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ABSTRACT

ANALYSING THE ENCRYPTED SEARCH ALGORITHMS ON

ENCRYPTED DATA

In this thesis, we study the static and dynamic Searchable Symmetric Encryption

(SSE) schemes (Cash et al. (2014), Kamara and Moataz (2017)). We present different

approaches for secure single- and multi-keyword ranked searches, that are: Sorted, OPE-

Based, Paillier-Based, Embedded, and Matrix-Based. We extend the base schemes ac-

cording to these approaches so that the matching documents of a search query are ranked

by a relevance score calculation technique like term frequency (tf), term frequency-inverse

document frequency (tf-idf) or keyword frequency, depending on the characteristics of the

scheme. For this, the existing structures of the schemes are modified since they cannot

be directly used for ranked searches. Therefore, the ranking facility is added to them.

Further, Matrix-Based Approach is a new hybrid approach that is based on an updated

structure of the static scheme (Cash et al. (2014)) and fills a matrix to rank the relevant

documents for a search keyword, as in the work (Ibrahim et al. (2012)), however, com-

puting the matrix is totally different from their work.
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ÖZET

ŞİFRELİ VERİ ÜSTÜNDE ŞİFRELİ ARAMA ALGORİTMALARININ

ANALİZİ

Bu tez çalışmasında, statik ve dinamik aranabilir simetrik şifreleme şemalarını

inceliyoruz (Cash vd. (2014), Kamara ve Moataz (2017)). Tek ve çoklu kelime içeren

sorgularla yapılan güvenli sıralı aramalar için farklı yaklaşımlar sunuyoruz: Sıralı, OPE-

Tabanlı, Paillier-Tabanlı, Gömülü ve Matris-Tabanlı. Temel şemaları bu yaklaşımlara

göre genişletiyoruz, böylece bir arama sorgusu ile eşleşen dokümanlar, kullanılan şemanın

karakteristiklerine bağlı olarak terim frekansı, terim frekansı-ters doküman frekansı, ya da

kelime frekansı gibi bir ilgi puanı hesaplama tekniğine göre sıralanır. Şemaların mevcut

veri yapıları, sıralı aramalar için kullanılamadığından dolayı bu yapılara sıralama özelliği

eklenerek değiştirilmiştir. Ayrıca, Matris-Tabanlı Yaklaşım, Cash vd.’nin statik şemasının

güncellenmiş versiyonunu temel alan ve Ibrahim vd. (2012)’nin çalışmasında olduğu gibi

bir aranan kelimeye ilgili olan dokümanları sıralamak için bir matristen yararlanan hibrit

bir yapıya sahip yeni bir yaklaşımdır. Ancak, bu yaklaşımın matrisi hesaplama yöntemi

Ibrahim vd.’nin çalışmasından tamamen farklıdır.
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CHAPTER 1

INTRODUCTION

In recent years, vast amounts of data are produced by several sources such as

millions of digital sensors, social media applications, smart phones, financial transaction

records, etc. Thanks to many capabilities offered by cloud computing, data owners and

organizations have extensively moved their huge datasets from traditional local data cen-

tres to the cloud so that they can utilize the possibilities of greater flexibility and lower

cost. However, this requires to be kept their sensitive data on remote untrusted servers and

introduces new security and privacy challenges that needs to be handled. Therefore, the

data is encrypted before sending to the untrusted servers in order to protect the data confi-

dentiality. Although data encryption ensures data confidentiality, it certainly prevents the

server from operating on the data like keyword-based search over it.

The search functionality enables a data user to receive the related data with a

keyword from a remote data server. The proposed solutions to perform a keyword search

over the encrypted data are (i) downloading all the stored data to the user side, decrypting

it locally and searching the keyword over the decrypted data and (ii) allowing the server

to decrypt the data, search the keyword, and return the related results to the user. The first

approach downloads the entire data when a keyword search is performed, even if a very

small part of the data is related to the search keyword. Hence, it leads to an increase in

the communication overhead. The second approach allows the server to know the secret

key and plaintext, thereby it creates a situation that is contrary to the intended privacy

requirement.

On the other hand, various searchable encryption schemes have been developed

to support searching over encrypted data in a secure and efficient way. In this thesis, we

study Searchable Symmetric Encryption (SSE) schemes. Most of them focus on a single

keyword or Boolean search and do not provide a relevance ranking in the search result. To

take advantage of the result ranking, this thesis offers various single keyword and multi-

keyword search schemes that enable ranked search over encrypted documents, which are

analyzed theoretically in terms of efficiency, security, and functionality, implemented in

Java, and their performances are compared using an up-to-date real dataset, namely the

1



Request For Comments (RFC), with regard to the following evaluation metrics: (i) the

query efficiency, (ii) the communication overhead, and (iii) the storage overhead.

1.1. Motivation

This master thesis aims at answering the following research question?

• Can we design and implement privacy preserving single- and multi-keyword ranked

schemes based on the practically efficient data structures and approaches proposed

by Cash et al. (2014) in order to rank the search results using a relevance calcula-

tion method?

To answer this question, first we investigate the static SSE scheme (Cash et al. (2014)) and

the dynamic SSE scheme in Clusion framework (Kamara and Moataz (2017)), a variant

of the dynamic scheme of Cash et al., and combine other tools such as order preserving

encryption (OPE) and partially homomorphic encryption to achieve more functionalities,

i.e. ranked search, so that the matching documents of a search query are ranked by differ-

ent relevance scores like term frequency (tf), term frequency-inverse document frequency

(tf-idf) or keyword frequency, depending on the characteristics of the schemes.

1.2. Thesis Goals and Contributions

The objectives of this thesis are:

• To examine searchable encryption schemes with different properties in terms of

efficiency, security and functionality aspects.

• To propose and implement a variety of ranked searchable encryption schemes that

meet different requirements using approaches from information retrieval systems

and cryptography, and determine the advantages and disadvantages of each scheme

with detailed discussions.

• To compare our proposed schemes with the base searchable encryption schemes that

we use to provide ranked search so as to understand the cost of this functionality,

and previously proposed searchable encryption schemes with ranked results.

2



Our contributions in this thesis can be summarized as follows:

• We enhance the static SSE scheme (Cash et al. (2014)) to support single- and multi-

keyword ranked searches over encrypted documents.

• We also extend the dynamic SSE scheme in Clusion framework (Kamara and Moataz

(2017)) to provide it ranking facilities for single- and multi-keyword searches.

• Further, we introduce a new hybrid multi-keyword ranked searchable encryption

approach that is based on an updated version of the static structures (Cash et al.

(2014)) and fills a matrix to rank the relevant documents for a search keyword, as in

the work (Ibrahim et al. (2012)), however, computing the matrix is totally different

from their work.

• Efficiency and privacy analysis of the proposed schemes are performed.

• The technical knowledge and experience gained by the analysis and experimental

work can help the researchers to choose the solution that matches their criteria.

1.3. Outline of Thesis

The thesis is organized as follows. Chapter 2 first presents system & threat model,

defines security requirements and design goals, and then gives general information about

the research background on information retrieval, cryptography and data structures. Chap-

ter 3 presents the related work in the literature about Searchable Symmetric Encryp-

tion and Ranked Searchable Encryption. Chapter 4 provides the base schemes that are

(i) response-revealing 2Lev (RR2Lev), (ii) response-hiding 2Lev (RH2Lev), (iii) dy-

namic response-revealing (DynRR), (iv) dynamic response-hiding (DynRH), and (v) se-

cure ranked multi-keyword SE scheme (SRMES). Each of these schemes are examined

in detail. Chapter 5 describes our proposed approaches for ranked searchable encryption

which are (i) Sorted, (ii) OPE-Based, (iii) Paillier-Based, (iv) Embedded, and (v) Matrix-

Based. Then, the schemes we introduce for these approaches are explained. Chapter 6

gives the theoretical analysis of base and proposed schemes. Chapter 7 includes the ex-

periments and discussions on them. Finally, Chapter 8 gives the conclusion and future

work of the thesis.

3



CHAPTER 2

BACKGROUND

2.1. System & Threat Model

In the system architecture of our proposed secure ranked schemes, there are three

different types of entities: data owner, data user, and cloud server. The data owner has

a document collection D = {D1, ..., Dn} and wishes to outsource it in an encrypted

form to the cloud server. Hence, first the data owner extracts a set of distinct keywords

W = {w1, ..., wm} and relevance score values (to enable ranking) from the document

collection and builds an encrypted searchable inverted index, I . Then, the data owner

generates the encrypted document collection C = {C1, ..., Cn} using a symmetric en-

cryption scheme (e.g., AES), and submits both the encrypted document collection C and

the index I to the cloud server. After that, to retrieve the related documents matching a

single- or multi-keyword query, an authorized user sends the search token for the query

to the cloud server. Once receiving the search request, the cloud server searches over the

index I with the search token and performs one of the following operations depending on

the chosen scheme:

(i) The cloud server directly returns the ranked document identifiers.

(ii) The cloud server directly returns the ranked encrypted document identifiers, and

then the user decrypts the received document identifiers.

(iii) The cloud server sorts the document identifiers by the encrypted scores and returns

the ranked document identifiers.

(iv) The cloud server sorts the encrypted document identifiers by the encrypted scores

and returns the ranked encrypted document identifiers, and then the user decrypts

the received document identifiers.

(v) The cloud server returns the (document identifier-encrypted score) pairs, and then

the user decrypts the received scores and sorts the document identifiers by these

scores.
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(vi) The cloud server returns the (encrypted document identifier-encrypted score) pairs,

and then the user decrypts both the received document identifiers and scores, and

sorts the document identifiers by these scores.

(vii) The cloud server computes the encrypted score of a matching document identifier

by summing up the encrypted relevance score of this document to each keyword in

the query homomorphically, returns the (document identifier-encrypted score) pairs,

and then the user decrypts the received scores and sorts the document identifiers by

these scores.

(viii) The cloud server returns a list of encrypted concatenations, each consists of a

matching document identifier and its score, and then the user decrypts and parses the

received concatenations, gets the document identifiers and corresponding scores,

and sorts the document identifiers by these scores.

(ix) The cloud server computes the score of a matching document identifier by summing

up the relevance score of this document to each keyword in the query, sorts the

document identifiers by these scores, and returns them to the user.

(x) The cloud server cumulates all (encrypted document identifier, score) pairs for each

keyword, and returns these pairs to user who decrypts each document identifier and

adds the related score to the score of the document identifier in order to find the

total score of this document to the query. After that, the user sorts the document

identifiers by these scores.

In dynamic schemes, the data owner/user can update the index stored on the server

after setup phase by adding new (keyword/identifier) pairs or deleting the existing pairs.

For this, he/she sends an update token (add/delete) to the server. Then, the server adds the

coming pairs to the index or deletes the pairs from the index.

In this thesis, we do not discriminate between the data owner and data user, and

we called them as user or client. In such a single-user scenario, the user is assumed to be

fully-trusted. Further, as in most of the searchable encryption schemes, we consider the

cloud storage server as a single server which provides services for both storage and query,

and the cloud server is honest-but-curious which means it follows the protocol correctly,

however, it may try to learn additional private information from the stored documents,

index and search request. Considering this setting, in which there are a single user and
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single server, our schemes can target individual outsourcing of encrypted documents to a

cloud server for their practical usage.

2.2. Security Requirements

The security properties that a ranked searchable encryption scheme should achieve

are listed below.

• Document privacy: The server cannot learn anything about the documents given

the corresponding encrypted documents. This is satisfied with encrypting the doc-

uments using a symmetric encryption scheme.

• Index privacy: The encrypted index should leak nothing about the plaintext infor-

mation. Some schemes may leak additional information, such as the number of

keywords, the number of documents, the number of keyword/document pairs in the

document collection (size pattern), and so on.

• Token privacy: The server cannot learn the actual query keyword from the query

token since the server does not have the secret key used to generate valid tokens.

• Access pattern: It refers to the search results that are the identifiers of the documents

matching the queried keyword.

• Search pattern: It refers to the information about when a search query is repeated.

• Relevance score privacy: The server cannot learn the actual value of the encrypted

relevance scores.

• Relevance order privacy: The server cannot infer the relative order of the relevance

scores.

Some of these properties, such as access pattern and search pattern, are not sat-

isfied by even most known schemes (Curtmola et al. (2006), Kamara et al. (2012), Cash

et al. (2014)) in the literature, and so a leakage function is defined to describe what infor-

mation is allowed to leak such that the scheme is said to be secure under the controlled

leakage. The forward and backward privacy properties are also defined for dynamic

schemes by Stefanov et al. (2014). The forward privacy is satisfied if the server does not
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know whether a new added document includes a keyword that was previously queried,

and the backward privacy is satisfied if queries cannot be performed over deleted docu-

ments. Our all proposed schemes leak search pattern, and dynamic ones do not achieve

forward and backward privacy, both of which are inherited from the base schemes we

improve. However, forward privacy can be adapted to them. Additionally, the schemes

may leak access pattern, size pattern, the number of keywords in the document set, or the

relevance order depending on their properties, that are explained in Chapter 6.

2.3. Design Goals

Following the explained scenario(s), assumptions on the user and server, and se-

curity requirements, the design of our system should meet the requirements listed below:

1. Secure ranked single keyword/multi-keyword search: We propose new schemes

with improved query functionalities so that the matching document identifiers are

ranked using the relevance scores.

2. Efficiency: The computation, communication and storage overhead of the schemes

should be acceptable.

3. Security: The schemes should satisfy the security requirements that we state in

Section 2.2.

4. Dynamic: The schemes can be designed to support dynamic updates on the index.

On the other hand, there are always different tradeoffs among these goals to design an

encrypted search scheme, as mentioned in Kamara (2015).

2.4. Cryptographic Primitives

Basic Primitives: We use symmetric encryption schemes and pseudorandom functions

(PRFs) in the construction of the schemes (see Katz and Lindell (2007)). A symmetric

encryption scheme consists of three polynomial-time algorithms that are Key Generation

(Gen), Encryption (Enc), and Decryption (Dec). Gen and Enc are probabilistic algorithms

and Dec is a deterministic algorithm. The properties of the algorithms are:
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– Gen takes as input a security parameter k and returns a secret key K.

– Enc takes as input a key K and a message m, and returns a ciphertext c.

– Dec takes as input a key K and a ciphertext c, and returns m provided that c was

produced under the key K.

A PRF is a polynomial-time computable function that is computationally indistinguish-

able from a random function by a probabilistic polynomial-time adversary.

Order Preserving Encryption (OPE): We also make use of OPE in some of the schemes

to encrypt the scores. An OPE scheme produces encrypted values that maintain the order

of the plaintext values, which means: If x < y, then EncK(x) < EncK(y), for any secret

key K. Hence, it enables the server to efficiently determine the relative order of the

plaintext values without needing them.

The concept of OPE was first introduced by Agrawal et al. (2004) within the

database area, and it was first formally analyzed by Boldyreva et al. (2009), giving a

security guarantee. After that, a number of OPE schemes were proposed while they

leaked most of the plaintext bits. Further schemes were introduced with ideal-security,

which do not reveal anything about the plaintexts, except for their order relations (Popa

et al. (2013), Kerschbaum and Schroepfer (2014)). A scheme can still leak a significant

amount of sensitive information only revealing order relations. To solve this problem,

Kerschbaum (2015) presented a frequency-hiding scheme by randomizing ciphertexts,

but this scheme also needs more client storage and may lead to some error for queries.

Paillier Encryption: Homomorphic encryption allows operations, such as addition and

multiplication, over ciphertexts and produces an encrypted result which equals to the

encryption of the result of operations on their plaintexts (Yi et al. (2014)). We use Paillier

encryption scheme which consists of three algorithms: Key Generation, Encryption and

Decryption. These algorithms are explained in Table 2.1. In this thesis, the following

additive homomorphic property of the scheme is exploited, that is:

Enc(m1) · Enc(m2) = (gm1rn1 )(g
m2rn2 )(mod n2).

= gm1+m2(r1r2)
n(mod n2).

= Enc(m1 +m2).

(2.1)
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Table 2.1. Paillier Encryption Scheme.

Key Generation:

Select two large primes p and q randomly and independently.

Set n = pq.

Set λ = lcm(p− 1, q − 1).

Choose random g ∈ Z
∗
n2 , such that n divides the order of g.

μ = (L(gλ (mod n2)))
−1

(mod n).

The public key: (n, g).

The private key: (λ, μ).

Encryption:

Message m ∈ Zn.

Choose random r ∈ Z
∗
n2 .

Ciphertext c = gmrn (mod n2).

Decryption:

Ciphertext c ∈ Z
∗
n2 .

Message m =
L(cλ (mod n2))

(L(gλ (mod n2)))−1 (mod n) , where L(u) = (u− 1)/n.

2.5. Information Retrieval

Ranking function: A ranking function can be used to compute relevance scores of match-

ing documents to a given search request so that the documents are sorted according to

these scores. In some of our ranked schemes, we utilize from TF × IDF weighting rule,

where TF (term frequency) measures the importance of a keyword for a document, and

IDF (inverse document frequency) of a keyword measures the importance of the keyword

within the entire document collection. The following TF × IDF formula is applied in the

schemes to find the relevance score of the document Fid to the keyword w:

score(w, Fid) =
1

|Fid|(1 + ln(fid,w))(1 +
N

fw
), (2.2)
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where |Fid| is the length of the document Fid; fid,w specifies how many times the keyword

w appears in the document Fid; N is the total number of documents in the collection; fw

is the number of documents that contain the keyword w.

If a query consists of multiple keywords, then the overall relevance score of each

matching document to the query Q is calculated by summing up the relevance scores of

the related document to each keyword in Q:

score(Q,Fid) =
∑

w∈Q
score(w, Fid). (2.3)

2.6. Data Structures

Bloom Filter: A Bloom filter (BF) (Bloom (1970)) is a fast probabilistic data structure

that allows to test whether an element is a member of a set in a limited memory space. It

is a bit array of length m to represent a set of n elements. It uses k distinct independent

hash functions h1, ..., hk, each of them maps elements to the interval [1,m] with a uniform

random distribution. All bits are firstly set to 0. To insert an element x in the set S, the

array bits at positions h1(x), ..., hk(x) are set to 1. Some bits can be set to 1 multiple

times by coincidences for different elements. To test whether an element y belongs to the

set S, the array bits corresponding to the positions h1(y), ..., hk(y) are checked. If at least

one bit is set to 0, then y is definitely not a member of S. However, if all the checked bits

are set to 1, then y is a member of the set S with a high probability. It means that there is

some probability of a false positive. The false positive probability (fp) can be estimated:

fp = (1− e−kn/m)
k
. (2.4)
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CHAPTER 3

RELATED WORK

In this chapter, we present existing literature related to Searchable Symmetric

Encryption (SSE) and Ranked Searchable Encryption.

3.1. Searchable Symmetric Encryption

Song et al. (2000) proposed the first SSE scheme to perform keyword searches

on encrypted data, in which no index is built and each word in a document is encrypted

separately, therefore it requires linear search time with the total number of words in the

document collection.

Goh et al. (2003) developed a secure index scheme based on PRFs and BFs in

order to improve search performance. A BF represents a set using much less space than

other data structures since it just stores the membership of an element rather than the ele-

ment itself. In the scheme, a BF is built per document, and so each document is searched

in O(1) time. So, its search time is linear to the total number of documents in the collec-

tion. Tekin and Şahin (2017) improved this scheme using Counting Bloom Filters (CBFs)

to update a document without rebuilding its index.

Chang and Mitzenmacher (2005) offered two schemes to do keyword searches on

remote encrypted data. The authors constructed the schemes by thinking two cases in

which there is or is not enough room to store a dictionary on the user’s mobile device.

In these schemes, a masked index string is generated per document using pseudorandom

bits. Hence, they also require linear search time with the number of the documents.

Curtmola et al. (2006) proposed new security definitions and presented two schemes,

namely SSE-1 and SSE-2, which are secure under these new definitions. Specifically,

SSE-1 and SSE-2 are secure against non-adaptive and adaptive adversaries, respectively.

According to this paper, all previous SSE schemes are within the non-adaptive setting.

An adaptive adversary can choose their search queries by taking into account previous

trapdoors and search outcomes. Besides stronger security, these schemes are more effi-

cient than the previous ones since the search computation per keyword is linear to the
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number of documents that contain the keyword, which means that they provide sublinear

search. In the literature of SSE, their security definitions and indexing techniques are

used in subsequent schemes. (Kamara et al. (2012); Kamara and Papamanthou (2013);

Cash et al. (2014); Stefanov et al. (2014); Hahn and Kerschbaum (2014); Naveed et al.

(2014); Baldimtsi and Ohrimenko (2015))

The first scheme of Curtmola et al. (2006) creates a linked list for each distinct

keyword, and each node in the list keeps a pointer to the next node. Then, all nodes

of all lists are stored in an array permuted randomly and encrypted. Also, there is a

lookup table to find and decrypt the first node of each list. To succeed their security

definition, padding is necessary to the array and the table. Their second scheme also

uses a lookup table. In the scheme, for each keyword, different labels are produced up

to the number of documents containing the keyword. For instance, if a keyword, say

tea, is included in three documents, then the labels tea1, tea2, tea3 are produced, and a

pseudorandom permutation (PRP) is used to generate the keys from the labels. Then, each

key and corresponding document identifier is added to the table. However, this scheme

also requires padding so that the number of entries in which each document identifier

appears is the same. Curtmola et al. (2006) considered secure updating as if only adding

new documents, where each time a new index is created for the document set that consists

of the old set and a new set of documents (re-indexing).

Despite the approach based on the inverted index provided efficient schemes until

that time, they were not explicitly dynamic and naturally required sequential searches.

Kamara et al. (2012) introduced an extension of the previous scheme SSE-1 to allow

dynamic updates efficiently and be secure against adaptive attacks. Nevertheless, their

scheme is so hard to implement and leaks a certain amount of information, namely the

tokens in an updated document (update leakage).

Kamara and Papamanthou (2013) put forward a new dynamic approach based on

keyword red-black (KRB) trees adapted from red-black trees, which supports parallel

search and update operations, and prevents the update leakage. In each node of KRB tree,

they store two vectors whose lengths are the number of documents and values depend on

the output of a random oracle. But, the index size of their scheme is the product of the

number of documents and the number of keywords, so it is much larger than that of the

previous ones.

Hahn and Kerschbaum (2014) proposed a novel secure and efficient dynamic

scheme based on the idea of constructing the index from the access pattern. The search
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complexity for a new keyword is linear, that amortizes to sub-linear time as repeated

searches are performed, while the scheme requires the client to store a search history to

be used for the add operation.

Cash et al. (2014) also proposed a dynamic scheme based on the inverted index

structure that is more efficient than the previous schemes to handle very large datasets by

taking into account ignored factors like locality and parallelism, and has optimal leakage

and index size, while it needs either some local storage or communication linear to the

size of keywords to be updated.

Stefanov et al. (2014) presented a dynamic scheme by introducing important strong-

er properties like forward and backward privacy, whereas this scheme has logarithmic

search overhead and client storage due to the using oblivious RAM (ORAM) techniques.

Subsequent dynamic schemes have been designed to efficiently achieve these properties

(Yavuz and Guajardo (2015), Bost et al. (2017), Ozmen et al. (2017)).

3.2. Ranked Searchable Encryption

We present different categorizations of ranked searchable encryption schemes in

Table 3.1 and Table 3.2 using the categorizations related to the ranked search in Poh et al.

(2017). We try to explain some of them below in detail.

The problem of ranked search on encrypted data was first defined and solved by

Wang et al. (2012). Their scheme is based on non-adaptive secure SSE-1 scheme of

Curtmola et al. (2006) mentioned in the previous section. They utilize from the TF × IDF

rule to calculate relevance scores, whereas the IDF part is ignored because of supporting

only single-keyword searches. They use the OPE with some modifications to encrypt

the relevance scores. The scheme concatenates the encrypted relevance scores to the

document identifiers and adds to the index. The search operation is efficiently done on

the server side. The scheme weakens the security guarantee of their base scheme because

the server knows additional information, i.e. the relative order.

Sun et al. (2013) proposed a multi-keyword ranked search scheme that is based

on a tree structure and vector space model (VSM) that enables both conjunctive (AND)

and disjunctive (OR) search. For each document, an index vector containing normalized

tf values is created, and then the vector is split into two random vectors. For a query, a

query vector containing normalized idf values is generated, and then it is also split into
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Table 3.1. Development of Ranked Searchable Encryption Schemes I.

(Source: Poh et al. (2017)).

Scheme & Year
Setups Query Functionalities Structures

u s 1w rnk cnj fz w di inv t

Wang et al. (2012) 1 1 • • •
Ibrahim et al. (2012) 1 2 ◦ • •
Sun et al. (2013) 1 1 ◦ • •
Cao et al. (2014) 1 1 ◦ • •
Strizhov and Ray (2014) 1 1 ◦ • •
Xia et al. (2016) 1 1 ◦ • •
Baldimtsi and Ohrimenko (2015) 1 2 ◦ • •
Orencik et al. (2016) 1 2 ◦ • • •
Shen and Zhang (2017) 1 1 ◦ • • •
Jiang et al. (2017) 1 2 ◦ • • •

Notation: u = user/multiple users, s = server/multiple servers, 1w = single keyword, rnk =
ranked, cnj = conjunctive, fz = fuzzy, w = word/block based, di = direct, inv = inverted, t

= tree. ◦ = A scheme is multi-keyword, but can be used for single-keyword search. • = A

scheme is single-keyword, but was extended to multi-keyword search.

two random vectors. The ranking of documents is achieved by calculating the cosine

similarity values. To improve search efficiency, they use a tree-based search algorithm.

Phantom terms can be added to the query in order to increase privacy, but it may lead to

some precision loss.

Cao et al. (2014) offered a scheme with ranking functionality to perform multi-

keyword searches. In this scheme, a ”secure inner product” technique is used to sort the

documents. Each document score is found by counting the number of query keywords

included in the document. Adding dummy keywords to data vectors can result in some

precision loss by returning false results (positives or negatives), while it increases rank

privacy, so there is a tradeoff between precision and rank privacy and this scheme provides

a balance parameter. But, the search overhead of this scheme is very high for the client.

Strizhov and Ray (2014) proposed a scheme for multi-keyword similarity searches

by using dot product technique. The scheme is based on the SSE-2 scheme of Curtmola

et al. (2006). In addition to the inverted index, a TF-IDF table is built, and encrypted with

a fully homomorphic encryption (FHE) scheme. The server only locates the identifiers

and returns them along with encrypted scores to the user who performs decryption and
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Table 3.2. Development of Ranked Searchable Encryption Schemes II.

(Source: Poh et al. (2017)).

Scheme & Year
Characteristics Prim. (PRF, PRP, Enc.) Security Model

sta dyn pt +others Ind S1 S2

Wang et al. (2012) • • (OPE)

Ibrahim et al. (2012) • • (PPM)

Sun et al. (2013) •
Cao et al. (2014) •
Strizhov and Ray (2014) • • (Hom. enc.) •
Xia et al. (2016) •
Baldimtsi and Ohrimenko (2015) • • (Hom. enc.) •
Orencik et al. (2016) • • • (Hom. enc.) •
Shen and Zhang (2017) • • (OPE) •
Jiang et al. (2017) • • (Hom. enc.) •

Notation: sta = static, dyn = dynamic, pt = probabilistic tokens, ind = indistinguishability-based,

S1 = non-adaptive, S2 = adaptive.

sorting. In this scheme, the server is not concerned with sorting. For this reason, this

scheme is very inefficient despite of its sublinear search.

Baldimtsi and Ohrimenko (2015) proposed a solution for private sorting. In their

solution, a secure co-processor helps the server to sort the scores encrypted with Paillier

encryption scheme. Both the server and the co-processor do not learn the relative order

of search results. Even though this approach is very attractive because of maintaining

privacy, it is not practicable to deploy.

Shen and Zhang (2017) extended the SSE protocol OXT (Cash et al. (2013)) so

that results of conjunctive queries are ranked on the server side by keyword occurrences

which are encrypted using OPE. Like the OXT, the search complexity of this scheme is

linear in the number of documents containing the least frequent keyword in the query.
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CHAPTER 4

BASE SCHEMES

In this chapter, we explain the base schemes that we improve to support effi-

cient single- and multi-keyword ranked searches. Each scheme has a form of response-

revealing or response-hiding. The first form reveals the response of the queries, while

the second one does not. We follow an example inverted index illustrated in Figure 4.1

throughout the thesis to understand the structures of the schemes more clearly.

Label Value

w1 D2, D10

w2 D4, D5, D10

w5 D1, D3, D5, D6, D10

w7 D1, D2, D3, D5, D6, D9, D10

Figure 4.1. An example inverted index.

4.1. RR2Lev Scheme

Before explaining the RR2Lev scheme, first we will describe a basic scheme, and

then extend it to the this scheme. In the setup of the basic scheme, a key K is chosen. For

each keyword, the key is used to generate two keys K1 and K2 which are for a PRF and

encryption. That means, two keys are formed per keyword in order to obtain pseudoran-

dom labels and encrypt the document identifiers. After creating the keys, the document

identifiers with this keyword are iterated. A label is associated with each document iden-

tifier by applying the PRF and the key K1 to a keyword-specific counter that starts zero

and increments by one, and the identifier is encrypted with the key K2, and then the la-

bel/encrypted identifier pair is added to the dictionary, as seen in Figure 4.2. For example,

if a keyword is contained in 3 documents, then 3 independent labels are produced for the
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keyword. To search for a keyword, the user generates the keys K1 and K2 for the searched

keyword and sends to the server which computes the corresponding labels using the K1

and PRF, retrieves the related entries from the dictionary, and decrypts them using the K2

to get the identifiers. Hence, for example, if the keyword w2 is searched, the server re-

trieves the E(K2
2 , D4), E(K2

2 , D5) and E(K2
2 , D10) from the dictionary, and gets D4, D5

and D10 by decrypting them.

Label Value

F (K1
1 , 0) E(K1

2 , D2)

F (K1
1 , 1) E(K1

2 , D10)

F (K2
1 , 0) E(K2

2 , D4)

F (K2
1 , 1) E(K2

2 , D5)

F (K2
1 , 2) E(K2

2 , D10)

F (K5
1 , 0) E(K5

2 , D1)

F (K5
1 , 1) E(K5

2 , D3)

F (K5
1 , 2) E(K5

2 , D5)

F (K5
1 , 3) E(K5

2 , D6)

F (K5
1 , 4) E(K5

2 , D10)

. . . . . .

Figure 4.2. The basic scheme index created for the given example inverted index. Super-

scripts are used to distinguish the keys of different keywords.

A keyword query with r matches in the basic scheme requires r retrievals from the

dictionary which is asymptotically optimal with the assumption of a dictionary retrieval

as O(1) cost. But, if the dictionary is kept on disk, the query time may be slow since the

identifiers are stored in pseudorandom positions, and each retrieval from the dictionary

results in a disk read. To decrease the number of retrievals, a certain amount of the

identifiers are packed together, which means that a block size B is determined and B

identifiers are packed and encrypted, and the packed ciphertext is inserted with a label,

rather than adding each encrypted identifier separately. The last block of a keyword is

padded to be the same size.

However, choosing a larger block size may cause too much padding in case there
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are many keywords matched with few documents. The solution for this is that storing the

encrypted blocks of B identifiers in an array and encrypted blocks of b pointers to these

blocks in the dictionary, where b and B are the block sizes of the dictionary and array.

Additionally, real datasets can have great variability in the number of matching

results for different keywords. It means that there may be many keywords included in

only a few documents, and there may be some keywords contained in a significant number

of documents. The 2Lev scheme takes this situation into account and offers a solution to

address this variability within datasets. In this thesis, we call it RR2Lev or RH2Lev

depending on revealing or hiding query responses. We explain RR2Lev in this section

and RH2Lev in the next section.

RR2Lev considers the result sets of keywords as (i) small, (ii) medium, or (iii)

large. The result set of a keyword w, DB(w), contains the identifiers the keyword appears

in. For simplicity, without considering encryptions, it can be said that it inserts the identi-

fiers as follows: If the result set is small (|DB(w)| ≤ b), a block of b document identifiers

are packed and stored in the dictionary. If the result set is medium (b < |DB(w)| ≤ Bb),

the blocks of B identifiers are stored in the array and a block of b pointers to these blocks

is stored in the dictionary. If the result set is large (Bb < |DB(w)| ≤ B2b), a block of

b pointers is stored in the dictionary, and these pointers point to the blocks of B pointers

in the array, where each pointer points to the blocks of B identifiers in the array. So, the

scheme uses two levels of indirections to access the identifiers for the large result sets.

To search for a keyword, the user sends the keys K1 and K2 like the basic scheme. The

server computes the label by applying the PRF to zero with K1, accesses the correspond-

ing value from the dictionary, and decrypts it using K2. If the decrypted value contains

the identifiers, then the server outputs them. Otherwise, the value contains the pointers

and the server accesses the blocks in the array using these pointers. If those blocks in-

clude identifiers, then the server outputs the identifiers. Otherwise, the server uses the

second-level pointers to access and output the identifiers.

Now, we present the dictionary and array created for the given example inverted

index in Figure 4.3. Here, superscripts are removed for simplicity, however two keys are

created for each keyword, as in the basic scheme. The chosen sizes for small (b) and big

blocks (B) are 2 and 3, respectively. The keyword w1 is included in 2 documents which

are D2 and D10. Since its result set is small, the two identifiers are packed, the encryption

of it is directly stored in the dictionary. The result sets of the keywords w2 and w5 are

medium. The keyword w5 is contained in 5 documents that are D1, D3, D5, D6 and D10.
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The identifier blocks [D1, D3, D5] and [D6, D10, X] are randomly stored in the positions

67 and 20 of the array. So, the block [67, 20] is stored in the dictionary. The keyword

w7 appears in 7 documents, so its set size is large. The identifiers are separated in the

blocks [D1, D2, D3], [D5, D6, D9] and [D10, X, X]. These blocks are inserted into the

positions 90, 14 and 85 in the array. The block of the pointers [90, 14, 85] is inserted in

the position 6 of the array, and the block [6, X] is kept in the dictionary. If the keyword w7

is searched, after taking the related keys from the user, the server gets the E(K2, 6 ‖ X)

from the dictionary and decrypts it. Then, it accesses the position 6 in the array, gets

E(K2, 90 ‖ 14 ‖ 85) and decrypts it. Next, the server accesses the positions 90, 14 and

85 in the array, and outputs a list of the identifiers D1, D2, D3, D5, D6, D9 and D10 after

parsing and removing the padded elements.

Label Value

F (K1, 0) E(K2, D2 ‖ D10)

F (K1, 0) E(K2, 17 ‖ X)

F (K1, 0) E(K2, 67 ‖ 20)

F (K1, 0) E(K2, 6 ‖ X)

. . .

6 E(K2, 90 ‖ 14 ‖ 85)

. . .

14 E(K2, D5 ‖ D6 ‖ D9)

. . .

17 E(K2, D4 ‖ D5 ‖ D10)

. . .

20 E(K2, D6 ‖ D10 ‖ X)

. . .

67 E(K2, D1 ‖ D3 ‖ D5)

. . .

85 E(K2, D10 ‖ X ‖ X)

. . .

90 E(K2, D1 ‖ D2 ‖ D3)

. . .

Figure 4.3. The RR2Lev scheme dictionary and array created for the given example in-

verted index. The chosen sizes for small and big blocks are 2 and 3, respec-

tively.
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4.2. RH2Lev Scheme

Response hiding schemes do not reveal the identifiers of query results to the server.

To achieve this, the identifiers are encrypted using a symmetric encryption scheme, such

as AES, and stored in the index instead of being stored in plaintext. So, the server outputs

a list of the encrypted identifiers for a keyword search and the user decrypts the returned

identifiers. In the RH2Lev scheme, an extra key K3 is derived from the key K to en-

crypt the document identifiers. Therefore, an additional algorithm (resolve) is introduced,

which is executed by the user to decrypt the identifiers.

The RH2Lev scheme dictionary and array created for the given index are shown

in Figure 4.4. For example, if the keyword w2 is queried, the user sends the keys K1 and

K2 of the w2 to the server which gets the E(K2, 17 ‖ X) from the dictionary with the

K1 and decrypts it using the K2. Then, the server takes the element E(K2, E(K3, D4)

‖ E(K3, D5) ‖ E(K3, D10)) of the array via the pointer 17 and gets a list consisting of

E(K3, D4), E(K3, D5) and E(K3, D10) by decrypting the outer encryption using the K2

and parsing. After that, the server returns the list to the user who decrypts the encrypted

identifiers with the key K3 by running the resolve algorithm.

4.3. DynRR Scheme

Kamara and Moataz (2017) introduced a dynamic response-hiding SSE (DynRH)

in the Clusion framework, which is a variant of the dynamic scheme (Cash et al. (2014)).

We investigate the two types of this scheme by also adapting it to the response-revealing

form (DynRR). We examine the DynRR scheme in this section and the DynRH scheme

in the following section. However, prior to the DynRR scheme, we describe the dynamic

scheme of Cash et al. (2014).

The dynamic property supports additions and deletions to the data after uploading

it to the server. So, the basic scheme in the Section 4.1 is modified in order to allow dy-

namism. In the dynamic scheme, to enable the additions, an extra empty dictionary is used

in addition to the static dictionary. Keyword-document pairs are added to this dictionary

with addition operations. To add a document identifier for a keyword, the label is com-

puted from the keyword and counter value specific to this keyword, and the identifier is

encrypted. It means that addition operations containing keyword w need the user to know

20



Label Value

F (K1, 0) E(K2, E(K3, D2) ‖ E(K3, D10))

F (K1, 0) E(K2, 17 ‖ X)

F (K1, 0) E(K2, 67 ‖ 20)

F (K1, 0) E(K2, 6 ‖ X)

. . .

6 E(K2, 90 ‖ 14 ‖ 85)

. . .

14 E(K2, E(K3, D5) ‖ E(K3, D6) ‖ E(K3, D9))

. . .

17 E(K2, E(K3, D4) ‖ E(K3, D5) ‖ E(K3, D10))

. . .

20 E(K2, E(K3, D6) ‖ E(K3, D10) ‖ X)

. . .

67 E(K2, E(K3, D1) ‖ E(K3, D3) ‖ E(K3, D5))

. . .

85 E(K2, E(K3, D10) ‖ X ‖ X)

. . .

90 E(K2, E(K3, D1) ‖ E(K3, D2) ‖ E(K3, D3))

. . .

Figure 4.4. The RH2Lev scheme dictionary and array created for the given example in-

verted index. The chosen sizes for small and big blocks are 2 and 3, respec-

tively.

the current value of the counter for the w. Therefore, a dictionary Dcount mapping a key-

word to its current value is stored at the client or server, that requires keeping a state at

the client or communication whose size is proportional to the number of keywords to be

added or deleted if it is stored in an encrypted form at the server. To enable deletions,

the server maintains a revocation list storing pseudorandom revocation identifiers each

of which is computed from a deleted keyword/document pair so that the server can filter

out the results of a query that are deleted. So, the user sends also another key for this

to the server, that allows the server to filter out the deleted ones. Nevertheless, it makes
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addition operations more complicated since the server should delete the corresponding re-

vocation identifiers from the revocation list when deleted pairs are re-added and the user

increments the counter values according to the response of the server.

Now, we explain DynRR scheme. The setup algorithm of this scheme chooses a

key K and allocates two dictionaries D and Dcount, and a list P. The dictionary Dcount is

stored at the user as state. The dictionary D and list P are stored at the server. The P is

used to hold the counter values corresponding to the document identifiers to be deleted

that match a keyword. When the user wants to add keyword-document pairs, the follow-

ing steps are performed: For each keyword, two keyword-specific keys, K1 and K2, are

derived. All the identifiers associated with the keyword are iterated. For each identifier,

the current counter value for the keyword is taken from Dcount (zero if null), a label is

produced by applying the PRF and the key K1 to the counter value, and the identifier

is encrypted with the key K2. Then, the label/encrypted identifier pair is added to the

list that will be sent to the server which adds the elements in the list to the dictionary

D by running the Update algorithm. The Search algorithm is similar to that in the basic

scheme, but the server also adds the counter values of the document identifiers matching

the searched keyword into the list P so that they can be used during deletion. After search-

ing a keyword, if the user wants to delete some of the identifiers for this keyword, the user

produces the key K1, selects the indices of the identifiers to be deleted from the returned

result list, and transmits them to the server. Then, the server gets the counter values of

the indices from the list P, produces the relevant labels via K1 and the counter values, and

deletes the related entries from the dictionary.

Let us think that the dictionary in Figure 4.5a was created for the document set

of the user. If the user searches the keyword w5, the server calculates [D1, D3, D5, D6,

D10] as the identifier list and [0, 1, 2, 3, 4] as the list P, and returns the identifier list to

the user. After that, if the user wants to delete the identifiers D3 and D6 for the keyword

w5, the user chooses the indices 1 and 3, and transmits them to the server that finds the

counter values 1 and 3 by getting these indices of the list P, produces the labels F (K1, 1)

and F (K1, 3), and deletes them (see Figure 4.5b). If the user searches the keyword w5

again, now the returned list is [D1, D5, D10] and the list P is [0, 2, 4] since the P is cleared

with each search operation. The user selects the index 2 to delete the identifier D10 for

the keyword w5 and sends it to the server. Then, the server gets the index 2 of the list P

which is 4, and calculates the label F (K1, 4), and deletes the entry with this label (see

Figure 4.5c).
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Label Value

F (K1, 0) E(K2, D2)

F (K1, 1) E(K2, D10)

F (K1, 0) E(K2, D4)

F (K1, 1) E(K2, D5)

F (K1, 2) E(K2, D10)

F (K1, 0) E(K2, D1)

F (K1, 1) E(K2, D3)

F (K1, 2) E(K2, D5)

F (K1, 3) E(K2, D6)

F (K1, 4) E(K2, D10)

. . . . . .

(a) The DynRR dictionary cre-

ated for the given index. If

the keyword w5 is searched,

the server locates the entries

colored in gray, and the list P

keeps [0, 1, 2, 3, 4].

Label Value

F (K1, 0) E(K2, D2)

F (K1, 1) E(K2, D10)

F (K1, 0) E(K2, D4)

F (K1, 1) E(K2, D5)

F (K1, 2) E(K2, D10)

F (K1, 0) E(K2, D1)

F (K1, 2) E(K2, D5)

F (K1, 4) E(K2, D10)

. . . . . .

(b) The DynRR dictionary cre-

ated for the given index af-

ter deleting the identifiers D3

and D6. If the keyword w5

is searched again, now the

server locates gray entries and

the list P keeps [0, 2, 4].

Label Value

F (K1, 0) E(K2, D2)

F (K1, 1) E(K2, D10)

F (K1, 0) E(K2, D4)

F (K1, 1) E(K2, D5)

F (K1, 2) E(K2, D10)

F (K1, 0) E(K2, D1)

F (K1, 2) E(K2, D5)

. . . . . .

(c) The dictionary created for the

given index after deleting the

identifier D10.

Figure 4.5. The DynRR scheme dictionary created for the given example inverted index

before and after delete operations.
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4.4. DynRH Scheme

DynRH scheme encrypts the document identifiers using a key of the user before

storing them into the dictionary. So, it does not reveal the identifiers in plaintext to the

server for a keyword search. As in the RH2Lev scheme, a resolve algorithm is introduced.

The DynRH scheme dictionary created for the given index is shown in Figure 4.6.

Label Value

F (K1, 0) E(K2, E(K3, D2))

F (K1, 1) E(K2, E(K3, D10))

F (K1, 0) E(K2, E(K3, D4))

F (K1, 1) E(K2, E(K3, D5))

F (K1, 2) E(K2, E(K3, D10))

. . . . . .

Figure 4.6. The DynRH scheme dictionary created for the given example inverted index.

4.5. SRMES

Ibrahim et al. (2012) proposed a secure ranked scheme (SRMES) to allow multi-

keyword searches over encrypted documents stored on remote servers. In this scheme, an

inverted index mapping each keyword to a posting list is created for the document col-

lection and a score is associated with each keyword-document pair to achieve the ranking

capability. They protect the inverted index by encrypting the keyword set with a key-based

hash function and the document identifiers with Paillier cryptosystem, padding the posting

lists to the longest list length with random identifier and zero score pairs, inserting faked

keywords with faked posting lists, and using an enhanced privacy preserving mapping

(PPM) scheme in which the scores are encrypted with probabilistic Paillier cryptosystem

so that the duplicated scores are seen as different scores.

In the PPM scheme, integer numbers are mapped into encrypted images that can

be used later for comparisons to decide the relations like <,=, > for the corresponding
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numbers. For a set X = {x1, ..., xr} consisting of r different integer numbers, the map-

ping list is created as follows:

Mlist = {H2(H1k(xj) ‖ H1k(xi)) | xi < xj ∧ 1 ≤ i, j ≤ r}, (4.1)

where Ti = H1k(xi) is the encrypted image of the integer xi, and H2, Mlist and the

images are public parameters. Comparison of two images T1 and T2 in the mapping list

gives one of the results (0, 1, or −1) according to the Algorithm 1.

Algorithm 1 Comparison of two images (Ibrahim et al. (2012))

Input: The secret images T1 and T2;
Output: 0, 1 or −1.

1: if T1 = T2, return 0.
2: else if H2(T2 ‖ T1) ∈ Mlist, return −1.
3: else, return 1.

The Mlist stores r ∗ (r − 1)/2 hash values so its size can be very large when the

r is large. Therefore, they propose to divide the set X into subsets Xi (a set for each post-

ing list), create an Mlisti for each subset Xi, and use a BF for representing the Mlisti in

order to improve the efficiency of the PPM scheme. With this setting, for each keyword, a

BF is created from the secret images of the relevance scores in the posting list associated

with the keyword, and two images can be compared using the BF, which can be seen from

the Algorithm 2.

Algorithm 2 CBF (Ibrahim et al. (2012))

Input: The secret images T1 and T2, and a Bloom Filter BF ;
Output: 0, 1 or -1.

1: if T1 = T2, return 0.
2: else if: BF (fl(H2(T2 ‖ T1))) = 1, l = 1, ..., t, return −1. � t hash functions
3: else, return 1.

They introduce two distinct cloud servers to keep the encrypted documents and

the index with the aim of hiding the access pattern. Specifically, the servers are the search

server, SS and the document server, DS. Their assumption is that the servers do not col-

lude with each other. The scheme consists of two phases that are indexing and searching
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phase. In the first phase, the data owner creates the index and converts it to the secure

index including the posting list (encrypted identifier-encrypted score pairs) along with the

BF for each keyword and encrypts the documents. In the retrieving phase, an authorized

user sends the trapdoor for a multi-keyword query. The SS finds the corresponding post-

ing lists along with BFs and calls the Ranking Algorithm (see Algorithm 3) to rank the

document identifiers in each posting list. The SS combines all FileID (the encrypted iden-

tifiers) and PScore (the partial scores), and sends them to the DS which has the Paillier

decryption key to decrypt the encrypted identifiers. Then, the DS calculates the scores

of each identifier from the partial scores using the Equation 2.3 and returns the top-k en-

crypted documents to the user.

Algorithm 3 Ranking (Ibrahim et al. (2012))

Input: Posting List PL of length L and Bloom Filter BF ;
Output: FileID and PScore

1: Set FileID to the encrypted document identifiers in PL.
2: Set Escore to the encrypted scores in PL.
3: Initialize L ∗ L matrix M of zeros.
4: for i = 1 to L do:
5: for j = 1 to L do:
6: if i < j :
7: M(i, j) = CBF(BF , Escore(i), Escore(j))
8: else:
9: M(i, j) = − M(j, i)

10: Set PScore to {sm1, ..., smL}, where smj is the summation of row j in M
11: Output FileID and PScore.

� PScore is the set of partial scores.

The ranking algorithm computes the partial score of each document in a posting

list by comparing each pair of the encrypted scores in the posting list. Thus, filling the

matrix M has a high impact in the algorithm. For example, if a keyword is included in 7

documents, the length of the posting list for this keyword is 7 (L = 7). Each pair in the

list is compared so the CBF algorithm is called (7 ∗ 6)/2 = 21 times. Assume that the

number of hash functions used in the Bloom Filter is 5. Then, 21∗5 = 105 hash functions

are computed during the search.

Let us think a single-keyword query as an example to show how the matrix is

calculated. Suppose the posting list for the keyword is PL = {(1, 2) (2, 6) (3, 4) (5, 4)
(6, 12) (9, 6) (10, 3)} in which the first and second numbers show the identifiers and
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scores, respectively. For simplicity, the list includes plaintext identifiers and scores. The

FileID is {1, 2, 3, 5, 6, 9, 10} and Escore is {2, 6, 4, 4, 12, 6, 3}. The SS compares each

pair of scores in Escore. For instance, the SS inserts 1 to the M(1, 2) since H2(6 ‖ 2)

is contained in the BF (6 is greater than 2), but the SS inserts −1 to the M(2, 3) since

H2(6 ‖ 4) is contained in the BF. When the SS completes to compare each pair of the

scores, the calculated matrix will be as shown in Figure 4.7 and the partial score list

PScore will be {6,−3, 1, 1,−6,−3, 4} in which the document with the partial score −6

is the most relevant to the search keyword.

2 6 4 4 12 6 3

2 0 1 1 1 1 1 1 sm1 = 6

6 -1 0 -1 -1 1 0 -1 sm2 = -3

4 -1 1 0 0 1 1 -1 sm3 = 1

4 -1 1 0 0 1 1 -1 sm4 = 1

12 -1 -1 -1 -1 0 -1 -1 sm5 = -6

6 -1 0 -1 -1 1 0 -1 sm6 = -3

3 -1 1 1 1 1 1 0 sm7 = 4

Figure 4.7. The matrix created in the Ranking Algorithm for an example single-keyword

query associated with the 7 document identifiers.
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CHAPTER 5

RANKED SEARCHABLE ENCRYPTION

We propose different approaches for ranked searchable encryption, which are (i)

Sorted, (ii) OPE-Based, (iii) Paillier-Based, (iv) Embedded, and (v) Matrix-Based. The

base schemes RR2Lev, RH2Lev, DynRR and DynRH explained in the Chapter 4 only

support single-keyword queries without result ranking. We enhance these four schemes

to enable result ranking for single- and multi-keyword searches according to these ap-

proaches. The scheme SRMES allows multi-keyword ranked searches, however we mod-

ify this static scheme to make it more efficient during searches. Table 5.1 shows which

base scheme can be adapted to which approach.

Table 5.1. Proposed approaches for Ranked Searchable Encryption.

Query Type Base Scheme
Approach

Sorted OPE Paillier Embedded Matrix

Single

RR2Lev � � �
RH2Lev � � �
DynRR � �
DynRH � �

Multi

RR2Lev � �
RH2Lev � �
DynRR �
DynRH �

We apply different techniques for calculation of relevance scores, that are:

1. If a ranked scheme is static and supports single keyword searches, then the score of

a document to a keyword is calculated using score(w, Fid) =
1

|Fid|(1 + ln(fid,w)).

It ignores the IDF part of the Equation 2.2 because only one keyword is searched.

28



2. If a ranked scheme is static and supports multi-keyword searches, then the score of

a document to each keyword in a query is calculated using the Equation 2.2.

3. If a ranked scheme is dynamic, then the score of a document to a keyword is directly

assigned to the keyword frequency, so score(w, Fid) = fid,w.

4. If a ranked scheme is multi-keyword, the score of a document to a query is calcu-

lated using the Equation 2.3.

We utilize from the frequency values of the keywords in the documents in Table

5.2 as an example for the ranked schemes.

Table 5.2. The frequency values of the keywords in the documents for the given index.

D1 D2 D3 D4 D5 D6 D9 D10

w1 0 5 0 0 0 0 0 2

w2 0 0 0 3 4 0 0 8

w5 5 0 20 0 3 7 0 12

w7 2 6 4 0 4 12 6 3

These approaches are based on the scenarios in which there are a single user and

server, as described in the Chapter 2. In the following sections, we will explain the details

of the approaches and their schemes in more detail.

5.1. Sorted Ranked SE Schemes

This approach supports only single-keyword searches and keeps the document

identifiers matching a keyword in the structures in descending order of relevance scores.

Therefore, in setup phase, it performs sort operation before adding the identifiers of a key-

word to the structures. It means that this approach does not store the relevance scores in

the structures and allows only static schemes like RR2Lev and RH2Lev because dynamic

schemes can dynamically add an identifier with a lower relevance score to the dictionary
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after an identifier with a higher score, and do not preserve the order correctly. So, Sorted

SR-RR2Lev and Sorted SR-RH2Lev schemes are proposed for this approach.

5.2. OPE-Based Ranked SE Schemes

To enable ranked search, we design the schemes in which a relevance score in-

formation is stored for each keyword-document pair. We concatenate each document

identifier with a relevance score because they are related to each other. In this approach,

relevance scores are first encrypted with OPE scheme and then combined with the iden-

tifiers. Additionally, random scores with the same length are added to the pointers and

padded elements−X in order to hide the block sizes of the dictionary and array in RR2Lev

and RH2Lev schemes. As an example, Figure 5.1 illustrates the modified structures for

RR2Lev, created for the given example index with the frequency values in Table 5.2.

During search operations, the server follows the similar steps of the base schemes.

However, this time the server parses the concatenated strings to get the identifiers or

pointers by removing the padded elements with random scores or directly random scores

in case of the pointers. In this manner, the server obtains the identifiers and corresponding

encrypted scores. Then, the server sorts the encrypted scores thanks to the OPE and learns

the orders of the identifiers. Next, the server returns the ranked document identifiers for

the searched keyword to the user. If a response-hiding scheme is used, the server returns

the encrypted identifiers and the user should call the resolve algorithm to get the identifiers

in plaintext. In dynamic schemes, if the user wants to delete some document identifiers

for the keyword, because of the ranking, now the indices selected by the user will delete

wrong document identifiers since the server uses the indices to get the counter values from

the list P in DynRR and DynRH schemes. Therefore, we use a dictionary P instead of the

list P, that is stored at the server and filled during search to map a document identifier (or

an encrypted identifier) to its counter value that is used at the time the identifier was added

for this keyword. Hence, when the user chooses the indices, the identifiers (or encrypted

identifiers) corresponding to these indices are sent to the server which can get the counter

values from the dictionary P and delete the correct entries.

OPE-Based SR-RR2Lev, OPE-Based SR-RH2Lev, OPE-Based SR-DynRR and

OPE-Based SR-DynRH schemes are introduced for secure single keyword ranked searches.

For this approach, multi-keyword schemes are not designed because we consider multi-

30



Label Value

F (K1, 0) E(K2, 〈D2, E(Kope, 130)〉 ‖ 〈D10, E(Kope, 42)〉)
F (K1, 0) E(K2, 〈17, R〉 ‖ 〈X,R〉)
F (K1, 0) E(K2, 〈67, R〉 ‖ 〈20, R〉)
F (K1, 0) E(K2, 〈6, R〉 ‖ 〈X,R〉)

. . .

6 E(K2, 〈90, R〉 ‖ 〈14, R〉 ‖ 〈85, R〉)
. . .

14 E(K2, 〈D5, E(Kope, 79)〉 ‖ 〈D6, E(Kope, 174)〉 ‖ 〈D9, E(Kope, 279)〉)
. . .

17 E(K2, 〈D4, E(Kope, 209)〉 ‖ 〈D5, E(Kope, 79)〉 ‖ 〈D10, E(Kope, 76)〉)
. . .

20 E(K2, 〈D6, E(Kope, 147)〉 ‖ 〈D10, E(Kope, 87)〉 ‖ 〈X,R〉)
. . .

67 E(K2, 〈D1, E(Kope, 130)〉 ‖ 〈D3, E(Kope, 199)〉 ‖ 〈D5, E(Kope, 69)〉)
. . .

85 E(K2, 〈D10, E(Kope, 52)〉 ‖ 〈X,R〉 ‖ 〈X,R〉)
. . .

90 E(K2, 〈D1, E(Kope, 84)〉 ‖ 〈D2, E(Kope, 139)〉 ‖ 〈D3, E(Kope, 119)〉)
. . .

Figure 5.1. The OPE-Based SR-RR2Lev scheme dictionary and array created for the

given example inverted index. The chosen sizes for small and big blocks are

2 and 3, respectively. R is a random value.

keyword ranked schemes as follows: if a query consists of multiple keywords, then the

relevance score of a document to the query can be calculated by adding the relevance score

of the document to each keyword in the query, as in the Equation 2.3. However, OPE

schemes cannot be applicable to this setting. Let us explain the reason with an example.

Assume that there are 2 documents whose identifiers are id1 and id2, and a multi-keyword

query is composed of 2 keywords (w1 and w2). The document id1 includes both of them

and its scores for them are 3 and 15, respectively, and the document id2 includes only w2

and its score for w2 is 19. The total scores of id1 is 18 and the total score of id2 is 19.
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Hence, it can be said that id2 is more relevant to the query than id1. However, in OPE

schemes, summation of encryptions of 3 and 15 may be greater than encryption of 19.

5.3. Paillier-Based Ranked SE Schemes

This approach also concatenates the relevance scores with the identifiers, as in

our OPE-Based approach. However, the scores are encrypted using Paillier encryption

scheme rather than OPE scheme. The search algorithm is similar to that in OPE-Based

schemes, but the server cannot rank the document identifiers. That is why, the encrypted

scores are sent to the user along with the (encrypted) identifiers. A resolve algorithm

is introduced in Paillier-Based ranked schemes to decrypt the encrypted scores and rank

the (encrypted) identifiers by these scores. If a response hiding scheme is used, then the

encrypted identifiers are also decrypted in the resolve algorithm. In dynamic schemes,

the server stores a dictionary P rather than a list P to enable deletions like OPE-Based

ones. But, there is a small difference in only dynamic response-hiding scheme (DynRH)

since the server does not know the identifiers in plaintext and also the order due to the

ranking on the user side. A solution for this is that this time the dictionary P maps the

encrypted identifiers to the counters, and when the user selects the indices to be deleted,

the identifiers of these indices are encrypted at the user before calling the delete algorithm

of the server.

We propose Paillier-Based SR-RR2Lev, Paillier-Based SR-RH2Lev, Paillier-Based

SR-DynRR and Paillier-Based SR-DynRH schemes to be used for secure single-keyword

ranked searches. Also, we introduce Paillier-Based MR-RR2Lev and Paillier-Based MR-

DynRR for multi-keyword ranked searches. These schemes modify some algorithms of

the single keyword schemes. The token algorithm of the multi-keyword schemes produces

a list of tokens for multiple keywords instead of just one token for a single keyword. The

search algorithm finds the encrypted total score of each document identifier matching the

query by adding the encrypted score of the identifier with respect to each keyword in the

query homomorphically. For this, the server stores a dictionary that associates the identi-

fier with the corresponding encrypted score. Then, the server returns the dictionary to the

user. The resolve algorithm of the user takes as input this result dictionary and the Paillier

decryption key, gets each encrypted score from the dictionary, decrypts it using the key,

and at the end, ranks the identifiers by these scores.
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The response-hiding schemes cannot be adapted to multi-keyword ranked searches

when the relevance scores are encrypted using Paillier scheme and there are a single user

and server in the system. The reason is that the server computes the total encrypted

score of each document identifier in the response-revealing ones, whereas the response-

hiding schemes store the encrypted identifiers and the server sees each of them as if a

different identifier because of using the keyword-specific keys. Therefore, the server

cannot calculate the total scores. Embedded schemes are proposed for the response-hiding

schemes in the next section to allow multi-keyword ranked searches when the system

includes one user and server.

5.4. Embedded Ranked SE Schemes

As mentioned above, embedded schemes are introduced for the response-hiding

schemes to support multi-keyword searches with result ranking. The issue mentioned in

the Paillier-Based ranked schemes is that the server thinks two encrypted identifiers be-

longing to the same identifier that are encrypted with keyword-specific keys as different

identifiers and cannot find the total encrypted scores. Thus, to calculate the total en-

crypted scores, both the identifiers and scores should be sent to the user who will find

the total scores and rank the identifiers by these scores. In this way, the user adds the

encrypted scores homomorphically or decrypts them and adds the scores. However, we

consider that if the user performs the addition operations, the relevance scores can be

directly concatenated with the identifiers since the user already decrypts the identifiers

in the response-hiding schemes. With this way, the user gets the scores in plaintext for

the identifiers and adds them to find the total scores. So, Embedded MR-RH2Lev and

Embedded MR-DynRH schemes are proposed. Figure 5.2 illustrates an instance of this

approach with the frequencies in Table 5.2.

5.5. Matrix-Based Ranked SE Schemes

This is a hybrid approach that combines a modified version of efficient and secure

data structures of 2Lev scheme (Cash et al. (2014)) with an updated ranking algorithm of

SRMES (Ibrahim et al. (2012)) to allow document ranking for multi-keyword searches.
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Label Value

F (K1
1 , 0) E(K1

2 , E(K1
3 , 〈D2, 5〉))

F (K1
1 , 1) E(K1

2 , E(K1
3 , 〈D10, 2〉))

F (K2
1 , 0) E(K2

2 , E(K2
3 , 〈D4, 3〉))

F (K2
1 , 1) E(K2

2 , E(K2
3 , 〈D5, 4〉))

F (K2
1 , 2) E(K2

2 , E(K2
3 , 〈D10, 8〉))

. . . . . .

Figure 5.2. The Embedded MR-DynRH scheme index created for the given example in-

verted index.

We prefer to use structures of 2Lev scheme since SRMES may require too much padding

in some cases, whereas 2Lev scheme regards locality and variabilities within datasets,

mentioned in Section 4.1. We modify the structures to facilitate ranking by concatenating

document identifiers with relevance scores, as in OPE-Based and Paillier-Based ranked

schemes, but in this approach, the relevance scores are encrypted using a key-based hash

function. SRMES uses probabilistic Paillier cryptosystem to encrypt the relevance scores

so that repeated scores are shown as different scores and the information leaked to the

server about the distribution of the scores is reduced. The key-based hash function that we

use produces deterministic values, however, it produces different results when the same

score is concatenated for different keywords thanks to keyword-specific keys. Hence, the

amount of leakage is also reduced.

The ranking algorithm (see Algorithm 3) used in SRMES for ranking the docu-

ments of a keyword is modified to increase search efficiency since it requires calculation

of different number of hash functions depending on the number of the documents match-

ing the keyword. We modify this algorithm by keeping the document identifiers in the

structures in descending order of relevance scores. The modified algorithm can be seen in

Algorithm 4 in which the server fills the upper triangular part of the matrix by just check-

ing the equality of two encrypted scores thanks to ranking rather than checking the hash

of their concatenation in the BF. So, in the upper triangular part, if the first score is not

equal to the second score, then −1 is set (which means that it is greater than the second

one). Otherwise, they are equal and 0 is set. Then, if −1 is set in a cell of a row once, then

it is not required to continue comparisons for this row and the remaining cells in the row

are set to −1, as well. The cells in the lower triangular part of the matrix are assigned to

34



Algorithm 4 Modified Ranking

Input: FileID and Escore (both of length L);
Output: FileID and PScore

1: Initialize L ∗ L matrix M of zeros, flag as false and pos as 0
2: for i = 1 to L do:
3: for j = 1 to L do:
4: if i < j :
5: if Escore(i) 	= Escore(j):
6: M(i, j) = −1
7: flag = true ; pos = j
8: break
9: else:

10: M(i, j) = − M(j, i)
11: if flag true:
12: for j = pos+ 1 to L do:
13: M(i, j) = −1
14: flag = false
15: Set PScore to {sm1, ..., smL}, where smj is the summation of row j in M
16: Output FileID and PScore.

� PScore is the set of partial scores.

the opposite values of those in the upper part. Figure 5.3 gives the matrix created in the

Modified Ranking Algorithm for the example query mentioned in Section 4.5. It is easily

seen that the upper part consists of only 0s and −1s.

Matrix-Based MR-RR2Lev and Matrix-Based MR-RH2Lev schemes are proposed

for this approach. These schemes allow multi-keyword ranked queries. The search algo-

rithm of them is similar to that in the Paillier-Based SR-RR2Lev scheme, since the server

gets the (encrypted) identifiers (FileID) and encrypted scores (EScore) by performing sev-

eral parsing operations. However, the server calls the Modified Ranking Algorithm to find

the partial score of each document identifier for the searched keyword. In Matrix-Based

MR-RR2Lev scheme, the server can calculate the total score of each identifier by adding

the partial scores. But, in Matrix-Based MR-RH2Lev scheme, the server cannot calculate

the total scores since it does not know the original identifiers. According to our scenarios

described in Chapter 2, there are a single user and server in the system. Therefore, the

server combines all FileID and Escore, as in SRMES, but it sends them to the user who

decrypts the encrypted identifiers and adds the partial scores of the individual identifier to

compute the total score of it.
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12 6 6 4 4 3 2

12 0 -1 -1 -1 -1 -1 -1 sm1 = -6

6 1 0 0 -1 -1 -1 -1 sm2 = -3

6 1 0 0 -1 -1 -1 -1 sm3 = -3

4 1 1 1 0 0 -1 -1 sm4 = 1

4 1 1 1 0 0 -1 -1 sm5 = 1

3 1 1 1 1 1 0 -1 sm6 = 4

2 1 1 1 1 1 1 0 sm7 = 6

Figure 5.3. The matrix created in the Modified Ranking Algorithm for an example single-

keyword query associated with the 7 document identifiers.
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CHAPTER 6

ANALYSIS OF BASE AND PROPOSED SCHEMES

In this chapter, the base and proposed schemes studied in the Chapter 4 and Chap-

ter 5 are compared in terms of various metrics, such as characteristic, query functionality,

leakage and efficiency, as shown in Table 6.2. The column “Char” specifies characteris-

tic of a scheme as static or dynamic. The column “Query Func” is query functionality

and can be single, multiple or ranked. Leakage is considered as index leakage “Ind”,

search leakage “Search” and update leakage “Upd”. For efficiency, storage size, token

size, search time, communication size, and resolve time are computed.

The notation used in Table 6.2 can be listed as follows:

• DB(w) is the document identifiers that contain the keyword w.

• m is the number of unique keywords in the document collection, m = |W |.

• N is the total number of keyword-document pairs, N =
∑

w∈W |DB(w)|.

• r is the number of document identifiers matching the keyword w, r = |DB(w)|.

• q is the number of keywords in a multi-keyword query.

• rt is the number of document identifiers matching a multi-keyword query.

• rT is the sum of the number of matching document identifiers for each keyword in

a multi-keyword query.

• rM = maxw|DB(w)|, where w is a keyword in a multi-keyword query.

• b and B are block sizes used in 2Lev-based schemes.

• S is the number of blocks in the array of 2Lev-based schemes (Cash et al. (2014)).

S =
∑

w:|DB(w)|>b


|DB(w)|/B�+
∑

w:|DB(w)|>Bb


|DB(w)|/B2�. (6.1)

• The parameters k, k′, ko, k′
o, kp, k

′
p, kh and k′

h are used to notice differences between

complexities more clearly.
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� k is the size of identifiers in response-revealing schemes, and k′ is the size of

ciphertexts of identifiers in response-hiding schemes. So, (k′ > k).

� ko and k′
o specify sizes for OPE-based schemes. ko is the sum of sizes an

identifier and a score encrypted using OPE scheme. k′
o differs from ko by

considering encrypted identifiers instead of identifiers. So, (k′
o > ko).

� kp and k′
p specify sizes for Paillier-based schemes, and (k′

p > kp).

� kh and k′
h specify sizes for Matrix-based schemes, and (k′

h > kh).

• D,P and PA define the complexities of symmetric decryption, Paillier decryption

and Paillier addition algorithms, respectively. Costs of Paillier cryptosystem algo-

rithms that are explained in Table 2.1 can be seen in Table 6.1.

• Sorting r document identifiers matching a keyword takes O(r· log r) time.

• RelOr means that a scheme leaks the relevance order of a query to the server.

• In dynamic schemes, the server learns the size of update, and if a keyword being

added was previously searched, then the server can also learn newly added identi-

fiers for this keyword by reusing the keys of the keyword that are sent to it before.

Those are not displayed in Table 6.2.

• The update pattern of (id, w) is up(id, w) and defines when the keyword w is added

to or deleted from the document id.

• The update pattern of keyword w is UP(w) and defines the set of identifiers includ-

ing w added or deleted later along with the information up(id, w).

Table 6.1. Costs of Paillier Cryptosystem Algorithms.

Paillier Decryption (P ) Paillier Addition (PA)

• 2 modular exponentiations
• 2 subtractions
• 2 divisions
• 1 modular inverse
• 1 multiplication
• 1 mod

• 1 multiplication
• 1 mod
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CHAPTER 7

EXPERIMENTAL RESULTS

In this chapter, we evaluate the performance of our proposed schemes which are

implemented in Java. Our experiments are executed on an Intel Core i7 8750 2.2 GHz

CPU with 16GB RAM running Windows 10. The experiments are conducted on a real

dataset, RFC, from which 8262 text files with a total size of 440 MB are randomly chosen.

Lucene (The Apache Software Foundation (Luc)) is used to extract keywords from each

RFC file by tokenizing the text, removing the stopwords, converting the keywords to

lower-case, and reducing the keywords to their root form (stemming). Thus, when a

query is searched, initially all the pre-processing steps are followed for (each keyword of)

the query, and then the corresponding token(s) is/are computed. The big and small block

sizes are chosen as 100 and 10 for 2Lev variants according to the limits in Section 4.1.

For the symmetric encryption AES in CTR mode with a 256-bit key and for the

keyed hash function HMAC-SHA512 are instantiated, and the Bouncy Castle library is

used to implement them. The Clusion framework (Kamara and Moataz (2017)) is used

for the base schemes which are extended to achieve the document ranking for single- and

multi-keywords. The ciphertext lengths of OPE scheme and Paillier encryption scheme

are defined as 64-bit and 1024-bit, respectively.

To measure the performance of the certain pieces of our code correctly, we utilize

from Java Microbenchmark Harness (JMH) which is a powerful tool to build, run and ana-

lyze microbenchmarks. We write benchmark codes for search and resolve algorithms, and

execute them by specifying parameters, such as the number of warmup and measurement

iterations, the benchmark mode, and so on. All time results are based on 100 executions.

The schemes are compared in terms of the following evaluation metrics which are:

(i) query efficiency, (ii) communication overhead, and (iii) storage overhead.

7.1. Query Efficiency

The execution times of the search and resolve algorithms in the schemes are mea-

sured as follows:
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Table 7.1. Keywords to measure the query time of the single keyword schemes.

Keyword Number of documents
matching the keyword

oversimplified 10

blackhole 50

phenomenon 100

lookup 1000

response 5000

• For single keyword schemes, keywords that are included in varying numbers of

documents are chosen to see the effect of the number of documents matching the

keyword on search time, resolve time and total query time of each scheme. The

chosen keywords and their matching numbers are illustrated in Table 7.1.

• For multi-keyword schemes, queries having different numbers of keywords, so dif-

ferent result sizes, are chosen to understand how the result size influences search

time, resolve time and total query time. The keywords and their matching numbers

are listed in Table 7.2, and the queries created from these keywords and their result

sizes are given in Table 7.3. The queries are abbreviated as Q1, Q2, Q3, Q4 and Q5.

Figure 7.1 shows the benchmark results of schemes based on RR2Lev for single

keyword searches. Specifically, the schemes are Sorted SR-RR2Lev, OPE-Based SR-

RR2Lev and Paillier-Based SR-RR2Lev. Sorted SR-RR2Lev just keeps the identifiers in

order, so its search time is the same as that of the base scheme RR2Lev. According to the

Table 7.2. Keywords used to create multi-keyword queries.

Keyword Number of documents
matching the keyword

Keyword Number of documents
matching the keyword

phenomenon 100 stuff 107

fluctuate 105 pretend 105

pairwise 102 agenda 105

sigma 104 callback 109

arrow 109 scratch 104
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Table 7.3. Queries to measure the query time of the multi-keyword schemes.

Query Abbr Result Size

phenomenon fluctuate Q1 199

phenomenon fluctuate pairwise sigma Q2 397

phenomenon fluctuate pairwise sigma arrow stuff Q3 588

phenomenon fluctuate pairwise sigma arrow stuff pretend
agenda

Q4 759

phenomenon fluctuate pairwise sigma arrow stuff pretend
agenda callback scratch

Q5 933

Figure 7.1, the followings can be deduced:

• Search times of all the schemes increase with the number of documents matching

the keyword since the server performs more decryption and parsing operations.

• The search time of OPE-Based SR-RR2Lev is about twice that of RR2Lev for all

result sizes since the OPE-Based scheme parses the identifiers and ranks them by

the scores, that is also another reason for the increase in the search time as the

number of matching documents increases.

• The dictionary and array created for OPE-Based SR-RR2Lev and Paillier-Based

SR-RR2Lev are similar, but only their encryption schemes used to encrypt the score

are different. Therefore, their search algorithms are similar until the server obtains

all the identifiers and corresponding scores. However, increase rate of the search

time is much higher in the Paillier-Based scheme in which the server cannot rank

the identifiers and returns them along with the encrypted scores to the user.

• The resolve algorithm in the Paillier-Based scheme includes decryptions of the Pail-

lier encrypted scores and ranking of the original scores, that dramatically increases

with the number of matching identifiers.

• The total query time is equal to the search time for the Sorted SR-RR2Lev and

OPE-Based SR-RR2Lev due to not doing any operations on the user side.

Figure 7.2 displays the benchmark results of schemes based on RH2Lev for single

keyword searches. The results can be explained as follows:
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Figure 7.1. (a) Search time, (b) Resolve

time, (c) Total query time of

schemes based on RR2Lev for

single keyword queries that

match different numbers of

documents.
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• Search times of these schemes have similar trends to those of the RR2Lev based

schemes in Figure 7.1, but encrypting the identifiers increases the search times.

• Each scheme, as a response hiding scheme, has a resolve algorithm to decrypt the

encrypted identifiers. These schemes are more secure than the response revealing

ones, but they require more processing on the user side.

• Total query times of these schemes increase due to increases in search times and

adding also resolve times.

Figure 7.3 illustrates the benchmark results of schemes based on DynRR for single

keyword searches. It can be seen from the figure that the search algorithms of DynRR

and OPE-Based SR-DynRR are approximately 5-times slower than those of RR2Lev and

OPE-Based SR-RR2Lev whose results can be seen from Figure 7.1 since 2Lev is designed

by considering locality and packing the several identifiers into a block. Especially, when

the structures are stored on the disk, the gap between search results can grow even more.

However, although the search time of Paillier-Based SR-DynRR immediately rises up

as the number of matching identifiers increases, its difference from Paillier-Based SR-

RR2Lev is lower than even 2 times.

Figure 7.4 illustrates the benchmark results of schemes based on DynRH for single

keyword searches. As in RH2Lev based schemes, search times of these schemes increase

according to the DynRR based schemes because of encrypting the identifiers (see Figure

7.3), and they also require the user to decrypt the identifiers in the resolve algorithm after

each search operation.

For RR2Lev scheme, we propose 2 multi-keyword ranked schemes that are Paillier-

Based MR-RR2Lev and Matrix-Based MR-RR2Lev. Figure 7.5 gives the benchmark re-

sults of these schemes for multi-keyword searches that have different result sizes, such as

199 to 933 identifiers.

• The dictionary and array of these schemes are similar (the scores are encrypted

using Paillier scheme or a key based hash function). Therefore, their search algo-

rithms are also similar to search a keyword until the server gets all the matching

identifiers and relevant encrypted scores for the keyword.

• After that, in the Paillier-Based one, the server adds the encrypted score of each

identifier to its total encrypted score (homomorphic addition). When the server
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completes searching all the keywords in the query, then it sends the identifiers and

encrypted scores to the user.

• On the other hand, the Matrix-Based one calls the Modified Ranking Algorithm

(Algorithm 4) for each keyword in the query to find the partial score of each identi-

fier by filling the matrix. Then, it adds the score of each identifier to its total score.

At the end, it sorts the identifiers according to the total scores, and sends the ranked

identifiers to the user.

• It can be viewed from the figure that the search algorithm of the Matrix-Based

one is slightly 3-times more efficient than the Paillier-Based one. Considering the

operations explained above, it is expected.

• In the Matrix-Based MR-RR2Lev, since the server already ranks the identifiers,

there is no resolve algorithm inside it.

The proposed schemes to extend RH2Lev scheme for providing multi-keyword

queries are Embedded MR-RH2Lev and Matrix-Based MR-RH2Lev whose benchmark

results can be shown in Figure 7.6. Actually, before comparing them, it is readily seen

that the search algorithm of Matrix-Based MR-RH2Lev is about 1,5 times that of Matrix-

Based MR-RR2Lev and it is only caused by encrypting the identifiers. The figure gives

the followings:

• The Embedded one outperforms the Matrix-Based one roughly 2-times since it just

collects all the encrypted concatenations that match a keyword in the query, each

includes the identifier and plaintext score, whereas the Matrix-Based one calls the

Modified Ranking Algorithm after each keyword search to find the local scores.

• In the resolve algorithm, the Matrix-Based one decrypts the encrypted identifiers

and adds the local score of each identifier to its total score, while the Embedded

one decrypts the concatenations, gets the identifiers and scores, and also sums up

the scores of each identifier. That means, the small difference between them is due

to parsing the concatenations, but it increases the processing time of the user for

each multi-keyword query.

Paillier-Based MR-DynRR is a variant of DynRR for ranked multi-keyword quer-

ies. Its results are displayed in Figure 7.7. When they are compared with the those of

Paillier-Based MR-RR2Lev, the two results are nearly the same.
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Finally, the benchmark results of Embedded MR-DynRH are illustrated in Figure

7.8, which indicates the encryption of identifiers leads to an increase in the search time

according to the Embedded MR-DynRR.

To summarize the operations of the user and server for multi-keyword queries, we

create a summary table (see Table 7.4). The detailed numbers of the benchmark results

are also given in Appendix A.

7.2. Communication Overhead

It refers to the data size that the server transmits to the user after a single- or

multi-keyword query. First, we explain how the communication overhead of the schemes

is calculated, and then find it for the schemes using an example single- and multi-keyword

queries. As a single-keyword query, ”phenomenon”, and as a multi-keyword query,

”phenomenon, fluctuate” are chosen. According to Table 7.2 and Table 7.3, the (”phe-

nomenon”), (”fluctuate”) and (”phenomenon, fluctuate”) are included in 100, 105 and

199 documents, respectively. Further, the sizes of an identifier, a symmetric-encrypted

identifier, and a Paillier ciphertext are 20, 100, and 309 digits, in order.

• For single-keyword schemes, the communication overhead is calculated as follows:

– In Paillier-Based schemes, it is (the number of document identifiers associated

with the search keyword ∗ the sum of sizes of an (encrypted) identifier and a

Paillier-encrypted score). If the scheme is response-revealing, it is 100∗ (20+
309), or if response-hiding, it is 100 ∗ (100 + 309).

– In Sorted and OPE-Based schemes, it is (the number of document identifiers

associated with the search keyword ∗ the size of an (encrypted) identifier). It

is 100 ∗ 20 for response-revealing, and 100 ∗ 100 for response-hiding.

• For multi-keyword schemes, the communication overhead is calculated as follows:

– In Paillier-Based schemes, such as Paillier-Based MR-RR2Lev and Paillier-

Based MR-DynRR, it is (the result set size ∗ the sum of sizes of an identifier

and a Paillier-encrypted score). It is 199 ∗ (20 + 309).

– In Matrix-Based MR-RR2Lev scheme, it is (the result set size ∗ the size of an

identifier). It is 199 ∗ 20.
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Table 7.4. A summary for operations of multi-keyword ranked schemes.

Scheme Search (Server) Resolve (User)

• Paillier-Based
MR-RR2Lev

• Paillier-Based
MR-DynRR

• Searches for each keyword

• Adds encrypted scores for
each identifier

• Collects each identifier and
its encrypted score

• Decrypts each Paillier-
encrypted score

• Ranks the identifiers

• Embedded
MR-RH2Lev

• Embedded
MR-DynRH

• Searches for each keyword

• Collects all the encrypted
concatenations, each con-
sists of the identifier and
score

• Decrypts each concatena-
tion (AES)

• Adds scores for each iden-
tifier

• Ranks the identifiers

• Matrix-Based
MR-RR2Lev

• Searches for each keyword

• Calls the Modified Ranking
Algorithm to find the local
scores

• Adds the local scores to cal-
culate the total score for
each identifier

• Ranks the identifiers

• Matrix-Based
MR-RH2Lev

• Searches for each keyword

• Calls the Modified Ranking
Algorithm to find the local
scores

• Collects each encrypted
identifier and its local score

• Decrypts each identifier
(AES)

• Adds the local scores to cal-
culate the total score for
each identifier

• Ranks the identifiers
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– In Matrix-Based MR-RH2Lev scheme, it is (the sum of the number of match-

ing documents for each keyword in the query ∗ the sum of sizes of an en-

crypted identifier and a partial score). It is about 205 ∗ 100.

– In Embedded schemes, it is (the sum of the number of matching documents

for each keyword in the query ∗ the size of an encrypted concatenation of an

identifier and score). It is roughly 205 ∗ 100.

7.3. Storage Overhead

The storage overhead of each scheme is measured and demonstrated in Figure 7.9.

The followings can be said from the figure:

• The Embedded schemes have nearly the same storage overhead as their base schemes.

• Due to using larger ciphertext length in the Paillier-Based schemes, their storage

overhead is more than the OPE-Based and Matrix-Based schemes.

• Encrypting the identifiers using a symmetric encryption scheme also causes an in-

crease in storage.

Figure 7.9. Storage cost of the base and proposed schemes.
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CHAPTER 8

CONCLUSION

Due to the increase in the amount of the data and opportunities offered by cloud

storage, many companies and individual users outsource their data to the untrusted servers.

To guarantee the data confidentiality, the data is encrypted prior to sending to the servers.

Therefore, it is necessary to design and implement efficient schemes that allow searching

on the encrypted data.

In this thesis, we focus on Searchable Symmetric Encryption schemes. In ad-

dition to searching, ranking of query results is also necessary to reduce the evaluation

time of the users. For this, we propose several approaches to provide secure single- and

multi-keyword ranked searches, that are Sorted, OPE-Based, Paillier-Based, Embedded

and Matrix-Based. We extend the base schemes (RR2Lev and RH2Lev by Cash et al.

(2014), DynRR and DynRH by Kamara and Moataz (2017)) according to the proposed

approaches. However, the existing structures of the schemes cannot be directly applied.

That is why, we modify them by adding the ranking capability without leaking any addi-

tional information, except for the relevance order of the documents in some approaches.

Moreover, we present a hybrid approach (Matrix-Based approach) that combines a modi-

fied structure of the static scheme (Cash et al. (2014)) with an updated ranking algorithm

(Ibrahim et al. (2012)) so that it supports multi-keyword ranked searches in a secure and

efficient way.

The approaches have different properties, such as supporting static or dynamic

settings, single-keyword or multi-keyword searches, keeping or not keeping the relevance

scores in the encrypted index, and using varying cryptographic tools. Therefore, the prop-

erties of the extended schemes also differ.

For future work, secure semantic ranked search schemes can also be implemented

to improve search accuracy by considering the terms semantically related to the query.
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APPENDIX A

BENCHMARK RESULTS

Table A.1. Benchmark results of schemes for single keyword searches.

Scheme Keyword Search Time

(ms)

Resolve Time

(ms)

Total Time

(ms)

Sorted

SR-RR2Lev

oversimplified 0,010 0,010

blackhole 0,077 0,077

phenomenon 0,088 0,088

lookup 0,916 0,916

response 4,094 4,094

OPE-Based

SR-RR2Lev

oversimplified 0,018 0,018

blackhole 0,127 0,127

phenomenon 0,158 0,158

lookup 1,753 1,753

response 7,829 7,829

Paillier-Based

SR-RR2Lev

oversimplified 0,088 12,105 12,193

blackhole 0,676 60,495 61,171

phenomenon 0,875 120,594 121,469

lookup 9,057 1218,462 1227,519

response 41,874 6071,328 6113,202

Sorted

SR-RH2Lev

oversimplified 0,016 0,026 0,042

blackhole 0,140 0,248 0,388

phenomenon 0,139 0,249 0,388

lookup 1,500 2,758 4,258

response 6,498 12,594 19,092

(Cont. on next page)
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Table A.1. Benchmark results of schemes for single keyword searches. (cont.)

Scheme Keyword Search Time

(ms)

Resolve Time

(ms)

Total Time

(ms)

OPE-Based

SR-RH2Lev

oversimplified 0,026 0,026 0,052

blackhole 0,213 0,124 0,337

phenomenon 0,250 0,248 0,498

lookup 2,715 2,489 5,204

response 12,124 12,307 24,431

Paillier-Based

SR-RH2Lev

oversimplified 0,096 12,130 12,226

blackhole 0,771 60,456 61,227

phenomenon 0,962 120,857 121,819

lookup 10,044 1213,750 1223,794

response 46,053 6089,372 6135,425

SR-DynRR

oversimplified 0,042 0,042

blackhole 0,215 0,215

phenomenon 0,433 0,433

lookup 4,437 4,437

response 22,792 22,792

OPE-Based

SR-DynRR

oversimplified 0,053 0,053

blackhole 0,268 0,268

phenomenon 0,546 0,546

lookup 5,777 5,777

response 29,641 29,641

Paillier-Based

SR-DynRR

oversimplified 0,111 12,204 12,315

blackhole 0,562 61,202 61,764

phenomenon 1,128 121,446 122,574

lookup 11,544 1220,254 1231,798

response 58,982 6084,800 6143,782

(Cont. on next page)
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Table A.1. Benchmark results of schemes for single keyword searches. (cont.)

Scheme Keyword Search Time

(ms)

Resolve Time

(ms)

Total Time

(ms)

SR-DynRH

oversimplified 0,053 0,025 0,078

blackhole 0,270 0,125 0,395

phenomenon 0,551 0,248 0,799

lookup 5,669 2,466 8,135

response 29,096 12,458 41,554

OPE-Based

SR-DynRH

oversimplified 0,064 0,025 0,089

blackhole 0,324 0,123 0,447

phenomenon 0,654 0,248 0,902

lookup 6,752 2,470 9,222

response 34,945 12,483 47,428

Paillier-Based

SR-DynRH

oversimplified 0,123 12,311 12,434

blackhole 0,615 61,535 62,150

phenomenon 1,235 122,968 124,203

lookup 12,630 1230,321 1242,951

response 64,509 6154,880 6219,389
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Table A.2. Benchmark results of schemes for multi-keyword searches.

Scheme Query Search Time

(ms)

Resolve Time

(ms)

Total Time

(ms)

Paillier-Based

MR-RR2Lev

Q1 2,240 242,798 245,038

Q2 4,914 481,923 486,837

Q3 7,689 716,659 724,348

Q4 10,460 921,618 932,078

Q5 13,303 1129,725 1143,028

Matrix-Based

MR-RR2Lev

Q1 0,689 0,689

Q2 1,534 1,534

Q3 2,381 2,381

Q4 3,222 3,222

Q5 4,074 4,074

Embedded

MR-RH2Lev

Q1 0,400 0,639 1,039

Q2 0,924 1,284 2,208

Q3 1,443 1,973 3,416

Q4 1,967 2,641 4,608

Q5 2,499 3,326 5,825

Matrix-Based

MR-RH2Lev

Q1 0,913 0,543 1,486

Q2 2,052 1,119 3,171

Q3 3,186 1,712 4,898

Q4 4,690 2,309 6,999

Q5 5,862 2,894 8,756

Paillier-Based

MR-DynRR

Q1 2,410 242,537 244,947

Q2 4,861 482,016 486,877

Q3 7,494 712,013 719,507

Q4 10,188 922,595 932,783

Q5 12,897 1132,396 1145,293

Embedded

MR-DynRH

Q1 1,190 0,693 1,883

Q2 2,427 1,389 3,816

Q3 3,799 2,125 5,924

Q4 4,884 2,835 7,719

Q5 6,122 3,576 9,698
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