claimed that if

the order of the magnitude of this jet thickness is a priori, the accuracy and efficiency of

numerical calculation of such type of flows can be developed. This work is extended to

an impulsively moved plate Needham et al. (2007) and finally an impulsively accelerat-

ing plate Needham et al. (2008). Recently, this work has generalized by considering the

case of negative accelerations adding with the construction of the inner-inner asymptotic

expansions by Gallagher (2015).

The singularity and the indicated mushroom-like jet behaviour were discovered

by Stansby et al. (1998) for the wet-bed case of the dam-break problem. The theoretical

analysis were consistent with the experimental results in a horizontal channel just after

release. Long time structure is also conducted in this work experimentally and compared

with the Stoker’s shallow water solutions. Furthermore Korobkin and Yilmaz (2009),

solved (dry-bed case) dam-break problem by using complex analytic function theory. But

they needed the second order outer solution to derive the inner region dimension. In the

master thesis of Isidici (2011), the methodology and findings from the paper King (1994)

and applied to dam-break problem (dry-bed case) and the same solution as Korobkin

3



and Yilmaz was obtained. We noted a logarithmic singularity at the intersection point

and explained the necessity of a local analysis and an inner solution. Subsequently the

leading order dam-break problem of wet bed case is solved analytically and numerically

by Yilmaz et al. (2013). However the inner region problem is not studied. They used the

Fourier series method and compared the results by boundary element method with good

agreement for sufficiently large γ, which is the ratio of densities. In this work, the types

of the singularities at the triple point and at the bottom point are also identified as power

singularity (r−α) and logarithmic singularity respectively.

1.1. Formulation

The unsteady problem of the motion of two inviscid immiscible fluids under the

gravity at initial times is considered. At t′ = 0 we have two stationary liquids at different

levels seperated by a thin vertical plate at x′ = 0, 0 < y′ < H+ which represents a

dam. The liquid in the right is described with density ρ+ and lies in the region x′ > 0,

0 < y′ < H+ (Ω+). Similarly the liquid in the left is described with density ρ− and lies

in the region x′ < 0, 0 < y′ < H− (Ω−) (see Fig. 1.2). H+, H− are the liquid depths and

we assume H+ > H− in our study since the shallower liquid is on the left. Dimensional

variables are signified by primes.

The flow region is initially bounded by two horizontal free surfaces (x′ > 0,

y′ = H+ and x′ < 0, y′ = H−) and the horizontal rigid impermeable bottom (y′ =

0). The horizontal free-surface of the right liquid is denoted by y′ = η′+(x′, t′) and the

horizontal free-surface of the left liquid is denoted by y′ = η′−(x′, t′). At time t′ = 0,

the dam instantaneously vanishes and the flow starts with a sudden change in the pressure

distribution since the liquids are assumed to be incompressible. Just after the release

there will be also initially vertical free-surface, its position is x′ = ξ′+(y′, t′), H− <

ξ′+(y′, t′) < H+, and the interface, x′ = b′(y′, t′), and initially 0 < b′(y′, t′) < H−.

Hence, we have three free-surfaces and an interface of the flow region Ω = Ω+ ∪ Ω−,

which vary in time and have to be determined as a part of the solution. The free-surfaces

y′ = η′+ and y′ = η′− are functions of x′ and t′ since a liquid particle on them changes

its position with time. For the same reason, x′ = ξ′+ and x′ = b′ are functions of y′

and t′. The pressure distributions in the liquids are hydrostatic initially; p′+(x′, y′, 0) =

ρ+g(H+ − y′), p′−(x′, y′, 0) = ρ−g(H− − y′) and the pressure on the free surfaces are

atmospheric due to the Bernoulli’s equation. The ratio of the constant densities ρ+ and

ρ−, corresponding to the fluids in Ω+ and Ω−, is denoted by ”γ = ρ−/ρ+” and g is the
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gravitational acceleration.

Figure 1.2. Flow region at the initial time instant t′ = 0

Euler’s equations of motion for incompressible flows are formed by the momen-

tum equation

ρ
DV′

Dt′
= ρ�g −∇′p′ (1.1)

and the incompressible form of the continuity equation

∇′ ·V′ = 0 (1.2)

in vector form, where the particle acceleration is

DV′

Dt′
=

∂V′

∂t′
+ (V′ · ∇)V′

and ∇ = (∂/∂x′, ∂/∂y′) is the two-dimensional gradient operator in (x′, y′) cartesian

coordinate system. Here V′ = (u′, v′) is the velocity field. We denote the horizontal

velocity by u′ = u′(x′, y′, t′) and the vertical velocity v′ = v′(x′, y′, t′). Hence, the two

5



dimensional problem (1.1)-(1.2) becomes

∂u′±

∂t′
+ u′±∂u

′±

∂x′ + v′±
∂u′±

∂y′
= − 1

ρ±
∂p′±

∂x′ in Ω± (1.3)

∂v′±

∂t′
+ u′±∂v

′±

∂x′ + v′±
∂v′±

∂y′
= − 1

ρ±
∂p′±

∂y′
− g in Ω± (1.4)

∂u′±

∂x′ +
∂v′±

∂y′
= 0 in Ω±. (1.5)

in component form.

At t′ = 0, since the liquid is at rest, the velocity components are zero, the free

surfaces, the interface are at their initial positions (t′ = 0) and the pressure distribution is

hydrostatic,

u′±(x′, y′, 0) = v′±(x′, y′, 0) = 0, η′±(x′, 0) = H±

ξ′+(y′, 0) = b′(y′, 0) = 0 and p′±(x′, y′, 0) = ρ±g(H± − y′)

}
in Ω± . (1.6)

Furthermore we have six free-surface conditions (two for each surface). The dy-

namic conditions are expressed by the unsteady Bernoulli equation with the disappear-

ance of the pressure on the free surfaces of the liquid. The kinematic conditions impose

that fluid particles on the free surfaces of the liquid must stay on the free surfaces at any

instant. Hence, we require

v′± =
∂η′±

∂t′
+ u′±∂η

′±

∂x′ as a kinematic condition on y′ = η′±(x′, t′), (1.7)

p′±(x′, η′±, t′) = 0 as a dynamic condition on y′ = η′±(x′, t′) (1.8)

and

u′+ = v′+
∂ξ′+

∂y′
+

∂ξ′+

∂t′
as a kinematic condition on x′ = ξ′+(y′, t′), (1.9)

p′+(ξ′+, y′, t′) = 0 as a dynamic condition on x′ = ξ′+(y′, t′). (1.10)
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Similarly, two interface conditions can be written as

u′+ − v′+
∂b′

∂y′
= u′− − v′−

∂b′

∂y′
as a kinematic condition on x′ = b′(y′, t′), (1.11)

p′+(b′, y′, t′) = p′−(b′, y′, t′) as a dynamic condition on x′ = b′(y′, t′). (1.12)

Note that equations (1.11) and (1.12) imply the continuity of normal velocities to

the interface and the continuity of pressure across the interface respectively. We also have

a no-slip boundary condition at the rigid impermeable bottom;

v′±(x′, 0, t′) = 0 on y′ = 0, x′ ≷ 0, t′ > 0, (1.13)

and the radiation conditions (the far-field conditions) in the two flow fields are,

u′±, v′± → 0 as x → ±∞ (1.14)

consistent with the conditions: η′± → H± as x → ±∞.

We need nondimensional equations to reformulate the equations for small times.

Thus we introduce the following transformations to non-dimensionalize the equations

(1.3) - (1.14),

x′ = H+x, y′ = H+y , (1.15)

η′± = H+η±, ξ′+ = H+ξ+, b′ = H+b , (1.16)

t′ =
√
H+/gt, p′± = p±ρ±gH+ . (1.17)

Letting γ =
ρ−

ρ+
, δ =

H−

H+
, we obtain a non-dimensional form of the boundary value

problem, as shown in the next chapter. Note that 0 ≤ δ ≤ 1 implies that the shallower

fluid is on the left.

In this thesis, we aim to find another way for the solution of the dam-break prob-

lem of wet-bed case as a contribution to the work presented in the paper Yilmaz et al.

(2013) and investigate the second order problem.
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With the methodologies, mentioned in the literature review, several flow problems

can be solved. But in some problems using Fourier Series method, determining the coef-

ficients of the Fourier series solutions of the leading order problem require inversion of

a very large matrix. Therefore, there occurs a loss of accuracy depending on the com-

putational tools since it leads to the solution of an infinite system of equations. While

it is computationally expensive, it will also cause the convergency problems. This con-

vergency problem is an expected problem since the Fourier series solution at the leading

order is obtained without considering the singularity. But as an alternative method which

does not require such an inversion is the variational method (also known as one-term

Galerkin method) developed by Schwinger and Saxon (1968) in the study of waveguides

concerning microwave radiation. Evans and Morris (1972), Dalrymple (1989) and Man-

dal and Dolai (1994) also used the same procedure for relevant problems and became

successful in obtaining accurate results for the modulus of the reflection and transmission

coefficients.

This variational method aims to provide methods for giving computationally ef-

fective results for quantities such as velocity, pressure and is studied in the thesis of Evans

and Porter (1995) in detail and applied to several break water problems. He is motivated

by the lack of an accurate and reliable method to cope with problems which involves

sharp corners or edges on their geometries and extend the usual one-term Galerkin appro-

timation to N -term Galerkin approximation. The difficulty occurs with the presence of a

singularity in the fluid velocity. At a sharp corner of a solid boundary, we can obtain the

singularity by a simple analysis of the velocity field near the corner point. The method

based on the construction of an integral equation form of the problem in terms of an un-

known function related to the fluid velocity (or the pressure). Porter stated that ”This is

a direct consequence of the physical requirement that these two quantities be continuous

everywhere in the fluid”. Thus the substitution of an approximation function to the un-

known function underlies the variational approach. Obviously we can say that the better

the approximation gives the more the accurate results. He also point out that ”the cruder

approximations to the unknown functions in the integral equations give surprisingly good

results too” as seen in Miles (1967). The advantage of the variational method is that the

method only requires specifying the appropriate test functions which gives an accurate

solution by a single calculation but the disadvantage is that the accuracy of the results

depends on a better description of the unknown function. In this variational method, we

first eliminate the singularity then find the series solution at the leading order in terms of

the test functions. Therefore the convergency problem does not occur.
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We can use conformal mapping techniques for fluid flow problems. To obtain the

suitable conformal mapping requires precision but gives suprisingly good results for the

solution of the leading order problem. The same method is used for the second order

problem.

In this thesis, the second order outer problem of dam-break for dry-bed case

(H− = 0) is also studied to extend the content of the master study. Furthermore, the

complete picture of the shape of the free surfaces with the second order solution is ob-

tained using Lagrangian description for the upper part. Basically, the second order outer

solution could be found by the Fourier series method just as is done with the first order

solution. However the second order problem is far more complicated than the first order

problem and it is convenient to use the domain decomposition method. The main idea

of this method is to divide the whole fluid domain into suitable sub domains where so-

lutions can be written as infinite series involving unknown coefficients, and then equate

the truncated series at collocation points in the intersection of sub domains to derive the

unknowns of the problem. The domain decomposition method is used successfully by

Needham et al. (2008) to find the first outer solution in the problem of an inclined plate

accelerating into a body fluid.

Domain decomposition methods suggest a convenient way to solve the compli-

cated two and three dimensional nonlinear problems numerically by the concept of do-

main splitting instead of using arduous finite element approximations for the whole do-

main. As an example the numerical simulation of trasonic flow by the Schwarz-alternating

method is solved by Glowinski et al. (1983) with the overlapped regions. They showed

the efficiency and the stability of these methods by applying them to the several Pois-

son problems. Cai (2003) is also concentrated on one special group of these domain

decomposition methods using overlapping subdomains and using the software diffpack.

This study states that the convergence of the solution on the internal boundaries ensures

the convergence of the solution in the entire solution domain. A detailed analysis of the

domain decomposition methods, and of the ”Schwarz method for overlapping domains”

which is similar to the one adopted here, is given in Quarteroni and Valli (1999), where

the mathematical foundations of the different approaches is provided.

We begin Chapter 2 by introducing the non-dimensional form of the boundary

value problem. Taylor series expansions of the unknowns in time and resulting leading

order problem is also stated in this chapter. We obtain the leading order solution and

discuss the requirements for the convergency of the solution.

In Chapter 3, we apply Galerkin method to the boundary value problem using
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suitable test functions at the interface. It gives fine results and validated by the analysis of

the singularity at the triple point. But it is clearly stated that this variational method does

not work for the boundary of the flow region.

In Chapter 4 and Chapter 5, the conformal mapping techniques are adapted to the

leading order and the second order problem respectively. The derivation of the conformal

mapping is expressed step by step in Chapter 3. The shape of the velocity profiles and the

comparison of the velocity at the interface with the Galerkin solution are also included.

In Chapter 6, domain decomposition method is used to obtain the first and second

order pressures. Furthermore the second order outer solution and the Lagrangian solution

of the free surfaces are obtained.
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CHAPTER 2

DAM BREAK PROBLEM (WET-BED CASE)

The initial stage of dam-break flow involving two liquids is solved both analyt-

ically and numerically in the paper Yilmaz et al. (2013). They used the Fourier Series

Method (FSM) for the analytical solution and the Boundary Element Method (BEM) for

the numerical solution of the problem given in unknown velocity potentials φ±. The

graphs of the solutions for vertical and horizontal velocity is fitted well except for the

case when the ratio of the densities (γ) is too large. In this chapter, we will study the

same problem in unknown velocity, pressure, free-surface and interface variables in each

region. The leading order problem will be constructed by using a short time expansions

of the unknown variables to get a simplified initial form of the problem. Then we will

obtain the FSM solution of the leading order pressures (p±0 ). The difficulty on evaluat-

ing the coefficients of the FSM solution and the necessity of another solution method is

explained in detail in this chapter.

2.1. Mathematical Statement of the Problem

Figure 2.1. Flow region at the initial time instant t′ = 0

A mathematical statement of the problem can now be written as a dimensionless
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nonlinear boundary value problem in the form

u+
x + v+y = 0 in Ω+ , (2.1)

u+
t + u+u+

x + v+u+
y = −p+x in Ω+ , (2.2)

v+t + u+v+x + v+v+y = −p+y − 1 in Ω+ , (2.3)

v+ = η+t + u+η+x , p+ = 0 on y = η+(x, t), (2.4)

u+ = ξ+t + v+ξ+y , p+ = 0 on x = ξ+(y, t), (2.5)

v+(x, 0, t) = 0 on y = 0, (2.6)

η+(x, 0) = 1, ξ+(y, 0) = b(y, 0) = 0, u+(x, y, 0) = v+(x, y, 0) = 0,(2.7)

as x → ∞, u+, v+ → 0 and p+ → 1− y, (2.8)

u−
x + v−y = 0 in Ω− , (2.9)

u−
t + u−u−

x + v−u−
y = −p−x in Ω− , (2.10)

v−t + u−v−x + v−v−y = −p−y − 1 in Ω− , (2.11)

v− = η−t + u−η−x , p− = 0 on y = η−(x, t), (2.12)

v−(x, 0, t) = 0 on y = 0, (2.13)

η−(x, 0) = δ and u−(x, y, 0) = v−(x, y, 0) = 0, (2.14)

as x → ∞, u−, v− → 0 and p− → δ − y, (2.15)

u+ − v+by = u− − v−by on x = b(y, t) , (2.16)

p+(b, y, t) = γp−(b, y, t) on x = b(y, t) . (2.17)

The values 0 < δ ≤ 1 and γ > 0 are the two dimensionless parameters that characterise

the problem.

2.2. Small-Time Behaviour (t → 0)

A small-time solution to (6.1) - (2.17) may be developed by posing regular power

series expansions in t:
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u± = u±
0 (x, y) + tu±

1 (x, y) +O(t2), v± = v±0 (x, y) + tv±1 (x, y) +O(t2),

η± = η±0 (x) + tη±1 (x) + t2η±2 (x) +O(t3), ξ+ = ξ+0 (y) + tξ+1 (y) + t2ξ+2 (y) +O(t3),

b = b0(y) + tb1(y) + t2b2(y) +O(t3), p± = p±0 (x, y) + tp±1 (x, y) +O(t2).

as t → 0 with x = O(1).

Since u±(x, y, 0) = 0 and v±(x, y, 0) = 0, we conclude that u±
0 = 0 and v±0 = 0.

Similarly since η+(x, 0) = 1, η−(x, 0) = δ, ξ+(y, 0) = 0 and b(y, 0) = 0, we conclude

that η+0 = 1, η−0 = δ, ξ+0 = 0 and b0 = 0. Now the small-time solution expansions to (6.1)

- (6.5) can be written as

u± = tu±
1 (x, y) +O(t2), v± = tv±1 (x, y) +O(t2),

η+ = 1 + tη+1 (x) + t2η+2 (x) +O(t3), η− = δ + tη−1 (x) + t2η−2 (x) +O(t3),

ξ+ = tξ+1 (y) + t2ξ+2 (y) +O(t3), b = tb1(y) + t2b2(y) +O(t3),

p± = p±0 (x, y) + tp±1 (x, y) +O(t2)

We substitute the above expansions into the equations (6.1) - (6.5). We have the following

boundary value problems at the leading order,

u+
1,x + v+1,y = 0 in Ω+,

u+
1 = −p+0,x , v+1 = −p+0,y − 1 in Ω+,

v+1 (x, 0) = 0 , η+2 = 1
2
v+1 (x, 1) , ξ+2 = 1

2
u+
1 (0, y) ,

p+0 (x, 1) = 0 , p+0 (0, y) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.18)

with u+
1 , v

+
1 → 0 and p+0 → 1− y as x → ∞.

u−
1,x + v−1,y = 0 in Ω−,

u−
1 = −p−0,x , v−1 = −p−0,y − 1 in Ω−,

v−1 (x, 0) = 0 , η−2 = 1
2
v−1 (x, δ) ,

p−0 (x, δ) = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.19)

with u−
1 , v

−
1 → 0 and p−0 → δ − y as x → −∞.
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Then the problem (2.18) and (2.19) are equivalent to the boundary value problems

Δp+0 = 0 in Ω+,

p+0,y(x, 0) = −1 , p+0 (x, 1) = 0

}
(2.20)

with p+0 → 1− y as x → ∞,

Δp−0 = 0 in Ω−,

p−0,y(x, 0) = −1 , p−0 (x, δ) = 0

}
(2.21)

with p−0 → δ − y as x → −∞, and

P+
0 (0, y) =

{
γP−

0 (0, y), 0 < y < δ

0 , δ < y < 1
(2.22)

P+
0,x(0, y) = P−

0,x(0, y), 0 < y < δ. (2.23)

2.3. Fourier Series Solutions, Leading Order

Solutions to the problems (2.20) and (2.21) may be found by the separation of

variables method in the form of the following series of solutions of Laplace’s equation

which already satisfy the bed boundary condition.

p+0 (x, y) = 1− y +
∞∑
n=0

Cn cos

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x , (2.24)

p−0 (x, y) = δ − y +
∞∑
n=0

Dn cos

(
(2n+ 1)

π

2δ
y

)
e(2n+1) π

2δ
x . (2.25)

The coefficients Cn and Dn can be determined by using the leading order free-surface

condition and the leading order interface conditions (2.22)-(2.23), as a solution of an

infinite system of equations. Trying to solve this system directly using the orthogonality
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Figure 2.2. Dimensionless flow region at the initial time instant t = 0

property of cosine terms in (2.24) and (2.25) and the conditions (2.22)-(2.23) give

Dm =
N∑

n=0

αnmλnCn, m = 0, 1, . . . ,M (2.26)

Cm =
4γ sin2(λmδ

2
)− 2

λ2
m

−
M∑
n=0

γαmnλnDn, m = 0, 1, . . . , N (2.27)

where N,M are the numbers in (2.26) and (2.27) we truncate the infinite sum in the series

solution of p+0 (x, y) and p−0 (x, y) respectively and

λn =
(2n+ 1)π

2
and αnm =

2δ(−1)m cos(δλn)

δ2λ2
n − λ2

m

.

The system (2.26)-(2.27) leads to the following (N + 1)× (N + 1) square system

N∑
k=0

[
δkm +

M∑
n=0

γαmnαknλnλk

]
Ck =

4γ sin2(λmδ
2
)− 2

λ2
m

, m = 0, 1, . . . , N (2.28)

where δkm is the Kronecker delta. Solution to the unknown coefficients C0, C1, . . . , CN

can be obtained by solving (2.28). Then substituting Cn’s into (2.26) gives D0, D1, . . . , DM .
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Table 2.1. Relative error (RE) on pressure condition due to singularity at the triple

point for δ = 1/2

REN RE300 RE301 RE302 RE303

0.367 0.440 0.163 0.275

But we have loss of convergency notwithstanding the large N,M and hence nearly big

relative errors (Table 2.1) due to singularity at the triple point (0, δ) with this direct cal-

culation.

Therefore we need another method which is computationally efficient and gives

accurate results even for small number of terms. This method is Galerkin’s variational

method.
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CHAPTER 3

VARIATIONAL APPROXIMATION, LEADING ORDER

The variational method is a reliable method when we have a lack of the accuracy

on somewhere on the geometry of fluid flow. This method is easy to apply and gives

computationally effective results. But there is only one key point for this method which

needs care. That is, it is hard to choose suitable test functions for the approximation of

the unknown function. In this chapter, we first describe the method and then apply it to

the dam break problem. The choice of the test function for the horizontal velocity on the

interface is explained in detail. At the end of this chapter, we will see that the variational

method works well for the horizontal velocity on the interface but it is not appropriate for

the vertical free surface.

3.1. Method

The eigenfunction expansion approach constitutes a starting point for this method.

The basic principles of the method are behind the application of eigenfunction expansions

to the solution of problems in fluid flow. The fluid domain is divided into two (or more)

regions and in each of the regions we have an appropriate eigenfunction solution form of

the unknown variable which is constructed to satisfy all the boundary conditions of the

problem except on the interface of the subregions. The interface conditions are the con-

tinuity of fluid velocity and pressure. Substitution of the eigenfunction solutions in each

region to the interface condition (matching eigenfunction expansions) leads to a singular

integral equation for the unknown function related to physical quantities. An approx-

imation to the unknown function can be found using orthogonal expansions involving

trigonometric functions which leads to a large system of equations with a large number

of unknown coefficients. McIver (1985) used such type of approximation for the general

problem of two arbitrarily spaced surface piercing barriers in finite depth but the conver-

gence of the approximated solution was slow and the accuracy was undetermined. An

alternative approximation method is used by Dalrymple (1989) to estimate the value of

reflection coefficient for a problem of abrupt channel transitions of water waves. He used

the variational method which is developed by Schwinger and Saxon (1968) and known
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as the Schwinger variational method. The variational approach (equal to the Galerkin

method in this thesis) is simple and a favoured way for approximating required quantities

and is computationally inexpensive.

The most powerful application of this approach is outlined in the PhD thesis of

Porter (1995). He examined the method in detail and adapted the method to several water

wave scattering problems. The success of the method depends on a plausible choice of

the test functions to reflect the physical behaviour of the unknown variable. The singular

integral equation generated by the matching conditions on the interface for a function

u(y) related to the unknown velocity in the flow region across the interface (denoted by

Lg) can be written in its simplest form as,

Ku = ψ0, y ∈ Lg, (3.1)

where ψ0 will be defined later and the operator K is positive-definite and self-adjoint. We

need a quantity (u, ψ0)Lg = A to clarify the availability of the method. The inner product

is defined as

(u, v)Lg =

∫
Lg

u(y)v(y)dy. (3.2)

Let us define the functional J : L2(Lg) → R by

J(ũ) = (ψ0, ũ) + (ũ, ψ0)− (Kũ, ũ), for any ũ ∈ L2(Lg), (3.3)

where L2(Lg) is the L2 space on the interval Lg. Then

J(ũ) = J(u+ (ũ− u))

= J(u) + (ψ0 −Ku, ũ− u) + (ũ− u, ψ0 −Ku)− (K(ũ− u), ũ− u)

= J(u)− (K(ũ− u), ũ− u)

≤ J(u)

since Ku = ψ0 and K is positive. From the definition of J by (3.3), J(u) = (u, ψ0) = A,
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so we can write

J(ũ) ≤ A. (3.4)

Equality holds if and only if ũ = u and J(ũ) has a stationary value A at ũ = u where A

is real and positive. Notice also that,

J(u)− J(ũ) = (K(ũ− u), ũ− u) = O(‖ũ− u‖2). (3.5)

which means if ũ is a first order approximation to u, the approximation to A will be second

order accurate. Galerkin’s method involves approximating u as a series of test functions

such as

ũ(y) =
N∑

n=0

anun(y), (3.6)

where un(y) are the test functions and an’s are the unknown coefficients. The approxi-

mation (3.6) satisfies in the components of the subspace spanned by the approximation.

The stationary value of J(u) is obtained when its spatial derivatives with respect to each

coefficient is zero,

∂J(ũ)

∂an
= 0, n = 0, . . . , N. (3.7)

Thus we get N + 1 equations for N + 1 unkowns. This system can be solved to get an,

and hence gives the approximation. But an alternative and easier procedure to obtain the

coefficients an is, instead of satisfying Ku− ψ0 = 0 exactly, to impose

(Kũ− ψ0, um) = 0, m = 0, . . . , N, (3.8)

or
N∑

n=0

an(Kun, um) = (ψ0, um), m = 0, . . . , N, (3.9)
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which can be written in the matrix form

⎛
⎜⎜⎝

(Ku0, u0) (Ku0, u1) · · · (Ku0, uN)
...

...

(KuN , u0) (KuN , u1) · · · (KuN , uN)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

a0
...

aN

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

(ψ0, u0)
...

(ψ0, uN)

⎞
⎟⎟⎠ . (3.10)

By writing Kmn = (Kun, um) and Fm0 = (ψ0, um), and introducing the matrix

notation K = {Kmn}, F = (F00, . . . , Fn0)
T we may eliminate the coefficients an. Whilst

not going into detail, it should be mentioned that there are a number of issues that we must

consider in the choice of test functions: the set of function {u0(y), . . . , uN(y)} should be

complete in L2(Lg) so that convergence is assured as N → ∞ and the elements of K, F

should be easy to compute.

3.2. Application of Galerkin Method to Dam Break Problem

We start with applying the Galerkin method and assume that we have the same

fluids in right and left regions, i.e., γ = 1. Assume that P+
0,x(0, y) = F (y), 0 < y < 1,

a priori unknown function, then using the kinematic interface condition (2.23) and the

series solution of P+
0 (x, y) (2.24) we have,

P+
0,x(0, y) =

∞∑
n=0

Cn(−λn) cos(λny) = F (y), 0 < y < 1.

Multiplying the above equation by cos(λmy) and integrating over (0, 1) gives

Cn = − 2

λn

∫ 1

0

F (y) cos(λny)dy, n = 0, 1, 2, . . . (3.11)

On the other hand using the kinematic interface condition (2.23) and the series solution

of P−
0 (x, y) (2.25) we have,

P−
0,x(0, y) =

∞∑
n=0

Dn(
λn

δ
) cos(

λn

δ
y) = F (y), 0 < y < δ.
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Multiplying the last equation by cos(
λmy

δ
) and integrating over (0, δ) gives

Dn =
2

λn

∫ δ

0

F (y) cos(
λny

δ
)dy, n = 0, 1, 2, . . . (3.12)

Now let us substitute (3.11), (3.12) into the series solution of P+
0 (x, y) (2.24), P−

0 (x, y)

(2.25) respectively and use (2.22) to get the integral equation form of the problem,

1− y −
∫ 1

0

F (ξ)K(y, ξ)dξ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δ − y +

∫ δ

0

F (ξ)K(
y

δ
,
ξ

δ
)dξ, 0 < y < δ

0 , δ < y < 1,

(3.13)

where

K(y, ξ) =
∞∑
n=0

2

λn

cos(λnξ) cos(λny) (3.14)

is a symmetric kernel. The equation (3.13) can also be written as

1− y =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

δ − y +

∫ 1

0

F (ξ)K(y, ξ)dξ +

∫ δ

0

F (ξ)K(
y

δ
,
ξ

δ
)dξ, 0 < y < δ

∫ 1

0

F (ξ)K(y, ξ)dξ , δ < y < 1.

(3.15)

Now, make an approximation

F (y) 	 F̃ (y) =
L∑

n=0

anfn(y), y ∈ (0, 1), (3.16)

where we have yet to define the test functions fn(y) and the an’s are the unknown con-

stants. Substituting this approximation (3.16) into (3.15), multiplying through by fm(y)
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and integrating over (0, 1),

∫ 1

0

(1− y)fm(y)dy (3.17)

=

∫ 1

0

fm(y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ − y +

∫ 1

0

( L∑
n=0

anfn(ξ)

)
K(y, ξ)dξ

+

∫ δ

0

( L∑
n=0

anfn(ξ)

)
K(

y

δ
,
ξ

δ
)dξ, 0 < y < δ,

∫ 1

0

( L∑
n=0

anfn(ξ)

)
K(y, ξ)dξ, δ < y < 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dy,

where m = 0, 1, . . . , L. After substituting the kernels (3.14) in (3.17), we get,

∫ 1

0

(1− y)fm(y)dy (3.18)

=

∫ 1

0

fm(y)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ − y +

∫ 1

0

L∑
n=0

anfn(ξ)
∞∑
r=0

2

λr

cos(λrξ) cos(λry) dξ

+

∫ δ

0

L∑
n=0

anfn(ξ)
∞∑
r=0

2

λr

cos(
λrξ

δ
) cos(

λry

δ
) dξ, 0 < y < δ,

∫ 1

0

L∑
n=0

anfn(ξ)
∞∑
r=0

2

λr

cos(λrξ) cos(λry) dξ, δ < y < 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dy,

form = 0, 1, . . . , L. We interchange the integrals with the summations and the integral

terms in (3.18) are organized with respect to their variables and intervals, and thus

∫ 1

0

(1− y)fm(y)dy =

∫ δ

0

(δ − y)fm(y)dy (3.19)

+
L∑

n=0

an

[ ∞∑
r=0

2

λr

∫ 1

0

cos(λrξ)fn(ξ)dξ

∫ δ

0

cos(λry)fm(y)dy

]

+
L∑

n=0

an

[ ∞∑
r=0

2

λr

∫ δ

0

cos(
λrξ

δ
)fn(ξ)dξ

∫ δ

0

cos(
λry

δ
)fm(y)dy

]

+
L∑

n=0

an

[ ∞∑
r=0

2

λr

∫ 1

0

cos(λrξ)fn(ξ)dξ

∫ 1

δ

cos(λry)fm(y)dy

]

where m = 0, 1, . . . , L. Then, we write the terms in (3.19) as a single sum over n,
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∫ 1

0

(1− y)fm(y)dy =

∫ δ

0

(δ − y)fm(y)dy (3.20)

+
L∑

n=0

an

[ ∞∑
r=0

2

λr

∫ δ

0

cos(
λrξ

δ
)fn(ξ)dξ

∫ δ

0

cos(
λry

δ
)fm(y)dy

+
∞∑
r=0

2

λr

∫ 1

0

cos(λrξ)fn(ξ)dξ

∫ δ

0

cos(λry)fm(y)dy

+
∞∑
r=0

2

λr

∫ 1

0

cos(λrξ)fn(ξ)dξ

∫ 1

δ

cos(λry)fm(y)dy

]

where m = 0, 1, . . . , L. We combine the same integrals terms in (3.20) with consecutive

intervals,

∫ 1

0

(1− y)fm(y)dy =

∫ δ

0

(δ − y)fm(y)dy (3.21)

+
L∑

n=0

an

[ ∞∑
r=0

2

λr

∫ δ

0

cos(
λrξ

δ
)fn(ξ)dξ

∫ δ

0

cos(
λry

δ
)fm(y)dy

+
∞∑
r=0

2

λr

∫ 1

0

cos(λrξ)fn(ξ)dξ

∫ 1

0

cos(λry)fm(y)dy

]

where m = 0, 1, . . . , L. Letting,

∫ 1

0

cos(λrξ)fn(ξ)dξ = I(1)rn ,

∫ 1

0

cos(λrξ)fm(ξ)dξ = I(1)rm, (3.22)∫ δ

0

cos(
λrξ

δ
)fn(ξ)dξ = I(δ)rn ,

∫ δ

0

cos(
λrξ

δ
)fm(ξ)dξ = I(δ)rm and (3.23)∫ 1

0

(1− y)fm(y)dy = J (1)
m ,

∫ δ

0

(δ − y)fm(y)dy = J (δ)
m (3.24)

(3.21) becomes,

J (1)
m = J (δ)

m +
L∑

n=0

an

[ ∞∑
r=0

2

λr

(
I(δ)rn I

(δ)
rm + I(1)rn I

(1)
rm

)]
, (3.25)

where m = 0, 1, . . . , L. Evaluation of the integral terms in (3.25) gives the following
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general system,

Fm =
L∑

n=0

anKmn, m = 0, . . . , L, (3.26)

where

Kmn =
∞∑
r=0

2

λr

(
I(δ)rn I

(δ)
rm + I(1)rn I

(1)
rm

)
(3.27)

is a symmetric matrix and,

Fm = J (1)
m − J (δ)

m . (3.28)

Next, we will choose fm(y) depending on the type of the singularity. So a singularity

analysis of the triple point (0, δ) is required.

3.2.1. Analysis of The Singularity at the Triple Point, (0, δ)

An analysis of the flow close to the corner point (0, δ) can be done by solving the

local problem in unknown velocity potential shown in Fig. 3.1. The coordinates (x′, y′)

are the shifted coordinates where x′ = x and y′ = y − δ. The solution of the horizontal

Figure 3.1. Local problem around the corner point
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velocity near the corner point can be obtained by using the relation u = φx′ as

u(y′) =
2

3
c sin

(1
3
(2π − θ)

)
(y − δ)−1/3 − 2

3π
(1− δ) sin(θ)(y − δ)−1, (3.29)

which reveals that u(y) ∼ (y − δ)−1/3 asymptotically, as y → δ− and c is an arbitrary

constant. By using the behaviour of u(y) as y → δ− and since φy = 0 on y = 0, u(y)

can be continued as an even function of y across y = 0 by the reflection principle (Fig.

3.2). This continuation gives us the behaviour u(y) ∼ (−δ − y)−1/3 as y → −δ+. Thus

we must multiply the function u(y) with {(δ − y)(δ + y)}1/3 = {δ2 − y2}1/3 to get rid

of the singularity as y → δ−. Therefore the even continuous function {δ2 − y2}1/3u(y)
can be expanded in (0, 1) in a complete set of even Jacobi polynomials (hypergeometric

polynomials, see Appendix E),

fm(y) = |δ2 − y2|−1/3P
(− 1

3
,− 1

3
)

2m (y), (3.30)

where P2m is the 2mth order Jacobi polynomial for α = β = −1
3
.

Figure 3.2. Reflection principle for the horizontal velocity on the interface
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3.3. Numerical Procedures and Results

To solve (3.26) we must first compute Kmn, Fm given by (3.27) and (3.28) for

m,n = 0, . . . , L. Each entry in Kmn consists of an infinite sum which is evaluated by

truncation. In order to choose the truncation point, we will analyse the order of the terms

in (3.27) with respect to r. For the integral I
(δ)
rn in (3.27), after putting ξ = δt in (3.23),

we get (Erdélyi, 1954)

I(δ)rn =
δ1/3(−1)n

√
π Γ(2n− 4

3
)J2n+ 1

6
(λr)

25/6(2n)!(λr)1/6

where Γ is the Gamma function and Jn is the Bessel function of first kind of order n.

Using the asymptotic behaviour of Jn(x) for large x (Abromowitz&Stegun,1965) it is

readily shown that, as r → ∞,

I(δ)rn I(δ)rm = O

(
1

r4/3

)
.

For the integral I
(1)
rn in (3.27), we use integration by parts which is a particularly easy

procedure for developing asymptotic approximations to many kinds of integrals. After

one integration by parts, we see that

I(1)rn ∼ (−1)rP
(− 1

3
,− 1

3
)

2n (1
δ
)

|δ2 − 1|1/3λr

as r → ∞.

Hence,

I(1)rn I(1)rm = O

(
1

r2

)
.

Thus the infinite series (3.27) decays like O(1/r3) and we truncate the sum at R = 40 in

our numerical computations where the relative error is minimized.

On the other hand, it is computationally too expensive to evaluate the integrals

inside the matrices K = {Kmn} and F = (F0, . . . , Fm)
T in (3.26) in closed form. There-

fore we need a higher order numerical integration method which gives highly accurate
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results and works much faster than direct calculation. Thus we use ’Roomberg Integra-

tion’ method to resolve this difficulty. Thus we get the matrices K and F in (3.26) where

K a = F. (3.31)

But the matrix K has a large condition number, for instance κ(K) = 2.862× 1051 for the

parameters γ = 1, δ = 1/2, M = N = 40, L = 6 and δ = 1/2, which means the matrix K

is numerically very close to a singular matrix (nearly singular). So standard methods such

as LU decomposition fail due to accumulation of round of errors. Further there exists

a powerful technique to deal with sets of equations or matrices that are either singular

or else numerically very close to singular known as ’Singular Value Decomposition’, or

SVD. With SVD, the M × M matrix K can be written as the product of an M × N

column-orthogonal matrix U, a M ×N diagonal matrix W with positive or zero elements

(the singular values), and the transpose of an M × M orthogonal matrix V. Hence the

system (3.31) becomes

U W VT a = F,

and the solution is

a = V W−1 UT F.

This is much more computational work than direct method of solution, but it has

impeccable numerical properties. Instead of calculating the inverse of a singular matrix,

we just calculate V, W and U. Hence we get the solution of (3.26), i.e. a, and the ap-

proximation F̃ (y) (3.16) for γ = 1, δ = 1/2, M = N = 40 and L = 6 are given with

the comparison of the series solution in Fig. 3.3 and Fig. 3.4. We see that the Galerkin’s

method works fine.

In Fig. (3.5), horizontal velocity at the interface is shown, which is exactly the

same as the result in Yilmaz et al. (2013).

On the other hand, we use same test functions for the part at the top of the inter-

face. But when we compare the solutions with Yilmaz et al. (2013), we see in Fig. 3.6

that there is a seperation in Fig. 3.6.
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Figure 3.3. Comparison of the horizontal velocity of the interface with Galerkin’s

method (M = N = 40 and L = 6) and series solution (with N = 100)

Table 3.1. Substitution of the Galerkin’s solution into (3.26)

y 0.05 0.1 0.2 0.3 0.4 0.45
left 0.5760 0.5243 0.4183 0.3074 0.1826 0.1076

right 0.5770 0.5257 0.4191 0.3051 0.1817 0.1117
y 0.5 0.55 0.6 0.7 0.8 0.9

left 0.0006 0.0123 0.0029 −0.0054 0.0022 −0.0010
right 0 0 0 0 0 0

To see the error, we substitute our solution into (3.13) and get the following Table 3.1.

Thus we need to try to solve the system (3.26) by using another computational

tool to find the cause of the error.
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Figure 3.4. Comparison of the horizontal velocity of the interface with Galerkin’s

method (M = N = 40 and L = 6) and series solution (with N = 300)
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Figure 3.5. Horizontal velocity of the interface for γ = 1, δ = 1/2, M = N = 40 and

L = 6
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dotted lines represents Yilmaz, Korobkin & Iafrati (2013) solution)
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CHAPTER 4

SOLUTION BY CONFORMAL MAPPING, LEADING

ORDER

We employ complex analysis to supply harmonic functions for the solution to the

two-dimensional Laplace equation. So the conformal mapping of the analytical functions

allows for complicated problems in fluid flow to be solved with simpler geometry. Thus

we take the advantage of the compatibility of conformal mapping for the analytical solu-

tion of the dam-break problem. In this chapter, conformal mapping techniques are used

and a suitable conformal mapping which maps the fluid region to the lower half plane is

obtained. We find the form of the mapping and hence to find the leading order velocity

profiles at the lower half plane. The shape of the leading order velocity profiles are plotted

on the whole boundary of the flow region. The image of the interface is also calculated

with the support of some numerical tools. In addition to the solutions, the asymptotic

analysis of the velocities are investigated near the corner point which indicates the order

of the singularity precisely. Finally, we end this chapter with the comparison of the hori-

zontal velocity profiles by using conformal mapping solution and Galerkin solution at the

interface.

4.1. Leading Order Pressure for the Same Fluid on Either Side of

the Dam

For the leading order problem; we know that in the case of equal densities ρ+ = ρ−

(γ = 1), leading order pressures and normal derivatives of the leading order pressures are

equal at the interface. Therefore we can ignore the interface and consider the leading

order problem in one unknown pressure in the fluid region with different behaviours at ±
infinity. So, our aim is to find the solution of this problem. Thus by using this solution

and analysing the singularity, we aim to decide which test functions for the variational

methods are suitable for the corresponding regions. By recalling the problem, which was

derived in Chapter 2 (Fig. 2.2), we sketch Fig. 4.1 representing the same problem for

equal densities on each side.
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Figure 4.1. Flow region at the initial time instant t = 0 for equal densities in each side

To solve this problem, we first use the transformation Q = P0 + y − 1. Then the

problem Fig. 4.1 becomes Fig. 4.2 with the unknown variable Q, Notice that problem

Figure 4.2. Flow region at the initial instant t = 0 with the boundary condition for Q

for Q, Fig. 4.2 is simpler than the problem for P0 since the condition at +∞ becomes

homogeneous. Now we can apply the conformal mapping to this problem.

4.1.1. Mapping of the Fluid Domain Onto a Lower Half Plane

We choose to transform the fluid region onto the lower half plane with a suitable

conformal mapping. Let z = Z(ζ) be the conformal mapping which maps the lower half
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Figure 4.3. The boundary of the fluid domain described clockwise, using letters to

label significant points

plane (η < 0) Fig. 4.3 onto the fluid region with the specified direction Fig. 4.4. The

point k which will be determined later in ζ-plane corresponds to point 1 in z-plane. Since

Figure 4.4. The lower half plane. The letters correspond to letters in Fig. 4.3 and

describe the domain boundary clockwise

y is bounded as x → ∞, we can write

Z(ζ) ∼ A1 ln ζ + A0 (ζ → ∞)

where A1 is a real, A0 is a complex constant and ζ = reiθ, −π < θ < 0 in η < 0. We

see that ln |ζ| → ∞ and arg ζ is bounded as ζ → ∞ in the lower-half plane which is the

same with x → ∞ and y is bounded as z → ∞ in the flow domain. Using the behaviour
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of Z(ζ) as ζ → ∞ i.e. at the points A (θ = −π) and F (θ = 0), we have A1 = 1/π and

�(A0) = 1. Hence,

Z(ζ) ∼ 1

π
ln ζ + i+ (A0) (ζ → ∞). (4.1)

On the other hand, we can write

Z(ζ) ∼ B1 ln ζ +B0 (ζ → 0)

where B1 is a real, B0 is a complex constant and ζ = reiθ, −π < θ < 0 in η < 0. We

see that ln |ζ| → −∞ and Arg(ζ) is bounded as ζ → 0 in the lower-half plane which

is the same with x → −∞ and y is bounded as z → −∞ in the flow domain. Using

the behaviour of Z(ζ) as ζ → 0 i.e. at the points B (θ = −π) and C (θ = 0), we have

B1 = δ/π and �(B0) = δ. Hence,

Z(ζ) ∼ δ

π
ln ζ + iδ + (B0) (ζ → 0). (4.2)

Let’s consider the function

Z̃(ζ) = ln

[
dZ

dζ
ζπ

]

which is analytic in η < 0 and on the boundary ζ = ξ − i0

dZ

dζ
ζπ =

dx

dξ
ξπ > 0 (�[Z̃(ξ − i0)] = 0) on AB,CD,EF

dZ

dζ
ζπ = i

dy

dξ
ξπ > 0 (�[Z̃(ξ − i0)] =

π

2
) on DE

i.e. �[Z̃(ξ − i0)] = π/2, where 1 < ξ < k, and zero on the rest of the boundary

and Z̃(ζ) → 0 as ζ → ∞ (see (4.1)). Therefore −iZ̃ is also analytic in η < 0 and

[Z̃(ξ − i0)(−i)] = π/2, where 1 < ξ < k, and zero on the rest of the boundary and

−iZ̃(ζ) → 0 as ζ → ∞. Hence the solution of this BVP-AF can be written as (see
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Appendix B)

−iZ̃(ζ) =
i

π

∫ k

1

π

2

dτ

τ − ζ
.

Evaluation of the integral gives,

Z̃(ζ) = −1

2
ln

(
k − ζ

1− ζ

)
= ln

[
dZ

dζ
ζπ

]
.

Then the derivative of the mapping is obtained as

dZ(ζ)

dζ
=

1

πζ

(
ζ − 1

ζ − k

)1/2

. (4.3)

We define local polar coordinates (r, α) and (ρ, β) for the points 1 and k in ζ plane:

ξ = 1 + reiα (−π < α < 0) (4.4)

ξ = k + ρeiβ (−π < β < 0) (4.5)

the square roots in (4.3) are understood as shown in Fig. 4.5

Figure 4.5. The description of the square roots centered at 1 and k

(
ξ − 1

ξ − k

)1/2

=

(
r

ρ

)
ei

α−β
2 .
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Hence,

dZ

dξ
=

1

πξ

(
1− ξ

k − ξ

)1/2

, on AB, (4.6)

dZ

dξ
=

1

πξ

(
1− ξ

k − ξ

)1/2

, on CD, (4.7)

dZ

dξ
= i

1

πξ

(
ξ − 1

k − ξ

)1/2

, on DE, (4.8)

dZ

dξ
=

1

πξ

(
ξ − 1

ξ − k

)1/2

, on EF. (4.9)

Hence on the boundary of the flow region, the conformal mapping z = Z(ζ) is calculated

as,

z = x+ iy =
1

π

∫ ξ

k

1

τ

√
τ − 1

τ − k
dτ + i on EF,

z = x+ iy =
i

π

∫ ξ

1

1

τ

√
τ − 1

k − τ
dτ + iδ on DE,

z = x+ iy = − 1

π

∫ 1

ξ

1

τ

√
1− τ

k − τ
dτ + iδ on CD.

To find the point k, consider this mapping on the DE part of the boundary

i
dy

dξ
=

i

πξ

(
ξ − 1

k − ξ

)1/2

, (4.10)

taking integral of both sides with respect to ξ from 1 to k and multiplying both sides by π

gives

π(1− δ) =

∫ k

1

1

ξ

(
ξ − 1

k − ξ

)1/2

dξ,

=

∫ k

1

ξ − 1

ξ

dξ√
(ξ − 1)(k − ξ)

.

Using the change of variables ξ =
k − 1

2
cosα +

k + 1

2
and then trigonometric substitu-
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tion, we obtain

π(1− δ) = π(1− 1√
k
)

which gives k = 1/δ2.

To evaluate the values of x on AB are not easy as we did for the other parts of the

boundary. Consider the mapping (4.3)

dx

dξ
=

1

πξ

(
1− ξ

k − ξ

)1/2

on AB

or equivalently

dξ

dx
= πξ

(
k − ξ

1− ξ

)1/2

on AB. (4.11)

The first order nonlinear ODE (4.11) can be solved numerically with an initial condition

ξ = ξ0 at x = 0. Then we obtain ξ values for ξ < ξ0 on AB in the ζ-plane, corresponding

to x values for x > 0 on AB in the z-plane. We can also obtain ξ values for ξ0 < ξ < 0

on AB in the ζ-plane and corresponding to x values for x < 0 on AB in the z-plane by

solving the same ODE (4.11) in negative direction.

To find the value of ξ0, consider the values of x as an integral by using (4.6) on AB such

that

x =
1

π

∫ ξ

ξ0

1

τ

√
1− τ

k − τ
dτ for ξ0 < ξ < 0

which is equivalent to

x =
1

π

∫ ξ

ξ0

1

τ

(
1√
k
+

[√
1− τ

k − τ
− 1√

k

])
dτ for ξ0 < ξ < 0. (4.12)

Then consider the integral (4.12) as ξ → 0− i.e. consider the values of x on AB as
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ξ → 0−, we have

x ∼ δ

π
ln |ξ| − δ

π
ln |ξ0|+ δ(1− k)

π

∫ 0

ξ0

dτ√
k − τ(

√
k − kτ +

√
k − τ)

and using equation (4.2), we can write

(B0) = − δ

π
ln |ξ0|+ δ(1− k)

π

∫ 0

ξ0

dτ√
k − τ(

√
k − kτ +

√
k − τ)

. (4.13)

On the other hand, the values of x on CD as an integral by using (4.7) on CD are

x = − 1

π

∫ 1

ξ

1

τ

√
1− τ

k − τ
dτ for 0 < ξ < 1 (4.14)

which is equivalent to

x = − 1

π

∫ 1

ξ

1

τ

(
1√
k
+

[√
1− τ

k − τ
− 1√

k

])
dτ for 0 < ξ < 1.

Then consider the integral (4.14) as ξ → 0+ i.e. consider the values of x on CD as

ξ → 0+,

x ∼ δ

π
ln |ξ| − δ(1− k)

π

∫ 1

0

dτ√
k − τ(

√
k − kτ +

√
k − τ)

and using (4.2). Hence

(B0) = −δ(1− k)

π

∫ 1

0

1√
k − τ(

√
k − kτ +

√
k − τ)

. (4.15)

Therefore we can evaluate the integral in (4.15) to obtain (B0) as a function of δ, and

then solve equation (4.13) in ξ0 with this known (B0). Hence x values on AB can be

evaluated with the initial condition ξ0 for any δ with a numerical routine in both positive

and negative x-direction.
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4.1.2. BVP in the Mapped Plane and Velocity Profiles

So far we have stated the relation between the points on the boundary of the flow

region and the points on the boundary of the lower-half plane. Now, we will consider the

BVP in Fig. 4.2 in the lower half plane. We know that dw1/dz = u1 − iv1 is analytic in

the flow region and the relation between u1, v1 and Q gives −Qx + iQy is also analytic.

Therefore to obtain the velocities, it is better to take derivatives of Q in Fig.4.2 with

respect to suitable coordinate variables. After taking the derivatives we obtain Fig. 4.6

where Qx − iQy = W (z) is analytic in the flow region.

Figure 4.6. Initial Flow Region with the Derivatives of Q

The transformation of this problem onto the lower half plane with the mapping

z = Z(ζ) is shown in Fig. 4.7 where W (Z(ζ)) = w(ζ) is analytic in η < 0, w(ζ) → 0 as

ζ → ∞ can be written

W (z) = W (Z(ζ)) = w(ζ) = u+ iv = Qx(X(ξ, η), Y (ξ, η))− iQy(X(ξ, η), Y (ξ, η)).

We know w(ζ) is finite at ξ = 0 and ξ = k but singular at ξ = 1. So we choose a

function R such that

R(ζ) =

√
ζ − 1

(ζ − k)ζ
.

Then consider the better behaviour of the new function defined by w̃(ζ) = w(ζ)R(ζ) as
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Figure 4.7. Transformation of the problem from the z-plane to the lower half of the ζ
plane

ζ → ∞. By the equation (4.1), we have

x ∼
1

π
ln ξ as ζ → ∞, i.e. eπx ∼ ξ as ζ → ∞. (4.16)

Then the series solution of p0 (2.24-2.25) and (4.16) gives,

Q ∼
1√
ξ

as ζ → ∞.

By this behaviour of Q, we have

Q+ iψ ∼
1√
ζ

as ζ → ∞ and then

Qx − iQy ∼
d

dz
(
1√
ζ
) = −1

2
ζ−3/2dζ

dz
= −π

2

1√
ζ

as ζ → ∞.

So that w̃ behaves O(1/ζ) as ζ → ∞. The square roots in R are considered in each

interval as we did for (4.3). Then we see that [w̃(ξ − i0)] = −
√

ξ − 1

(k − ξ)ξ
on the

interval 1 < ξ < k and zero on the rest of the boundary. Hence the solution of this
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BVP-AF can be written as

w̃(ζ) = − i

π

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ζ
(4.17)

and w̃(ζ) = O(1/ζ) as ζ → ∞ which we showed before. The integral in (4.17) can be

rewritten by using Sokhotski-Plemelj Formula (see Appendix C) on the boundary such

that

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
=⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− i

π

√
ξ − 1

(k − ξ)ξ
+ P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
, 1 < ξ < k,

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ζ
, ξ < 1, ξ > k.

To evaluate this integral we consider it in two separate terms such that,

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
=

∫ k

1

dτ√
τ(τ − 1)(k − τ)

+ (ξ − 1)

∫ k

1

dτ

(τ − ξ)
√

τ(τ − 1)(k − τ)

= I1 + (ξ − 1)I2. (4.18)

For the integral I1, we use a formula from Gradshteyn&Ryzhik (see Appendix),

I1 =
2√
k
F (

π

2
,

√
k − 1

k
)

= 2δF (
π

2
,
√
1− δ2)

= 2δK(
√
1− δ2),

where F is the elliptic integral of first kind, K is the complete elliptic integral of first kind
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and defined as

F (β,m) =

∫ β

0

dα√
1−m2 sin2 α

and

F (
π

2
,m) = K(m).

For the integral I2 in (4.18), we use another formula from Gradshteyn&Ryzhik (see Ap-

pendix),

I2 =
2

ξ(1− ξ)
√
k

[
Π(

π

2
,
k − 1

k

ξ

ξ − 1
,

√
k − 1

k
) + (ξ − 1)F (

π

2
,

√
k − 1

k
)

]

=
2δ

ξ(1− ξ)

[
Π(

π

2
,
(1− δ2)ξ

ξ − 1
,
√
1− δ2) + (ξ − 1)F (

π

2
,
√
1− δ2)

]

=
2δ

ξ(1− ξ)

[
Π̄(

(1− δ2)ξ

ξ − 1
,
√
1− δ2) + (ξ − 1)K(

√
1− δ2)

]
,

where Π is the elliptic integral of third kind, Π̄ is the complete elliptic integral of third

kind, defined as

Π(β, n,m) =

∫ β

0

dα

(1− n sin2 α)
√

1−m2 sin2 α

and

Π(
π

2
, n,m) = Π̄(n,m).

Hence the integral in (4.18) can be written as

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
=

2δ

ξ

[
K(

√
1− δ2)− Π̄

(
(1− δ2)ξ

ξ − 1
,
√
1− δ2

)]
.
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Note that the calculations which we used for the integral (4.18) are valid for ξ �= 1, so we

must only consider the behaviour of this integral as ξ → 1+ for its principal value or we

can evaluate it for 1 < ξ < k with the following way,

P.v.

∫ k

1

(
τ(τ − 1)

(k − τ)

)1/2
dτ

τ − ξ

=

∫ k

1

dτ√
(τ − 1)(k − τ)τ

+ (ξ − 1)P.v.

∫ k

1

dτ

(τ − ξ)
√
(τ − 1)(k − τ)τ

and

P.v.

∫ k

1

dτ

(τ − ξ)
√
(τ − 1)(k − τ)τ

= P.v.

∫ k

1

1

(τ − ξ)
√

(τ − 1)(k − τ)

([
1√
τ
− 1√

ξ

]
+

1√
ξ

)
dτ

= −
∫ k

1

1√
(τ − 1)(k − τ)

dτ√
τ
√
ξ(
√
ξ +

√
τ
) + P.v.

1

ξ

∫ k

1

dτ

(τ − ξ)
√

(τ − 1)(k − τ)
.

Hence,

P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ

=

∫ k

1

dτ√
τ(τ − 1)(k − τ)

− (ξ − 1)

∫ k

1

dτ√
(τ − 1)(k − τ)τ

√
τ
√
ξ(
√
τ +

√
ξ)
.

= I1 + (1− ξ)I3

It is better to evaluate the integral I3 numerically.

Since we calculated w̃(ζ) on the boundary of the lower half plane, we can obtain

w(ζ) = w̃(ζ)/R(ζ) by considering the behaviour of the square root in R(ζ) on the bound-

ary. Using the solutions in (4.19) we can obtain Qx and Qy on the boundary. Recall the

relation Q = P0 + y− 1 and the leading order velocities are u1 = −P0,x, v1 = −P0,y − 1

(see (2.18-2.19)). Thus we can write the leading order velocities as u1 = −Qx and

v1 = −Qy.
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w(ζ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

π

√
(ξ − k)ξ

(1− ξ)

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
−∞ < ξ < 0, η = 0 (on AB),

i

π

√
(k − ξ)ξ

(1− ξ)

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
0 < ξ < 1, η = 0 (on CD),

−i+
1

π

√
(k − ξ)ξ

(ξ − 1)
P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
1 < ξ < k, η = 0 (on DE),

i

π

√
(ξ − k)ξ

(ξ − 1)

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
k < ξ < ∞, η = 0 (on EF ).

(4.19)

Hence we can calculate the horizontal velocity u1(x) at the bottom y = 0 by using the

following formula and the values of x are evaluated numerically,

u1(ξ) = − 1

π

√
(ξ − k)ξ

1− ξ

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
−∞ < ξ < 0.

The Fig. 4.8 shows horizontal velocity profile for different values of δ.

x
-4 -3 -2 -1 0 1 2 3 4

u1

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 4.8. Horizontal velocity in terms of x. From top to bottom δ = 1
2
, 1
4
, 1
8

(for

which k = 4, 16, 64, respectively)
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We depict the horizontal velocity u1(y) of the initially vertical free surface (on

DE) by using the following formulas,

u1(ξ) =
1

π

√
(k − ξ)ξ

ξ − 1
P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ

y(ξ) = δ +
1

π

∫ ξ

1

1

τ

√
τ − 1

k − τ
dτ, 1 < ξ < k

for δ = 1/2 in Fig. 4.9. Note u1 is singular at y = δ = 0.5

The vertical velocity v1(x) on EF defined as

v1(ξ) =
1

π

√
(ξ − k)ξ

ξ − 1

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ

x(ξ) =
1

π

∫ ξ

k

1

τ

√
τ − 1

τ − k
dτ, k < ξ < ∞.

u1
-5 -4 -3 -2 -1 0 1 2

y

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 4.9. Horizontal velocity in terms of y on the vertical free surface.

The vertical velocity as a function of x is shown for δ = 1/2 in Fig. 4.10, Then,
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x
0 0.2 0.4 0.6 0.8 1 1.2 1.4

v1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 4.10. Veritical velocity at y = 1 in terms of x

the vertical velocity v1(x) on CD is

v1(ξ) =
1

π

√
(k − ξ)ξ

1− ξ

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
,

x(ξ) = − 1

π

∫ 1

ξ

1

τ

√
1− τ

k − τ
dτ, 0 < ξ < 1.

v1(x) is plotted in Fig. 4.11.

Note that v1 is singular as x increases to zero.

The velocity components (and pressure) are the main items of interact. So, after

we finish the sketch of velocity profiles for the boundary, we will continue for the image of

the interface at the lower half of ζ plane and seek the velocity profile also at the interface.

Therefore we will obtain the velocity profiles at the whole boundary and at the interface.

First consider the image of the interface (x = 0, 0 < y < δ) on the ζ-plane.

Integrating (4.3) from ξ = 1 gives

Z(ζ)− iδ =
1

π

∫ ζ

1

1

τ

√
τ − 1

τ − k
dτ,
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x
-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

v1

0

0.5

1

1.5

2

2.5

3

Figure 4.11. Veritical velocity in terms of x. From left to right the curves are δ =
0.5, 0.75, 0.9

where ζ = ζ(y), y is considered as a curvilinear coordinate along the image of the inter-

face. On the interface, dZ = idy and (4.3) gives

idy

dζ
=

1

πζ

√
ζ − 1

ζ − k
.

Then

⎧⎪⎪⎨
⎪⎪⎩

dζ

dy
= πiζ

√
ζ − k

ζ − 1
(0 < y < δ),

ζ(δ) = 1.

(4.20)

Equation (4.20) can be integrated with y varying from δ to 0. Note that the right

hand side of the equation (4.20) is singular at y = δ. We introduce a new variable τ

as y = δ(1 − τ), so that dy = −δdτ where τ varies from 0 to 1 along the interface.

Then ζ = 1 + r(τ)eα(τ) (see (4.4)) and let (ζ − 1)3/2 = � where � =| � | eiΩ and
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� = λ(τ) + iμ(τ). Now,

d�

dτ
=

d�

dy

dy

dτ
= −δ

d�

dy

= −δ
3

2
(ζ − 1)1/2

dζ

dy

= −3

2
δπiζ(ζ − k)1/2

where ζ = k + ρ(τ)eiβ(τ) (see (4.5)). Next,

d�

dτ
=

dλ

dτ
+ i

dμ

dτ

= −3

2
πδi(k + ρeiβ)

√
ρeiβ/2

which gives

dλ

dτ
=

3

2
πδ

√
ρ

(
k sin

(
β

2

)
+ ρ sin

(
3β

2

))

dμ

dτ
= −3

2
πδ

√
ρ

(
k cos

(
β

2

)
+ ρ cos

(
3β

2

))

where 0 < τ < 1 and λ(0) = 0, μ(0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.21)

[on the domain’s boundary β=0 or β = −π]. The right hand side of the equations (4.21)

is calculated using λ(τ) and μ(τ) as it is regular now. Since (ζ − 1)3/2 =| � | eiΩ,

ζ = 1 + |�| 23 ei 2Ω3 = k + ρ(τ)eiβ(τ)

and we get a relation between λ(τ), μ(τ) and ρ(τ), β(τ) such that

1 + |�|2/3 cos(2Ω
3
) = k + ρ(τ) cos(β(τ))

|�|2/3 sin(2Ω
3
) = ρ(τ) sin(β(τ))
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which gives,

ρ(τ) =

((
1− k + |�|2/3 cos(2Ω

3
)

)2

+

(
|�|2/3 sin(2Ω

3
)

)2)1/2

β(τ) = arctan

( |�|2/3 sin(2Ω
3
)

1− k + |�|2/3 cos(2Ω
3
)

)
0 < τ < 1,

where

| � |2/3= (λ(τ)2 + μ(τ)2)1/3 and Ω(τ) = arctan

(
μ(τ)

λ(τ)

)
: −3π/2 < Ω < 0,

Ω should be calculated carefully for given λ, μ.

Solution of (4.21) with adaptive step-size Runge-Kutta method gives the following

shape of the interface ζ(y) for δ = 1
2
, 1
4
, 1
8

Fig. 4.12,

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

=1/2
=1/4
=1/8

Figure 4.12. Shape of the interface ζ(y) for δ = 1
2
, 1
4
, 1
8
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4.2. Asymptotic Analysis of the Velocity Near Corner Point

We know the velocity is singular at the corner point (0, δ), so we can analyze the

vertical velocity on CD and the horizontal velocity on DE near the corner point to obtain

the order of the singularity and the coefficient of the singularity. Since we know the values

of v1(ξ) and x(ξ) on CD, we start with the analysis of x(ξ) as ξ → 1 − 0 i.e. ξ = 1 − ε

where 0 < ε � 1. Since

x(ξ) = − 1

π

∫ 1

ξ

1

τ

√
1− τ

k − τ
dτ, 0 < ξ < 1,

we can write

x(ε) = − 1

π

∫ 1

1−ε

1

τ

√
1− τ

k − τ
dτ and by the change of variables τ = 1− εσ,

= − 1

π
ε3/2

∫ 1

0

σ1/2

√
k − 1 + εσ(1− εσ)

dσ.

The Taylor series expansions in powers of ε of the two terms are

1

1− εσ
= 1 + εσ +O(ε2) and

1√
k − 1 + εσ

=
1√
k − 1

(
1− 1

2

εσ

k − 1
+O(ε2)

)
.

This shows that on CD x depends on ε as follows:

x(ε) = ε3/2H1(ε) for 0 < ε � 1, (4.22)

where

H1(ε) = − 2

3π
(k − 1)−1/2 − 2

5π

2k − 3

2k − 2
(k − 1)−1/2ε+O(ε2).
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Similarly, we can analyze v1(ξ) on CD as ξ → 1 − 0 and we let ξ = 1 − ε where

0 < ε � 1. Hence

v1(ξ) =
1

π

√
(k − ξ)ξ

1− ξ

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
, 0 < ξ < 1. (4.23)

We now analyze (4.23) by simplifying the integral in v1(ξ),

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
=

∫ k

1

√
τ − 1

(k − τ)

(
1√
ξ
+

[
1√
τ
− 1√

ξ

])
dτ

τ − ξ

=
1√
ξ

∫ k

1

√
τ − 1

(k − τ)

dτ

τ − ξ

− 1√
ξ

∫ k

1

√
τ − 1

(k − τ)

dτ√
τ(
√
ξ +

√
τ)

=
1√
ξ
(I1 − I2).

The integral I2 can be expanded using Taylor series by putting ξ = 1−ε where 0 < ε � 1

and letting

I2 =
∞∑
n=0

anε
n.

On the other hand

I1 =

∫ k

1

τ − 1

τ − ξ

dτ√
(k − τ)(τ − 1)

=

∫ k

1

(
1 +

ξ − 1

τ − ξ

)
dτ√

(k − τ)(τ − 1)

= π + (ξ − 1)

∫ k

1

dτ

(τ − ξ)
√

(k − τ)(τ − 1)
.

By the change of variable τ =
(k − 1)λ+ (k + 1)

2
,
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I1 = π + (ξ − 1)
2

k − 1

π√(
2(ξ−1)
k−1

− 1

)2

− 1

= π + (ξ − 1)
π√

1− ξ
√
k − ξ

. (4.24)

Then v1(ξ) on CD as ξ → 1− 0 i.e. ξ = 1− ε where 0 < ε � 1 becomes

v1(ξ) ∼ 1

π

√
k − ξ

1− ξ

(
π + (ξ − 1)

π√
1− ξ

√
k − ξ

−
∞∑
n=0

anε
n

)

∼ −1 +

√
k − ξ

1− ξ

(
1− 1

π

∞∑
n=0

anε
n

)

= −1 +
√
ε
√
k − 1

(
1 +

ε

k − 1

)1/2(
1− 1

π

∞∑
n=0

anε
n

)
.

The Taylor series expansion of the term

(
1 +

ε

k − 1

)1/2

= 1 +
ε

2(k − 1)
+O(ε2)

gives the analysis of the vertical velocity v1 on CD such that

v1(ε) = −1 + ε−1/2G1(ε), (4.25)

where

G1(ε) =

(
1− a0

π

)
(k − 1)1/2 +

[
1

2
(1− a0

π
)(k − 1)−1/2 − a1

π
(k − 1)1/2

]
ε+O(ε2)

and

a0 = π − 2δF (1− δ2) and a1 =
δ(1 + δ2)

1− δ2
F (1− δ2)− δ3

1− δ2
E(1− δ2).
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Since we need the expansion of the vertical velocity v1 in terms of x, we will make some

re-arrangements. By using (4.22), we have ε−1/2 = x−1/3H
1/3
1 (ε) which gives

v1(ε) = −1 + x−1/3G̃1(ε), (G̃1(ε) = G1(ε)H
1/3
1 (ε)), (4.26)

and

G̃1(ε) =

(
− 2

3

)1/3
π − a0
π4/3

(k − 1)1/3

+

(
− 2

3

)1/3
(k + 1)(π − a0)− 5a1(k − 1)

5π4/3
(k − 1)−2/3ε+O(ε2).

On the other hand, by the inversion of the power series, the relation x2/3 = εH
2/3
1 (ε)

obtained from (4.22) gives

ε = −
(
3π

2

)2/3

(k − 1)1/3x2/3 +
3− 2k

5

(
3π

2

)4/3

(k − 1)−1/3x4/3 + · · · . (4.27)

Substituting (4.27) into (4.26) gives that the leading order vertical velocity v1 is singular

of order −1
3

near the corner point and the coefficient of the singularity is calculated as

v1 = −1− 2δF (1− δ2)

π4/3

(
2

3

)1/3

(k − 1)1/3x−1/3 +O(x1/3). (4.28)

We will do the same steps for the analysis of the leading order horizontal velocity u1(ξ)

and y(ξ) on DE. We start with the analysis of y(ξ) by approaching as ξ → 1 + 0 i.e.

ξ = 1 + ε where 0 < ε � 1. Since

y(ξ) = δ +
1

π

∫ ξ

1

1

τ

√
τ − 1

k − τ
dτ, 1 < ξ < k.

We can write
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y(ε) = δ +
1

π

∫ 1+ε

1

1

τ

√
τ − 1

k − τ
dτ, and by the change of variables τ = 1 + εσ

= δ +
1

π
ε3/2

∫ 1

0

σ1/2

√
k − 1− εσ(1 + εσ)

dσ.

The Taylor series expansions in powers of ε of the two terms are

1

1 + εσ
= 1− εσ +O(ε2) and

1√
k − 1− εσ

=
1√
k − 1

(
1 +

1

2

εσ

k − 1
+O(ε2)

)
.

Therefore on DE is

y(ε) = δ + ε3/2H2(ε) (4.29)

where

H2(ε) =
2

3π
(k − 1)−1/2 − 2

5π

2k − 3

2k − 2
(k − 1)−1/2ε+O(ε2).

Similarly, we can analyse u1(ξ) on DE as ξ → 1 + 0 i.e. ξ = 1 + ε where 0 < ε � 1.

Since

u1(ξ) = − 1

π

√
(k − ξ)ξ

ξ − 1
P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
, 1 < ξ < k,

we start by simplifying the Principal value integral in u1(ξ),

P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ

= P.v.

∫ k

1

√
τ − 1

(k − τ)

(
1√
ξ
+

[
1√
τ
− 1√

ξ

])
dτ

τ − ξ

=
1√
ξ
P.v.

∫ k

1

√
τ − 1

k − τ

dτ

τ − ξ
− 1√

ξ

∫ k

1

√
τ − 1

k − τ

dτ√
τ(ξ + τ)
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=
1√
ξ
(I3 − I4).

The integral I4 can be expanded into Taylor series for ξ = 1+ ε where 0 < ε � 1 and let

I4 =
∞∑
n=0

bnε
n.

On the other hand

I3 = P.v.

∫ k

1

(
1 +

ξ − 1

τ − ξ

)
dτ

(k − τ)(τ − 1)

=

∫ k

1

dτ

(k − τ)(τ − 1)
+ (ξ − 1)P.v.

∫ k

1

dτ

(τ − ξ)
√
(k − τ)(τ − 1)

= π.

Then u1(ξ) on DE as ξ → 1 + 0 i.e. ξ = 1 + ε where 0 < ε � 1 becomes

u1 ∼ − 1

π

√
k − ξ

ξ − 1

(
π −

∞∑
n=0

bnε
n

)

= −√
ε
√
k − 1

(
1− ε

k − 1

)1/2(
1− 1

π

∞∑
n=0

bnε
n

)
.

The Taylor expansion of the term

(
1− ε

k − 1

)1/2

= 1− ε

2(k − 1)
+O(ε2)

gives the analysis of the horizontal velocity u1 on DE such that

u1(ε) = ε−1/2G2(ε) (4.30)

where
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G2(ε) =

(
b0
π

− 1

)
(k − 1)1/2 +

[
b1
π
(k − 1)1/2 +

1

2
(1− b0

π
)(k − 1)−1/2

]
ε+O(ε2),

and

b0 = a0 and b1 = −a1.

Since we need the expansion of the horizontal velocity u1 in terms of y, we will do some

arrangements. By using (4.29) we have ε−1/2 = (y − δ)−1/3H
1/3
2 (ε) which gives

u1(ε) = −1 + x−1/3G̃2(ε), (G̃2(ε) = G2(ε)H
1/3
2 (ε)), (4.31)

and

G̃2(ε) =

(
2

3

)1/3
b0 − π

π4/3
(k − 1)1/3

+

(
2

3

)1/3
(k + 1)(π − b0) + 5b1(k − 1)

5π4/3
(k − 1)−2/3ε+O(ε2).

On the other hand, by the inversion of the power series (y − δ)2/3 = εH
2/3
2 (ε) obtained

from (4.29), we get

ε =

(
3π

2

)2/3

(k − 1)1/3(y − δ)2/3

− 3− 2k

5

(
3π

2

)4/3

(k − 1)−1/3(y − δ)4/3 + · · · . (4.32)

Substituting (4.32) into (4.31) gives that the leading order horizontal velocity u1 is also

singular of order −1
3

near the triple point and the coefficient of the singularity is calculated

as

u1 = −2δF (1− δ2)

π4/3

(
2

3

)1/3

(k − 1)1/3(y − δ)−1/3 +O((y − δ)1/3) (4.33)
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which is the comparison with Galerkin same as (4.28).

4.3. Comparison of the Velocity at the Interface: Analytical Solution

vs. Galerkin Solution

We compare the obtained horizontal velocity profile at the interface with the

Galerkin approximation solution which we derived before by using the suitable test func-

tion. We see that the Galerkin solution is very close to analytical solution. This compari-

son makes us sure about the choice of the test function in Galerkin method.

horizontal velocity
-7 -6 -5 -4 -3 -2 -1 0

di
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Figure 4.13. Comparison of the horizontal velocity at the interface
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CHAPTER 5

SOLUTION BY CONFORMAL MAPPING, SECOND

ORDER

The same conformal mapping as used in chapter 4 can be used for the analytical

solution of the dam-break problem at the second order. So in this chapter, the second order

problem is derived by using the main equations of the problem and small-time expansions

of the unknowns stated at Chapter 2. But we encounter with the Poisson equation instead

of the Laplace equation at the second order. Thus first we need to change the Poisson

equation to the Laplace equation with suitable transformations. Then the solution of the

second order problem with an unknown additive constant is obtained.

5.1. Second Order Pressure

At the second order, we have the following boundary value problem

u+
3,x + v+3,y = 0 in Ω+,

3u+
3 + u+

1 u
+
1,x + v+1 u

+
1,y = −p+2,x in Ω+,

3v+3 + u+
1 v

+
1,x + v+1 v

+
1,y = −p+2,y in Ω+,

v+3 (x, 0) = 0 , p+2 (x, 1) = −p+0,y(x, 1)η
+
2 , p+2 (0, y) = −p+0,x(0, y)ξ

+
2 ,

4η+4 = v+3 (x, 1)− u+
1 (x, 1)η

+
2,x + v+1,y(x, 1)η

+
2 ,

4ξ+4 = u+
3 (0, y)− v+1 (0, y)ξ

+
2,y + u+

1,x(0, y)ξ
+
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

with u+
3 , v

+
3 → 0 and p+2 → 0 as x → ∞.
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u−
3,x + v−3,y = 0 in Ω−,

3u−
3 + u−

1 u
−
1,x + v−1 u

−
1,y = −p−2,x in Ω−,

3v−3 + u−
1 v

−
1,x + v−1 v

−
1,y = −p−2,y in Ω−,

v−3 (x, 0) = 0 , p−2 (x, δ) = −p+0,y(x, δ)η
−
2 ,

4η−4 = v−3 (x, δ)− u−
1 (x, δ)η

−
2,x + v−1,y(x, δ)η

+
2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.2)

with u−
3 , v

−
3 → 0 and p−2 → 0 as x → ∞.

The problem (5.1) and (5.2) are equivalent to the boundary value problem

Δp+2 = −2((u+
1,x)

2 + (u+
1,y)

2) in Ω+,

p+2 (x, 1) =
1
2
v+1 (v

+
1 + 1) , p+2 (0, y) =

1
2
(u+

1 )
2 , p+2,y(x, 0) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.3)

with p+2 → 0 as x → ∞.

Δp−2 = −2((u−
1,x)

2 + (u−
1,y)

2) in Ω−,

p−2 (x, δ) =
1
2
v−1 (v

−
1 + 1) , p−2,y(x, 0) = 0

⎫⎪⎪⎬
⎪⎪⎭ (5.4)

with p−2 → 0 as x → ∞ with the boundary conditions on the interface,

(u+
1,x(0, y)− u−

1,x(0, y))b2(y) + u+
3 (y)− u−

3 (y) = (v+1 (0, y)− v−1 (0, y))b2,y(y),

(γu−
1 (0, y)− u+

1 (0, y))b2(y) = p+2 (0, y)− p−2 (0, y).

}
(5.5)

It is hard to solve the problem (5.3) and (5.4) with the interface conditions (5.5)

by direct methods. But simplification of the geometry of the problem by using conformal

mapping helps us as we did for the leading order problem. Since the second order pressure
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is also continuous at the interface when the liquid density is the same on either side, the

BVP (5.3)-(5.4) can be written as the following BVP Fig. 5.1,

Figure 5.1. Second order problem

To solve this problem, we first use the transformation F = p2 + u2
1 to change

the Poisson’s equation for p2 in Fig. 5.1 to Laplace equation for F . Fig. 5.2 shows the

boundary value problem for F .

Figure 5.2. Second order problem with the unknown function F

To have a Laplace equation for F is good, but getting the solution at the mapped

region needs homogeneous boundary conditions at the infinity part of the boundary. So

we also need to simplify the boundary condition at the right horizontal free surface. We

use the analytic function dw1/dz = u1 − iv1 in the flow region and hence ν = idw1/dz

is also analytic. Therefore we can use the transformation F̃ = F − (1
2
ν2) to make the
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boundary conditions simpler and the BVP in terms of the harmonic function F̃ becomes

Fig. 5.3.

Figure 5.3. Second order problem with the unknown function F̃

But the condition F̃ = 1
2
v1 on y = 1 is still not good enough since that part of

the boundary corresponds to infinity part of the boundary in the mapped plane. So we

need another transformation to make this condition zero. Let W̄ (z) = F̃ + iG be analytic

function in the flow region. Define a new analytic function W2(z) such that

W2(z) = W̄ (z)− i

2

dw1

dz
(−iz).

The real and the imaginary parts of W2(z) are denoted by [W2(z)] and �[W2(z)] respec-

tively and satisfy the following conditions on the boundary of the flow region,

�[W2(z)] = �[W2(x+ i0)] = G− x

2
v1 = 0 on AB.

Since v1 = 0 on AB and G = 0 on AB (F̃y = 0 on AB, since F̃ is harmonic we can use

Cauchy-Riemann equations (see Appendix D) and obtain Gx = 0 on AB. Gx = 0 on AB

and G → 0 as x → ±∞ together implies that G = 0 on AB).

[W2(z)] = [W2(x+ i)] = F̃ − v1
2

= 0 on EF
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since u1 = 0 and F̃ = v1/2 on EF .

[W2(z)] = [W2(x+ iδ)] = F̃ − δ

2
v1 =

1− δ

2
v1 on CD

since u1 = 0 and F̃ = v1/2 on CD.

[W2(z)] = [W2(0 + iy)] = F̃ − y

2
= 2u2

1 +
y − 1

2
on DE

since v1 = −1 and F̃ = 2u2
1− 1

2
on DE. Then the BVP in Fig. 5.3 in terms of the analytic

function W2(z) becomes Fig. 5.4.

Figure 5.4. Second order problem with the unknown function W2

We can use the same mapping z = Z(ζ) (4.3) for the transformation of the BVP

Fig. 5.4 onto the lower half plane with Fig. 5.5, where W3(ζ) = W2[Z(ζ)] is analytic in

η < 0, W3 → 0 as ζ → ∞.

We know W3 is finite at ξ = 0 and ξ = k but singular at ξ = 1. So we choose a

function R̃ such that

R̃(ζ) =
ζ − 1√

ζ
.
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Figure 5.5. Second order problem with the unknown function W3

Then we guarantee the behaviour of the multiplication function W4(ζ) = W3(ζ)R̃(ζ) as

ζ → ∞ is a complex constant CR̃, which have to be determined later. We will need the

constant CR̃ to get a new function W5(ζ) = W4(ζ) − CR̃ such that W5 → 0 as ζ → ∞.

The square roots in R̃ are considered in each interval as we done for (4.3). Then we

see that [W4] can be represented by regular functions on the boundary of the lower-half

plane such that

[W4(ξ − i0)] =
1− δ

2π

√
(1− ξ)(k − ξ)

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ
,

on the interval 0 < ξ < 1,

[W4(ξ − i0)] =
2

π2

√
ξ(k − ξ)

(
P.v.

∫ k

1

(
τ − 1

(k − τ)τ

)1/2
dτ

τ − ξ

)2

+
ξ − 1

2
√
ξ

(
δ +

1

π

∫ ξ

1

1

τ

√
τ − 1

k − τ
dτ

)
− ξ − 1

2
√
ξ
,

on the interval 1 < ξ < k and zero on the rest of the boundary. Let [W4(ξ − i0)] = f4(ξ)

on the interval 0 < ξ < 1 and [W4(ξ − i0)] = g4(ξ) on the interval 1 < ξ < k. Hence

the solution of this BVP-AF can be written as
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W4(ζ) =
i

π

[ ∫ 1

0

f4(τ)

τ − ζ
dτ +

∫ k

1

g4(τ)

τ − ζ
dτ

]
. (5.6)

To evaluate the integral terms in (5.6), we let I1 =

∫ 1

0

f4(τ)

τ − ζ
dτ and I2 =

∫ k

1

g4(τ)

τ − ζ
dτ .

Then,

W4(ζ) =
i

π
(I1 + I2), (5.7)

where

I1 =
1− δ

2π

∫ 1

0

[√
(1− τ)(k − τ)

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

]
1

τ − ζ
dτ (5.8)

on the interval 0 < τ < 1 and

I2 =
2

π2

∫ k

1

[√
τ(k − τ)

(
P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)2]
1

τ − ζ
dτ (5.9)

+
1

2π

∫ k

1

[
(τ − 1)√

τ

∫ τ

1

1

s

(
s− 1

k − s

)1/2

ds

]
1

τ − ζ
dτ

+
δ − 1

2

∫ k

1

(τ − 1)√
τ

1

τ − ζ
dτ

= I21 + I22 + I23

on the interval 1 < τ < k. The integrals in (5.8) and (5.9) can be written by using

Sokhotski-Plemelj formula (see Appendix D) on the boundary. For the integrals (including

the principal value ones) in I1, I21, I22 and I23, we rewrite them in simplified form before

giving the details about calculations. Let us start with the integral in I1 which can be

calculated directly and the details of the calculations are given in Appendix A.
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I1 =
1− δ

2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−iπ
√
(1− ξ)(k − ξ)

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− ξ

+P.v.

∫ 1

0

(√
(1− τ)(k − τ)

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)
dτ

τ − ξ
, 0 < ξ < 1,

∫ 1

0

(√
(1− τ)(k − τ)

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)
dτ

τ − ξ
, ξ < 0, ξ > 1.

I21 =
2

π2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−iπ
√
ξ(k − ξ)

(
P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− ξ

)2

+P.v.

∫ k

1

√
τ(k − τ)

(
P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)2
dτ

τ − ξ
, 1 < ξ < k,

∫ k

1

√
τ(k − τ)

(
P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)2
dτ

τ − ξ
, ξ < 1, ξ > k.

I22 =
1

2π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−iπ
ξ − 1√

ξ

∫ ξ

1

1

s

(
s− 1

k − s

)1/2

ds

+P.v.

∫ k

1

(
τ − 1√

τ

∫ τ

1

1

s

(
s− 1

k − s

)1/2

ds

)
dτ

τ − ξ
, 1 < ξ < k,

∫ k

1

(
τ − 1√

τ

∫ τ

1

1

s

(
s− 1

k − s

)1/2

ds

)
dτ

τ − ξ
, ξ < 1, ξ > k.

I23 =
δ − 1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−iπ
ξ − 1√

ξ
+ P.v.

∫ k

1

τ − 1√
τ

dτ

τ − ξ
, 1 < ξ < k,

∫ k

1

τ − 1√
τ

dτ

τ − ξ
, ξ < 1, ξ > k.
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∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− ξ
=

2δ

ξ

(
F (

π

2
,
√
1− δ2)− Π(

π

2
,
(δ2 − 1)ξ

1− ξ

√
1− δ2)

)
, (5.10)

where F is the complete elliptic integral of first kind and
∏

is the complete elliptic integral

of third kind. The principal value integral in I1 can be evaluated as

P.v.

∫ 1

0

(√
(1− τ)(k − τ)

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)
dτ

τ − ξ
(5.11)

= −2δ

∫ 1

0

f1(τ)dτ + 2δ(k − ξ)

[ ∫ 1

0

f1(τ)− f1(ξ)

τ − ξ
dτ + f1(ξ) log

(
1− ξ

ξ

)]

where

f1(τ) =

√
1− τ

τ
√
k − τ

(
F (

π

2
,
√
1− δ2)− Π(

π

2
,
(δ2 − 1)ξ

1− ξ

√
1− δ2)

)
. (5.12)

The functions in (5.12) can be calculated numerically and the details are given in Ap-

pendix A. The first principal value integral in I21 can be evaluated as

P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− ξ
(5.13)

= 2δF (
π

2
,
√
1− δ2) +

1− ξ√
ξ

∫ k

1

1√
s(
√
ξ +

√
s)
√

(s− 1)(k − s)
. (5.14)

The integral in (5.14) is calculated numerically and the details are given in Appendix A.

The nested principal value integral in I21 can be evaluated as

P.v.

∫ k

1

√
τ(k − τ)

(
P.v.

∫ k

1

(
s− 1

(k − s)s

)1/2
ds

s− τ

)2
dτ

τ − ξ
(5.15)

=
4

k
F 2

(
π

2
,

√
k − 1

k

)
m1 +m2 +

4√
k
F

(
π

2
,

√
k − 1

k

)
m3

where
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m1 = −2

3
(k3/2 − 1) + (k − ξ)

(
2(
√
k − 1)− 2

√
ξ log

√
k +

√
ξ

1 +
√
ξ

+
√

ξ log
k − ξ

ξ − 1

)

m2 = −(ξ2 − (2 + k)ξ + 2k + 1)

∫ k

1

g2(τ)√
τ

dτ + (2 + k − ξ)

∫ k

1

g2(τ)
√
τdτ

−
∫ k

1

g2(τ)τ 3/2dτ + (k − ξ)(1− ξ)2
(∫ k

1

h(τ)− h(ξ)

τ − ξ
dτ + h(ξ) log

k − ξ

ξ − 1

)

m3 =

∫ k

1

τg(τ)dτ + (ξ − 1− k)

∫ k

1

g(τ)dτ + (k − ξ)(1− ξ)

∫ k

1

g(τ)− g(ξ)

τ − ξ
dτ

+ (k − ξ)g(ξ) log
k − ξ

ξ − 1

and

g(τ) =

∫ k

1

1√
s(
√
τ +

√
s)
√

(s− 1)(k − s)
, h(τ) =

g2(τ)√
τ

.

The details of the above calculations are given in Appendix A. Similarly, the first integral

in I22 can be obtained as

∫ ξ

1

1

s

(
s− 1

k − s

)1/2

ds (5.16)

= 2

[
− arctan

√
k − ξ

ξ − 1
+

1√
k
arctan

√
k − ξ

k(ξ − 1)
+

π(
√
k − 1)

2
√
k

]
.

You can find the details in Appendix A. The principal value integral in I22 can be evalu-

ated as

P.v.

∫ k

1

(
τ − 1√

τ

∫ τ

1

1

s

(
s− 1

k − s

)1/2

ds

)
dτ

τ − ξ
(5.17)

=

∫ k

1

f(τ)√
τ
dτ − ξ − 1√

ξ

∫ k

1

f(τ)√
τ(
√
τ +

√
ξ)
dτ (5.18)

+
ξ − 1√

ξ

[ ∫ k

1

f(τ)− f(ξ)

τ − ξ
dτ + f(ξ) ln

(
k − ξ

ξ − 1

)]

where the function

f(τ) =

∫ τ

1

1

s

(
s− 1

k − s

)1/2

ds
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satisfies the Hölder condition. Finally the integral and the principal value integral in I23

can be evaluated as

∫ k

1

τ − 1√
τ

dτ

τ − ξ
= 2

[√
k − 1 +

1− ξ√
ξ

(arctan

√
k√
ξ
− arctan

1√
ξ
)

]
(5.19)

P.v.

∫ k

1

τ − 1√
τ

dτ

τ − ξ
=

∫ k

1

1√
τ
dτ +

1− ξ√
ξ

∫ k

1

dτ√
τ(
√
τ +

√
ξ)

(5.20)

+
ξ − 1√

ξ
ln

k − ξ

ξ − 1
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CHAPTER 6

SOLUTION BY DOMAIN DECOMPOSITION METHOD,

LEADING AND SECOND ORDER

Classical dam-break problem (H− = 0 for wet-bed case) is solved analytically by

Korobkin and Yilmaz (Korobkin and Yilmaz, 2009). It is also solved in the master thesis

of Isidici (2011) by using Eulerian variables and the Mellin transform. But there was

a discontinuity problem at the point where the horizontal free surface meets the vertical

free surface due to the use of Eulerian description. The Eulerian description is not suitable

for the neighbourhood of the upper corner point since the liquid runs over the flow field.

So it is usually difficult in such cases to use this description of a fluid motion which the

area is not fixed. To use the Lagrangian description it could be better for this type of

areas since the Lagrangian viewpoint of fluid mechanics focuses on each particle in the

flow; it identifies each particle by its original position and this particle must be followed

as time goes on. So in this chapter, we will solve the classical dam break problem at

the upper corner point with Lagrangian variables at the first order and by using Domain

Decomposition method at the second order. The Domain Decomposition method (DDM)

is prefered because of its simplicity. We first apply the DDM to the leading order problem

and compare the results of the method with those of known Fourier Series solution to

determine the optimum parameters for the method. Then we apply the DDM to the second

order problem with these parameters and get the second order Lagrangian solution. Hence

we will get the complete solution of the free surfaces of the flow at the end of this chapter.

6.1. Classical Dam Break Problem

The classical dam-break problem investigates the initial stages of the dam break

flow which is caused when a vertical dam at x′ = 0, −H < y′ < 0, holding the liquid at

the semi infinite strip, x′ > 0, −H < y′ < 0, suddenly disappears. At t′ = 0, the fluid

is at rest above a rigid bed with depth H . A cartesian coordinate system (x′, y′) with the

origin at the free surface and positive x′-axis directed along the free surface is chosen as

shown in Fig. 6.1. The resulting flow is gravity driven, two dimensional and potential.
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The liquid is assumed to be inviscid and incompressible.

Figure 6.1. Flow region at the initial time instant t′ = 0

Here we have two free-surfaces of the flow region, which vary in time and have to

be determined as part of solution. We denote the upper horizontal part of the free-surface

as y′ = η′(x′, t′), x′ > 0 and the vertical part as x′ = ξ′(y′, t′). The flow region is bounded

by these free-surfaces and by the rigid bottom y′ = −H . This problem is formulated in

non-dimensional variables (see Isidici (2011))

∂u

∂x
+

∂v

∂y
= 0 ,

∂u

∂t
+ u

∂u

∂x
+ v

∂v

∂y
= −∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
− 1 ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(6.1)

in −1 ≤ y ≤ η(x, t), ξ(y, t) ≤ x ≤ ∞

v =
∂η

∂t
+ u

∂η

∂x
, p = 0 on y = η(x, t), (6.2)

u =
∂ξ

∂t
+ v

∂ξ

∂y
, p = 0 on x = ξ(y, t), (6.3)

v(x,−1, t) = 0, (6.4)

η(x, 0) = ξ(y, 0) = 0, u(x, y, 0) = v(x, y, 0) = 0, (6.5)
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as x → ∞, u, v → 0 and p → −y, (6.6)

where equations (6.1) are Euler equations, (6.2) and (6.3) are kinematic and dynamic

boundary conditions ath the horizontal and vertical free surfaces, (6.4) is the slip boundary

condition at the bottom, (6.5) is the initial conditions which states that the fluid is rest

initially and (6.6) is the radiation condition at ∞, which indicates that there is no motion

as x → ∞.

A small-time solution to (6.1) - (6.6) may be sought by posing the power series

expansions of the unknown variables, horizontal and vertical components of of velocity,

horizontal and vertical free surface shapes and pressure, in time,

u = u0(x, y) + tu1(x, y) +O(t2),

v = v0(x, y) + tv1(x, y) +O(t2),

η = η0(x) + tη1(x) + t2η2(x) +O(t3), (6.7)

ξ = ξ0(y) + tξ1(y) + t2ξ2(y) +O(t3),

p = p0(x, y) + tp1(x, y) +O(t2)

as t → 0, x = O(1), where x = (x, y). We find from the initial conditions that u0 = v0 =

0, η0 = η1 = 0 and ξ0 = ξ1 = 0.

By substituting the expansions (6.7) in (6.1) - (6.6) and using the Taylor series

expansions of unknown functions about y = 0 for the vertical free surface and x = 0

for the horizontal free surface in the boundary conditions, we fix the domain as the semi-

infinite horizontal strip, −1 ≤ y ≤ 0, 0 ≤ x < ∞ and find the following boundary value

problem at the leading order as

�p0 = 0 − 1 ≤ y ≤ 0, 0 ≤ x < ∞ (6.8)

p0(x, 0) = 0 , p0(0, y) = 0 , p0,y(x,−1) = −1 , as x → ∞, p0 → −y,

with u1 = −p0,x, v1 = −p0,y − 1 and the series solution is

p0(x, y) = −y +
∞∑
n=0

8(−1)n

(2n+ 1)2π2
sin

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x . (6.9)
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Analysis of the singularity in u1 = −p0,x near the bottom point (0,−1) was stud-

ied in Isidici (2011) and the correction to the leading order was obtained. But the dis-

continuity at the top point (0,0) was not studied. To conduct the study and deal with the

discontinuity at the top point, (0,0), we employ the Lagrangian variables. The veloci-

ties of the fluid at the leading order can be obtained by differentiating the leading order

pressure (6.9),

u =
dx

dt
= −t

∞∑
n=0

8(−1)n

(2n+ 1)2π2

(
− (2n+ 1)

π

2

)
sin

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x, t > 0,

(6.10)

v =
dy

dt
= −t

∞∑
n=0

8(−1)n

(2n+ 1)2π2

(
(2n+ 1)

π

2

)
cos

(
(2n+ 1)

π

2
y

)
e−(2n+1)π

2
x, t > 0.

We can find the sum of the infinite series in (6.10) as

dx

dt
= −2t

π
log

√
(1− e−πx)2 + (2 cos π

2
ye−πx/2)2

(1 + e−πx + 2 sin π
2
ye−πx/2)2

t > 0,

(6.11)

dy

dt
= −2t

π
arctan

(
2 cos π

2
ye−πx/2

1− e−πx

)
t > 0.

The solution to the coupled nonlinear differential equations (6.11) can be carried

out by some numerical routine with an initial condition imposed at t = 0. We use adaptive

step-size Runge Kutta numerical routine for the solution of the system (6.11). The shape

of the free surfaces near the upper corner point (0, 0) is seen in Fig. 6.2, with dotted lines

denoting the initial shape at t = 0.

In order to derive the higher-order Lagrangian solution, we study the second order

solution of the boundary problem by domain decomposition method. But to get the cor-

rect parameters for this method; the domain decomposition solution of the leading order

problem is needed.

6.2. Domain Decomposition of the Problem

In this method, the domain is divided into a number of overlapping subdomains

where the problem solved with unknown coefficients, and then the solutions are matched

at the boundaries of the sub domains to find the unknown coefficients. We first solve the
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Figure 6.2. The shapes of the free surfaces in dimensionless variables at the leading

order with Lagrangian variables for t = 0.2, t = 0.4, t = 0.6

leading order problem by dividing the domain of the solution in three different regions

as seen in Fig. 6.3; Region 1: about the upper corner point, Region 2: about the bottom

corner point and Region 3: the domain on the right x > 0 as seen in Fig. 6.3.

Let r and θ represents the classical polar coordinates and r̃ and θ̃ are the polar

coordinates for the shifted coordinates x̃ = x and ỹ = y + 1. The solution in Region 1 is

written in the form:

p0 =
∞∑
n=1

CI
nr

2n sin(2nθ), −π

2
≤ θ ≤ 0. (6.12)

In Region 2,

p0 = −ỹ +
2

π

[
(1− log(

π

4
))x̃− x̃ log r̃ + θ̃ỹ

]
(6.13)

+
∞∑
n=1

CII
n r̃2n−1 cos((2n− 1)θ̃), 0 ≤ θ̃ ≤ π

2
.
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Figure 6.3. Sketch of the decomposition adopted

In Region 3,

p0 = (1− ỹ) +
∞∑
n=1

CIII
n r2n cos(λnỹ) exp(−λnx̃), x̃ > 0. (6.14)

The idea is to find a solution of the boundary problem (6.8) by using different

representations of the solutions in these three regions. The coefficients of the expansions

are derived by a collocation method on a certain number of points. The collocation points

are distributed along the lines which seperate the different domains and the matching

between the representations used in the two adjacent regions is enforced. However, it is

rather difficult to achieve an exact matching by using a finite series. An important limit is

related to the round of errors which can be accumulated when operating with large power

series. In order to circumvent the difficulty, the matching is enforced on number of points

which is larger than the number of unknown coefficients. The resulting overdetermined

linear system is solved in the least square fashion.

The decomposition is done by using same radius for Region 1 and Region 2 so that

there is overlapping with the boundaries of the regions, i.e. r1 = r2 is not smaller than half

of the height of the dam. The boundary of the Region 3 is chosen as a vertical line passes

at x3 = −r1/2. The coefficients of the expansions are derived by a collocation method

on a certain number of points; which are chosen two times larger than the number of

the unknown coefficients. The Singular Value Decomposition method is used to solve the

overdetermined system of equations. Let Ni denotes the number of terms of the expansion
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considered for region Ri and Nc the number of collocation points per each term in the

expansion. Hence, NcNi are the total number of collocation points, i = 1, 2, 3. Due to

the peculiarity of the solution in Region 2, the number of terms for this region is chosen

two times larger than the other regions. So, there are three parameters to be selected: the

number of terms in the expansions Ni, the number of collocation point per term Nc and

the radius r1. We matche the solutions by using suitable parameters and then derive the

corresponding coefficients of the expansion in each region. We get the best solution for

the leading order using the parameters N1 = N3 = 8, N2 = 16, Nc = 8 and r1 = 0.8. In

order to validate the procedure, the domain decomposition solution is compared with the

analytical solution (Tables∼6.1 and 6.2).

In Table 6.1 the pressure values at the line segment x = 0.4,−0.98 < y < −0.1

for t = 1 are compared and it is found that the maximum relative error is 2.036 × 10−6.

In Table 6.2, the coefficients in the expansions (6.12)-(6.13) are computed by keeping 8

terms in the expansions, which are the first numbers in the first line of columns 2, 3 and

4, but using different numbers for collocation points per term (8, 10 and 12), which are

the second numbers in the first line of the columns 2, 3 and 4, are compared showing that

they do not change greatly with the number of collocation points.

Table 6.1. Comparison of the leading order pressure with the analytical solution

(A.S.) & domain decomposition solution (D.D.S.) at x = 0.4 for t = 1.

x = r/2 = 0.4 A.S. D.D.S. Rel. Err.
y = −0.1 0.03772292 0.03772284 2.036× 10−6

y = −0.2 0.07618666 0.07618652 1.838× 10−6

y = −0.3 0.11619080 0.11619080 2.012× 10−8

y = −0.4 0.15865982 0.15866034 3.285× 10−7

y = −0.5 0.2047235 0.20472455 5.050× 10−8

y = −0.6 0.25581418 0.25581716 1.167× 10−7

y = −0.7 0.31376662 0.31376923 8.324× 10−8

y = −0.8 0.38085756 0.38085983 5.978× 10−8

y = −0.9 0.45962375 0.45962585 4.558× 10−8

y = −0.92 0.47698906 0.47698698 4.348× 10−8

y = −0.94 0.49492189 0.49492395 4.160× 10−8

y = −0.96 0.51343904 0.51344109 3.988× 10−8

y = −0.98 0.53254616 0.53254820 3.832× 10−8

After this validation the domain decomposition method now can be applied to

the second order problem. The second order problem is defined by the boundary value
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problem,

�p2 = −2(u2
1,x + u2

1,y) − 1 ≤ y ≤ 0, 0 ≤ x < ∞ (6.15)

p2(x, 0) = 2η22(x) + η2(x) , p2(0, y) = 2ξ22(y) ,

p2,y(x,−1) = 0, p2 → 0 as x → ∞.

The solution in Region 1, −π
2
≤ θ ≤ 0, is written in the form:

p2 =
1

2
v1 + (v21 − u2

1)(
4

π
θ +

1

2
) +

8

π
u1 log(r)(v1 + 1) (6.16)

+
8

π
θv1 +

4

π
θ +

∞∑
n=1

CI
nr

2n sin(2nθ)− u2
1.

In Region 2, 0 ≤ θ̃ ≤ π
2

p2 =
3

2
(u2

1 − v21 + 1) +
∞∑
n=1

CII
n r̃2n−1 cos((2n− 1)θ̃)− u2

1. (6.17)

In Region 3, x̃ > 0

p2 =
1

2
(v1 + v21 − u2

1 + u1)x+ v1y +
∞∑
n=1

CIII
n r2n cos(λnỹ) exp(−λnx̃)− u2

1. (6.18)

Similarly, we matche the solutions by using the same parameters as the leading order

problem and then derive the corresponding coefficients of the expansion in each region.

Hence, the velocities of the fluid at the second order can be written by using these second

order solutions of the pressure p2(x, y) as

u =
dx

dt
= tu1 − 1

3
(u1u1,x + v1u1,y + p2,x), t > 0, (6.19)

v =
dy

dt
= tv1 − 1

3
(u1v1,x + v1v1,y + p2,y), t > 0. (6.20)

The solution to (6.19)-(6.20) can be carried out by some numerical routine adaptive step-
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size Runge-Kutta method with an initial condition imposed at t = 0. The comparison of

the shapes of the free surfaces near the upper corner point using leading and second order

solutions with Lagrangian variables is given in Fig. 6.4. It is seen that the second order

solution makes a larger difference in the vertical free surface than in the horizontal free

surface. In Fig. 6.5, the shapes of the free surfaces near the upper corner point is plotted

using both leading and second order solutions for different times. Finally the complete

picture of the shapes of he free surfaces using Lagrangian description for the upper part

and Eulerian description for the bottom part at the second order can be seen in Fig. 6.6.
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Figure 6.4. The shapes of the free surfaces in dimensionless variables with the com-

parison of the leading order and second order with Lagrangian variables

for t = 0.2
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78



Table 6.2. Effect of the collocation points on the coefficients

Coef. 8-8 8-10 8-12

CA
1 −0.589675 −0.585556 −0.584781

CA
2 0.161116 0.161908 0.161601

CA
3 0.044510 0.044659 0.044744

CA
4 0.100245 0.100737 0.101034

CA
5 0.074988 0.075511 0.075808

CA
6 0.136470 0.138244 0.139307

CA
7 0.158118 0.160940 0.162633

CA
8 0.200447 0.200983 0.201161

CB
1 0.17168 0.170632 0.169947

CB
2 0.152807 0.153092 0.153275

CB
3 0.061146 0.061409 0.061579

CB
4 0.042178 0.042119 0.042081

CB
5 0.033989 0.034421 0.034701

CB
6 0.049782 0.049885 0.049947

CB
7 0.049615 0.049748 0.049828

CB
8 0.023350 0.025080 0.026204

CB
9 0.064207 0.064415 0.064544

CB
10 0.105125 0.105555 0.105819

CB
11 0.049159 0.054885 0.058603

CB
12 0.148866 0.148929 0.148907

CB
13 0.181092 0.184229 0.186180

CB
14 −0.052022 −0.030383 −0.016215

CB
15 0.508789 0.504884 0.502257

CB
16 0.718653 0.732841 0.741539

CC
1 −0.414390 −0.415800 −0.416708

CC
2 1.525835 1.527664 1.528866

CC
3 −1.864034 −1.865337 1.866100

CC
4 6.345436 6.356601 6.363730

CC
5 −13.89871 −13.92205 −13.93554

CC
6 49.18452 49.38880 49.51692

CC
7 −105.4966 −105.5670 −105.5876

CC
8 425.9344 427.5115 428.4633
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CHAPTER 7

CONCLUSION

In this thesis, the main interest is the dam break problem of wet-bed case during

the initial times of the flow. This problem is examined in three ways; by using Fourier

series method, variational method and the conformal mapping. All positive and negative

aspects of these methods are discussed in this thesis. In addition, this thesis involves

second order solution to dam break problem of dry-bed case as a continuation of master

thesis of Isidici (2011).

In the first chapter, we begin with the mathematical formulation of the problem.

Then we continue with small-time behaviour of the problem and give an explanation about

the importance of the initial stages in the second chapter. The Fourier series solution is

also given in this chapter with its deficiencies.

In Chapter 3, the variational method is introduced. The application of the Galerkin

method to the dam break problem gives good results at the interface with an accurate

choice of the test functions. But there occurs adversities on application of Galerkin

method to the other part of the boundaries which reveals the necessity of a new method.

In Chapter 4, the conformal mapping idea helps to find the analytical solution of

the problem for the case of equal densities in each side at the whole boundary. The deriva-

tion of the conformal mapping and its application to the problem is stated in this chapter

clearly. Immediately after this chapter, Chapter 5 contains the second order analytical so-

lution of dam break problem by using the same conformal mapping and similar complex

analysis techniques.

Finally in Chapter 6, we introduce the domain decomposition method which is

convenient to use in fluid flow problems. The second order solution of free-surfaces are

obtained and full shape of the free-surface is drawn more explicitly.

This thesis investigates the method of Fourier series, the variational approaches

and the conformal mapping technique in the solution of the dam break problem. It is

concluded that the conformal mapping technique has the advantage of obtaining the solu-

tion in the whole domain boundary with accurate results. The Fourier series solution that

is used in the leading order problem has convergency problems near the contact points,

where some kind of singularity is expected. The variational technique, on the other hand,

can be used successfully on the interface. However on the other parts of the boundary
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where there is free surface, the variational technique fails.
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APPENDIX A

CALCULATION OF THE INTEGRALS

�
∫ τ

1

1

s

√
s− 1

k − s
ds, for 1 < τ < k, ξ > k. Use basic substitution

√
k − s

s− 1
= u,

= 2(1− k)

∫
1

(u2 + 1)(u2 + k)
du

= 2

[
−

∫
1

u2 + 1
+

∫
1

u2 + k

]

= 2

[
− arctan u+

1√
k
arctan

u√
k

]

= 2

[
− arctan

√
k − s

s− 1
+

1√
k
arctan

√
k − s

k(s− 1)

]τ
1

= 2

[
− arctan

√
τ − k

1− τ
+

1√
k
arctan

√
τ − k

k(1− τ)
+

π

2
− π

2
√
k

]
.

�
∫ k

1

τ − 1√
τ

dτ

τ − ξ
, for ξ < 1, ξ > k. Use basic substitution

√
τ = u,

= 2

∫ √
k

1

u2 − 1

u2 − ξ
du

= 2

∫ √
k

1

(
1 +

ξ − 1

u2 − ξ

)
du

= 2

[ ∫ √
k

1

1du+ (ξ − 1)

∫ √
k

1

1

u2 − ξ

]

= 2

[√
k − 1 +

1− ξ√
ξ

(
arctan

√
k√
ξ
− arctan

1√
ξ

)]
.

� P.v.

∫ k

1

τ − 1√
τ

dτ

τ − ξ
, for 1 < ξ < k.

=

∫ k

1

1√
τ
dτ + (ξ − 1)P.v.

∫ k

1

1√
τ(τ − ξ)

dτ

=

∫ k

1

1√
τ
dτ + (ξ − 1)P.v.

∫ k

1

1√
(τ − ξ)

(
1√
τ
− 1√

ξ
+

1√
ξ

)
dτ

=

∫ k

1

1√
τ
dτ + (1− ξ)

∫ k

1

dτ

(
√
τ +

√
ξ)
√
τ
√
ξ
+

ξ − 1

ξ
P.v.

∫ k

1

dτ

τ − ξ

=

∫ k

1

1√
τ
dτ + (1− ξ)

∫ k

1

dτ

(
√
τ +

√
ξ)
√
τ
√
ξ
+

ξ − 1

ξ
ln

k − ξ

ξ − 1
.
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APPENDIX B

BOUNDARY VALUE PROBLEMS OF ANALYTIC

FUNCTIONS

Find analytic function W (z) in y < 0 such that W (z) → 0 as z → ∞ and

[W (x− i0)] = f(x)

on the real axis, where the function f(x) is integrable and satisfies the Hölder condition.

The soluion of this BVP-AF is

W (z) =
i

π

∫ ∞

−∞

f(τ)

τ − z
dτ (�(z) < 0)

where W (z) = φ(x, y) + iψ(x, y).
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APPENDIX C

SOKHOTSKI-PLEMELJ FORMULA

Let f be a complex-valued function which is defined and continuous on the real line, then

lim
y→0−

(∫ ∞

−∞

f(τ)

τ − z
dτ

)
= −iπf(x) + P.v.

∫ ∞

−∞

f(τ)

τ − x
dτ,

where P.v. denotes the Cauchy principal value.
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APPENDIX D

CAUCHY-RIEMANN EQUATIONS

Let f be a complex-valued function of a single complex variable z = x+ iy, such

that f(x + iy) = u(x, y) + iv(x, y). Suppose that the real (u) and imaginary (v) parts of

f are real-differentiable at a point in an open subset of C (the set of complex numbers).

If u and v satisfies the equations,

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x

which are called Cauchy-Riemann equations.
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APPENDIX E

JACOBI POLYNOMIALS

The Jacobi polynomials, also known as hypergeometric polynomials, denoted by

P
(α,β)
n (x), are orthogonal with respect to the Jacobi weight function w(α,β)(x) = (1 −

x)α(1 + x)β over I = (−1, 1) with α, β > −1, namely

∫ 1

−1

P (α,β)
n (x)P (α,β)

m (x)w(α,β)(x)dx = γα,β
n δmn, (E.1)

where γα,β
n = ‖P (α,β)

n ‖2
w(α,β) . They are solutions to the Jacobi differential equation,

(1− x2)y′′ + [β − α− (α + β + 2)x]y′ + n(n+ α + β + 1)y = 0 (E.2)

and give some other special named polynomials as special cases (For α = β = −1
2
, it is

named as Chebyshev Polynomials).

The Jacobi polynomials can be written in terms of the Gamma function explicitly,

P (α,β)
m (x) =

Γ(α +m+ 1)

m!Γ(α + β +m+ 1)

m∑
n=0

(
m

n

)
Γ(α + β +m+ n+ 1)

2nΓ(α + n+ 1)
(x− 1)n

and satisfy the following three-term reccurence relation

P
(α,β)
m+1 (x) = (a(α,β)n x− b(α,β)n )P (α,β)

m (x)− c(α,β)n P
(α,β)
m−1 (x), n ≥ 1,

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

1

2
(α + β + 2)x+

1

2
(α− β),
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where

a(α,β)n =
(2n+ α + β + 1)(2n+ α + β + 2)

2(n+ 1)(n+ α + β + 1)
,

b(α,β)n =
(β2 − α2)(2n+ α + β + 1)

2(n+ 1)(n+ α + β + 1)(2n+ α + β)
,

c(α,β)n =
(n+ α)(n+ β)(2n+ α + β + 2)

(n+ 1)(n+ α + β + 1)(2n+ α + β)
.

This relation allows us to evaluate the Jacobi polynomials at any given abscissa x ∈
[−1, 1].
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