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groupmates; Mustafa POLAT, Elif ŞAHİN,and tea-crew, Gökhan ÖZTARHAN. Eventu-

ally, I want to express my gratitude to the most important people in my life, to my parents
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ABSTRACT

EFFECTS OF RANDOM ATOMIC DISORDER ON ELECTRONIC
AND MAGNETIC PROPERTIES OF GRAPHENE NANORIBBONS

In this thesis, We investigate the effects of randomly distributed atomic defects

on the magnetic and electronic properties of graphene nanoribbons with zigzag edges us-

ing an extended mean-field Hubbard model. We show that electron-electron interaction

effects not only make defect states robust as compared with the tight-binding results,but

also make edge states fragile even at low defect concentration for clean edge sites. For

a balanced defect distribution among the sublattices of the honeycomb lattice in the bulk

region of the ribbon, the ground state antiferromagnetism of the edge states remains un-

affected. By analyzing the excitation spectrum, we show that while the antiferromagnetic

ground state is susceptible to single spin flip excitations from edge states to magnetic de-

fect states at low defect concentrations, it’s overall stability is enhanced with respect to

the ferromagnetic phase. Then, we investigated Anderson localization induced metal to

insulator transition by a localization length in nanometer scale up to 5% vacancy concen-

tration by using time dependent results. We found that, Anderson localization is stronger

at the vicinity of Fermi level energy states since those states are becoming full of impurity

states and edge states, mixed.
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ÖZET

GRAFEN NANOŞERİTLERDE RASTGELE ATOMİK
DÜZENSİZLİG̃İN ELEKTRONİK VE MANYETİK ÖZELLİKLERE

ETKİLERİ

Bu tezde, atomik düzensizliklerin ortalama-alan Hubbard modeli kullanarak zigzag

grafen nanoşeritlerin (ZGNŞ) elektronik ve manyetik özellikleri üzerinde ki etkilerini

araştırdık. Elektron-elektron etkileşiminin etkisi sadece düzensizlik durumlarını sıkıbag̃

sonuç-larına kıyasla güçlü kılmakla kalmıyor, ayrıca düşük düzensizliklerde zigzag ke-

narlar temizken bile kenar durumlarını daha kırılgan yapıyor. Nanoşeritin yıg̃ın böl-

gesindeki balpeteg̃i yapısının altyapıları arasında dengeli dag̃ılmış olan düzensizlikler

için kenar durumların minimum enerjili antiferromanyetizm durumu etkilenmemekte-

dir. Uyarım spektrumunu analiz ederek, minimum enerjili antiferromanyetik durumu

düşük düzensizliklerde kenar durumlarından manyetik düzensizlik durumlarına tek spin

dönüşümüne duyarlıyken, ferromanyetik faza göre tümden kararlılıg̃ın artıg̃ını göster-

dik. Daha sonra, zamana bag̃lı sonuçlarımızı kullanarak Anderson lokalizasyonundan

kaynaklı metal-yalıtkan geçişini nanometre düzeylerinde lokalizasyon uzunlug̃u ve %5’e

kadar boşluk konsantrasyonu kullanarak gözlemledik. Anderson lokalizasyonunun Fermi

seviyesi etrafındaki durumlarda, düzensizlik durumlarıyla kenar durumlarının tamamen

iç içe geçip birbirleriyle karıştıg̃ından dolayı, dig̃er band bölgelerine göre daha fazla

oldug̃unu bulduk.
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CHAPTER 1

INTRODUCTION

Carbon is the extraordinary and quiet essential element for many forms which are

known from the ancient times (graphite and diamond). Graphene is the first material that

is two-dimensional which gives to this material a unique set of properties. Since 1859,

many scientists were looking for graphene using complex experiments. However, the first

crystal of graphene were discovered in 2004 by using so simple and effective method

called "Scotch tape method" at Manchester scientists who are Professor Sir Andre Geim

and Professor Sir Konstantin(Novoselov et al. (2004)) noticed small parts of graphene on

the tape used to clean a graphite stone. After this simple and ground-breaking experi-

ment, they were awarded with the Nobel Prize in Physics in 2010. Thanks to "Scotch

tape method", this area of science grew really extremely quickly. And today, hundreds

of laboratories and theoretical approaches all over the world deal with different aspects

of graphene research. Fig.(1.1) shows how the amount of papers about graphene has

exploded in the last 20 years.

1.1. What is Graphene?

Theoretically, the first of the extraordinary features, the electronic band structure

of graphene, was first studied by Wallace in 1947 (Wallace (1947)), and he explained

its semi-metal behaviour due to the lack of an energy gap between the valence and con-

duction bands by using tight-binding approach (TB) . Moreover, at the point of these

two bands meet, there is no density of states, which is believed to be the charge neu-

trality point where the Fermi level in the graphene sits at the Dirac point (Novoselov

et al. (2004),Geim and Novoselov (2007)). Another important feature for graphene is

its Dirac spectrum for massless fermions (Novoselov et al. (2005)). Eventually, due to

the existence of zero-energy states, and having charge carriers like Dirac fermions pro-

vide and anomalous quantum hall effect with half-integer quantization (Novoselov et al.

(2005),Yuanbo Zhang and Kim (2005)), instead of integer one (Klitzing et al. (1980)).

This is the most direct evidence for Dirac fermions in graphene.

In general, the combination of unique properties such as; graphene is the first 2D

1



material ever known to us, the thinnest object ever obtained, and the lightest one, and

also the strongest material, harder than diamond, and about 300 times stronger than steel,

graphene conducts electricity much better than copper, graphene is a transparent material,

graphene is bendable and can take any form you want, makes it magnificent material.

Moreover, this magnificent material gave birth to a new class of crystals (MoS2, BN ,

(CF )n, NbSe2, MgB2, etc.) that are also just one atom thin, and also these can be

shuffled with each other to engineer new materials on demand to meet the special needs

of different industries. All these factors move graphene rapidly from the laboratories to

the marketplaces driven by the men in industries where such magnificent materials are

required for example, aerospace, automotive, electronics, energy storage, coatings and

paints, communications, sensor, solar, oil, etc.(Crew (2018)).

1.2. Pristine Graphene

All these properties in previous subsection are considered, investigated and proved

step by step in years. Therefore, it is better to start with the most fundamental element of

the graphene to examine the other recently observed features.

1.2.1. Carbon allotropes

If we look at the simplest honeycomb model (Benzene ring, see (1.2)); we could

see why we should study the gradients of graphene (Carbon atoms) and its properties as

a starting point.

Carbon is the sixth most efficient element of the periodic table and is the piece

of all organic molecules and, therefore, essential for life on Earth. The fundamental

lectures from undergraduate education say that if carbon could be taken into account in

the atomic ground state, 1s and 2s orbitals would be filled fully with up and down spins

and 2 electrons would be in the 2p orbitals. Moreover, if the carbon is in the excited state,

we could have 4 equivalent quantum-mechanical states called as; |2s〉, |2px〉, |2py〉 and

|2pz〉. A quantum-mechanical superposition of the state |2s〉 with n |2pj〉 states is called

spin hybridisation, that is important in covalent carbon bonds.

Sp2 hybridization is the combination of graphitic forms. In sp2 hybridization, the

linear combination of two 2p (such as; |2px〉 and |2py〉) and |2s〉 orbitals creates 3 possible

sp2 quantum-mechanical states are given by;
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∣∣sp21〉 =
1√
3
|2s〉 −

√
2

3
|2py〉

∣∣sp22〉 =
1√
3
|2s〉+

√
2

3
(

√
3

2
|2px〉+

1

2
|2py〉)

∣∣sp23〉 = − 1√
3
|2s〉+

√
2

3
(−
√

3

2
|2px〉+

1

2
|2py〉)

(1.1)

These orbitals are in the xy-plane and have 120o angles. The unhybridized 2pz orbital is

in the z-plane and perpendicular to this (xy) plane.

Figure 1.1. Number of academic publications referencing "graphene" in their text, per
year between 1986 and 2016 as indexed by SciFinder (Source:Meany and
Joseph (2017))

This is the molecular structure that has been proposed by a German chemist

Friedrich August Kekulé in 1865 (Kekule (1865)). In this structure, six Carbon atoms

join together by single bonds first form a chain. The chain closes to form a ring then

comes six Hydrogen atoms and three double bonds and the benzene molecule is com-

plete. The bonds between each Carbon atoms and Hydrogen atoms are σ bonds and also

the remaining 2pz orbitals form 3π bonds and resulting double bonds around the hexagon.
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This balance of all bonds in benzene ring was explained by Linus Pauling in 1960 (Pauling

(1960)).

Figure 1.2. An honeycomb graphene lattice (Benzene ring).

The results after a plethora of research on these molecular structures showed that

any graphitic allotrope include a graphene sheet at least own its construction. Historically,

the oldest known allotrope is 3D graphite. Its discovery going back to the 16th Century

and first property what was noticed, as anyone can guess, is for painting and writing usage.

Although it is named later as "lead pencil" (like it is made of lead), in the middle of 18th

Century graphite was discovered in the form of Carbon atoms and named as "graphite"

just due to the fact that its main use for graphical purposes. However, graphite can be

in the form of layered structure as a stacking of graphene sheets (see Fig.(1.4a)). These

graphene layers have van der Waals bonds which is much weaker than the covalent bonds

between the carbon atoms in each layer. This physical property explains the graphical

purposes, "Scotch tape method" and exfoliation of graphene.

Figure 1.3. (a) Schematic side view of sp2 hybridization. (b) Benzene Molecule (C6H6).

0D graphitic allotrope is C60 molecule which was discovered by Harold Kroto in

1985 (KROTO et al. (1985)). It looks like a football and named as "buckyball". It includes
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graphene sheets, however some hexagons are replaced by pentagons which causes it has

a formation of graphene sphere (Fig.(1.4(b))). As rolling up the graphene sheets give us

1D carbon nanotubes (Fig.1.4(c)), with a diameter of several nanometers.

Figure 1.4. (a) Layered structure of graphite. (b) 0D allotrope: C60 molecule. (c)
1D allotrope: single-wall carbon nanotube. (d) SEM image of single-wall
carbon nanotubes (source: NanoLab (2017)).

The discovery of carbon nanotubes is most often attributed to Sumio Iijima and

his 1991 publication in Nature (Iijima (1991)). Started with the Iijima paper, there is

a raising interest and plenty of researches all over the world about this compound in

the condensed matter physics community and also in the prospect of nanotechnological

applications, since today such a interesting functional material can be based in any science

area from biomedical science for reparation of a part of a human body to the electronic

device manufacture for a new monitoring systems for the environment.

1.3. Fabrication of Graphene

In this section below, the most popular ways in three techniques, chemical ex-

foliation, epitaxial growth and chemical vapor deposition (CVD) , used in fabricating

graphene are discussed. In spite of high-quality graphene sheets have been offered by
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these techniques, there are economical and quality differences between these methods.

1.3.1. Mechanical Exfoliation of graphene

As it is mentioned before, this is the first and basic method of obtaining graphene

known as "Scocth Tape Method" , used by Geim and co-workers in 2004. Graphite in-

cludes parallel graphene sheets, which are bounded by weak van der Waals forces. Once

a bit of graphite is scratched on a substrate, thin graphite stacks, which are mostly com-

posed of tens or many graphene sheets, are peeled from the bulk and left behind on the

substrate. Geim and associates accomplished expelling layers from a graphite flake by

rehashed peeling (Novoselov et al. (2004)) until the color of tape becomes into shades of

grey. The manufacture of graphene by this technique is, in this way, to a great degree

straightforward. By peeling a little of graphite crystallite on the adhesive side of folded

tape, the graphite piece is splited into two sections, which ends up more slender with a

less number of graphene layers. After this process is repeated many times, the tape with

the graphene sheets adhered to the Si/SiO2 substrate, a blend composed of hydrochloric

acid and hydrogen peroxide to obtain better the graphene sheets from the tape. At the

point when the tape is precisely and gently peeled away, the graphene sheets stay stuck to

the substrate. The darker locales, in which the wafers would be with thickness of around

300 nm, then as in Fig.(1.5) can be seen by using an optical microscope in the visible

range, comprise of more graphene layers than the lighter ones. In any case, the sizes of

these examples are in µm scale, which is should have been longer or larger-area for the

use of graphene in labrotaroy applications and in commercial applications.

1.3.2. Epitaxial graphane

Walt de Heer and Claire Berger (Berger et al. (2004),de Heer et al. (2007)) created

another strategy to manufacture graphene. They used thermal decomposition and surface

science techniques. SiC (Silicon Carbide) has a similar hexagonal lattice symmetry with

the graphene. By heating SiC wafers up to the temperature range of 1350o−1400o C lead

to dissipate the less firmly bond Si atoms from the surface, the rest of the carbon rebonds

to frame monolayer or multilayers of graphene over SiC. By epitaxial process, it is possi-

ble to control the quantity of framed graphene layers. The subsequent electron mobility

is maybe low, to such an extent that the surface is less decided for the creation of tests
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Figure 1.5. Microscope images of graphene flakes. Single and multiple layers of
graphene showed by the darker regions, respectively. (source: Exfoliation
(2018))

utilized in transport estimations. The graphitization procedure on C-ended is exception-

ally quick, and countless layers are framed (up to 100). In addition, in this process, the

electron mobility is high. In spite of the fact that this technique produces graphene in big-

ger scale with a high quality than exfoliation technique does, Since the high temperature,

SiC is expensive substrate and lacking of exchanging graphene on another substrate are

restricted this technique for applications (Choi et al. (2010)). Heating the SiC substrate

causes Si atoms to be evaporated from the surface. Fig.(1.6(a)) shows that the graphisa-

tion process on the SiC substrate. These numerical distance values have been confirmed

by X-ray measurements (Varchon et al. (2007)).

1.3.3. Chemical Vapor Deposition

Another most widely used, cheap and scalable way to fabricate graphene is the

Chemical vapor deposition. Comparing with the other methods, this method offers high

quality and large area graphene layers. In this method, a transition metal film (mostly
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Figure 1.6. Epitaxial Graphene.(a) Schematic view for epitaxial graphene. (b) Atomic-
force microscopy image of epitaxial graphene on layers of C-terminated
SiC substrate (source: Jean-Noel FUCHS (2018)).

used copper(Cu)) is left in a high temperature tube (between 800o − 1100o C) to react

with the gas phase C source (CH4, C2H4 etc.). Thermally cracking of C atoms on the

transition metal substrate produces graphene layers on substrates(1.7).

In this technique, the properties of metal substrates play the main role for high

quality graphene, from the heating and cooling rates to the thickness and quality of it.

If these properties are satisfied enough, CVD technique offers to produce wafer scale

graphene cheaper. Due to the fact that the chemical process depends on the metal proper-

ties, single layer graphene films can be fabricated by transferring onto desired substrate,

as however it is needed to use, such as on glass for optical, on Si for electronic appli-

cations. So, therefore, this method is more efficient way to produce graphene compared

with the other ones (Celebi et al. (2013)).

Figure 1.7. Schematic diagram of typical set-up for CVD graphene synthesis (MFC:
mass flow controller)
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1.4. Graphene Nanostructures and Magnetism

Despite the fact that graphene has many extraordinary properties, the electronic

gapless band structure forbids graphene to be used as a field effect transistor(FET) de-

vices or sensors. So the existence of a band gap in the electronic band structure is es-

sential for the electronic and spintronic applications (Awschalom et al. (2013),Wolf et al.

(2001),Chappert et al. (2007)). Since finite-size semi-metallic graphene is a semiconduc-

tor with an energy gap, therefore the main scientific attention began to focus on graphene

nanoribbons(GNRs) , edge effects (Fujita et al. (1996), Tao et al. (2011),Magda et al.

(2014)) and narrow stripes of graphene, as a promising candidate to get a bandgap for

FETs (Chen et al. (2007), Han et al. (2007), Wang et al. (2008)) by introducing broken

sublattice symmetry. Since the cutting breaks the sublattice symmetry, the sides of the

ribbon would fit in the geometry of zigzag or armchair edges and these two different kind

of edges would have different electronic properties for the ribbon. Bulk graphene does not

have a band gap between the highest occupied molecular orbital(HOMO) and the lowest

unoccupied molecular orbital(LUMO), and this makes the graphene useless for graphene-

based device applications. However, finite ribbons have an energy gap due to breaking

symmetry at the edges so that it effects the electronic properties of any graphene nanos-

tructures, significantly (Potasz et al. (2012)), and it starts to behave as a semiconducting

material. Although by cutting graphene into narrow ribbons is experimentally remains a

significant challenge, recently, the production of atomically precise graphene nanoribbons

with different widths has been done by using bottom-up approach (Talirz et al. (2016), Cai

et al. (2010)), nevertheless, Kimouche et. al. show that ultra-narrow nanoribbons can be

fabricated on Au(111) substrate (Kimouche et al. (2015),Ruffieux et al. (2016)).

On the other hand, graphene nanoribbons include band gap within Hubbard model,

due to the zigzag edges of the ribbons, which have spin polarization, they consist of

magnetism confirming to the Lieb’s theorem (Lieb (1989)). In this case the degeneracy

associated with the existence of two identical edges is slightly removed by the second

neighbors hopping and interactions between the edges. Despite the fact that the per-

fectly pure graphene nanoribbons should have a ground state with antiferromagnetically

(Fig.1.9(a)) coupled edges and with the total spin Sz = 0 instead of a state with ferromag-

netically (Fig.1.9(b)) coupled edges. Lieb’s bipartite lattice theorem for Hubbard model

also predicts a finite total spin related to breaking of the sublattice symmetry (Fernández-

Rossier and Palacios (2007),Son et al. (2006), Yazyev and Katsnelson (2008)). This bro-

ken symmetry can happen, for instance, at the zigzag edges of a graphene nanostructures
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Figure 1.8. (a)The formation of a 6-ZGNR with atomically precise CH edges(Ruffieux
et al. (2016)) (b) Zoomed-in STM topography of different ribbon lengths
(source: Kimouche et al. (2015))

(Lee et al. (2005),Li and Lu (2008), Son et al. (2006),Cervantes-Sodi et al. (2008),Güçlü

et al. (2013),Magda et al. (2014), U. Özdemir et al. (2016)) or around an atomic defect

(Yazyev and Helm (2007), Palacios et al. (2008),Jaskólski et al. (2015), González-Herrero

et al. (2016), Gargiulo et al. (2014),Singh and Kroll (2009), Yuanbo Zhang and Kim

(2005),Pereira et al. (2008)), resulting in magnetized localized states.

It is well known that slightly above the AFM ground state energy, there is a fer-

romagnetic configuration (Fig.1.9(b)) with parallel spin orientation on both edges (Lee

et al. (2005)). Unlike the half-filled system, AFM state might be less favourable for a

disordered ZGNR. However, according to Lieb’s theorem a bipartite lattice has a total

spin moment proportional to the difference of the number of atoms belonging to the two

sublattices (Lieb (1989)). On the other hand, Lieb’s theorem does not say much about the

local spin moments. So even if AFM ground state with S=0 would be the lowest energy

state, local ferromagnetic order can also be seen. Most importantly, edge spin configura-
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tions in zigzag ribbons makes FET transistors possible by carring spin polarized current

without any external fields or lead contacts(Son et al. (2006),Vancsó et al. (2017)). There-

fore, the phase transition from AFM to FM state for ZGNRs is important to realize the

physical mechanism which is crucial for the proposed spintronic devices (Soriano et al.

(2010),Bostwick et al. (2009),L Wang et al. (2009)). In the last year, one of our group

members theoretically demonstrated that by using long-range disorder type, which is un-

der strong potential fluctuations can induce a magnetic phase transition, in agreement with

recent experimental results (U. Özdemir et al. (2016)). From this point of view, we are

going to focus on the atomic disorder effects to the AFM-FM phase transition of graphene

nanoribbons with zigzag edges within mean-field Hubbard approximation in this study.

Figure 1.9. Schematic demonstration of (a) antiferromagnetically coupled and (b) fer-
romagnetically couppled zigzag edges in graphene nanoribbons

In this thesis, the first chapter includes the simplest graphene structure and its gra-

dients, Carbon atom and its properties. Carbon allotropes, hybridization and graphene

honeycomb lattice will be the first milestone of this work. After that, even if many other

fabrication techniques exist in present, some common methods will be introduced, such as
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mechanical exfoliation and epitaxial graphene. And then, a brief motivation of this study

and the reasons of the interests on the nanoribbons will be demonstrated. Second chapter

include all the theoretical foundations needed for this study, from tight-binding approach

to the more realistic mean-field Hubbard model. By using time-dependent results, An-

derson’s argument will be introduced for the localization and conductivity in ZGNRs.

However, there are no perfect structures, included graphene either, in nature, the source

of disorders and their types will be discussed in the next chapter. In this section, short

and long-range disorders will be introduced, however the main focus of this study will be

related to the short-range disorder systems. Finally, after Anderson localization is theoret-

ically explained, all the results will be given. All these results of this study are performed

only for finite ZGNRs with atomic defects. Final section includes a brief summary of this

study and possibilities for future work.
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CHAPTER 2

THEORY AND MODELS

We start with the six electrons in the orbitals 1s2, 2s2, and 2p2. The main contri-

bution to the properties of graphene comes from the 4 valence electrons. There of them

mainly contributes to the mechanical properties of graphene by occupying s, px and py
orbitals and make sp2 hybridization, and strong sigma bonds between the nearest neigh-

boring carbon atoms as mentioned in previous section. The last valence electron occupies

the pz orbital orthogonal to the plane of graphene. The hybridization of pz orbitals leads

to the formation of π bonds in graphene which is responsible for the electronic properties

at low energies. In this section, we will describe the single pz orbital (π electrons) TB

approximation (Wallace (1947)) and mean-field Hubbard approximation (J. (1963), Chao

et al. (1977)) to investigate the electronic and magnetic properties of graphene.

2.1. Models

The honeycomb lattice is not a Bravais lattice, since two neighboring sites are not

identical. In Fig.(2.1), one may view the honeycomb lattice as a triangular Bravais lattice

with two-atom basis (A and B). The distance between the nearest carbon atoms is 0.142

nm, which is the average of single C-C and double C=C covalent σ bonds, as in the case

of benzene.

2.1.1. Tight-Binding Model

The lattice vectors can be defined by

a1 =
a

2
(
√

3, 3), a2 =
a

2
(−
√

3, 3) and b = a(0, 1) (2.1)

Positions of all sublattice A and B atoms are given by
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RA = na1 +ma2 + b

RB = na1 +ma2

(2.2)

where n and m are integers, and b is a vector going from the A sublattice atom to the B

sublattice atom in a unit cell (Fig.2.1).

Figure 2.1. Graphene honeycomb lattice structure. The vectors a1, a2, and b are the
primitive unit vectors connect two nearest neighboring atoms labelled with
A and B separated by a distance a = 0.142 nm (reprinted from the source:
Güçlü et al. (2014))

Each carbon atoms in the honeycomb lattice contributes one electron to the elec-

tronic band of state so that it is only half-filled. Fig.(2.2) illustrates this situation. Thus,

we consider the tight-binding Hamiltonian to operate on the wavefunction by Schrödinger

equation.

Figure 2.2. The pz orbitals forming π bonds lie orthogonal to a nodal plane in which
sigma bonding occurs.

The Hamiltonian operator has the form,
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Ĥ = − ~2

2m
O2 + V (r), (2.3)

where V (r) is the potential-energy function of the electron. The wavefunction,|Ψ〉, can

be written as a linear combination of all atomic orbitals (in this case the pz orbitals)

centered on each atom such that the electron wave function ψj for the jth atom, which are

considered to be the basis vectors;

|Ψ〉 =
N∑
j=1

Cj |ψj〉 (2.4)

Then,Cj’s have to be found. Therefore, now we have to solve the time-independent

Schrödinger equation,

Ĥ |Ψ〉 = E |Ψ〉 (2.5)

If this is multiplied from the left by 〈ψi|, it becomes

N∑
j=1

Cj
〈
ψi|Ĥ|ψj

〉
=

N∑
j=1

CjE
〈
ψi|ψj

〉
, (2.6)

and giving the simplified form,

N∑
j=1

Cj

(〈
ψi|Ĥ|ψj

〉
− E

〈
ψi|ψj

〉)
= 0 (2.7)

If we state this summation only over the nearest neighbors atoms, the integrals in

this equation can be taken as;

Ĥij =
〈
ψi|Ĥ|ψj

〉
= t, if i,j are neighbors〈

ψi|ψj
〉

= δij
(2.8)

Here the hopping parameter, t, determines the width of the bands and the on-site energy

is set to be zero. Another way apart from the atomic wavefunction is a symmetry consid-

eration. The wavefunction must respect to the discrete translation symmetry of the lattice.

Thus, one can write down the wavefunction of an electron on sublattice A and B as a

linear superposition of localized pz ortbitals of sublattice A and B, respectively, by using

Bloch’s theorem;
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ψ

(
A
)

k (r) =
1√
NA

∑
RA

eikRAψz(r− RA)

ψ

(
B
)

k (r) =
1√
NB

∑
RB

eikRBψz(r− RB)

(2.9)

where the exponential part describes a symmetry operation under the physical problem is

left invariant, and it also commutes with Eq.(2.3)
[
eik
−→r b ,Ĥ

]
=0, and where NA,NB are the

number of A and B sublattice atoms, respectively.

After these formal considerations, in order to obtain the energy bands of graphene,

we should take the particular case of the tight-binding model on the honeycomb lattice

into account. Since there are several atoms in a unit cell, as in this case of honeycomb

lattice, the total wavefunction as linear combination of two sublattice wavefunction can

be written as,

Ψk(r) = akΨ

(
A
)

k (r) + bkΨ

(
B
)

k (r) (2.10)

where ak and bk are complex functions of the quasi-momentum k. Now one can solve

the Schrödinger Eq.(2.5) by taking the total wavefunction,and multiplying the left side by

sublattice wavefunctions, seperately;

Ĥ |Ψk(r)〉 = Ek |Ψk(r)〉 (2.11)

One may continue in matrix form with the help of (2.9) and (2.10),

(
a∗k b∗k

)〈ψ
(
A
)

k |H|ψ
(
A
)

k

〉 〈
ψ

(
A
)

k |H|ψ
(
B
)

k

〉
〈
ψ

(
B
)

k |H|ψ
(
A
)

k

〉 〈
ψ

(
B
)

k |H|ψ
(
B
)

k

〉
(ak

bk

)

= Ek

(
a∗k b∗k

)〈ψ
(
A
)

k |ψ
(
A
)

k

〉 〈
ψ

(
A
)

k |ψ
(
B
)

k

〉
〈
ψ

(
B
)

k |ψ
(
A
)

k

〉 〈
ψ

(
B
)

k |ψ
(
B
)

k

〉
(ak

bk

) (2.12)

Since the hopping parameters between the second nearest neighbors on the same sub-

lattice and the on-site energies of pz orbitals can be taken to be zero, the terms in this

equation,
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〈
ψ

(
A
)

k |H|ψ
(
A
)

k

〉
=
〈
ψ

(
B
)

k |H|ψ
(
B
)

k

〉
' 0〈

ψ

(
A
)

k |ψ
(
B
)

k

〉
=
〈
ψ

(
B
)

k |ψ
(
A
)

k

〉
= 0

(2.13)

Now, the problem reduced to solve just off-diagonal
〈
ψ

(
B
)

k |H|ψ
(
A
)

k

〉
terms in the Hamil-

tonian, as the following

< ψ
(B)
k |H|ψ

(A)
k >=

1

N

∑
RA,RB

ei(RA−RB)

∫
drψ∗z(r− RB)V (r− RB)ψz(r− RA)

(2.14)

Since the integral of this equation is constant for a given pair of nearest neighbors at RA

and RB, one may write down by using Eq.(2.1) and RA,RB in Eq.(2.2),

< ψ
(B)
k |H|ψ

(A)
k >= t(e−ikb + e−ik(b−a1) + e−ik(b−a2))

< ψ
(A)
k |H|ψ

(B)
k >= t(eikb + eik(b−a1) + eik(b−a2))

(2.15)

The hopping amplitude between nearest neighbors is given by the expression,

tnn =

∫
drψ∗z(r− RB)V (r− RB)ψz(r− RA) (2.16)

and this parameter is usually taken tnn = 2.8 eV and the second nearest neighbor pa-

rameter is similar to Eq.(2.16) and taken as tnnn = 0.1 eV (Castro Neto et al. (2009)).

Eventually, we can solve the Schrödinger equation now to find the energy band diagram

of the graphene. By defining,

f(k) = e−ikb + e−ik(b−a1) + e−ik(b−a2) (2.17)

The eigenvalue problem in matrix notation,

E

(
ak

bk

)
= t

(
0 f(k)

f ∗(k) 0

)(
ak

bk

)
(2.18)

And its solutions are,

E±(k) = ±
∣∣tf(k)

∣∣ (2.19)
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Figure 2.3. (a) Graphene band structure. (b) A schematic representation of a Dirac
cone and the meeting of the conduction band and valence band close to the
K and K’. Adapted from (source: Das Sarma et al. (2011))

Note that the spectrum is gapless at six K points due to the properties of Dirac

fermions and there is a symmetry with respect to the Fermi level (EFermi=0). However

this symmetry is broken if the next nearest neighbors are taken into account. For the

constant ak and bk in Eq.(2.10) and Eq.(2.18),

(
ak

bk

)
=

1√
2

 1
±f∗(k)∣∣f(k)∣∣

 (2.20)

This result holds only for the bulk graphene (for 2D) to find conduction and va-

lence band wavefunctions in k-space. However, a finite ZGNR system in the real space

offers not only controlling each atoms and the atomic disorders in the system but also

optimizing it easier. Therefore, we have made our calculations in real space for the fi-

nite zigzag graphene nanoribbons(ZGNRs) . In the next subsection, we will introduce

the edge effects in graphene nanoribbons and the numerical method which we used for

tight-binding method.
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Figure 2.4. Two different edge geometry:(a) zigzag edges (b) armchair edges for a
graphene nanoribbon.

2.1.2. Edge Effects in Graphene Nanoribbons

We have considered the one-band empirical tight-binding model introduced by

Wallace (Wallace (1947)) and demonstrated the one-electron spectrum for a bulk graphene

in the previous subsection. Now, we can discuss about the application of TB model to

GNRs. The TB Hamiltonian in terms of pz orbitals localized on each carbon atoms in the

simplest way can be introduced by using annihilation and creation operators,

HTB = t
∑

<i,j>,σ

c∗iσcjσ (2.21)

where < i, j > indicates a summation over only nearest neighbor sites. ciσ and c∗iσ are

creation and annihilation operators for an electron on the lattice site i with spin σ. We can

describe the effective Hamiltonian by using the same methodology by cutting the bulk

graphene. If the most appropriate geometric cutting would be used, then there can be

created two separate kind of nanoribbons with zigzag and armchair edges as in Fig.(2.4).

The TB Hamiltonian for finite-size systems can be described by limiting the ma-

trix elements to the atoms in the graphene nanoribbon. We consider now, a method of

constructing the TB Hamiltonian matrix as an example of a ribbon with zigzag edges,
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Figure 2.5. Example of a zigzag graphene nanoribbon with N=36 atoms.

shown in Fig.(2.5), includes of 18 A and 18 B atoms, totally of N = 36 atoms. In the

figure, you can see that the edge atoms have two nearest neighbors instead of three in the

bulk case. The locations of all sublattice atoms in the ribbon are given by the RA and RB

vectors in Eq.(2.2), where n and m are integers. These n and m integers are describing

the position of all sublattice atoms instead of i and j indices as shown in Fig.(2.5). By

only keeping the nearest neighbor hopping parameter (tunneling matrix element) in the

TB Hamiltonian, the other matrix elements are all zero. For instances, the carbon atom 1

has a sigma bond with 20 and 19. Therefore, the first row of the TB Hamiltonian matrix

includes all zeros except for 19th and 20th columns, which we have t. All other rows can

be constructed in a similar way. Once the Hamiltonian is built, it may be diagonalized

numerically yielding eigenvalues and eigenvectors labeled by indices (for N atoms) as in

Eq.(2.22).

Constructing and diagonalizing the Hamiltonian in this way is numerically giv-

ing the eigenvalues and eigenfunctions corresponding to the labeled indices. The energy

spectrums of different sample of systems are shown in the Fig.(2.6). One can state that

the ribbon width makes the system metallic or semiconducting. In the Fig.(2.6(a)), the

system has no zero energy states, also known as "edge states" which are expected to be
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localized at the zigzag edges. However when we increase the number of atoms in the

system along the zigzag edges, we get more edge states at the Fermi level. Hence, we can

consider these localized states are related to the electrons moving at the edges, the size of

the samples effects and closes the energy gap more quickly for longer ribbon.

HTB =



0 t 0 0 0 . . . t

t 0 t 0 0 . . . 0

0 t 0 t 0 . . . 0

0 0 t 0 t . . . 0

0 0 0 t 0
. . . ...

...
...

...
... . . . . . . t

t 0 0 0 . . . t 0


N×N

(2.22)

This numerically effective Hamiltonian has been considered in our all calcula-

tions and there are no calculations in armchair graphene nanoribbons in this study. Next

subchapter, we will discuss the mean-field Hubbard model for the electron-electron inter-

actions.

Figure 2.6. TB energy spectra consisting degenerate states at Fermi level for graphene
quantum dots to graphene nanoribbons by increasing the number of atoms
horizontally as (a) 36 atoms, (b) 68 atoms, (c)132 atoms, (d)260 atoms.
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2.1.3. Mean-Field Hubbard Model

The Hubbard model gives us a chance to understand how the interactions between

electrons can get the material to insulating, magnetic and even novel superconducting.

The Hubbard model has been studied by condensed matter theorists from mean field ap-

proaches to the theoretical methods employing Feynman diagrams, expansions in the de-

generacy of the number of spin, angular momentum, etc. It has been used with numerical

methods like diagonalization and quantum Monte Carlo, as well.

Mean field Hubbard approach is applied to determine the ground-state properties.

Tight-binding model has no information about magnetism, spin dependency and electron-

electron interactions in ZGNRs. The purpose of this part in this section is to provide a

basic explanation to the Hubbard model. So, one can start to the Hamiltonian of interact-

ing electrons by solving many-body problem. However, only very small systems can be

exactly solvable with a good approximation. Therefore, one can reduce this problem to

one-body problem by introducing the "background nuclei potential field" in which each

electron is moving. Since we are mainly interested in valance electrons or pz electrons

only.

Beginning with the many-body Hamiltonian in second quantization and expanding

the field operators in terms of basis states and creation (annihilation) operators, which

proves the antisymmetry of many-body states, we can derive the mean-field Hubbard

Hamiltonian as,

H =
∑
pq

t̂pqc
†
pcq +

1

2

∑
pqrs

〈
pq|V̂ |rs

〉
c†pc
†
qcrcs (2.23)

while t̂ and V̂ are spin independent, the terms p, q, r and s are states in order to show the

spin dependency defined as p = iσ, q = jσ
′ , r = kσ

′′ and s = lσ
′′′ . These make the first

and second (interaction) terms in the Eq.(2.23),

t̂pq =
〈
p|t|q

〉
=
〈
iσ|t|jσ′

〉
=
〈
i|t|j

〉 〈
σ|σ′

〉︸ ︷︷ ︸
δ
σσ
′

= tijδσσ′

V̂pqrs =
〈
pq|V̂ |rs

〉
=
〈
iσ|
〈
jσ
′|V̂ |kσ′′

〉
|lσ′′′

〉
=
〈
i|
〈
j|V̂ |k

〉
|l
〉 〈
σ|
〈
σ
′ |σ′′

〉︸ ︷︷ ︸
δ
σ
′
σ
′′

|σ′′′
〉

︸ ︷︷ ︸
δ
σσ
′′′

= V̂ijklδσ′σ′′δσσ′′′

(2.24)
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Then the Hamiltonian in Eq.(2.23) becomes,

H =
∑
<i,j>
σ

t̂ijc
†
iσcjσ +

1

2

∑
ijkl

σσ
′

〈
ij|V̂ |kl

〉
c†iσc

†
jσ′
ckσ′clσ (2.25)

with the Coulomb matrix elements,

〈
ij|V̂ |kl

〉
=

∫ ∫
dr1dr2ψ?i (r1)ψ?j (r2)

2

κ|r2 − r1|
ψk(r2)ψl(r1) (2.26)

and r1 and r2 are coordinates of the two different electrons. Hear we note that if l = i

and k = j, the second term,
〈
ij|V̂ |kl

〉
, corresponds to the Coulomb interaction between

two electronic densities localized on sites i and j. Also the other option,
〈
ij|V̂ |kl

〉
for

l = j and k = i, is for the exchange term which comes along only if electrons on i and j

orbitals have the same spin σ = σ
′ in Eq.(2.25). Therefore, if we only keep the terms of

interaction matrix as non-zero terms,

〈
ii|V̂ |ii

〉
= U and〈

ji|V̂ |ij
〉

= V̂ij
(2.27)

and the other terms will be assumed as zero matrix elements. So we have two different

non-zero terms in the interaction matrix in Eq.(2.24), when i = j = k = l, first term the

diagonal term can be written as,

∑
ijkl

σσ
′

〈
ij|V̂ |kl

〉
c†iσc

†
jσ′
ckσ′clσ → U

∑
i

σ 6=σ′

c†iσc
†
iσ′
ciσ′ciσ (2.28)

Since σ 6= σ
′ due to the Pauli-exclusion principle and also, we assumed as they are

different initially. Then, by using the anticommutation relations,

{ciσ′ , ciσ} = 0 since σ 6= σ
′

ciσ′ciσ = −ciσciσ′
(2.29)

This makes the Eq.(2.28) as,

U
∑
i

σ 6=σ′

c†iσc
†
iσ′
ciσ′ciσ → −U

∑
i

σ 6=σ′

c†iσc
†
iσ′
ciσciσ′ (2.30)
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And, we can use the commutation relation,

{c†
iσ′
, ciσ} = 0

c†
iσ′
ciσ = −ciσc†iσ′

(2.31)

Thus, we can introduce the number operators niσ = c†iσciσ and Eq.(2.30) becomes;

−U
∑
i

σ 6=σ′

c†iσc
†
iσ′
ciσciσ′ → U

∑
i

σ 6=σ′

c†iσciσ︸ ︷︷ ︸
niσ

c†
iσ′
ciσ′︸ ︷︷ ︸

n
iσ
′

(2.32)

On the other hand, the
〈
ij|V̂ |kl

〉
matrix includes other non-zero elements, similarly for

k = l and l = i,

∑
ijkl

σσ
′

〈
ij|V̂ |kl

〉
c†iσc

†
jσ′
ckσ′clσ →

∑
ij

σσ
′

V̂ijc
†
iσc
†
jσ′
cjσ′ciσ (2.33)

and by using the commutation relations,

{cjσ′ , ciσ} = 0→ cjσ′ciσ = −ciσcjσ′ and

{c†
jσ′
, ciσ} = 0→ c†

jσ′
ciσ = −ciσc†jσ′

(2.34)

And then Eq.(2.33) becomes,

∑
ij

σσ
′

V̂ijc
†
iσc
†
jσ′
cjσ′ciσ → −

∑
ij

σσ
′

V̂ijc
†
iσc
†
jσ′
ciσcjσ′

−
∑
ij

σσ
′

V̂ijc
†
iσc
†
jσ′
ciσcjσ′ →

∑
ij

σσ
′

V̂ij c
†
iσciσ︸ ︷︷ ︸
niσ

c†
jσ
′cjσ′︸ ︷︷ ︸
n
jσ
′

=
∑
ij

σσ
′

V̂ijniσnjσ′
(2.35)

Eventually, the Hamiltonian now with the Eq.(2.32) and Eq.(2.34),

H =
∑
<i,j>
σ

t̂ijc
†
iσcjσ +

1

2

{
U
∑
i
σσ
′

niσniσ′

︸ ︷︷ ︸
term 1

+
∑
ij

σσ
′

V̂ijniσnjσ′

︸ ︷︷ ︸
term 2

}
(2.36)

Term 1-2 have 2 and 4 different spin configurations, respectively. In the term-1 , we have

σ =↑,σ′ =↓ or σ =↓,σ′ =↑ configurations. Therefore,
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U
∑
i
σσ
′

niσniσ′ → U
∑
i

{ni↑ni↓ + ni↓ni↑} = 2U
∑
i

ni↑ni↓ (2.37)

Also, in the term-2, we have 4 possible spin configurations such as, σ =↑,σ′ =↑, σ =↑,σ′ =↓,
σ =↓,σ′ =↑ and σ =↓,σ′ =↓. Thus;

∑
ij

σσ
′

V̂ijniσnjσ′ →
∑
ij

σσ
′

V̂ij{ni↑nj↑ + ni↑nj↓ + ni↓nj↑ + ni↓nj↓︸ ︷︷ ︸
(ni↑ + ni↓)︸ ︷︷ ︸

ni

(nj↑ + nj↓)︸ ︷︷ ︸
nj

} (2.38)

Then, the final form of the Hamiltonian in Eq. (2.36) becomes now,

H =
∑
<i,j>
σ

t̂ijc
†
iσcjσ + U

∑
i

ni↑ni↓

︸ ︷︷ ︸
Hubbard Model

+
1

2

∑
ij

σσ
′

V̂ijninj

︸ ︷︷ ︸
Extended Hubbard Model

(2.39)

This is the exact Hubbard Hamiltonian, and we should find now the mean-field Hubbard

Hamiltonian. We start with defining these;

ni↑ =
〈
ni↑
〉

+ (ni↑ −
〈
ni↑
〉
)︸ ︷︷ ︸

4ni↑

ni↓ =
〈
ni↓
〉

+ (ni↓ −
〈
ni↓
〉
)︸ ︷︷ ︸

4ni↓

(2.40)

And putting these terms into the Hubbard interaction terms and assuming4niσ terms are

really small;

ni↑ni↓ =
[〈
ni↑
〉

+ (ni↑ −
〈
ni↑
〉
)
][〈

ni↓
〉

+ (ni↓ −
〈
ni↓
〉
)
]

≈
〈
ni↑
〉〈
ni↓
〉

+
〈
ni↑
〉
(ni↓ −

〈
ni↓
〉
) +

〈
ni↓
〉
(ni↑ −

〈
ni↑
〉
)

= ni↑
〈
ni↓
〉

+ ni↓
〈
ni↑
〉
−
〈
ni↑
〉〈
ni↓
〉 (2.41)

We ignored the4ni↑4 ni↓ term since it is too small. Also, the other term will become,

ninj = ni
〈
nj
〉

+ nj
〈
ni
〉
−
〈
ni
〉〈
nj
〉

(2.42)
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Therefore; by using Eq.(2.41) and Eq.(2.42) the mean-field Hubbard Hamiltonian be-

comes,

H ≈ HMF =
∑
<i,j>
σ

t̂ijc
†
iσcjσ + U

∑
i

(ni↑
〈
ni↓
〉

+ ni↓
〈
ni↑
〉
−
〈
ni↑
〉〈
ni↓
〉
)

+
1

2

∑
ij

σσ
′

V̂ij(ni
〈
nj
〉

+ nj
〈
ni
〉
−
〈
ni
〉〈
nj
〉
)

(2.43)

However, this is something important within this equation now due to the t̂ij part. All

terms in this equation are now quadratic in terms of "c†iσcjσ". Thus, we can take this

Hamiltonian as;

HMF → HBulk
MF =

∑
ijσ

τ̂ijc
†
iσcjσ (2.44)

Now we can assume for a bulk structure that;

〈
ni
〉
≡ 1〈

niσ
〉
≡ 1

2

(2.45)

So, the following equation must be satisfied;

HMF = HMF −HBulk
MF +HBulk

MF

=

�
��

�
��
�*0∑

<i,j>
σ

t̂ijc
†
iσcjσ + U

∑
i

ni↑ni↓ +
1

2

∑
ij

σσ
′

V̂ijninj

−

��
��

�
��*

0∑
<i,j>
σ

t̂ijc
†
iσcjσ −

U

2

∑
i

(ni↑ + ni↓ −
1

2
)− 1

2

∑
ij

σσ
′

V̂ij(ni + nj − 1)

+
∑
ijσ

τ̂ijc
†
iσcjσ

(2.46)

this must be equal to;
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HMF =
∑
ijσ

τ̂ijc
†
iσcjσ + U

∑
i

[
ni↓(

〈
ni↑
〉
− 1

2
) + ni↑(

〈
ni↓
〉
− 1

2
)
]

+
1

2

∑
ij

σσ
′

V̂ij
[
(
〈
ni
〉
− 1)nj + (

〈
nj
〉
− 1)ni

] (2.47)

Since we know V̂ij = V̂ji or (
〈
ni
〉
− 1)nj = (

〈
nj
〉
− 1)ni can be taken, the last form of

the mean field Hubbard Hamiltonian will become,

HMFH =
∑
ijσ

τ̂ijc
†
iσcjσ + U

∑
i

[
ni↓(

〈
ni↑
〉
− 1

2
) + ni↑(

〈
ni↓
〉
− 1

2
)
]

+
∑
ij

σσ
′

V̂ij
[
(
〈
ni
〉
− 1)nj

] (2.48)

Since this final Hamiltonian does not include any quadratic terms in cjσ, the prob-

lem has a quartic form, now. However, since we don’t know the average occupation

numbers in the Hamiltonian, one can begin with using some initial density matrices to

calculate, numerically. In the similar manner by TB effective Hamiltonian, by using the

n and m integers in RA and RB vectors, one can find the total Hamiltonian consisting

the electron-electron interactions by adding U and Vij terms into the TB Hamiltonian in

Eq.(2.22). Next subchapter, we will discuss the disorder classifications and we will give

some fundamental description for them to introduce our concept.

2.2. Disorder in Graphene

In condensed matter physics, magnetism is traditionally supposed to be in solids

due to the partially filled d and f shells. Also, carbon atoms do not have magnetic mo-

ments, themselves. Therefore, the researchers working on graphene spintronics mainly

scope to the significant magnetism in graphene. The induced magnetism behaviour is

predicted by several theoretical models, including density functional theory (DFT) (Son

et al. (2006),Singh and Kroll (2009), Soriano et al. (2010),Lee et al. (2005)), the mean-

field approximation of Hubbard model (Fujita et al. (1996),Yazyev (2008),U. Özdemir

et al. (2016), Yazyev (2010),Jung and MacDonald (2009),Palacios et al. (2008)), exact

diagonalization (Güçlü et al. (2009),Modarresi and Güçlü (2017)) and quantum Monte

Carlo simulation (Feldner et al. (2010)). However, on the experimental side, the direct
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observation of magnetism in graphene nanoribbons is still lacking, most likely due to

limited control over edge structure. Recently, a semiconductor-to-metal transition as a

function of ribbon width was observed in nanotailored graphene ribbons with zigzag

edges (Magda et al. (2014)), attributed to a magnetic phase transition from the antifer-

romagnetic(AFM) configuration to the ferromagnetic(FM) configuration, raising hopes

for the fabrication of graphene-based spintronic and magnetic storage devices. Possible

theoretical explanations for the observed AFM to FM transition in ZGNR include dop-

ing (Schubert and Fehske (2012),Topsakal et al. (2008),Dai Q.Q. and Jiang (2013)) and

formation of electron-hole puddles through long range Coulomb impurities (U. Özdemir

et al. (2016)).

So far, we considered all the theoretical approaches into our calculations with

perfectly clean structures. However, structural or environmental disorders should be con-

sidered, since the opposite, "perfectly clean material" does not occurs in nature in order to

provide graphene-based devices. For instance; the graphene field effect transistors need

to be placed on substrates, or the pz electrons can be occupied by different atoms in the

atmosphere. These disorder types can be considered into two main concepts as long-range

and short-range disorders.

2.2.1. Long-range Disorder

Graphene nanoribbon on a substrate can be disordered due to the surface atoms

of the substrate, and we take these as a long-range disorder. In this disorder character,

substrate has electron-hole puddles which can cover a portion of the nanoribbon in the

scale of nm (Gibertini et al. (2012)). Due to this electron-hole puddles, the pz electrons

are effected and they are localized at some points in the nanoribbon. The ribbon has

this type of pattern through itself reduces the conductivity due to its different chemical

potentials.

In order to model the long-range disorder due to the potential fluctuations by the

substrate, we can use a superposition of gaussian electrostatic potential Vimp, can be writ-

ten as;

Vimp(i) =
∑
n

Vne
− (ri−rn)

2σ2 (2.49)

where Vn can be chosen as a parameter in terms of hopping parameter, and σ is the width
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of the potential. The long-range disorders can cause a magnetic phase transition and since

the main subject of this thesis is the short-range disorder type, one can find the results in

the Refr. (U. Özdemir et al. (2016)). With the limits of σ → 0 and Vn → ∞ leads to

short-range disorder scenario(Schubert and Fehske (2008)).

2.2.2. Short-range Disorder

Short-range disorder includes vacancies, hydrogenation, adsorption, lattice de-

fects, etc. In this type of disorder, one can see the local magnetic moments on the ZGNRs

particularly in the vicinity of the defect sites. However, this does not mean the ribbon

can be magnetized globally. The lattice defects are capable of breaking the lattice sym-

metry in the honeycomb lattice. This broken symmetry causes a sharply local magnetic

moment around the defect site. Therefore, locally, one can induce a magnetism in rib-

bon by introducing the lattice defects. Atomic defects have a significant influence on

the magnetic properties of graphene, as was shown before in several theoretical work

(Yazyev and Helm (2007),Palacios et al. (2008), Jaskólski et al. (2015),González-Herrero

et al. (2016),Gargiulo et al. (2014), Esquinazi et al. (2003),Soriano et al. (2010),Güçlü

and Bulut (2015),Zhang et al. (2016)). Recently, the existence of magnetism in graphene

by using hydrogen atoms was observed (González-Herrero et al. (2016)) and another di-

rect experimental evidence of the magnetism in graphene due to single atomic vacancy in

graphene was detected by using scanning tunneling microscope (Zhang et al. (2016)). An

open question is the effect of the induced magnetic moment by a random distribution of

atomic defects on the stability of the antiferromagnetic phase of ZGNR.

As a starting point, a vacancy can be introduced as a missing atom in the ribbon

or as a hydrogenated pz orbital (see in Fig.2.7(b)). In the calculations, atomic defects are

modelled as randomly distributed vacancies, where the pz orbitals are simply removed

from the honeycomb lattice not to allow the hopping to the vacancy sites. This actually

mimics the hybridization of the corresponding pz orbital with a hydrogen adatom if the

corresponding Gaussian potential function would be taken with a very narrow width and

very high amplitude. In our calculations, lattice distortion effects due to hydrogenation

are neglected and zigzag edge atoms are taken to be free of defects, assuming a controlled

hydrogenation of nanoribbon’s bulk region only.
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Figure 2.7. (a) Hydrogenation of a pz orbital. (b) Projection of (a) in terms of vacancies

2.2.3. Anderson Localization

In the quantum statistical mechanics, if one creates a density fluctuation (wave

packet) and leave it spread over the ribbon, it would be expected not to localize at any re-

gions in the system. This behaviour is partially related to the classical random walk stated

by the diffusion equation of Einstein in 1905 (Albert (1905)). This diffusion equation is

valid only for random walk provided that there is no memory (also known as markovian

process). In this equation with the demonstration of Einstein, localization of the wave

packet should be proportional to the time with a prefactor of diffusion constant. However,

before 60 years from now, P. W. Anderson (Anderson (1958)) considered this equation

with the quantum particles (states), and then stated that there may be some situations for

the quantum particles that the localization of the wave packet will not keep increasing for-

ever and tending to infinity, instead, it can tend to a constant, which would mean that the

diffusion constant is exactly zero. Therefore, the two considerations for a system, which

consists of randomly distributed disorders, can be considered as correct for different situ-

ations, if one look at Einstein’s arguments is valid for random walk which has no memory

and also if one is dealing with quantum particles then quantum random walk, which has

memory in it, should probably be used by the Anderson arguments. The localized wave-

function can be written in terms of the basis states of the system which are defined as
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Bloch wavefunctions before,

Ψ = e−
r
λ

∑
i

Ciψi(r− ri) (2.50)

where λ is the localization length and the summation is over all sites. If the system does

not include any disorders, then the λ would go to infinity and this wavefunction becomes

a Bloch wavefunction. On the other hand, if we have a finite λ, then it means that we have

a localized wavefunction defined as above.

In principle, there are infinitely models of disorder, which we have given in just

two classifications before, randomly located impurities, lattice models, etc. However, the

original model that Anderson proposed is with random potential model. In this model, we

have on-site randomly distributed disorders which means that each sites of the lattice can

cause an eigenstate for a particle, only difference from the TB model which we discussed

is that the randomly chosen sites energies are not equal to each other due to the on-

site disorder. What Anderson proposed in the work (Anderson (1958)), a considering

situation, is that on-site potential is randomly picked and defined between a minimum

and a maximum parameters as a disorder strength in terms of hopping parameter, then

there is a critical value for the on-site matrix elements in the TB Hamiltonian, and due to

the essential randomness the on-site energies vary from site to site. These energies would

be a value which is smaller than the critical value, then Anderson insulator takes place.

On the contrary, if this value would be higher than the critical value, then what we are

dealing with is a metal. This is a consequence of the existence of localization states by

Anderson’s argument. This result can also be obtained by considering the conductivity

in the system. If there is a localized state in the system, then the wavefunctions, which

are localized, cannot contribute to the global transport, and eventually conductivity of the

system would decrease or vanishes (Thouless (1970)). After the stimulating discussions

and correspondence to the Anderson’s argument by the studies of Ziman, Nevill Mott

and Lloyd (Ziman (1969),Mott (1967),Lloyd (1969)), Thouless simplified the Anderson’s

argument to the statistical mechanics. After a few years, Anderson et. al. showed metal-

insulator transition with vanishing conductivity (Abrahams et al. (1979)).

In this part of the work, we show that concentration of vacancies may induce a

metal to insulator transition in finite ZGNRs by using mean-field Hubbard approxima-

tion. Indeed, it is mostly believed that short-range (Aleiner and B Efetov (2007), Altland

(2006)) and strong long-range (Zhang et al. (2009)) disorder can give rise to intervalley

scattering and Anderson localization, whereas weak long-range disorder can only lead
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to intravalley scattering, that does not cause backscattering and Anderson localization

(Fan et al. (2014)). Because of the vacancies break the sublattice symmetry, and interval-

ley scattering backscattering should be observed and if the concentration number is high

enough, localized wavefunction should be observed (Güçlü et al. (2014),Ostrovsky et al.

(2007),Bardarson et al. (2007)) with zero conductivity.
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CHAPTER 3

RESULTS AND DISCUSSION

In order to find the overall ground state energy for each magnetic configuration, we

need to employ a self-consistent pattern as, for a given Sz or σ , the energy depends on the

density matrices
〈
nijσ

〉
, which may be also known as the mean occupation number of that

Sz configuration. In our calculations both for TB and MFH hopping parameters are taken

as tnn = −2.8eV for the nearest neighbors and tnnn = −0.1eV for the second nearest

neighbors (Castro Neto et al. (2009),Reich et al. (2002)). The self-consistent Hubbard

calculations were performed within different Sz = ((n↑ − n↓)/2 subspaces to find the

overall ground state. As one may suspect a competition between the AFM and FM states,

we have scanned the 0 ≤ Sz ≤ 130 values, with a focus around AFM state Sz = 0 and

FM state Sz = Nedge/2 where the number of edge states is given by Nedge = 138 for

the clean structure. For each value Sz the self consistent calculations were repeated with

different initial density matrices to ensure the convergence to the global energy minimum.

3.1. Computational Details

If we transform the calculation from the Eq.(2.48) into the matrices for only up-

electrons,

H↑MFH =



H↑int tnn 0 0 tnnn . . . tnn

tnn H↑int tnn 0 0
. . . ...

0 tnn H↑int tnn 0 · · · tnnn

0 0 tnn H↑int tnn · · · 0

tnnn 0 0 tnn H↑int
. . . ...

... . . . ...
... . . . . . . tnn

tnn · · · tnnn 0 · · · tnn H↑int


N×N

(3.1)

The on-site Coulomb potential U is taken to be 16.522/κeV where κ = 6 an effective

dielectric constant, as was shown before in Eq.(2.27). The long-range interaction param-

eter Vij are taken to be 8.64/κeV and 5.33/κeV for the first two neighbors, and 1/dijκ
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for distant neighbors (Potasz et al. (2010)) in Eq.(2.33). The effect of long-rage Coulomb

interactions is found to be negligible in the presence of atomic defects considered in this

work.

Vij =



0 V rep
nn D D V rep

nnn . . . D

V rep
nn 0 V rep

nn D D
. . . ...

D V rep
nn 0 V rep

nn D · · · V rep
nnn

D D V rep
nn 0 V rep

nn · · · D

V rep
nnn D D V rep

nn 0
. . . ...

... . . . ...
... . . . . . . V rep

nn

V rep
nn · · · V rep

nnn D · · · V rep
nn 0


N×N

D = 1/κdij ,off-site Coulomb repulsion between distant neighbors

V rep
nn = 8.64/κ ,off-site Coulomb repulsion for nearest neighbors

V rep
nnn = 5.33/κ ,off-site Coulomb repulsion for next nearest neighbors

Vint =
[
Vij

]
N×N

[
(
〈
ni
〉
− 1)

]
N×1

=


V 1
int

...

V N
int


N×1

(3.2)

And finally,

H↑int =
{
U
(〈
ni↑
〉
− 1

2

)
+ V i

int

}
N×1

=


H↑int(1)

...

H↑int(N)


N×1

(3.3)

Hence, some initial parameters (in Eq.(3.3)) of the self-consistent calculations are

fixed initially and never changes, later. However, some other initials such as,N↑, N↓,

step parameter, and some techniques that we used to speed up the computational pro-

cesses are not fixed for a magnetic configuration. We called the methods as "the shifting

techniques" which are some extra initial perturbations that we applied in agreement with

our expectation such as pulling or pushing all the electrons to the edges. These methods

are included just to make the process faster and we found that only FM-states need this

method. Therefore, we do not use any shifting techniques for AFM-state calculations for

Sz = 0.

In more details, we proceeded as follows: it is simpler to numerically diagonalize

the Hamiltonian of Eq.(3.1), in order to determine eigenvalues εσ(i), and eigenvectors
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∣∣Ψi
pσ

〉
=
∑

pA
i
pσ |ψpσ〉 (with i = 1, 2 .... Nσ). Indeed, we worked with the chemical

potential and Fermi-Dirac distribution functions, since it is common practice which is

characterized by a temperature parameter T different from zero. The calculations are

performed in the frames 3, 4, 5, and 6 are based on equations Eq.(3.4), Eq.(3.5), Eq.(3.6),

and Eq.(3.7) given below. The first of these equations expresses the chemical potential

and Fermi-Dirac distribution, µσ(i), and fσ(i), respectively.

Figure 3.1. Pattern of the self-consistent algorithm leading to the ground state phase
diagram of Figure 3.7. Equations are described in the text

Here, β = 1/kBT is Boltzmann factor and we have defined the by using Eq.(3.4)

and Eq.(3.5) the density matrices for up-down electrons.
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µσ =
(
εσ(Nσ)− εσ(Nσ + 1)

)
/2 (3.4)

fσ(εi) =
1

1 + eβ×
(
εσ(i)−µσ(i)

) (3.5)

Finally, the mean occupation number per site i and per spin σ at a given temperature T is

given by:

〈
niσ
〉

= diag(ρσ(i, j)) = diag

[ Nσ∑
p=1

〈
Ψi
pσ|fσ(εi)|Ψi

pσ

〉]
(3.6)

Eventually, the way to find the total energy E of a system in quantum mechanics, we

should find the expectation value of each terms in the Hamiltonian of Eq.(3.1);

Etb =
〈
Htb

〉
= Tr

{
H
′

tbρσ(i, j)
}

Eon−site
int =

〈
Hon−site
int

〉
= U

{
diag(ρσ(i, j)− 1

2
)
′
diag(ρσ(i, j)− 1

2
)

}
Eoff−site
int =

〈
Hoff−site
int

〉
=

1

2

{
diag(ρσ(i, j)− 1)

′
Vijdiag(ρσ(i, j)− 1)

}
Eground−state = Etb + Eon−site

int + Eoff−site
int

(3.7)

In general, we computed the ground-state energy for each magnetic state by playing with

the initial parameter which are not fixed. The magnetic phases appear according to their

Sz values. However, if Sz = 0 in the clean ZGNR, there can be seen full antiferromagnetic

coupled edges, but if Sz = 69, then there must be seen full ferromagnetic coupled edges

for the system. Therefore, now we can discuss the disordered systems.

3.2. Short-Range Disorder Analyse

We consider 55.83 nm long and 4.54 nm wide ZGNRs consisting of 10010 atoms

with various defect configurations. ZGNR with this length has 138 edge states for the

clean case. Fig.(3.2a) shows a ZGNR configuration with 1% of defects that are randomly

distributed among the two sublattice of the honeycomb lattice. The downward pointing

(blue color) and upward pointing (red color) triangles correspond to sublattice A-site and

B-site vacancies, respectively. The left 10.5 nm part of the ribbon is left for the Anderson
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Figure 3.2. Structure and (a)1% (b)3% (c)5% defect distribution equally distributed
with A-sublattice (downward pointed triangles) and B-sublattice (upward
pointed triangles).

localization calculations. Initial electron waves started to diffuse through the ribbon from

the lead part, where there is no impurity effect is considered.

3.2.1. Electronic Properties

Within in the tight-binding approximation, there is no information about spin de-

pendency of the states. However, we can see the net charge localized points for the edge

and defects states. Fig.(3.3) shows the electronic densities of the highest 69 (edge) states

and highest 139 states densities all over the disordered ribbon by 1% vacancy concentra-

tion. Firstly, these TB and MFH results indicate while there is less defect states close to

the Fermi level in the TB approach than the MFH results. However, if we include lowest

valence states into the calculation, then we can get more density of defect states, that’s

why TB calculations have no spin information and due to the fact that even if we break

the sublattice symmetry and the local magnetization could be induced in the vicinity of

the defects, we cannot get higher densities by taking only the states near the Fermi level,

we have to take into account deep valence states. On the other hand, while the edge

states (Fig.(3.3-left panels)) are robust against the vacancies (Fig.(3.2a)) in the density of

highest valence states, the impurity states begin to appear in the density of deep valence

states. Whereas, tight-binding model gives quite good approximation to the real results,
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the results always are lacking spin dependency. However, in the Fig. (3.3-right panels),

while electron-electron interactions are included, the interaction effects carry the impurity

states to the more energetic valence states, and we can get more density of impurity states

in the upper panel, now.

Figure 3.3. Electronic density profile corresponding to the 69 highest occupied valence
states (top panels), and the 138 highest occupied valence states (bottom
panels), obtained using tight-binding (left panels) and mean-field Hubbard
calculations (right panels).

Therefore, whereas the electron-electron interactions make the defect states ro-

bust, which means defect-defect interactions begin to play at the same time, also the edge

states becomes more fragile against the disorders. Because of this fact that MFH results

give more realistic spin-dependent density characteristics for the system. Fig.(3.4) shows

the near of the Fermi level in the clean and up to 5% disordered systems. As we discussed

above, in the TB approach, there are edge states at the Fermi level and if we include the

vacancies randomly, there will be impurity states close to the Fermi level. There is a

big peak in the Fermi level and it’s raising up to the 5% vacancy concentrations. These

peaks around Fermi level are due to the impurity states (and initially edge states) in agree-

ment with the earlier studies (Wakabayashi et al. (1998),Pereira et al. (2008), (KAN et al.,

2008)). This single peaks splits into two within the MFH calculation when we include the

interactions. We will discuss the magnetic properties of the system in the next subsection.
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Figure 3.4. Dos of ZGNR by tight-binding results around the Fermi level.

3.2.2. Magnetic Properties

In this section, the combined effect of atomic disorders and electron-electron in-

teractions to the system will be discussed. In Fig.(3.5), the electronic band structure is

given for different vacancy concentration. As we discussed previous section, the edge

states split into two separate peaks around the Fermi level, giving rise to edge states at

the zigzag edges due to the electron-electron interactions. One can also state from the

figure that the fluctuations of the electronic band diagram are getting suppressed due to

the disorder effects for the system.

Fig.(3.6) shows the spin densities of the ribbon in Fig.(3.1a), for the lowest energy

AFM and FM states, respectively. Despite the inclusion of long range electron interactions

and second nearest neighbor hoppings, the mean-field solution to the Hubbard model

leads to Sz = 0 ground state in all our calculations with equally distributed defects among

the two sublattices, in agreement with Lieb’s theorem (Lieb (1989)). Indeed, in Fig.(3.6a),

the A-site and B-site defects lead to spin-up (red color) and spin-down (blue) magnetic

moments, respectively, as expected. On the other hand, the spin density distribution for

the lowest FM state is harder to predict since it is not a ground state consistent with Lieb’s

theorem. Interestingly, the edge ferromagnetism of the Sz = 73 state remains robust
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Figure 3.5. Dos of ZGNR by mean-field Hubbard results around the Fermi level.

(see Fig.(3.6b)) and the bulk atoms have a zero-average magnetization(Fig(3.7)). This

simple observation has an important consequence on the stability of the AFM phase with

respect to the FM phase: For the FM phase, the magnetization of the defects nearby edge

atoms is strictly dictated by the strong magnetization of the edges, locally obeying Lieb’s

theorem. Hence far from the edges, one must encounter sublattice spin frustrations where

Lieb’s theorem cannot be locally satisfied, costing energy. For instance, for the AFM

state where the Lieb’s theorem is globally satisfied, the A-site defects in the encircled

areas in Fig.(3.6a) are ferromagnetically coupled to each other, whereas their coupling is

antiferromagnetic in Fig.(3.6b). Our calculations show that such local violation of Lieb’s

theorem only occurs among defect sites and never between an edge and a defect site.

As discussed above, local violation of Lieb’s theorem in the bulk region of the FM

phase costs energy. A striking consequence of the energy cost is an increased stability of

the AFM phase with respect to the FM phase. Fig.(3.8) shows that the energy per atom

of different magnetic states Sz with respect to the AFM ground state, for various defect

concentrations up to 5%. For clean structure, the FM phase is at Sz = Nedge/2 = 69 and

the FM-AFM gap is 3.041× 10−5eV/atom. As the defect concentration is increased, the

FM-AFM gap increases, reaching 1.6×10−4eV/atom for the 5% of defects. Surprisingly,

the gap increase with respect to the AFM phase occurs not only for FM phase but most

other Sz states. However, in the vicinity of Sz = 0 (see the inset), i.e. for single/few spin
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Figure 3.6. Magnetic density profile of (a) AFM and (b) FM state of the ribbon in
Fig.(3.1a).

flips, energy cost is decreased at 1% of defect concentrations, but then increases slightly

with increasing number of defects. This reflects the fact that for low defect concentrations

it is easier to flip an edge spin by moving it into a defect state than into the opposite

edge. We note that similar behaviours were observed for other randomly generated defect

concentrations and each result is presented below in Fig.(3.10a).

Figure(3.9) shows the mean-field density of states (DOS) of AFM ground state, for

different concentrations considered in Fig.(3.8). The solid lines represent the total DOS,

whereas the dotted and dashed lines represent the contribution from edge and defect atoms

(more precisely, atoms neighbouring the defects/vacancies) to the DOS, respectively. For

the clean nanoribbon, the AFM gap is 0.2143 eV, which roughly corresponds to the energy

required to flip a single spin. As the defect concentration is increased to 1%, there is

an increase of midgap state density and the AFM gap is decreased to 0.1176 eV. This

is consistent with the single spin flips in the vicinity of Sz = 0 discussed in Fig.(3.8).

When the concentration of defects is increased to 3%,and then to 5%, the AFM gap now

increases slightly. This change of behaviour reflects the fact that for higher number of

defects the magnetic coupling between defects is enhanced in average, stabilizing the

magnetic configuration and making the spin flips harder. However, we note that, the

AFM-FM gap monotonically increases with increasing midgap states due to the local

violation of Lieb’s theorem, as discussed earlier.

Up to this point, the results presented were obtained for particular randomly gen-

erated defect configurations. For a statistical analysis of our results, we have repeated
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(a) (b)

Figure 3.7. Average magnetization along the ribbon length for (a) the AFM in
Fig.(3.6(a)) and (b) FM in Fig.(3.6(b)) phases.

our calculations for 10 randomly generated configuration at 1,3, and 5% defect concen-

trations. We have observed similar behaviour in all disorder configurations and the results

are presented in Fig(3.10) as a function of defect concentration. The average magne-

tization of edge atoms for the AFM and FM phases, shown in Fig.(3.10(a)), decreases

slightly with increasing defect concentration. The difference between the AFM and FM

edge magnetization remains negligible (within the errors bars), consistent with Figs(??).

On the other hand, Fig.(3.10(b)) shows that the AFM-FM gap rapidly decreases in aver-

age with a small error bar, clearly demenstrating an increased stability of the AFM phase

with respect to the FM phase. Finally, the average AFM gap shown in Fig.(3.10(c)), indi-

cating the energy cost for a single spin flip, systematically undergoes a decrease at lower

concentrations, then keeps slowly increasing at concentrations higher than 1% due to a

more stable magnetic lattice formed by defects.

3.2.3. Time Dependent MFH Solution

In this section we studied diffusion of the initial wavefunction through clean and

disordered nanoribbons by solving the time dependent Schrödinger equation. Time de-

pendent wavefunction equation can be written in terms of linear combination of MFH

wavefunctions as,
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|Ψ(t)〉 =
∑
n

Cn |ψn〉 e−
iEnt

~ (3.8)

The coefficient Cn’s can be evaluated only by taking t = 0 and by choosing any initial

wavefunction Ψ(t),

〈
ψn|Ψ(t)

〉
= Cn

〈
ψn|ψn

〉
(3.9)

We solved the time-dependent Scrödinger equation for different initial wavefunc-

tions in each regions described in the Fig.(3.12), and we show the results in the following

Figs.(3.14,3.15, 3.16,3.17,). In the first region in Fig.(3.12), away from the highest occu-

pied valance states, inhomogeneous charge distribution and rarely defect state scattered

sources are observed. An initial wave with energy -1.56 eV, which is in this region, is

sent from the lead through all over the ribbon in Fig.(3.14). Since there are less defects in
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Figure 3.9. Mean-field DOS of the AFM phase for the (a) clean, (b) 1%, (c)3%, and
5% concentration cases. The contribution of edge and defect states are
plotted with dotted and dot-dashed lines. Energy gap values of the total
DOS are given for each case.

this region, the initial wave does not localized, and reaches to the end of the ribbon after

a period of time. Therefore, there is no localization in this region.

In second region of Fig.(3.13), defect states are more visible. Electronic impurity

density figure shows the electron-hole distribution around the vacancy regions. With an

another initial wave with energy -0.77 eV in this region is diffused, and due to the fact that

more defect(midgap) states can affect the initial wavefunction, the wave is getting hard to

reach to the end of the ribbon.

In third region of Fig.(3.13), the population of edge states are more than defect

states, initially. Impurity formation shows that there is no significant fragmentation at

the edges. If we include more defect by increasing the vacancy concentration at the bulk

region, then defect states will get more chance to be mixed with the edge states. However,

since we don’t allow the random vacancies to locate at the edges, we did not lose any edge

states in the system. So, comparing with the clean system, more defects can affect more

edge states at the edges due to the decreased distances between the defect and edge sites.
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Figure 3.10. (a) Total Energy difference between the AFM and FM phases and (b) the
antiferromagnetic phase energy gap for 30 different disorder configurations
with various concentrations. Higher concentration effect causes the system
to be more stable in antiferromagnetic state. For lower concentrations, the
chance of a phase transition increases.
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Figure 3.11. Average (a) single edge magnetization, (b) AFM-FM energy gap, and (c)
AFM energy gap, over 10 randomly generated disorder configurations, as
a function of defect concentration.
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Figure 3.12. Red area, green, blue, black lines represents clean, 1-3-5% disordered
DOS, respectively. Due to the randomness of the disorder’s locations, 4
different regions are investigated.

Figure 3.13. Impurity densities within four regions in Fig.(3.12)
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Figure 3.14. Clean (left), 1% (middle) and 3% (right) disordered time dependent so-
lution of the wave function within region-I with incident particle energy
-1.56 eV

Figure 3.15. Clean (left), 1% (middle) and 3% (right) disordered time dependent so-
lution of the wave function within region-II with incident particle energy
-0.77 eV

Figure 3.16. Clean (left), 1% (middle) and 3% (right) disordered time dependent solu-
tion of the wave function within region-III with incident particle energy
-0.06 eV
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Figure 3.17. Clean (left), 1% (middle) and 3% (right) disordered time dependent solu-
tion of the wave function within region-IV with incident particle energy
1.10 eV

When an initial wave with energy -0.06 eV is diffused, in the middle of Fig.(3.16), the

initial waves localized at the edges even after huge amount of time passed. We show that

if the vacancy concentration is increased to 3%, then the localization length is decreased.

In fourth region of Fig.(3.13), the states belong to the lowest conduction bands.

Due to the bulk region contribution is much higher than the edge states, we can see the

impurity states more clear. Therefore, when an initial wave is sent from the lead with

energy 1.10 eV, it has less chance to reach to the end of the ribbon than the other regions.

Except the deepest valance states, localization in all regions with high concentration of

vacancies exists.

To get more definite and quantitative result for localization length, the densities of

quasistationary states by evaluating the initial wavefunctions in 10 steps around t = 106/~
time point can be summed along the perpendicular direction to the diffusion direction.

Fig.(3.18) shows the localization lengths with different vacancy concentrations in all four

regions. It is obviously seen that, localization is much more weak in the deep valance

states than the other regions. Other significant result is that, after 3% vacancy concen-

tration, if we increased the number of vacancies region.III would have less localization

length than region.II. This is because more vacancies can disrupt edge state densities and

can block the transport over the region, as well. However, within the conduction band,

defect-defect interaction is more strong than the edges. This caused strong localization

here, as well.
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Figure 3.18. Localization lengths by time average solution with quasistationary states
for (a) region-I (b) region-II (c) region-III (d) region-IV.
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CHAPTER 4

CONCLUSION

In this thesis, we have studied the influence of random atomic disorders to the elec-

tronic structure and to the stability of magnetic structure of zigzag graphene nanoribbons

by using mean-field Hubbard approximation and second nearest-neigbors are included.

The electronic stability of edge states is found to be robust, since any vacancies is not

located at the zigzag edges. However, if the vacancy concentration is increased, because

of the distances between the defect sites and the edges decreased, the edge states can be

weakened for higher concentrations. On the other hand, surprisingly, as the vacancy con-

centration is increased, the system get a more stable antiferromagnetic state with a total

spin Sz = 0. Although the possibility of inducing magnetism due to the vacancies is

well known from the previous works,for an equal distribution of atomic defects among

the two sublattices of the honeycomb lattice, the ground state remains antiferromangetic

with Sz = 0. Thus, the local magnetic moments can be induced, but globally our results

show that the ground state is Sz = 0, in agreement with Lieb’s theorem.At lower defect

concentration (≤ 1%), the energy of single spin flips from the antiferromagnetic ground

state is decreased due to possible electron transfer from edges to defect states. How-

ever, we show that the AFM-FM energy gap remains well protected and is enhanced as a

function defect concentration. The increased stability of the AFM-FM gap by controlling

defect concentrations opens up new possibilities for spintronic and magnetic nanodevice

applications.

Metal-insulator transition in agreement with Anderson’s argument is investigated

within mean-field Hubbard approach. We found that impurity states localized in the vicin-

ity of the Fermi level, particularly
[
− 1.0, 1.0

]
eV interval. Localization length in this

region is shorter than the other regions. For extreme limit of concentration(5%) of the

vacancies only, we showed that the defect states and edge states are mixed and even if

there is no vacancy at the edge sites, the transport along the edges is not possible. In other

words, the system trying to preserve itself by converting the defect states to the edge states

, however, this causes the conductivity goes to zero. However, the calculation of transport

and conductance are left for the future works.
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