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Department of Mathematics, İzmir Institute of Technology
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ABSTRACT

ON THE STRUCTURE OF MODULES CHARACTERIZED BY

OPPOSITES OF INJECTIVITY

In this thesis we consider some problems and also generalize some results related

to indigent modules and subinjectivity domains. We prove that subinjectivity domain of

any right module is closed under factor modules if and only if the ring is right hereditary.

Indigent modules are the modules whose subinjectivity domain is as small as possible,

namely the modules whose subinjectivity domain is exactly the class of injective modules.

We give a complete characterization of indigent modules over commutative hereditary

Noetherian rings. The commutative rings whose simple modules are injective or indigent

are fully determined. The rings whose cyclic right modules are indigent are shown to be

semisimple Artinian. We also give a characterization of t.i.b.s. modules over Dedekind

domains.
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ÖZET

İNJEKTİFLİĞİN TERSİ İLE KARAKTERİZE EDİLEN

MODÜLLERİN YAPISI ÜZERİNE

Bu tezde yoksul modüller ile ilgili bazı problemler ele alınmakta ve aynı zamanda

mevcut bazı sonuçlar genelleştirilmektedir. Her sağ modülün altinjektiflik bölgesinin fak-

tör modüllere göre kapalı olması için gerek ve yeter koşulun halkanın sağ kalıtsal halka

olduğu kanıtlanmıştır. Yoksul modüller mümkün olan en küçük altinjektiflik bölgesine

sahip olan modüllerdir, yani altinjektiflik bölgesi tam olarak injektif moduller olan mod-

üllerdir. Yoksul modüller değişmeli kalıtsal Noether halkalar üzerinde tam olarak karak-

terize edilmiştir. Basit modülleri yoksul veya injektif olan değişmeli halkalar tam olarak

belirlenmiştir. Devirli sağ modülleri yoksul olan halkaların yarı basit Artin olduğu göster-

ilmiştir. Aynı zamanda, t.i.b.s. modüller Dedekind tamlık bölgeleri üzerinde karakterize

edilmiştir.
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LIST OF ABBREVIATIONS

R an associative ring with unit unless otherwise stated

Z, Z+ the ring of integers, the set of all positive integers

Q the field of rational numbers

R − MOD the category of left R-modules

MOD − R the category of right R-modules

HomR(M,N) all R-module homomorphisms from M to N

M ⊗R N the tensor product of the right R-module M and the left R-
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Ker f the kernel of the map f

im f the image of the map f

S ocM the socle of the R-module M

RadM the radical of the R-module M

E(M) the injective envelope (hull) of a module M

T (M) the torsion submodule of a module M

Z(M) the singular submodule of a module M

� small ( or superfluous) submodule

� essential submodule

In−1(M) the injectivity domain of a module M

Jn−1(M) the subinjectivity domain of a module M

AnnlR(X) = {r ∈ R|rX = 0} = the left annihilator of a subset X of a left

R-module M

AnnrR(X) = {r ∈ R|Xr = 0} = the right annihilator of a subset X of a

right R-module M

� isomorphic

≤ submodule
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CHAPTER 1

INTRODUCTION

The notions of injectivity and relative injectivity have been studied extensively in

the literature. Given two right R-modules M and N, the module M is said to be relative

injective to N or N-injective if for each submodule K of N any homomorphism from K to

M can be extended to a homomorphism from N to M. The injectivity domain of M is the

collection of all right R-modules N such that M is N-injective. The injectivity domain of

any right module is closed under submodules, factor modules and finite direct sums. It is

evident that any right module is S -injective for each semisimple right module S . In other

word, semisimple modules are contained in injectivity domain of any right module.

A right module M is called poor if its injectivity domain consists of exactly the

class of semisimple right R-modules (Alahmadi, Alkan and López-Permouth, 2010).

Every ring has a poor right module (Er, Lòpez-Permouth and Sökmez, 2011). The main

results related to poor modules can be found in (Alahmadi, Alkan and López-Permouth,

2010), (Er, Lòpez-Permouth and Sökmez, 2011), (Alizade and Büyükaşık, 2017) and

(Alizade, Büyükaşık, López-Permouth and Yang, 2018).

Recently, an opposite notions of poor modules and relative injectivity introduced

in (Aydoğdu and López-Permouth, 2011 ). A right module M is said to be N-subinjective

for some right module N, if every homomorphism from N to M can be extended to a

homomorphism from the injective hull E(N) of N to M. The subinjectivity domain of M

is defined as the collection of all right modules N such that M is N-subinjective. Injective

right modules are contained in the subinjectivity domain of any right module. In contrast

to injectivity domains, subinjectivity domains need not be closed under submodules and

factor modules. We prove that the subinjectivity domain of any right module is closed

under factor modules if and only if the ring is right hereditary.

A right module M is called indigent if its subinjectivity domain is exactly the class

of injective right modules. Existence of indigent modules is not known over arbitrary

rings. In (Aydoğdu and López-Permouth, 2011 ), the authors ask whether the direct sum

of non-injective uniform right modules is indigent. We give an example to show that this

module is not indigent in general. Namely we show that, over a right semiartinian right

V-ring the direct sum of non-injective uniform right modules is not indigent. On the other

hand, it is indigent over right PCI-domains.
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The structure of indigent abelian groups determined in (Alizade and Büyükaşık,

2017). We give a complete characterization of indigent modules over commutative hered-

itary Noetherian rings. We prove that, over a commutative hereditary Noetherian, a mod-

ule M is indigent if and only if Z(M) is indigent if and only if Hom(S ,M′) � 0 for every

singular simple module S , where Z(M) is the singular submodule and M′ is the reduced

part of M.

The commutative rings whose simple modules are injective or indigent are fully

determined. Over a commutative ring R, every simple module is injective or indigent if

and only if R is a V-ring, or R = A × B, where B is semisimple, and A is either zero or, A

is a DVR, or, A is local QF-ring. The rings whose cyclic right modules are indigent are

shown to be semisimple Artinian.

A right module M is said to be a test module for injectivity by subinjectivity

(t.i.b.s., for short) if whenever M is N-subinjective for some right module N, then N is

injective (Alizade, Büyükaşık and Er, 2014). We prove that, a commutative domain R

is Dedekind if and only if every nonzero ideal of R is indigent if and only if a nonzero

R-module M is t.i.b.s. exactly when Hom(M,R) � 0.

2



CHAPTER 2

PRELIMINARIES

In this chapter we give the basic definitions and results that are used in the sequel.

2.1. Rings and Their Homomorphisms

Definition 2.1 A ring is defined as a non-empty set R with two compositions

+, · : R × R→ R with the properties :

(i) (R,+) is an abelian group (zero element 0);

(ii) (R, ·) is a semigroup;

(iii) for all a, b, c ∈ R the distributivity laws are valid:

(a + b)c = ac + bc, a(b + c) = ab + ac.

Definition 2.2 A subset S of a ring R is called a subring if it is a ring with the operations

of R, and 1R = 1S in case R has identity.

Proposition 2.1 (The Subring Criterion) Let R be a ring and S be a subset of R. Then S

is a subring of R if and only if for every a, b ∈ S :

(i) a − b ∈ S ;

(ii) ab ∈ S .

Definition 2.3 Let R, S be rings. The mapping f : R→ S is called a ring homomorphism

if it satisfies the following:

(i) f (a + b) = f (a) + f (b) for all a, b ∈ R;

(ii) f (ab) = f (a) f (b) for all a, b ∈ R;

(iii) f (1R) = 1S .

3



2.2. Ideals and Factor Rings

Definition 2.4 Let R be a ring. We say that the subset I of R is a left ideal of R if the

following are satisfied:

(i) I � ∅;

(ii) whenever a, b, ∈ I, then a + b ∈ I;

(iii) whenever a ∈ I and r ∈ R, then ra ∈ I, also.

Similarly a right ideal of a ring can be defined by changing the left multiplication

in the definition with right multiplication. If I is both left and right ideal, we say that I is

a two sided ideal. Clearly, for a commutative ring, left and right ideals coincide. By an

ideal we will always mean a two sided ideal.

The kernel of a homomorphism f : R→ S is the set

Ker f = {r ∈ R : f (r) = 0}.

Suppose that I is a proper ideal of a ring R. The relation defined by

a ≡ b(mod I)⇔ a − b ∈ I

determines an equivalence relation on R. The congruence class of an element a is defined

by a + I = {a + x : x ∈ I} and is called a coset of the element a, and the set R/I of all

cosets of I is a ring with operations defined by

(a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I.

Additive and multiplicative identities are 0 + I and 1 + I.

The ring R/I is called the factor ring of R modulo I. Further, the map σ : R→ R/I

defined by r �→ r + I is an epimorphism with kernel I, is called the natural or canonical

epimorphism.

Definition 2.5 We say that an ideal M of a ring R is a maximal ideal, if

4



(i) M � R, and

(ii) M � I ⊆ R implies that I = R for every ideal I of R.

2.3. Modules, Submodules and Module Homomorphisms

Although modules are in fact considered as a pair (M, λ), where M is an additive

abelian group and λ is a map from R to the set of endomorphisms of M, we find the

following definition more common and simple:

Definition 2.6 Let R be a ring (with unity 1). A right R-module is an additive abelian

group M together with a mapping M × R → M, which we call a scalar multiplication,

denoted by

(m, r) �→ mr

such that the following properties hold: for all m, n ∈ M and r, s ∈ R;

(1) (m + n)r = mr + nr,

(2) m(r + s) = mr + ms,

(3) m(rs) = (mr)s.

If, in addition, for every m ∈ M we have m1 = m, then M is called a unitary right

R-module. If M is a right R-module, we denote it by MR.

2.3.1. Submodules

Let M be a left module over R. A subgroup N of (M,+) is called a submodule of

M if N is closed under multiplication with elements in R, i.e. rn ∈ N for all r ∈ R, n ∈ N.

Then N is also an R-module by the operations induced from M:

R × N → N, (r, n) �→ rn, r ∈ R, n ∈ N.

5



M is called simple if M � 0 and it has no submodules except 0 and M. The submodules

of RR (resp. RRR) are just the left (resp. two-sided) ideals.

For non-empty subsets N1,N2,N ⊂ M, A ⊂ R we define:

N1 + N2 =
{
n1 + n2 | n1 ∈ N1, n2 ∈ N2

} ⊂ M,

AN =
{
Σk

i=1aini | ai ∈ A, ni ∈ N, k ∈ N} ⊂ M.

If N1,N2 are submodules, then N1 + N2 is also a submodule of M. For a left ideal A ⊂ R,

the product AN is always a submodule of M.

For any infinite family {Ni}i∈Λ of submodules of M, a sum is defined by

Σλ∈ΛNλ =
{
Σr

k=1nλk | r ∈ N, λk ∈ Λ, nλk ∈ Nλk

} ⊂ M.

This is a submodule in M. Also the intersection
⋂
λ∈Λ Nλ is also a submodule of M.

∑
λ∈Λ Nλ is the smallest submodule of M which contains all Nλ,

⋂
λ∈Λ Nλis the largest

submodule of M which is contained in all Nλ.

Proposition 2.2 ( (Anderson and Fuller, 1992), Proposition 2.3)

Let M be a left R module and let N be a non-empty subset of M. Then the following are

equivalent:

(a) N is a submodule of M ;

(b) RN = N ;

(c) For all a, b ∈ R and all x, y ∈ N

ax + ay ∈ N.

Proposition 2.3 Modularity condition (Wisbauer, 1991)

If H,K, L are submodules of an R-module M and K ⊂ H, then

H ∩ (K + L) = K + (H ∩ L).

6



Definition 2.7 If N is a submodule of a left R-module M, then the quotient module is

the quotient group M/N (M is an abelian group and N is a subgroup) equipped with the

scalar multiplication

r(m + N) = rm + N.

The natural map π : M → M/N, given by m �→ m + N, is easily seen to be an

R-map.

Scalar multiplication in the definition of quotient module is well-defined: if m +

N = m′ + N, then m − m′ ∈ N. Hence, r(m − m′) ∈ N (because N is a submodule),

rm − rm′ ∈ N, and rm + N = rm′ + N.

Definition 2.8 Let M and N be left modules over the ring R. A map f : M → N is called

an (R-module) homomorphism (also R-linear map) if

f (m1 + m2) = f (m1) + f (m2) f or all m1,m2 ∈ M,

f (mr) = r[ f (m)] f or all m ∈ M, r ∈ R.

Proposition 2.4 ( (Rotman, 2009), Proposition 2.4) Let R be a ring, and let A, B, B′ be

left R-modules.

(i) HomR(A,�) is an additive functor RMod→ Ab.

(ii) If A is a left R-module, then HomR(A, B) is a Z(R)-module, where Z(R) is the center

of R, if we define

r f : a �→ f (ra)

for r ∈ Z(R) and f : A → B. If q : B → B′ is an R-map, then the induced map

q∗ : HomR(A, B) → HomR(A, B′) is a Z(R)-map, and HomR(A,�) takes values in

Z(R)Mod. In particular, if R is commutative, then HomR(A,�) is a functor RMod →
RMod.

Theorem 2.1 The Factor Theorem. ( (Anderson and Fuller, 1992), Theorem 3.6)

Let M,M
′
,N and N

′
be left R-modules and let f : M → N be an R-homomorphism.

7



(1) If g : M → M
′

is an epimorphism with Ker(g) ⊆ Ker( f ), then there exists a unique

homomorphism h : M
′ → N such that

f = hg.

Moreover, Kerh = g(Ker( f )) and Im(h) = Im( f ), so that h is monic if and only if

Ker(g) = Ker( f ) and h is epic if and only if f is epic.

(2) If g : N′ → N is a monomorphism with Im( f ) ⊆ Im(g), then there exists a unique

homomorphism h : M → N′ such that

f = gh.

Moreover, Ker(h) = Ker( f ) and Im( f ) = g←(Im( f )), so that h is monic if and only

if f is monic and h is epic if and only if Im(g) = Im( f ).

Corollary 2.1 Isomorphism Theorems. ( (Anderson and Fuller, 1992), Corollary 3.7)

Let M and N be left R-modules.

(1) If f : M → N is an epimorphism with Ker f = K, then there is a unique isomorphism

η : M/K → N such that η(m + K) = f (m)

for all m ∈ M.

(2) If K ≤ L ≤ M, then

(M/K)/(L/K) � M/L.

(3) If H ≤ M and K ≤ M, then

(H + K)/K � H/(H ∩ K).

8



Definition 2.9 If f : M → N is an R-map between left R-modules, then

kernel f = ker f = {m ∈ M : f (m) = 0},
image f = im f = {n ∈ N : there exist m ∈ M with n = f (m)}.

It is routine to check that ker f is a submodule of M and that im f is a submodule of N.

2.4. Exact Sequences

Definition 2.10 A finite or infinite sequence of R-maps and left R-modules

· · · �� Mn+1

fn+1 �� Mn
fn �� Mn−1

�� · · ·

is called an exact sequence if Im( fn+1) = ker( fn) for all n.

Proposition 2.5 ( (Anderson and Fuller, 1992), Proposition 2.18)

(i) A sequence 0 �� A
f �� B is exact if and only if f is injective.

(ii) A sequence B
g �� C �� 0 is exact if and only if g is surjective.

(iii) A sequence 0 �� A h �� B �� 0 is exact if and only if h is an isomorphism.

2.5. Adjoint Isomorphisms

Theorem 2.2 (Adjoint Isomorphism, First Version) ( (Rotman, 2009), Theorem 2.75)

Given modules AR, RBS , and CS , where R and S are rings, there is a natural isomor-

phism:

τA,B,C : HomS (A ⊗R B,C)→ HomR(A,HomS (B,C)),

9



namely, for f : A ⊗R B→ C, a ∈ A, and b ∈ B.

τA,B,C : f �→ τ( f ), where τ( f )a : b �→ f (a ⊗ b).

Theorem 2.3 (Adjoint Isomorphism, Second Version) ( (Rotman, 2009), Theorem 2.76)

Given modules RA, S BR, and S C, where R and S are rings, there is a natural isomorphism:

τ
′
A,B,C : HomS (B ⊗R A,C)→ HomR(A,HomS (B,C)),

namely, for f : B ⊗R A→ C, a ∈ A, and b ∈ B.

τ
′
A,B,C : f �→ τ′( f ), where τ

′
( f )a : b �→ f (a ⊗ b).

2.6. Definitions

Definition 2.11 A submodule N ⊂ M is called maximal if N � M and it is not properly

contained in any proper submodule of M.

In a finitely generated R-module, every proper submodule is contained in a maximal sub-

module.

Definition 2.12 A submodule K of an R-module M is called essential or large in M if,

for every nonzero submodule L ⊂ M, we have K ∩ L � 0.

Then M is called an essential extension of K and we write K � M. A monomor-

phism f : L→ M is said to be essential if Im f is an essential submodule of M.

Hence a submodule K ⊂ M is essential if and only if the inclusion map K → M

is an essential monomorphism. For example, in Z every non-zero submodule (=ideal) is

essential.

Definition 2.13 A submodule K of an R- module M is called superfluous or small in M,

written K � M, if for every submodule L ⊂ M,the equality K + L = M implies L = M.

An epimorphism f : M → N is called superfluous if Ker f � M.

10



Obviously K � M if and only if the canonical projection M → M/K is a super-

fluous epimorphism.

It is easy to see that e.g. in Z there are no non-zero superfluous submodules.

Definition 2.14 Let M be an R-module. As socle of M (= S oc(M), S ocM) we denote the

sum of all simple (minimal) submodules of M. If there no minimal submodules in M we

put S oc(M) = 0.

S oc(M) is a semisimple submodule of M. Clearly, M is semisimple if and only if

M = S oc(M). An important multiple characterization of the socle is

Proposition 2.6 If M is a left R-module, then

S oc (M) = Σ{K ≤ M | K is minimal in M }
=
⋂
{L ≤ M | L is essential in M }.

Properties of the Socle ( (Wisbauer, 1991), 21.2)

Let M be an R-module.

(1) For any morphism f : M → N, we have f (S oc(M)) ⊂ S oc(N).

(2) For any submodule K ⊂ M, we have S oc(K) = K ∩ S oc(M).

(3) S oc(M) � M if and only S oc(K) � 0 for every non-zero submodule K ⊂ M.

(4) S oc(M) is an EndR(M)-submodule, i.e. S oc(M) is fully invariant in M.

(5) S oc(
⊕
Λ

Mλ) =
⊕
Λ

S oc(Mλ).

Definition 2.15 Dual to the socle we define as radical of an R-module M (= Rad(M),RadM)

the intersection of all maximal submodules of M. If M has no maximal submodule we set

Rad(M) = M.

The characterization of the radical

Proposition 2.7 Let M be a left R-module. Then

Rad (M) =
⋂
{K ≤ M | K is maximal in M }

= Σ{L ≤ M | L is super f luous in M }.
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Properties of the radical ( (Wisbauer, 1991), 21.6)

Let M be an R-module.

(1) For a morphism f : M → N we have

(i) f (RadM) ⊂ RadN,

(ii) Rad(M/RadM) = 0, and

(iii) f (RadM) = Rad( f (M)), if Ker f ⊂ RadM.

(2) RadM is an EndR(M)-submodule of M (fully invariant).

(3) If every proper submodule of M is contained in a maximal submodule, then RadM �
M (e.g. if M is finitely generated).

(4) M is finitely generated if and only if RadM � M and M/RadM is finitely generated.

(5) If M =
⊕
Λ

Mλ, then RadM =
⊕
Λ

RadMλ and M/RadM �⊕
Λ

Mλ/RadMλ.

(6) If M is finitely cogenerated and RadM = 0, then M is semisimple and finitely gener-

ated.

(7) If M = M/RadM is semisimple and RadM � M, then every proper submodule of M

is contained in a maximal submodule.

Definition 2.16 The radical of RR is called the Jacabson radical of R, i.e.

Jac(R) = Rad(RR)

As a fully invariant submodule of the ring, Jac(R) is two-sided ideal in R.

Definition 2.17 An element x ∈ R is left quasi-regular in case 1− x has a left inverse in R.

Similarly x ∈ R is right quasi-regular (quasi-regular) in case 1− x has a right (two-sided)

inverse in R.

Proposition 2.8 Characterization of the Jacobson radical

In a ring R with unit, Jac(R) can be described as the

(a) intersection of the maximal left ideals in R (= definition);

(b) sum of all superfluous left ideals in R;

(c) sum of all left quasi-regular left ideals;
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(d) largest (left) quasi-regular ideal;

(e) {r ∈ R | 1 − ar is invertible for any a ∈ R};

(f) intersection of the annihilators of the simple left R-modules;

(a�) intersection of the maximal right ideals.

Replacing ‘left‘ by ‘right‘ further characterizations (b�) - (f�) are possible.

2.7. Singular Submodule

Given any right module M, the singular submodule of M is the set

Z(M) = {m ∈ M : mI = 0 f or some essential right ideal I o f R}.

Equivalently, Z(M) is the set of those m ∈ M for which the right ideal annR(m) is essential

in R. An R-module M is called singular if Z(M) = M, and it is called a nonsingular

module if Z(M) = 0. A ring R is called a right nonsingular ring if R is nonsingular as a

right R-module. Zr(R) will be used for Z(RR). Similarly, we say that R is left nonsingular

ring if Zl(R) = 0.

Proposition 2.9 (Goodearl, 1976) The following hold for any ring R.

(1) A module N is nonsingular if and only if Hom(M,N) = 0 for all singular modules

M.

(2) If R is a right semihereditary ring, then Zr(R) = 0.

(3) If Zr(R) = 0, then Z(M/Z(M)) = 0 for all right R-modules M.

(4) If N ≤ M, then Z(N) = N ∩ Z(M).

(5) Suppose that Zr(R) = 0. A right module M is singular if and only if Hom(M,N) = 0

for all nonsingular right modules N.

Let M be an R-module and N ≤ M. If N is an essential submodule of M, then

M/N is singular. Converse is not true in general. For example, let M = Z/2Z and N = 0.

M/N is singular but N is not an essential submodule of M. The following Proposition

shows that when the converse true.
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Proposition 2.10 ( (Goodearl, 1976), Proposition 1.21) Let M be a nonsingular module

and N ≤ M. Then M/N is singular if and only if N is an essential submodule of M.

The class of all singular right modules is closed under submodules, factor modules

and direct sums. On the other hand, the class of all nonsingular right modules is closed

under submodules, direct products, essential extensions, and module extensions.

Proposition 2.11 ( (Goodearl, 1976), Proposition 1.24) If M is any simple right R-

module, then M is either singular or projective, but not both.

A ring R is called a right SI-ring if every singular right R-module is injective. A

ring R is called a right PCI-ring if each proper cyclic right R-module is injective. Right

PCI-rings are right Noetherian and right hereditary. The right SI-ring and right PCI-ring

conditions are equivalent for domains.

2.8. Small Rings and Small Modules

Definition 2.18 A right R-module M is called a small module if it is a small submodule

in its injective hull E(M), i.e M � E(M).

The following characterization of small module is well-known

Proposition 2.12 For a right R-module M, the followings are equivalent:

(i) M is small.

(ii) M � E(M).

(iii) M � E for some injective right R-module E.

(iv) M � L for some right R-module L containing M.

Proposition 2.13 If M is small then M/N is small for every N ≤ M.

Proof Suppose M is small i.e. M � E(M). Let N ≤ M, then M/N ≤ E(M)/N. Let

L/N ≤ E(M)/N such that M/N+L/N = E(M)/N, then M+L = E(M). Since M � E(M),

L = E(M). Hence L/N = E(M)/N and M/L is small. �
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Definition 2.19 A ring R is called left small if RR is a small module; e.g. Z is a small

ring as it is small in ZQ.

Proposition 2.14 ( (Ramamurthi, 1982), 3.3), ( (Pareigis, 1966), 4.8) Let R be a ring and

let E(R) be the injective hull of RR. Then the followings conditions are equivalent:

(i) R is a left small ring.

(ii) Rad(M) = M for every injective left R-module M.

(iii) Rad(E(R)) = E(R).
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CHAPTER 3

PROJECTIVE, INJECTIVE AND FLAT MODULES

In this chapter we give the definitions and main properties and characterization of

projective, injective and flat modules.

3.1. Projective Modules

Definition 3.1 A left R-module P is projective if, whenever p is surjective and h is any

map, there exists a lifting g; that is, there exists a map g making the following diagram

commute:

P

h
��g���

�
�
�

C p
�� A �� 0

Proposition 3.1 ( (Rotman, 2009), Proposition 3.2) A left R-module P is projective if and

only if HomR(P,�) is an exact functor.

Proposition 3.2 ( (Rotman, 2009), Proposition 3.3) A left R-module P is projective if and

only if every short exact squence 0 �� A i �� B
p �� P �� 0 splits.

Definition 3.2 A ring R is left hereditary if every left ideal is projective; a ring R is right

hereditary if every right ideal is projective. A Dedekind ring is a hereditary domain.

Theorem 3.1 (Cartan-Eilenberg) The following statements are equivalent for a ring R.

(i) R is left hereditary.

(ii) Every submodule of a projective module is projective.

(iii) Every quotient of an injective module is injective.
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3.2. Injective Modules

Definition 3.3 A left R-module E is injective if, whenever i is an injection, a dashed arrow

exists making the following diagram commute.

0 �� A i ��

f
��

B

g���
�
�
�

E

Proposition 3.3 ( (Rotman, 2009), Proposition 3.28)

(i) If (Ek)k∈K is a family of injective left R-modules, then
∏

k∈K Ek is also an injective left

R-module.

(ii) Every direct summand of an injective left R-module E is injective.

Proof

(i) Consider the diagram in which E =
∏

Ek.

0 �� A i ��

f
��

B

g���
�
�
�

E

Let pk : E → Ek be the kth projection, so that pk f : A → Ek. Since Ek is an

injective module, there is gk : B → Ek with gki = pk f . Now define g : B → E by

g : b �→ (gk(b)). The map g does extend f , for if b = ia, then

g(ia) = (gk(ia)) = (pk f a) = f a,

because x = (pkx) for every x in the product.

(ii) Assume that E = E1 ⊕ E2, let i : E1 → E be the inclusion, and let p : E → E1 be the
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projection ( so that pi = 1E1
).

0 �� B
j ��

f
��

C
g0

���
�
�

E1

i ��
E1 ⊕ E2

p
��

Then, the proof can be completed easily using the diagram as a guide.

�

Corollary 3.1 Any finite direct sum of injective left R-modules is injective.

Proof The direct sum of finitely many modules coincides with the direct product. �

Theorem 3.2 (Baer Criterion) ( (Rotman, 2009), Theorem 3.30) A left R-module E is

injective if and only if every map f : I → E, where I is an ideal in R, can be extended to

R.

0 �� A i ��

f
��

B

g���
�
�
�

E

Proof Since any left ideal I is a submodule of R, the existence of an extension g of f is

just special case of the definition of injectivity of E.

Suppose we have the diagram

0 �� A i ��

f
��

B

E

where A is a submodule of a left R-module B. For notational convenience, let us assume

i is the inclusion [ this assumption amounts to permitting us to write a instead of i(a)

whenever a ∈ A ]. We are going to use Zorn‘s lemma. Let X be the set of all ordered pairs

(A′, g′), where A ⊆ A′ ⊆ B and g′ : A′ → E extends f ; that is g′|A = f . Note that X � ∅,
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because (A, f ) ∈ X. Partially order X by defining

(A
′
, g
′
) � (A

′′
, g
′′
)

to mean A
′ ⊆ A

′′
and g

′′
extends g

′
. The reader may supply the argument that chains

in X have upper bounds in X; hence, Zorn‘s lemma applies, and there exists a maximal

element (A0, g0) in X. If A0 = B, we are done, and so we may assume that there is some

b ∈ B with b � (A0).

Define

I = {r ∈ R : rb ∈ A0}.

It easy to see that I is a left ideal in R. Define h : I → E by

h(r) = g0(rb).

By hypothesis, there is a map h∗ : R −→ E extending h. Finally, define A1 = A0+ < b >

and g1 : A1 −→ E by

g1(a0 + rb) = g0(a0) + rh∗(1),

where a0 ∈ A0 and r ∈ R.

Let us show that g1 is well defined. If a0 + rb = a′0 + r′b, then (r − r′)b = a′0 − a0 ∈ A0; it

follows that r − r′ ∈ I. Therefore, g0((r − r′)b) and h(r − r′) are defined, and we have

g0(a′0 − a0) = g0((r − r′)b) = h(r − r′) = h∗(r − r′) = (r − r′)h∗(1).

Thus g0(a′0) − g0(a0) = rh∗(1) − r′h∗(1) and g0(a′0) + r′h∗(1) = g0(a0) + rh∗(1), as desired.

Clearly g1a0 = g0a0 for all a0 ∈ A0, so that the map g1 extends g0. We conclude that

(A0, g0) � (A1, g1), contradicting the maximality of (A0, g0). Therefore A0 = B, the map

g0 is lifting of f , and E is injective. �
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Proposition 3.4 ( (Rotman, 2009), Proposition 3.31) If R is a left Noetherian ring and

(Ek)k∈K is a family of injective left R-modules, then
⊕

k∈K Ei is an injective left R-module.

Definition 3.4 Let M be an R-module over a domain R. If r ∈ R and m ∈ M, then we say

that m is divisible by r if there is some m′ ∈ M with m = rm′. We say that M is a divisible

module if each case m ∈ M is divisible by every nonzero r ∈ R.

If R is a domain, r ∈ R and M is an R-module, then the function ϕr : M → M, defined

by ϕr : m �→ rm, is an R-map. It is clear that M is divisible module if and only if ϕr is

surjective for every r � 0.

Lemma 3.1 ( (Rotman, 2009), Lemma 3.33) If R is a domain, then every injective R-

module E is a divisible module.

Corollary 3.2 Let R be a principal ideal domain.

(i) An R-module E is injective if and only if it is divisible.

(ii) Every quotient of an injective R-module E is itself injective.

Corollary 3.3 ( (Rotman, 2009), Corollary 3.36) Every abelian group M can be imbed-

ded as a subgroup of some injective abelian group.

Theorem 3.3 ( (Rotman, 2009), Theorem 3.38) For every ring R, every left R-module M

can be imbedded as a submodule of an injective left R-module.

Theorem 3.4 ( (Rotman, 2009), Theorem 3.39) If R is a ring for which every direct sum

of injective left R-modules is an injective module, then R is left Noetherian.

Definition 3.5 Let M and E be left R-modules. Then E is an essential extension of M if

there is an injective R-map α : M → E with S ∩α(M) � {0} for every nonzero submodule

S ⊆ E. If also α(M) � E is called a proper essential extension of M.

Lemma 3.2 ( (Rotman, 2009), 3.44) Given a left R-module M, the following conditions

are equivalent for a module E ⊇ M.

(i) E is a maximal essential extension of M; that is, no proper extension of E is an

essential extension of M.

(ii) E is an injective module and E is an essential extension of M.

(iii) E is an injective module and there is no proper injective intermediate submodule E′;

that is, there is no injective E′ with M ⊆ E′ � E.
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Definition 3.6 If M is a left R-module, then a left R-module E containing M is an injective

envelope of M, denoted by E(M) if any of equivalent conditions in Lemma 3.2 hold.

3.2.1. Injective Cogenerator

Definition 3.7 Let U be a non-empty set (class) of objects in a category C. An object A

in C is said to be generated byU orU-generated if, for every pair of distinct morphisms

f , g : A→ B in C, there is a morphism h : U → A with U ∈ U and h f � hg. In this case

U is called a set (class) of generators for A.

Definition 3.8 Let M be an R-module. We say that an R-module N is subgenerated by M,

or that M is a subgenerator for N, if N is isomorphic to a submodule of an M-generated

module.

A subcategory C of R−MOD is subgenerated by M, or M is a subgenerator for C, if every

object in C is subgenerated by M.

We denote by σ[M] the full subcategory of R − MOD whose objects are all R-modules

subgenerated by M.

Definition 3.9 An injective module Q in σ[M] is a cogenerator in σ[M] if and only if

it cogenerates every simple module in σ[M], or equivalently, Q contains every simple

module in σ[M] as a submodule ( up to isomorphism ).

3.3. Flat Modules

Definition 3.10 If R is a ring, then a right R-module A is flat if A⊗R� is an exact functor;

that is, whenever

0 �� B
′ i �� B

p �� B
′′ �� 0

is an exact sequence of left R-modules, then

0 �� A ⊗R B
′ 1A⊗i �� A ⊗R B

1A⊗p �� A ⊗R B
′′ �� 0
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is an exact sequence of abelian groups. Flatness of left R-modules is defined similarly.

Proposition 3.5 ( (Rotman, 2009), Proposition 3.46) Let R be an arbitrary ring.

(i) The right R-module R is a flat right R-module.

(ii) A direct sum
⊕

j Mj of right R-modules is flat if and only if each Mj is flat.

(iii) Every projective right R-module P is flat.

Definition 3.11 For a right R-module M, the left module M+ = Hom(M,Q/Z) is called

the character module of M.

Proposition 3.6 (Lambek). A right R-module M is flat if and only if its character module

M+ is an injective left R-module.

Proof The functors HomR(�,HomZ(M,Q/Z)) = HomR(�,M+) and HomZ(�,Q/Z) ◦
(M⊗R�) are naturally isomorphic, by ( (Rotman, 2009), Corollary 2.77). If M is flat, then

each of the functors in the composite is exact, forQ/Z is Z-injective; hence, HomR(�,M+)

is exact and M+ is injective.

Conversely, assume that M+ is an injective left R-module and A′ → A is an injection

between left R-modules A′ and A. Since HomR(A,M+) = HomR(A,HomZ(M,Q/Z)), the

( second version of the ) adjoint isomorphism, ( (Rotman, 2009), Theorem 2.76), gives a

commutative diagram in which the vertical maps are isomorphisms.

HomR(A,M+)

��

�� HomR(A′,M+)

��

�� 0

HomZ(M ⊗R A,Q/Z) ��

=

��

HomZ(M ⊗ A′,Q/Z) ��

=

��

0

(M ⊗R A)+ �� (M ⊗R A′)+ �� 0

Exactness of the top row gives exactness of the bottom row. The sequence

0 �� M ⊗R A′ �� M ⊗R A is exact, by ( (Rotman, 2009), Lemma 3.53), and this

gives M is flat. �

Definition 3.12 Let M be a right R-module and N a submodule of M. N is said to be a

pure submodule of M if the induced map N ⊗ L→ M ⊗ L is monic for each left R-module

L.
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Proposition 3.7 (Rotman, 2009) The following are equivalent for a right module M and

its submodule N.

(1) N is a pure submodule of M.

(2) The induced map N ⊗F → M⊗F is monic for each finitely presented left R-module F.

(3) The induced map Hom(F,M) → Hom(F,M/N) is epic for each finitely presented left

R-module F.

Definition 3.13 A right module M is said to be absolutely pure if it is a pure submodule

of E(M).
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CHAPTER 4

POOR MODULES

In this chapter we introduce the notions of relative injectivity and injectivity do-

mains of modules. Poor modules are defined as the modules whose injectivity domains

is as small as possible. We review some results from (Alahmadi, Alkan and López-

Permouth, 2010), (Alizade and Büyükaşık, 2017) and (Alizade, Büyükaşık, López-

Permouth and Yang, 2018) about poor modules.

4.1. Relative Injectivity and Injectivity Domain

Definition 4.1 A right R-module M is said to be N-injective (or injective relative to N)

if for every submodule K of N and every morphism f : K → M there exists a morphism

f̄ : N → M such that f̄ |K= f .

K � � ��

f
��

N

f̄���
�
�
�

M

Proposition 4.1 ( (Mohamed and Müller, 1990), Proposition 1.3) Let N be an A-injective

module. If B ≤ A, then N is B-injective and A/B-injective.

Proof It is obvious that N is B-injective. Let X/B be a submodule of A/B, and ϕ :

X/B → N be a homomorphism. Let π denote the natural homomorphism of A onto A/B

and π′ = π|X. Since N is A-injective, there exists a homomorphism θ : A→ N that extends

ϕπ′. Now

θB = ϕπ′B = ϕ(0) = 0.
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Hence Kerπ ≤ Kerθ, and consequently there exists ψ : A/B → N such that ψπ = θ. For

every x ∈ X,

ψ(x + B) = ψπ(x) = θ(x) = ϕπ′(x) = ϕ(x + B).

Thus ψ extends ϕ, and therefore N is A/B injective.

X � � ��

π′
��

A

θ

���
�
�
�
�
�
�
�
π
��

X/B � � ��

ϕ

��

A/B

ψ
���
�
�
�
�

N

�

Definition 4.2 For a module M, the injectivity domain of M is defined to be the collection

of modules N such that M is N-injective, that is, In−1(M) = {N ∈ Mod − R | M is N-

injective }. Clearly, for any right R-module M, semisimple modules in Mod − R are

contained in In−1(M), and M is injective if and only if In−1(M) = Mod − R.

4.2. Poor modules

Definition 4.3 M is called poor if, for every right R-module N, M is N-injective only if

N is semisimple.

Theorem 4.1 ( (Er, Lòpez-Permouth and Sökmez, 2011), Proposition 1) Every ring has a

poor module.

Proof Let R be any ring. Let {Aγ | γ ∈ Γ} be a complete set of representatives of

isomorphism classes of non-semisimple cyclic (right) R-modules. Since, for each γ ∈ Γ,
Aγ is non-semisimple, we can pick a proper essential submodule Kγ of Aγ. Now put

T = ⊕γ∈ΓKγ. Let B be a non-semisimple cyclic module such that T is B-injective. Then

there is some γ ∈ Γ such that B � Aγ. Thus B has a proper essential submodule, say N,

isomorphic to Kγ. But then N is B-injective, a contradiction. Therefore, T is poor. �
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Definition 4.4 A module M crumbles if socles split in all factors of M.

Theorem 4.2 ( (Er, Lòpez-Permouth and Sökmez, 2011), Theorem 1) Let R be any ring.

The following conditions are equivalent:

(i) R has a semisimple poor right module.

(ii) Every cyclic right R-module that crumbles is semisimple.

(iii) Every right R-module that crumbles is semisimple.

(iv) Every Noetherian but not Artinian cyclic R-module has a factor whose Jacobson

radical has nonzero socle.

(v) Every Noetherian but not Artinian cyclic R-module has a factor with nonzero Jacob-

son radical.

The structure of poor abelian groups is as follows

Theorem 4.3 ( (Alizade and Büyükaşık, 2017), Theorem 3.1) A group is poor if and only

its torsion part has a direct summand isomorphic to ⊕p∈PZp.

Corollary 4.1 ( (Alizade and Büyükaşık, 2017), Corollary 3.2) For a group G, the fol-

lowing are equivalent.

(1) G is poor.

(2) The reduced part of G is poor.

(3) T (G) is poor.

(4) For each prime p, G has a direct summand isomorphic to Zp.

Definition 4.5 A commutative domain is h − semilocal (or a finite character), if every

nonzero ideal is contained in only finitely many maximal ideals.

Commutative semilocal rings, h − local domains, and in particular Dedekind do-

mains are h-semilocal. It is known that direct sum of nonisomorphic simple Z-modules is

poor. We have the following result for h-semilocal domains.

Let S be the direct sum of non-isomorphic non-injective simple R-modules over

a ring R. It is known that S is poor over the ring of integers. We have the following

generalization.
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Proposition 4.2 Let R be an h-semilocal domain (a domain of finite character). Then S

is poor.

Proof Suppose S is A-injective for some cyclic R-module A. We need to show that A is

semisimple. We have two cases: A � R or A � R/I for some nonzero ideal I of R. In the

first case, S is injective by Baer’s Criteria. But R is a domain, so R is a field. This means

that A is a simple R-module. Now suppose A � R/I for some non zero ideal I of R. We

claim that Rad(R/I) = 0. Suppose there is a nonzero a + I ∈ Rad(R/I). Then (aR + I)/I

is small in R/I. Since (aR + I)/I is cyclic, it has a simple quotient, say (aR + I)/K. Note

that I ≤ K. Then (aR + I)/K small in R/K because small modules are closed under

homomorphic images. On the other hand, (aR + I)/K is isomorphic to a direct summand

of S . So (aR+ I)/K is R/K-injective. Then (aR+ I)/K is a direct summand of R/K. This

contradicts with the smallness of (aR + I)/K in R/K. As a consequence Rad(R/I) = 0.

This means that I = ∩λ∈ΛIλ, where Λ is an index set and Iλ are maximal ideals of R for

each λ ∈ Λ. Since R is h-semilocal, I is contained in only finitely many maximal ideals.

Therefore we may assume that Λ is finite and that the intersection ∩λ∈ΛIλ is irredundant in

the sense that for each λ′ ∈ Λ, ∩λ�λ′ Iλ � ∩λ∈ΛIλ. Then R/I = R/(∩λ∈ΛIλ) � ⊕λ∈Λ(R/Iλ) is

semisimple. Hence in both cases, we have A is semisimple. This proves that S is poor. �

Definition 4.6 ( (Alizade, Büyükaşık, López-Permouth and Yang, 2018)) A module is a

pauper (or a pauper module) if it is poor and no proper direct summand of it is poor. For

a ring R and a class of right modules C,

• C satisfies (U∗) for every poor module P in C there exists a pauper M ∈ C such that

M is a pure submodule of P.

Recently, Theorem 4.3 generalized as follows.

Theorem 4.4 ( (Alizade, Büyükaşık, López-Permouth and Yang, 2018), Theorem 4.9) A

commutative hereditary Noetherian ring R satisfies (U∗). In fact, for every right R-module

M, the following statements are equivalent.

(1) M is poor.

(2) Z(M) is poor.

(3) For every noninjective simple module V, M has a direct summand isomorphic to V.

(4) M has a pure submodule isomorphic to S , where S is the sum of nonisomorphic and

noninjective simple R-modules.

27



CHAPTER 5

SUBINJECTIVITY AND SUBINJECTIVITY DOMAINS

As an opposite notion of relative injectivity and injectivity domains, the subinjec-

tivity and subinjectivity domains introduced in (Aydoğdu and López-Permouth, 2011 ).

In this section we outline some properties of subinjectivity and subinjectivity domains. In

contrast to injectivity domains subinjectivity domains are not closed under factor modules

in general. In this chapter we prove that the ring R is right hereditary if and only if the

subinjectivity of any right R-module is closed under factor modules.

Definition 5.1 Given modules M and N, we say that M is N-subinjective if for every

module K with N ≤ K and every homomorphism ϕ : N → M there exists a homomor-

phism φ : K → M such that φ |N= ϕ. The subinjectivity domain of a module M, Jn−1(M)

is defined to be the collection of all modules N such that M is N-subinjective.

Lemma 5.1 ( (Aydoğdu and López-Permouth, 2011 ), Lemma 2.2) The following state-

ments are equivalent for any modules M and N:

(1) M is N-subinjective.

(2) For each ϕ : N → M and for every module K with N � K, there exists a homomor-

phism φ : K → M such that φ |N= ϕ.

(3) For each ϕ : N → M, there exists a homomorphism φ : E(N)→ M such that φ |N= ϕ.

(4) For each ϕ : N → M, there exists an injective extension E of N and a homomorphism

φ : E → M such that φ |N= ϕ.

Proof The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. To show (4) ⇒ (1), let

N ⊆ N
′

and ϕ : N → M. By assumption, there exists an injective extension E of N

and a homomorphism φ : E → M such that φ |N= ϕ. Since E is injective, there exists

a ψ : N
′ → E such that ψ|N = i, where i : N → E is the inclusion. Then we get that

(φψ)|N = ϕ. This gives that N ∈ Jn−1(M). �

Proposition 5.1 ( (Aydoğdu and López-Permouth, 2011 ), Proposition 2.3)
⋂

M∈Mod−R Jn−1(M) =

{A ∈ Mod − R | A is injective}.
Proof Let N ∈ ∩M∈Mod−RJn−1(M). Then N ∈ Jn−1(N) which means that N is injective.

�
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The following two results summarize some properties of subinjectivity and subin-

jectivity domains.

Proposition 5.2 ( (Aydoğdu and López-Permouth, 2011 ), Proposition 2.4) The following

properties hold for a module N:

(1)
∏

i∈I Mi is N-subinjective if and only if each Mi is N-subinjective.

(2) If each Mi is N-subinjective for i = 1, . . . , n, then so is
⊕n

i=1
Mi.

(3) Every direct summand of an N-subinjective module is an N-subinjective module.

Conversely, if N is a finitely generated module and Mi, i ∈ I is a family of N-

subinjective modules indexed in an arbitrary index set I, then
⊕

i∈I Mi is an N-

subinjective module.

Proof (1) Suppose that Mi is N-subinjective for each i ∈ I. Consider a homomorphism

ϕ : N → ∏i∈I Mi. Let πi :
∏

i∈I Mi → Mi be the canonical epimorphism for each i ∈ I.

Then there exists a φi : E(N) → Mi such that φi|N = πiϕ for each i ∈ I. Define an

R-homomorphism ψ : E(N)→∏i∈I Mi via x �→ (φi(x)). Then ψ|N = ϕ.

For the converse, let i ∈ I and ϕ : N → M. There exists a φ : E(N) → ∏i∈I Mi

such that φ|N = eiϕ, where ei is the inclusion Mi → ∏i∈I Mi. Let πi :
∏

i∈I Mi → Mi be

the canonical epimorphism. Then (πiφ)|N = ϕ. Hence N ∈ ⋂i∈I Jn−1(Mi).

The proofs of (2) and (3) are similar to the proof of (1). �

Proposition 5.3 ( (Aydoğdu and López-Permouth, 2011 ), Proposition 2.5) The following

properties hold for any ring R and R-modules N and M:

(1) If N =
⊕n

i=1
Ni, then M is N-subinjective if and only if M is Ni-subinjective for each

i = 1, . . . , n.

(2) If R is right Noetherian and I is any index set, then M is
⊕

i∈I Ni-subinjective if and

only if M is Ni-subinjective for each i ∈ I.

(3) If R is right hereditary right Noetherian ring and M is N-subinjective, then M is

N/K-subinjective for any submodule K of N.

(4) If M is a non-singular N-subinjective module, then M is K-subinjective for any es-

sential extension K of N.

(5) If N ≤ M and M is N-subinjective, E(N) ≤ M. In particular, M is M-subinjective if

and only if M is injective.
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Proof

(1) Let ϕ : Ni → M, and consider the canonical epimorphism π : N → Ni. Since

N ∈ Jn−1(M), there exists a φ : E(Ni) ⊕ E(
⊕

i� j N j) → M such that φ|N = ϕπ.
Then ψ = φ|E(Ni) : E(Ni) → M, and hence ψ|Ni = ϕ. Now let ϕ : N → M. Then

there exists ψi : E(Ni) → M such that ψi|Ni = ϕπi for each i = 1, . . . , n. Define

ψ :
⊕n

i=1
E(Ni) → M, x1 + . . . + xn �→ ψ1(x1) + . . . + ψn(xn). Hence, we get that

ψ|N = ϕ.

(2) Since R is right Noetherian, E(N) =
⊕

i∈I E(Ni). The rest of the proof is similar to

that of (1).

(3) Since R is right Noetherian, we have a decomposition M = M1 ⊕ M2, where M1 is an

injective module and M2 is a reduced module, i.e., a module which does not have

non-zero injective submodules. Then Jn−1(M) = Jn−1(M1) ∩ Jn−1(M2) by 5.1(1).

But since M1 is injective, its subinjectivity domain consists of all R-modules. There-

fore, Jn−1(M) = Jn−1(M2). On the other hand, R being right hereditary implies that

Jn−1(M2) = {N ∈ Mod − R | HomR(N,M2) = 0}. It is easy to see that this set is

closed under taking homomorphic images.

(4) Let f : K → M be any homomorphism. Since M is N-subinjective, there exists

g : E(N) → M such that g|N = f |N . Then N ⊆ Ker(g − f ). Because N is an

essential submodule of K, Ker(g− f ) is essential in K, too. Therefore, K/Ker(g− f )

is singular. On the other hand, K/Ker(g − f ) is isomorphic to a submodule of the

non-singular module M. Hence, K = Ker(g − f ) which means that g|K = f |K .

(5) Since N is essential in E(N), E(N) can be embedded into M because of N-subinjectivity

assumption.

�

From Proposition 5.3(3), we see that the subinjectivity domain is closed under

factor modules. We generalize this result as follows.

Theorem 5.1 A ring R is right hereditary if and only if the subinjectivity domain of each

right module is closed under homomorphic images.
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Proof Suppose M is N-subinjective for right modules M and N. Let K ≤ N and

f : N/K → M be a homomorphism. Consider the following diagram:

N

π
��

ιN �� E(N)

π′
��

ϕ

		�
�
�
�
�
�
�
�

N
K

f
��

�� E(N)

K

ϕ′

�
�
�
�

M

where π, π′ are canonical epimorhisms. Since M is N-subinjective, there is a ϕ : E(N)→
M such that ϕ|N = fπ. Clearly fπ(K) = 0, and so K ⊆ Ker(ϕ). Then, by factor theorem,

there exists a homomorphism ϕ′ : E(N)/K → M, given by ϕ′(a + K) = ϕ(a) for each

a ∈ E(N). Clearly, ϕ′|N/K = f . Then M is N/K-subinjective by 5.1(4). This proves the

necessity.

Conversely suppose the subinjectivity domain of every right module is closed un-

der homomorphic images. We shall prove that quotients of injective right modules are

injective. Let E be an injective module and K ≤ E. Clearly E/K is E-subinjective.

Therefore E/K is E/K-subinjective by the assumption. Hence E/K is injective. Thus R

is right hereditary. �

Proposition 5.4 ( (Aydoğdu and López-Permouth, 2011 ), Proposition 2.8)

(1) Let R = R1 ⊕ R2 be a ring decomposition. Then M is N-subinjective in Mod-R if and

only if MRi is NRi-subinjective in Mod-Ri for each i = 1, 2.

(2) Let I be an ideal of a ring R, and let M and N be R/I-modules. If M is N-subinjective

as an R/I-module, then it is N-subinjective as an R-module. The converse holds if

N is a pure submodule of E(N).

Proof

(1) By assumption, we have K = KR1 ⊕ KR2 for any R-module K. Now assume that M

is N-subinjective. Let fi : NRi → MRi be an Ri-homomorphism. We can define an

R-homomorphism f ′ : N → M, n1r1 + n2r2 �→ fi(niri), where n1, n2 ∈ N, ri ∈ Ri for

i = 1, 2. Then there exists g : E(NR1) ⊕ E(NR2) → M such that g|N = f ′. Hence,

the result follows. For the converse, note that E(N) ↪→ E(NR1) ⊕ E(NR2) since

E(NR1) ⊕ E(NR2) is an injective R-module.
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(2) Let ER/I(N) be the injective hull of NR/I . Since ER/I(N) is also an injective R-module,

the result follows from 5.1(4). For the reverse implications, let N be pure in E(N).

Then N being both pure and essential in E(N) implies that EN has an R/I-module

structure.

�

Proposition 5.5 ( (Aydoğdu and López-Permouth, 2011 ), Proposition 2.9)Consider the

following statements for a module N:

(1) N is projective.

(2) Every homomorphic image of N-subinjective module is N-subinjective.

(3) Every homomorphic image of an injective module is N-subinjective.

Then (1)⇒ (2)⇒ (3), and (3)⇒ (1) if the injective hull E(N) of N is projective.

Proof (1)⇒ (2) Let M be an N-subinjective module. Let K ≤ M and let f : N → M/K

be a homomorphism. Since N is projective, there exists a homomorphism g : N →
M such that πg = f , where π : M → M/K is the canonical epimorphism. But N-

subinjectivity of M implies that g can be extended to a homomorphism h : E(N) → M.

It follows that the homomorphism πh : E(N) → M/K extends f . (2) ⇒ (3) is obvious.

For (3)⇒ (1) assume that E(N) is projective. Let M and K be modules such that K ≤ M,

and let f : N → M/K. Then we have i f : N → E(M)/K, where i : M/K → E(M)/K

is the inclusion. By hypothesis, E(M)/K is N-subinjective, so there exists g : E(N) →
E(M)/K which extends i f . But E(N) is projective. Therefore, there is a homomorphism

h : E(N) → E(M) such that π′h = g, where π′ : E(M) → E(M)/K is the canonical

epimorphism. Hence, if we consider hi : N → M, then πhi = f , where π : M → M/N is

the canonical epimorphism. �
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CHAPTER 6

INDIGENT MODULES

In this chapter we study some properties of indigent modules and their charac-

terizations over some particular rings. The existence of indigent modules is not known

over arbitrary rings. In (Aydoğdu and López-Permouth, 2011 ), the authors ask whether

the direct sum of non-injective uniform right modules is indigent. We give an example

to show that this module is not indigent in general. Namely, we show that over a right

semiartinian right V-ring, the direct sum of non-injective uniform right modules is not

indigent. On the other hand, it is indigent over right PCI-domains. We give a complete

characterization of indigent modules over commutative hereditary Noetherian rings. We

characterize the commutative rings whose simple modules are injective or indigent. We

also prove that every cyclic right module is indigent if and only if the ring is semisimple

Artinian.

6.1. Indigent Modules

A right module M is called indigent if its subinjectivity domain is exactly the class

of injective right modules.

Proposition 6.1 ( (Alizade and Durğun, 2017)) Every right Noetherian ring has an indi-

gent right R-module.

Proof Let Λ be a complete set of representatives of finitely presented left R-modules.

Consider the left module M = ⊕F∈ΛF. Then M+ �
∏

F∈Λ F+. We claim that M+ is an

indigent right module. To prove this, suppose M+ is N-subinjective for some right R-

module N. Note that (
⊕

F∈Λ F)+ �
∏

F∈Λ F+. Then the map 0→ N ⊕ M → E(N) ⊕ M is

monic. This implies that the map 0 → N ⊗ F → E(N) ⊗ F is a monomorphism for each

finitely presented left R-module F. Therefore N is absolutely pure by Proposition 3.7.

Since the ring is right Noetherian, N injective by ( (Megibben, C.), Theorem 3) Hence

M+ is indigent. �

Let R be a non-Noetherian ring. Suppose every module is indigent or injective.

Then every pure-injective module is injective. Thus R must be von Neumann regular.
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Remark 6.1 Let M = ⊕U∈BU, where B is a complete set of non-injective uniform right

modules, and let N = ⊕N∈ΓN, where Γ is any complete set of representatives of cyclic

modules. The author of (Aydoğdu and López-Permouth, 2011 ) suspect whether the

moduleM is indigent, at least over right Noetherian rings.

Proposition 6.2 Let R be a (non-semisimple) right semiartinian right V-ring. ThenM is

not indigent.

Proof Let U be a nonzero uniform right R-module. Then U has a simple submodule

X by the semiartinian condition. Then X is injective, because R is a right V-ring. Then

U = X ⊕ Y , for some Y ⊆ U. Since U is uniform and X is nonzero, we must have Y = 0.

Thus U = X is a simple. Hence every nonzero uniform module is simple over such ring.

Then M is semisimple. Since R is non-semisimple, there is a non-injective cyclic right

module, say N by Osofsky Theorem. Let f : N → M be any homomorphism. Then f (N)

is contained in a finitely generated submodule K of M. Then K is injective, because it

is semisimple and finitely generated. Thus there is a g : E(N) → K such that g|N = f .

HenceM is N-subinjective. This shows thatM is not indigent. �

Proposition 6.3 Let R be a right hereditary right Noetherian ring. Suppose every non-

injective right module has a non-injective uniform factor module. ThenM is indigent.

Proof Since R is Noetherian without loss of generality, we can assume that M has no

nonzero injective submodule. Suppose M is N-subinjective for some right module N.

We claim that N is injective. Suppose the contrary, and let N = D ⊕ N′, where D is the

largest injective submodule of N and 0 � N′ has no nonzero injective submodule. Then

M is N′-subinjective. Since N′ � 0, N′ has a nonzero uniform quotient module which is

non-injective by the assumption. Thus there is a nonzero homomorphism f : N′ → M.

Then f extends to a homomorphism g : E(N′) → M. Now 0 � g(E(N′)) is an injective

submodule of M, by the hereditary assumption. This contradicts with the fact that M has

no nonzero injective submodule. Thus N must be injective, and soM is indigent. �

Proposition 6.4 Let R be a right PCI-domain. ThenM is indigent.

Proof Since R is a right hereditary right Noetherian, by Proposition 6.3, it is enough to

show that every non-injective right module has a non-injective uniform factor module. Let

M be a non-injective right R-module. Since singular modules are injective over right PCI-

domains, without loos of generality we can assume that M is nonsingular. Let E be the

injective hull of M. Then E = ⊕i∈IEi, where Ei are indecomposable by ( (Matlis, 1958),

Theorem 2.5). Note that Ei are uniform, because they are injective and indecomposable.
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Since R is a domain, we have Ei � E(R) for each i ∈ I. For each i, let e : M → E and

πi : E → Ei be the inclusion and projection maps respectively. Since M is non-injective,

there is a j ∈ I such that the map g = π je is not epic, and so M/Kerg is isomorphic to

a proper submodule E j. Thus M/Kerg is a non-injective uniform factor module of M.

Now,M is indigent by Proposition 6.3. �

6.2. Indigent modules over Commutative Hereditary Noetherian

rings

In this section we shall give a characterization of indigent modules over commu-

tative hereditary Noetherian rings. First we recall a result from (Alizade, Büyükaşık and

Er, 2014) which gives a characterization of indigent abelian groups.

Theorem 6.1 ( (Alizade, Büyükaşık and Er, 2014), Theorem 27) The following are equiv-

alent for an abelian group G.

(i) G is indigent.

(ii) Tp(G) � pTp(G) for each prime p.

(iii) The reduced part of T (G) contains a submodule isomorphic to
⊕

p
Z

pZ , where p

ranges over all primes.

Proof (ii)⇒ (iii) is clear.

(i) ⇒ (ii) Suppose pTp(G) = Tp(G) for some prime p. On the other hand, for a

prime q � p, we always have qTp(G) = Tp(G). Hence Tp(G) is divisible, and so injective.

Now it straightforward to check that G is Z

pZ -subinjective, obtaining a contradiction.

(iii) ⇒ (i) Suppose G is N-subinjective for some abelian group N. We will show

that N is injective, equivalently, that qN = N for every prime q. Assume, contrarily, that

pN � N for some prime p. Since N
pN is nonzero semisimple, N has a factor isomorphic to

Z

pZ .

Now G = D⊕B, where D is divisible and B is reduced. Then T (G) = T (D)⊕T (B),

where T (D) is clearly divisible and T (B) is reduced. So, by assumption, T (B) contains

a copy of Z

pZ . Then there is a nonzero map f : N → T (B), which, by assumption of

N-subinjectivity, extends to some g : E(N) → G. Thus, Im(g) is divisible. Let π :

D ⊕ B→ B be the obvious projection. If Im(g) were not contained in D, π(Im(g)) would

be a nonzero divisible module in B, a contradiction. But then, Im( f ) ⊆ Im(g) ∩ B = 0,

again a contradiction. Now the conclusion follows. �
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Corollary 6.1 ( (Alizade, Büyükaşık and Er, 2014), Corollary 28) An abelian group G is

indigent if and only if its torsion part is indigent.

From Theorem 6.1, we see that the direct sum simple abelian groups is indigent.

For right small ring we have the following result.

Proposition 6.5 Let R be a right small ring and S be the direct sum of non-isomorphic

simple right R-modules. The following are equivalent.

(1) S is indigent.

(2) R is right hereditary, right Noetherian and any module with Rad(N) = N is injec-

tive.

Proof (1)⇒ (2) Suppose S is indigent. First note that Hom(N, S ) = 0 for every module

N such that Rad(N) = N. This implies S is N-subinjective, and so N is injective because

S is indigent. Since R is a small ring, Rad(E) = E for every injective right module

E. Now for an injective module E and a submodule K of M, Rad(E/K) = E/K. Then

Hom(E/K, S ) = 0, and so E/K is injective by (1). This shows that R is right hereditary.

Now let Ei, i ∈ I be a family of injective right modules. Then Rad(⊕Ei) = ⊕Rad(Ei) =

⊕Ei, and so Hom(⊕Ei, S ) = 0. Thus ⊕Ei is injective by (1) again. This proves that R is

right Noetherian.

(2) ⇒ (1) Suppose S is N-subinjective for some right module N. Assume that

N is not injective and lets find a contradiction. By the Noetherian assumption we can

assume that N has no nonzero injective submodule. Let f ∈ Hom(N, S ). Since S is

N-subinjective, the map f extends to a a map g : E(N) → S . Since R is a small ring,

Rad(E) = E. Thus g(E) ≤ Rad(S ) = 0 i.e. g = 0. Then f = g|N = 0, and so we have

Hom(N, S ) = 0. Hence Rad(N) = N, and so N is injective by (2). This proves that S is

indigent. �

The following proposition shows that, injective modules, flat module and projec-

tive semisimple modules coincide over commutative Noetherian rings.

Proposition 6.6 Let R be a commutative ring and S a semisimple module. Consider the

following statements.

(1) S is injective;

(2) S is flat;

(3) S is projective.
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Then (1)⇒ (2)⇐ (3). If R is also Noetherian, then (1)⇔ (2)⇔ (3).

Proof (1) ⇒ (2) By ( (Ware, 1971), Lemma 2.6) and by the fact that direct sum of flat

modules is flat.

(3)⇒ (2) Projective modules are flat, so this is clear.

(2) ⇒ (1) Over a Noetherian ring, arbitrary direct sum of injective modules is

injective. So the proof is clear by ( (Ware, 1971), Lemma 2.6).

(2) ⇒ (3) If R is Noetherian, then each simple module is finitely presented.

Finitely presented flat modules are projective by ( (Lam, 1999), Theorem 4.30). Since

direct sum of projective modules is projective, semisimple flat modules are projective

over Noetherian rings. �

Theorem 6.2 ( (McConnell and Robson, 2001), Theorem 4.6) A hereditary Noetherian

ring R is a finite direct sum of Artinian hereditary rings and hereditary Noetherian prime

rings.

Proposition 6.7 Let R be a Dedekind domain and M be an R-module. The following

statements are equivalent.

(1) M is injective.

(2) M is divisible.

(3) M has no maximal submodules i.e. Rad(M) = M.

Proof (1) ⇒ (2) Assume that M is injective. Let m ∈ M and r0 ∈ R be nonzero; we

must find x ∈ M with m = r0x. Define f : Rr0 → M by f (rr0) = rm (note f is well-

defined because R is a domain: rr0 = r′r0 implies that r = r′). Since M is injective, there

exists h : R→ M extending f . In particular,

m = f (r0) = h(r0) = r0h(1),

so that x = h(1) is the element in M required by the definition of divisible.

(2) ⇒ (1) Assume that M is divisible R-module. By the Baer Criterion, it is suffices to

complete the diagram

0 �� I i ��

f
��

R

��	
	
	
	

M
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where I is an ideal and i is the inclusion. We may assume that I is nonzero, so that I

is invertible: there are elements a1, . . . , an ∈ I and q1, . . . , qn ∈ FracR with qiI ⊆ R and

I = Σiqiai. Since M is divisible, there are elements mi ∈ M with f (ai) = aimi. Note for

every b ∈ I, that

f (b) = f (Σiqiaib) = Σi(qib) f (ai) = Σi(qib)aimi = bΣi(qiai)mi.

Hence, if we define m = Σi(qiai)mi, then m ∈ M and f (b) = bm for all b ∈ I. Now we

define g : R→ M by g(r) = rm; since g extends f , the module M is injective. �

The following result shows that, radical modules are injective over commutative

hereditary Noetherian rings.

Proposition 6.8 Let R be a commutative hereditary Noetherian ring. Then every module

with Rad(N) = N is injective.

Proof By Theorem 6.2 and the commutativity assumption, we have

R = e1R ⊕ · · · etR ⊕ f1R ⊕ · · · fkR,

where eiR‘s are fields and f jR‘s are Dedekind domains for each 1 ≤ i ≤ t and 1 ≤ j ≤ k.

Let S = ⊕t
i=1eiR and T = ⊕k

i=1 fiR. Let E be a module with Rad(E) = E. Then E can

not have a simple direct summand. Thus S · E = 0, and so E is a T -module. So E has a

decomposition as

E = f1E ⊕ f2E ⊕ · · · fkE,

where f jE is an f jR module and Rad( fiR) = fiR for each j = 1, · · · , k. Since f jR is

a Dedekind domain and Rad( f jE) = f jE, the modules f jE are injective f jR for each

j = 1, · · · , k. Thus E is injective both as a T -module and as R-module. �

We do not know whether the following result is stated somewhere in the literature,

we include it for completeness.

Proposition 6.9 Let R be a commutative hereditary Noetherian ring. Then R = S ⊕ T,

where S is semisimple, S oc(T ) = 0 and T � E(T ).
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Proof By Theorem 6.2, R = S⊕T , where S = S oc(R) and T is a direct sum of Dedekind

domains. Now let us prove that T � E(T ). If not, then T + K = E(T ) for some maximal

submodule K of E(T ). Then

T/(T ∩ K) � E(T )/K

is simple, and also injective by the Hereditary condition. Thus T/(T ∩ K) is projective

by Proposition 6.6, and so T = T ∩ K ⊕ U for some simple submodule U of R. Then

U ≤ S oc(T ) = 0, a contradiction. Therefore T � E(T ). �

Proposition 6.10 Let R be a commutative hereditary Noetherian ring and C the direct

sum of nonisomorphic singular simple R-modules. Then C is indigent.

Proof Let R = S ⊕ T be as in Proposition 6.9. Since S is projective it is nonsingular.

Thus we have S .C = 0, and so C is a T -module. Clearly every simple T -module is

singular. Therefore C is exactly the direct sum nonisomorphic singular simple T -modules.

Now T is a small ring. Thus C is an indigent T -module by Proposition 6.8 and Proposition

6.10. Now let us see C is indigent R-module. Suppose C is N-subinjective for some R-

module N. There is a decomposion N = N.S ⊕ N.T . Since S is projective it is injective

by 6.6. Then N.S is injective. Since C is N.T -subinjective and C is indigent T -module,

N.T is injective T -module. Now it is straightforward to check that both N.S and N.T are

injective as R-modules. Hence their direct sum N = N.S ⊕ N.T is injective R-module.

Therefore C is indigent. �

Proposition 6.11 Let R be a commutative Noetherian ring and M an indigent R-module.

Let C be the direct sum of nonisomorphic singular simple R-modules. Then M contains a

submodule isomorphic to C.

Proof Suppose Hom(U,M) = 0 for some singular simple module U. Since U is singu-

lar, it is noninjective. Let E = E(U). Then S oc(E/U) � 0. So there is a nonsemisimple

V ≤ E such that V/U is simple. As U essential in V , we must have V/U � U. But then

Hom(V,M) = 0, and this implies that M is V-subinjective. This contradicts the fact that

M is indigent. Thus Hom(U,M) � 0 for each singular simple module U. �

Proposition 6.12 Let R be a commutative hereditary noetherian ring and M an R-module.

The following are equivalent.

(1) M is indigent.
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(2) The reduced part M′ of M is indigent.

(3) Hom(S ,M′) � 0 for every singular simple R-module S , where M′ is the reduced

part of M.

Proof (1)⇔ (2) Since R is Noetherian, the module M has a largest injective submodule,

say N. Then M = M′ ⊕N, for some M′ ≤ M. Now it is easy to see that, for a right module

K, M is K-subinjective if and only if M′ is K-subinjective. Thus M is indigent if and only

if M′ is indigent.

(2)⇒ (3) By Proposition 6.11.

(3) ⇒ (2) Suppose M′ is K-subinjective for some R-module K. Suppose K is not

injective. Then without loss of generality we can assume that K has no nonzero injective

submodule.

Suppose Hom(S ,M′) = 0 for some singular simple module S . Then, as in the

proof of Proposition 6.11.

�

6.3. When simple modules are indigent or injective

In this section we give a complete characterization of commutative rings over

which each simple is indigent or injective. As a consequence we also characterize the

commutative rings whose simple modules are indigent. The rings whose cyclic modules

are indigent are shown to be semisimple artinian.

Lemma 6.1 If R is a commutative ring, then every simple R-module is pure-injective.

A ring R is called right H-ring if every right module is a direct sum of an injective

module and a small module. Every right QF-ring is a right Harada ring by ( (Oshiro,

1984), Theorem 4.3).

Theorem 6.3 Let R be a commutative ring. The following are equivalent.

(1) Every simple module is indigent or injective.

(2) R is a V-ring, or R = A × B, where B is semisimple, and

(i) A is local, hereditary, Noetherian, small ring, or;

(ii) A is local QF.
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Proof (1) ⇒ (2) Suppose every simple is indigent or injective. If all simple modules

are injective, then R is a V-ring. Now suppose, there is a non-injective simple module U.

Then U is indigent by the hypothesis. If U′ is any simple module which is not isomorphic

to U, then Hom(U′,U) = 0. That is, U is U′-subinjective, and so U′ must be injective

because U is indigent. Thus the ring has a unique non-injective simple module, up to

isomorphism.

Let {Ei}i∈I be an arbitrary family of injective modules. Then ⊕i∈IEi is a pure sub-

module of
∏

i∈I Ei. By Lemma 6.1 the simple module U is pure-injective. Thus U is

⊕i∈IEi-subinjective. As U is indigent, ⊕i∈IEi must be injective. So that the ring R is

Noetherian. Now let B be the sum of the injective simple ideals of R. Then B is injective,

because the ring is Noetherian. So R = A⊕B for some ideal A of R. Then Hom(B, A) = 0,

and Hom(A, B) = 0 by Proposition 6.6. Now, since Hom(B,U) = 0, we have

0 � Hom(R,U) = Hom(A ⊕ B,U) � Hom(A,U) ⊕ Hom(B,U) = Hom(A,U).

This implies that A has a simple module isomorphic U. If X is a simple A-module,

then we must have X � U. Otherwise X would be injective by the hypothesis. Then X

must be projective by Proposition 6.6, which implies that A = X′ ⊕ Y for some X′ � X.

But then X′ ⊆ A ∩ B = 0, contradiction. Therefore A has a unique simple module, and

this simple is isomorphic to U. By the commutativity condition, we get that A is a local

ring. We have the following two cases:

Case I: A is a small ring, i.e. A � E(A). Then Rad(E/K) = E/K for each injective

A-module E and K ⊆ E. Thus Hom(E/K,U) = 0, and so U is E/K-subinjective. Hence

E/K is injective. This proves that R is Hereditary.

Case II: A is not small i.e. Rad(E(A)) � E(A). Let us prove that A is QF by

showing that A is injective. We know that A is local and non small. Since A is finitely

generated, we have A � Rad(E(A)). Thus there is a maximal submodule K of E(A) such

that A+K = E(A). Then A/A∩K � E(A)/K is simple, and so A∩K is the unique maximal

submodule of A. Moreover E(A)A∩K = A/A∩K⊕K/A∩K. Let f : A→ U be a nonzero

homomorphism. Since U is simple Ker( f ) = A ∩ K is maximal. Let π′ : A → A/A ∩ K

and π : E(A) → A/A ∩ K be the natural projections, and f : A/A ∩ K → U be the map

satisfying f = fπ′. It is straightforward to check that the map g = fπ : E(A) → U

extends f i.e. g|A = f . Thus U is A-subinjective, and so A is injective. Being Noetherian

and injective, A is QF.
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(2) ⇒ (1) If R is a V-ring, then each simple is injective. So that (1) s hold.

Now assume (i). Note that B is projective R-module, and so injective as an R-module by

Proposition 6.6. Let U be a noninjective simple R-module. Then B.U = 0, and so U is a

simple A-module. Since A is local U is the unique simple A-module up to isomorphism.

Hence U is an indigent A-module by Proposition 6.10. Let us prove that U is indigent R-

module. Suppose U is M-subinjective for some R-module M. Then M = M1 ⊕M2, where

M1 is an A-module and M2 is a B-module. Since B is semisimple and injective R-module.

M2 is an injective R-module. Since U is M1-subinjective and U is indigent A-module, M1

is an injective A-module. Since Hom(B,M1) = 0, M1 is also an injective B-module. Thus

M1 is injective A⊕ B = R-module. Therefore M = M1 ⊕M2 is an injective R-module, and

so U is indigent R-module.

Now assume (ii). As in the proof of (i), the ring R has a unique non-injective

simple module, say U which is also the unique simple A-module, up to isomorphism.

Then since A is local and QF, U is an indigent A-module by ( (Alizade, Büyükaşık and

Er, 2014), Proposition 32) and ( (Oshiro, 1984), Theorem 4.4). Then by similar arguments

as in the proof of (i), U is an indigent R-module. This completes the proof. �

The following is a direct consequence of Theorem 6.3.

Corollary 6.2 Let R be a commutative ring. The following are equivalent.

(1) Every simple module is indigent.

(2) R is semisimple, or R is a local,

(i) V-ring, or;

(ii) hereditary Noetherian small ring, or;

(iii) QF.

A module is said to be semiartinian in case every homomorphic image of it has

an essential socle. A ring R is called right semiartinian if it is semiartinian as a right R-

module. In ( (Aydoğdu and López-Permouth, 2011 ),Proposition 4.13), it is shown that if

every non-zero cyclic right R-module is indigent, then R is right semiartinian. We have

the following result.

Proposition 6.13 Let R be a ring. Every non-zero cyclic right R-module is indigent if and

only if R is semisimple Artinian.
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Proof Sufficiency is clear. To prove the necessity suppose every cyclic right R-module

is indigent. Let A and B be two simple right R-modules. Assume that A and B are not

isomorphic. Then, A is clearly B-subinjective. As A must be indigent by its choice, then

B is injective. But, by our assumption, B is also indigent. Then R is semisimple Artinian

since B is both injective and indigent module. W.l.o.g, R has a unique simple non-injective

module up to isomorphism. If A is projective, then R is semisimple Artinian. Hence, A

has to be a singular module. Note that R is also indigent by our assumption. Hence

Hom(A,R) � 0, otherwise A is injective, a contradiction. Then R has a minimal right

ideal, which is isomorphic to A , i.e. R is a right Kasch ring. We have the following two

cases:

Case I: Hom(E(R), A) = 0. Then R is right small ring by Proposition 2.14. By

Proposition 6.5, R is right hereditary, contradicting the singularity of A.

Case II: Hom(E(R), A) � 0. In this case, R is a right self-injective ring. Consider

the following diagram

0 �� R

u


�
�
�
�
π

��

ι �� E(R)

v
��
 
 
 
 
 
 


π′
��

E(R)
f �� A �� 0

By projectivity of R, there exists a homomorphism u : R→ E(R) such that f u = π. Now,

by injectivity of E(R), there exists a homomorphism v : E(R)) → E(R) such that vι = u.

Then f vι = f u = π,and so A is R-subinjective. But A is indigent, and so R is a right

self-injective. But R is indigent, and so R is semisimple Artinian.

�
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CHAPTER 7

TEST MODULES FOR INJECTIVITY BY

SUBINJECTIVITY

There is another notion which is defined by subinjectivity. Namely, a module N

is said to be a test for injectivity by subinjectivity (t.i.b.s.) if the only N-subinjective

modules are injective modules.

In this chapter we give a characterization of t.i.b.s. modules over Dedekind do-

mains.

First we state a result which states that t.i.b.s. modules exist over any ring.

Proposition 7.1 ( (Alizade, Büyükaşık and Er, 2014), Proposition 1) Every ring has

t.i.b.s. right module.

Proof Let R be a ring and N =
⊕

I, where I ranges among (proper) essential right

ideals of R, and assume that X is an N-subinjective module. Let A be a right ideal of R,

and f : A → X be any homomorphism. We may assume, without loss of generality, that

A is essential in RR. Then, the copy of A in N that is a direct summand of N is essential

in an injective submodule, say Q, of E(N). So, there is an embedding φ : RR → Q

fixing A. Since X is N-subinjective, f (φ−1)|A (here, A is the copy in N) extends to some

h : E(N)→ X. Thus, hφ is the desired extension of f to R→ X. �

Proposition 7.2 ( (Alizade, Büyükaşık and Er, 2014), Proposition 2) The following con-

ditions are equivalent for a ring R:

(i) Every right R-module is injective or a t.i.b.s.;

(ii) Every right R-module is injective or indigent;

(iii) If A, B ∈ Mod − R and A is B-subinjective, then A or B is injective.

In this case, the class of indigent modules and that of t.i.b.s. modules coincide.

Theorem 7.1 ( (Alizade, Büyükaşık and Er, 2014), Theorem 19) The following are equiv-

alent for a ring R:

(i) RR is t.i.b.s.;
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(ii) R is right hereditary and right Noetherian.

Corollary 7.1 ( (Alizade, Büyükaşık and Er, 2014), Corollary 20) A commutative domain

R is Dedekind if and only if it is a t.i.b.s.

7.1. The structure of t.i.b.s. modules over commutative rings

The structure of t.i.b.s. modules is known over the ring of integers. In this section

we shall characterize t.i.b.s. modules over Dedekind domains.

Theorem 7.2 ( (Alizade, Büyükaşık and Er, 2014), Theorem 26) An abelian group G is

t.i.b.s. if and only if G has a direct summand isomorphic to Z.

Proof Suppose G is a t.i.b.s. Then Hom(G,Z) � 0. Let f : G → Z be a nonzero

homomorphism. Then G
Ker( f )

� nZ is projective. So that G = Ker( f ) ⊕ G′ with G′ � Z.

Conversely, if G = A ⊕ A′ with A′ � Z, then G is a t.i.b.s. since Z is a t.i.b.s. by 7.1. �

The following lemma can be easily verified by using the properties of subinjectiv-

ity (see, (Aydoğdu and López-Permouth, 2011 )). The proof is omitted here.

Lemma 7.1 The following statements are equivalent for a right R-module M.

(1) M is t.i.b.s.

(2) Mn is t.i.b.s. for some n ∈ Z+.

(3) Mn is t.i.b.s. for all n ∈ Z+.

(4) M ⊕ N is t.i.b.s. for any right module N.

The following theorem is a generalization of ( (Alizade, Büyükaşık and Er, 2014),

Theorem 26).

Theorem 7.3 The following are equivalent for a commutative domain R.

(1) R is Dedekind.

(2) R is t.i.b.s.

(3) Every nonzero ideal of R is t.i.b.s.

(4) A nonzero R-module M is t.i.b.s. exactly when Hom(M,R) � 0.
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Proof (1)⇔ (2) By ( (Alizade, Büyükaşık and Er, 2014), Corollary 20).

(2) ⇒ (3). Let I be nonzero ideal of R. Since R is Dedekind, I is finitely generated and

projective. Let P be a maximal ideal of R. We claim that, P · I � I. Otherwise, we would

have PP · IP = IP. Now RP is a DVR with the unique maximal ideal PP, and IP is finitely

generated. So IP = 0, by Nakayama’s Lemma. IP = 0 implies, t · I = 0 for some nonzero

t ∈ R − P. But R is a domain, and I � 0, so t = 0. Contradiction. Therefore we have

PI � I for each maximal ideal P of R. Thus I/PI is a nonzero semisimple R-module, and

so there is a maximal submodule K of I such that I/K � R/P for each maximal ideal P of

R. This means that I generates each simple R-module. So that I is a projective generator

by ( (Anderson and Fuller, 1992), Proposition 17.9). Then there is a positive integer n,

such that In � R ⊕ K. Hence I is t.i.b.s. by Lemma 7.1.

(3)⇒ (2) is clear.

(3) ⇒ (4) Let M be an R-module. Suppose first that Hom(M,R) � 0. Then there

is a nonzero ideal I of R such that M/K � I for some K ≤ M. Since (3) also implies that

R is Dedekind, the ideal I is projective. Thus M = K ⊕ I. By (3), the ideal I is t.i.b.s.

Then M is t.i.b.s. by Lemma 7.1. Conversely, suppose M is t.i.b.s. and Hom(M,R) = 0.

Then R is M-subinjective, and so R is injective by the t.i.b.s. assumption on M. Thus R is

a field, and so Hom(M,R) = 0 gives M = 0, a contradiction. Hence Hom(M,R) � 0.

(4)⇒ (2) Hom(R,R) � 0. So R is t.i.b.s. by (4). This proves (2).

�
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CHAPTER 8

CONCLUSION

Recently, an opposite notions of poor modules and relative injectivity introduced

in (Aydoğdu and López-Permouth, 2011 ). A right module M is said to be N-subinjective

for some right module N, if every homomorphism from N to M can be extended to a

homomorphism from the injective hull E(N) of N to M. The subinjectivity domain of M

is defined as the collection of all right modules N such that M is N-subinjective. A right

module M is called indigent if its subinjectivity domain is exactly the class of injective

right modules.

In this thesis we consider some problems and also generalize some results related

to indigent modules and subinjectivity domains. We prove that subinjectivity domain of

any right module is closed under factor modules if and only if the ring is right hereditary.

Indigent modules are the modules whose subinjectivity domain is as small as possible,

namely the modules whose subinjectivity domain is exactly the class of injective modules.

We give a complete characterization of indigent modules over commutative hereditary

Noetherian rings. The commutative rings whose simple modules are injective or indigent

are fully determined. The rings whose cyclic right modules are indigent are shown to be

semisimple Artinian. We also give a characterization of t.i.b.s. modules over Dedekind

domains.
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