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Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences



ACKNOWLEDGMENTS

I would like to thank . . .

. . . my supervisor, Assoc. Prof. Dr. Y. Murat ERTEN for trusting my abilities and

respecting my decisions. Despite the fact that his research interests do not exactly

match with the subject of this thesis work, his wisdom and experience encouraged

and guided me a lot.
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ABSTRACT

A FRAMEWORK FOR GENERALIZED SYLLOGISMS

Reasoning is an indispensable action both for natural intelligence and for artificial

intelligence. In automated reasoning, relatively expressive logics are used to define and

derive complex facts about the real world. Many facts cannot be expressed in inexpressive

logics such as syllogistic logic and thus, those logics are naturally ignored for automated

reasoning. Despite their inexpressiveness, logics with intuitive propositions can provide

two advantages: favorable complexity properties for reasoning tasks, and better corre-

spondence with the natural language statements. Syllogistic logic, the first known formal

logic in history, is so intuitive that it is often studied by cognitive scientists in order to

understand and model human reasoning. The problem is that its syntax and semantics

do not allow for representing much knowledge. Hence, propositions of syllogistic logic

should be generalized with useful extensions without sacrificing the advantageous proper-

ties much. The aim of this thesis work is to bridge the gap between syllogistic reasoning

and automated reasoning via designing the underlying logic and framework for perform-

ing time-efficient fully-automated deduction over generalized syllogistic propositions. In

this thesis work, we define a practical family of generalized syllogistic logics, reveal the

theoretical properties of those logics and their relationships with some other logics, and

specify comprehensive frameworks with alternative representations and methods.
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ÖZET

GENELLEŞTİRİLMİŞ TASIMLAR İÇİN BİR ÇATI

Akıl yürütme, hem doğal zeka hem de yapay zeka için vazgeçilmez bir iş. Otomatik

akıl yürütmede, ifade gücü nispeten yüksek olan mantıklar gerçek dünya hakkındaki

karmaşık gerçekleri tanımlamak ve türetmek için kullanılır. Birçok gerçek, tasımsal

mantık gibi ifade gücü zayıf mantıklarda ifade edilemez ve bu yüzden doğal olarak bu

mantıklar otomatik akıl yürütme amaçlı kullanılmaz. İfade güçlerinin zayıflıklarına rağmen

önermeleri sezgisel olan mantıklar iki konuda avantaj sağlayabilir: zaman karmaşıklığı

düşük olan akıl yürütme ve doğal dildeki ifadelerle daha yüksek bir uyuşma oranı. Tar-

ihte bilinen ilk biçimsel mantık olan tasımsal mantık o kadar sezgiseldir ki bilişsel bil-

imciler insanın akıl yürütme şeklini anlamak ve modellemek için sıklıkla bu mantığa

başvurur. Burada problem şu ki, bu mantığın sözdizim ve anlambilimi, bilgi temsili

için pek yeterli değildir. Bu yüzden tasımsal mantığın önermeleri, avantajlı yanlarından

olabildiğince az feragat ederek kullanışlı ek özelliklerle donatılarak genelleştirilmelidir.

Bu tez çalışmasının amacı, genelleştirilmiş tasımsal önermeler üzerinde düşük zaman

karmaşıklı ve tamamen otomatikleştirilmiş tümdengelim uygulamasına temel oluşturacak

olan mantığı ve çatıyı tasarlamak suretiyle tasımsal akıl yürütme ve otomatik akıl yürütme

arasındaki uçurumu kapatmaktır. Bu tez çalışmasında, pratik bir genelleştirilmiş tasımsal

mantık ailesi tanımlayıp, bu mantıkların teorik özelliklerini ve diğer bazı mantıklarla olan

ilişkilerini irdeledik ve alternatif temsil ve yöntemler içeren kapsamlı çatılar tanımladık.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Reasoning, the process of drawing conclusions, is not only critical for natural

intelligence but also a core topic for artificial intelligence. Figure 1.1 illustrates the other

foremost components of artificial intelligence, along with reasoning.

AI
Reasoning

and

planning

LearningPerception

Natural

language

processing

Robotics
Problem

solving

Figure 1.1. Primary components of artificial intelligence

Logic, the science of correct reasoning, is at the heart of all scientific disciplines.

Figure 1.2 illustrates this fact with a sample of sciences.

Since the development of modern logics in 19th century, the first known formal

study of logic, Aristotle’s syllogism, has been considered obsolete by many, due to its

limited expressivity.

Nonetheless, syllogistic reasoning is still an active research topic in cognitive sci-

ence for the purpose of understanding and modeling human reasoning. The reason is that

reflexive reasoning capabilities of humans are limited: humans have cognitive biases and

1



Logic

Mathematics

Physics

Chemistry

Biology

Psychology

Sociology

Formal sciences

Empirical sciences

Reductionism

Expansionism

Figure 1.2. Hierarchy of selected scientific disciplines

tend to fall into logical fallacies easily.

At the same time, modern times witness a revival of the syllogistic logic: the

current studies on syllogisms include various extensions, detailed analyzes, reasoning

algorithms and more.

From computer science point of view, the main problems of more expressive log-

ics are that they suffer from algorithmic complexity and they are unnatural to humans.

The essential parts of automated reasoning, reasoning which is done by comput-

ers without any human guidance, are the known facts called premises and the algorithms

which lead to new facts called conclusions. The problems of complexity and unnatural-

ness inconvenience both of these essential parts:

• The unnaturalness of those logics prevents us from developing programs that learn

facts automatically by exploiting the big (and cheap) data of natural language and

even makes it exhausting to define handcrafted facts.

• The complexity of those logics makes it infeasible to conclude results in a reason-

able time.

A useful family of generalized syllogistic logics can be a solution to overcome

both of these difficulties: syllogisms correspond to simple sentences in natural languages

and promise algorithms with lower time complexity.

2



1.2. Thesis Definition

Informative definition: This thesis defines a system which derives new facts

(called conclusions) from known facts (called premises). Figure 1.3 shows how the overall

system with a very simple example can be seen from a high-level perspective.

Our System
All humans are mortal
All Greeks are humans

Aristotle is Greek

All Greeks are mortal
Aristotle is human
Aristotle is mortal

Figure 1.3. The overall system with an informative example

Note that this figure is over-simplified: despite what the visualization suggests,

the conclusion candidates, or queries, are actually taken as inputs along with the premises,

and the system decides whether it is possible to conclude them or not. Otherwise, there

would be possibly infinite number of conclusions. The actual system can easily be adapted

to this form by generating query proposals by enumerating interesting patterns with re-

spect to any criteria. The overall efficiency would be arguable, though. The second

simplification here is that the propositions, both premises and conclusions, are shown as

English sentences. In fact, they are represented in a formal language.

Normative definition: The primary objective of this thesis work is to perform

time-efficient fully-automated deduction over generalized syllogistic propositions. Figure

1.4 shows a run of the system with a realistic example.

The goals of this thesis are:

Goal 1: Formally define a practical family of generalized syllogistic logics with dif-

ferent levels of expressivity by combining, improving and extending recent works

on syllogisms.

Goal 2: Investigate theoretical properties of the generalized syllogistic logics in-

cluding expressivity and complexity, and reveal their relationships with the other

logics.

Goal 3: Design and implement a comprehensive yet easy-to-use framework for

knowledge representation.

3



Goal 4: Design and implement a high-performance framework for automated de-

duction.

Is it valid?

I(smart � greek, aristotle)

A(greek � logician, smart � human)

I(human,¬smart)
A(human, mortal)

S(aristotle)

Yes

O(mortal, greek � logician)?

Figure 1.4. The overall system with a normative example

1.3. Related Work

The family of description logics (DLs) (Rudolph (2011)), (Krötzsch et al. (2012)),

(Baader et al. (2017)) are perhaps the most successful example of knowledge represen-

tation formalisms. It includes many logics with different expressivities, which vary from

the lightweight DLs such as DL-Lite (Calvanese et al. (2007)) or EL++ (Baader et al.

(2008)) to the typical DLs such as ALC (Donini and Massacci (2000)) or ALCO (Grimm

and Hitzler (2009)) to the more expressive DLs such as SHOIQ (Kazakov and Motik

(2006)) or SROIQ (Horrocks et al. (2006)) to other extensions such as fuzzy (Moral

et al. (2017)) or temporal (Lutz et al. (2008)) DLs. Their theoretical properties are well-

studied. These logics have applications in a wide range of domain from semantic web to

medical informatics to software engineering among many others (Baader et al. (2010)).

DL reasoners include Racer, FaCT++, Pellet, JFact, HermiT, Konclude and many others.

On the other hand, there has been a long history of studies on syllogistic logics

(SLs). Aristotle’s SL, the first known formal logic study in history, is sometimes con-

sidered as the first formal study in artificial intelligence. It was state-of-the-art until the

19th century (Russell and Norvig (2009)). In the 19th century, modern logics superseded

Aristotle’s syllogisms (Frege (1879)), (Hammer (1998)).
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However, modern logics, first-order logic (FOL) and its extensions, suffer from

semi-decidability (i.e. in finite time, no algorithm can prove contradictions in FOL). Fur-

thermore, homophonic theories should be preferred (Evans (1977)). However, FOL is

unnatural to the humans: its syntax bears no resemblance to the syntax of the natural lan-

guage sentences (Quine (1986)). A candidate for these homophonic theories is naturally,

the chronologically first logics, SLs.

Today, we witness a revival of SLs. Extentions such as fuzzy quantification

(Schwartz (2014)), (Pereira-Fariña et al. (2014)), (Murinová and Novák (2016)), indef-

inite terms (Pratt-Hartmann and Moss (2009)), (Moss (2011a)), (Alvarez and Correia

(2012)), (Alvarez-Fontecilla (2016)), complex terms (Çine and Kumova (2017)), (Çine

(2018)), non-categorical roles (Nishihara et al. (1990)), (Moss (2010)), (Moss (2011b)),

intersecting adjectives (Moss (2009)), relative clauses (Pratt-Hartmann and Moss (2009)),

logical connectives (van Rooij (2010)), (van Rooij (2012)) are added to SLs in order to

acquire more expressive SLs.
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CHAPTER 2

BACKGROUND

2.1. Automated Deduction and Knowledge Representation

Reasoning is the process of drawing conclusions from facts. Types of reasoning

usually fall into two categories:

• Inductive reasoning, or induction is the process of risky generalizations of known

facts. Scientific theories are developed thanks to inductions. Statistics is the main

tool for this kind of reasoning. A strong induction means that if the premises are

true, the conclusion is true with a high probability. An example of strong inductive

arguments is: a human DNA consists of 4 types of nucleotides, a worm DNA con-

sists of 4 types of nucleotides, ..., therefore all animal DNAs consist of 4 types of

nucleotides.

• Deductive reasoning, or deduction is making safe conclusions out of known facts.

Mathematical proofs are of this type. Logic is the main tool for this kind of reason-

ing. A valid deduction means that when the premises are true, it is impossible that

the conclusion is false. A well-known example of valid deductive arguments is: all

humans are mortal, Socrates is human, therefore Socrates is mortal.

Automated reasoning is reasoning which is done by computers without any human guid-

ance.

Automated Deduction Automated deduction task has several forms such as consis-

tency detection, entailment checking or query answering. An algorithmic solution to one

of them is usually sufficient to develop algorithms for the others trivially.

A proof system is sound if everything that the system concludes is true given the

premises, and is complete if everything that is true given the premises can be concluded

by the system. The vast majority of studies on automated reasoning focuses on sound and

complete deduction as opposed to approximate reasoning. In this work, we study sound

and complete deduction.
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The inflexible nature of computers bring the problem of knowledge representation

into the scene: a solution to automated reasoning problem becomes practical only if the

knowledge is stored structurally with consistent semantics.

Knowledge Representation In knowledge representation, there is a trade-off between

expressive power and algorithmic complexity (Brachman and Levesque (1984)): when a

formalism is equipped with new features in order to represent different kinds of knowl-

edge, the algorithms for reasoning becomes more time-consuming. Because of this, there

is a great variety of formalisms for knowledge representation.

The formalisms for knowledge representation include ontological approaches such

as description logic and rule-based approaches such as Datalog.

2.2. Traditional Syllogistic Logic

There are four quantifiers in the traditional syllogistic logic (TraSyl): all, no,

some and some not. They are abbreviated as A, E, I and O, respectively. A proposition

consists of a quantifier and two terms called subject and predicate. The types of proposi-

tions are:

1. (universal affirmative) All S are P,

2. (universal negative) No S are P,

3. (particular affirmative) Some S are P,

4. (particular negative) Some S are not P.

A syllogism contains 2 premises which contain exactly one common term called

the middle term. For example:

1. (major premise) All horses are animals.

2. (minor premise) Some animals are cute.

Here, the middle term is “animals”. The other term of the major premise, “horses”,

is called the major term, and the other term of the minor premise, “cute”, is called the

minor term.
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Minor term must be the subject of the conclusion, and major term must be the

predicate of the conclusion. A valid syllogism example is: All humans are mortal. All

engineers are humans. Therefore, all engineers are mortal.

Note that the validity depends on the position of terms, not the meaning of terms.

The following syllogism has the same structure, thus it is also valid: All M are P. All S are

M. Therefore, all S are P.

A mood specifies the quantifiers of a syllogism using their abbreviations. For

example the mood of the syllogism above is AAA. Note that there are only 43 = 64

moods. The following syllogism is a valid example of EIO mood: No P are M. Some M

are S. Therefore, some S are not P.

A figure specifies the position of the terms in a syllogism. Figure 2.1 illustrates all

4 figures of syllogisms.

Figure 1

M P

S M

S P

Figure 2

P M

S M

S P

Figure 3

M P

M S

S P

Figure 4

P M

M S

S P

Figure 2.1. Syllogistic figures

The whole structure of a syllogism is called its form. A form consists of a mood

and a figure. Therefore, there are 64 × 4 = 256 forms only. A form is a compact

representation of a syllogism. For example, OIO-1 is an invalid syllogism that expands to

the following argument: Some M are not P. Some S are M. Therefore, some S are not P.

A famous issue with TraSyl is the existential import problem: does all S are P

imply some S are P? In other words, do we mean there is at least one S when we say

all S are P? The answer depends on what we mean by all. Because natural language is

ambiguous. Intuitively, the answer is “yes” (i.e. the set of X is not empty). However, in

the modern predicate logic, the answer is “no” (i.e. the set of X may be empty).

TraSyl is the base for extensions in this thesis work.
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2.3. Description Logics

In DLs, a knowledge base, or ontology, typically consists of a terminological part

(TBox) for representing relationships between concepts and an assertional part (ABox)

for representing membership of an individual to a concept or relationships between two

individuals. Types of TBoxes are the empty TBox, acyclic TBox, cyclic TBox and general

TBox.

We will only give definitions of the most relevant DLs, ALC and ALCO with

general TBoxes.

Let X be a concept name, r a role, and C and D concepts. The production rule in

ALC is:

C, D ::= ⊥ | � | X | ¬C | C � D | C � D | ∃r.C | ∀r.C

Let x be an individual. ALCO introduces nominals:

C, D ::= ⊥ | � | X | ¬C | C � D | C � D | ∃r.C | ∀r.C | {x}

An ABox contains concept assertions which involve a concept and an individual

(e.g. Aristotle is a human: Human(Aristotle)) and role assertions which involve a role

and two individuals (e.g. Aristotle is a student of Plato: studentOf(Aristotle, Plato)).

A general TBox contains general concept inclusions between two concepts (e.g. A

game player is a human who plays some games: GamePlayer � Human � ∃play.Game).

Semantics of ALC and ALCO are similar to those of SLs. Thus, we will omit

them for saving space.
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CHAPTER 3

A FAMILY OF GENERALIZED SYLLOGISTIC LOGICS

3.1. Introduction

We formally define a family of SLs with different levels of expressivity by gen-

eralizing the traditional categorical syllogisms in several dimensions. These dimensions

include the number of premises, expressivity of terms, and types of propositions.

In increasing order of expressive power, the generalized SLs are:

1. PolSyl (Categorical polysyllogisms (CPSs) with atomic terms),

2. NegSyl (CPSs with possibly negated atomic terms),

3. ComSyl (CPSs with any kind of complex terms),

4. ComSyl+ (ComSyl with individuals).

Arbitrary Number of Premises In traditional syllogisms, typically 2 premises are

used. As in polysyllogisms, in generalized syllogisms, any number of premises can be

used. For example, � A(X, X) is a valid generalized syllogism with 0 premise (i.e. A(X, X)

is a tautology), and A(Z, T), A(Y, Z), A(X, Y) � A(X, T) is a valid generalized syllogism with

3 premises.

Complex Terms In traditional syllogisms, all terms are atomic. For example, an atomic

term can be cars, motorcycles, red (things), or expensive (things). An atomic

term can also be a complex-looking term such as red cars. However, it is not possible to

conclude I(car, expensive) or I(car, red) from I(red car, expensive) if red car is

an atomic term.

In generalized syllogisms, new terms are produced from the atomic terms us-

ing a production rule. For example, a complex term can be expensive � motorcycle

(“expensive motorcycles”), ¬ expensive � red � car (“non-expensive red cars”), or

car � motorcycle (“cars and motorcycles”). It is possible to conclude I(car, expensive)

and I(car, red) from I(red � car, expensive).

10



Complex terms implicitly cover indefinite terms (such as ¬cat which means “non-

cats”, or everything that is not a cat), indirect syllogisms (i.e. subject and predicate terms

of conclusion are switched as in A(Y, Z), I(X, Y) � I(Z, X)), and non-standard figures (such

as the figure in A(X, Z), I(Y, X) � I(X, Z) which contains the middle term in the conclu-

sion).

Individuals Propositions about individuals do not fit into the standard notation for

propositions of traditional syllogisms (e.g. “Socrates is human”). In generalized syllo-

gisms, individuals are treated as singleton sets in order to prevent quantification problems.

Asserting individuality of a term can change the validity of a syllogism. For exam-

ple I(Socrates, human) � A(Socrates, human) and I(Socrates, human), E(human, car)

� E(Socrates, car). However, if it is known that there is only one Socrates, we can

conclude A(Socrates, human) and E(Socrates, car), i.e. A(Socrates, human), S(Socrates)

� E(Socrates, Car) and I(Socrates, human), E(human, car), S(Socrates) � E(Socrates, car).

3.2. Syntax

Atomic Term An atomic term is an indivisible label which stands for a set of individuals.

Atomic terms are often simple words such as a noun or an adjective in natural

language. For example, cat (represents the set of cats in our domain), smart (represents

the set of smart things in our domain) and Socrates (represents the singleton set that

contains the person Socrates) are atomic terms.

Negated Atomic Term Let X be an atomic term. A negated atomic term, or an indefinite

term is ¬X.

For example, ¬cat is a negated atomic term assuming cat is an atomic term.

Possibly-Negated Atomic Term A possibly-negated atomic term is either an atomic term

or a negated atomic term.

Complex Term Let C and D be complex terms and X be an atomic term. The production

rule for complex terms is defined as:

C, D ::= X | � | ⊥ | ¬C | C � D | C � D
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For example, ¬smart � cat is a complex term assuming smart and cat are also

complex terms.

Note that, complex terms inherently include possibly-negated atomic terms.

Quantified Proposition Let C and D be complex terms. A quantified proposition P is

defined as:

P ::= A(C, D) | E(C, D) | I(C, D) | I(C, D)

For example, I(¬expensive � (car � motorcycle), red) is a quantified propo-

sition assuming expensive, car, motorcycle and red are complex terms.

Individuality Proposition Let C be a complex term. An individuality proposition P is

defined as:

P ::= S(C)

For example, S(Socrates) is an individuality proposition assuming Socrates is

a complex term.

Relational Proposition A relational proposition, or a relation is either a quantified propo-

sition or an individuality proposition.

Our SLs are defined through syntactic restrictions on defined concepts. Table 3.1

shows definitions of these logics. Note that the symbols X, ¬X and C stand for atomic

terms, negated atomic terms and complex terms, respectively. Additionally, propositions

of type S, or individuality propositions may be allowed only as assertions, not as queries.

The other types of propositions, or quantified propositions may be assertions or queries.

3.3. Semantics

Let C and D be complex terms. An interpretation I = (ΔI , ·I) consists of a non-

empty set of individuals ΔI called the domain and an interpretation function ·I that maps

C to a set CI ⊆ ΔI such that

1. �I = ΔI ,
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Table 3.1. Syntactic restrictions

Logic Allowed Terms Allowed Propositions
X ¬X C A E I O S

PolSyl � � � � �
NegSyl � � � � � �
ComSyl � � � � � � �
ComSyl+ � � � � � � � �

2. (¬C)I = ΔI \ CI ,

3. (C � D)I = CI ∩ DI .

⊥ and C � D can be seen as syntactic sugars which are synonyms of ¬� and

¬(¬C � ¬D), respectively. Thus it is the case that ⊥I = ∅ and (C � D)I = CI ∪ DI .

A non-existing term corresponds to an empty set and an existing term corresponds

to a non-empty set in the interpretation.

Table 3.2 shows all possible types of propositions and their corresponding condi-

tions. A proposition holds if and only if its corresponding condition is met.

Table 3.2. Semantics of propositions

Proposition Condition English

I � A(C, D) CI \ DI = ∅ All C are D

I � E(C, D) CI ∩ DI = ∅ No C are D

I � I(C, D) CI ∩ DI = ∅ Some C are D

I � O(C, D) CI \ DI = ∅ Some C are not D

I � S(C) |CI | = 1 C is an individual

Syntax and semantics of syllogistic logics are intuitive. An example of valid syllo-

gisms I(Turkish � engineer, smart � person), A(person, mammal) � I(mammal, engineer)

corresponds to the following argument in English: Some Turkish engineers are smart peo-

ple. All people are mammals. Therefore, some mammals are engineers.
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3.4. Theoretical Properties

In this section, we will reveal theoretical properties of SLs and their relationships

with the DLs.

Expressiveness Let X and Y be atomic terms. All 16 relational propositions in NegSyl

constitute 8 groups of semantically equivalent propositions:

1. A(X, Y) ≡ E(X,¬Y) ≡ �(X � ¬Y)

2. E(X, Y) ≡ A(X,¬Y) ≡ �(X � Y)

3. A(¬X, Y) ≡ E(¬X,¬Y) ≡ �(¬X � ¬Y)

4. E(¬X, Y) ≡ A(¬X,¬Y) ≡ �(¬X � Y)

5. I(X, Y) ≡ O(X,¬Y) ≡ ∃(X � Y)

6. O(X, Y) ≡ I(X,¬Y) ≡ ∃(X � ¬Y)

7. I(¬X, Y) ≡ O(¬X,¬Y) ≡ ∃(¬X � Y)

8. O(¬X, Y) ≡ I(¬X,¬Y) ≡ ∃(¬X � ¬Y)

As a result of the correspondence above, using cardinality propositions, a term is

an element of {X � Y, X � ¬Y, ¬X � Y, ¬X � ¬Y}. Special terms X, ¬X and ⊥ are derived

when the atomic terms are equal (i.e. X = Y). We will call these terms “regular” when

the atomic terms are unequal (i.e. X = Y). Note that these regular terms represent all 4

regions in Venn diagram of two atomic terms.

Commutative property of intersection, unequal atomic terms in the term expres-

sions, and 4 regions of two atomic terms reveal the true expressivity of NegSyl: it allows

for asserting emptiness or non-emptiness of 2t2 + 1 pairwise unequal sets: The bottom

term ⊥, t atomic terms, t negated atomic terms, and 4× t×(t−1)
2

regular terms.

Expressiveness of PolSyl is calculated very similarly. It can express 3 regions

out of 4 regions between two atomic terms: {X � Y, X � ¬Y, ¬X � Y}. X and ⊥ can be

derived when X = Y. In total, 3
2
t2 − 1

2
t+ 1 pairwise unequal sets can be represented.

t atomic terms constitute 2t regions in a Venn diagram. ComSyl and ComSyl+

are able to express all subsets of those regions: there are 22
t

pairwise unequal sets to

represent.

14



Lemma 3.4.1 The following propositions are all true:

• TraSyl is a fragment of any of {PolSyl, NegSyl, ComSyl, ComSyl+}.

• PolSyl is a fragment of any of {NegSyl, ComSyl, ComSyl+}.

• NegSyl is a fragment of any of {ComSyl, ComSyl+}.

• ComSyl is a fragment of any of {ComSyl+}.

Proof A syntactic restriction on a logic defines a fragment of that logic. These logics are

defined through syntactic restrictions in the previous sections. �

Lemma 3.4.2 PolSyl, NegSyl, ComSyl and ComSyl+ are monotonic.

Proof The following facts prove the monotonicity:

1. A proposition in those logics is true only if it is true in all possible worlds. Thus,

that proposition must be true in any subset of those possible worlds.

2. Algorithm 6 shows that each premise filters the possible worlds further. This means

that, at any iteration over premises, the set of possible worlds is a subset of possible

worlds of the previous iteration. �

Theorem 3.4.3 Consistency detection both in PolSyl and in NegSyl is tractable.

Proof Algorithm 2 along with algorithm 3 defines a sound and complete algorithm for

consistency detection in NegSyl which will always terminate in polynomial time (PTIME,

or P in short).

As discussed before, PolSyl is a fragment of NegSyl. As a result, consistency

detection in PolSyl is also tractable. �

Theorem 3.4.4 ComSyl and ComSyl+ are fragments of ALC and ALCO with general

TBoxes, respectively.

Proof Transformation rules for ComSyl and ComSyl+ to ALC and ALCO are defined in

section 5.6. �

Corollary 3.4.5 PolSyl, NegSyl, ComSyl and ComSyl+ fragments of FOL.
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Proof ComSyl+ is an extension of each of the other logics. Thus, it is sufficient to prove

the proposition only for ComSyl+.

It is known that ALCO is a fragment of FOL. We have shown that ComSyl+ is a

fragment of ALCO. Thus, ComSyl+ is a fragment of FOL.

A more direct proof the transformation rules defined in section 5.5. �

Corollary 3.4.6 Consistency detection both in ComSyl and in ComSyl+ is in EXPTIME.

Proof It is already stated that consistency detection in ALC and ALCO with respect

to general TBoxes is EXPTIME-complete. We proved that ComSyl and ComSyl+ are

fragments of those logics. Thus, they are in EXPTIME. �

Corollary 3.4.7 PolSyl, NegSyl, ComSyl and ComSyl+ are decidable.

Proof ComSyl+ is an extension of each of the other logics. Thus, proving decidability of

ComSyl+ is sufficient to prove the whole statement.

Decidability of ComSyl+ is proved twice:

1. It is already shown that ComSyl+ is in EXPTIME, thus it is decidable.

2. Algorithm 6 finite procedure that proves the decidability of ComSyl+. �

Corollary 3.4.8 ComSyl and ComSyl+ are syntactic variants of ALC and ALCO, re-

spectively, when the only role which appears in the ontology is the categorical role be.

Proof The only syntactic difference between ComSyl terms and ALC concepts is that

ALC allow us to define concepts via non-categorical roles. When the only role is the

categorical role be (or, beSubsetOf ) the semantics of ∃r.C and ∀r.C can be represented

via propositions of type I and A, respectively.

The relationship between ComSyl+ and ALCO is very similar to that of ComSyl

and ALC. The only addition is the propositions of type S which correspond to nominals

in DLs. �

3.5. Existential Configuration

In traditional syllogisms, it is not clear whether A(X, Y) implies I(X, Y) or not. The

implication depends on the personal interpretation of the quantifiers. This problem is
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called “existential import” problem. Generalized syllogisms are similar to FOL in this

sense: A(X, Y) does not imply I(X, Y). In other words, X may correspond to the empty set

in the interpretation. However, most people (e.g. Aristotle) tend to think differently.

In order to make the generalized syllogisms more intuitive, we configure quanti-

fiers with existential indices: an existential index is a subset of {υ, κ}. Here, υ indicates

the existence of the subject term and κ indicates the existence of the predicate term. For

example, both X and Y may be non-existing terms even if A∅(X, Y) ≡ A(X, Y) holds, but X

is an existing term if A{υ}(X, Y) holds. This means that, for example, A∅(X, Y) holds if and

only if XI \ YI = ∅ but A{υ}(X, Y) holds if and only if XI \ YI = ∅ and XI = ∅.

A proposition with a configured quantifier is only a syntactic sugar for the con-

junction of a couple of quantified propositions. For example, A{υ}(X, Y) ≡ A(X, Y) ∧
I(X, X).

Table 3.3 shows all configured quantifiers and their subjective classifications. Note

that the quantifiers I and O cannot be configured without υ: both in modern interpreta-

tion and in traditional interpretation, they imply the existence of subject. The existential

index {κ} is seemingly not very useful. People probably mean {υ} or {υ, κ}. There

are equivalent configured quantifiers such as A{υ} and A{υ,κ}. The reason is the fact that

A(X, Y) ∧ I(X, X) ≡ A(X, Y) ∧ I(X, X) ∧ I(Y, Y). In other words, A(X, Y) ∧ I(X, X) implies

I(Y, Y).

Table 3.3. Configured quantifiers

Syntactic Sugar Equivalent Conjunction Classification

A∅(X, Y) A(X, Y) Modern

A{υ}(X, Y) ≡ A{υ,κ}(X, Y) A(X, Y) ∧ I(X, X) Traditional

A{κ}(X, Y) A(X, Y) ∧ I(Y, Y) Bogus

E∅(X, Y) E(X, Y) Modern

E{υ}(X, Y) E(X, Y) ∧ I(X, X) Alternative

E{κ}(X, Y) E(X, Y) ∧ I(Y, Y) Bogus

E{υ,κ}(X, Y) E(X, Y) ∧ I(X, X) ∧ I(Y, Y) Traditional

I∅(X, Y), I{κ}(X, Y) - Impossible

I{υ}(X, Y) ≡ I{υ,κ}(X, Y) I(X, Y) Indispensable

O∅(X, Y), O{κ}(X, Y) - Impossible

O{υ}(X, Y) O(X, Y) Modern

O{υ,κ}(X, Y) O(X, Y) ∧ I(Y, Y) Traditional
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A{υ}(X,�) can be used to claim that X is an existing term and A∅(X,⊥) can be

used to claim that X is a non-existing term. X and Y are equal terms if and only if

A∅((X � ¬Y) � (Y � ¬X),⊥) holds. X and Y are unequal terms if and only if I{υ}((X � ¬Y)
�(Y � ¬X),�) holds. X and Y are disjoint terms if and only if E∅(X, Y) holds. X and Y are

intersecting terms if and only if I{υ}(X, Y) holds.
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CHAPTER 4

REPRESENTATION FRAMEWORK

4.1. Introduction

A knowledge base, or an ontology, or in this case a syllogism, is a set of propo-

sitions. In this section, we define a framework for representing a syllogism and its parts:

terms and propositions. Figure 4.1 illustrates the high-level components of the framework.

Representations

Factories Converters

Generators Iterators

Simplifiers

(for basic functionalities) (for solver compatibilities)

(for random experiments) (for systematic searches)

(for compactness & interpretability)

Random

Arbitrary

Sequential

Corresponding

Equivalent

Figure 4.1. Components of the representation framework

Factories, generators, iterators and converters create arbitrary, random, sequential

and equivalent representations of terms, propositions and syllogisms.

4.2. Representation of Terms

Terms are the most basic units of the representation framework. Figure 4.2 illus-

trates the alternative representations for the term (¬X2 � X3) � X1 which corresponds to

region set {1, 5, 7} when the number of atomic terms t = 3.
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�

¬X2 X3

X1

X1 X2

X3

·2·3·1

·5
·4

·6
·7

·0

Figure 4.2. A term can be expressed as an expression tree or a region set

4.2.1. Terms as Expression Trees

Expression trees, a special class of binary trees, can be used to represent terms. In

expression trees, each inner node contains an operator and each leaf contains an operand.

Exceptionally, leaves internalize negations with the purpose of expression simplification.

For example, ¬X2 � ¬X4 is stored instead of ¬(X2 � X4). Figure 4.3 illustrates expression

tree of the complex term (¬X2 � (X4 � ¬X0)) � X3.

�

�

¬X2 �

X4 ¬X0

X3

Figure 4.3. An expression tree
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Advantages of expression trees over regions sets are that they are more compact

in terms of space complexity than region sets and they enable lazy evaluation.

4.2.2. Terms as Region Sets

Algorithm 1 calculates an array of set of region numbers for a given number of

atomic terms. For example, if we call the function as in X = AtomicTerms(3),

then X1 = {1, 3, 5, 7}, X2 = {2, 3, 6, 7}, X3 = {4, 5, 6, 7}, and X.length = 3. Hereafter,

t will represent the number of atomic terms.

Algorithm 1 Calculation of region sets

1: function ATOMICTERMS(t) � t is number of atomic terms
2: for i ← 1, t do
3: Xi ← {∑n∈N 2n−1 | N ⊆ {1, 2, ..., t}, i ∈ N }
4: return X

The intuition behind this function is simple: for every Xi, there is a dedicated

number 2i−1. For example, 23−1 = 4 is dedicated to X3. Any region is numbered the sum

of the dedicated numbers of those atomic terms that contains this region. For example,

when t = 3, (X1 ∩ X3) \ X2 defines a single region that is contained by only X1 and X3.

Therefore, that region will be numbered 21−1 + 23−1 = 1+ 4 = 5.

Figure 4.4 shows a visualization of atomic terms and region numbers. It is useful

to replace terms with meaningful identifiers (e.g. human = X1).

Note that region sets require that t, the number of atomic terms, is pre-determined

and assume that it is fixed. An advantage of region sets is that they are always in their

simplest form. Along with that, when t is small, visualization of region sets is useful for

research and education.

The pre-determined t allows for defining a special term as a syntactic sugar: the

surplus term δ expresses everything in the domain except those which are in atomic terms.

For example, δ = ¬X1 � ¬X2 � ¬X3 when t = 3.

The bottom term ⊥ defines a term that represents the empty set. ⊥ is defined as a

global constant: VOID = { }. The top term � defines a term that represents all the domain.

� is defined as a global variable: UNIVERSE = {0, 1, ..., 2t − 1}. Value of UNIVERSE

does not change unless the value of t is changed. If the value of t is changed, then the
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Figure 4.4. Universes with different number of atomic terms

atomic terms should be also updated. The surplus term δ defines a term that represents

everything in the domain other than the atomic terms. δ is defined as a global constant:

EXTRAS = {0}.

Atomic terms and the surplus term are the building blocks of complex terms. The

production of complex terms is done by the set operations such as intersection, union,

difference, and complement. For example, if t = 3 then X1 ∪ X2 = {0, 1, 3, 4, 5, 7}. It

is true that UNIVERSE =
⋃t

i=1 Xi ∪ EXTRAS. An indefinite term is a basic example of

complex terms that is produced by taking complement of an atomic term with respect to

UNIVERSE. Each complex term is a subset of UNIVERSE. Therefore, there can be only

|P(UNIVERSE)| = 22
t

different complex terms.

For all atomic terms Xi, |Xi| = 2t−1. For all complex terms C, 0 ≤ |C| ≤ 2t.

For example, |UNIVERSE| = 2t, |VOID| = 0, |EXTRAS| = 1. Furthermore, |Xi| = 2t − 1,
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|Xi ∩ Xj| = 2t−2, |Xi ∪ Xj| = 2t − 2t−2 where Xi and Xj are atomic terms and Xi = Xj.

4.2.3. Conversion Between Term Representations

It is trivial to convert an expression tree to a region set after calculating the atomic

terms using algorithm 1. The calculation of complex terms is the standard expression tree

evaluation.

Conversion from region sets to expression trees can be done via Quine-McCluskey

algorithm (McCluskey (1956)) or Petrick’s method (Petrick (1956)). They are similar to

Karnaugh mapping but algorithmically more efficient.

4.3. Representation of Propositions

We have defined 5 types of propositions: A, E, I, O, and S. These propositions are

called relational propositions, or relations. In essence, those propositions express three

types of cardinality propositions, or cardinalities: empty (�), non-empty (∃), or singleton

(∃!) sets.

Negations of these propositions other than those of type S (and ∃!) exist within

this logic: their negations can be used in need.

4.3.1. Propositions as Relational Propositions

Our initial definition of syllogistic propositions focuses on the relations between

two terms named subject and predicate. These relational propositions are either a quanti-

fied proposition (i.e. one of {A, E, I, O}) or an individuality proposition (i.e. S). Table 4.1

shows all possible types of relational propositions.

4.3.2. Propositions as Cardinality Propositions

Propositions can alternatively be represented using set-theoretic cardinality propo-

sitions. Table 4.2 shows all possible types of cardinality propositions.
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Table 4.1. Relational propositions

Relation English

A(C, D) All C are D

E(C, D) No C are D

I(C, D) Some C are D

O(C, D) Some C are not D

S(C) C is an individual

Table 4.2. Cardinality propositions

Cardinality English

�(C) There are no C

∃(C) There are some C

∃!(C) There is only one C

Cardinality propositions capture the expressive power of relational propositions

with fewer number of proposition types. This is an advantage for automated deduction.

However, they may not be as intuitive as relational propositions (e.g. It is probably easier

to think A(human, mortal), or “all humans are mortal” than of �(human � ¬mortal), or

“there is nothing which is human but not mortal”).

4.3.3. Conversion Between Proposition Representations

Table 4.3 shows correspondence of these proposition types.

A cardinality may theoretically correspond to multiple relations. For example,

�(C) = E(C, C) = A(C,⊥). More generally, �(C) = E(F, G) = A(F,¬G) such that C = F � G.
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Table 4.3. Correspondence between proposition representations

Relation Corresponding Cardinality English

A(C, D) �(C � ¬D) All C are D

E(C, D) �(C � D) No C are D

I(C, D) ∃(C � D) Some C are D

O(C, D) ∃(C � ¬D) Some C are not D

S(C) ∃!(C) C is an individual

Cardinality Corresponding Relation English

�(C) E(C, C) There are no C

∃(C) I(C, C) There are some C

∃!(C) S(C) There is only one C

4.4. Representation of Syllogisms

Neither order of premises nor duplicate premises can change the validity of a

syllogism. As a result, premises of a syllogism can be represented as a set of propositions.

Naturally, queries, the conclusion candidates, are used for entailment checking.

Alternatively, negation of a query can be added to the set of premises and the consistency

is checked.

4.4.1. Syllogisms as Validity of Arguments

The natural representation of a syllogism is a logical argument:

Validity of ((assertion1 ∧ assertion2 ∧ · · · ∧ assertionp) ⇒ query) is the ques-

tion. Figure 4.5 illustrates this representation.

4.4.2. Syllogisms as Inconsistency of Propositions

An alternative representation of a syllogism is a set of propositions:
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Is it
valid?

assertion1

assertion2
...

assertionp

query

yes/no

Figure 4.5. A syllogism as the validity of an argument

Inconsistency of {assertion1, assertion2, . . . , assertionp,¬query} is the ques-

tion. Figure 4.6 illustrates this representation.

Are they
incon-
sistent?

assertion1

assertion2
...

assertionp

¬query

yes/no

Figure 4.6. A syllogism as the inconsistency of propositions

Note that ¬∃(C) = �(C) and thus ¬�(C) = ∃(C). Propositions of type ∃! cannot

be used as queries.

4.4.3. Conversion Between Syllogism Representations

Conversion between syllogism representations is trivial:

Proposition 4.4.1 Let a1, ..., ap and q be propositions. ((a1∧ a2∧ · · · ∧ ap) ⇒ q) is valid

≡ {a1, a2, . . . , ap,¬q} is inconsistent.
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CHAPTER 5

DEDUCTION FRAMEWORK

5.1. Introduction

In the previous chapter, two different forms of automated deduction were pre-

sented. Figure 5.1 summarizes these forms of deduction with examples. It was shown

that the entailments checking and consistency detection are equivalent.

Is it valid?

I(smart � greek, aristotle)

A(greek � logician, smart � human)

I(human,¬smart)
A(human, mortal)

S(aristotle)

Yes

O(mortal, greek � logician)?

Are they consistent?

A(red � car, expensive)

I(car,¬expensive)
A(car, vehicle)

E(vehicle,¬red)
No

Figure 5.1. Automated deduction

In this chapter, we will define or adapt various methods for sound and complete

automated deduction in generalized syllogisms.

5.2. Tractable Reasoning in Special Cases

NegSyl and PolSyl are tractable logics. Algorithm 2 is a polynomial time algo-

rithm that is able to reason in NegSyl and thus in PolSyl.
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Algorithm 2 Consistency detection in NegSyl

1: function ISCONSISTENT(kb) � kb is knowledge base
2: // Checking consistency of current knowledge:
3: for all p ∈ kb.knowns do
4: if p.negation() ∈ kb.knowns then
5: kb.fillKnownsClearUnknowns()
6: return False
7: repeat
8: // Checking consistency of inferable knowledge:
9: for all p ∈ kb.unknowns do

10: if immediatelyImplies(kb, p) then
11: kb.addToKnownsRemoveFromUnknowns(p)
12: if p.negation() ∈ kb.knowns then
13: kb.fillKnownsClearUnknowns()
14: return False
15: // Checking domain non-emptiness:
16: for all X ∈ kb.atomicTerms do
17: if {�(X), �(¬X)} ⊆ kb.knowns then
18: kb.fillKnownsClearUnknowns()
19: return False
20: until convergence
21: return True

Algorithm This algorithm consists of three stages: first, it searches for direct incon-

sistencies in the knowledge base. If both of a proposition and its negation appear in the

knowledge base, then there is inconsistency. In the second stage, negations of immedi-

ately inferable propositions are searched. In the third stage, consistency with the non-

empty domain assumption is checked. The second and the third stages are repeated until

there is no change. The function immediatelyImplies checks whether a given proposi-

tion is immediately inferable given a knowledge base. The function implies checks the

immediate inferences ignoring most of the propositions: it adds p to a copy of kb.knowns,

then filters the propositions that contain irrelevant atomic terms, and then runs the exhaus-

tive search in algorithm 5.

Soundness and Completeness Soundness of the algorithm relies on the soundness of

the exhaustive search in algorithm 5. The most important reason of the low time com-

plexity is the proposition elimination in the function implies: the algorithm ignores many

combinations of propositions. However, the elimination of the propositions does not vi-

olate the completeness. Because polysyllogisms can be expressed as a chain of multiple

syllogisms: when it is possible to construct a bridge between two terms, it is possible to

construct that bridge using a single middle term.
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Algorithm 3 Immediate inferences in NegSyl

1: function IMMEDIATELYIMPLIES(kb, p) � kb is a knowledge base, p is a proposition
2: XY = p.relevantAtomicTerms � 0 ≤ |XY| ≤ 2
3: tautologies = {�(⊥), ∃(�)}
4: if p ∈ tautologies then
5: return True
6: for all Z ∈ kb.atomicTerms do
7: XYZ = XY ∪ {Z} � 1 ≤ |XYZ| ≤ 3
8: if implies(kb, p, XYZ) then
9: return True

10: return False

Tractability In the algorithm design, we take advantage of the monotonicity. The al-

gorithm is guaranteed to converge in polynomial time: the number of all propositions is

Θ(t2) and in the worst-case, a single proposition will be inferred in each iteration. Num-

bers of iterations in the inner loops are also a polynomial. Algorithm 2 is a linear-time

algorithm: there are Θ(t) iterations in each call and the innermost function call takes a

constant time as the upper bound for the number of atomic terms is fixed to 3. These

facts make the whole algorithm polynomial. Despite the fact that the complexity of the

algorithm can be reduced, it is not an urgent need until practical applications of NegSyl

is discovered.

5.3. Exhaustive Search for Visualization

A world is a subset of UNIVERSE. It contains the numbers of all the existing regions

in UNIVERSE. Figure 5.2 shows a visualization of a possible world w = {0, 1, 4, 6, 7} in

a universe with 3 atomic terms. Shaded regions corresponds to the empty regions in the

interpretation. w satisfies S(X1 � X2) but does not satisfy S(X1). In w, I{υ}(¬X1, X2 � X3)

holds but I{υ}(X3 � ¬X2, X1) does not hold.

Algorithm 4 decides whether a proposition is true or not in a world. All the quan-

tifiers are only related to existence or non-existence of the regions. When the proposition

is a quantified proposition, if a region exists, it does not matter how many corresponding

elements there are. However, single existing region does not imply single corresponding

element in the interpretation. As a result, any model can be represented by a world from

syllogistic point of view if and only if the conclusion is a quantified proposition. There-

fore, the first part of the algorithm is unsound. However, this will not be a problem as the
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Figure 5.2. Visualization of a possible world

deductive machinery is designed accordingly. When the conclusion is a quantified propo-

sition, the existing regions of the subject and the predicate are the intersections of those

terms with the world. If there is an existential error, the proposition is false. Otherwise,

the truth value is decided according to the quantifier of the proposition.

Algorithm 4 Does a given proposition hold in a given world?

1: function HOLDS(p, w) � p is a proposition, w is a world
2: if type(p) == S then � complete & unsound
3: return |w ∩ p.term| == 1
4: else � complete & sound
5: subj ← w ∩ p.subject
6: pred ← w ∩ p.predicate
7: if p.subjectShouldExist and subj == ∅ then
8: return False
9: if p.predicateShouldExist and pred == ∅ then

10: return False
11: if p.quantifier == A then
12: return subj \ pred == ∅
13: if p.quantifier == E then
14: return subj ∩ pred == ∅
15: if p.quantifier == I then
16: return subj == ∅ or subj ∩ pred = ∅
17: if p.quantifier == O then
18: return subj == ∅ or subj \ pred = ∅

Algorithm 5 decides whether a set of propositions is consistent. A set of proposi-

tions is consistent if and only if at least one possible world satisfies all the propositions.

Algorithm 6 decides whether a generalized syllogism is valid, i.e. conclusion nec-

essarily follows from the premises. This algorithm takes a possibly empty set of premises

and a conclusion. Each of the premises and the conclusion is a proposition.
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Algorithm 5 Inconsistency detection & satisfiability checking

1: function ISCONSISTENT(propositions)
2: loop: for all world ⊆ UNIVERSE do
3: for all proposition ∈ propositions do
4: if not Holds(proposition, world) then
5: continue loop

6: return True
7: return False

Algorithm 6 Validity checking

1: function ISVALID(premises, conclusion)
2: if type(conclusion) == S then
3: for all premise ∈ premises do
4: if type(premise) = S then
5: continue
6: if Holds(A∅(conclusion.term, premise.term), UNIVERSE) then
7: return IsV alid(premises, I{υ}(conclusion.term, UNIVERSE))
8: return not IsConsistent(premises)
9: else

10: loop: for all world ⊆ UNIVERSE do
11: for all premise ∈ premises do
12: if not Holds(premise, world) then
13: continue loop

14: if not Holds(conclusion, world) then
15: return False
16: return True

When the query is of quantified proposition type, this procedure works for SLs as

truth table works for propositional logic. When query is of individuality propositon type,

this procedure searches for an upper bound 1 and then searches for a lower bound 1. If

the search fails, as a last chance, it checks whether the assertions are inconsistent.

An advantage of these algorithms for satisfiability and validity checking is that

they are very flexible in terms of responding to needs (i.e. it is possible to add more

dimensions beyond our recommendation). For example, other types of constraints can

easily be defined.

Another (and probably more important) advantage is that, with a little modifica-

tion, this approach allows for visualizing valid and invalid syllogisms with compatible

and contradicted worlds .

Soundness and Completeness The first part of the algorithm 6 searches an upper bound

1 for the number of corresponding elements in the interpretation of the regions of interest.

If it finds an upper bound, it searches a lower bound 1, i.e. existence of the regions
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of interest. Otherwise, the validity requires an inconsistency among the premises. The

correctness of the second part of the algorithm 6 relies on the iteration of all possible

worlds that works like a truth table for propositional logic. A syllogism is invalid if and

only if there is at least one world that satisfies all the premises but does not satisfy the

conclusion. In the corner case, if no world satisfies all the premises, any conclusion is

valid because of the principle of explosion, i.e. from contradiction, anything follows.

Complexity The time complexity of checking validity or satisfiability for a single world

is Θ(2t · p) where t is the number of atomic terms and p is the number of premises. This

process is done for 22
t

worlds independently. Independence of many instances of the

process allows us to run the program parallel and distributed. Nonetheless, the algorithms

are seemingly not scalable in terms of the number of atomic terms as the number of

possible worlds grows very fast. Despite theoretical time complexity, empirical results

are promising:

1. invalid syllogisms are very dense in syllogisms that are generated uniformly at ran-

dom,

2. a world contradicting with the conclusion in a consistent invalid syllogism is usually

found at the very early stage of the search.

Implementation Let t be the number of atomic terms. Regions are numbered from 0

to 2t − 1 inclusively. Any complex term is represented as sets of these region numbers.

For efficiency, these sets are implemented as unsigned integers. A set {x1, x2, ..., xk}
implemented as the result of the summation

∑k

i=1 2
xi called a representative number.

For example, {1, 3, 5, 7} is implemented as 170, {0} is implemented as 1, and {} is

implemented as 0. Using binary numeral system, it can be easily seen that this mapping

is injective.

This approach has several consequences:

• Implementation usually becomes easier. For example, for all world ⊆ UNIVERSE

becomes for (world = 0; world <= UNIVERSE; + + world) and VOID = ∅ be-

comes VOID = 0.

• A region number x ∈ {0, 1, ..., 2t − 1} can be stored using t bits in a computer

memory. Maximum number of regions in a complex term is |UNIVERSE| = 2t.
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Therefore, number of bits to store this term is roughly t× 2t. However, with the

efficient implementation of region sets, the maximum number of bits to store a term

is only �log222t−1�+ 1 = 2t as the universal term UNIVERSE = {0, 1, ..., 2t − 1}
is implemented as

∑2t−1

x=0 2x = 22
t − 1. Space complexity reduces in the worst case.

The average case depends on probability distribution over the number of regions in

a complex term.

• Efficient bitwise operations replace the set operations that require using a loop over

the elements: bitwise AND replaces intersection, bitwise OR replaces union,

and bitwise NOT replaces complement. For example, X \ Y is implemented as

X & ∼ Y. Nonetheless, when 2t is greater than word size, multi-word arithmetic

is required. Therefore, space complexity of a set and time complexity of a set

operation are linear in terms of the number of regions (i.e. Θ(2t) where t is the

number of atomic terms, and therefore 2t is the number of regions).

5.4. Syllogistic Constraint Satisfaction

A boolean constraint satisfaction problem (boolean CSP) can be defined by a tuple

(V,C) such that

• V is the set of variables, each of which can take a boolean value, and

• C is the set of constraints, each of which consists of a pair: a scope of variables

which appear in the constraint, and a relation which specify allowable values for

those variables.

For instance:

V = {v1, v2, v3} and C = {c1, c2, c3} such that

c1 = ( (v1, v2), {(1, 1), (0, 0)} ),

c2 = ( (v1, v2, v3), {(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} ),

c3 = ( (v1, v3), {(0, 0), (0, 1), (1, 1)} )

Another way of defining the same c1, c2 and c3 is: c1 = ((v1, v2), v1 = v2),

c2 = ((v1, v2, v3), v1 + v2 + v3 ≥ 1) and c3 = ((v1, v3), v1 ≤ v3). A solution to this

boolean CSP is {v1 = 0, v2 = 0, v3 = 1}.
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Generalized syllogisms can be expressed as boolean CSPs: regions correspond to

boolean variables (0 indicates the region is non-existing while 1 indicates the region is

existing) and propositions correspond to constraints.

The most appropriate representations for this translation are terms as region sets,

propositions as cardinality propositions, and syllogisms as inconsistency of propositions.

Another alternative type of CSP is the set CSPs. The only difference between set

CSPs and boolean CSPs is that in set CSPs, each variable can take a set value instead of a

boolean value.

5.4.1. MiniZinc

MiniZinc is a constraint modeling language (Nethercote et al. (2007)). Its con-

traint library allows for defining CSPs in a solver-independent way.

Human-readable MiniZinc model is compiled into FlatZinc, a more efficient lan-

guage. FlatZinc provides an interface that is compatible with many solvers such as Choco,

JaCoP and OR-Tools.

Region sets are transformed into bool arrays. For example, the complex term

{1, 5, 7} corresponds to the C in the following code:

v a r boo l : r1 ;

v a r boo l : r5 ;

v a r boo l : r7 ;

a r r a y [ 1 . . 3 ] o f v a r boo l : C = [ r1 , r5 , r7 ] ;

Alternatively, region sets can be transformed into sets. Let n = 2t − 1 where t is

the number of atomic terms. The same complex term can be defined as

v a r s e t o f {1 , 5 , 7} : C ;

Syllogistic propositions are transformed into boolean constraints

• �(C) corresponds to constraint exactly(0, C, true);

• ∃(C) corresponds to constraint at least(1, C, true);

• ∃!(C) corresponds to constraint exactly(1, C, true);

or set constraints
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• �(C) corresponds to constraint card(C) = 0;

• ∃(C) corresponds to constraint card(C) > 0;

• ∃!(C) corresponds to constraint card(C) = 1;

5.5. Theorem Proving in First-Order Logic

It is already stated that SLs are fragments of DLs which are fragments of FOL.

Thus, SLs are fragments of FOLs. In this section, we define rules for direct transformation

from SLs to FOL.

Let X be an atomic term and C and D complex terms. π(·) maps terms and propo-

sitions of SLs into FOL formulas such that

1. π(⊥, α) = ⊥,

2. π(�, α) = �,

3. π(X, α) = X(α),

4. π(¬C, α) = ¬π(C, α),

5. π(C � D, α) = π(C, α) ∧ π(D,α),

6. π(C � D, α) = π(C, α) ∨ π(D,α),

7. π(∃(C)) = ∃α.π(C, α),

8. π(�(C)) = ∀α.π(¬C, α),

9. π(∃!(C)) = ∃!α.π(C, α).

Here, the reason of introduction of the arbitrary variable α is that SLs are variable-

free.

5.5.1. TPTP

TPTP is both a problem library and a special input format for theorem provers

(Sutcliffe (2017)).
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The Conference on Automated Deduction (CADE) Automated Theorem Prover

(ATP) System Competition (CASC) is the annual world championship for sound, fully-

automatic theorem proving (Sutcliffe (2016)). In the competition, problems are chosen

from the TPTP problem library. Thus, all the participant theorem provers are able to

process the problems in the TPTP format.

These participants include Vampire which is a very fast automated theorem prover

for first-order logic. Vampire is the winner of CASC-26 organized in 2017.

Here, a more readible intermediate language called RuleML is used to represent

syllogisms as theorems. Then, the program RuleML2TPTP is used to convert RuleML

into TPTP.

It is trivial to convert syllogisms into RuleML format using the transformation

rules for SLs into FOL. For example, A(X, Y) where X and Y are atomic terms, corresponds

to the following code:

<F o r a l l >

<Var>a</Var>

<I m p l i e s>

< i f >

<Atom> <Rel>X</ Rel><Var>a</Var> </Atom>

</ i f >

<then>

<Atom> <Rel>Y</ Rel><Var>a</Var> </Atom>

</ then>

</ I m p l i e s>

</ F o r a l l >

5.6. Entailment Checking in Description Logics

Syllogisms can be represented as DL ontologies. Terms of SLs and DLs have the

same syntax. Thus, translation rules for ComSyl propositions into ALC axioms and for

ComSyl+ propositions into ALCO axioms is necessary and sufficient.

Let C and D be complex terms. Propositions of type A and E correspond to general

concept inclusions:

A(C, D) ≡ (C � D)
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E(C, D) ≡ (C �D � ⊥)

Let rnd1 and rnd2 be random individuals such that no further knowledge about them can

be found in the ontology. Propositions of type I and O correspond to assertions on random

individuals:

I(C, D) ≡ F (rnd1) such that F ≡ C �D

O(C, D) ≡ F (rnd2) such that F ≡ C � ¬D
ComSyl+ additionally contains propositions of type S and ALCO additionally

contains nominals.

Let rnd be a random individual such that no further knowledge about it can be

found in the ontology. Propositions of type S corresponds to the following concept equiv-

alence:

S(C) ≡ (C ≡ {rnd})
A concept equivalence can be defined using two general concept inclusions (e.g.

C ≡ {rnd} can be defined using C � {rnd} and {rnd} � C).

5.6.1. OWL API

The W3C Web Ontology Language (OWL) is a semantic web language designed

for representing complex knowledge bases. Direct semantics of OWL 2, the latest version

of OWL, is based on SROIQ.

OWL API is the standard implementation for creating, modifying and storing

OWL ontologies. It also provides interface for DL reasoners such as HermiT, FaCT++,

Pellet and Racer. This interface allows for consistency and entailment checking.

The correspondence between SLs and OWL API of DLs is as below:

• Terms correspond to OWLClassExpressions.

• Propositions of type A and E correspond to

OWLSubClassOfAxioms and OWLDisjointClassesAxioms, respectively.

• Propositions of type I and O correspond to

OWLClassAssertionAxioms.

• Propositions of type S correspond to

OWLEquivalentClassesAxioms.
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CHAPTER 6

CONCLUSION

In this work, we . . .

. . . defined a family of SLs via syntactic restrictions on a generalized SL: PolSyl⊂
NegSyl ⊂ ComSyl ⊂ ComSyl+.

. . . specified comprehensive frameworks using these logics both for knowledge rep-

resentation with alternative parts and for automated deduction with sound and com-

plete methods. The software framework includes converter functions and competi-

tive reasoners, and is fully compatible with the semantic web technologies.

. . . proved that PolSyl and NegSyl are tractable by defining a polynomial-time

reasoning algorithm. In other words, categorical polysyllogistic reasoning with

atomic negations is scalable.

. . . also proved that ComSyl and ComSyl+ are categorical fragments of ALC and

ALCO, respectively, and therefore, they are in EXPTIME. These findings allow us

to combine the best of both worlds: syntax of SLs and reasoners for DLs. Both

intuitiveness of the natural syntax of SLs and time complexity of DLs in real world

ontologies are already proven. This bridge is a chance to utilize the big data of

natural language through an ontology learner as well as to develop easy-to-use end-

user programs for manual knowledge management.

As future work, we will develop the software framework beyond the prototypical imple-

mentation and perform experiments. Furthermore, it is interesting to investigate if other

features can be added to ComSyl or ComSyl+ without sacrificing intuitiveness and algo-

rithmic properties if possible (e.g. non-categorical roles or extended quantifiers).
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APPENDIX A

SUMMARY

A.1. Syntax of PolSyl

Let X and Y be atomic terms, and P a proposition. The production rule for propo-

sitions is defined as:

P ::= A(X, Y) | E(X, Y) | I(X, Y) | O(X, Y)

An example proposition is E(cat, human).

A.2. Syntax of NegSyl

Let X be an atomic term, P a proposition, and C and D possibly negated atomic

terms. The production rules for possibly negated atomic terms and propositions are de-

fined as:

C, D ::= X | ¬X

P ::= A(C, D) | E(C, D) | I(C, D) | O(C, D)

An example proposition is A(¬animal,¬cat).

A.3. Syntax of ComSyl

Let X be an atomic term, P a proposition, and C and D complex terms. The produc-

tion rules for complex terms and propositions are defined as:

C, D ::= X | � | ⊥ | ¬C | C � D | C � D
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P ::= A(C, D) | E(C, D) | I(C, D) | O(C, D)

An example proposition is I(¬small � �, huge).

A.4. Syntax of ComSyl+

Let X be an atomic term, P a proposition, and C and D complex terms. The produc-

tion rules for complex terms and propositions are defined as:

C, D ::= X | � | ⊥ | ¬C | C � D | C � D

P ::= A(C, D) | E(C, D) | I(C, D) | O(C, D) | S(C)

An example of proposition is S(best � author).
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