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ABSTRACT

CLASSICAL TIME SPLITTING APPROACHES AND THEIR ERROR
ANALYSES FOR NONLINEAR DIFFERENTIAL EQUATIONS

In this thesis, Lie - Trotter splitting, Strang - Marchuk splitting and symmetri-
cally weighted sequential (SWS) splitting methods which are known as classical operator
splitting methods are considered to find the numerical solution of the various ordinary dif-
ferential equations (ODEs) and partial differential equations (PDEs). We also presented
their error analyses in order to show advantages and disadvantages of these methods.

Firstly, we considered simple linear and nonlinear ODE examples to motivate for
the classical operator splitting methods. Then, two numerical examples which consist of
a kinetic model of phage infection and the Newell - Whitehead - Segel (NWS) equation
are studied.

All these examples show that the operator splitting methods are a powerful tech-

nique with respect to the accuracy and robustness.

v



OZET

LINEER OLMAYAN DIiFERANSIYEL DENKLEMLER ICIN KLASIK
ZAMAN AYIRMA YAKLASIMLARI VE HATA ANALIZLERI

Bu tezde klasik operator ayirma metodlar1 olarak bilinen Lie - Trotter ayirma,
Strang - Marchuk ayirma ve symmetrically weighted sequential (SWS) ayirma metodlari
cesitli adi diferansiyel denklemlerin ve kismi diferansiyel denklemlerin sayisal ¢oziimiinii
bulmak i¢in ele alinmigtir. Ayrica bu yontemlerin avantajlarini ve dezavantajlarini goster-
mek icin hata analizlerini sunduk.

Ik olarak, klasik operator ayirma metodlarina motive olmak igin basit lineer ve
lineer olmayan ODE o6rneklerini diisiindiik. Daha sonra, bir faj enfeksiyonun kinetic bir
modelinden ve Newell - Whitehead - Segel (NWS) denkleminden olusan iki sayisal 6rnek
tizerinde calisilmusgtir.

Biitiin bu ornekler operator ayirma metodlarinin dogruluk ve saglamlik agisindan

giiclii bir teknik oldugunu gostermektedir.
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CHAPTER 1

INTRODUCTION

Nonlinear differential equations can be used to describe many complex phenom-
ena in sciences, such as fluid and plasma mechanics, biomathematics, convection, dif-
fusion and chemical reactions. These equations are generally difficult to solve and their
exact solutions are difficult to obtain. Therefore, some various approximate methods have
been developed to solve nonlinear differential equations.

In this thesis, we concentrate on operator splitting methods which is one of the
approximate methods. Especially, we’ll deal with Lie-Trotter, Strang-Marchuk and sym-
metrically weighted sequential splitting methods also known as classical operator splitting
methods. The main idea of these methods is to get simpler problems that can be analyzed
separately by applying the operator splitting method to a complex problem.

Operator splitting methods separate the original equation into two parts contains
over a time step, separately computes the solution to each part, and then combines the two
separate solutions to form a solution to the original equation [1].

The idea of operator splitting, which was the Lie-Trotter splitting, dates back to
the 1950s. It was probably in 1957 that this method was first used in the solution of partial
differential equations. The first splitting methods were developed in the 1960s or 1970s
and were based on fundamental results of finite difference methods [2].

There are many major benefits of the operator splitting methods, including dimen-
sion reduction, problem simplification, preservation of any order accuracy in time, and
computational speed-up for some complex problems [3].

The aim of this thesis is to obtain approximated solutions of nonlinear differential
equations numerically by using the classical operator splitting method. Within the scope
of the thesis, the equation is divided into two parts as the linear and nonlinear by using
this method.

The general idea behind splitting is breaking down a complicated problem into
smaller parts for the sake of time stepping, such that the different parts can be solved
efficiently with suitable integration formula [4]. In all cases, the computational advantage
is that it is faster to compute the solution of the split terms separately, than to compute
the solution directly when they are treated together. However, this comes at the cost of an

error introduced by the splitting. So, strategies have been devised to control this error [1].



The consistency of different splitting schemes has mostly been studied for bounded
operators by means of the traditional Taylor series expansion. In this thesis, first order of
consistency is proved for Lie-Trotter splitting, second order of consistency is proved for
the symmetrically weighted sequential splitting and the Strang-Marchkuk splitting [5].

The outline of this thesis as follows: In Chapter 2, we introduce Lie-Trotter split-
ting, Strang-Marchuk splitting and symmetrically weighted sequential splitting methods
which are known as classical operator splitting methods on an abstract Cauchy problem.
We also prove their local splitting errors by using Taylor series expansion. In Chapter 3,
we deal with linear and nonlinear ODE problems in order to motivate the algorithms and
error analyses of the classical operator splitting methods. In Chapter 4, we give some nu-
merical examples to confirm our theoretical results and to demonstrate the effectiveness
of our suggested method. Finally, in Chapter 5, we make a brief discussion for the results

of our study.



CHAPTER 2

CLASSICAL OPERATOR SPLITTING METHODS

In this chapter, we give a short overview of the classical operator splitting meth-
ods which are known as Lie-Trotter splitting, Strang-Marchuk splitting and symmetrically
weighted sequential splitting methods. In addition to this, we show their errors by using
local splitting error. In order to introduce these methods, we consider the following ab-

stract Cauchy problem, also called initial value problem (IVP) :

di 2.1)

W) _ 4+ B, te0.T]
u(0) = uy,

where A and B are assumed to be linear operators in Banach space X with A, B : X — X
and uy € X is initial condition. When A and B are bounded operators, the exact solution

is given by

M(tn+l) — eAt(A+B)u(l,n)’ (22)
where time step is At = "*! — ¢ and u(") is a solution at time ¢ = #".

Let us concentrate on the following classical operator splitting methods.

2.1. Lie - Trotter Splitting

Firstly, we describe the first order splitting method which is called Lie-Trotter
splitting. It has a very simple process which separates the Cauchy problem (2.1) into
two subproblems. The first subproblem is solved with operator A and the original initial
condition. The second one is solved with operator B whose initial condition is derived

from the solution of the first subproblem.



For Lie-Trotter splitting, this process can be formulated as follows:

du, (f)
C}t = Auy (1), 1€ [ ]
(1) = uy,,

dus(t

LZ: ) _ Buy(1), 1€ [, "]

ur(t") = wy ("),

(2.3)

(2.4)

where split condition at # = 0 is given by u?p = uy in (2.1) and approximated split solution

at time ¢ = ! is defined as

u’:;;—l = u2(tn+l)7

where ! = " + At, At is time step, and n = 0,1, ..., N — 1.

The above-mentioned process can be shown as in the following figure :

ul(t””) MZ(I"H) :u(tnﬂ)
¢t o °
N
N
N
N
N
AN
A N B
N
N
N
A
\\
t" ® )
u,(t") =u w(t") = u, (t")

Figure 2.1. Systematic schema of Lie - Trotter splitting.

(2.5)

To analyze the error of the Lie-Trotter splitting, we compare the exact solution in

(2.2) with the following solution

usp(tn+l) — eAtAeAtBu(tn)

(2.6)



which is obtained by Lie-Trotter splitting. By Taylor expansion of u(Af) and

us,(Ar) we get, respectively

2
u(At) = (1 +At(A + B) + Az—t'(A + B + 0(At3)) U, (2.7)

A 2
ug, (A1) = (1 + AH(A + B) + 2—t!(A2 +2BA + B*) + 0(At3)) Up. (2.8)

Substracting (2.8) from (2.7) gives the following expression for the local splitting error of

the Lie-Trotter splitting:

AP 3
erri, = 7[14, B]I/to + O(Af ), (29)

where [A, B] = AB— BA is the commutator of A and B. Consequently, Lie-Trotter splitting
method is first order consistent if the operators A and B do not commute. When the

operators commute, then the method is exact.

2.2. Strang - Marchuk Splitting

Another classical operator splitting method is second order splitting which is
called the Strang-Marchuk splitting. This splitting method divides the split time subin-
terval into two parts. Then, as in the Lie-Trotter splitting process, successively solves the
problems on the first half interval with operator A, on the whole interval with operator B
and on the second half interval again with operator A. The first subproblem uses the orig-
inal initial condition and the others use the solutions of the previous problems as initial

conditions.

For Strang-Marchuk splitting, this process can be formulated as follows:

dt (2.10)

u (1") = ug,,

{ WO _ au), e[



dt (2.11)

dur(1) = Buy(t), tel[tf", "]
up(1") = uy (1"°112),

dus(t) _ n n+1/2
o = Au), el (2.12)

us("1%) = (1),

where split condition at # = 0 is given by u?p = up in (2.1) and approximated split solution

at time 7 = **! is defined as

W= (2.13)

sp
where "*! = 1" + At, At is time step, and n = 0,1,..., N — 1.

This process can be illustrated as below figure :

uz(t n+1) u3(tn+1) ~ u(thrI)
t" O @
N
\\\
\\\ A
AN
“1 tn+1/2) B So
thr]/Z ________ e - to _______
\\\ uj(t n+1/2) ~ uz(thr]/Z)
(N
A
N
(N
AN
N
iz . =0
Z/l] (t n) ~ u‘n I/lz(t n) ~ ul(tn+1/2)

Figure 2.2. Systematic schema of Strang - Marchuk splitting.

In order to obtain the local splitting error of the Strang-Marchuk splitting, we

compare the exact solution (2.2) with the following solution

usp(tn+1) — e(At/Z)AeAtBe(At/Z)Au(lﬂ) (2 14)



which is obtained by Strang-Marchuk splitting. By Taylor expansion of u,(At),

we get

A 2
ug,(At) = (1 + At(A + B) + z—t'(A2 +BA+AB+ B + 0(At3)) up.  (2.15)

Substracting (2.15) from (2.7) gives the following expression

el strang = imz(zw, [B,A]] - [A, [A, B]]) up + O(AP), (2.16)

for the local splitting error of the Strang-Marchuk splitting and it is seen that this splitting

gives second order accuracy.

2.3. Symmetrically Weighted Sequential Splitting

The third classical operator splitting method which is called symmetrically weighted
sequential splitting is a combination of two Lie-Trotter splitting in different ordering.
It makes that the splitting is symmetric and the accuracy of the splitting is second or-
der. The Cauchy problem (2.1) with operators A and B processed in different ordering
‘AB’ and ‘BA’ respectively, and at the end of the time steps the obtained solutions are

taken a weighted average.

For SWS splitting, this process can be formulated as follows:

We begin with ‘AB’ recombination

d 2.17)

u (1) = uj,,

dt (2.18)

{ D _ g, repr e
(") = u (1),



and similary ‘BA’ recombination

dvi(2)
= Bv(1), te[r !
dr ), el il (2.19)
n@ = Vi,
dv(1)
= A (1), tel[f, !
dr 240) ] (2.20)
va(t") = vy (™).
Then the split solution at the mesh points is defined as:
; u (tn+1) +y (tn+1)
Wt o= 2 > = (2.21)

Similarly, in order to show the local splitting error of the SWS splitting, we com-

pare the exact solution (2.2) with the following solution

eAAteBAt + eBAteAAt

g, (") 3 u(r") (2.22)

which is obtained by SWS splitting. By Taylor expansion of u,,(Af), we get

A
ug, (A1) = (1 +At(A + B) + 7(A2 +2BA + B + O(AY) | uo. (2.23)

Substracting (2.23) from (2.7) gives the following expression

errymm = O(AP) (2.24)

for the local splitting error of the SWS splitting and we can easily see that SWS splitting
is a second order of accuracy.



CHAPTER 3

MOTIVATION FOR THE OPERATOR SPLITTING
METHODS

In this chapter, simple examples are illustrated to demonstrate the performance
of the classical operator splitting methods. For this purpose, several linear and nonlinear
ODEs we have chosen are studied. We also verified the theoretical analysis given in the

previous chapter with numerical simulations.

3.1. Linear Demonstration

In order to solve a linear first order differential equation, we start with a differential

equation in the normal form

u' = pu+q(), (3.1)

where both p(7) and ¢(¢) are continuous functions and ¢ on a certain interval.

We begin with the following example :

Example 3.1 We consider the following IVP

W = —u+3e, u0)=1. (3.2)
We can solve (3.2) by finding an integrating factor u(¢). If we choose u(t) to be
U = e [1ar _ e,

and multiply both sides of the equation (3.2) by u, we can rewrite it as

d 1 _ -t
E(eu(t)) = 3¢,



Integrating with respect to ¢, we obtain

eu(t) = f3e_tdt+c

3¢ +c.

Dividing through by ¢’, we calculate that the the general form of the solution of

equation (3.2) is

u(t) = =3¢ +ce.
Applying the initial condition #(0) = 1, we obtain the exact solution

ut) = =3¢ +4e. (3.3)

3.1.1. Lie - Trotter Splitting for Linear ODE

We shall consider the Lie-Trotter splitting of (3.2) into split equation ‘A’,

u, = —u, w(0)=1
and the split equation ‘B’,

Wy = 3, uy(0) = u(r)

and recombine their solutions in sequential scheme designed to preserve a certain level of

accuracy in time.

For example, the ‘AB’ recombination scheme results in the piecewise solution,

- 0<r<t"
uap(t) = (3.4)
(—3e-2f +2e + 3), 0<t<

[STENE

10



while reordering the split equations to the ‘BA’ recombination scheme results in

" L3¢ +5), 0<t<t" 5)
Upa = .
? %(—36‘3’ + 56") , 0t

Although is these piecewise solutions (3.4) and (3.5) are not differentiable, they
are continuous. It obvious that the two recombination schemes (3.4) and (3.5) are differ-
ent, however, they both preserve a first order approximation in time to the exact solution

of the equation of (3.2).

3.1.2. Accuracy of Lie - Trotter Splitting for Linear ODE

To demonstrate the Lie - Trotter splitting’s accuracy for Example 3.1, we solve the
equation over small steps 7, = At. The accuracy of the error due to splitting is determined
by the order, under Taylor expansion, to which the solutions agree.

The first order splitting accuracy in time for the ‘AB’ recombination is shown

through the following Taylor expansion,

- [_2(1 —2At + 2AF + O(Aﬁ)) + (1 - At + %At2 + O(At3)) +3

3
2

3 3
|M(At) _ MAB(AI‘)| e 20 4 4e—At) _ (__e—ZAt pe Ny _)‘

2 2

( _3
[—3(1 _OAr+2AR + O(At3)) +4 (1 ~ A+ %Atz + O(At3))]

|(1 +OAf—AAP + O(Aﬁ)) - (1 + AL - gAﬂ + O(At3))

'—%Atz + O(AP)
O(AP).

Since the error between the exact and ‘AB’ split solution is O(A#?), the solutions
agree up to order O(At), which is thus the splitting accuracy of the ‘AB’ recombination

scheme.

11



The first order splitting accuracy in time of the ‘BA’ recombination scheme is

similary shown as

|M(At) _ MBA(AI)| ‘( —2At —Al‘) _ (_%e—3At + ge—At)

H 1 — 2A1 4+ 2AF + O(At ))+4(1—At+2lAt + O(At ))]

13 9 5(,_ 1.5 3
[2(1 3At+2At+O(At)) 2(1 At + —At +O(At))”

2!

‘(1 +2Af — 4AR + ()(At3)) _ (1 +2Af - %Aﬁ + O(At3))

‘E
2

O(AP).

Obivously, the splitting error for the two orderings of the first order recombination

scheme is not the same but it is of the same order.

3.1.3. Strang - Marchuk Splitting for Linear ODE

We will consider the Strang - Marchuk splitting of (3.2) into split equation ‘A’,

, u
w = -2, w0)=1

and the split equation ‘B’,

Wy = 3¢, up(0) = uy ()

and again the split equation ‘A’,

u
u§=—§,m@:w®

Then, recombine their solutions in sequential scheme designed to preserve a cer-

tain level of accuracy in time.

12



For instance, the ‘ABA’ recombination scheme results in the piecewise solution,

e_t/z, 0 S l. S l.n+l/2
uapa(t) = { 4 (=3¢ + 272 + 3), 0<r<r (3.6)
%(_3€—5t/2 +2e + Se—t/Z), M2 <p <o

while reordering the split equations to the ‘BAB ’ recombination scheme results in

i (—36‘2’ + 7), 0<r< /2
upap(t) = 1 1 (=3¢ +7¢7), 0<t<s (3.7)
}L(—3e‘3’ -3¢ +Te" + 3) , 2 <<y

Although these piecewise solutions (3.6) and (3.7) are not differentiable, they are
continuous. Also, though the two recombination schemes (3.6) and (3.7) are different,
they both preserve a second order approximation in time to the exact solution of the equa-

tion of (3.2).

3.1.4. Accuracy of Strang - Marchuk Splitting for Linear ODE

To demonstrate the Strang-Marchuk splitting’s accuracy Example 3.1, we solve
the equation over small steps 1, = Ar. The accuracy of the error due to splitting is deter-

mined by the order, under Taylor expansion, to which the solutions agree.

The second order splitting accuracy in time for the ‘ABA’ recombination is shown

through the following Taylor expansions,

|u(AD) = uppa(AD)|

3 3
‘( o2 —Az) _( Se omSMI2 | A ze—m/z)

1 — 2At + 2AF% + O(At )) + 4(1 - At + 21‘ A + O(At3))]

3 5 25 1
—[ -3 (1 - EAt + §At2 + O(At3)) + (1 —At+ Emz + O(At3))
3001, 1., ,
+2 (1 - 2At+ 8At + O(Ar ))

- ‘(1 + 201~ 4A7 + O(AP)) — (1 + 281 - 407 + O(Aﬁ)'

= O(AP).

13



Since the error between the exact and ‘ABA’ split solution is O(Af®), the solutions
agree up to order O(A?), which is thus the splitting accuracy of the ‘ABA’ recombination

scheme.

The second order splitting accuracy in time of the ‘BAB’ recombination scheme

is similary shown as

|u(AD) — upap(AD)|

3 3 7 3
o 20 A\ 2 a2 oae LA, 2
+4e ) ( 4e 46 +4e +4)'

‘[ 1 = 2Af + 2A7 + O(At ))+4(1—At+2lm +O(At ))]

-[ - % (1 - 3At + gAﬁ + O(At3)) - 3(1 — 2At + 2AF + O(At3))

7 1 3
4(1—At+§At + O(At )) 1 ‘

' (1 + 2At — AP + O(At3)) - (1 +2At — 4N + O(At3)) ‘

O(AP).

It is clear now that the splitting error for the two orderings of the second order

recombination scheme is not the same but it is of the same order.
3.1.5. Symmetrically Weighted Sequential Splitting for Linear ODE

We shall consider a second order splitting of (3.2) into split equation ‘A’,
u, = —u;, w(0)=1
and the split equation ‘B’,
Wy = 3¢, uy(0) = u(t)

and recombine their solutions in sequential scheme designed to preserve a certain level of

accuracy in time.

For example, the result of ‘AB’ recombination scheme (3.4),

1
usp(t) = 5(—3e-2f+2e—’+3)

14



and the result of ‘BA’ recombination scheme (3.5),

uga(t) = (—3e‘3t + Se_t).

1
2

Then the split solution at the mesh points is defined as:

ntl uap(t"h) + upa ()

s = > . (3.8)
Thus, we can obtain the approximate solution as
3 3 7 3
Usymm(t) = —16_3’ - ey Ze" t g (3.9)

3.1.6. Accuracy of Linear ODE for Symmetrically Weighted

Sequential Splitting

To show the SWS splitting’s accuracy for Example 3.1, we solve the equation over

small steps 7 = Ar. The accuracy of the error due to splitting is determined by the order,

under Taylor expansion, to which the solutions agree.

The second order splitting accuracy in time for the SWS splitting is shown through

the following Taylor expansion,

|M(At) = Usymm (At)|

3 3 7 3
7 ,2At 4 —At) = ,3A 2 -2Ar T At T
'( 3e7 +4e 1€ 1€ + ¢ + 1

l[—3(1 _ AL+ 2AP + O(At3)) 14 (1 _Ar+ %Atz ; O(At3))]

_[ _ % (1 —3Ar + gAﬁ + O(At3)) - 2(1 —2At +2AF + O(At3))

7 1
+= (1 —At+ —AP + O(At3)) +=

3
4 2! 4

'(1 +2A1 — 4A7 + O(AP)) = (1 + 2A1 — 4AF + O(Aﬁ))‘

O(AP).

It can be easily observed that SWS splitting preserve second order accuracy.

15



3.1.7. Numerical Results for Linear ODE

In this section, we demonstrate the numerical solutions of the Example 3.1 by

appliying the classical operator splitting methods.

141

1351

13

127

1151

—+— Exact Solution
11r Nonsplitting
Lie-Trotter
1.05 Strang-Marchkuk
O - Symmetrically

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3.1. Comparison of the approximate solutions and the exact solution (3.3) of
Example 3.1 for At = 0.1 on the time interval 7 € [0, 1].

Figure 3.1 shows the comparison of the different splitting methods, nonsplitting
and exact solution (3.3) for Example 3.1 with Az = 0.1 on the time interval ¢ € [0, 1].
We deduce that Strang-Marchuk and SWS splitting are quite close to the exact solution.

Moreover, we see the overlap of the Lie-Trotter and nonsplitting.

Figure 3.2 shows the comparison of the different splitting methods, nonsplitting
and exact solution (3.3) for Example 3.1 with Ar = 0.01 on the time interval ¢ € [0, 1].
We deduce that all of different splitting methods and nonsplitting are close to each other.
Also, we can conclude that when time step size decreases, they are getting closer to the

exact solution.
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Figure 3.2. Comparison of the approximate solutions and the exact solution (3.3) of
Example 3.1 for At = 0.01 on the time interval ¢ € [0, 1].

Error [! Error /? Error [®
Nonsplitting 0.6711 0.0221 8.3052¢ — 04
Lie-Trotter Splitting 0.6711 0.0221 8.3052¢ — 04
Strang-Marchuk Splitting 6.3085¢ — 06 | 2.3031e — 07 | 1.0981e — 08
Symmetrically Weighted Sequential Splitting | 1.2636e — 04 | 4.3461e — 06 | 1.8721e — 07

Table 3.1. The errors of different splitting methods and nonsplitting for Example 3.1

with Az = 0.001.

Table 3.1 shows comparison the local splitting errors of the different splitting

methods and nonsplitting via I', I and [® norm. From the table, we deduce that the

error of Lie-Trotter splitting is the same as that of nonsplitting. In addition, the error

results revealed that the SWS splitting gave smaller error for Example 3.1.
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10710
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Figure 3.3. Comparison of the maximum errors of the approximate solutions for Ex-
ample 3.1 for different Az values.

Figure 3.3 represents comparison between the local splitting error of the different
splitting methods and nonsplitting for various Af values by using /* norm. We deduce

that Lie-Trotter splitting and nonsplitting are coincident.

Lie-Trotter Splitting | AB Recombination | BA Recombination
Error /! 0.6711 0.0756
Error [ 0.0221 0.0028
Error [ 8.3052¢ - 04 1.3161e — 04

Table 3.2. The errors of different splitting recombinations of the Lie-Trotter splitting
for Example 3.1 with Az = 0.001.

Table 3.2 shows comparison local splitting error of the ‘AB’ and ‘BA’ splitting
recombinations by using /!, * and [* norm. From Table 3.2, we deduce that the splitting

error of ‘BA’ splitting recombination is less than the ‘AB’ splitting recombination.
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(a) ‘AB’ Splitting - Exact Solution (b) ‘BA’ Splitting - Exact Solution

Figure 3.4. Comparison of the ‘AB’ and ‘BA’ splitting recombinations solutions and
the exact solution (3.3) of Example 3.1 for At = 0.1.

Figure 3.4 shows comparison between the ‘AB’ and ‘BA’ splitting recombina-
tions by Lie-Trotter splitting and the exact solution (3.3) for Az = 0.1 on the time interval
t € [0,1]. It follows that the ‘BA’ splitting recombination is closer to the exact solution

than ‘AB’ splitting recombination.

135 T T T T T T T T T 1.35
13f b 131
1251 b 1251
121 h 12r
115 b 115
11f b 11p
t T
1.05F —+— Exact Solution - 1.05 —+— Exact Solution
— ABA Recombination —— BAB Recombination
1 . . . . . . . . . 1 . . . . . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) “ABA’ Splitting - Exact Solution (b) ‘BAB’ Splitting - Exact Solution

Figure 3.5. Comparison of the ‘ABA’ and ‘BAB’ splitting recombinations solutions
and the exact solution (3.3) of Example 3.1 for Ar = 0.1.

Figure 3.5 shows the comparison between the ‘ABA’ and ‘BAB’ splitting recom-
binations by Strang-Marchuk splitting and the exact solution (3.3) for Az = 0.1 on the time
interval ¢ € [0, 1]. It follows that both the ‘ABA’ splitting recombination and ‘BAB’ splitting

recombination are quite close to the exact solution.
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Strang-Marchuk Splitting | ABA Recombination | BAB Recombination
Error [! 6.3085¢ — 06 1.2636¢ — 04
Error /? 2.3031e — 07 4.3461e — 06
Error [ 1.0981e — 08 1.8721e — 07

Table 3.3. The errors of different splitting recombinations of the Strang-Marchuk
splitting for Example 3.1 with Ar = 0.001.

Table 3.3 shows the comparison local splitting error of the ‘ABA’ and ‘BAB’ splitting
recombinations by using /', > and [ norm. From Table 3.3, we deduce that the splitting

error of ‘ABA’ splitting recombination is less than the ‘BAB’ splitting recombination.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.0898
At =0.01 0.0084 1.0306
At = 0.001 8.3052¢ — 04 1.0031
At = 0.0001 8.2993¢ - 05 1.0003

Table 3.4. Maximum Error of Lie-Trotter Splitting for Example 3.1 with Different Az
Values.

Table 3.4 shows the maximum error of Lie-Trotter splitting for Example 3.1. We

conclude that the order of the Lie-Trotter splitting converges to 1.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 1.0477e — 04
At =0.01 1.0934e — 06 1.9814
At = 0.001 1.0981e — 08 1.9981
At = 0.0001 1.0987¢ - 10 1.9998

Table 3.5. Maximum Error of Strang-Marchuk Splitting for Example 3.1 with Differ-
ent At Values.

Table 3.5 shows maximum error of Strang-Marchuk splitting for Example 3.1. We

can observe that the order of the Strang-Marchuk splitting converges to almost 2.

20



Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.0020
At =0.01 1.8809¢e — 05 2.0199
At = 0.001 1.8721e — 07 2.0020
At = 0.0001 1.8713e — 09 2.0002

Table 3.6. Maximum Error of SWS Splitting for Example 3.1 with Different At Values.

Table 3.6 shows maximum error of SWS splitting for Example 3.1. We can con-

clude that the order of the SWS splitting converges to 2.

From Table 3.4, Table 3.5 and Table 3.6 we conclude the approximate solution

converges to the exact solution, as the time step size decreases.

10 103 102 10t
Time Steps

ERROR ERROR

10°

B /K
—¥—L-1 norm

109¢ L-2nom | 3
—¥— L-inf norm —¥— L-inf norm

Errors
Errors

o . . 1010
10 10 102 107 10
Time Steps

Time Steps

Figure 3.6. Comparison of the local splitting errors of the classical operator splitting

methods for Example 3.1 for different Ar values.

Figure 3.6 illustrates the local splitting errors of the Lie-Trotter, Strang-Marchuk

and SWS splittings, respectively, for the relatively large and small splitting time steps by

using /', ? and [ norm.
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3.2. Nonlinear Demonstration

We shall consider the following normal form of a nonlinear ODE

’

u = pu+qgu", (3.10)

where both p(f) and ¢(¢) are continuous functions and # is positive real number. Equation

(3.10) is called a Bernoulli differential.

We begin with the following example for this type of nonlinear ODE:

Example 3.2 We consider the following first order nonlinear ODE
’ 1 t 2
u = —§u+eu, u(0) =1 (3.11)

This is a Bernoulli differential equation; we use the substitution

to get the first order linear equation

Multiplying both sides of the reduced equation by the integrating factor

= J13a -1/3

Iz =e

leads to
d t
~1/3 _ 21/3
—(v() = —eT”.
7 t( (1)
Integrating the above equation with respect to ¢, we obtain

e Pyt = —fez’/3dt+c,
3

_ O i
== +c.
2
Dividing the last equation through by e~"/?, we obtain

3
v(t) = —Ee’+ce’/3.
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. 1 .
Since v = —, we get the general solution
u

u(t) =

—Ee‘ + ce'l3
Applying the initial condition #(0) = 1 gives ¢ = > and thus the solution becomes
2

u(t) = —m. (3.12)

3.2.1. Lie-Trotter Splitting For Nonlinear ODE

We will consider the Lie-Trotter splitting of (3.11) into split equation ‘A’,

1
u = —gul, u(0)=1
and the split equation ‘B’,
w' = ez, ux(0) = uy(2)

and recombine their solutions in sequential scheme designed to preserve a certain level of

accuracy in time.

For example, the ‘AB ’recombination scheme results in the piecewise solution.

e—t/3, <t<
uap(t) = 1 (3.13)

T el—ell3-1° =1L =

while reordering the split equations to the ‘BA 'recombination scheme results

-, O<r<t 14
upa(t) = .
pm® =3 " 0<iep (3.14)
M3 _0ptl3 2 =t =

Although these piecewise functions (3.13) and (3.14) are not differentiable, they
are continuous. It is obvious that the two recombination schemes (3.13) and (3.14) are
different, however, they both preserve a first order approximation in time to the exact

solution of the equation of (3.11).
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3.2.2. Accuracy of Nonlinear ODE for Lie-Trotter Splitting

To demonstrate the Lie-Trotter splitting’s accuracy for Example 3.2, we solve the
equation over small steps 7 = At. The accuracy of the error due to splitting is determined

by the order, under Taylor expansion, to which the solutions agree.

The first order splitting accuracy in time for the ‘AB’ recombination is shown

through the following Taylor expansion,

2 1
(80 ~uas(80)] = ‘W) B (‘ﬁ)'

2

1 1 1
3 (1 + At + 5At2 + O(At3)) -5 (1 + §At + 1—8At2 + O(Ar3))

1

- 1 1 1
(1 + At + EAIZ + O(At3)) - (1 + §At + EAIZ + O(At3)) -1

2 19 2 8
1+ =At+ —AP APY| =1 + At + =AF AP
l(+3t+18t+0(t)) (+3 t+9l+0(l)

1
'gmz + O(AP)

O(AF).

Since the error between the exact and ‘AB’ split solution is O(Af?), the solutions
agree up to order O(Ar), which is thus the splitting accuracy of the ‘AB’ recombination

scheme.

The first order splitting accuracy in time of the ‘BA’ recombination scheme is

similary shown as
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2 1
|u(At) - uBA(At)| T3 _ 56A;/3) B (_ eMt/3 _ 2eAt/3)

2

1 1 1
3 (1 + At + 5At2 + O(At3)) -5 (1 + §At + EA# + O(At3))

1

(. 4 8 1 1
1+ =At+ =AF? AB)|=2(1 + =At + —A?? AP
(+3t+9t+0(t)) (+3t+18t+0(t))

2 19 , 3 2 11, 3
'(1+3At+ 18At + O(At )) (1+3At+ 9At + O(Ar)

1
'_EM + O(AF)

O(AF).

It is clear now that the splitting error for the two orderings of the first order re-

combination scheme is not the same but it is of the same order.

3.2.3. Strang-Marchuk Splitting For Nonlinear ODE

We will consider the Strang-Marchuk splitting of (3.11) into split equation ‘A’,

U

u’ = 5 u(0) =1
and the split equation ‘B’,
w = eus,  up(0) = u(t)
and again the split equation ‘A’,
w' = =2 w0 = w0

Then, recombine their solutions in sequential scheme designed to preserve a cer-

tain level of accuracy in time.
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For instance, the direct ‘ABA’ recombination scheme results in the piecewise so-

lution

e®, 0<r< 2
uppa(t) = ===, 0<t<t" (3.15)

1 n+1/2 n
T 6 _gtl3—gil6 2 syl <t<t

while reordering the split equations to the ‘BAB ’ recombination scheme results

-2 0<t< 2

upap(t) = — =7 0<t<¢ (3.16)

2 n+1/2 n
— gy L P<t<t

3.2.4. Accuracy of Nonlinear ODE for Strang-Marchuk Splitting

To demonstrate the Strang-Marchuk splitting’s accuracy, we solve the equation
over small steps t; = Ar. The accuracy of the error due to splitting is determined by the

order, under Taylor expansion, to which the solutions agree.

The second order accuracy in time for the ‘ABA’ recombination is shown through

the following Taylor expansion,

2 1
i(AD) = uapa(Ao)| (_ 3eh _ 5eAl/3) - (_ 276 _ pAif3 _ eAt/é)

2

1 1 1
3 (1 + At + 5&2 + O(At3)) -5 (1 + §At + EA# + O(At3))

1

- 7 49 1 1 1 1
— A2 3y — _ A2 3y — _ A2 3
(1+6At+72At + O(Ar )) (1+3At+ 18At + O(Ar )) (1+6At+72At + O(AP3)

2 19 , 3 2 19 , 3
'(1+3At+ 18At + O(At )) (1+3At+ 18At + O(Ar)

O(AP).

Since the error between the exact and ‘ABA’ split solution is O(A#?), the solutions
agree up to order O(At), which is thus the splitting accuracy of the ‘ABA’ recombination

scheme.
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The second order splitting accuracy in time of the ‘BAB’ recombination scheme

is similary shown as

|u(Ar) = upap(Ar)|

2 2
(_ 3ebr — 56Az/3) B (_ A3 1 pAT _ 3013 _ 1)‘

2

1 1 1
3 (1 + At + EAIZ + O(At3)) -5 (1 + §At + 1—8At2 + ()(Aﬁ))

2

(4 8 1 1 1
(1 + gAt + §At2 + O(At3)) + (1 + Ar + 5At2 + ()(At3)) -3 (1 + =At + — A2 + O(AP)

3 18

2 19 5 5 2 9 , 3
’(1+3At+ 18At + O(At )) (l+3At+ 18At + O(AF)

|
S
&

It is clear now that the splitting error for the two orderings of the second order

recombination scheme is not the same but it is of the same order.

3.2.5. Symmetrically Weighted Sequential Splitting for Nonlinear
ODE

We will consider a first order splitting of (3.11) into split equation ‘A’,

1
w' = —gul, u1(0) =1
and the split equation ‘B’,
w' = ez, u(0) = u (1)

and recombine their solutions in sequential scheme designed to preserve a certain level of
accuracy in time.

For example, the result of ‘AB’ recombination scheme,

1

usp(t) T a1

and the result of ‘BA’ recombination scheme is

1

upa(7) T M3 _Dpll3”
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Then the split solution at the mesh points is defined as:

tn+l + tn+l
ugz;l _ usp( )2MBA( ) (3.17)

Thus, we can obtain the approximate solution as

1 1
T 2ef —2e! =2 23 —4ell3

usymm(t) (3 1 8)

3.2.6. Accuracy of Nonlinear ODE for Symmetrically Weighted
Sequential Splitting

To show the SWS splitting’s accuracy for Example 3.2, we solve the equation over
small steps 1 = At. The accuracy of the error due to splitting is determined by the order,

under Taylor expansion, to which the solutions agree.

The second order splitting accuracy in time for the SW'S splitting is shown through

the following Taylor expansion,

2 1 1
|”(At) - ”symm(At)| T 3t _ 5eAt/3) - (_ A — Dpht/3 _ ) DpAAt3 _ 4eAt/3)

2
1 1 1
3 (1 + At + 5At2 + O(At3)) -5 (1 + §At + EA# + O(At3))

1

_[ - 1 1 1
2 (l + At + EAtZ + O(At3)) - 2(1 + §At + EAtZ + O(At3)) -2

1

- 4 8 1 1 ]
2(1 + 300+ §At2 + O(Aﬁ)) - 4(1 + 300+ EM + O(At3))

2 19 , 3 2 19 , 3
|(1+ 3At+ 18At + O(At )) (1+3At+ 18At + O(Ar)

O(AP).

Now, it is clear that SWS splitting is second order as well.
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3.2.7. Numerical Results for Nonlinear ODE

In this part, we demonstrate the numerical solutions of the Example 3.2 by appliy-

ing the classical operator splitting methods.

2.2
-
2r q
18
1.6
14r
—+— Exact Solution
12k N.onsplitting
Lie-Trotter
Strang-Marchkuk
O - Symmetrically
1 I I

0 005 01 015 02 025 03 035 04 045 05

Figure 3.7. Comparison of the approximate solutions and the exact solution (3.12) of
Example 3.2 for At = 0.1 on the time interval 7 € [0, 1/2].

Figure 3.7 represents the comparison of the different splitting methods, nonsplit-
ting and exact solution (3.12) for Example 3.2 with Az = 0.1 on the time interval

t € [0,1/2]. We deduce that SWS splitting are quite close to the exact solution.

Figure 3.8 represents the comparison of the different splitting methods, nonsplit-
ting and exact solution (3.12) for Example 3.2 with Ar = 0.01 on the time interval
t € [0, 1/2]. We deduce that all of different splitting methods and nonsplitting are close to

each other.
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Figure 3.8. Comparison of the approximate solutions and the exact solution (3.12) of
Example 3.2 for At = 0.01 on the time interval ¢ € [0, 1/2].

Error [! Error /? Error [

Nonsplitting 0.6069 0.0412 0.0057

Lie-Trotter Splitting 0.8593 0.0571 0.0077
Strang-Marchuk Splitting 0.0011 | 7.7368e — 05 | 1.1736e — 05
Symmetrically Weighted Sequential Splitting | 0.0010 | 7.6222e¢ — 05 | 1.1562¢ — 05

Table 3.7. The errors of different splitting methods and nonsplitting for Example 3.2

with Az = 0.001.

Table 3.7 shows comparison the local splitting errors of the different splitting

methods and nonsplitting via / I 2 and [® norm. From the table, we deduce that the errors

of Strang-Marchuk splitting and SWS splitting are very close to each other. However, the

error results revealed that the SWS splitting gave smaller error for Example 3.2.
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Figure 3.9. Comparison of the maximum errors of the approximate solutions for Ex-
ample 3.2 for differen At values.

Figure 3.9 shows comparison between the local splitting error of the different
splitting methods and nonsplitting with various At values by using [* norm. It seems

like Strang-Marchuk and SWS splitting are coincident.

Lie-Trotter Splitting | AB Recombination | BA Recombination
Error [! 0.8593 0.7331
Error /> 0.0571 0.0492
Error [* 0.0077 0.0067

Table 3.8. The errors of different splitting recombinations of the Lie-Trotter splitting
for Example 3.2 with At = 0.001.

Table 3.8 shows comparison local splitting error of the ‘AB’ and ‘BA’ splitting
recombinations by using /', > and [* norm. From Table 3.8, we deduce that the splitting

error of ‘BA’ splitting recombination is less than the ‘AB’ splitting recombination.
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Figure 3.10. Comparison of the ‘AB’ and ‘BA’ splitting recombinations solutions and
the exact solution (3.12) of Example 3.2 for At = 0.1.

Figure 3.10 shows comparison between the ‘AB’ and ‘BA’ splitting recombina-
tions by Lie-Trotter splitting and the exact solution (3.12) for At = 0.1 on the time interval
t € [0, 1/2]. It follows that the ‘BA’ splitting recombination is closer to the exact solution

than ‘AB’ splitting recombination.
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(b) BAB Splitting - Exact Solution

Figure 3.11. Comparison of the ‘ABA’ and ‘BAB’ splitting recombinations solutions
and the exact solution (3.12) of Example 3.2 for At = 0.1.

Figure 3.11 shows the comparison between the ‘ABA’ and ‘BAB’ splitting recom-
binations by Strang-Marchuk splitting and the exact solution (3.12) for Ar = 0.1 on the
time interval ¢ € [0, 1/2]. It follows that the ‘BAB’ splitting recombination is closer to the

exact solution than ‘ABA’ splitting recombination.
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Strang-Marchuk Splitting | ABA Recombination | BAB Recombination
Error [! 0.0011 3.3929¢ — 04
Error /? 7.7368e — 05 2.4337e - 05
Error [ 1.1736e — 05 3.6344¢ — 06

Table 3.9. The errors of different splitting recombinations of the Strang-Marchuk
splitting for Example 3.2 with Ar = 0.001.

Table 3.9 represents the comparison local splitting error of the ‘ABA’ and ‘BAB’ splitting
recombinations by using /!, * and [* norm. From Table 3.9, we deduce that the splitting

error of ‘BAB’ splitting recombination is less than the ‘ABA’ splitting recombination.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.4457
At =0.01 0.0720 0.7915
At = 0.001 0.0077 0.9699
At = 0.0001 7.7767e — 04 0.9968

Table 3.10. Maximum Error of Lie-Trotter Splitting of Noninear ODE with Different
At Values.

Table 3.10 shows maximum error of Lie-Trotter splitting for Example 3.2. We can

see that the order of the Lie-Trotter splitting converges to almost 1.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.0754
At =0.01 0.0011 1.8238
At = 0.001 1.1736e — 05 1.9839
At = 0.0001 1.1779¢ — 07 1.9984

Table 3.11. Maximum Error of Strang-Marchuk Splitting of Nonlinear ODE with Dif-
ferent Ar Values.

Table 3.11 shows maximum error of Strang-Marchuk splitting for Example 3.2.

We can observe that the order of the Strang-Marchkuk splitting converges to almost 2.
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Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.0741
At =0.01 0.0011 1.8231
At = 0.001 1.1562¢ — 05 1.9837
At = 0.0001 1.1605e — 07 1.9984

Table 3.12. Maximum Error of Symmetrically Weighted Sequential Splitting of Non-
linear ODE with Different Ar Values.

Table 3.12 shows maximum error of SWS splitting for Example 3.2. We can con-

clude that the order of the SWS splitting converges to 2.

From Table 3.10, Table 3.11 and Table 3.12, we conclude the approximate solution

converges to the exact solution, as the time step size decreases.

ERROR

¥*

10t

102F

103L

10
10

ERROR ERROR

10t

102F

108

10

10°F

106 F

107
10

Comparison of the local splitting errors of the classical operator splitting
methods for Example 3.2 for different At values.

Figure 3.12.

Figure 3.12 illustrate the local splitting errors of the Lie-Trotter, Strang-Marchuk
and SWS splittings, respectively, for the relatively large and small splitting time steps by

using /!, ? and [ norm.
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CHAPTER 4

NUMERICAL CONSIDERATIONS

In this chapter, we consider the classical operator splitting methods for nonlinear
differential equations with linear and nonlinear operators. For this purpose, firstly, we
prove accuracy of these methods for nonlinear differential equations by using local split-
ting error. Next, we confirm two numerical examples which is consist of a kinetic model
of phage infection and the Newell - Whitehead - Segel equation to show the effectiveness

of the classical operator splitting methods.

4.1. Accuracy of the Operator Splitting Methods for Nonlinear

Differential Equations

In this section, we derive the local splitting error of the operator splitting methods

for nonlinear differential equations.

Given a nonlinear differential equation which can be nontrivially written as

du
7 - Au + B(u) 4.1

where A and B are linear and nonlinear operators upon u, respectively.

Suppose we have a nonlinear differential equation which can be seperated into

linear and nonlinear operators and has been discretized in space to the form

du"
dt

= Au" + B(u"),

where A is a m X m matrix discretization of operator A and B(u") is a m dimensional vector

discretization of operator B(u).
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Using the Taylor expansion at time step #"*! = ¢* + At, the solution to the full

1

problem, u! = up("*') becomes

du" AP dPut

n+l _ 3
uyt = ta’t +7 o + O(A?)
A2 d(Au" + B@"
= '+ AiA + BU)) + W O(AF)
A2 n B n n
=+ AAU+ B + S d;t +2 di; )d;t )+O(At3)

= u" + At(Au" + B(u"))
dB(u") dB(u”)
- Au" +

Atz 2.n n
+7(A u" + AB(u") + B(u ))+O(At)

4.1.1. Accuracy of the Lie - Trotter Splitting

To show that the local splitting error of the Lie-Trotter splitting, we split the gen-

eral form (4.1) as follows

du

— — n n+l
I Au, uQ)=uy telt", "] 4.2)
dV n n n+l
= B(v), v0)=u(") tel[," (4.3)

where u s an original initial condition.

The ‘AB’ recombination of the split solution gives the following approximation

by Taylor expansion

dun+1 Atz dzun+1 3
a g TO4D

Atz dB n+1
= u"™' + AtBW"!) + 7—(;‘; ), O(AF)

Ar* dB(e*Mu"
= MM 4 AtB(eMU + ?@Tu) +O(AP)

A% + O(At3)) + AtB(u" + AtAu" + O(AF))

vn+1 — un+1 + At

n n At
= (u + AtAu +2—!

+A_t2 dB((u" + O(At))
2! dt

AP
= u" + AtAu" + 51 — A%+ At (B(u") + At o

+ O(AP)

+O(AP)

(u") N AP? dB(u™)
20 dt
dB(u”)A dB(u™)

AP
= u" + At(Au" + B(u" ))+ A" +2 u"
du® du®

= Bu )) + O(AP).
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Thus,

wptt — v u" + At(Au" + B(u™"))
2 n n
+A—’ (Azu” +AB(u") + %Au dB(u )B( )) + O(At )]
2! du" du”
—u" + At(Au" + B(u"))
2 n "
+A—t(A2 " 2—d§£; ) A + dﬁ( )B( ") + O(At )]
2 n
- Azt' (AB( "y dB(L; )Au") + O(AP)
= O(AP).

The ‘BA’ recombination of the split solution gives the following approximation

by Taylor expansion

vn+l — eAtAunH
= (I + AtA + A2—A2 + O(At )) (u + Atd;n A; d;;;n + O(At3))
= (1+ AtA + AZ—I,ZA2 +O(At3)) (u + AtB(uW") + Ar dBc;‘n) O(At3))
= u" + At(Au" + B(u")) + Az—t!z (Azu” +2AB(u") + ‘”Z E{L:H)B(u”)) + O(AP).
Thus,
Wyt — v u" + At(Au" + B(u"))
A+ sy + B g4 BB gy 4 oy

—|u" + At(Au" + B(u"))

2 n
+A7t(A2u” +2ABW") + ‘”Z ) pury + O(At3)]
A o, dBU)
= 7(—AB(u) = ) + O(AF)
= O(AP).

Hence, the computations for both split orderings gives first order accuracy in time.
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4.1.2. Accuracy of the Strang-Marchuk Splitting

To show that the local splitting error of the Lie-Trotter splitting, we split the gen-
eral form (4.1) as follows

du

- = Au, u(0)=uy tel[f","? 4.4)
dV n n m+l

= =B, w0 =u) el (4.5)
dw n n+1/2 n+l
- = Aw, w(0) =v(@") e[V (4.6)

where u 1s an original initial condition.

The ‘ABA’ recombination of the split solution gives the following approximation

by Taylor expansions,

Wn+l — AtA n+1/2
At dwn+1/2 At2 d2Wn+1/2
= ( + AtA + —A2 + O(At ))( 12 + ? i + ?7 + O(At3))
At At? dBOW"!
= (1 + AtA + —A2 + O(At ))( ?B(V”“) 5 St ) + O(At3))

At A dB(v*)
- _B n+1 -
g BT+ —

At
AtA, n+1/2 _B(eAtAunH/Z) "

A AP
+ AtAV + 7AB(V"“) + ?sznﬂ +O(AP)

At2 dB(eAtAunH/Z)
8 dt

AZ( AtA n+1/2)+O(At )

At du” At2 d’u"
AP TI +O(At3))

dt
)) At2 dB ((I + O(AY)) (u" + O(Av)))
dt

= e +AI‘A( AtA n+1/2)

A
AB AtA n+1/2 +
2 (e ) 2!

= (1 + AtA + A2—A2 + O(At ))(

Alp ((1 + AtA + O(Atz)) (u"

+AtA ((I + AtA + O(AP)) (u > d

+ O(AF?) ) + —AB ((I + O(AD) (1" + O(Ar)))

2
+A7tA2 ((1 + O(AD) (" + O(AD)) + 0(At3))
Ar? Af?

A dB(u") AP A
— AA"+—AB + A“ —AB(") + —AU"
8 dt 5 ABG) 5 ABW) + —=Au

n 2 n
Atd (u™) AAB( n)) At dB(I/t ) + AZA (I/tn + gB(u")+AlAu”) +O(Al3)

At
= u'+ —B(u”) +

+§ (B( ") +

8 dr

dB(u") dB(u™)
a Mt

2
= u" + AAU" + B) + Az (Azu”+AB( ") + B(u ))+O(At)

38



Thus,

n+1 n+1
Up —w |

[u” + At (Au" + B(u"))

2 n n
LAr (Azu" + ABw) + By, 9B (” )B( ")) + O(Af )]
2! du
—[u” + At (Au" + B(u"))
2 n n
+A7 (Azu” + AB) + 1B )Au dfl( ) B )) + O(At )]

= O(AP).

On the other hand, the ‘BAB’ recombination of the split solution gives the follow-

ing approximation by Taylor expansion

At dwn+l/2 AtZ d2wn+1/2
\/VYH—1 = W’H—l/2 + 7 gy + _8 dt2 + O(At3)
At A dB(V')
n+1 n+1
= —+ —B + —
A BV

At
_ A2 ?B(eAtAunH/Z)_i_

At2
= (I+ AtA + — 2

+ O(AF)

At2 dB(eAtA un+1/2)
8 dt

24 O(At )) n+1/2 AztB((I + AIA + O(AP)) 1)

+ O(AF)

A2 dB((I + O(AD) u117?)

= - +O(AP)
AP At du” At2 d’u"
= |1+ am+ 2542 10 + O(At
(+ Y +())(” 2dr T8 ae ())
At nelf2 dB(u””/Z) nelf2 ) Al2 dB(Mn+l/2) 3
+?(B(l/t * )+AIWAM * +0(At ) +?T+O(Af )

3 At~ , Atdu® AP dPu" 3
= (I+AtA+2—A +O(At))( T +?dt2 + O(AY)
At At du” ) dB(u" + O(A) |, )
+2 (B(u + > )+At oD A(u +O(At))+O(At))
2 2 n
= 1+ a2 A2 4 0| [ + B( ny 4 ALABWD | oary
2! 8 dt
g W AtdB(u") dB(u”) , ) A_t2 dB(u") 5
+ 3 (B( )+ CRT + At o Au" + O(At )) + s dr + O(Ar)
2 n n
= "+ A(Ad" + B")) + %t (Azu” + ABu") + dzg; )Au dfl(” )B( )) + O(AP)
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time.

Uy —w

Thus, we have

n+1 n+l|

[u” + At (Al + B)

dB(u™)
du®

Z& 2. n n
+7 Au" + AB(u") +

—[u" + At (Au" + B(u"))

2

At B
v (A2u” +ABW + & (” )

= O(AP).

Au"

—AU"

d (u")
du”

Blu ")) + O(At )]

dB(u")

B ))+O(At )]

Hence, the computations for both split orderings gives second order accuracy in

4.1.3. Accuracy of the Symmetrically Weighted Sequential Splitting

n+1

The ‘AB’ recombination of the split solution given in Section 4.1.1. is

dB(u")

AP
= u" + At(Aud" + B(u")) + — (A“ 42— y
ul’l

and the ‘BA’ recombination of the split solution is

vn+l

AP
= u" + At(Au" + B(u")) + — 5 (Azu”+2AB(u)

dB(u”)

o ——B(u )) +O(AP),

aBw’) B(u”)) + O(AP).
du®

Then, taking average ‘AB’ and ‘BA’ splitting recombination, we get

vn+1

Thus, it follows that
nHl v"+1| = [u” + At(Au" + B(u"))

A
+7(A2u” +ABU") +
—[u" + At(Au" + B(u"))
dB(u")

A
=, —(A*W" + 2AB@") +

AP?
X3
= O(AP).

dB(u")
du®

( AB(") +

= u" + At(Au" + Bw")) + — A2 (Azu” + 2AB(u") +

Bl’l
d(bfz)Au

- B(u™") + O(At3)]

u) + O(AF)

d(")

B(u )) +O(AP).

dB(u")
du"

B™) + O(At )]

Hence, we can obtain second order of accuracy as well.
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4.2. A Kinetic Model of Phage Infection

Bacteriophages, more commonly known as phages, are viruses that kill bacteria.
They are used to treat food or animals infected with bacteria [6].

We define a kinetic model of phage infection for a generalized phage-bacterium
system. Let x(¢) represent the number of uninfected bacteria, y(¢) the infected bacteria,

and v(7) the free phage. Then, we can write this model as follows:

d

d—); = ax-— bvx,

d

d_)t) = ay+ bvx —ky, 4.7)
d

d_‘t} = kLy—bvx —mv,

where a is the replication coefficient of the bacteria, b is the transmission coeflicient,

k the lysis rate, L the burst size, and m the decay rate of free phages [7].

This model investigate with the following typical parameter values (time units:

hours): a = 0.3, b = 107%, k = 0.706, L = 15, m = 34.8 with the initial conditions

X0 19000
yo |=| 5400 |- (4.8)
Vo 72000

Then, we write the matrix representation of (4.7) as

x a 0 0 X —bvx
Yy |=1 0 a-k O y |+| bvx 4.9)
v 0O kKL -m % —bvx
—— —_—— —— —
u’ A u B(u)

with the initial condition

X0
uy = Yo = u(0). 4.10)

Vo
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To introduce the method, we first rewrite (4.9) in operator form

d
d_bt‘ = Au+ B, (4.11)

where A and B are linear and nonlinear operators, respectively.

We will use (4.11) in order to solve given model in (4.7) numerically.

4.2.1. Lie-Trotter Splitting For A Kinetic Model of Phage Infection

To apply Lie-Trotter splitting, we split the problem (4.11) into the two subprob-

lems as following:

d

% = Ay, uy(0) = up 4.12)
dbl2

- B(uy), ux(0) = u(2) (4.13)

where A is a linear operator and B is a nonlinear operator. Then, we solved these subprob-
lems sequentially for small time step At. The first subproblem (4.12) is solved exactly.

The subproblem (4.13) is solved by using forward Euler’s method.

4.2.2. Strang-Marchuk Splitting For A Kinetic Model of Phage

Infection

To apply the Strang-Marchuk splitting method to (4.11), we divide it into three

subproblems as

% =Auy, u1(0) = uy, (4.14)
and
UL B, w(0) = w) (4.15)
and again
% = Auz, u3(0) = u(1), (4.16)
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where A is a linear operator and B is a nonlinear operator. Then, we solved these subprob-
lems sequentially for small time step Az. The first subproblem (4.14) is solved exactly,
the second subproblem (4.15) is solved by using 2" order Runge-Kutta method and the

last subproblem (4.16) is solved again exactly.

4.2.3. Symmetrically Weighted Sequential Splitting For A Kinetic
Model of Phage Infection

To apply the SWS splitting method to (4.11), we divide it into ‘AB ’ splitting

solution as

dI/tl

—r = Au, w0 =u (4.17)
% = B(uz), u2(0) = uy(2) (4.18)
and ‘BA°’ splitting solution as
% = B(uy), u(0) = ug (4.19)
t
% = Aur, u(0) = uy(r) (4.20)

where A is a linear operator and B is a nonlinear operator. Hence, SWS splitting can be
obtained by symmetrizing the Lie-Trotter. Then, the splitting solution is obtained by
averaging the corresponding results. We solved subproblems (4.17) and (4.20) exactly
and the other subproblems (4.18) and (4.19) by using 2" order Runge-Kutta method.

4.2.4. Numerical Results For A Kinetic Model of Phage Infection

Since we do not have an exact solution for the problem (4.7), we need a reference
solution for our study. So, we solved this problem with the 4™ order Runge-Kutta method

as a reference solution.
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Figure 4.1. Reference solution of the problem (4.7).

Figure 4.1 exhibits reference solution of the problem (4.7) with time step At = 107°

by using 4" order Runge-Kutta method on time interval ¢ € [0, 5].

X y v
Lie-Trotter 0.3147 0.0085 0.0039

Strang-Marchuk 9.0332¢ — 05 | 2.7844e — 06 | 4.7724e — 07

Symmetrically W. S. | 1.7880e — 04 | 5.2350e — 06 | 8.7069¢ — 07

Table 4.1. Maximum errors of different splitting methods of Problem 3 for Ar =
0.0001 on time interval ¢ € [0, 5].

Table 4.1 shows comparison the maximum errors of the classical operator split-
ting methods.From the table, we deduce that the errors of Strang-Marchuk splitting gave

smaller error for (4.7).
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Figure 4.2. Numerical solution of the Lie-Trotter splitting for the problem (4.7).

Figure 4.2 shows numerical solution of the x, y and v components of the problem

(4.7) by applying Lie-Trotter splitting for A = 0.01 on time interval ¢ € [0, 5].

X y 1%

Time Step Size Error Order Error Order Error  Order

Ar=0.1 164.4330 4.0713 3.1779

At =0.01 29.7225 0.7429 0.7994 0.7070 0.3831 0.9188
At = 0.001 3.1315 09773 0.0846 0.9753 0.0391 0.9914
At =0.0001 0.3147  0.9978 0.0085 0.9976 0.0039 0.9991

Table 4.2. Maximum error and order of the Lie-Trotter splitting for x, y and v com-
ponents.

Table 4.2 shows maximum error and order of accuracy of Lie-Trotter splitting for
x, y and v components with different A¢ values by using /* norm. It can be seen that the
maximum errors decrease for x, y and v components when the time decreases. Also, we
can see that the expected order is confirmed, and thus the Lie-Trotter splitting converges

as first order.
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Figure 4.3. Numerical solution of the Strang-Marchuk splitting for the problem (4.7).

Figure 4.3 shows numerical solution of the x, y and v components of the problem

(4.7) by applying Strang-Marchuk splitting for Az = 0.01 on time interval ¢ € [0, 5].

X y v

Time Step Size Error Order Error Order Error Order
At =0.1 66.3106 2.0771 0.3616

At =0.01 0.9010 1.8669 0.0278 1.8736 0.0048 1.8799
At = 0.001 0.0090 1.9985 2.788le —04 1.9986 4.7836e¢ —05 1.9986

At =0.0001 9.0332¢ — 05 2.0004 2.7844e —-06 2.0006 4.7724e-07 2.0010

Table 4.3. Maximum error and order of the Strang-Marchuk splitting for x, y and v
components.

Table 4.3 shows the maximum error and the order of accuracy of the Strang-
Marchuk splitting for x, y and v components with different A¢ values by using /* norm.
We conclude that the maximum errors decrease for x, y and v components when the time
decreases. Also, we can see that the expected order is confirmed, and thus the Strang-

Marchuk splitting converges second order.
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Figure 4.4. Numerical solution of the SWS splitting for the problem (4.7).

Figure 4.4 exhibits numerical solution of the x, y and v components of the problem

(4.7) by applying SWS splitting for Ar = 0.01 on time interval ¢ € [0, 5].

X y y

Time Step Size Error Order Error Order Error Order
At =0.1 150.2231 4.4266 0.7387

At = 0.01 1.7824 1.9257 0.0522 1.9282 0.0087 1.9298
At = 0.001 0.0179 1.9991 5.2329¢—-04 1.9992 8.7004e¢ — 05 1.9992

At =0.0001 1.7880e — 04 1.9995 5.2350e — 06 1.9998 8.7069¢ — 07 1.9997

Table 4.4. Maximum error and order of the SWS splitting for x, y and v components.

Table 4.4 shows the maximum error and the order of accuracy of the SWS splitting
for x, y and v components with different Af values by using [ norm. We conclude that the
maximum errors decrease for X, y and v components when the time decreases. Also, we
can see that the expected order is confirmed, and thus the SWS splitting converges second

order.
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Figure 4.5. The maximum errors of Lie-Trotter, Strang-Marchuk and SWS splitting
for (4.7).

Figure 4.5 represents local splitting error of Lie-Trotter, Strang-Marchuk and SWS
splitting, respectively, for x, y and v components by using /* norm. We deduce that the

numerical solutions close to each other when applying SWS splitting for (4.7).

Figure 4.6 exhibits the maximum errors of the X, y and v components, respectively,

for the classical operator splitting methods by using /!, > and [* norm.
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Figure 4.6. The maximum errors of Lie-Trotter, Strang-Marchuk and SWS splitting
for (4.7).

4.3. The Newell-Whitehead-Segel Equation

The Newell-Whitehead-Segel (NWS) equation models the interaction of the effect
of the diffusion term with the nonlinear effect of the reaction term. This equation can be
viewed as a generalization of the NWS equation which appeared in the investigation of

fluid mechanics [8].

The NWS equation is a reaction-diffusion equation written of the form

u, = ku, +au—>bul, (4.21)
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where a, b and k are real numbers with k > 0 which is the coefficient of diffusion,

and ¢ is a positive integer [8].

In Eq. (4.21),if wetake a = 1, b = 1, and g = 3, then the NWS equation becomes
the Allen-Cahn equation [9]

u, =ku, +u—u’, xe[0,2x], 0<r<]l (4.22)

3

where u,, is a linear diffusion term and u — u” is a nonlinear reaction term. We will take

k=0.01 with the initial condition

u(x,0) = 0.05 sin(x) (4.23)
and periodic boundary conditions

u(0,1) = uRn, 1) =0. (4.24)

We performed a spacial discretization with lenght parameter Ax = x/64 that is
we divided x € [0,2n] into Nx = 128 parts of equal lenght. The spatial derivative is

approximated with the finite difference scheme:

Oty (1) U1 (1) = 2u (1) + U1 (1)

= , 4.25
at (Xm,1) sz ( )
where Ax is the space step size and m = 1, ..., N, + 1.
Thus, we obtain the following semi-discrete differential equation
1
u; = k—=Au(t) + u(t) — u’(t) (4.26)

Ax?
where u(f) in equation (4.26) is in the form of u(t) = (u(xy, 1), u(xs, 1), ..., u(xy_;, 1)) and
Ais (N — 1) x (N — 1) tridiagonal matrix. u(0) = (u(x;,0), u(x,,0), ..., u(xy_1,0))! is the
initial condition and the boundary conditions u(xy, 0) and u(xy, 0) are embedded into the

matrix.

) | B 1«
u, 1 -2 1 Uy
1
A2 1 -2 1
Uy -2 1 Uy_1
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We will use (4.26) in order to solve NWS equation numerically.

4.3.1. Lie-Trotter Splitting For The Newell-Whitehead-Segel

Equation

To apply Lie - Trotter splitting to (4.26), we construct the two subproblems

U,

AU = kU,, (4.27)

v, fVy=v-v? (4.28)

which are solved subsequently for small time steps Az. We will use the centered finite
difference method for the second derivative of u for (4.27) and forward Euler method for

(4.28) which is time evolution.

4.3.2. Strang-Marchuk Splitting For The Newell-Whitehead-Segel

Equation

To apply Strang-Marchuk splitting to (4.26), we construct the three subproblems

U = AU =kU,, (4.29)
V, = f(V\)=vV-V? (4.30)
U = AU =kU,, 4.31)

which are solved subsequently for small time steps Az. We will use the centered finite
difference method for the second derivative of u in (4.29) and (4.31) and 2" order Runge-

Kutta method in (4.30) which is time evolution.
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4.3.3. Symmetrically Weighted Sequential Splitting For The
Newell-Whitehead-Segel Equation

To apply SWS splitting method to (4.26), we divide it into ‘AB ’ splitting solution

as

U = AU =kU,, (4.32)

V, = f(V)=vV-V? (4.33)
and ‘BA ’ splitting solution as

Uu = fU)=U-U? (4.34)

V, = AV =kV,, (4.35)

Thus, SWS splitting can be obtained by symmetrizing the Lie-Trotter. Then, the split-
ting solution is obtained by averaging the corresponding results. We solved subproblems
(4.32) and (4.35) exactly, the other subproblems (4.33) and (4.34) by using 2" order

Runge-Kutta method.

4.3.4. Numerical Results For The Newell-Whitehead-Segel Equation

Since there is no exact solution for (4.22), we solved the full problem (4.22) —

(4.24) with the 4" order Runge-Kutta method for our study.

Figure 4.7 represents the reference solution of the problem (4.22) generated by
4™ order Runge-Kutta method with time step At = 107 for x € [0, 27] on time interval

te[0,1].
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Figure 4.7. Reference solution of the problem (4.22).

Approximate Solution Reference Solution

Figure 4.8. Comparison of the approximate and reference solution for the NWS Equa-
tion (4.22) by using Lie-Trotter splitting for Az = 0.001 with x € [0, 27] on
time interval 7 € [0, 1].

Figure 4.8 shows numerical solution of the Lie-Trotter splitting and reference so-

lution for (4.22) for Ar = 0.001 with x € [0, 2] on time interval ¢ € [0, 1].
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Approximate Solution Reference Solution

Figure 4.9. Comparison of the approximate and reference solution for the NWS Equa-
tion (4.22) by using Strang-Marchuk splitting for Ar = 0.001 with x €
[0, 27r] on time interval ¢ € [0, 1].

Figure 4.9 shows numerical solution of the Strang-Marchuk splitting and reference

solution for (4.22) for Ar = 0.001 with x € [0, 2z] on time interval ¢ € [0, 1].

Approximate Solution Reference Solution

Figure 4.10. Comparison of the approximate and reference solution for the NWS Equa-
tion (4.22) by using Lie-Trotter splitting for Az = 0.001 with x € [0, 27] on
time interval ¢ € [0, 1].

Figure 4.10 shows numerical solution of the SWS splitting and reference solution

for (4.22) for At = 0.001 with x € [0, 27] on time interval ¢ € [0, 1].

54



ERROR

—#—L-1 norm
L-2 norm
—¥— L-inf norm

103 1072 107
Time Steps

Figure 4.11. Error of Lie-Trotter splitting for (4.22).

Figure 4.11 represents the local splitting error of the Lie-Trotter splitting for (4.22)

with different At values by using /', I* and [ norms. We can see that as the time step

decreases, the errors also decrease.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 0.0059
At =0.01 6.3496¢ — 04 0.9679
At = 0.001 6.3987¢ — 05 0.9967
At = 0.0001 6.4036¢e — 06 0.9997

Table 4.5. Maximum Error of Lie-Trotter Splitting for the problem (4.22).

Table 4.5 shows the maximum error of Lie-Trotter splitting for (4.22) with differ-
ent Af values. We can clearly see how the errors changes when the time steps are getting

smaller. Moreover, we conclude that the expected order is confirmed, that is, Lie-Trotter

splitting converges to 1.
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Figure 4.12. Error of Strang-Marchuk splitting for (4.22).

Figure 4.12 represents the local splitting error of Strang-Marchuk splitting for
(4.22) with different At values by using I', > and [ norms. We can see that as the time

step decreases, the errors also decrease.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 1.9157e — 04
At =0.01 2.0453e - 06 1.9716
At = 0.001 2.0587e — 08 1.9972
At = 0.0001 2.0869¢ — 10 1.9941

Table 4.6. Maximum Error of Strang-Marchuk Splitting of Nonlinear PDE with Dif-
ferent Ar Values.

Table 4.6 shows the maximum error of the Strang-Marchuk splitting for (4.22)
with different At values. Moreover, we conclude that the expected order is confirmed,

that is, Strang-Marchuk splitting converges to 2.
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Figure 4.13. Error of SWS splitting for (4.22).

Figure 4.13 represents the local splitting error of SWS splitting for (4.22) with

different At values by using /!, /> and [ norms. We can see that as the time step decreases,

the errors also decrease.

Time Step Size | Maximum Error | Order of Accuracy
At =0.1 1.9158e — 04
At =0.01 2.0453e - 06 1.9716
At = 0.001 2.0587e — 08 1.9972
At = 0.0001 2.0767¢ - 10 1.9962

Table 4.7. Maximum Error of SWS Splitting of Nonlinear PDE with Different Az Values.

Table 4.7 shows the maximum error of the SWS splitting for (4.22). Moreover,

we conclude that the expected order is confirmed, that is, SWS splitting converges to 2.
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Figure 4.14. Comparison of Errors of Different Splitting Methods of the problem (4.22).

Figure 4.14 represents a comparison between the local splitting error of the differ-

ent splitting methods with various At values by using /* norm. From Figure 4.14, we can

see that Strang-Marchuk splitting and SWS splitting are coincident.

Error [! Error /? Error [
Lie-Trotter Spliting 0.0053 5.1813e — 04 | 6.3987¢ — 05
Strang-Marchuk Splitting 1.7252¢ — 06 | 1.6825¢ — 07 | 2.0587¢ — 08
Symmetrically Weighted Sequential Splitting | 1.7252¢ — 06 | 1.6826e — 07 | 2.0587¢ — 08

Table 4.8. Comparison of Errors of Different Splitting Methods of the problem (4.22)

for At = 0.001.

Table 4.8 shows a comparison of the local splitting errors of the different splitting

methods and nonsplitting via {!, > and [* norm. From the table, we deduce that the error

of Strang-Marchuk splitting is the same as that of SWS splitting.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this thesis, Lie-Trotter splitting, Strang-Marchuk splitting and symmetrically
weighted sequential splitting methods which are known as classical operator splitting
methods have been successfully applied to solve variety ODE and PDE problem:s.

First, simple examples are considered in order to demonstrate the effectiveness
of the operator splitting methods. We also studied the accuracy of the operator splitting
methods for each problem. Theoretically, we prove that Lie-Trotter splitting has an order
1, Strang-Marchuk and symmetrically weighted sequential splitting have an order 2. Our
theoretical results are also confirmed by the numerical computations. Many figures and
tables are presented to show agreements of theoretical and numerical computations.

Second, we consider the classical operator splitting methods for nonlinear dif-
ferential equations with linear and nonlinear operators. Moreover, we prove order of
accuracy of these methods by using local splitting error.

Next, we considered real-life problem; a kinetic model of phage infection. The
classical operator splitting methods are successfully applied to find the approximate solu-
tion of the system of ODE. Reference solution was used as an exact solution.

Finally, the Newell-Whitehead-Segel equation as a PDE problem is considered.
Since we do not know the exact solution of these problems for some parameters, we obtain
the approximate solution of this PDE by using the classical operator splitting methods. We
also confirmed the teoretical results with numerical computations.

In the light of our studies, we recommend the operator splitting method to ob-
tain the numerical solution of various nonlinear ODE and PDE problems. They are very

efficient and robustness methods.
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APPENDIX A

MATLAB CODES FOR THE APPLICATIONS

CLASSICAL OPERATOR SPLITTING METHODS MATLAB CODES

FOR LINEAR ODE

clear all

close all

clc

%INPUT

dt = 0.01;

stime = 0;

ftime = 1;

initial_c = 1;

%DISCRETIZATION
Nt = (ftime - stime)/dt;

t = stime:dt:ftime;

%EXACT SOLUTION

u_exact = -3.%exp(-2.*t)+4.%exp(-t);

%ASSIGNING INITIAL DATAS
t(1) = stime;

u_appr(1l) = initial_c;
ul_AB=initial_c;
u_AB(1)=ul_AB;
ul_ABA=initial_c;

U_ABA(1)=ul_ABA;

63



ul_AB_sym = initial_c;
u_AB_sym(1) = ul_AB_sym;
ul_BA_sym = initial_c;

u_BA_sym(1) = ul_BA_sym;

%LIE-TROTTER SPLITTING

for i=1:Nt

ul_AB = ul_AB+dt*RHS_func_A(t(i),ul_AB);
u2_AB

ul_AB;

u2_AB u2_AB+dt*RHS_func_B(t(i),u2_AB);

u_AB(i+1) = u2_AB;
ul_AB = u2_AB;

end

%STRANG-MARCHKUK SPLITTING

for i = 1:Nt

k1l= (dt/2).*RHS_func_A(t(i),ul_ABA);

k12= (dt/2).*RHS_func_A(t(i)+(dt./2),ul_ABA+(k11/2));

ul_ABA = ul_ABA+k12;

u2_ABA

ul_ABA;
k21=dt.*RHS_func_B(t(i),ul_ABA);
k22=dt.*RHS_func_B(t(i)+(dt./2),ul_ABA+(k21/2));

U2_ABA = u2_ABA+k22;

u3_ABA = u2_ABA;

k31= (dt./2).*RHS_func_A(t(i),u3_ABA);

k32= (dt./2).*RHS_func_A(t(i)+(dt/2),u3_ABA+(k31/2));
u3_ABA = u3_ABA+k32;

u_ABA(i+1) = u3_ABA;

ul_ABA = u3_ABA;

end
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%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING
for i = 1:Nt

k1l_sym = dt.*RHS_func_A(t(i),ul_AB_sym);

k12_sym = dt.*RHS_func_A(t(i)+(dt./2),ul_AB_sym+(kll_sym/2));
ul_AB_sym = ul_AB_sym+k12_sym;
u2_AB_sym = ul_AB_sym;

k21_sym = dt.*RHS_func_B(t(i),ul_AB_sym);

k22_sym = dt.*RHS_func_B(t(i)+(dt./2),ul_AB_sym+(k21_sym/2));
u2_AB_sym = u2_AB_sym+k22_sym;

u_AB_sym(i+1) = u2_AB_sym;

ul_AB_sym = u2_AB_sym;

k31_sym = dt.*RHS_func_B(t(i),ul_BA_sym);

k32_sym = dt.*RHS_func_B(t(i)+(dt./2),ul_BA_sym+(k31_sym/2));
ul_BA_sym = ul_BA_sym+k32_sym;

u2_BA_sym

ul_BA_sym;

k41_sym = dt.*RHS_func_A(t(i),ul_BA_sym);

k42_sym = dt.*RHS_func_A(t(i)+(dt./2),ul_BA_sym+(k41_sym/2));
u2_BA_sym = u2_BA_sym+k42_sym;

u_BA_sym(i+1) = u2_BA_sym;

ul_BA_sym = u2_BA_sym;

end

for i=1:Nt+1
u_sym(i)=Cu_AB_sym(i)+u_BA_sym(i))./2;

end

%NONSPLITTING
for i=1:Nt
u_appr (i+1)=u_appr(i)+dt*RHS_func(t (i) ,u_appr(i));

end

65



%PLOT

plot(t,u_exact,’color’,[0 0.6 0.1])
plot(t,u_exact, 'k+-")

hold on

plot(t,u_appr,’g*:’)

hold on

plot(t,u_AB,’b’)

hold on

plot(t,u_ABA,’'r’)

hold on

plot(t,u_sym, 'mo:’)

grid off

legend(’Exact Solution’,’Nonsplitting’,’Lie-Trotter’,...

’Strang-Marchkuk’,’Symmetrically’)

clear all
close all
clc
%INPUT
step = 4;
stime = 0;
ftime = 1;

initial_c = 1;

for j=1:step
dt(3)=10*(-3);

%DISCRETIZATION
Nt = (ftime - stime)/dt(j);

t = stime:dt(j):ftime;
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%EXACT SOLUTION

u_exact = -3.%exp(-2.%t)+4.*exp(-1);

%ASSIGNING INITIAL DATAS
t(1) = stime;

u_appr(l) = initial_c;
ul_AB = initial_c;
u_AB(1) = ul_AB;

ul_ABA = initial_c;

u_ABA(1) = ul_ABA;

ul_AB_symm = initial_c;
u_AB_symm(1) = ul_AB_symm;
ul_BA_symm = initial_c;

u_BA_symm(1) = ul_BA_symm;

%NONSPLITTING
for i = 1:Nt
u_appr(i+1) = u_appr(i)+dt(j).*RHS_func(t(i),u_appr(i));

end

%LIE-TROTTER SPLITTING

for i = 1:Nt

ul_AB = ul_AB+dt(j).*RHS_func_A(t(i),ul_AB);
u2_AB = ul_AB;
u2_AB = u2_AB+dt(j).*RHS_func_B(t(i),u2_AB);

u_AB(i+1) = u2_AB;
ul_AB = u2_AB;

end



%STRANG-MARCHKUK SPLITTING
for i = 1:Nt

k11_ABA= (dt(j)./2).*RHS_func_A(t(i),ul_ABA);

k12_ABA= (dt(j)./2).*RHS_func_A(t(i)+(dt(j)./2),ul_ABA+(k11_ABA/2));

ul_ABA

ul_ABA+k12_ABA;

u2_ABA = ul_ABA;

k21_ABA=dt(j).*RHS_func_B(t(i),ul_ABA);

k22_ABA=dt (j) .*RHS_func_B(t(i)+(dt(j)./2),ul_ABA+(k21_ABA/2));
u2_ABA

u2_ABA+k22_ABA;
u3_ABA

u2_ABA;
k31_ABA= (dt(j)./2).*RHS_func_A(t(i),u3_ABA);

k32_ABA= (dt(j)./2).*RHS_func_A(t(i)+(dt(j)/2),u3_ABA+(k31_ABA/2));

u3_ABA = u3_ABA+k32_ABA;
u_ABA(i+1) = u3_ABA;
ul_ABA = u3_ABA;

end

%LIE-TROTTER SPLITTING (AB SPLITTING)

for i = 1:Nt

k11_AB= dt(j).*RHS_func_A(t(i),ul_AB_symm);

k12_AB= dt(j).*RHS_func_A(t(i)+(dt(j)./2),ul_AB_symm+(k11_AB/2));
ul_AB_symm = ul_AB_symm+k12_AB;

u2_AB_symm= ul_AB_symm;
k21_AB=dt(j).*RHS_func_B(t(i),ul_AB_symm);

k22_AB=dt (j) .*RHS_func_B(t(i)+(dt(j)./2),ul_AB_symm+(k21_AB/2));
u2_AB_symm = u2_AB_symm+k22_AB;

u_AB_symm(i+1) = u2_AB_symm;

ul_AB_symm = u2_AB_symm;

end
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%LIE-TROTTER SPLITTING (BA SPLITTING)

for i = 1:Nt

k31_BA= dt(j).*RHS_func_B(t(i),ul_BA_symm);

k32_BA= dt(j).*RHS_func_B(t(i)+(dt(j)./2),ul_BA_symm+(k31_BA/2));
ul_BA_symm = ul_BA_symm+k32_BA;

u2_BA_symm = ul_BA_symm;
k41_BA=dt(j).*RHS_func_A(t(i),ul_BA_symm);
k42_BA=dt(j).*RHS_func_A(t(i)+(dt(j)./2),ul_BA_symm+(k41_BA/2));
u2_BA_symm = u2_BA_symm+k42_BA;

u_BA_symm(i+1) = u2_BA_symm;

ul_BA_symm = u2_BA_symm;

end

%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING
for i=1:Nt+1
u_symm(:,i)=Cu_AB_symm(:,i)+u_BA_symm(:,i))./2;

end

%ERROR

E_lie(j) = norm(abs(u_exact-u_AB),inf);
E_strang(j)=norm(abs(u_exact-u_ABA),inf);
E_symm(j)=norm(abs(u_exact-u_symm),inf);
E_non(j)=norm(abs(u_exact-u_appr),inf);

end

%0RDER

for j=1l:step-1
order_lie(j)=log(E_lie(j+1)/E_lie(j))/log(dt(j+1)/dt(j));
order_strang(j)=log(E_strang(j+1)/E_strang(j))/log(dt(j+1)/dt(j));
order_symm(j)=log(E_symm(j+1)/E_symm(j))/log(dt(j+1)/dt(j));
order_non(j)=log(E_non(j+1)/E_non(j))/log(dt(j+1)/dt(j));

end
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%PLOT

plot(order_lie,’-*b’,’LineWidth’,1)

xlabel(’$j$’, Interpreter’,’Latex’);

ylabel (" $\frac{\log(E(j+1)/E(3))}{\log(dt(j+1)/dt(j))}$’

"Interpreter’,’LaTex’)

title(’ORDER’)

hold on

figure

s = linspace(l,step,step);
loglog(10.4(-s),abs(E_lie),’r-0’,10.A(-s),abs(E_strang),’r-*",...
10.2(-s),abs(E_symm),’r-.’,10.4(-s),abs(E_non),’r-+’, ’LineWidth’,1)
xlabel (’Time Steps’)

ylabel (’Errors’)

title(’ERROR’)

legend(’Lie-Trotter’,’Strang-Marchkuk’,’Symmetrically’, ’Nonsplitting’)

function [ z ] RHS_func(t,u)

N

z = -u+3.%exp(-2.%t);

end

function [ z ] RHS_func_A(t,u)

function [ z ] RHS_func_B(t,u)
z = 3.%exp(-2.%t);

end
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CLASSICAL OPERATOR SPLITTING METHODS MATLAB CODES

FOR NONLINEAR ODE
clear all
close all
clc
%INPUT
dt = 0.01;
stime = 0;
ftime = 1/2;

initial_c = 1;

%DISCRETIZATION
Nt = (ftime - stime)/dt;

t = stime:dt:ftime;

%EXACT SOLUTION
u_exact = -2./(3.%exp(t)-5*exp(t./3));

%ASSIGNING INITIAL DATAS
t(1) = stime;

u_appr(l) = initial_c;
ul_AB=initial_c;
u_AB(1)=ul_AB;
ul_ABA=initial_c;

u_ABA(1)=ul_ABA;
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ul_AB_sym = initial_c;
u_AB_sym(1) = ul_AB_sym;
ul_BA_sym = initial_c;

u_BA_sym(1) = ul_BA_sym;

%LIE-TROTTER SPLITTING

for i=1:Nt
ul_AB=ul_AB+dt*RHS_func_A(t(i),ul_AB);
u2_AB=ul_AB;
u2_AB=u2_AB+dt*RHS_func_B(t(i),u2_AB);
u_AB(i+1)=u2_AB;

ul_AB=u2_AB;

end

%STRANG-MARCHKUK SPLITTING

for i=1:Nt
ul_ABA=ul_ABA+(dt/2)*RHS_func_A(t(i),ul_ABA);
u2_ABA=ul_ABA;
u2_ABA=u2_ABA+dt*RHS_func_B(t(i),u2_ABA);
u3_ABA=u2_ABA;
u3_ABA=u3_ABA+(dt/2)*RHS_func_A(t(i),u3_ABA);
u_ABA(i+1)=u3_ABA;

ul_ABA=u3_ABA;

end

%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING

for i = 1:Nt

k1l_sym = dt.*RHS_func_A(t(i),ul_AB_sym);

k12_sym = dt.*RHS_func_A(t(i)+(dt./2),ul_AB_sym+(kll_sym/2));
ul_AB_sym = ul_AB_sym+k12_sym;

u2_AB_sym = ul_AB_sym;



k21_sym =
k22_sym =
u2_AB_sym
u_AB_sym(i
ul_AB_sym
k31_sym =
k32_sym =
ul_BA_sym
u2_BA_sym
k41_sym

k42_sym =
u2_BA_sym
u_BA_sym(i
ul_BA_sym

end

for i=1:Nt
u_sym(i)=(

end

%NONSPLITT
for i=1:Nt
u_appr(i+1

end

%PLOT

%plot(t,u_

plot(t,u_e
hold on

dt.*RHS_func_B(t(i),ul_AB_sym);
dt.*RHS_func_B(t(i)+(dt./2),ul_AB_sym+(k21_sym/2));
= u2_AB_sym+k22_sym;

+1) = u2_AB_sym;

= u2_AB_sym;

dt.*RHS_func_B(t(i),ul_BA_sym);
dt.*RHS_func_B(t(i)+(dt./2),ul_BA_sym+(k31_sym/2));

ul_BA_sym+k32_sym;

= ul_BA_sym;

dt.*RHS_func_A(t(i),ul_BA_sym);
dt.*RHS_func_A(t(i)+(dt./2),ul_BA_sym+(k41l_sym/2));
= u2_BA_sym+k42_sym;

+1) = u2_BA_sym;

= u2_BA_sym;

+1
u_AB_sym(i)+u_BA_sym(i))./2;

ING

)=u_appr (i)+dt*RHS_func(t(i),u_appr(i));

exact,’color’,[0 0.6 0.1])

xact, 'k+-")

plot(t,u_appr,’g*:’)

hold on
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plot(t,u_AB,’b’)

hold on

plot(t,u_ABA,’r’)

hold on

plot(t,u_sym, ’mo:’)

grid off

legend(’Exact Solution’,’Nonsplitting’,’Lie-Trotter’,...

’Strang-Marchkuk’,’Symmetrically’)

clear all
close all
clc

%INPUT

step = 4;
stime = 0;
ftime = 1/2;

initial_c = 1;

for j=1l:step
dt(3)=10*(-3);

%DISCRETIZATION
Nt = (ftime - stime)/dt(j);

t = stime:dt(j):ftime;

%EXACT SOLUTION
u_exact = -2./(3.%exp(t)-5*exp(t./3));



%ASSIGNING INITIAL DATAS
t(1) = stime;

u_appr(l) = initial_c;
ul_AB = initial_c;
Uu_AB(1) = ul_AB;

ul_ABA = initial_c;

Uu_ABA(1) = ul_ABA;

ul_AB_symm = initial_c;
U_AB_symm(1) = ul_AB_symm;
ul_BA_symm = initial_c;

u_BA_symm(1) = ul_BA_symm;

%NONSPLITTING
for i = 1:Nt
u_appr(i+1) = u_appr(i)+dt(j).*RHS_func(t(i),u_appr(i));

end

%LIE-TROTTER SPLITTING

for i = 1:Nt

ul_AB = ul_AB+dt(j).*RHS_func_A(t(i),ul_AB);
u2_AB

ul_AB;
u2_AB

u2_AB+dt (j) .*RHS_func_B(t(i),u2_AB);
u_AB(i+1) = u2_AB;
ul_AB = u2_AB;

end

%STRANG-MARCHKUK SPLITTING

for i = 1:Nt

k11_ABA= (dt(j)./2).*RHS_func_A(t(i),ul_ABA);

k12_ABA= (dt(j)./2).*RHS_func_A(t(i)+(dt(j)./2),ul_ABA+(k11_ABA/2));
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ul_ABA

ul_ABA+k12_ABA;

u2_ABA = ul_ABA;

k21_ABA=dt(j).*RHS_func_B(t(i),ul_ABA);

k22_ABA=dt (j).*RHS_func_B(t(i)+(dt(j)./2),ul_ABA+(k21_ABA/2));

u2_ABA = u2_ABA+k22_ABA;

u3_ABA = u2_ABA;
k31_ABA= (dt(j)./2).*RHS_func_A(t(i),u3_ABA);

k32_ABA= (dt(j)./2).*RHS_func_A(t(i)+(dt(j)/2),u3_ABA+(k31_ABA/2));

u3_ABA = u3_ABA+k32_ABA;
u_ABA(i+1) = u3_ABA;
ul_ABA = u3_ABA;

end

%LIE-TROTTER SPLITTING (AB SPLITTING)

for i = 1:Nt

k11_AB= dt(j).*RHS_func_A(t(i),ul_AB_symm);

k12_AB= dt(j).*RHS_func_A(t(i)+(dt(j)./2),ul_AB_symm+(k11_AB/2));
ul_AB_symm = ul_AB_symm+k12_AB;

u2_AB_symm= ul_AB_symm;
k21_AB=dt(j).*RHS_func_B(t(i),ul_AB_symm);

k22_AB=dt (j) .*RHS_func_B(t(i)+(dt(j)./2),ul_AB_symm+(k21_AB/2));
u2_AB_symm = u2_AB_symm+k22_AB;

u_AB_symm(i+1) = u2_AB_symm;

ul_AB_symm = u2_AB_symm;

end

%LIE-TROTTER SPLITTING (BA SPLITTING)

for i = 1:Nt

k31_BA= dt(j).*RHS_func_B(t(i),ul_BA_symm);

k32_BA= dt(j).*RHS_func_B(t(i)+(dt(j)./2),ul_BA_symm+(k31_BA/2));
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ul_BA_symm = ul_BA_symm+k32_BA;

u2_BA_symm = ul_BA_symm;
k41_BA=dt(j).*RHS_func_A(t(i),ul_BA_symm);

k42_BA=dt (j) .*RHS_func_A(t(i)+(dt(j)./2),ul_BA_symm+(k41_BA/2));
u2_BA_symm = u2_BA_symm+k42_BA;

u_BA_symm(i+1) = u2_BA_symm;

ul_BA_symm = u2_BA_symm;

end

%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING
for i=1:Nt+1
u_symm(:,i)=Cu_AB_symm(:,i)+u_BA_symm(:,i))./2;

end

%ERROR

E_lie(j) = norm(abs(u_exact-u_AB),inf);
E_strang(j)=norm(abs(u_exact-u_ABA),inf);
E_symm(j)=norm(abs(u_exact-u_symm),inf);
E_non(j)=norm(abs(u_exact-u_appr),inf);

end

%0ORDER

for j=1:step-1
order_lie(j)=log(E_lie(j+1)/E_lie(j))/log(dt(j+1)/dt(j));
order_strang(j)=log(E_strang(j+1)/E_strang(j))/log(dt(j+1)/dt(j));
order_symm(j)=1og(E_symm(j+1) /E_symm(j))/log(dt(j+1)/dt(j));
order_non(j)=log(E_non(j+1)/E_non(j))/log(dt(j+1)/dt(j));

end
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%PLOT

plot(order_lie,’-*b’,’LineWidth’,1)

xlabel(’$j$’, Interpreter’,’Latex’);

ylabel (’ $\frac{\1og(E(j+1)/E(3))}{\log(dt(j+1)/dt(j))}$’

’Interpreter’,’LaTex’)

title(’ORDER’)

hold on

figure

s = linspace(l,step,step);
loglog(10.A(-s),abs(E_lie),’r-0’,10.A(-s),abs(E_strang),’'r*’,...
10.A(-s),abs(E_symm),’r-.’,10.4(-s),abs(E_non),’r-+’, ’LineWidth’,1)
xlabel (’Time Steps’)

ylabel (’Errors’)

title(’ERROR’)

legend(’Lie-Trotter’,’Strang-Marchkuk’,’Symmetrically’,’Nonsplitting’)

function [ z ] = RHS_func(t,uw)
z = -(1/3) .*u+exp(t) .*u.r2;
end

function [ z ] RHS_func_A(t,u)

z = -u./3;

end

function [ z ] RHS_func_B(t,u)
z = exp(t).*(u.+2);

end
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CLASSICAL OPERATOR SPLITTING METHODS MATLAB CODES
FOR A KINETIC MODEL OF PHAGE INFECTION

clear all
clc

close all
%INPUT

dt = 0.1;
stime = 0;
ftime = 5;

x_initial_c 1.9%1044; %the concentration of uninfected bacteria

5.4%10+3; %the lytic bacteria

y_initial_c

v_initial_c 7.4%10%4; %free phage

%DISCRETIZATION
Nt = (ftime - stime)/dt;

t = stime:dt:ftime;

%DETERMINE COEFFICIENT VALUES

a=20.3; %replication coefficient of bacteria
b = 104(-6); %the transmission coefficient

k = 0.706; %the lysis rate coefficient

L = 15; %the burst size

m = 34.8; %the decay rate of free phage
%MATRIX

A=TJa00; 0 a-k 0; 0 k*L -m];
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%ASSTIGNING INITIAL CONDITIONS
U_AB_initial = [x_initial_c; y_initial_c; v_initial_c];
ul_AB = u_AB_initial;

u_AB(:,1) = ul_AB;

%LIE-TROTTER SPLITTING (AB SPLITTING)

for i=1:Nt

ul_AB = expm(A.*dt)*ul_AB;

u2_AB = ul_AB;

u2_AB = u2_AB+dt*B(u2_AB(1),u2_AB(3),b);

u_AB(:,i+1) = u2_AB;

ul_AB = u2_AB;

end

x_appr_AB = u_AB(1,:)’ ;
y_appr_AB = u_AB(2,:)’ ;
v_appr_AB = u_AB(3,:)’ ;
%PLOT

plot(t,x_appr_AB,’b’,’LineWidth’,1)

hold on

plot(t,y_appr_AB,’r’,’LineWidth’,1)

hold on

plot(t,v_appr_AB, ’color’,[0.3 0.8 0], ’LineWidth’,1)
legend(’x-appr’,’y-appr’,’v-appr’)
title(’Bacteriaphage Concentrations’);
xlabel(’times Chour)’);

ylabel (’ concentration’);
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%ASSIGNING INITIAL CONDITIONS

U_ABA_initial = [x_initial_c; y_initial_c; v_initial_c];
ul_ABA(:,1) = u_ABA_initial;

u_ABA(:,1) = ul_ABA;

%STRANG-MARCHKUK SPLITTING (ABA SPLITTING)

for i=1:Nt

ul_ABA = expm(A.*(dt/2))*ul_ABA;

u2_ABA = ul_ABA;

k1l = dt.*B(u2_ABA(1),u2_ABA(3),b);

k2 = dt.*B(u2_ABA(1)+k1(1)./2,u2_ABA(3)+k1(3)./2,b);

U2_ABA = u2_ABA+k2;

u3_ABA

u2_ABA;

u3_ABA = expm(A.*(dt/2))*u2_ABA;
U_ABA(:,i+1) = u3_ABA;

ul_ABA

u3_ABA;

end

X_appr_ABA = u_ABA(1,:)’ ;
y_appr_ABA= u_ABA(2,:)’ ;
v_appr_ABA = u_ABA(3,:)’ ;

%PLOT

plot(t,x_appr_ABA,’b’, ’LineWidth’,1)

hold on

plot(t,y_appr_ABA,’r’,’LineWidth’,1)

hold on

plot(t,v_appr_ABA, ’color’,[0.3 0.8 0], ’LineWidth’,1)
legend(’x-appr’,’y-appr’,’v-appr’)
title(’Bacteriaphage Concentrations’);

xlabel (’times Chour)’);

ylabel (’ concentration’);
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%ASSIGNING INITIAL CONDITIONS

U_AB_initial = [x_initial_c; y_initial_c; v_initial_c];

ul_AB = u_AB_initial;

u_AB(:,1) = ul_AB;

ul_BA = u_AB_initial;

u_BA(:,1)= ul_BA;

%LIE-TROTTER SPLITTING (AB SPLITTING)
for i=1:Nt

ul_AB=expm(A.*dt)*ul_AB;

u2_AB=ul_AB;
k1l=dt.*B(u2_AB(1,:),u2_AB(3,:),b);

k12=dt.*B(u2_AB(1,:)+dt./2,u2_AB(3,:)+(k11(1,:)./2),b);

u2_AB=u2_AB+k12;
U_AB(:,i+1)=u2_AB;
ul_AB=u2_AB;

end

%LIE-TROTTER SPLITTING (BA SPLITTING)
for i=1:Nt
k21=dt.*B(ul_BA(1l,:),ul_BA(3,:),b);

k22=dt.*B(ul_BA(1,:)+dt./2,ul_BA(3,:)+k21(1,:)./2),b);

ul_BA=ul_BA+k22;
u2_BA=ul_BA;
u2_BA=expm(A.*dt)*u2_BA;
u_BA(:,i+1)=u2_BA;
ul_BA=u2_BA;

end
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%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING
for i=1:Nt+1

u_symm(:,i)=Cu_AB(:,i)+u_BA(:,1))./2;

end

Xx_appr_symm = u_symm(1l,:)’ ;
y_appr_symm = u_symm(2,:)’ ;
v_appr_symm = u_symm(3,:)’ ;
%PLOT

plot(t,x_appr_symm,’b’,’LineWidth’,1)

hold on

plot(t,y_appr_symm,’r’,’LineWidth’,1)

hold on

plot(t,v_appr_symm, ’color’,[0.3 0.8 0], ’LineWidth’,1)
legend(’x-appr’, 'y-appr’,’v-appr’)
title(’Bacteriaphage Concentrations’);

xlabel (’times C(hour)’);

ylabel (’ concentration’);

clear all
clc

close all

%INPUT

step = 4;

%TIME
dt_full = 10A(-6);
stime = 0;

ftime = 5;
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Nt_full = (ftime - stime)/dt_£full;

t_full = stime:dt_full:ftime;

%INITIAL CONDITIONS
Xx_initial_c = 1.9%10%4; %the concentration of uninfected bacteria
y_initial_c = 5.4%1043; %the lytic bacteria

v_initial_c = 7.4*1044; %free phage
for e=1:step
%DISCRETIZATION

dt_split(e) = 104 (-e);

Nt_split = (ftime - stime)/dt_split(e);

t_split = stime:dt_split(e):ftime;

X

zeros(1,Nt_full);

y = zeros(1l,Nt_full);
v = zeros(1l,Nt_full);
x(1) = x_initial_c;

y(1)

v(1l) = v_initial_c;

y_initial_c;

%DETERMINE COEFFICIENT VALUES

a=20.3; %replication coefficient of bacteria
b = 10~¢(-6); %the transmission coefficient

k = 0.706; %the lysis rate coefficient

L = 15; %the burst size

m = 34.8; %the decay rate of free phage
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%ASSTIGNING INITIAL CONDITIONS
ul_initial=[x_initial_c; y_initial_c; v_initial_c];

u(:,1) = ul_initial;

%MATRIX
A=TJa00; 0 a-k 0; 0 k*L -m];

ul_initial_AB=[x_initial_c; y_initial_c; v_initial_c];

u_AB(:,1) = ul_initial_AB;

%NONSPLITTING

for i=1:Nt_full

k1=F(x(1),y(1),v(i),a,b,k,L,m);

k2=F(x(1)+(dt_full/2)*k1(1),y(1)+(dt_full/2)*k1(2),v(i)+...
(dt_full/2)*k1(3),a,b,k,L,m);

k3=F(x(i)+(dt_full/2)*k2(1),y(i)+(dt_full/2)*k2(2),v(i)+...
(dt_full/2)*k2(3),a,b,k,L,m);

k4=F(x(1)+dt_full*k3(1),y(1)+dt_full*k3(2),v(i)+dt_full*k3(3),a,b,k,L,m);

u(:,i+=u(:,i)+(dt_full/6)*(kl+2.*k2+2.*k3+k4);

x(i+D)=u(l,i+1); y@E+D=u(2,i+1); v({@+1)=u(3,i+1);

end

%LIE-TROTTER SPLITTING

for i=1:Nt_split
ul_AB=expm(A.*dt_split(e))*ul_initial_AB;
u2_AB=ul_AB;
u2_AB=u2_AB+dt_split(e)*B(u2_AB(1),u2_AB(3),b);
u_AB(:,i+1)=u2_AB;

ul_initial_AB=u2_AB;

end
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x_appr=u_AB(1,:)’ ;
y_appr=u_AB(2,:)’ ;
v_appr=u_AB(3,:)’ ;

errx(e)=norm(abs(x(end) ’-x_appr(end)),inf);
erry(e)=norm(abs(y(end)’-y_appr(end)),inf);
errv(e)=norm(abs(v(end)’-v_appr(end)),inf);

end

for j=1l:step-1

orderx(j)=log(errx(j+1)/errx(j))/log(dt_split(j+1)/dt_split(j));
ordery(j)=log(erry(j+1)/erry(j))/log(dt_split(j+1)/dt_split(j));
orderv(j)=log(errv(j+1)/errv(j))/log(dt_split(j+1)/dt_split(j));

end

%PLOT

plot(orderl,’-*b’, ' LineWidth’,1)

xlabel(’$j$’, Interpreter’,’Latex’);

ylabel (" $\frac{\1log(E(j+1)/E(jD)}{\log(dt(j+1)/dt(j))}$’,...
"Interpreter’,’LaTex’)

title(’ORDER’)

hold on

figure

s = linspace(l,step,step);
loglog(10.4(-s),abs(E1l), ' r-*’, ’LineWidth’, 1)
xlabel (’Time Steps’)

ylabel (’Errors’)

title(’ERROR’)
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figure
s = linspace(l,step,step)

loglog(10.4(-s),abs(errx)

10.+(-s),abs(errv),’g*

xlabel (’Time Steps’)
ylabel (’Errors’)
title(’ERROR’)

,’b*-",10.4(-s),abs(erry), 'r*-’,...
=’ ] ,LineWidth’ y 1)

legend(’x(t)’,’y (), v(t)’)

clear all
clc

close all

%INPUT

step = 4;

%TIME

dt_full 104(-6);

stime

0;

ftime = 5;

Nt_full = (ftime - stime)/dt_£full;

t_full = stime:dt_full:ftime;

%INITIAL CONDITIONS
Xx_initial_c = 1.9%10%4;
y_initial_c = 5.4%1043;

v_initial_c = 7.4%10/4;

for e=1:step
%DISCRETIZATION
dt_split(e) = 10*(-e);

%the concentration of uninfected bacteria
%the lytic bacteria

%free phage
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Nt_split = (ftime - stime)/dt_split(e);

t_split = stime:dt_split(e):ftime;

X zeros(1,Nt_full);

y = zeros(1l,Nt_full);
v = zeros(1l,Nt_full);
x(1) = x_initial_c;

y(1)
v(l)

y_initial_c;

v_initial_c;

%DETERMINE COEFFICIENT VALUES

a=20.3; %replication coefficient of bacteria
b = 104(-6); %the transmission coefficient

k = 0.706; %the lysis rate coefficient

L = 15; %the burst size

m = 34.8; %the decay rate of free phage

%ASSIGNING INITIAL CONDITIONS
ul_initial=[x_initial_c; y_initial_c; v_initial_c];

u(:,1) = ul_initial;

%MATRIX
A=[a00; 0 a-k 0; 0 k*L -m];

%ASSIGNING INITIAL CONDITIONS

U_ABA_initial = [x_initial_c; y_initial_c; v_initial_c];
ul_ABA(:,1) = u_ABA_initial;

u_ABA(:,1) = u_ABA_initial;



%NONSPLITTING

for i=1:Nt_full

k1=F(x(i),y(),v(i),a,b,k,L,m);

k2=F(x(1)+(dt_full/2)*k1(1),y(1)+(dt_full/2)*k1(2),v(i)+...
(dt_full/2)*k1(3),a,b,k,L,m);

k3=F(x(1)+(dt_full/2)*k2(1),y(1)+(dt_full/2)*k2(2),v(i)+...
(dt_full/2)*k2(3),a,b,k,L,m);

k4=F(x(1)+dt_full*k3(1),y(1)+dt_full*k3(2),v(i)+dt_full*k3(3),a,b,k,L,m);

u(:,i+=u(:,i)+(dt_full/6)*(kl+2.*k2+2.*k3+k4);

x(i+D)=u(l,i+1); y@E+D=u(2,i+1); v({@+1)=u(3,i+l);

end

%STRANG-MARCHKUK SPLITTING (ABA SPLITTING)
for i=1:Nt_split

ul_ABA = expm(A.*(dt_split(e)/2))*ul_ABA;
u2_ABA = ul_ABA;

k1l
k2

dt_split(e).*B(u2_ABA(1),u2_ABA(3),b);
dt_split(e).*B(u2_ABA(1)+k1(1)./2,u2_ABA(3)+k1(3)./2,b);

U2_ABA = u2_ABA+k2;
u3_ABA

u2_ABA;

u3_ABA = expm(A.*(dt_split(e)/2))*u2_ABA;
U_ABA(:,i+1) = u3_ABA;

ul_ABA

u3_ABA;

end

X_appr_ABA = u_ABA(1,:)’ ;

y_appr_ABA= u_ABA(2,:)’ ;
v_appr_ABA = u_ABA(3,:)’ ;
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errx(e)=norm(abs(x(end) ’-x_appr_ABA(end)),inf);
erry(e)=norm(abs(y(end) ’-y_appr_ABA(end)),inf);
errv(e)=norm(abs(v(end)’-v_appr_ABA(end)),inf);

end

for j=1:step-1

orderx(j)=log(errx(j+1)/errx(j))/log(dt_split(j+1)/dt_split(j));
ordery(j)=log(erry(j+1)/erry(j))/log(dt_split(j+1)/dt_split(j));
orderv(j)=log(errv(j+1)/errv(j))/log(dt_split(j+1)/dt_split(j));

end

%PLOT

plot(orderl,’-*b’, ' LineWidth’,1)

xlabel(’$j$’, Interpreter’,’Latex’);

ylabel(’ $\frac{\1log(E(j+1)/E(jD)}{\log(dt(j+1)/dt(j))}$’,...
’Interpreter’,’LaTex’)

title(’ORDER’)

hold on

figure

s = linspace(l,step,step);
loglog(10.~(-s),abs(errx),’'b*-",10.4(-s),abs(erry),’'r*-", ...
10.~(-s),abs(errv),’g*-’, 'LineWidth’, 1)

xlabel (’Time Steps’)

ylabel (’Errors’)

title(’ERROR’)

legend(C’x(t)’, y(v)’, v(t)’)
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clear all
clc

close all

%INPUT

step = 4;

%TIME

dt_full = 102(-6);

stime = 0;

ftime = 5;

Nt_full = (ftime - stime)/dt_£full;

t_full = stime:dt_full:ftime;

%INITIAL CONDITIONS
x_initial_c = 1.9%1044; %the concentration of uninfected bacteria
y_initial_c = 5.4*1043; %the lytic bacteria

v_initial_c = 7.4*10%4; %free phage

for e=1:step

dt_split(e) = 102 (-e);

%DISCRETIZATION

Nt_split = (ftime - stime)/dt_split(e);

t_split = stime:dt_split(e):ftime;

zeros(1,Nt_full);

>
Il

zeros(1,Nt_full);

<
1l

v = zeros(1,Nt_full);
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x(1) = x_initial_c;
y(1) = y_initial_c;

v(1l) = v_initial_c;

%DETERMINE COEFFICIENT VALUES

a=20.3; %replication coefficient of bacteria
b = 10~(-6); %the transmission coefficient

k = 0.706; %the lysis rate coefficient

L = 15; %the burst size

m = 34.8; %the decay rate of free phage

%ASSIGNING INITIAL CONDITIONS
ul_initial=[x_initial_c; y_initial_c; v_initial_c];

u(:,1) = ul_initial;

%MATRIX
A=TJa00; 0 a-k 0; 0 k*L -m];

%ASSIGNING INITIAL CONDITIONS
u_initial_AB = [x_initial_c; y_initial_c; v_initial_c];

u_initial_BA= [x_initial_c; y_initial_c; v_initial_c];

ul_AB(:,1) = u_initial_AB;
u_AB(:,1) = wu_initial_AB;
ul_BA(:,1)= u_initial_BA;
u_BA(:,1)= u_initial_BA;

%NONSPLITTING
for i=1:Nt_full
k1=F(x(1),y(1),v(i),a,b,k,L,m);

k2=F(x(1)+(dt_full/2)*k1(1),y(1)+(dt_full/2)*k1(2),v(i)+...

(dt_full/2)*k1(3),a,b,k,L,m);
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k3=F(x(i)+(dt_full/2)*k2(1),y(1)+(dt_full/2)*k2(2),v(i)+...
(dt_full/2)*k2(3),a,b,k,L,m);

k4=F (x(1)+dt_full*k3(1),y(i)+dt_full*k3(2),v(i)+dt_full*k3(3),a,b,k,L,m);

u(:,i+D)=u(:,1)+(dt_full/6)*(kl+2.*k2+2.*k3+k4);

x(i+D)=u(l,i+1); y@GA+D=u(2,i+1); v({@+1)=u(3,i+1);

end

%LIE-TROTTER SPLITTING (AB SPLITTING)

for i=1:Nt_split

ul_AB=expm(A.*dt_split(e))*ul_AB;

u2_AB=ul_AB;

k1l=dt_split(e).*B(u2_AB(1),u2_AB(3),b);
k12=dt_split(e).*B(u2_AB(1)+k11(1)./2,u2_AB(3,:)+k11(3)./2,b);
u2_AB=u2_AB+k12;

u_AB(:,i+1)=u2_AB;

ul_AB=u2_AB;

end

%LIE-TROTTER SPLITTING (BA SPLITTING)

for i=1:Nt_split

k21=dt_split(e).*B(ul_BA(1),ul_BA(3),b);
k22=dt_split(e).*B(ul_BA(1)+k21(1)./2,ul_BA(3)+k21(3)./2,b);
ul_BA=ul_BA+k22;

u2_BA=ul_BA;

u2_BA=expm(A.*dt_split(e))*u2_BA;

u_BA(:,i+1)=u2_BA;

ul_BA=u2_BA;

end
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%SYMMETRICALLY WEIGHTED SEQUENTIAL SPLITTING
for i=1:Nt_split+l
u_symm(:,i)=Cu_AB(:,i)+u_BA(:,1))./2;

end

Xx_appr_symm = u_symm(1l,:)’ ;
y_appr_symm = u_symm(2,:)’ ;
v_appr_symm = u_symm(3,:)’ ;

errx(e)=norm(abs(x(end)’-x_appr_symm(end)),inf);
erry(e)=norm(abs(y(end)’-y_appr_symm(end)),inf);
errv(e)=norm(abs(v(end)’-v_appr_symm(end)),inf);

end

for j=1:step-1

orderx(j)=log(errx(j+1)/errx(j))/log(dt_split(j+1)/dt_split(j));
ordery(j)=log(erry(j+1)/erry(j))/log(dt_split(j+1)/dt_split(j));
orderv(j)=log(errv(j+1)/errv(j))/log(dt_split(j+1)/dt_split(j));

end

%PLOT
plot(orderl,’-*b’, 'LineWidth’,1)
xlabel(’$j$’, Interpreter’,’Latex’);
ylabel (’ $\frac{\log(E(j+1)/E(j)) }{\log(dt(j+1)/dt(j))}$’,...

"Interpreter’,’LaTex’)

title(’ORDER’)

hold on
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figure

s = linspace(l,step,step);

loglog(10.4(-s),abs(errx),’b*-",10.A(-s),abs(erry), 'r*-’,...
10.4(-s),abs(errv),’g*-", ’LineWidth’, 1)

xlabel ('Time Steps’)

ylabel (’Errors’)

title("ERROR’)

legend(’x(t)’, 'y (1), v(t)’)

function [z]= B(x,v,b)
7 = [_b-kvfcx; b*V*X; _b*v;‘:x];

end

function [z]= F(x,y,v,a,b,k,L,m)
z = [a.*x-b.*v.*x; a.*y+b.*v.*x-k.*y; k.*L.*y-b.*v.*x-m.*v];

end

CLASSICAL OPERATOR SPLITTING METHODS MATLAB CODES
FOR THE NEWELL-WHITEHEAD-SEGEL EQUATION

clear all
close all

clc

%INPUT
eps=0.1;

epsnew=eps.*2;
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%SPACE DISCRETIZATION
x0 = 0; xf = 2%pi;
dx=pi/64;

Nx = (xf - x0)./dx;

x = x0:dx:xf;

%TIME DISCRETIZATION
stime = 0; ftime = 1;

dt

0.001;

Nt (ftime-stime)/dt;

t = stime:dt:ftime;

lambda = 1./dx*2;
A = fin(Nx);

AA = epsnew.*lambda.*A;

%ASSIGNING INITIAL CONDITIONS
u_initial(:,1)=(0.05).*sin(x);
ul_AB(:,1) = u_initial(2:Nx,1);
ul_ABA(:,1) = u_initial(2:Nx,1);

ul_AB_symm(:,1) = u_initial(2:Nx,1);
ul_BA_symm(:,1)=u_initial(2:Nx,1);

%LIE-TROTTER SPLITTING (AB SPLITTING)

for i=1:Nt
ul_AB(:,i+1)=expm(AA.*dt)*ul_AB(:,1);
u2_AB(:,i)=ul_AB(:,i+1);
u2_AB(:,i+1)=u2_AB(:,i)+dt.*f(u2_AB(:,1));
ul_AB(:,i+1)=u2_AB(:,i+1);

end
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BCs=zeros(1,Nt+1);
u_appr=[BCs;ul_AB;BCs];

%STRANG-MARCHUK SPLITTING

for i=1:Nt
ul_ABA(:,i+1)=expm(AA.*(dt/2))*ul_ABA(:,i);
u2_ABA(:,i)=ul_ABA(:,i+1);
k1l=dt.*f(u2_ABA(:,i));
k12=dt.*f(u2_ABA(:,i)+kl11/2);
u2_ABA(:,i+1)=u2_ABA(:,1)+kl2;
u3_ABA(:,i)=u2_ABA(:,i+1);
u3_ABA(:,i+1)=expm(AA.*(dt/2))*u3_ABA(:,i);
ul_ABA(:,i+1)=u3_ABA(:,i+1);

end

ul_ABA(:,Nt+1);

BCs=zeros(1,Nt+1);
u_appr=[BCs;ul_ABA;BCs];

%LIE-TROTTER SPLITTING(AB SPLITTING)

for i=1:Nt
ul_AB_symm(:,i+1)=expm(AA.*dt)*ul_AB_symm(:,i);
u2_AB_symm(:,i)=ul_AB_symm(:,i+1);
k11_symm=dt.*f(u2_AB_symm(:,i));
k12_symm=dt.*f(u2_AB_symm(:,i)+k11_symm/2);
u2_AB_symm(:,i+1)=u2_AB_symm(:,i)+k12_symm;
ul_AB_symm(:,i+1)=u2_AB_symm(:,i+1);

end
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%LIE-TROTTER SPLITTING(BA SPLITTING)

for i=1:Nt

k21_symm=dt.*f(ul_BA_symm(:,i));
k22_symm=dt.*f(ul_BA_symm(:,i)+k21_symm/2);
ul_BA_symm(:,i+1)=ul_BA_symm(:,i)+k22_symm;
u2_BA_symm(:,i)=ul_BA_symm(:,i+1);
u2_BA_symm(:,i+1)=expm(AA.*dt)*u2_BA_symm(:,i);
ul_BA_symm(:,i+1)=u2_BA_symm(:,i+1);

end

for i=1:Nt+1
u_symm(:,i)=Cul_AB_symm(:,i)+ul_BA_symm(:,i))./2;

end

u_symm(:,Nt+1);

BCs=zeros(1l,Nt+1);

u_appr=[BCs;u_symm;BCs];

%PLOT
mesh(t,x,u_appr)

title(’Approximate Solution’)

clear all
close all

clc

%INPUT
k=0.01;
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%SPACE DISCRETIZATION
x0 = 0; xf = 2%pi;
dx=pi/64;

Nx = (xf - x0)./dx;

x = x0:dx:xf;

%TIME DISCRETIZATION

stime = 0; ftime = 1;

for e=1:4

dt(e) = 10*(-e);
Nt = (ftime-stime)/dt(e);

t = stime:dt(e):ftime;

dtnonsplit=104(-4);
Ntnonsplit=(ftime-stime)/dtnonsplit;

tnonsplit=stime:dtnonsplit:ftime;

lambda = 1./dx*2;

A = fin(Nx);

AA = k.*lambda.*A;

C = lambda*[0;zeros(Nx-3,1);0];

%ASSIGNING INITIAL CONDITIONS
u_initial(:,1)=(0.05).*sin(x);
ul_AB(:,1) = u_initial(2:Nx,1);
ul_ABA(:,1) = u_initial(2:Nx,1);
ul_BA(:,1)=u_initial(2:Nx,1);

ex(:,1)=u_initial (2:Nx,1);
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%NONSPLITTING

for i=1:Ntnonsplit

kl = £f2(AA,C,ex(:,1));

k2 = £f2(AA,C,ex(:,1i)+0.5*dtnonsplit*kl);
k3 = f2(AA,C,ex(:,1)+0.5*dtnonsplit*k2);
k4 = f2(AA,C,ex(:,i)+k3*dtnonsplit);

ex(:,i+1) = ex(:,i) + (1/6)*(k1+2*k2+2*k3+k4)*dtnonsplit;

end

%LIE-TROTTER SPLITTING

for i=1:Nt
ul_AB(:,i+1)=expm(AA.*dt(e))*ul_AB(:,1i);
u2_AB(:,i)=ul_AB(:,i+1);
u2_AB(:,i+1)=u2_AB(:,i)+dt(e).*f(u2_AB(:,1));
ul_AB(:,i+1)=u2_AB(:,i+1);

end

%STRANG-MARCHUK SPLITTING

for i=1:Nt
ul_ABA(:,i+1)=expm(AA.*(dt(e)/2))*ul_ABA(:,i);
u2_ABA(:,i)=ul_ABA(:,i+1);
kl1ll=dt(e).*f(u2_ABA(:,i));

k121=dt(e) .*f(u2_ABA(:,i)+k111/2);
u2_ABA(:,i+1)=u2_ABA(:,1)+k121;
u3_ABA(:,i)=u2_ABA(:,i+1);
u3_ABA(:,i+1)=expm(AA.*(dt(e)/2))*u3_ABA(:,i);
ul_ABA(:,i+1)=u3_ABA(:,i+1);

end
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%LIE-TROTTER SPLITTING(AB SPLITTING)

for i=1:Nt
ul_AB(:,i+1)=expm(AA.*dt(e))*ul_AB(:,i);
u2_AB(:,i)=ul_AB(:,i+1);
kll=dt(e).*f(u2_AB(:,1));

k12=dt(e) .*f(u2_AB(:,i)+kl11/2);
u2_AB(:,i+1)=u2_AB(:,i)+k12;
ul_AB(:,i+1)=u2_AB(:,i+1);

end

%LIE-TROTTER SPLITTING(BA SPLITTING)

for i=1:Nt

k21=dt(e).*£f(ul_BA(:,1));
k22=dt(e).*f(ul_BA(:,1)+k21/2);
ul_BA(:,i+1)=ul_BA(:,1)+k22;
u2_BA(:,i)=ul_BA(:,i+1);
u2_BA(:,i+1)=expm(AA.*dt(e))*u2_BA(:,1);
ul_BA(:,i+1)=u2_BA(:,i+1);

end

for i=1:Nt+1

u_symm(:,i)=Cul_AB(:,i)+ul_BA(:,i))./2;

end

u_exact=[zeros(1l,Ntnonsplit+1);ex;zeros(l,Ntnonsplit+1)];

ul_AB(:,Nt+1);

BCs=zeros(1,Nt+1);

u_appr_lie=[BCs;ul_AB;BCs];

u_appr_strang=[BCs;ul_ABA;BCs];
u_appr_symm=[BCs;u_symm;BCs];
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El(e)=norm(abs(u_appr_lie(:,end)-u_exact(:,end)),inf);
E2(e)=norm(abs (u_appr_strang(:,end)-u_exact(:,end)),inf);
E3(e)=norm(abs (u_appr_symm(:,end)-u_exact(:,end)),inf);

end

for e=1:3

orderl(e)=log(El1(e+1)/E1(e))/log(dt(e+1)/dt(e));
order2(e)=log(E2(e+1)/E2(e))/log(dt(e+1)/dt(e));
order3(e)=log(E3(e+1)/E3(e))/log(dt(e+1)/dt(e));

end

figure

s = linspace(1,4,4);
loglog(10.A(-s),abs(E1),’ro-",10.4(-s),abs(E2),’'r*’,...
10.A(-s),abs(E3), ' r-.’, ’LineWidth’,1)

xlabel (’Time Steps’)

ylabel (’Errors’)

title(’ERROR’)

legend(’Lie-Trotter’,’Strang-Marchuk’,’SWS’)

function [ z ] = f(u)
Z = u-u.’*3;

end

function z = f2(AA,C,w)
p=diag(u);
z = AA*u+C+p*(1-u.”2);

end
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function A=fin(N)
%A=zeros(N-1,N-1);
for i=1:N-1

for j=1:N-1

if i==j
A(i,j)=-2;

end

if (i-j)==
A(i,j)=1;

end

if (i-j)==-1
A(i,]j)=1;

end

end

end

A;

103



