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ABSTRACT

GENERALIZED GOLDEN-FIBONACCI CALCULUS AND

APPLICATIONS

In the present thesis the Golden-Fibonacci calculus is developed and several ap-

plications of this calculus are obtained. The calculus is based on the Golden deriva-

tive as a finite difference operator with Golden and Silver ratio bases, which allowed

us to introduce Golden polynomials and Taylor expansion in terms of these polynomi-

als. The Golden binomial and its expansion in terms of Fibonomial coefficients is de-

rived. We proved that Golden binomials coincide with Carlitz’ characteristic polynomials.

By Golden Fibonacci exponential functions and related entire functions, the Golden-heat

and the Golden-wave equations are introduced and solved. By introducing higher order

Golden Fibonacci derivatives, related with powers of golden ratio, we develop the higher

order Golden Fibonacci calculus. The higher order Fibonacci numbers, higher Golden pe-

riodic functions and higher Fibonomials appear as ingredients of this calculus. By using

Golden Fibonacci exponential function, we introduce the generating function for new type

of polynomials, the Bernoulli-Fibonacci polynomials and study their properties. As a ge-

ometrical application, the Apollonious type gaskets are described in terms of Fibonacci,

Lucas and generalized Fibonacci numbers. Some mod 5 congruencies associated with

Fibonacci and Lucas numbers are obtained.
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ÖZET

GENELLES. TİRİLMİS. ALTIN-FİBONACCİ HESAPLAMASI VE

UYGULAMALARI

Bu tezde, Altın-Fibonacci hesaplaması geliştirilmiş ve bu hesaplamanın çeşitli

uygulamaları elde edilmiştir. Bu hesaplama, altın polinomları ve bu polinomlar cinsin-

den yazılan Taylor açılımını tanıtmamıza izin veren, altın ve gümüş oran tabanları ile

sonlu bir fark operatörü olarak yazılan Altın türevine dayanır. Altın binomu ve altın

binomun Fibonomial katsayıları cinsinden açılımı türetilmiştir. Altın binomlarının Car-

litz’in karakteristik polinomları ile eşleştiǧini ispatladık. Altın Fibonacci üstel fonksiy-

onları ve ilgili analitik fonksiyonları ile, Altın-ısı ve Altın-dalga denklemleri tanıtılmış

ve çözülmüştür. Altın oranın kuvvetleri ile ilgili olan yüksek mertebeden Altın Fibonacci

türevlerini tanımlayarak, yüksek mertebeden Altın Fibonacci hesaplamasını geliştiririz.

Yüksek mertebeden Fibonacci sayıları, yüksek Altın periodik fonksiyonlar ve yüksek Fi-

bonomialler bu hesaplamanın bileşenleri olarak görünür. Altın Fibonacci üstel fonksiy-

onunu kullanarak, yeni tip polinom olan Bernoulli-Fibonacci polinomları için üretim

fonksiyonunu tanıttık ve bu polinomların özelliklerini inceledik. Geometriksel bir uygu-

lama olarak, Apollonious’un teǧet çemberler dizisi Fibonacci, Lucas ve genelleştirilmiş

Fibonacci sayıları cinsinden tanımlanmıştır. Fibonacci ve Lucas sayıları ile ilişkili bazı

mod 5 denklikleri elde edilmiştir.
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CHAPTER 1

INTRODUCTION

The Golden ratio ϕ is a special number determining the so called Golden propor-

tion and approximately it is equal to 1.618 (Koshy, T., 2001). It appears in geometry,

art, architecture and varies from sunflowers to proportions of human body. From math-

ematical point of view, Golden ratio is defined by Golden proportion or Golden section

and it is related with the sequence of Fibonacci numbers Fn, where n = 0, 1, 2, . . . The

Fibonacci numbers are given by the recursion relation Fn+1 = Fn + Fn−1, with initial val-

ues F0 = 0 and F1 = 1. These numbers (0, 1, 1, 2, 3, 5, 8, 13, . . .) are named after Italian

mathematician of Middle Ages, Leonardo of Pisa or Leonardo Fibonacci.

If we take the ratio of two consecutive Fibonacci numbers
Fn+1

Fn
, then in the limit

n→ ∞, it becomes the Golden ratio ϕ. This is why these numbers are intrinsically related

with Golden ratio and Golden proportion. Due to numereous applications in mathematics,

science and art, Fibonacci numbers are also called as ”Nature’s Perfect numbers” (Koshy,

T., 2001).

The present thesis is devoted to description of Fibonacci numbers, their properties

and applications by the so called Golden Fibonacci calculus. The main ingredient of this

calculus is the Golden Fibonacci derivative as a finite difference derivative with Golden

and Silver ratio as bases. This derivative was first introduced in paper (Pashaev O.K.

and Nalci S., 2012). The derivative allows one to construct Golden binomials, and Taylor

expansion in terms of Golden binomials. According to this expansion, the Golden expo-

nential functions were introduced, and trigonometric and hyperbolic Golden functions, as

solutions of Golden ordinary differential equation and partial differential equation have

been discussed.

In the present work, we generalize this Golden Fibonacci calculus. Starting from

definition of higher order Fibonacci numbers, as a q numbers with two bases ϕk and ϕ′k,

we show that they are integer numbers, appearing as the ratio of two Fibonacci numbers.

These higher Order Fibonacci numbers are related with higher order Fibonacci

derivatives, allowing to derive corresponding higher Golden periodic functions, higher

Fibonomials and higher Golden binomials. As we prove in present thesis, these higher or-

der Fibonacci binomials coincide with Carlitz characteristic polynomials for the so called

combinatorial matrices (Carlitz, L., 1965). Powers of these combinatorial matrices allow

1



us to find mod 5 congruence relations for higher order Fibonacci numbers.

By Golden exponential function, we introduce generating function for new type

of polynomials, called the Bernoulli-Fibonacci polynomials, and study their properties.

As a geometrical application of Fibonacci numbers, the problem of intersection

(kissing) between circles in plane, called as Apollonious gasket, and Descartes theorem

are studied. Specific radiuses of kissing circles, given by products of Fibonacci numbers,

allow us to introduce Fibonacci, Lucas, and Generalized Apollonious gaskets.

The thesis is organized as follows.

In Chapter 2, we briefly review Fibonacci numbers and their generalizations, in

Sections 2.1-2.4.

Problem of division of Fibonacci numbers, Section 2.5, lead us to Higher order

Fibonacci numbers in Section 2.6. These numbers, as a special case of Fibonacci polyno-

mials are considered in Section 2.7. The Cassini formula and generalizations are studied

in Section 2.8.

In Chapter 3, we introduce the Golden derivatives, Section 3.1 and, formulate

main properties, including Leibnitz rule and Golden periodic functions.

In Section 3.2, the generating function for Fibonacci numbers is derived by Golden

derivative and in addition the entire generating function is obtained.

The Golden Taylor formula is studied in Section 3.3. The Golden exponential

functions as entire functions are introduced in Section 3.4, and corresponding Golden

trigonometric and hyperbolic functions are derived in Section 3.5. These functions repre-

sent solutions of Golden oscillator in Section 3.5.1. The Golden binomials are subject of

Section 3.6. Remarkable limit of these binomials is derived in Section 3.7.

In Section 3.8, Fibonacci exponential function of two arguments is defined and in

terms of this function, a solution of the Golden heat equation is obtained. Solution of the

Golden wave equation is given in Section 3.9.

Chapter 4 is devoted to higher order Fibonacci derivatives and their applications.

In Section 4.1, we start from definition of higher order Golden derivative, its main prop-

erties and corresponding periodic functions. Then, we introduce higher Fibonomial and

higher order Golden binomials.

In Chapter 5, the Carlitz characteristic polynomials are introduced, as polynomials

with roots given in terms of powers of golden ratio. These polynomials are related with

combinatorial matrices. The main identity between higher order Golden binomials and

Carlitz’s characteristic polynomials is established in Section 5.1. Powers of combinatorial

matrices and their properties are derived in Section 5.2.

2



In Chapter 6, the mod 5 congruence relations for higher order Fibonacci numbers

with even index are derived.

In Chapter 7, by using Golden exponential function, we introduce and study

Fibonacci analog of Bernoulli polynomials and numbers. We call them the Bernoulli-

Fibonacci polynomials and numbers.

In Chapter 8, the Apollonious gaskets related with Fibonacci numbers are stud-

ied. Starting from definition of Apollonious gasket in Section 8.1, we derive Fibonacci-

Apollonious gasket in Section 8.2. In Section 8.3, the Lucas Apollonious gasket and the

general Apollonious gasket (Section 8.4) are introduced. In all these cases the recursion

formula has the same form and the difference is only in initial conditions. By Descartes

theorem, the radiuses of kissing circles in terms of Fibonacci numbers are obtained.

In Conclusion, Chapter 9, we summarize main results obtained in this thesis. De-

tails of some calculations are presented in Appendices A, B and C.

3



CHAPTER 2

FIBONACCI NUMBERS

2.1. Fibonacci and Lucas Sequences

The Fibonacci sequence is defined by recursion formula;

Fn+1 = Fn + Fn−1, (2.1)

where F0 = 0 , F1 = 1 , n = 1, 2, 3, . . . First few Fibonacci numbers are;

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987 . . .

The sequence is named after Leonardo Fibonacci(1170-1250). Fibonacci numbers ap-

pear in Nature so frequently that they can be considered as Nature’s Perfect Numbers.

Also, another important Nature’s number, the Golden ratio, which is seen in every area

of life and art, and usually it is associated with aesthetics, is directly related to Fibonacci

sequence.

There is another famous sequence, which is called the Lucas sequence. The Lucas

numbers give the sequence of integers, defined by same recurrence formula;

Ln+1 = Ln + Ln−1,

but with different initial values L0 = 2, L1 = 1. First few of Lucas numbers are,

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, . . .

4



There is a relation between Fibonacci and Lucas numbers, given by formula,

Ln = Fn−1 + Fn+1 (2.2)

and meaning that Lucas sequence is addition of two Fibonacci sequences.

2.2. Binet Formula

Formula giving Fibonacci number Fn for given n is called the Binet formula. To

derive Binet Formula for Fibonacci numbers, let Fn = λ
n, which by substituting in the

recursion formula (2.1) gives us;

λn+1 = λn + λn−1 ⇒ λ = 1 +
1

λ
⇒ λ2 = λ + 1

This quadratic equation has characteristic roots denoted by ϕ and ϕ′, having the values;

ϕ =
1 +
√

5

2
≈ 1, 6180339 . . . and ϕ′ =

1 − √5

2
≈ −0, 6180339 . . .

Number ϕ and ϕ′ are called the Golden and Silver ratio, respectively.

Also, from the quadratic equation, it can be seen that; ϕϕ′ = −1 & ϕ + ϕ′ = 1.

Then, the solution Fn is a linear combination;

Fn = c1 ϕ
n + c2 ϕ

′n,

with arbitrary c1, c2 constants. By using initial values F0 = 0 , F1 = 1 constants c1 and

c2 can be fixed as;

c1 + c2 = F0 = 0, c1ϕ + c2ϕ
′ = F1 = 1 ⇒ c1 =

1

ϕ − ϕ′ , c2 = − 1

ϕ − ϕ′ .

5



Due to this, Fibonacci numbers-Fn can be expressed explicitly by Binet Formula;

Fn =
ϕn − ϕ′n
ϕ − ϕ′ . (2.3)

The Binet type formula for Lucas sequence can be derived by the same logic in the form;

Ln = ϕ
n + ϕ′n.

From formula (2.3), due to irrational character of ϕ and ϕ′, it is not evident at all that Fn

are integer numbers. Though it is clear from the recursion formula (2.1).

Binet formula allows one to find Fibonacci numbers directly, without using recur-

sions. For example, to find F20 by using Binet formula we have;

F20 =
ϕ20 − ϕ′20

ϕ − ϕ′ = 6765.

Binet formula allows one to define also Fibonacci numbers for negative n;

F−n =
ϕ−n − ϕ′−n

ϕ − ϕ′ =

1
ϕn − 1

ϕ′n

ϕ − ϕ′ =
ϕ′n − ϕn

ϕ − ϕ′ ·
1

(ϕϕ′)n

and since ϕϕ′ = −1,

⇒ = −ϕ
n − ϕ′n
ϕ − ϕ′

1

(−1)n = −Fn
1

(−1)n = −Fn(−1)n = (−1)n+1Fn

So, we have;

F−n = (−1)n+1Fn (2.4)

For Lucas sequence, similar calculations gives;

L−n = ϕ
−n + ϕ′−n =

ϕn + ϕ′n

(ϕϕ′)n = (−1)nLn ⇒ L−n = (−1)nLn (2.5)
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Definition 2.1 Fibonacci and Lucas numbers for negative integers n are respectively de-

fined by relations,

F−n = (−1)n+1Fn,

L−n = (−1)nLn

If we take any two successive Fibonacci numbers, their ratio while going to infinity be-

come more and more close to the Golden Ratio ”ϕ”.

lim
n→∞

Fn+1

Fn
= lim

n→∞
ϕn+1 − ϕ′n+1

ϕn − ϕ′n = lim
n→∞
ϕn+1

ϕn = ϕ. (2.6)

The same result is valid for Lucas numbers;

lim
n→∞

Ln+1

Ln
= lim

n→∞
ϕn+1 + ϕ′n+1

ϕn + ϕ′n
= lim

n→∞
ϕn+1

ϕn = ϕ. (2.7)

Proposition 2.1 Any integer power of Golden and Silver ratios can be expressed in terms

of Fibonacci numbers as;

ϕn = ϕFn + Fn−1 and ϕ′n = ϕ′Fn + Fn−1. (2.8)

Proof Proof will be done by using Principle of Mathematical induction. For n = 1,

ϕ = ϕ. Assume that for n ∈ Z, ϕn = ϕFn + Fn−1 is true. Then the case n + 1 gives;

ϕn+1 = (ϕn)ϕ = (ϕFn + Fn−1)ϕ = ϕ2Fn + ϕFn−1 = (ϕ + 1)Fn + ϕFn−1

= ϕ(Fn + Fn−1) + Fn = ϕFn+1 + Fn.

Since, ϕn+1 = ϕFn+1 + Fn is obtained, the proof is done. Similarly, ϕ′n+1 = ϕ′Fn+1 + Fn

can be proved. �
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2.3. Trigonometric Representation of Fibonacci Numbers

Starting from Binet Formula (2.3), we can derive following formula for Fibonacci

numbers in summation form;

Fn = 2n−1

n−1∑
k=0

(−1)k cosn−k−1
(
π

5

)
sink

(
π

10

)
. (2.9)

For derivation of this formula, see Appendix A.1.

2.4. Generalized Fibonacci Numbers

Fibonacci and Lucas numbers are numbers determined by the same recursion for-

mula (2.1) but with different initial values. Here, we are going to generalize these num-

bers, by choosing different initial numbers G0 and G1, but preserving the recursion for-

mula (2.1). We can call them as Generalized Fibonacci numbers. For example, if G0 = 0,

G1 = 4, we have the sequence;

4, 4, 8, 12, 20, 32, 52, ...

Definition 2.2 Generalized Fibonacci number sequence is defined by the recursion for-

mula,

Gn+1 = Gn +Gn−1

and an arbitrary initial numbers G0, G1.

To get Binet type formula for these numbers, we substitute Gn = β
n to the recursion

formula,

βn+1 = βn + βn−1.

After cancelling the powers βn’s gives us;

β2 = β + 1 ⇒ β1 = ϕ and β2 = ϕ
′.
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Then, generic Gn can be written as a linear combination of these solutions with arbitrary

constants c1, c2:

Gn = c1 ϕ
n + c2 ϕ

′n.

Constants c1, c2 can be fixed by the initial values G0 , G1;

c1 + c2 = G0, c1ϕ + c2ϕ
′ = G1 ⇒ c1 =

G1 − ϕ′G0

ϕ − ϕ′ , c2 = −G1 − ϕG0

ϕ − ϕ′ .

After substituting c1 and c2,

Gn =
(G1 − ϕ′G0)ϕn − (G1 − ϕG0)ϕ′n

ϕ − ϕ′ .

Proposition 2.2 The Binet formula for Generalized Fibonacci numbers Gn satisfying

Gn+1 = Gn +Gn−1 and initial values G0 , G1 is;

Gn =
(G1 − ϕ′G0)ϕn − (G1 − ϕG0)ϕ′n

ϕ − ϕ′ . (2.10)

In particular cases;

• If G0 = 0 and G1 = 1, our equation becomes Binet formula (2.3) for Fibonacci

numbers.

• If G0 = 2 and G1 = 1, then Lucas sequence appears.

Formula (2.10) allows us to represent generalized Fibonacci number sequence as a linear

combination of two Fibonacci sequences;

Gn = G1Fn +G0Fn−1 (2.11)
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2.5. Addition and Division of Fibonacci Numbers

The Addition Formula for Fibonacci numbers is given by the following proposi-

tion.

Proposition 2.3 (Addition formula)

Fn+m = FmFn+1 + FnFm−1 where m, n ∈ Z (2.12)

Proof First, begin to write corresponding Binet Formula for Fn+m,

Fn+m =
ϕn+m − ϕ′n+m

ϕ − ϕ′ =
ϕnϕm

ϕ − ϕ′ −
ϕ′nϕ′m

ϕ − ϕ′
= ϕn (ϕm − ϕ′m + ϕ′m)

ϕ − ϕ′ − ϕ′m (ϕ′n − ϕn + ϕn)

ϕ − ϕ′

= ϕn

(
Fm +

ϕ′m

ϕ − ϕ′
)
+ ϕ′m

(
Fn − ϕn

ϕ − ϕ′
)

= ϕnFm +
ϕnϕ′m

ϕ − ϕ′ + ϕ
′mFn − ϕ

′mϕn

ϕ − ϕ′
= ϕnFm + ϕ

′mFn.

Therefore, we obtain;

Fn+m = ϕ
nFm + ϕ

′mFn. (2.13)

Substituting ϕn = ϕFn + Fn−1 and ϕ′m = ϕ′Fm + Fm−1 gives,

Fn+m = ϕnFm + ϕ
′mFn = (ϕFn + Fn−1)Fm + (ϕ′Fm + Fm−1)Fn

= ϕFnFm + Fn−1Fm + ϕ
′FmFn + Fm−1Fn

= (ϕ + ϕ′)FnFm + Fn−1Fm + Fm−1Fn

= FnFm + Fn−1Fm + Fm−1Fn

= (Fn + Fn−1)Fm + Fm−1Fn

= Fn+1Fm + Fm−1Fn.

�
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In the addition formula (2.12), if we denote n + m = N, then n = N − m, and we get;

FN = FN−mFm−1 + FmFN−m+1

After writing N = n, it gives;

Fn = Fn−mFm−1 + FmFn−m+1 (2.14)

Again denoting n + m = N, but now m = N − n, we get another partition of Fn;

FN = FN−nFn+1 + FnFN−n−1.

After writing n = m, it gives;

FN = FN−mFm+1 + FmFN−m−1.

Finally, denoting N = n;

Fn = Fn−mFm+1 + FmFn−m−1 . (2.15)

Equations (2.14) and (2.15) give two different partitions of Fibonacci number Fn.

From addition formula (2.12), Fibonacci numbers for even n are;

F2k = Fk Lk (2.16)

where Lk- Lucas numbers.

Indeed, F2k = Fk+k = Fk Fk−1 + Fk+1 Fk = Fk (Fk−1 + Fk+1) = Fk Lk

11



Also,

F3k = Fk (F2k−1 + Fk+1 Lk) (2.17)

It is easy to see from;

F3k = Fk+2k = Fk F2k−1 + Fk+1 (F2k) = Fk F2k−1 + Fk+1 (Fk Lk) = Fk(F2k−1 + Fk+1 Lk)

To continue,

F4k = Fk Lk L2k (2.18)

is obtained from,

F4k = F2k+2k = F2k F2k−1 + F2k+1 F2k = F2k(F2k−1 + F2k+1) = F2k L2k = Fk Lk L2k.

From above results, we have next divisibility property of Fnk.

Proposition 2.4 Fnk is divisible by Fk.

Proof Proof by induction on n. For n = 1, Fk is divisible by Fk, clearly. For n, suppose

Fnk = Fk X(k, n), where X(k, n) ∈ Z. For the case n + 1, by using the equality (2.12), we

have;

F(n+1)k = Fk+nk
(2.12)
= Fk Fnk−1 + [Fnk] Fk+1

= Fk Fnk−1 + [Fk X(k, n)] Fk+1

= Fk( Fnk−1 + X(k, n) Fk+1). (2.19)

This is why F(n+1)k is divisible by Fk. So, by principle of mathematical induction, Fnk is

divisible by Fk, for any n. �
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2.6. Higher Order Fibonacci Numbers

Since Fnk is divisible by Fk, the ratio Fnk
Fk

is an integer. These numbers we call the

"Higher Order Fibonacci numbers".

Definition 2.3 Higher order Fibonacci numbers are defined as,

F(k)
n =

Fnk

Fk
. (2.20)

Then, all Higher order Fibonacci numbers are integer.

Proposition 2.5 Binet type formula for Higher order Fibonacci numbers is,

F(k)
n =

(ϕk)n − (ϕ′k)n

ϕk − ϕ′k (2.21)

Proof It is derived simply by using the Binet formula,

Fnk =
(ϕk)n − (ϕ′k)n

ϕ − ϕ′ =
(ϕk)n − (ϕ′k)n

ϕk − ϕ′k
ϕk − ϕ′k
ϕ − ϕ′ =

(ϕk)n − (ϕ′k)n

ϕk − ϕ′k Fk.

Thus, Higher Order Fibonacci numbers are written as a ratio;

F(k)
n =

(ϕk)n − (ϕ′k)n

ϕk − ϕ′k =
Fnk

Fk
. (2.22)

�

Due to above definition, we have formula for factorization of Fibonacci numbers;

Fnk = Fk F(k)
n .

For example, Higher order Fibonacci numbers F(3)
n for k = 3 are given by;

F(3)

0
=

F0

F3

= 0, F(3)

1
=

F3

F3

= 1, F(3)

2
=

F6

F3

= 4, F(3)

3
=

F9

F3

= 17, F(3)

4
=

F12

F3

= 72, . . .(2.23)
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Now, we are going to derive the recursion relation formula for Higher Order Fi-

bonacci numbers. It is given by the next theorem.

Theorem 2.1 (Recurrence relation for Higher Order Fibonacci numbers)

F(k)

n+1
= LkF(k)

n + (−1)k−1F(k)

n−1
. (2.24)

This formula is particular case of more general relation, given by Theorem 2.2.

Theorem 2.2

Fk(n+1)+α = LkFkn+α + (−1)k−1Fk(n−1)+α where α = 0, 1, . . . , k − 1. (2.25)

Proof First we prove Theorem 2.2.

Fkn+k+α =
1

ϕ − ϕ′
[
ϕkn+k+α − ϕ′kn+k+α

]
=

1

ϕ − ϕ′
[
ϕkn+αϕk − ϕ′kn+αϕ′k

]
=

1

ϕ − ϕ′
[
ϕkn+αϕk + (−ϕ′kn+αϕk + ϕ′kn+αϕk) − ϕ′kn+αϕ′k

]
=

1

ϕ − ϕ′
[
(ϕkn+α − ϕ′kn+α)ϕk + ϕ′kn+αϕk − ϕ′kn+αϕ′k

]
= Fkn+αϕ

k +
1

ϕ − ϕ′
[
ϕ′kn+αϕk − ϕ′kn+αϕ′k

]
= Fkn+α

[
ϕk + (−ϕ′k + ϕ′k)

]
+

1

ϕ − ϕ′
[
ϕ′kn+αϕk − ϕ′kn+αϕ′k

]
= Fkn+α(ϕ

k + ϕ′k) − Fkn+αϕ
′k +

1

ϕ − ϕ′
[
ϕ′kn+αϕk − ϕ′kn+αϕ′k

]
= Fkn+αLk +

1

ϕ − ϕ′
[
ϕ′kn+αϕ′k − ϕkn+αϕ′k + ϕ′kn+αϕk − ϕ′kn+αϕ′k

]
= LkFkn+α +

1

ϕ − ϕ′
[
ϕ′kn+αϕk − ϕkn+αϕ′k

]
= LkFkn+α +

ϕkϕ′k

ϕ − ϕ′
[
ϕ′kn−k+α − ϕkn−k+α

]
= LkFkn+α − ϕ

kϕ′k

ϕ − ϕ′
[
ϕkn−k+α − ϕ′kn−k+α

]
= LkFkn+α − (ϕϕ′)k

ϕ − ϕ′
[
ϕkn−k+α − ϕ′kn−k+α

]
since (ϕϕ′)k = (−1)k,

= LkFkn+α − (−1)k

[
ϕkn−k+α − ϕ′kn−k+α

ϕ − ϕ′
]
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= LkFkn+α + (−1)k+1Fkn−k+α and since (−1)k+1(−1)−2 = (−1)k−1,

= LkFkn+α + (−1)k−1Fkn−k+α

Therefore,

Fk(n+1)+α = LkFkn+α + (−1)k−1Fk(n−1)+α (2.26)

is obtained. By choosing α = 0 and dividing both sides of the equation with Fk gives us

the desired recursion formula (2.24),

F(k)

n+1
= LkF(k)

n + (−1)k−1F(k)

n−1
.

�

The total set of Fibonacci numbers Fn is the sum of subsets for each k;

k = 2 : F2n, F2n+1

k = 3 : F3n, F3n+1, F3n+2

...

k = k : Fkn, Fkn+1, . . . , Fkn+(k−1)

Equation (2.26) says that for given k, the subsequences Fkn, Fkn+1, Fkn+2, . . . , Fkn+(k−1),

satisfy the same recursion formula;

Fk(n+1)+α = LkFkn+α + (−1)k−1Fk(n−1)+α

This type of recursion formula is special case Fibonacci polynomials, which we are study-

ing in Section 2.7.

Example 2.1 Let us think sequences with k = 3;

α = 0 ⇒ F3n = 0, 2, 8, 34, . . .

α = 1 ⇒ F3n+1 = 1, 3, 13, 55, . . .

α = 2 ⇒ F3n+2 = 1, 5, 21, 89, . . .
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To generate each of three sequences, we have the same recursion relation,

F3(n+1)+α = L3F3n+α + (−1)3−1F3(n−1)+α, where α = 0, 1, 2.

Also, we can notice that all of the sequences F3n,F3n+1,F3n+2 starts with different initial

values. In their union set, they cover the whole Fibonacci sequence.

Example 2.2 For k = 3, with the initial numbers F(3)

0
= 0 and F(3)

1
= 1, we can derive

the Higher Order Fibonacci number sequence given in (2.23) by using 3rd Lucas number

and alternating sign function, i.e, F(3)

n+1
= L3F(3)

n + (−1)3−1F(3)

n−1
.

n=1: F(3)

2
= 4 · 1 + (−1)2 · 0 = 4

n=2: F(3)

3
= 4 · 4 + (−1)2 · 1 = 17

n=3: F(3)

4
= 4 · 17 + (−1)2 · 4 = 72

n=4: F(3)

5
= 4 · 72 + (−1)2 · 17 = 305

...

Proposition 2.6 By extending n and k to negative integer numbers for Higher order Fi-

bonacci numbers F(k)
n , the formulas can be derived as;

F(k)
−n = (−1)kn+1 F(k)

n (2.27)

F(−k)
n = (−1)(n+1)k F(k)

n (2.28)

F(−k)
−n = (−1)k+1 F(k)

n (2.29)

Proof

F(k)
−n =

(ϕk)−n − (ϕ′k)−n

ϕk − ϕ′k =
1

ϕk − ϕ′k
(

1

ϕkn −
1

ϕ′kn

)
=

1

ϕk − ϕ′k
(
−ϕ

kn − ϕ′kn

(ϕϕ′)kn

)

=
(ϕk)n − (ϕ′k)n

ϕk − ϕ′k (−1)kn+1 = (−1)kn+1 F(k)
n

As a special case, by choosing k = 1, we obtain our previous result (2.4).

F(−k)
n =

(ϕ−k)n − (ϕ′−k)n

ϕ−k − ϕ′−k =
ϕ′kn − ϕkn

(ϕϕ′)kn ·
(ϕϕ′)k

ϕ′k − ϕk =
ϕ′kn − ϕkn

(ϕϕ′)kn ·
(ϕϕ′)k

ϕ′k − ϕk

(−1)kn

(−1)kn

=
ϕkn − ϕ′kn

ϕk − ϕ′k (−1)(n+1)k = (−1)(n+1)k F(k)
n
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F(−k)
−n =

(ϕnk) − (ϕ′nk)

ϕ−k − ϕ′−k =
ϕnk − ϕ′nk

ϕk − ϕ′k
ϕk − ϕ′k
ϕ−k − ϕ′−k = F(k)

n
ϕk − ϕ′k

1
ϕk − 1

ϕ′k
= F(k)

n
ϕk − ϕ′k
ϕ′k − ϕk (ϕϕ′)k

= (−1)k+1 F(k)
n

�

These formulas determine F(k)
n for each k ∈ Z, and each n ∈ Z.

There is an important proposition, which gives relation between powers of Golden-

Silver ratio and Higher order Fibonacci numbers.

Proposition 2.7 For k ∈ Z and n ∈ Z,

(ϕk)n = ϕk F(k)
n + (−1)k+1 F(k)

n−1
(2.30)

(ϕ′k)n = ϕ′k F(k)
n + (−1)k+1 F(k)

n−1
(2.31)

Proof By definition of Higher Order Fibonacci numbers, we need to prove,

(ϕk)n = ϕk Fnk

Fk
+ (−1)k+1 F(n−1)k

Fk
.

To prove it, we will show the equality;

Fk (ϕk)n = ϕk Fnk + (−1)k+1 F(n−1)k.

Starting from right hand side, it gets;

ϕk Fnk + (−1)k+1 F(n−1)k = ϕ
k ϕ

nk − ϕ′nk

ϕ − ϕ′ + (−1)k+1 ϕ
(n−1)k − ϕ′(n−1)k

ϕ − ϕ′
=

1

ϕ − ϕ′
[
ϕnk+k − ϕ′nkϕk + (−1)k+1ϕkn−k + (−1)kϕ′kn−k

]
= ϕknϕ

k + (−1)k+1ϕ−k

ϕ − ϕ′ +
(−1)kϕ′kn−k − ϕ′nkϕk

ϕ − ϕ′

= ϕkn
ϕk − (−1)k 1

ϕk

ϕ − ϕ′ +
ϕ′kn

(
(−1)k(ϕ′)−k − ϕk

)
ϕ − ϕ′

= ϕ′kn
ϕk − ( 1

ϕ
)k

ϕ − ϕ′ +
ϕ′kn

ϕ − ϕ′
(
(−1)k (−1)−k

(ϕ)−k − ϕk

)

= ϕknϕ
k − ϕ′k
ϕ − ϕ′ +

ϕ′kn

ϕ − ϕ′
(
ϕk − ϕk

)
= ϕknFk.

17



With the similar logic, (ϕ′k)n = ϕ′k F(k)
n + (−1)k+1 F(k)

n−1
can be proved, also. �

2.7. Fibonacci Polynomials

Here, we modify recursion formula (2.1) by introducing two arbitrary coefficients

p and q;

Fn+1 = pFn + qFn−1 (2.32)

By choosing initial values F0 = 0, F1 = 1, the corresponding sequence will depend on

two numbers p and q. This sequence of two variable polynomials-Fn(p, q) is called the

Fibonacci polynomials.

For solution of this equation, let Fn(p, q) = γn. Then, with the recursion formula

(2.32) characteristic equation becomes γ2 = pγ + q. By denoting our roots as a and b, we

have a + b = p and ab = −q. Then, Fibonacci polynomial Fn(p, q) is written as;

Fn(p, q) = c1an + c2bn. (2.33)

With the help of our initial values, coefficients can be found as;

c1 + c2 = F0(p, q) = 0, c1a + c2b = F1(p, q) = 1 ⇒ c1 =
1

a − b
, c2 = − 1

a − b

By this way, we obtain Binet type formula for Fibonacci polynomials as;

Fn(p, q) =
an − bn

a − b
, (2.34)

where a, b = p
2
±
√

p2−4q
2
.

In the recursion formula (2.32), if p and q are arbitrary integer numbers, then we get the

sequence of integer numbers;

F0(p, q) = 0

F1(p, q) = 1
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F2(p, q) = p

F3(p, q) = p2 + q

F4(p, q) = p(p2 + q) + qp

F5(p, q) = p2(p2 + 2q) + q(p2 + q)

F6(p, q) = p3(p2 + 2q) + 2qp(p2 + q) + q2 p

F7(p, q) = p4(p2 + 2q) + 3p4q + 6p2q2 + q3

...

which we call Fibonacci polynomial numbers.

Also, when we choose p = q = 1, the recursion relation will be standard Fibonacci

recursion and Fibonacci numbers. Therefore, Fn(1, 1) = Fn.

2.8. Cassini Formula and Generalizations

In Chapter 5, following matrix is introduced

An
2 =

⎛⎜⎜⎜⎜⎜⎜⎝ Fn−1 Fn

Fn Fn+1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Determinant of this matrix det(An
2) = Fn+1Fn−1 − F2

n can be calculated by using Cassini’s

Formula.

Proposition 2.8 (Cassini’s Formula) For every positive integer n,

Fn−1Fn+1 − F2
n = (−1)n (2.35)

Proof (Koshy, T., 2001) Proof will be done by using Principal of Mathematical induc-

tion. For n = 1, we have;

F0F2 − F2
1 = 0 · 1 − 12 = (−1)1 = −1.

Suppose that it is true for all k ≥ 1, that is for n = k,

Fk−1Fk+1 − F2
k = (−1)k. (2.36)
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Then for the case n = k + 1, we have;

F(k+1)−1F(k+1)+1 − F2
k+1 = FkFk+2 − F2

k+1 = (Fk+1 − Fk−1) (Fk + Fk+1) − F2
k+1

= FkFk+1 + F2
k+1 − FkFk−1 − Fk−1Fk+1 − F2

k+1

= FkFk+1 − FkFk−1 − Fk−1Fk+1 − F2
k + F2

k

= FkFk+1 − FkFk−1 − F2
k −

(
Fk−1Fk+1 − F2

k

)
(2.36)
= FkFk+1 − FkFk−1 − F2

k − (−1)k

= FkFk+1 − Fk (Fk−1 + Fk) − (−1)k

= FkFk+1 − FkFk+1 − (−1)k

= (−1)k+1

�

Now, we can derive similar formula for Fibonacci Polynomials, Fn(p, q).

By using Fibonacci Polynomials from previous section, we start with;

n=1: F0(p, q) F2(p, q) − F2
1(p, q) = 0 · p − 12 = −1

n=2: F1(p, q) F3(p, q) − F2
2(p, q) = 1 · (p2 + q) − p2 = q

n=3: F2(p, q) F4(p, q) − F2
3(p, q) = p · (p(p2 + q) + qp) − (p2 + q)2 = −q2

n=4: F3(p, q) F5(p, q)−F2
4(p, q) = (p2+q)·(p2(p2+2q)+q(p2+q))−(p(p2+q)+qp)2 = q3

...

Thus, generalized Cassini formula can be claimed and proved as a next proposition.

Proposition 2.9 Cassini’s formula for Fibonacci polynomials is given by,

Fn−1(p, q) Fn+1(p, q) − F2
n(p, q) = (−1)nqn−1 (2.37)

Proof Substituting the Binet type formula for Fibonacci polynomials,

Fn−1(p, q)Fn+1(p, q) − F2
n(p, q) =

an−1 − bn−1

a − b
· an+1 − bn+1

a − b
−
(
an − bn

a − b

)2

=

(
1

a − b

)2 [
a2n − an−1bn+1 − an+1bn−1 + b2n − (a2n − 2(ab)n + b2n)

]
=

(
1

a − b

)2 [
(ab)n

(
−b

a
− a

b
+ 2

)]
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=

(
1

a − b

)2 [
(ab)n

(
− (a2 − 2ab + b2)

ab

)]

=

(
1

a − b

)2

(ab)n

(
− (a − b)2

ab

)
= −(ab)n−1

(ab=−q)
= −(−q)n−1

= (−1)n(q)n−1

�

If p = q = 1, then equation (2.37) reduces to the equation (2.35).

Now, let’s define A2(p, q) matrix by using Fibonacci polynomials introduced in

Section 2.7.

Definition 2.4 Let

A2(p, q) =

⎛⎜⎜⎜⎜⎜⎜⎝ F0(p, q) F1(p, q)

qF1(p, q) F2(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠ (2.38)

Arbitrary nth power of A2(p, q) matrix is found by next proposition.

Proposition 2.10 For every positive integer n, we have;

[
A2(p, q)

]n
=

⎛⎜⎜⎜⎜⎜⎜⎝ qFn−1(p, q) Fn(p, q)

qFn(p, q) Fn+1(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠ (2.39)

Proof Proof will be done by Principal of Mathematical Induction on n. For n = 1, we

have;

A2(p, q) =

⎛⎜⎜⎜⎜⎜⎜⎝ F0(p, q) F1(p, q)

qF1(p, q) F2(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

q p

⎞⎟⎟⎟⎟⎟⎟⎠ .

Suppose that for n = k,

[
A2(p, q)

]k
=

⎛⎜⎜⎜⎜⎜⎜⎝ qFk−1(p, q) Fk(p, q)

qFk(p, q) Fk+1(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠
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is true. For the case n = k + 1, we obtain;

[
A2(p, q)

]k+1
=

[
A2(p, q)

]k A2(p, q) =

⎛⎜⎜⎜⎜⎜⎜⎝ qFk−1(p, q) Fk(p, q)

qFk(p, q) Fk+1(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

q p

⎞⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝ qFk(p, q) qFk−1(p, q) + pFk(p, q)

qFk+1(p, q) qFk(p, q) + pFk+1(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠
(2.32)
=

⎛⎜⎜⎜⎜⎜⎜⎝ qFk(p, q) Fk+1(p, q)

qFk+1(p, q) Fk+2(p, q)

⎞⎟⎟⎟⎟⎟⎟⎠ .

�

The equation (2.37) will be helpful if we calculate the determinant of the matrix[
A2(p, q)

]n
;

det
([

A2(p, q)
]n)

=

∣∣∣∣∣∣∣∣
qFn−1(p, q) Fn(p, q)

qFn(p, q) Fn+1(p, q)

∣∣∣∣∣∣∣∣
= q

[
Fn−1(p, q) · Fn+1(p, q) − F2

n(p, q)
]

(2.37)
= q

[
(−1)nqn−1

]
= (−1)nqn = (−q)n

Thus;

q
[
Fn−1(p, q) · Fn+1(p, q) − F2

n(p, q)
]
= (−q)n (2.40)

or,

det
([

A2(p, q)
]n)
= (−1)nqn (2.41)

22



CHAPTER 3

FIBONACCI CALCULUS

In this Chapter, we follow notations and some results from (Pashaev O.K. and

Nalci S., 2012).

3.1. Golden Derivative

Definition 3.1 The Golden derivative operator Dx
F acts on arbitrary function f (x) ac-

cording to formula;

Dx
F[ f (x)] =

f (ϕx) − f (− x
ϕ
)(

ϕ −
(
− 1
ϕ

))
x
=

f (ϕx) − f (ϕ′x)

(ϕ − ϕ′) x
(3.1)

The Golden derivative operator is a linear operator since for every pair of functions f and

g and scalar λ, the following properties hold;

• Dx
F( f (x) + g(x)) = Dx

F( f (x)) + Dx
F(g(x))

• Dx
F(λ f (x)) = λ Dx

F( f (x))

3.1.1. Golden Leibnitz Rule

By using definition of Golden derivative, the Golden Leibnitz Rule can be derived

in the following way;

Dx
F( f (x)g(x)) =

f (ϕx)g(ϕx) − f
(
− x
ϕ

)
g
(
− x
ϕ

)
(ϕ − ϕ′)x

=

(
f (ϕx) − f

(
− x
ϕ

)
+ f

(
− x
ϕ

))
g(ϕx) − f

(
− x
ϕ

)
g
(
− x
ϕ

)
(ϕ − ϕ′)x

=
f (ϕx) − f

(
− x
ϕ

)
(ϕ − ϕ′)x

g(ϕx) +
f
(
− x
ϕ

)
g(ϕx)

(ϕ − ϕ′)x
−

f
(
− x
ϕ

)
g
(
− x
ϕ

)
(ϕ − ϕ′)x

23



= Dx
F( f (x)) g(ϕx) + f

(
− x
ϕ

) ⎛⎜⎜⎜⎜⎜⎜⎜⎝g(ϕx) − g
(
− x
ϕ

)
(ϕ − ϕ′)x

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= Dx

F( f (x)) g(ϕx) + f
(
− x
ϕ

)
Dx

F(g(x))

This is why we have the following proposition.

Proposition 3.1 (Golden Leibnitz Rule)

1) Dx
F( f (x)g(x)) = Dx

F( f (x)) g(ϕx) + f
(
− x
ϕ

)
Dx

F(g(x)) (3.2)

2) Dx
F( f (x)g(x)) = Dx

F( f (x)) g
(
− x
ϕ

)
+ f (ϕx) Dx

F(g(x)) (3.3)

3) Dx
F( f (x)g(x)) = Dx

F( f (x))

⎛⎜⎜⎜⎜⎜⎜⎜⎝g(ϕx) + g
(
− x
ϕ

)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ Dx

F(g(x))

⎛⎜⎜⎜⎜⎜⎜⎜⎝ f (ϕx) + f
(
− x
ϕ

)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.4)

4) Dx
F( f (x)g(x)) =

(
α f

(
− x
ϕ

)
+ (1 − α) f (ϕx)

)
Dx

F(g(x))

+

(
αg(ϕx) + (1 − α)g

(
− x
ϕ

))
Dx

F( f (x)) (3.5)

From the definition of Golden derivative (3.1), by symmetry, we can interchange ϕ ↔ ϕ′
to get 2). Formulas 1) and 2) can be rewritten in explicitly symmetrical form 3). By

multiplying (3.2) with α, (3.3) with (1−α) and adding them, more general form of Golden

Leibnitz formula is obtained, which is given with an arbitrary α in 4). By choosing α = 1,

we have (3.2), and for α = 1
2
, (3.4) is obtained.

Example 3.1 For function F(x) = x5, golden derivative is obtained as;

Dx
F(x5) = F5 x4 = 5x4.

As an another way, by using (3.2) and choosing f (x) = x2, g(x) = x3;

Dx
F(x5) = Dx

F(x2 · x3) = Dx
F(x2) (ϕx)3 + (ϕ′x)2 Dx

F(x3) = F2 x(ϕx)3 + (ϕ′x)2F3x2

= ϕ3x4 + 2ϕ′2x4 = (ϕ3 + 2ϕ′2)x4 = (2ϕ + 1 + 2(ϕ′ + 1))x4 = 5x4.
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So,the same result is obtained by using Golden Leibnitz rule.

Now we may compute the Golden derivative of the quotient of f (x) and g(x) as;

Dx
F( f (x)) = Dx

F

(
g(x)

f (x)

g(x)

)

and by using (3.2),

Dx
F( f (x)) = Dx

F(g(x))
f (ϕx)

g(ϕx)
+ g

(
− x
ϕ

)
Dx

F

(
f (x)

g(x)

)
.

If we leave alone Dx
F

(
f (x)

g(x)

)
in the right hand side, we can get the Golden derivative of the

quotient.

Proposition 3.2

Dx
F

(
f (x)

g(x)

)
=

Dx
F( f (x)) g(ϕx) − f (ϕx) Dx

F(g(x))

g(ϕx) g
(
− x
ϕ

) (3.6)

Similar to the product rule, the quotient rule can be written in several different

forms.

3.1.2. Golden Periodic Function

Definition 3.2 Function A(x) is called the Golden periodic function if;

Dx
F (A(x)) = 0 ⇐⇒ A(ϕx) = A

(
− x
ϕ

)
(3.7)

or,

A(ϕx) = A(ϕ′x) ⇐⇒ A(ϕ2x) = A(−x) (3.8)

The Golden periodic function has interesting symmetry; rescaling argument x by

ϕ2 in positive direction is equivalent to value of function at reflected point −x.
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As an example, we consider;

A(x) = sin

(
π

lnϕ
ln |x|

)
. (3.9)

This function is Golden periodic. (See the Appendix B.1.) And, it is an even function

A(x) = A(−x). As a result, for this function we have golden periodicity condition in the

form;

A(ϕ2x) = A(x). (3.10)

So, this function satisfies self similarity property with ϕ2 scaling factor. It is seen from

Figure 3.1 and Figure 3.2 that rescaling interval of x by ϕ2 does not change shape of the

function. This is the property of Golden self-similar even function.

Out[1]=
0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

Figure 3.1. Graph of the function A(x) on interval 0 ≤ x ≤ 2

Out[11]=
1 2 3 4 5

�1.0

�0.5

0.5

1.0

Figure 3.2. Graph of the function A(x) on interval 0 ≤ x ≤ 2ϕ2
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3.2. Generating Functions for Fibonacci Numbers

Example 3.2 Application of the Golden derivative operator Dx
F on xn generates Fibonacci

numbers;

Dx
F(xn) =

(ϕx)n − (ϕ′x)n

(ϕ − ϕ′)x
=
ϕn − ϕ′n
ϕ − ϕ′ xn−1 = Fn xn−1

So, Fibonacci numbers can be represented also as,

Fn =
Dx

F(xn)

xn−1
(3.11)

Definition 3.3 The function F(x),

F(x) =

∞∑
n=0

Fnxn (3.12)

is called the generating function of Fibonacci numbers Fn. According to Taylor formula;

Fn =
1

n!

dn

dxn F(x)

∣∣∣∣∣
x=0

(3.13)

in a disk of analyticity around x = 0. Explicit form of the series is;

F(x) = x + x2 + 2x3 + 3x4 + 5x5 + . . . (3.14)

Proposition 3.3 Generating function F(x) which is convergent in domain |x| < |ϕ′| has

explicit representation;

F(x) =

∞∑
n=0

Fnxn =
x

1 − x − x2
. (3.15)
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Proof To find the domain of convergency, we apply the ratio test:

ρ = lim
n→∞

∣∣∣∣∣∣Fn+1xn+1

Fnxn

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣Fn+1

Fn

∣∣∣∣∣ lim
n→∞ |x| = ϕ|x|

For convergency ρ < 1 implies,

|x| < 1

ϕ
= |ϕ′|

and as follows |x| < |ϕ′| < 1. By using Golden derivative, we have;

F(x) =

∞∑
n=0

Fnxn = x
∞∑

n=0

Fnxn−1 (3.11)
= x

∞∑
n=0

Dx
F(xn) = x Dx

F

∞∑
n=0

xn

|x|<1
= x Dx

F

(
1

1 − x

)
(3.1)
= x

(
1

1−ϕx − 1
1−ϕ′x

)
(ϕ − ϕ′)x

=
x

(1 − ϕx)(1 − ϕ′x)
=

x
1 − x − x2

.

�

Corollary 3.1 F(x) is meromorphic function with one zero at x = 0 and two single poles

at x = −ϕ and x = −ϕ′. Indeed,

1 − ϕx = 0⇒ x =
1

ϕ
= −ϕ′

1 − ϕ′x = 0⇒ x =
1

ϕ′
= −ϕ

3.2.1. Entire Generating Function

In previous section, we considered generating function F(x) for Fibonacci num-

bers in disk |x| < |ϕ′|. Here, we introduce generating function for Fibonacci numbers
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which is entire function.

By calculating the Golden derivative of exponential function ex, in power series

form;

Dx
F(ex) = Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

xn

n!

⎞⎟⎟⎟⎟⎟⎠ = Dx
F

(
1

0!
+

x
1!
+

x2

2!
+

x3

3!
+ ...

)

=

∞∑
n=1

Dx
F

(
xn

n!

)
=

∞∑
n=1

Dx
F(xn)

n!
=

∞∑
n=1

Fn
xn−1

n!
=

∞∑
n=0

Fn+1

xn

(n + 1)!

so that,

Dx
F(ex) =

∞∑
n=0

Fn+1

xn

(n + 1)!
. (3.16)

As easy to see by ratio test, the right hand side is an entire function. From another side,

calculating Dx
F(ex) by using Golden derivative formula (3.1) gives;

Dx
F(ex) =

eϕx − eϕ
′x

(ϕ − ϕ′)x
=

e
(

1+
√

5
2

)
x − e

(
1−√5

2

)
x(

1+
√

5
2
− 1−√5

2

)
x
=

e
1
2 x
(
e
√

5
2 x − e−

√
5

2 x
)

√
5x

=
e

x
2 2 sinh

( √
5

2
x
)

√
5x

.

Thus, by this alternative way, we obtain;

Dx
F(ex) =

2e
x
2 sinh

( √
5

2
x
)

√
5x

. (3.17)

By equating both results (3.16) & (3.17), we obtain identity;

∞∑
n=0

Fn+1

(n + 1)!
xn = e

x
2

sinh
( √

5
2

x
)

√
5

2
x

(3.18)

This relation can be considered as entire generating function of Fibonacci numbers(up to

factorial).
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By setting x = 1, the sum of the series;

∞∑
n=1

Fn

n!
= e

1
2

sinh
( √

5
2

)
√

5
2

(3.19)

is obtained.

After replacing x→ ix in equation (3.18), we get,

∞∑
n=0

Fn+1

(n + 1)!
(i)nxn = e

ix
2

sinh
(
i
√

5
2

x
)

i
√

5
2

x
. (3.20)

By using sinh(ix) = i sin(x) at the right hand side of equality, and splitting the sum at the

left hand side to even and odd parts with n = 2k and n = 2k + 1 gives;

∞∑
k=0

F2k+1

(2k + 1)!
(i)2kx2k +

∞∑
k=0

F2k+2

(2k + 2)!
(i)2k+1x2k+1 = e

ix
2

sin
( √

5
2

)
x

√
5

2
x

(3.21)

Since i2 = −1,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)kx2k + i

∞∑
k=0

F2k+2

(2k + 2)!
(−1)kx2k+1 = e

ix
2

sin
( √

5
2

x
)

√
5

2
x

(3.22)

Writing e
ix
2 = cos

(
x
2

)
+ i sin

(
x
2

)
,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)kx2k + i

∞∑
k=0

F2k+2

(2k + 2)!
(−1)kx2k+1 = cos

( x
2

)sin
( √

5
2

x
)

√
5

2
x
+ i sin

( x
2

)sin
( √

5
2

x
)

√
5

2
x

Now, equating real and imaginary parts, we have new identities, as generating functions

for even and odd order Fibonacci numbers,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)kx2k = cos

( x
2

) sin
( √

5
2

x
)

√
5

2
x

(3.23)
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and,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)kx2k+1 = sin

( x
2

) sin
( √

5
2

x
)

√
5

2
x

(3.24)

Functions in (3.23) and (3.24) are entire functions, giving several interesting identities for

different values of x.

From (3.23) follow identities for:

1) x = π,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)kπ2k = 0 (3.25)

2) x = 2π√
5
,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)k (2π)2k

5k = 0 (3.26)

3) x = π√
5
,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)kπ

2k

5k =
2 cos

(
π

2
√

5

)
π

(3.27)

4) x = 2π,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)k(2π)2k = −

sin
(√

5π
)

√
5π

(3.28)

5) x = 1,

∞∑
k=0

F2k+1

(2k + 1)!
(−1)k = cos

(
1

2

)
sin
( √

5
2

)
√

5
2

(3.29)
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Also, from equation (3.24) follow identities for:

1) x = π,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)kπ2k+1 =

sin
( √

5
2
π
)

√
5

2
π

(3.30)

2) x = 2π√
5
,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)k

(
2π√

5

)2k+1

= 0 (3.31)

3) x = π√
5
,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)k

(
π√
5

)2k+1

=
2 sin

(
π

2
√

5

)
π

(3.32)

4) x = 2π,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)k(2π)2k+1 = 0 (3.33)

5) x = 1,

∞∑
k=0

F2k+2

(2k + 2)!
(−1)k = sin

(
1

2

)
sin
( √

5
2

)
√

5
2

(3.34)

3.3. Golden Taylor Formula

Taylor expansion of arbitrary polynomial to the set of polynomials is determined

by Theorem (Kac, V. and Cheung, P., 2002). Here, we apply this theorem to Golden

polynomials.
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Theorem 3.1 (Golden Taylor Expansion)

The Golden derivative operator Dx
F as a linear operator acts on the space of poly-

nomials, and

Pn(x) ≡ xn

Fn!
≡ xn

F1 · F2 . . . Fn

satisfy the following conditions:

(i) P0(0) = 1 and Pn(0) = 0 for any n ≥ 1;

(ii) deg(Pn) = n;

(iii) Dx
F(Pn(x)) = Pn−1(x) for any n ≥ 1, and Dx

F(1) = 0.

Then, for any polynomial f(x) of degree N, one has the following Taylor formula;

f (x) =

N∑
n=0

(Dx
F)n f (0)Pn(x) =

N∑
n=0

(Dx
F)n f (0)

xn

Fn!
.

In the limit N → ∞ (if it exists) this formula determines expansion of the function;

f (x) =

∞∑
n=0

(Dx
F f )n(0)

xn

Fn!
.

If an infinite series,

∞∑
n=0

an
xn

Fn!
(3.35)

is convergent in some domain, then it determines function,

fF(x) =

∞∑
n=0

an
xn

Fn!
(3.36)

in this domain, which we call the Golden-Fibonacci function.

Let’s check the convergency of functions;

f (x) =

∞∑
n=0

an
xn

n!
and fF(x) =

∞∑
n=0

an
xn

Fn!
(3.37)
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By the ratio test, we have;

ρ = lim
n→∞

∣∣∣∣∣bn+1

bn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣an+1xn+1

(n + 1)!

n!

anxn

∣∣∣∣∣∣ = |x| limn→∞

∣∣∣∣∣ 1

n + 1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ (3.38)

ρF = lim
n→∞

∣∣∣∣∣cn+1

cn

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣an+1xn+1

Fn+1!

Fn!

anxn

∣∣∣∣∣∣ = |x| limn→∞

∣∣∣∣∣ 1

Fn+1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ . (3.39)

The second limit implies,

lim
n→∞

∣∣∣∣∣ 1

Fn+1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣n + 1

Fn+1

∣∣∣∣∣
∣∣∣∣∣ 1

n + 1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ .

If f (x) is entire function, then lim
n→∞

∣∣∣∣∣ 1

n + 1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ → 0. Since lim
n→∞

∣∣∣∣∣n + 1

Fn+1

∣∣∣∣∣ = 0, then as

follows function fF(x) is also entire. This means that to every entire function f (x) we can

relate another entire function fF(x).

As an example, here we consider ex which is entire function. Then, corresponding

Golden exponential as,

ex
F =

∞∑
n=0

xn

Fn!
(3.40)

is also entire function.

3.4. Golden Exponential Functions

The 1st and 2nd type of Golden Exponential functions are defined as;

ex
F ≡

∞∑
n=0

xn

Fn!
(3.41)

and

Ex
F ≡

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!
(3.42)
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Both of these are entire functions.

Definition 3.4

Fn! =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1, if n = 0;

F1F2F3 . . . Fn, n ≥ 1.
(3.43)

Proposition 3.4 There is a relation between these functions:

Ex
F ≡ ex

−F

Proof To show this, we write;

Ex
F =

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!
=

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!

(−1)
n(n−1)

2

(−1)
n(n−1)

2

=

∞∑
n=0

(−1)n(n−1) xn

(−1)
n(n−1)

2 Fn!

=

∞∑
n=0

xn

(−1)
n(n−1)

2 Fn!
.

By using (2.4), we calculate,

F−n! = F−nF−n+1 . . . F−1
(2.4)
= (−1)n−1Fn (−1)n−2Fn−1 . . . F1

= (−1)(n−1)+(n−2)+...+1Fn! = (−1)
n(n−1)

2 Fn!

and obtain that,

F−n! = (−1)
n(n−1)

2 Fn! (3.44)

Then, it gives;

Ex
F =

∞∑
n=0

xn

(−1)
n(n−1)

2 Fn!

(3.44)
=

∞∑
n=0

xn

F−n!
≡ ex

−F (3.45)

�

Graphs of two exponential functions can be seen in the Figures 3.3 and 3.4.
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Figure 3.3. Graph of the function ex
F
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Figure 3.4. Graph of the function Ex
F

Conjecture: Function ex
F has no zeros, but function Ex

F has infinitely many zeros

and these zeros are located at Fibonacci numbers.

Theorem 3.2 The Golden derivative of Golden exponential functions is found as;

Dx
F(ekx

F ) = kekx
F (3.46)

Dx
F(Ekx

F ) = kE−kx
F (3.47)

for an arbitrary k.
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Proof

Dx
F(ekx

F ) = Dx
F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(kx)n

Fn!

⎞⎟⎟⎟⎟⎟⎠ = Dx
F

(
1

F0!
+

kx
F1!
+

k2x2

F2!
+

k3x3

F3!
+ . . .

)

= Dx
F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

knxn

Fn!

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
n=1

kn Dx
F(xn)

Fn!

=

∞∑
n=1

knFnxn−1

Fn!
=

∞∑
n=1

knxn−1

Fn−1!

=

∞∑
n=0

kn+1xn

Fn!
= k

∞∑
n=0

(kx)n

Fn!

= kekx.

Dx
F(Ekx

F ) = DF

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!

⎞⎟⎟⎟⎟⎟⎠ = Dx
F

(
1

F0!
+

kx
F1!
− k2x2

F2!
− k3x3

F3!
+ . . .

)

= Dx
F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

(−1)
n(n−1)

2
knxn

Fn!

⎞⎟⎟⎟⎟⎟⎠
=

∞∑
n=1

(−1)
n(n−1)

2 kn Dx
F(xn)

Fn!

=

∞∑
n=1

(−1)
n(n−1)

2 kn Fnxn−1

Fn!

=

∞∑
n=1

(−1)
n(n−1)

2 kn xn−1

Fn−1!

=

∞∑
n=0

(−1)
(n+1)n

2 kn+1 xn

Fn!

= k
∞∑

n=0

(−1)
(n2+n)

2 kn xn

Fn!

= k
∞∑

n=0

(−1)
(n2+n)−n+n

2
(kx)n

Fn!

= k
∞∑

n=0

(−1)
n(n−1)

2 (−1)n (kx)n

Fn!

= k
∞∑

n=0

(−1)
n(n−1)

2
(−kx)n

Fn!

= kE−kx

�
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3.4.1. Estimating the Number eF

Fibonacci exponential function,

ex
F ≡

∞∑
n=0

xn

Fn!

determines Fibonacci analog of Euler number e ≡ ex
∣∣∣∣∣
x=1

≈ 2.718.

To estimate it, first we have ex
F

∣∣∣∣∣
x=1

= eF as the sum;

eF =

∞∑
n=0

1

Fn!
=

1

F0!
+

1

F1!
+

1

F2!
+

1

F3!
+

1

F4!
+

1

F5!
+

1

F6!
+

∞∑
n=7

1

Fn!

= 1 + 1 + 1 +
1

2
+

1

6
+

1

30
+

1

240
+

∞∑
n=7

1

Fn!

≈ 3.70416666 +

∞∑
n=7

1

Fn!

This gives the lower bound,

3.7041 < eF

To get the upper bound, we combine

eF = 3 +
1

F3!
+

1

F4!
+

1

F1 . . . F4 · F5

+
1

F1 . . . F4 · F5 · F6

(
1 +

1

F7

+
1

F7 · F8

+ . . .

)

= 3.6666 + 0.0333 +
1

240

(
1 +

1

F7

+
1

F7 · F8

+ . . .

)

Since,

Fn > 12 for all n > 7 ⇒ 1

Fn
<

1

12
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eF < 3.6666 + 0.0333 +
1

240

(
1 +

1

12
+

1

12 · 12
+

1

12 · 12 · 12
+ . . .

)

eF < 3.6666 + 0.0333 +
1

240

⎛⎜⎜⎜⎜⎝ 1

1 − 1
12

⎞⎟⎟⎟⎟⎠
eF < 3.6666 + 0.0333 +

1

240

12

11

eF < 3.6666 + 0.0333 +
1

220

Therefore, upper bound is obtained, as

eF < 3.7044

Combining both, the lower and the upper bounds of this number, we get estimation;

3.7041 < eF < 3.7044 (3.48)

3.5. Golden Trigonometric and Hyperbolic Functions

Definition 3.5 Fibonacci cosine and sine functions are defined by the power series,

cosF(x) ≡
∞∑

n=0

(−1)n x2n

F2n!
, (3.49)

sinF(x) ≡
∞∑

n=0

(−1)n x2n+1

F2n+1!
, (3.50)

coshF(x) ≡
∞∑

n=0

x2n

F2n!
, (3.51)

sinhF(x) ≡
∞∑

n=0

x2n+1

F2n+1!
. (3.52)
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Proposition 3.5 Since

ex
F =

∞∑
n=0

xn

Fn!
, Ex

F =

∞∑
n=0

(−1)
n(n−1)

2
xn

Fn!

representations are valid, then;

cosF(x) =
eix

F + e−ix
F

2
=

Ex
F + E−x

F

2
(3.53)

sinF(x) =
eix

F − e−ix
F

2i
=

Ex
F − E−x

F

2
(3.54)

coshF(x) =
ex

F + e−x
F

2
=

Eix
F + E−ix

F

2
(3.55)

sinhF(x) =
ex

F − e−x
F

2
=

Eix
F − E−ix

F

2i
(3.56)

are shown in Figures 3.5 and 3.6.
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Figure 3.5. Graph of function cosF(x)

Since,

cosF(x) =
Ex

F + E−x
F

2
=

E−x
F + Ex

F

2
= cosF(−x),

it is even function and it is symmetric about y-axis.
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Figure 3.6. Graph of function sinF(x)

Since,

sinF(x) =
Ex

F − E−x
F

2
= −

(
E−x

F − Ex
F

2

)
= − sinF(−x),

sinF(x) is odd function and it is symmetric about the origin.

Graphics of coshF(x) and sinhF(x) are shown in Figure 3.7 and 3.8.
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Figure 3.7. Graph of function coshF(x)
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Since,

coshF(x) =
ex

F + e−x
F

2
=

e−x
F + ex

F

2
= coshF(−x),

it is even function and it is symmetric about y-axis.
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Figure 3.8. Graph of function sinhF(x)

Since,

sinhF(x) =
ex

F − e−x
F

2
= −

(
e−x

F − ex
F

2

)
= − sinhF(−x),

sinhF(x) is odd function and it is symmetric about the origin.

Due to Proposition 3.5, we get analogues of Euler formula.

Proposition 3.6

eix
F = cosF(x) + i sinF(x) (3.57)

Eix
F = coshF(x) + i sinhF(x) (3.58)

ex
F = coshF(x) + sinhF(x) (3.59)

Ex
F = cosF(x) + sinF(x) (3.60)
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We know that, hyperbolic and trigonometric functions are related,

cosh(ix) =
eix + e−ix

2
= cos(x) and sinh(ix) =

eix − e−ix

2
= i sin(x). (3.61)

Similar relations exist between coshF(x) & cosF(x) and sinhF(x) & sinF(x);

coshF(ix) =

∞∑
n=0

(ix)2n

F2n!
=

∞∑
n=0

i2nx2n

F2n!
=

∞∑
n=0

(−1)n x2n

F2n!
= cosF(x)

⇒ coshF(ix) = cosF(x)

sinhF(ix) =

∞∑
n=0

(ix)2n+1

F2n+1!
= i

∞∑
n=0

(−1)n x2n+1

F2n+1!
= i sinF(x)

⇒ sinhF(ix) = i sinF(x)

3.5.1. Golden Oscillator

Lemma 3.1 Golden derivatives of cosF(x) and sinF(x) functions are,

Dx
F(cosF(x)) = − sinF(x) (3.62)

Dx
F(sinF(x)) = cosF(x) (3.63)
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Proof

Dx
F(cosF(x)) =

1

2
Dx

F(eix
F + e−ix

F ) =
1

2
(ieix

F − ie−ix
F ) =

i
2

(eix
F − e−ix

F ) = −
(
eix

F − e−ix
F

2i

)
= − sinF(x)

Dx
F(sinF(x)) =

1

2
Dx

F(eix
F − e−ix

F ) =
(ieix

F + ie−ix
F )

2i
=

(eix
F + e−ix

F )

2
= cosF(x)

�

It can be generalized to arbitrary number k;

Dx
F(cosF(kx)) = −k sinF(kx) (3.64)

Dx
F(sinF(kx)) = k cosF(kx) (3.65)

By appliying the second derivative,

⇒ (Dx
F)2(cosF(kx)) = Dx

F(−k sinF(kx)) = −kk cosF(kx) = −k2 cosF(kx) (3.66)

So, we have (Dx
F)2(cosF(kx)) = −k2 cosF(kx). Since cosF(kx) satisfy this equation, it

should also satisfy the following equation, which is called as Golden Oscillator equation;

[(Dx
F)2 + k2] cosF(kx) = 0 (3.67)

Definition 3.6 Golden oscillator equation is defined as,

[(Dx
F)2 + k2] y(x) = 0 (3.68)

From another side, since Dx
F(Ekx

F ) = kE−kx
F , and if we replace k↔ −k we have,

Dx
F(E−kx

F ) = −kEkx
F (3.69)
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Appliying it twice,

(Dx
F)2(Ekx

F ) = (Dx
F)(kE−kx

F )
(3.69)
= k(−k)Ekx

F = −k2Ekx
F ⇒ (Dx

F)2(Ekx
F ) = −k2Ekx

F

and we obtain,

[(Dx
F)2 + k2]Ekx

F = 0 (3.70)

Since Ekx
F and E−kx

F from one side and cosF(kx) from another side satisfy the same equa-

tions (3.67) and (3.70), they should be dependent. Their dependency can be seen from

equation (3.53),

cosF(x) =
Ex

F + E−x
F

2
. (3.71)

Also, easy to check that sinF(kx) satisfies the same equation as;

[(Dx
F)2 + k2](sinF(kx)) = 0 (3.72)

Then, the general solution is written by superposition;

f (x) = A1(x) cosF(kx) + A2(x) sinF(kx), (3.73)

where A1(x) and A2(x) are Golden periodic and even functions.

3.6. Golden Binomial (x + y)n
F

In this Section we study Golden analogue of binomial. To introduce it, we need

first define Fibonomials and their properties.
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3.6.1. Fibonomial and Golden Pascal Triangle

Definition 3.7 The product of Fibonacci numbers,

F1F2 . . . Fn =

n∏
i=1

Fi ≡ Fn! (3.74)

is called the Fibonacci factorial. Another common name and notation for this number is

the Fibonorial;

n!F ≡ Fn! (3.75)

Definition 3.8 The Fibonacci-binomial coefficients are defined as,

[
n
m

]
F
=

FnFn−1 . . . Fn−m+1

FmFm−1 . . . F1

≡ Fn!

Fn−m!Fm!
≡ [n]F!

[n − m]F![m]F!
(3.76)

with n and m being nonnegative integers(n ≥ m). These coefficients are called Fibonomial

coefficients.

We know that any number in the interior of Pascal’s Triangle will be the sum of

the two numbers appearing above it. Thus, we have formula;

(
n
k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)

Golden analog of this formula exists. Let’s begin with;

[
n
k

]
F
=

Fn!

Fn−k!Fk!
=

Fn [n − 1]F!

[k]F! [n − k]F [n − k − 1]F!

=
Fn

[n − k]F

[n − 1]F!

[k]F! [n − k − 1]F!
. (3.77)
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By using addition formula (2.13), we can write Fn;

Fn = F(n−k)+k
(2.13)
=

(
−1

ϕ

)k

Fn−k + ϕ
n−k Fk

Then, the ratio Fn
Fn−k

becomes;

Fn

Fn−k
=

(
−1

ϕ

)k

+ ϕn−k Fk

Fn−k
(3.78)

Substituting this into (3.77) gives,

[
n
k

]
F
= . . . =

⎛⎜⎜⎜⎜⎝(−1

ϕ

)k

+ ϕn−k Fk

Fn−k

⎞⎟⎟⎟⎟⎠ [n − 1]F!

[k]F! [n − k − 1]F!

=

(
−1

ϕ

)k
[n − 1]F!

[k]F! [n − k − 1]F!
+ ϕn−k Fk

Fn−k

[n − 1]F!

[k]F! [n − k − 1]F!

=

(
−1

ϕ

)k [n − 1

k

]
F
+ ϕn−k [n − 1]F!

[k − 1]F! Fn−k [n − k − 1]F!

=

(
−1

ϕ

)k [n − 1

k

]
F
+ ϕn−k [n − 1]F!

[k − 1]F! [n − k]F!

=

(
−1

ϕ

)k [n − 1

k

]
F
+ ϕn−k

[
n − 1

k − 1

]
F
.

So, we get the formula to construct the Golden Pascal Triangle,

[
n
k

]
F
=

(
−1

ϕ

)k [n − 1

k

]
F
+ ϕn−k

[
n − 1

k − 1

]
F

(3.79)

By using next property of Fibonomials,

[
n
k

]
F
=

Fn!

Fn−k!Fk!
=

Fn!

Fn−(n−k)!Fn−k!
=

[
n

n − k

]
F

we can derive equivalent rule to determine Golden Pascal Triangle.
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If in (3.79) we replace k → n − k,

[
n
k

]
F
=

(
−1

ϕ

)n−k [n − 1

n − k

]
F
+ ϕn−(n−k)

[
n − 1

n − k − 1

]
F

=

(
−1

ϕ

)n−k [n − 1

n − k

]
F
+ ϕk

[
n − 1

n − k − 1

]
F

=

(
−1

ϕ

)n−k [ n − 1

n − 1 − (n − k)

]
F
+ ϕk

[
n − 1

(n − 1) − (n − k − 1)

]
F

=

(
−1

ϕ

)n−k [n − 1

k − 1

]
F
+ ϕk

[
n − 1

k

]
F

Next equivalent rule also determine the Golden Pascal Triangle,

[
n
k

]
F
=

(
−1

ϕ

)n−k [n − 1

k − 1

]
F
+ ϕk

[
n − 1

k

]
F

(3.80)

where 1 ≤ k ≤ n − 1.

Thus, by using formula (3.79), we can construct the Golden Pascal Triangle as

shown in Figure 3.9.

Figure 3.9. Golden Pascal Triangle
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3.6.2. Golden Binomial

Definition 3.9 The Golden Binomial is defined as;

(x + y)n
F ≡

(
x + ϕn−1y

) (
x + ϕn−2ϕ′y

)
. . .

(
x + ϕϕ′n−2y

) (
x + ϕ′n−1y

)

Since ϕϕ′ = −1, Golden Binomial can be written in terms of just ϕ,

(x + y)n
F ≡

(
x + ϕn−1y

) (
x − ϕn−3y

)
. . .

(
x − ϕ′n−3y

) (
x + (−1)n−1ϕ−n+1y

)
(3.81)

For the Golden Binomial, the next expansion is also valid (Pashaev O.K. and Nalci S.,

2012).

(x + y)n
F ≡

n∑
k=0

[
n
k

]
F
(−1)

k(k−1)
2 xn−kyk (3.82)

In particular,

(x − 1)m
F =

(
x − ϕm−1

) (
x + ϕm−3

)
. . .

(
x − (−1)m−1ϕ−m+1

)
(3.83)

First few binomial are,

(x − 1)1
F = x − 1

(x − 1)2
F = (x − ϕ)(x − ϕ′)

(x − 1)3
F = (x − ϕ2)(x + 1)(x − ϕ′2)

(x − 1)4
F = (x − ϕ3)(x + ϕ)(x + ϕ′)(x − ϕ′3)

and corresponding zeros are,

m = 1 ⇒ x = 1

49



m = 2 ⇒ x = ϕ, x = ϕ′

m = 3 ⇒ x = ϕ2, x = −1, x = ϕ′2

m = 4 ⇒ x = ϕ3, x = −ϕ, x = −ϕ′, x = ϕ′3 (3.84)

For arbitrary n, we have following zeros of Golden binomial.

1) n = 2k ⇒ (x − 1)n
F = (x − 1)2k

F : ϕn−1, ϕ′n−1,−ϕn−3,−ϕ′n−3, . . . ,±ϕ,±ϕ′ (3.85)

2) n = 2k + 1⇒ (x − 1)n
F = (x − 1)2k+1

F : ϕn−1, ϕ′n−1,−ϕn−3,−ϕ′n−3, . . . ,±1(3.86)

These zeros completely determine Golden binomials.

Lemma 3.2 The application of the Golden derivative to the Golden Binomials gives;

Dx
F(x + y)n

F = Fn(x + y)n−1
F , (3.87)

Dy
F(x + y)n

F = Fn(x − y)n−1
F , (3.88)

Dy
F(x − y)n

F = −Fn(x + y)n−1
F . (3.89)

Proof For proof, see Appendix B.2. �

Appliying derivative several times, we get;

(Dy
F)2k(x + y)2k

F = (−1)kF2k! and (Dy
F)2k+1 (x + y)2k+1

F = (−1)kF2k+1!

Proposition 3.7

ex
F Ey

F = ex
F ey

−F = e(x+y)F
F , (3.90)

where,

e(x+y)F
F = eF(x + y)F ≡

∞∑
n=0

(x + y)n
F

Fn!
. (3.91)
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Proof

ex
F Ey

F =

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

xn

Fn!

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝ ∞∑

k=0

(−1)
k(k−1)

2
yk

Fk!

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
n=0

∞∑
k=0

xnyk

Fn!Fk!
(−1)

k(k−1)
2

=

∞∑
n=0

∞∑
k=0

xnykFN!

Fn!Fk!FN!
(−1)

k(k−1)
2 (Let n + k = N)

=

∞∑
N=0

1

FN!

N∑
k=0

FN!

FN−k!Fk!
(−1)

k(k−1)
2 xN−kyk

︸�������������������������������︷︷�������������������������������︸
(x+y)N

F

=

∞∑
N=0

(x + y)N
F

FN!

= eF(t + x)F

This function eF(t + x)F , we will use in Section 3.8. �

3.7. Remarkable Limit

From Golden Binomial expansion, we have;

(x + y)n
F =

n∑
k=0

[
n
k

]
F
(−1)

k(k−1)
2 xn−kyk

If we set x = 1 and y→ y
ϕn , then it gives us;

(
1 +

y
ϕn

)n

F
=

n∑
k=0

[
n
k

]
F

(−1)
k(k−1)

2
yk

ϕnk . (3.92)
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By opening Fibonomials and taking the limit as n goes to infinity;

lim
n→∞

(
1 +

y
ϕn

)n

F
= lim

n→∞

n∑
k=0

Fn!

Fn−k! Fk!
(−1)

k(k−1)
2

yk

ϕnk

= lim
n→∞

∞∑
k=0

FnFn−1 . . . Fn−(k−1)Fn−k!

Fn−k! Fk!
(−1)

k(k−1)
2

yk

ϕnk

= lim
n→∞

∞∑
k=0

FnFn−1 . . . Fn−(k−1)

Fk!
(−1)

k(k−1)
2

yk

ϕnk

= lim
n→∞

∞∑
k=0

(ϕn − ϕ′n) . . . (ϕn−(k−1) − ϕ′n−(k−1))

(ϕ − ϕ′)k Fk!
(−1)

k(k−1)
2

yk

ϕnk

= lim
n→∞

∞∑
k=0

ϕnϕn−1 . . . ϕn−(k−1)

(ϕ − ϕ′)k Fk!
(−1)

k(k−1)
2

yk

ϕnk

= lim
n→∞

∞∑
k=0

ϕkn ϕ−
(

k(k−1)
2

)
(ϕ − ϕ′)k Fk!

(−1)
k(k−1)

2
yk

ϕnk

=

∞∑
k=0

1

Fk!
(−1)

k(k−1)
2

yk

(ϕ − ϕ′)k ϕ
k(k−1)

2

Since, we have;

Fk =
ϕk − ϕ′k
ϕ − ϕ′ =

ϕ′k
((
ϕ

ϕ′
)k − 1

)
ϕ′
(
ϕ

ϕ′ − 1
) = ϕ′k−1

((
ϕ

ϕ′
)k − 1

)
(
ϕ

ϕ′ − 1
) = ϕ′k−1 (−ϕ2)k − 1

(−ϕ2) − 1
= ϕ′k−1[k]−ϕ2

⇒ Fk = ϕ
′k−1[k]−ϕ2 (3.93)

Multiplying FkFk−1 . . . F1 gives,

Fk! =

(
−1

ϕ

) k(k−1)
2

[k]−ϕ2! (3.94)
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After substituting Fk!,

lim
n→∞

(
1 +

y
ϕn

)n

F
= . . . =

∞∑
k=0

1(
− 1
ϕ

) k(k−1)
2

[k]−ϕ2!

(−1)
k(k−1)

2
yk

(ϕ − ϕ′)k ϕ
k(k−1)

2

=

∞∑
k=0

1

[k]−ϕ2!

(
yϕ
ϕ2 + 1

)k

=

∞∑
k=0

(
yϕ
ϕ2+1

)k
[k]−ϕ2!

= e−ϕ2

(
yϕ
ϕ2 + 1

)
.

Thus, it is obtained,

lim
n→∞

(
1 +

y
ϕn

)n

F
= e−ϕ2

(
yϕ
ϕ2 + 1

)
, (3.95)

lim
n→∞

(
1 +

y
ϕn

)n

F
= e−ϕ2

(
y√
5

)
. (3.96)

As a last step, after choosing y =
√

5 , we obtain;

lim
n→∞

⎛⎜⎜⎜⎜⎝1 +
√

5

ϕn

⎞⎟⎟⎟⎟⎠n

F

= e−ϕ2(1) (3.97)

Now, our aim is to calculate e−ϕ2(1). From q-Calculus, we know the Jackson exponential

function;

eq(x) =

∞∑
k=0

xk

[k]q!
(3.98)
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By choosing q = −ϕ2 and x = 1, we have;

e−ϕ2(1) =

∞∑
k=0

1

[k]−ϕ2!
.

From (3.94), [k]−ϕ2! = (−1)
k(k−1)

2 Fk! ϕ
k(k−1)

2 . By substituting this gives,

e−ϕ2(1) =

∞∑
k=0

1

(−1)
k(k−1)

2 Fk! ϕ
k(k−1)

2

=

∞∑
n=0

1

Fk! (−ϕ)
k(k−1)

2

. (3.99)

As a final result we can write,

lim
n→∞

⎛⎜⎜⎜⎜⎝1 +
√

5

ϕn

⎞⎟⎟⎟⎟⎠n

F

=

∞∑
k=0

1

Fk! (−ϕ)
k(k−1)

2

=

∞∑
k=0

ϕ′
k(k−1)

2

Fk!
(3.100)

3.8. Golden Heat Equation

Definition 3.10 Fibonacci-exponential function of two arguments is defined as;

e(t+x)F
F ≡ eF(t + x)F ≡

∞∑
n=0

(t + x)n
F

Fn!
. (3.101)

Lemma 3.3 By applying the Dt
F and Dx

F operators to eF(t+ x)F and eF(t− x)F, we obtain

results,

Dt
F(eF(t + x)F) = eF(t + x)F , (3.102)

Dx
F(eF(t + x)F) = eF(t − x)F , (3.103)

Dx
F(eF(t − x)F) = −eF(t + x)F . (3.104)

Proof For proof, see Appendix B.3.1. �
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3.8.1. Function eF(t + x)F and Golden Heat Equation

It is known that,

∂u
∂t
= μ
∂2u
∂x2

(3.105)

is the Heat Equation for temparature distribution u(x, t). By choosing μ = −1 and replac-

ing partial derivatives with Golden derivatives as ∂
∂t → Dt

F and ∂2

∂x2 → (Dx
F)2 gives the

Golden Heat equation,

[(Dx
F)2 + Dt

F]uF(x, t) = 0 (3.106)

for unknown function uF(x, t). As we have seen,

Dt
F(eF(t + x)F) = eF(t + x)F

and as follows,

(Dx
F)2(eF(t + x)F) = Dx

F(eF(t − x)F) = −eF(t + x)F .

Adding these equations gives,

[(Dx
F)2 + Dt

F]eF(t + x)F = 0. (3.107)

As a result, eF(t + x)F is a solution of the Golden Heat equation.

This solution can be generalized for arbitrary number k. Assume that

uF(x, t) = eF(ωt + kx)F ≡ e(ωt+kx)F
F (3.108)

is a solution of Golden Heat equation (3.106).
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Lemma 3.4 It is obtained that,

Dt
F(eF(ωt + kx)F) = ω eF(ωt + kx)F (3.109)

(Dx
F)2(eF(ωt + kx)F) = −k2 eF(ωt + kx)F (3.110)

Proof For proof, see Appendix B.3.2. �

By substituting eF(ωt + kx)F in the Golden Heat equation (3.106) gives,

[(Dx
F)2 + Dt

F]eF(ωt + kx)F = (−k2 + ω)eF(ωt + kx)F = 0⇒ −k2 + ω = 0⇒ ω = k2

So, ω dependency in terms of k as dispersion relation ω = ω(k) is obtained. Therefore,

eF(k2t + kx)F is one parametric solution for Golden Heat equation.

Since equation is linear, we can consider superposition of these functions as;

UF(x, t) =
∑

k

ak eF(k2t + kx)F (3.111)

with arbitrary coefficients ak (more generally these are Golden periodic functions) as gen-

eral solution of Golden heat equation.

3.9. Golden Wave Equation

In previous section, we studied Golden Heat equation and found its general solu-

tion. In this section, we search general solution of the Golden Wave equation.

The standard wave equation is known as,

∂2u
∂t2
= c2∂

2u
∂x2

(3.112)

By choosing c = 1 and replacing partial derivatives with Golden derivatives as ∂2

∂t2 →
(Dt

F)2 and ∂2

∂x2 → (Dx
F)2 gives the Golden wave equation,

[(Dx
F)2 − (Dt

F)2]uF(x, t) = 0 (3.113)
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Let eF(ωt + kx)F be solution of Golden wave equation;

[(Dx
F)2 − (Dt

F)2]eF(ωt + kx)F = 0. (3.114)

By using Lemma 3.4 , we have;

[(Dx
F)2 − (Dt

F)2]eF(ωt + kx)F = (Dx
F)2(eF(ωt + kx)F) − (Dt

F)2(eF(ωt + kx)F)

= (−k2)eF(ωt + kx)F − ω2eF(ωt + kx)F

= −[ω2 + k2] eF(ωt + kx)F = 0.

Then ω2 + k2 = 0 ⇒ ω = ±ik gives solutions for the Golden Wave equation as eF(ikt +

kx)F and eF(−ikt + kx)F . Since all linear combinations also become solution, the general

solution is,

U(x, t) =
∑

k

akeF(ikt + kx)F + bkeF(−ikt + kx)F (3.115)

where ak’s and bk’s are arbitrary constants(or more generally-Golden periodic functions).
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CHAPTER 4

HIGHER ORDER FIBONACCI CALCULUS

4.1. Higher Order Fibonacci Derivatives

In this section, we introduce Higher Order Fibonacci derivative operators (k)Dx
F .

Definition 4.1 For arbitrary function f (x),

(k)Dx
F[ f (x)] =

f (ϕkx) − f (ϕ′kx)(
ϕk − ϕ′k) x

(4.1)

where k ∈ Z.

The operator (k)Dx
F we call the Higher kth order Golden derivative operator. It is the linear

operator.

For the case k = 1, it coincides with Golden derivative.

(1)Dx
F[ f (x)] = Dx

F[ f (x)] (4.2)

Application of this derivative operator to function xn produces Fibonacci numbers;

(1)Dx
F(xn) =

(ϕx)n − (ϕ′x)n

(ϕ − ϕ′)x
=
ϕn − ϕ′n
ϕ − ϕ′ xn−1 = Fn xn−1.

Now, by applying the Higher kth Order Golden derivative (k)Dx
F to function xn, we get the

Higher order Fibonacci numbers F(k)
n .

(k)Dx
F[xn] =

(ϕkx)n − (ϕ′kx)n

(ϕk − ϕ′k)x
=

(ϕk)n − (ϕ′k)n

ϕk − ϕ′k xn−1 = F(k)
n xn−1,
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or

(k)Dx
F[xn] = F(k)

n xn−1. (4.3)

For negative values of k, this formula produces the numbers,

F(−k)
n = (−1)(n+1)k F(k)

n

according to (2.28). For Higher kth Order Golden derivative the Leibnitz and quotient

rules can be derived.

Proposition 4.1 (The Leibnitz Rule)

(k)Dx
F( f (x)g(x)) =(k) Dx

F( f (x)) g(ϕkx) + f
(
ϕ′kx

)
(k)Dx

F(g(x)) (4.4)

Proposition 4.2 (The Quotient Rule)

(k)Dx
F

(
f (x)

g(x)

)
=

(k)Dx
F( f (x)) g(ϕkx) − f (ϕkx) (k)Dx

F(g(x))

g(ϕkx) g
(
ϕ′kx

) (4.5)

Example 4.1 We know that,

(k)Dx
F(xn) = F(k)

n xn−1. (4.6)

Now, we calculate this in another way, by splitting the power;

(k)Dx
F(xn) =(k) Dx

F(xmxn−m)
(4.4)
= (k)Dx

F(xm) (ϕkx)n−m + (ϕ′kx)m
(k)Dx

F(xn−m)

= F(k)
m xm−1(ϕk)n−mxn−m + (ϕ′k)mxmF(k)

n−mxn−m−1

=
[
F(k)

m (ϕk)n−m + F(k)
n−m (ϕ′k)m

]
xn−1 (4.7)

Comparing the results (4.6) and (4.7) gives next corollary.
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Corollary 4.1 For any m < n,

F(k)
n = F(k)

m (ϕk)n−m + F(k)
n−m (ϕ′k)m (4.8)

This corollary allows us to formulate following proposition.

Proposition 4.3

F(k)
n = F(k)

n−m F(k)

m+1
+ (−1)k+1 F(k)

m F(k)

n−m−1
(4.9)

For k = 1 this gives equation (2.15) for Fibonacci numbers.

Fn = Fn−m Fm+1 + Fm Fn−m−1

Proof Due to corollary,

F(k)
n = F(k)

m (ϕk)n−m + F(k)
n−m (ϕ′k)m

by substituting (2.30) and (2.31), we get;

F(k)
n = F(k)

m

(
ϕkF(k)

n−m + (−1)k+1F(k)

n−m−1

)
+ F(k)

n−m

(
ϕ′kF(k)

m + (−1)k+1F(k)

m−1

)
= F(k)

m F(k)
n−m

(
ϕk + ϕ′k

)
+ (−1)k+1F(k)

m F(k)

n−m−1
+ (−1)k+1F(k)

n−m F(k)

m−1

= F(k)
m F(k)

n−m Lk + (−1)k+1F(k)
m F(k)

n−m−1
+ (−1)k+1F(k)

n−m F(k)

m−1

= F(k)
n−m

(
Lk F(k)

m + (−1)k+1 F(k)

m−1

)
+ (−1)k+1F(k)

m F(k)

n−m−1

(2.24)
= F(k)

n−m F(k)

m+1
+ (−1)k+1 F(k)

m F(k)

n−m−1

�

Proposition 4.4 Addition formula for higher order Fibonacci numbers is given by,

F(k)
n+m = F(k)

m F(k)

n+1
+ (−1)k+1 F(k)

n F(k)

m−1
.
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For k = 1, this gives standard addition formula (2.12).

4.1.1. Higher Golden Periodic Functions

Proposition 4.5 Every Golden periodic function Dx
F( f (x)) = 0 ( f (ϕx) = f (ϕ′x)) is

also periodic for arbitrary Higher Order Golden derivatives, i.e;

(k)Dx
F( f (x)) = 0⇒ (2)Dx

F( f (x)) = 0, (3)Dx
F( f (x)) = 0, . . . , (k)Dx

F( f (x)) = 0. (4.10)

It means that relation f (ϕx) = f (ϕ′x) implies;

f (ϕ2x) = f (ϕ′2x), f (ϕ3x) = f (ϕ′3x), . . . , f (ϕkx) = f (ϕ′kx), (4.11)

where k = 2, 3, . . .

Proof Proof will be done by Principal of Mathematical induction. The statement is

valid for k = 1. Let us show that it is valid also for k = 2.

f (ϕ2x) = f (ϕ(ϕx)) = f (ϕ′(ϕx)) = f (ϕ(ϕ′x)) = f (ϕ′(ϕ′x)) = f (ϕ′2x) (4.12)

Thus;

(1)Dx
F( f (x)) ⇒ (2)Dx

F( f (x))

Now, let us suppose that the statement is valid for arbitrary k − 1 and k:

(k−1)Dx
F( f (x)) = 0 and (k)Dx

F( f (x)) = 0

It means,

f (ϕk−1x) = f (ϕ′k−1x), (4.13)

f (ϕkx) = f (ϕ′kx). (4.14)
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Let us show that it is valid also for k + 1:

(k+1)Dx
F( f (x)) = 0 and f (ϕk+1x) = f (ϕ′k+1x)

Calculating;

f (ϕk+1x) = f (ϕkϕx)
(4.14)
= f (ϕ′kϕx) = f (−ϕ′k−1x)

f (ϕ′k+1x) = f (ϕ′kϕ′x)
(4.14)
= f (ϕkϕ′x) = f (−ϕk−1x)

for k + 1 derivative;

(k+1)Dx
F( f (x)) =

f (ϕk+1x) − f (ϕ′k+1x)

(ϕk+1 − ϕ′k+1)x
,

we get,

(k+1)Dx
F( f (x)) =

f (−ϕ′k−1x) − f (−ϕk−1x)

(ϕk+1 − ϕ′k+1)x
=

f (ϕ′k−1(−x)) − f (ϕk−1(−x))

(ϕk+1 − ϕ′k+1)x
(4.13)
=

f (ϕk−1(−x)) − f (ϕk−1(−x))

(ϕk+1 − ϕ′k+1)x
= 0.

Therefore,

(k+1)Dx
F( f (x)) = 0 ⇒ f (ϕk+1x) = f (ϕ′k+1x)

�

Example 4.2 We know that f (x) = sin
(
π

lnϕ
ln |x|

)
is Golden periodic function:

Dx
F( f (x)) = 0

Due to previous proposition, it should be also periodic according to every Higher kth
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Order Golden derivative, which means;

(k)Dx
F( f (x)) = 0⇔ f (ϕkx) = f (ϕ′kx).

Indeed,

f (ϕkx) = sin

(
π

lnϕ
ln |ϕkx|

)
= sin

(
π

lnϕ

(
ln |ϕk| + ln |x|

))
= sin

(
π

lnϕ
k lnϕ +

π

lnϕ
ln |x|

)

= sin

(
πk +

π

lnϕ
ln |x|

)

= sin (πk) cos

(
π

lnϕ
ln |x|

)
+ sin

(
π

lnϕ
ln |x|

)
cos (πk)

= (−1)k sin

(
π

lnϕ
ln |x|

)

and,

f (ϕ′kx) = sin

(
π

lnϕ
ln |ϕ′kx|

)
= sin

(
π

lnϕ

(
ln |ϕ′k| + ln |x|

))
= sin

(
π

lnϕ
k ln |ϕ′| + π

lnϕ
ln |x|

)

= sin

(
− π

lnϕ
k lnϕ +

π

lnϕ
ln |x|

)

= sin

(
−πk + π

lnϕ
ln |x|

)

= − sin

(
πk − π

lnϕ
ln |x|

)

= −
[
sin (πk) cos

(
π

lnϕ
ln |x|

)
− sin

(
π

lnϕ
ln |x|

)
cos (πk)

]

= (−1)k sin

(
π

lnϕ
ln |x|

)

Therefore f (ϕkx) = f (ϕ′kx), and it is periodic according to Higher kth Order Golden

derivative.

As we have seen by Proposition 4.5, every Golden periodic function (k = 1) is periodic

for arbitrary k = 2, 3, 4, . . .

But opposite is not true in general. If function f(x) is k periodic,

(k)Dx
F( f (x)) = 0⇔ f (ϕkx) = f (ϕ′kx).
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it is not necessarily k = 1 periodic. This can be seen from following example.

Example 4.3 Function f (x) = sin
(
π

lnϕ2 ln |x|
)

is Golden periodic function with k = 2, i.e

(2)Dx
F( f (x)) = 0. Let us calculate Golden derivative of this function.

Dx
F( f (x)) =

sin
(
π

lnϕ2 ln |ϕx|
)
− sin

(
π

lnϕ2 ln |ϕ′x|
)

(ϕ − ϕ′)x
.

In the numerator, we have;

sin

(
π

lnϕ2
ln |ϕx|

)
= sin

(
π

2 lnϕ
lnϕ +

π

2 lnϕ
ln |x|

)
= sin

(
π

2
+
π

ln
(
ϕ2
) ln |x|

)

= cos

(
π

ln
(
ϕ2
) ln |x|

)
,

and

sin

(
π

lnϕ2
ln |ϕ′x|

)
= sin

(
π

2 lnϕ
ln |ϕ′| + π

2 lnϕ
ln |x|

)
= sin

(
−π

2
+
π

ln
(
ϕ2
) ln |x|

)

= sin

(
−π

2
+
π

ln
(
ϕ2
) ln |x|

)
= − sin

(
π

2
− π

ln
(
ϕ2
) ln |x|

)

= − cos

(
π

ln
(
ϕ2
) ln |x|

)
.

Then, as we can see the derivative doesn’t vanish;

Dx
F( f (x)) = 2

cos
(
π

ln(ϕ2)
ln |x|

)
(ϕ − ϕ′)x

� 0

This is why this function is not the Golden periodic function.
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4.2. Generating Function for Higher Order Fibonacci Numbers

Example 4.4 We know that application of (k)Dx
F on xn generates Higher order Fibonacci

numbers;

(k)Dx
F(xn) = F(k)

n xn−1 (4.15)

So, these numbers can be represented also as,

F(k)
n =

(k)Dx
F(xn)

xn−1
(4.16)

Definition 4.2 Function,

(k)F(x) =

∞∑
n=0

F(k)
n xn (4.17)

is called the generating function of Higher order Fibonacci numbers F(k)
n . According to

Taylor formula;

F(k)
n =

1

n!

dn

dxn (k)F(x)

∣∣∣∣∣
x=0

(4.18)

in a disk of analyticity around x = 0. Explicit form of the series is;

(k)F(x) = F(k)

0
+ F(k)

1
x + F(k)

2
x2 + F(k)

3
x3 + F(k)

4
x4 + F(k)

5
x5 + . . . (4.19)

Proposition 4.6 Generating function (k)F(x) in domain |x| < 1
ϕk has explicit representa-

tion;

(k)F(x) =

∞∑
n=0

F(k)
n xn =

1

1 − Lkx + (−1)kx2
(4.20)

65



Proof To find the domain of convergency, we apply the ratio test:

ρ = lim
n→∞

∣∣∣∣∣∣∣F
(k)

n+1
xn+1

F(k)
n xn

∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣F
(k)

n+1

F(k)
n

∣∣∣∣∣∣∣ lim
n→∞ |x| = ϕ

k |x|

For convergency ρ < 1 implies,

|x| <
(

1

ϕ

)k

and as follows |x| <
(

1
ϕ

)k
< 1 for any fixed positive value k. By using Golden derivative;

(k)F(x) =

∞∑
n=0

F(k)
n xn = F(k)

0
+

∞∑
n=1

xF(k)
n xn−1 = 0 +

∞∑
n=1

x F(k)
n xn−1 (4.15)

=

∞∑
n=1

x (k)Dx
F(xn)

= x (k)Dx
F

∞∑
n=1

xn = x (k)Dx
F

(
x + x2 + x3 + . . .

)
= x (k)Dx

F x
(
1 + x + x2 + . . .

)
|x|<1
= x Dx

F

(
x

1

1 − x

)
= x Dx

F

( x
1 − x

)
= x Dx

F

(
x − 1 + 1

1 − x

)

= x
[

(k)Dx
F(−1) +(k) Dx

F

(
1

1 − x

)]
= x

[
(k)Dx

F

(
1

1 − x

)]
(4.1)
= x

(
1

1−ϕk x − 1
1−ϕ′k x

)
(ϕk − ϕ′k)x

=
x

(1 − ϕkx)(1 − ϕ′kx)

=
x

1 − (ϕk + ϕ′k)x + (ϕϕ′)k x2

=
x

1 − Lk x + (−1)k x2

�

Corollary 4.2 (k)F(x) is the rational function with one zero at x = 0 and two single poles

at,

x =
1

ϕk , x =
1

ϕ′k
.
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Example 4.5 If k=1, it reduces to generating function for Fibonacci numbers;

(1)F(x) = F(x) =

∞∑
n=0

Fnxn =
x

1 − x − x2
=

x
(1 − ϕx)(1 − ϕ′x)

(4.21)

If k=2, it gives generating function for even " mod 2" Fibonacci numbers;

(2)F(x) =

∞∑
n=0

F2nxn =
x

1 − 3x + x2
=

x
(1 − ϕ2x)(1 − ϕ′2x)

(4.22)

If k=3, it is the generating function for " mod 3" Fibonacci numbers;

(3)F(x) =
1

2

∞∑
n=0

F3nxn =
x

1 − 4x − x2
=

x
(1 − ϕ3x)(1 − ϕ′3x)

(4.23)

For arbitrary k, it represents generating function for " mod k" Fibonacci numbers;

(k)F(x) =
1

Fk

∞∑
n=0

Fknxn =
x

1 − Lkx + (−1)kx2
=

x
(1 − ϕkx)(1 − ϕ′kx)

(4.24)

4.2.1. Entire Generating Function for Higher Order Fibonacci

Numbers

Applying (k)Dx
F to ex in power series form;

(k)Dx
F(ex) = (k)Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

xn

n!

⎞⎟⎟⎟⎟⎟⎠ =(k) Dx
F

(
1

0!
+

x
1!
+

x2

2!
+

x3

3!
+ ...

)

=

∞∑
n=1

(k)Dx
F

(
xn

n!

)
=

∞∑
n=1

(k)Dx
F(xn)

n!
=

∞∑
n=1

F(k)
n

xn−1

n!
=

∞∑
n=0

F(k)

n+1

xn

(n + 1)!
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and so that,

(k)Dx
F(ex) =

∞∑
n=0

F(k)

n+1

xn

(n + 1)!
. (4.25)

This series converges for arbitrary x. By using definition (4.1) from another side,

(k)Dx
F(ex) =

eϕ
k x − eϕ

′k x

(ϕk − ϕ′k)x
= e

ϕk
2 xe

ϕ′k
2 x e

(
ϕk−ϕ′k

2

)
x − e

(
ϕ′k−ϕk

2

)
x(

ϕk − ϕ′k) x
= e

ϕk+ϕ′k
2 x e

(
ϕk−ϕ′k

2

)
x − e−

(
ϕk−ϕ′k

2

)
x(

ϕk − ϕ′k) x

Since ϕk + ϕ′k = Lk and ϕk − ϕ′k = Fk(ϕ − ϕ′), we have;

(k)Dx
F(ex) = 2e

Lk
2 x

sinh
(

Fk
2

(ϕ − ϕ′)x
)

Fk(ϕ − ϕ′)x

Since ϕ − ϕ′ = √5, finally we get;

(k)Dx
F(ex) = e

Lk
2 x

sinh
(
Fk

√
5

2
x
)

(
Fk

√
5

2
x
) (4.26)

Consequently, by equating both results (4.25) & (4.26), we obtain identity;

∞∑
n=0

F(k)

n+1

(n + 1)!
xn = e

Lk
2 x

sinh
(
Fk

√
5

2
x
)

(
Fk

√
5

2
x
) (4.27)

In particular case k = 1, it reduces to (3.18). This relation represents entire generating

function for Higher Order Fibonacci numbers. For x = 1, it is;

∞∑
n=0

F(k)
n

n!
= e

Lk
2

sinh
(
Fk

√
5

2

)
(
Fk

√
5

2

) (4.28)
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or,

∞∑
n=0

Fnk

n!
= e

Lk
2

sinh
(
Fk

√
5

2

)
( √

5
2

)

In equation (4.27), after replacing x→ ix we get,

∞∑
n=0

F(k)

n+1

(n + 1)!
(i)nxn = ei Lk

2 x
sinh

(
Fk

√
5

2
ix
)

(
iFk

√
5

2
x
) (4.29)

By using the identity sinh(ix) = i sin(x) at the right hand side of equality, and splitting the

sum at the left hand side to even and odd parts with n = 2l and n = 2l + 1 gives;

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)lx2l + i

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)lx2l+1 = ei Lk

2 x
sin
(
Fk

√
5

2
x
)

Fk

√
5

2
x

(4.30)

Writing ei Lk
2 x = cos

(
Lk
2

x
)
+ i sin

(
Lk
2

x
)
,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)lx2l + i

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)lx2l+1 = cos

(Lk

2
x
)sin

(
Fk

√
5

2
x
)

Fk

√
5

2
x
+ i sin

(Lk

2
x
)sin

(
Fk

√
5

2
x
)

Fk

√
5

2
x

By splitting to real and imaginary parts, we get generating functions for even and odd

Higher order Fibonacci numbers as;

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)lx2l = cos

(Lk

2
x
) sin

(
Fk

√
5

2
x
)

Fk

√
5

2
x

(4.31)

and,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)lx2l+1 = sin

(Lk

2
x
)sin

(
Fk

√
5

2
x
)

Fk

√
5

2
x

(4.32)
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From these entire functions, several identities follow. From (4.31) follow identities;

1) For x = π,

Since cos
(

Lk
2

x
)
= cos

(
π
2
Lk

)
, then;

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)lπ2l = cos

(
π

2
Lk

) sin
(
Fk

√
5

2
π
)

Fk

√
5

2
π

(4.33)

The right hand side vanishes for odd values of Lucas numbers Lk.

2) x = 2π√
5
,

Since sin(Fkπ) = 0, then;

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l (2π)2l

5l = 0 (4.34)

3) x = π√
5
,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)lπ

2l

5l =
2

Fkπ
cos

(
Lk
π

2
√

5

)
sin
(
Fk
π

2

)
(4.35)

For even values of Fk the right hand side vanishes.

4) x = 2π,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l(2π)2l = cos(Lkπ)

sin
(
Fk
√

5π
)

Fk
√

5π
(4.36)

5) x = 1,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l = cos

(Lk

2

) sin
(
Fk

√
5

2

)
Fk

√
5

2

(4.37)
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6) x = π
Lk

,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l

(
π

Lk

)2l

= 0 (4.38)

7) x = 2π√
5Fk

,

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l (2π)2l

5l(Fk)2l = 0 (4.39)

In a similar way from (4.32) follow identities;

1) x = π,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l(π)2l+1 = sin

(
π

2
Lk

) sin
(
Fk

√
5

2
π
)

Fk

√
5

2
π

(4.40)

For even Lucas numbers, the right hand side is zero.

2) x = 2π√
5
,

Since sin(Fkπ) = 0, then;

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l

(
2π√

5

)2l+1

= 0 (4.41)

3) x = π√
5
,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l

(
π√
5

)2l+1

=
2

Fkπ
sin

(
Lk
π

2
√

5

)
sin
(
Fk
π

2

)
(4.42)

For even Fibonacci numbers Fk the right hand side vanishes.

4) x = 2π,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l(2π)2l+1 = 0 (4.43)
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5) x = 1,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l = sin

(Lk

2

) sin
(
Fk

√
5

2

)
Fk

√
5

2

(4.44)

6) x = π
Lk

,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l

(
π

Lk

)2l+1

=
sin

(
Fk
Lk

√
5

2
π
)

Fk
Lk

√
5

2
π

(4.45)

7) x = 2π
Lk

,

Since sin
(

Lk
2

2π
Lk

)
= sin(π) = 0, then;

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l

(
2π

Lk

)2l+1

= 0 (4.46)

From both (4.31) and (4.32) for x = π√
5Fk

, we have;

∞∑
l=0

F(k)

2l+1

(2l + 1)!
(−1)l π

2l

5lF2l
k

=
2

π
cos

(
Lk

Fk

π

2
√

5

)
(4.47)

and,

∞∑
l=0

F(k)

2l+2

(2l + 2)!
(−1)l

(
π√
5Fk

)2l+1

=
2

π
sin

(
Lk

Fk

π

2
√

5

)
(4.48)

4.3. Higher Fibonomials

Definition 4.3 The product,

k · 2k · 3k . . . nk ≡ n!mod k (4.49)
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is called mod k factorial. It is equal,

n∏
i=1

ik = n!kn (4.50)

and for particular case it reduces to;

k = 1 ⇒ n!mod 1 = n!

Definition 4.4 Product of Fibonacci numbers defined as,

FkF2k . . . Fnk =

n∏
i=1

Fik ≡ Fn! mod k, (4.51)

is called mod k Fibonacci factorial. For k = 1, it gives the Fibonacci factorial;

Fn! mod 1 = F1F2 . . . Fn = Fn!. (4.52)

For k = 2 and n is even, it gives the double Fibonacci factorial;

Fn! mod 2 = F2F4 . . . F2n. (4.53)

Definition 4.5 The product of Higher Fibonacci numbers,

F(k)

1
F(k)

2
. . . F(k)

n =

n∏
i=1

F(k)
i ≡ F(k)

n !, (4.54)

is called the Higher Fibonacci factorial. This can be considered as the Higher Fibonorial

or generalized Fibonorial. In particular case k = 1, it reduces to Fibonacci factorial,

F(1)
n ! = Fn!. For F(k)

n ! we have next formula;

F(k)
n ! =

FkF2kF3k . . . Fnk

FkFkFk . . . Fk
=

FkF2kF3k . . . Fnk

(Fk)
n , (4.55)
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or in terms of mod k Fibonacci factorial,

F(k)
n ! =

Fn! mod k

(Fk)
n . (4.56)

Definition 4.6 The higher order Fibonomial coefficients or shortly higher Fibonomial are

defined as;

(k)

[
n
m

]
F
=

F(k)

1
F(k)

2
. . . F(k)

n−m+1

F(k)

1
F(k)

2
. . . F(k)

m

=
F(k)

n !

F(k)
m !F(k)

n−m!
. (4.57)

For k = 1, it reduces to Fibonomials (3.76),

[
n
m

]
F
=

Fn!

Fn−m!Fm!
.

For arbitrary k it can be represented by mod k Fibonacci factorials (4.56);

(k)

[
n
m

]
F
=

Fn! mod k

Fm! mod k Fn−m! mod k
(4.58)

Similar way as for Fibonomials, it is possible to derive recursion formula for

higher Fibonomials and interpretation of them in terms of Pascal type triangle. Higher

Fibonomials can be used to define higher golden binomials.

4.4. Higher Golden Binomials

Definition 4.7 The higher golden Binomial is the polynomial,

(k) (x − a)n
F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1, if n = 0;(
x − ϕk(n−1)a

) (
x − ϕk(n−2)ϕ′ka

)
. . .

(
x − ϕkϕ′k(n−2)a

) (
x − ϕ′k(n−1)a

)
, if n ≥ 1.

For particular case k = 1, it reduces to Golden binomial (3.81). These polynomials

satisfy the following formula.

74



Proposition 4.7 (Factorization Property)

(k) (x − a)n+m
F = (k)

(
x − ϕkma

)n
F (k)

(
x − ϕ′kna

)m
F

(4.59)

= (k)

(
x − ϕ′kma

)n
F (k)

(
x − ϕkna

)m
F

(4.60)

Proof Sketch of the proof would be in Appendix B.3.3. �

Theorem 4.1 Higher Golden binomial expansion is,

(k) (x + y)n
F =

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−mym (4.61)

For particular case k = 1, it reduces to standard one in (3.82).

Proof Proof will be done by using the induction. Suppose for n, assumption in the

theorem is true. For n + 1, we will use the below factorization property such that,

(k) (x + y)n+1
F = (k)

(
x + ϕ′ky

)n
F (k)

(
x + ϕkny

)1
F
=
(
x + ϕkny

)
(k)

(
x + ϕ′ky

)n
F

(4.61)
=

(
x + ϕkny

) n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m(ϕ′ky)m

=

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m+1ymϕ′km

+

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−mym+1ϕ′kmϕkn

=

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m+1ymϕ′km

+

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−mym+1(−1)kmϕk(n−m)

In the second summation shifting m→ m − 1 gives us,

(k) (x + y)n+1
F = . . . =

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m+1ymϕ′km

+

n+1∑
m=1

(k)

[
n

m − 1

]
F
(−1)k (m−1)(m−2)

2 xn−m+1ym(−1)k(m−1)ϕk(n−m+1)
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Here in the first summation for m = n + 1, term equal to zero. Because the coefficient

(k)

[
n

n+1

]
F
= 0. Also, in the second summation for m = 0, term equal to zero. Because the

coefficient (k)

[
n
−1

]
F
= 0. Thus, we can continue as;

(k) (x + y)n+1
F = . . . =

n+1∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m+1ymϕ′km

+

n+1∑
m=0

(k)

[
n

m − 1

]
F
(−1)k (m−1)(m−2)

2 (−1)k(m−1)xn−m+1ymϕk(n−m+1)

=

n+1∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m+1ymϕ′km

+

n+1∑
m=0

(k)

[
n

m − 1

]
F
(−1)k m(m−1)

2 xn−m+1ymϕk(n−m+1)

=

n+1∑
m=0

(
(k)

[
n
m

]
F
ϕ′km + (k)

[
n

m − 1

]
F
ϕk(n−m+1)

)
(−1)k m(m−1)

2 xn−m+1ym

It is easy to prove,

(k)

[
n
m

]
F
= ϕ′km

(k)

[
n − 1

m

]
F
+ ϕk(n−m)

(k)

[
n − 1

m − 1

]
F

(4.62)

by following the steps to get the equation (3.79). Therefore, we have;

(k) (x + y)n+1
F = . . . =

n+1∑
m=0

(
(k)

[
n
m

]
F
ϕ′km + (k)

[
n

m − 1

]
F
ϕk(n−m+1)

)
(−1)k m(m−1)

2 xn−m+1ym

(4.62)
=

n+1∑
m=0

(k)

[
n + 1

m

]
F
(−1)k m(m−1)

2 xn−m+1ym

�

Corollary 4.3 From this theorem, we obtain the identity,

(k) (1 + 1)n
F =

n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 (4.63)

Lemma 4.1 Higher order Fibonacci derivatives are acting on higher Golden binomials
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as,

(k)Dx
F (k) (x + y)n

F = F(k)
n (k) (x + y)n−1

F (4.64)

(k)D
y
F (k) (x + y)n

F = F(k)
n (k)

(
x + (−1)ky

)n−1

F
(4.65)

(k)D
y
F (k) (x − y)n

F = −F(k)
n (k)

(
x − (−1)ky

)n−1

F
(4.66)

For k = 1, these results give Lemma 3.2.

Proof To prove the first equality,

(k)Dx
F (k) (x + y)n

F
(4.61)
= (k)Dx

F

⎡⎢⎢⎢⎢⎢⎣ n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−mym

⎤⎥⎥⎥⎥⎥⎦
=

n−1∑
m=0

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2
(k)Dx

F
(
xn−m) ym

=

n−1∑
m=0

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2 F(k)
n−m xn−m−1ym

=

n−1∑
m=0

F(k)
n !

F(k)

n−m−1
! F(k)

m !
(−1)k m(m−1)

2 xn−m−1ym

= F(k)
n

n−1∑
m=0

F(k)

n−1
!

F(k)

n−m−1
! F(k)

m !
(−1)k m(m−1)

2 xn−m−1ym

= F(k)
n (k) (x + y)n−1

F

To prove the second one,

(k)D
y
F (k) (x + y)n

F = (k)D
y
F

⎡⎢⎢⎢⎢⎢⎣ n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−mym

⎤⎥⎥⎥⎥⎥⎦
=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2 xn−m
(k)D

y
F (ym)

=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2 xn−m F(k)
m ym−1

=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m−1
!

(−1)k m(m−1)
2 xn−m ym−1

(m→m+1)
=

n−1∑
m=0

F(k)
n !

F(k)

(n−1)−m! F(k)
m !

(−1)k (m+1)m
2 x(n−1)−m ym
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=

n−1∑
m=0

F(k)
n !

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m−1)
2 (−1)km x(n−1)−m ym

=

n−1∑
m=0

F(k)
n · F(k)

n−1
!

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m−1)
2 x(n−1)−m

(
(−1)ky

)m

= F(k)
n

n−1∑
m=0

F(k)

n−1
!

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m−1)
2 x(n−1)−m

(
(−1)ky

)m

= F(k)
n

n−1∑
m=0

(k)

[
n − 1

m

]
F

(−1)k m(m−1)
2 x(n−1)−m

(
(−1)ky

)m
= F(k)

n (k)

(
x + (−1)ky

)n−1

F

To prove the thirth equality,

(k)D
y
F (k) (x − y)n

F = (k)D
y
F

⎡⎢⎢⎢⎢⎢⎣ n∑
m=0

(k)

[
n
m

]
F
(−1)k m(m−1)

2 xn−m(−y)m

⎤⎥⎥⎥⎥⎥⎦
=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2 xn−m
(k)D

y
F ((−y)m)

=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m !
(−1)k m(m−1)

2 xn−m (−1)m F(k)
m ym−1

=

n∑
m=1

F(k)
n !

F(k)
n−m! F(k)

m−1
!

(−1)k m(m−1)
2 xn−m (−1)m ym−1

(m→m+1)
=

n−1∑
m=0

F(k)
n !

F(k)

(n−1)−m! F(k)
m !

(−1)k (m+1)m
2 x(n−1)−m (−1)m+1 ym

= −
n−1∑
m=0

F(k)
n !

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m+1)
2 x(n−1)−m (−1)m ym

= −F(k)
n

n−1∑
m=0

F(k)

n−1
!

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m+1)
2 x(n−1)−m (−y)m

= −F(k)
n

n−1∑
m=0

F(k)

n−1
!

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m−1)
2 (−1)km x(n−1)−m (−y)m

= −F(k)
n

n−1∑
m=0

F(k)

n−1
!

F(k)

(n−1)−m! F(k)
m !

(−1)k m(m−1)
2 x(n−1)−m

[
(−1)k · (−y)

]m
= −F(k)

n (k)

(
x − (−1)ky

)n−1

F
(4.67)

�
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As we have seen in (4.3),

(k)Dx
F xn = F(k)

n xn−1.

This implies to introduce monomials;

P(k)
n ≡

xn

F(k)
n !
, (4.68)

such that

(k)Dx
F

(
P(k)

n

)
= P(k)

n−1
. (4.69)

By these monomials we can derive the following Taylor expansion for arbitrary polyno-

mials, according to Theorem (Kac, V. and Cheung, P., 2002).

Theorem 4.2 (Higher Order Golden Taylor expansion)

The derivative operator (k)Dx
F is a linear operator on the space of polynomials,

and

P(k)
n (x) ≡ xn

F(k)
n !
≡ xn

F(k)

1
· F(k)

2
. . . F(k)

n

satisfy the following conditions:

(i) P(k)

0
(0) = 1 and P(k)

n (0) = 0 for any n ≥ 1;

(ii) deg(P(k)
n ) = n;

(iii) (k)Dx
F(P(k)

n (x)) = P(k)

n−1
(x) for any n ≥ 1, and(k)Dx

F(1) = 0.

Then, for any polynomial f(x) of degree N, one has the following Taylor formula;

f (x) =

N∑
n=0

((k)Dx
F)n f (0)P(k)

n (x) =

N∑
n=0

((k)Dx
F)n f (0)

xn

F(k)
n !

(4.70)

Example 4.6 Let’s expand function f (x) = (x + 1)3 in terms of the polynomials P(k)
n ,
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k = 2. The Taylor expansion becomes,

(x + 1)3 =

3∑
n=0

((2)Dx
F)n f (0)

xn

F(2)
n !

(4.71)

After expanding,

(x + 1)3 = ((2)Dx
F)3 f (0)

x3

F(2)

3
!
+ ((2)Dx

F)2 f (0)
x2

F(2)

2
!
+ ((2)Dx

F) f (0)
x

F(2)

1
!
+ f (0)

1

F(2)

0
!

We should calculate the coefficients ((2)Dx
F)3 f , ((2)Dx

F)2 f , ((2)Dx
F) f at x = 0. The derivatives

are,

((2)Dx
F) (x + 1)3 = ((2)Dx

F)
(
x3 + 3x2 + 3x + 1

)
= F(2)

3
x2 + 3F(2)

2
x + 3F(2)

1

((2)Dx
F)2 (x + 1)3 = ((2)Dx

F)
(
F(2)

3
x2 + 3F(2)

2
x + 3F(2)

1

)
= F(2)

3
F(2)

2
x + 3F(2)

2
F(2)

1

((2)Dx
F)3 (x + 1)3 = ((2)Dx

F)
(
F(2)

3
F(2)

2
x + 3F(2)

2
F(2)

1

)
= F(2)

3
F(2)

2
F(2)

1

At x = 0,

((2)Dx
F) (x + 1)3

∣∣∣∣∣
x=0

= 3F(2)

1
!

((2)Dx
F)2 (x + 1)3

∣∣∣∣∣
x=0

= 3F(2)

2
!

((2)Dx
F)3 (x + 1)3

∣∣∣∣∣
x=0

= F(2)

3
!

Finally, substituting them gives,

(x + 1)3 = F(2)

3
! P(2)

3
(x) + 3F(2)

2
! P(2)

2
(x) + 3F(2)

1
! P(2)

1
(x) + P(2)

0
(x) (4.72)

Since F(2)

3
! = 24, 3F(2)

2
! = 9, 3F(2)

1
! = 3, we have;

(x + 1)3 = 24P(2)

3
(x) + 9P(2)

2
(x) + 3P(2)

1
(x) + P(2)

0
(x). (4.73)
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In the limit N → ∞ (if it exists) the Taylor formula (4.70) determines expansion

of function (k) fF(x) in P(k)
n (x) polynomials.

(k) fF(x) =

∞∑
n=0

((k)Dx
F f )n(0)

xn

F(k)
n !

Proposition 4.8 Let,

f (z) =

∞∑
n=0

an
zn

n!

is an entire complex valued function of complex variable z. Then exists complex function

(k) fF(z) determined by formula,

(k) fF(z) =

∞∑
n=0

an
zn

F(k)
n !

and this function is entire.

Proof To check convergency of these functions we apply the ratio test;

ρ = |z| lim
n→∞

∣∣∣∣∣ 1

n + 1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ (4.74)

(k)ρF = |z| lim
n→∞

∣∣∣∣∣∣∣ 1

F(k)

n+1

∣∣∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣ (4.75)

= |z| lim
n→∞

∣∣∣∣∣∣∣n + 1

F(k)

n+1

∣∣∣∣∣∣∣
(∣∣∣∣∣ 1

n + 1

∣∣∣∣∣
∣∣∣∣∣an+1

an

∣∣∣∣∣
)

= lim
n→∞

∣∣∣∣∣∣∣n + 1

F(k)

n+1

∣∣∣∣∣∣∣ ρ

Since lim
n→∞

∣∣∣∣∣∣∣n + 1

F(k)

n+1

∣∣∣∣∣∣∣ = 0 and for entire f (z) ⇒ ρ = 0, then (k)ρF = 0 and (k) fF(z) is entire. �

As an example we introduce higher order golden exponentials:
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Definition 4.8 (Higher Order Golden Exponentials)

(k)ex
F ≡

∞∑
n=0

xn

F(k)
n !

(4.76)

(k)Ex
F ≡

∞∑
n=0

(−1)k n(n−1)
2

xn

F(k)
n !

(4.77)

where,

F(k)
n ! = F(k)

1
· F(k)

2
· F(k)

n . . . F
(k)
n =

Fk

Fk
· F2k

Fk
· F3k

Fk
. . .

Fnk

Fk
=

Fk · F2k · F3k . . . Fnk

(Fk)
n (4.78)

For the particular case if k = 1, it reduces to exponential functions in (3.41) and (3.42).

Proposition 4.9 The Higher kth order Golden derivative of these Higher order Golden

exponentials is found as;

(k)Dx
F

(
(k)eλx

F

)
= λ (k)eλx

F (4.79)

(k)Dx
F

(
(k)Eλx

F

)
= λ (k)E

(−1)kλx
F (4.80)

for an arbitrary k.

Proof

(k)Dx
F

(
(k)eλx

F

)
= (k)Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(λx)n

F(k)
n !

⎞⎟⎟⎟⎟⎟⎠
=

∞∑
n=1

λn (k)Dx
F(xn)

F(k)
n !

=

∞∑
n=1

λnF(k)
n xn−1

F(k)
n !

=

∞∑
n=1

λnxn−1

F(k)

n−1
!
=

∞∑
n=0

λn+1xn

F(k)
n !

= λ

∞∑
n=0

(λx)n

F(k)
n !
= λ (k)eλx

F .
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(k)Dx
F

(
(k)Eλx

F

)
=(k) Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(−1)k n(n−1)
2

(λx)n

F(k)
n !

⎞⎟⎟⎟⎟⎟⎠ =

∞∑
n=1

(−1)k n(n−1)
2 λn (k)Dx

F(xn)

F(k)
n !

=

∞∑
n=1

(−1)k n(n−1)
2 λn F(k)

n xn−1

F(k)
n !

=

∞∑
n=1

(−1)k n(n−1)
2 λn xn−1

F(k)

n−1
!

(n−→n+1)
=

∞∑
n=0

(−1)k (n+1)n
2 λn+1 xn

F(k)
n !

= λ

∞∑
n=0

(−1)k (n2+n)
2 λn xn

F(k)
n !

= λ

∞∑
n=0

(−1)k (n2+n)−n+n
2

(λx)n

F(k)
n !

= λ

∞∑
n=0

(−1)k n(n−1)
2 (−1)kn (λx)n

F(k)
n !

= λ

∞∑
n=0

(−1)k n(n−1)
2

((−1)kλx)n

F(k)
n !

= λ (k)E
(−1)kλx
F

�
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CHAPTER 5

CARLITZ CHARACTERISTIC POLYNOMIALS AND

GOLDEN BINOMIALS

5.1. Carlitz Polynomials

In Section 3.6, we have introduced the Golden binomials. In this Chapter, we

are going to relate these binomials with characteristic equations for some matrices, con-

structed from binomial coefficients, which was derived by Carlitz (Carlitz, L., 1965).

Definition 5.1 We define an n + 1 × n + 1 matrix An+1 with binomial coefficients,

An+1 =

[(
r

n − s

)]
(5.1)

where r, s = 0, 1, 2, ..., n. Here,

(
n
k

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n!

(n−k)! k!
, if k ≤ n;

0, k > n.
(5.2)

First few matrices are,

n=0 ⇒ r = s = 0⇒ A1 =

[(
0

0

)]
= (1)

n=1 ⇒ r, s = 0, 1⇒ A2 =

[(
r

1 − s

)]
=

⎛⎜⎜⎜⎜⎜⎜⎝
(

0

1

) (
0

0

)
(

1

1

) (
1

0

)
⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎠

n=2⇒ r, s = 0, 1, 2⇒ A3 =

[(
r

2 − s

)]
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(

0

2

) (
0

1

) (
0

0

)
(

1

2

) (
1

1

) (
1

0

)
(

2

2

) (
2

1

) (
2

0

)
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1

0 1 1

1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Continuing, the general matrix An+1 of order (n + 1) can be written as,

An+1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0 1

. . . 0 0 0 1 1

. . . 0 0 1 2 1

. . . 0 1 3 3 1

. . . 1 4 6 4 1
...
...
...
...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(n+1)×(n+1)

We can notice that trace of first few matrices An+1 give Fibonacci numbers. It would be

shown in Theorem (5.2) equation (5.14) and it is valid for any n.

Definition 5.2 Characteristic polynomial of matrix An+1 is determined by,

Pn+1(x) = det(xI − An+1) (5.3)

Let’s find first few polynomials;

n=0: P1(x) = 1 − x

n=1: P2(x) = det(xI − A2) =

∣∣∣∣∣∣∣∣
x −1

−1 x − 1

∣∣∣∣∣∣∣∣ = x2 − x − 1

n=2: P3(x) = det(xI − A3) =

∣∣∣∣∣∣∣∣∣∣∣
x 0 −1

0 x − 1 −1

−1 −2 x − 1

∣∣∣∣∣∣∣∣∣∣∣ = x3 − 2x2 − 2x + 1

n=3:

P4(x) = det(xI − A4) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 −1

0 x −1 −1

0 −1 x − 2 −1

−1 −3 −3 x − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −x4 + 3x3 + 6x2 − 3x − 1
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Corresponding eigenvalues are represented by powers of ϕ and ϕ′;

n=0 ⇒ x1 = 1

n=1 ⇒ x1 = ϕ, x2 = ϕ
′

n=2 ⇒ x1 = ϕ
2, x2 = −1, x3 = ϕ

′2

n=3 ⇒ x1 = ϕ
3, x2 = −ϕ, x3 = −ϕ′, x4 = ϕ

′3

Comparing zeros of first few characteristic polynomials, with zeros of Golden

Binomial (3.84), we notice that they coincide. According to this, we have following.

Conjecture: The characteristic equation (5.3) of matrix An+1 coincides with Golden

Binomial;

Pn+1(x) = det(xI − An+1) = (x − 1)n+1
F . (5.4)

As a first step to prove this conjecture we represent Golden binomials in the product form.

Proposition 5.1 The Golden binomial can be written as a product,

(x − 1)n+1
F =

n∏
j=0

(
x − ϕ jϕ′n− j

)
(5.5)

Proof We have Golden binomial in product representation as;

(x + y)n
F ≡

n−1∏
j=0

(
x − (−1) j−1 ϕn−1 ϕ−2 jy

)
(5.6)

Since,

ϕ−2 j =

(
1

ϕ

)2 j

=

(
−1

ϕ

)2 j

= ϕ′2 j, (5.7)

then, after choosing y = −1;

(x − 1)n
F ≡

n−1∏
j=0

(
x − (−1) j ϕn−1 ϕ′2 j

)
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Shifting n↔ n + 1 gives,

(x − 1)n+1
F =

n∏
j=0

(
x − (−1) j ϕn ϕ′2 j

)

=

n∏
j=0

(
x − (−1) j ϕn (−1)2 j

ϕ jϕ j

)

=

n∏
j=0

⎛⎜⎜⎜⎜⎝x − ϕn

(
−1

ϕ

) j
1

ϕ j

⎞⎟⎟⎟⎟⎠
=

n∏
j=0

(
x − ϕn− jϕ′ j

)

Here, at this step if we make j = n − m substitution,

(x − 1)n+1
F =

n∏
m=0

(
x − ϕmϕ′ n−m )

This formula explicitly shows that zeros of Golden binomial in (3.85) and (3.86) are

determined by powers of ϕ and ϕ′. �

Corollary 5.1 We can directly say that eigenvalues of the matrix An+1 are the numbers,

ϕn, ϕn−1ϕ′, ϕn−2ϕ′2, . . . , ϕ ϕ′n−1, ϕ′n (5.8)

As it was shown by Carlitz (Carlitz, L., 1965) this product formula is just charac-

teristic equation (5.3) for matrix An+1. Since zeros of two polynomials det(An+1 − xI) and

(x − 1)n+1
F coincide, then the conjecture is correct and we have following theorem.

Theorem 5.1 Characteristic equation for combinatorial matrix An+1 is given by Golden

binomial:

Pn+1(x) = det(xI − An+1) = (x − 1)n+1
F (5.9)
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5.2. Powers of Matrices Ak
n+1

and Higher Fibonacci Numbers

Proposition 5.2 Arbitrary nth power of A2 matrix is written in terms of Fibonacci num-

bers,

An
2 =

⎛⎜⎜⎜⎜⎜⎜⎝ Fn−1 Fn

Fn Fn+1

⎞⎟⎟⎟⎟⎟⎟⎠ (5.10)

Proof Proof will be done by Principal of Mathematical induction. For n = 1,

A2 =

⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ F0 F1

F1 F2

⎞⎟⎟⎟⎟⎟⎟⎠ .

For n = 2,

A2
2 =

⎛⎜⎜⎜⎜⎜⎜⎝ 1 1

1 2

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ F1 F2

F2 F3

⎞⎟⎟⎟⎟⎟⎟⎠ .

Suppose for n = k,

Ak
2 =

⎛⎜⎜⎜⎜⎜⎜⎝ Fk−1 Fk

Fk Fk+1

⎞⎟⎟⎟⎟⎟⎟⎠

is true. Then for n = k + 1,

Ak+1
2 = Ak

2 A2 =

⎛⎜⎜⎜⎜⎜⎜⎝ Fk−1 Fk

Fk Fk+1

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ 0 1

1 1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ Fk Fk + Fk−1

Fk+1 Fk + Fk+1

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝ Fk Fk+1

Fk+1 Fk+2

⎞⎟⎟⎟⎟⎟⎟⎠ .

This result can be understood from observation that eigenvalues of matrix A2 are ϕ and

ϕ′, and eigenvalues of An
2 are powers ϕn, ϕ′n related with Fibonacci numbers.

�

As we have seen, eigenvalues of matrix A3 are ϕ2, ϕ′2,−1. It implies that for An
3,

eigenvalues are ϕ2n, ϕ′2n, (−1)n, and this matrix can be expressed by F(2)
n Higher order

Fibonacci numbers due to (2.30) and (2.31).
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Proposition 5.3 Arbitrary nth power of A3 matrix can be expressed in terms of Higher

order Fibonacci numbers F(2)
n ,

An
3 =

1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(2F(2)

n − 3F(2)

n−1
+ 2(−1)n) (2F(2)

n + 2F(2)

n−1
+ 2(−1)n) (3F(2)

n − 2F(2)

n−1
− 2(−1)n)

(F(2)
n + F(2)

n−1
+ (−1)n) (6F(2)

n − 4F(2)

n−1
+ (−1)n) (4F(2)

n − F(2)

n−1
− (−1)n)

(3F(2)
n − 2F(2)

n−1
− 2(−1)n) (8F(2)

n − 2F(2)

n−1
− 2(−1)n) (7F(2)

n − 3F(2)

n−1
+ 2(−1)n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Proof Let’s diagonalize the matrix A3,

φ3 = σ
−1
3 A3 σ3,

where φ3 is the diagonalize matrix. Thus,

A3 = σ3 φ3 σ
−1
3 .

Taking the nth power of both sides gives;

An
3 = (σ3 φ3 σ

−1
3 ) (σ3︸����︷︷����︸

I

φ3 σ
−1
3 ) ... (σ3 φ3 σ

−1
3 ) (σ3︸����︷︷����︸

I

φ3 σ
−1
3 )

Therefore, we obtain;

An
3 = σ3 φ

n
3 σ
−1
3 (5.11)

By using the diagonalizing principle σ3 and σ−1
3 matrices can be obtained as,

σ3 =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−ϕ′ 4

3
−ϕ

1 2
3

1

ϕ − 4
3
ϕ′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and,

σ−1
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2(ϕ′+2)

5(ϕ−ϕ′) − 4(ϕ′+2)

5ϕ′(ϕ−ϕ′)
2(2ϕ′−1)

5ϕ′(ϕ−ϕ′)
3
5

3
5

− 3
5

− 2(ϕ+2)

5(ϕ−ϕ′)
4(ϕ+2)

5ϕ(ϕ−ϕ′)
2(1−2ϕ)

5ϕ(ϕ−ϕ′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
2

5
√

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ′ + 2 −2(1 − 2ϕ) (2 + ϕ)

3
√

5
2

3
√

5
2

− 3
√

5
2

−(ϕ + 2) 2(1 − 2ϕ′) −(2 + ϕ′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since eigenvalues of matrix An
3 are ϕ2,−1, ϕ′2, the diagonal matrix φ3 is,

φ3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
ϕ′2 0 0

0 −1 0

0 0 ϕ′2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (5.12)

and an arbitrary nth power of this matrix is,

φn
3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(ϕ′2)n 0 0

0 (−1)n 0

0 0 (ϕ′2)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5.13)

Now by using (5.11),

An
3 =

1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(2F(2)

n − 3F(2)

n−1
+ 2(−1)n) (2F(2)

n + 2F(2)

n−1
+ 2(−1)n) (3F(2)

n − 2F(2)

n−1
− 2(−1)n)

(F(2)
n + F(2)

n−1
+ (−1)n) (6F(2)

n − 4F(2)

n−1
+ (−1)n) (4F(2)

n − F(2)

n−1
− (−1)n)

(3F(2)
n − 2F(2)

n−1
− 2(−1)n) (8F(2)

n − 2F(2)

n−1
− 2(−1)n) (7F(2)

n − 3F(2)

n−1
+ 2(−1)n)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is obtained. �

We can expect that these results can be generalized to arbitrary matrix An+1. Since

eigenvalues of An+1 are powers ϕn,ϕ′n, . . ., for AN
n+1

eigenvalues are ϕnN ,ϕ′nN , . . . But these

powers can be written in terms of higher Fibonacci numbers (2.30) and (2.31), and the

matrix AN
n+1

itself can be represented by higher Fibonacci numbers F(n)
N . For powers of

matrix An+1 the following identities hold.
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Theorem 5.2 Invariants of Ak
n+1 matrix can be found as;

Tr
(
Ak

n+1

)
=

Fkn+k

Fk
= F(k)

n+1
(5.14)

det
(
Ak

n+1

)
= (−1)k n(n+1)

2 (5.15)

For k = 1, it gives;

Tr (An+1) = Fn+1,

det (An+1) = (−1)
n(n+1)

2

Proof Let’s diagonalize the general matrix An+1 as,

φn+1 = σ
−1
n+1 An+1 σn+1

where φn+1 is diagonal. Thus,

An+1 = σn+1 φn+1 σ
−1
n+1

Taking the kth power of both sides gives;

Ak
n+1 = (σn+1 φn+1 σ

−1
n+1) (σn+1︸��������︷︷��������︸

I

φn+1 σ
−1
n+1) ... (σn+1 φn+1 σ

−1
n+1) (σn+1︸��������︷︷��������︸

I

φn+1 σ
−1
n+1)

and,

Ak
n+1 = σn+1 φ

k
n+1 σ

−1
n+1. (5.16)

After taking trace of both sides and using the cyclic permutation property of trace;

Tr(Ak
n+1) = Tr (σn+1 φ

k
n+1 σ

−1
n+1) = Tr (σ−1

n+1 σn+1 φ
k
n+1) = Tr(I φk

n+1) = Tr (φk
n+1)
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we get,

Tr(Ak
n+1) = Tr (φk

n+1)

The eigenvalues of matrix An+1 in (5.8), allow to construct the diagonal matrix φn+1.

Tr(Ak
n+1) = Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕn 0 0 . . . 0 0 0

0 ϕn−1ϕ′ 0 . . . 0 0 0

0 0 ϕn−2ϕ′2 . . . 0 0 0
...

...
...

...
...
...

...
...

...

0 0 0 . . . ϕ2ϕ′n−2 0 0

0 0 0 . . . 0 ϕϕ′n−1 0

0 0 0 . . . 0 0 ϕ′n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k

giving,

Tr(Ak
n+1) = Tr

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ϕn)k 0 0 . 0 0 0

0 (ϕn−1ϕ′)k 0 . 0 0 0

0 0 (ϕn−2ϕ′2)k . 0 0 0
...

...
...

...
...

...
...

0 0 0 . (ϕ2ϕ′n−2)k 0 0

0 0 0 . 0 (ϕϕ′n−1)k 0

0 0 0 . 0 0 (ϕ′n)k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.17)

Since trace is the addition of the diagonal elements of the matrix,

Tr(Ak
n+1) = (ϕn)k + (ϕn−1ϕ′)k + . . . + (ϕϕ′n−1)k + (ϕ′n)k

Tr(Ak
n+1) = (ϕk)n + (ϕk)n−1ϕ′k + . . . + ϕk(ϕ′k)n−1 + (ϕ′k)n
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The powers (ϕk)n and (ϕ′k)n are known from equations (2.30) and (2.31), and substituting

it gives;

Tr(Ak
n+1) =

(
ϕk F(k)

n + (−1)k+1 F(k)

n−1

)
+
(
ϕk F(k)

n−1
+ (−1)k+1 F(k)

n−2

)
ϕ′k + . . .

+
(
ϕk F(k)

1
+ (−1)k+1 F(k)

0

)
(ϕ′k)n−1 + (ϕ′k)n

= ϕk
(
F(k)

n + F(k)

n−1
(ϕ′k) + F(k)

n−2
(ϕ′k)2 + . . . + F(k)

1
(ϕ′k)n−1

)
+(−1)k+1

(
F(k)

n−1
+ F(k)

n−2
(ϕ′k) + F(k)

n−3
(ϕ′k)2 + . . . + F(k)

0
(ϕ′k)n−1

)
+(ϕ′k)n

= ϕk

(
Fkn

Fk
+

F(n−1)k

Fk
(ϕ′k) +

F(n−2)k

Fk
(ϕ′k)2 + . . . +

Fk

Fk
(ϕ′k)n−1

)

+(−1)k+1

(
F(n−1)k

Fk
+

F(n−2)k

Fk
(ϕ′k) +

F(n−3)k

Fk
(ϕ′k)2 + . . . +

F0

Fk
(ϕ′k)n−1

)
+(ϕ′k)n

(ϕϕ′=−1)
=

Fkn

Fk
ϕk +

F(n−1)k

Fk
(−1)k +

F(n−2)k

Fk
(−1)k(ϕ′k) + . . . +

Fk

Fk
(ϕk)(ϕ′k)n−1

+
F(n−1)k

Fk
(−1)k+1 +

F(n−2)k

Fk
(−1)k+1(ϕ′k) +

F(n−3)k

Fk
(−1)k+1(ϕ′k)2

+ . . . +
F0

Fk
(−1)k+1ϕ′n−1 + (ϕ′k)n

=
Fkn

Fk
ϕk +

F(n−1)k

Fk
(−1)k +

F(n−2)k

Fk
(−1)k(ϕ′k) + . . .

+
F(n−(n−1))k

Fk
(−1)k(ϕ′k)n−2 +

F(n−1)k

Fk
(−1)k+1 +

F(n−2)k

Fk
(−1)k+1(ϕ′k)

+
F(n−3)k

Fk
(−1)k+1(ϕ′k)2 + . . . +

Fk

Fk
(−1)k+1(ϕ′k)n−2 + (ϕ′k)n

=
Fkn

Fk
ϕk +

F(n−1)k

Fk

(
(−1)k + (−1)k+1

)
+

F(n−2)k

Fk

(
(−1)kϕ′k + (−1)k+1ϕ′k

)
+

F(n−3)k

Fk

(
(−1)k(ϕ′k)2 + (−1)k+1(ϕ′k)2

)
+ . . . +

Fk

Fk

(
(−1)k(ϕ′k)n−2 + (−1)k+1(ϕ′k)n−2

)
+ (ϕ′k)n

=
Fkn

Fk
ϕk +

F(n−1)k

Fk
(−1)k(1 + (−1)) +

F(n−2)k

Fk
(−1)kϕ′k(1 + (−1))

+
F(n−3)k

Fk
(−1)k(ϕ′k)2(1 + (−1)) + . . . +

Fk

Fk
(−1)k(ϕ′k)n+2(1 + (−1))

+(ϕ′k)n

=
Fkn

Fk
ϕk + (ϕ′k)n

(2.31)
=

Fkn

Fk
ϕk + ϕ′k F(k)

n + (−1)k+1 F(k)

n−1

=
Fkn

Fk
ϕk + ϕ′k

Fkn

Fk
+ (−1)k+1 Fk(n−1)

Fk
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=
1

Fk

(
Fknϕ

k + ϕ′k Fkn + (−1)k+1 Fk(n−1)

)
=

1

Fk

1

ϕ − ϕ′
[(
ϕkn − ϕ′kn

)
ϕk + ϕ′k

(
ϕkn − ϕ′kn

)
+ (−1)k+1

(
ϕ(n−1)k − ϕ′(n−1)k

)]
=

1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′knϕk + ϕ′kϕkn − ϕ′k+kn + (−1)k+1ϕ(n−1)k − (−1)k+1ϕ′(n−1)k

]
=

1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′k(n+1) −

(
−1

ϕ

)kn

ϕk +

(
−1

ϕ

)k

ϕkn + (−1)k+1ϕ(n−1)k

−(−1)k+1

(
−1

ϕ

)(n−1)k ]
=

1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′k(n+1) − (−1)knϕk(1−n) + (−1)kϕk(n−1) − (−1)kϕk(n−1)

+(−1)k(−1)k(n−1)ϕk(1−n)
]

=
1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′k(n+1) − (−1)knϕk(1−n) + (−1)k(−1)kn(−1)−kϕk(1−n)

]
=

1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′k(n+1) − (−1)knϕk(1−n) + (−1)knϕk(1−n)

]
=

1

Fk

1

ϕ − ϕ′
[
ϕk(n+1) − ϕ′k(n+1)

]
=

1

Fk

ϕk(n+1) − ϕ′k(n+1)

ϕ − ϕ′
=

1

Fk
Fk(n+1)

=
Fk(n+1)

Fk

To prove det
(
Ak

n+1

)
relation, we take the determinant of both sides in (5.16),

det
(
Ak

n+1

)
= det

(
σn+1 φ

k
n+1 σ

−1
n+1

)
(5.18)

By using property of determinant,

det(AB) = det(A) det(B) (5.19)

we obtain,

det
(
Ak

n+1

)
= det (σn+1) det

(
φk

n+1

)
det

(
σ−1

n+1

)
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det
(
Ak

n+1

)
= det (σn+1) det

(
σ−1

n+1

)
det

(
φk

n+1

)
det

(
Ak

n+1

)
= det

(
σn+1 σ

−1
n+1

)
det

(
φk

n+1

)
det

(
Ak

n+1

)
= det (I) det

(
φk

n+1

)
det

(
Ak

n+1

)
= 1. det

(
φk

n+1

)
det

(
Ak

n+1

)
= det

(
φk

n+1

)

Since the matrix φk
n+1 is known from (5.17), the above equation becomes;

det
(
Ak

n+1

)
= (ϕn)k (ϕn−1ϕ′)k (ϕn−2ϕ′2)k . . . (ϕ2ϕ′n−2)k (ϕϕ′n−1)k (ϕ′n)k

=
(
ϕnk ϕ(n−1)k ϕ(n−2)k . . . ϕ2k ϕk

) (
ϕ′k ϕ′2k . . . ϕ′(n−2)k ϕ′(n−1)k ϕ′nk

)
=

(
ϕnk+(n−1)k+(n−2)k+...+2k+k

) (
ϕ′ k+2k+...+(n−2)k+(n−1)k+nk

)
= ϕk[n+(n−1)+(n−2)+...+2+1] ϕ′ k[1+2+...+(n−2)+(n−1)+n]

= ϕk
(

n(n+1)
2

)
ϕ′k

(
n(n+1)

2

)

=
(
ϕ

n(n+1)
2

)k (
ϕ′

n(n+1)
2

)k
=

[
(ϕϕ′)

n(n+1)
2

]k
(ϕϕ′=−1)
= (−1)k n (n+1)

2

�
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CHAPTER 6

MOD 5 CONGRUENCE OF F(2)
N = F2N FIBONACCI

NUMBER SUPERPOSITIONS

In Section 5.1, we have seen the matrix,

A3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1

0 1 1

1 2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6.1)

with integer valued elements. This means that an arbitrary power of this matrix An
3 is

also with integer valued elements. If we compare this with representation of matrix An
3

given in Proposition (5.3), we observe that, elements of this matrix are combinations of

F(2)
n = F2n-Fibonacci numbers with integer coefficients divided to 5. This result implies

that 9- combinations of these even index Fibonacci numbers are divisible to 5. These are

the mod 5 congruence relations.

To get the column matrix elements of matrix An
3, we use;

An
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2F(2)

n − 3F(2)

n−1
+ 2(−1)n

F(2)
n + F(2)

n−1
+ (−1)n

3F(2)
n − 2F(2)

n−1
− 2(−1)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.2)

An
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2F(2)

n + 2F(2)

n−1
+ 2(−1)n

6F(2)
n − 4F(2)

n−1
+ (−1)n

8F(2)
n − 2F(2)

n−1
− 2(−1)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (6.3)

96



An
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
1

5

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
3F(2)

n − 2F(2)

n−1
− 2(−1)n

4F(2)
n − F(2)

n−1
− (−1)n

7F(2)
n − 3F(2)

n−1
+ 2(−1)n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (6.4)

6.1. Congruency of Fibonacci and Lucas Numbers

Matrix elements of An
3 are all integer. Then, we should show their divisibility by

5, which is stated at the following proposition.

Proposition 6.1 In the equality (6.2) all coefficients,

an =
2F(2)

n − 3F(2)

n−1
+ 2(−1)n

5
=

F(2)
n + F(2)

n − 3F(2)

n−1
+ 2(−1)n

5

(2.24)
=

F(2)
n − F(2)

n−2
+ 2(−1)n

5

=
F2n − F2(n−2) + 2(−1)n

5
,

bn =
F(2)

n + F(2)

n−1
+ (−1)n

5
=

F2n + F2(n−1) + (−1)n

5
,

cn =
3F(2)

n − 2F(2)

n−1
− 2(−1)n

5
=

3F(2)
n − F(2)

n−1
− F(2)

n−1
− 2(−1)n

5

(2.24)
=

F(2)

n+1
− F(2)

n−1
− 2(−1)n

5

=
F2(n+1) − F2(n−1) − 2(−1)n

5

are integer.

Here, since cn = an+1, it is sufficient to prove only that bn and cn are integers. By

using equation (2.2), bn and an can be written as,

bn =
L2n−1 + (−1)n

5
, (6.5)

an =
L2n−2 + 2(−1)n

5
. (6.6)

To prove this, we should use following helpful proposition from (Koshy, T., 2001).

Proposition 6.2 Lucas numbers,

Ln ≡ (−1)n · 2n+1 ≡ 2 · 3n (mod 5) (6.7)
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Proof (Proof of Proposition 6.1) Firstly, we should show that,

L2n−1 + (−1)n ≡ 0 (mod 5)

If we choose n→ 2n − 1 in the Proposition 6.2,

L2n−1 ≡ (−1)2n−1 · 2(2n−1)+1 (mod 5)

≡ −(22)n (mod 5)

≡ −(5 − 1)n (mod 5).

From Newton Binomial formula,

(5 − 1)n =

n∑
k=0

(
n
k

)
5n−k (−1)k ≡ (−1)n (mod 5). (6.8)

Then we can deduce that,

L2n−1 ≡ (−1)n+1 (mod 5). (6.9)

It says that bn is integer. Secondly, to prove an is integer, we should show that;

L2n−2 ≡ 2 · (−1)n+1 (mod 5) (6.10)

or,

L2m ≡ 3 · (−1)m+1 (mod 5), (6.11)

where n − 1 = m. To prove this, we replace n→ 2m in the Proposition 6.2;

L2m ≡ (−1)2m · 22m+1 (mod 5)
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≡ 2 · 4m (mod 5)

(6.8)≡ −3 · (−1)m (mod 5)

≡ 3 · (−1)m+1 (mod 5)

≡ −2 · (−1)m+1 (mod 5)

≡ 2 · (−1)m (mod 5).

After shifting m→ n − 1, we get the desired equality,

L2n−2 ≡ 2 · (−1)n+1 (mod 5).

Therefore, it says that an is also integer. �

Our next goal is to prove that matrix elements in (6.3) and (6.4) are also integer.

Proposition 6.3 Matrix elements given in (6.3),

2F(2)
n + 2F(2)

n−1
+ 2(−1)n

5
,

6F(2)
n − 4F(2)

n−1
+ (−1)n

5
,

8F(2)
n − 2F(2)

n−1
− 2(−1)n

5

are integer. Or equivalently,

2F(2)
n + 2F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

6F(2)
n − 4F(2)

n−1
+ (−1)n ≡ 0 (mod 5)

8F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)

Proof We have for the first one,

2F(2)
n + 2F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

F(2)
n + F(2)

n−1
+ (−1)n ≡ 0 (mod 5)

F2n + F2n−2 + (−1)n ≡ 0 (mod 5)

L2n−1 + (−1)n ≡ 0 (mod 5)
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L2n−1 ≡ (−1)n+1 (mod 5).

Since it is just equation (6.9), then;

2F(2)
n + 2F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

is proved. Secondly,

6F(2)
n − 4F(2)

n−1
+ (−1)n ≡ 0 (mod 5)

6F2n − 4F2(n−1) + (−1)n ≡ 0 (mod 5)

2F2n + 4 (F2n − F2n−2) + (−1)n ≡ 0 (mod 5)

2F2n + 4F2n−1 + (−1)n ≡ 0 (mod 5)

2 (F2n + F2n−1) + 2F2n−1 + (−1)n ≡ 0 (mod 5)

2 (F2n+1 + F2n−1) + (−1)n ≡ 0 (mod 5)

2L2n + (−1)n ≡ 0 (mod 5)

4L2n + 2(−1)n ≡ 0 (mod 5)

(−1) · L2n ≡ −2(−1)n (mod 5)

L2n ≡ 2(−1)n (mod 5)

L2n ≡ 3(−1)n+1 (mod 5)

Since this is equation (6.11), then,

6F(2)
n − 4F(2)

n−1
+ (−1)n ≡ 0 (mod 5)

is proved. Thirdly,

8F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)

8F2n − 2F2n−2 − 2(−1)n ≡ 0 (mod 5)

6F2n + 2 (F2n − F2n−2) − 2(−1)n ≡ 0 (mod 5)

6F2n + 2 (F2n−1) − 2(−1)n ≡ 0 (mod 5)
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4F2n + 2 (F2n + F2n−1) − 2(−1)n ≡ 0 (mod 5)

4F2n + 2F2n+1 − 2(−1)n ≡ 0 (mod 5)

2F2n + 2 (F2n + F2n+1) − 2(−1)n ≡ 0 (mod 5)

2 (F2n + F2n+2) − 2(−1)n ≡ 0 (mod 5)

2 (F2n + F2n+2 − (−1)n) ≡ 0 (mod 5)

2 (L2n+1 − (−1)n) ≡ 0 (mod 5)

We know that if;

c · a ≡ c · b (mod n) (6.12)

then,

a ≡ b
(
mod

n
d

)
, (6.13)

where d = gcd(c, n). Therefore, we have;

L2n+1 − (−1)n ≡ 0 (mod 5)

L2n+1 ≡ (−1)n (mod 5)

By shifting n→ n − 1,

L2n−1 ≡ (−1)n+1 (mod 5)

gives equation (6.9). So,

8F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)

is proved. �
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Proposition 6.4 Matrix elements given in (6.4),

3F(2)
n − 2F(2)

n−1
− 2(−1)n

5

4F(2)
n − F(2)

n−1
− (−1)n

5

7F(2)
n − 3F(2)

n−1
+ 2(−1)n

5

are integer. Or equivalently,

3F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)

4F(2)
n − F(2)

n−1
− (−1)n ≡ 0 (mod 5)

7F(2)
n − 3F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

Proof For the first congruency,

3F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)

3F2n − 2F2n−2 − 2(−1)n ≡ 0 (mod 5)

F2n + 2 (F2n − F2n−2) − 2(−1)n ≡ 0 (mod 5)

F2n + 2F2n−1 − 2(−1)n ≡ 0 (mod 5)

F2n + F2n−1 + F2n−1 − 2(−1)n ≡ 0 (mod 5)

F2n+1 + F2n−1 − 2(−1)n ≡ 0 (mod 5)

L2n ≡ 2 · (−1)n (mod 5)

L2n ≡ (−3) · (−1)n (mod 5)

L2n ≡ 3 · (−1)n+1 (mod 5)

Since this is just equation (6.11), then,

3F(2)
n − 2F(2)

n−1
− 2(−1)n ≡ 0 (mod 5)
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is proved. Secondly,

4F(2)
n − F(2)

n−1
− (−1)n ≡ 0 (mod 5)

4F2n − F2n−2 − (−1)n ≡ 0 (mod 5)

3F2n + F2n − F2n−2 − (−1)n ≡ 0 (mod 5)

3F2n + F2n−1 − (−1)n ≡ 0 (mod 5)

2F2n + F2n + F2n−1 − (−1)n ≡ 0 (mod 5)

2F2n + F2n+1 − (−1)n ≡ 0 (mod 5)

F2n + F2n + F2n+1 − (−1)n ≡ 0 (mod 5)

F2n + F2n+2 − (−1)n ≡ 0 (mod 5)

L2n+1 − (−1)n ≡ 0 (mod 5)

L2n+1 ≡ (−1)n (mod 5)

Shifting n→ n − 1 gives,

L2n−1 ≡ (−1)n−1 (mod 5)

L2n−1 ≡ (−1)n+1 (mod 5)

This is equation (6.9), then,

4F(2)
n − F(2)

n−1
− (−1)n ≡ 0 (mod 5)

is proved. To prove the third congruency,

7F(2)
n − 3F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

7F2n − 3F2n−2 + 2(−1)n ≡ 0 (mod 5)

4F2n + 3 (F2n − F2n−2) + 2(−1)n ≡ 0 (mod 5)

4F2n + 3F2n−1 + 2(−1)n ≡ 0 (mod 5)

F2n + 3 (F2n + F2n−1) + 2(−1)n ≡ 0 (mod 5)

F2n + 3F2n+1 + 2(−1)n ≡ 0 (mod 5)
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2F2n+1 + F2n + F2n+1 + 2(−1)n ≡ 0 (mod 5)

2F2n+1 + F2n+2 + 2(−1)n ≡ 0 (mod 5)

F2n+1 + F2n+1 + F2n+2 + 2(−1)n ≡ 0 (mod 5)

F2n+1 + F2n+3 + 2(−1)n ≡ 0 (mod 5)

L2n+2 + 2(−1)n ≡ 0 (mod 5)

L2n+2 ≡ 2(−1)n+1 (mod 5)

L2(n+1) ≡ 2(−1)n+1 (mod 5)

After shifting n + 1→ m, it gives,

L2m ≡ 2(−1)m (mod 5).

Since it is equation (6.11), then;

7F(2)
n − 3F(2)

n−1
+ 2(−1)n ≡ 0 (mod 5)

is proved. �
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CHAPTER 7

BERNOULLI FIBONACCI POLYNOMIALS

Definition 7.1 The generating function for Bernoulli polynomials is defined by Taylor

series expansion,
z ezx

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
, (7.1)

where Bn(x) are the Bernoulli polynomials in x, for all n > 0.

Bernoulli numbers are a special values of the Bernoulli polynomials Bn(x), bn =

Bn(0). The generating function for Bernoulli numbers is;

z
ez − 1

=

∞∑
n=0

bn
zn

n!
. (7.2)

First few Bernoulli polynomials are;

B0(x) = 1

B1(x) = x − 1

2

B2(x) = x2 − x +
1

6

B3(x) = x3 − 3

2
x2 +

1

2
x

B4(x) = x4 − 2x3 + x2 − 1

30

B5(x) = x5 − 5

2
x4 +

5

3
x3 − 1

6
x

B6(x) = x6 − 3x5 +
5

2
x4 − 1

2
x2 +

1

42
.

Corresponding Bernoulli numbers are;

b0 = 1, b1 = −1

2
, b2 =

1

6
, b3 = 0, b4 = − 1

30
, b5 = 0, b6 =

1

42
, . . .

Following propositions are valid for Bernoulli numbers and polynomials (Kac, V. and

Cheung, P., 2002).
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Proposition 7.1 It is known that for odd Bernoulli numbers;

b2n+1 = 0 (7.3)

where n = 1, 2, . . .

Proposition 7.2 Derivative of nth Bernoulli polynom gives,

d
dx

Bn(x) = B
′
n(x) = n Bn(x) (7.4)

Proposition 7.3 For any n ≥ 0, we have;

Bn(x) =

n∑
j=0

(
n
j

)
bj xn− j (7.5)

Proposition 7.4 For any n ≥ 1, we have;

n−1∑
j=0

(
n
j

)
Bj(x) = n xn−1

Corollary 7.1 For any n ≥ 2, from previous proposition if x = 0;

n−1∑
j=0

(
n
j

)
bj = 0

Proposition 7.5 For any n ≥ 2, we have;

Bn(1) = bn (7.6)

Definition of Golden exponential function ex
F in (3.41) suggests to introduce gen-

erating function and corresponding polynomials, similar to the Bernoulli polynomials.

Definition 7.2 Generating function for Bernoulli-Fibonacci polynomials BF
n (x) is defined
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by series expansion,

z ezx
F

ez
F − 1

=

∞∑
n=0

BF
n (x)

zn

Fn!
. (7.7)

The Bernoulli-Fibonacci numbers are a special values of polynomials BF
n (x) such that,

bF
n = BF

n (0), (7.8)

with generating function,

z
ez

F − 1
=

∞∑
n=0

bF
n

zn

Fn!
(7.9)

For the first few Bernoulli-Fibonacci polynomials we have,

BF
0 (x) = 1

BF
1 (x) =

x
F1!
− 1

F2!

BF
2 (x) = x2 − x

F1!
+

1

F2!
− 1

F3

BF
3 (x) = x3 − x2 F3!

(F2!)2
+ x

(
F3!

F1!(F2!)2
− 1

F1!

)
+

2

F2!
− 1

F4

− F3

BF
4 (x) = x4 − x3

(
F4!

F3!F2!

)
+ x2

(
F4!

(F2!)3
− F4!

F2!F3!

)

+ x
(
− F4!

F1!(F2!)3
+ 2

F4!

F1!F2!F3!
− 1

F1!

)

+

(
F4!

(F2!)4
− 3

F4!

(F2!)2F3!
+ 2

1

F2!
+

F4!

(F3!)2
− 1

F5

)

BF
5 (x) = x5 + x4

(
− F5!

F4!F2!

)
+ x3

(
− F5!

(F3!)2
+

F5!

F3!(F2!)2

)

+ x2

(
− F5!

F2!F4!
+ 2

F5!

(F2!)2F3!
− F5!

(F2!)4

)

+ x
(
− 1

F1!
+

F5!

F1!(F3!)2
+ 2

F5!

F1!F2!F4!
− 3

F5!

F1!(F2!)2F3!
+

F5!

F1!(F2!)4

)

+

(
− F5!

(F2!)5
+ 4

F5!

(F2!)3F3!
− 3

F5!

(F3!)2F2!
− 3

F5!

(F2!)2F4!
+ 2

F5!

F3!F4!
+

2

F2!
− F5!

F6!

)
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In Figures 7.1, 7.2 and 7.3 we compare first three Bernoulli and Bernoulli-Fibonacci Poly-

nomials on interval −1 ≤ x ≤ 2.

�4 �2 2 4

�4

�2

2

B1�x�

B
1

F
�x�

Figure 7.1. Graph of the polynomials B1(x) and BF
1 (x)

Since,

B1(x) = BF
1 (x) +

1

2
,

then we have the constant shift by 1
2

in vertical direction.

�1.0 �0.5 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

B2�x�

B
2

F
�x�

Figure 7.2. Graph of the polynomials B2(x) and BF
2 (x)
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Since,

B2(x) = BF
2 (x) − 1

3

we have the constant shift by −1
3

in vertical direction.

�1.0 �0.5 0.5 1.0 1.5 2.0

�3

�2

�1

1

2

3

B3�x�

B
3

F
�x�

Figure 7.3. Graph of the polynomials B3(x) and BF
3 (x)

Since,

B3(x) = BF
3 (x) +

(
x2

2
− x

2
+

1

3

)
,

then we have the parabolic shift in vertical direction. For example, at x = 0, we have

shifting on 1
3

units in vertical direction.

We notice that all coefficients of Bernoulli-Fibonacci polynomials are Fibonacci

rational.

Proposition 7.6 (Compare with Proposition (7.2))

Golden derivative application to Bernoulli-Fibonacci polynomials BF
n (x) gives;

Dx
F(BF

n (x)) = Fn BF
n−1(x) (7.10)
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Proof Taking Golden derivative of both sides in the equation (7.7),

Dx
F

(
z ezx

F

ez
F − 1

)
= Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

BF
n (x)

zn

Fn!

⎞⎟⎟⎟⎟⎟⎠
z Dx

F(ezx
F )

ez
F − 1

= Dx
F

(
BF

0 (x) + BF
1 (x)

z
F1!
+ BF

2 (x)
z2

F2!
+ . . .

)

For the left hand side, Golden derivative can be calculated from equation (3.46). For the

right hand side, it is clear that;

Dx
F(BF

0 (x)) = Dx
F(1) = 0

Then,

z · zezx
F

ez
F − 1

=

∞∑
k=1

Dx
F

(
BF

k (x)
) zk

Fk!

z
∞∑

n=0

BF
n (x)

zn

Fn!
=

∞∑
k=1

Dx
F

(
BF

k (x)
) zk

Fk!

∞∑
n=0

BF
n (x)

zn+1

Fn!
=

∞∑
k=1

Dx
F

(
BF

k (x)
) zk

Fk!

In the right hand side, after denoting k − 1 = n;

∞∑
n=0

BF
n (x)

zn+1

Fn!
=

∞∑
n=0

Dx
F

(
BF

n+1(x)
) zn+1

Fn+1!

∞∑
n=0

BF
n (x)

zn+1

Fn!
=

∞∑
n=0

Dx
F

(
BF

n+1(x)
) 1

Fn+1

zn+1

Fn!

From equality of these two series, we have;

BF
n (x) =

Dx
F

(
BF

n+1(x)
)

Fn+1

�
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Since bF
n = BF

n (0), we can find Bernoulli-Fibonacci numbers from Bernoulli-

Fibonacci polynomials as;

bF
0 = 1, bF

1 = −1, bF
2 =

1

2
, bF

3 = −
1

3
, bF

4 =
3

10
, bF

5 = −
5

8
, bF

6 =
101

39

Proposition 7.7 (Compare with Proposition (7.3))

Another representation for Bernoulli Fibonacci Polynomials is;

BF
n (x) =

n∑
j=0

[
n
j

]
F
bF

j xn− j (7.11)

Proof We show that if (7.11) is valid then BF
n (x) are satisfying equation (7.10).

Dx
F

[
BF

n (x)
] (7.11)
= Dx

F

⎡⎢⎢⎢⎢⎢⎢⎣ n∑
j=0

[
n
j

]
F
bF

j xn− j

⎤⎥⎥⎥⎥⎥⎥⎦ = Dx
F

[[
n
0

]
F
bF

0 xn +

[
n
1

]
F
bF

1 xn−1 + . . . +

[
n
n

]
F
bF

n

]

= Dx
F

[[
n
0

]
F
bF

0 xn +

[
n
1

]
F
bF

1 xn−1 + . . . +

[
n
n

]
F
bF

n

]

= Dx
F

⎡⎢⎢⎢⎢⎢⎢⎣ n−1∑
j=0

[
n
j

]
F
bF

j xn− j

⎤⎥⎥⎥⎥⎥⎥⎦
=

n−1∑
j=0

[
n
j

]
F
bF

j Dx
F

(
xn− j

)

=

n−1∑
j=0

[
n
j

]
F
bF

j Fn− j xn− j−1

=

n−1∑
j=0

Fn!

Fn− j! F j!
bF

j Fn− j xn− j−1

=

n−1∑
j=0

Fn!

Fn− j−1! F j!
bF

j xn− j−1

= Fn

n−1∑
j=0

Fn−1!

Fn− j−1! F j!
bF

j xn− j−1

(7.11)
= Fn BF

n−1(x)

�

Proposition 7.8 (Compare with Proposition (7.4))
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For n ≥ 1, Bernoulli-Fibonacci polynomials can be calculated recursively by:

n−1∑
l=0

[
n
l

]
F

BF
l (x) = Fn xn−1

Proof We know the generating function,

z ezx
F

ez
F − 1

=

∞∑
n=0

BF
n (x)

zn

Fn!
.

Multiplying this by ez
F;

z ezx
F ez

F

ez
F − 1

=

∞∑
n=0

BF
n (x) ez

F
zn

Fn!
,

and taking the difference, one gets;

z ezx
F

ez
F − 1

(
ez

F − 1
)
=

∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

z ezx
F =

∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

Dx
F

(
ezx

F

)
=

∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

Dx
F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(zx)n

Fn!

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

Dx
F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

zn xn

Fn!

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

∞∑
n=1

zn Dx
F (xn)

Fn!
=

∞∑
n=0

(
BF

n (x) ez
F − BF

n (x)
) zn

Fn!

∞∑
n=1

zn Fn xn−1

Fn!
=

∞∑
l=0

BF
l (x) ez

F
zl

Fl!
−
∞∑

n=0

BF
n (x)

zn

Fn!
.

In the right hand side of this equation;

∞∑
l=0

BF
l (x) ez

F
zl

Fl!
=

∞∑
l=0

∞∑
k=0

BF
l (x)

zk

Fk!

zl

Fl!
=

∞∑
l=0

∞∑
k=0

BF
l (x)

zk+l

Fk!Fl!

112



=

∞∑
l=0

∞∑
k=0

BF
l (x)

zk+l

Fk!Fl!

k+l=n
=

∞∑
n=0

1

Fn!

n∑
l=0

BF
l (x)

zn Fn!

Fn−l!Fl!

=

∞∑
n=0

zn

Fn!

⎛⎜⎜⎜⎜⎜⎝ n∑
l=0

[
n
l

]
F

BF
l (x)

⎞⎟⎟⎟⎟⎟⎠

After substituting this,

∞∑
n=1

zn Fn xn−1

Fn!
=

∞∑
n=0

zn

Fn!

⎛⎜⎜⎜⎜⎜⎝ n∑
l=0

[
n
l

]
F

BF
l (x)

⎞⎟⎟⎟⎟⎟⎠ − ∞∑
n=0

BF
n (x)

zn

Fn!

∞∑
n=1

zn Fn xn−1

Fn!
= BF

0 (x)

[
0

0

]
F
+

∞∑
n=1

zn

Fn!

⎛⎜⎜⎜⎜⎜⎝ n∑
l=0

[
n
l

]
F

BF
l (x)

⎞⎟⎟⎟⎟⎟⎠ − BF
0 (x) −

∞∑
n=1

BF
n (x)

zn

Fn!

∞∑
n=1

zn

Fn!
Fn xn−1 =

∞∑
n=1

zn

Fn!

⎛⎜⎜⎜⎜⎜⎝ n∑
l=0

[
n
l

]
F

BF
l (x)

⎞⎟⎟⎟⎟⎟⎠ − ∞∑
n=1

BF
n (x)

zn

Fn!

By equating the series, we have;

n∑
l=0

[
n
l

]
F

BF
l (x) − BF

n (x) = Fn xn−1,

where n ≥ 1. Expanding nth term in the summation,

n−1∑
l=0

[
n
l

]
F

BF
l (x) + BF

n (x)

[
n
n

]
F
− BF

n (x) = Fn xn−1,

finally, we get the desired equality,

n−1∑
l=0

[
n
l

]
F

BF
l (x) = Fn xn−1.

�

Corollary 7.2 (Compare with Corollary (7.1))

From previous proposition if x = 0, the formula allows us to compute the Bernoulli
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numbers inductively,

n−1∑
j=0

[
n
j

]
F
bF

j = 0 (7.12)

where n ≥ 2.

Proof Proof will be done by equating expansion of BF
n (x) + Fnxn−1, obtained in two

ways. On the one hand, we obtain;

BF
n (x) + Fnxn−1 = xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j. (7.13)

On the other hand, we found that;

BF
n (x) + Fnxn−1 = Hn(x) =

n∑
k=0

[
n
k

]
F

BF
n−k(x) (7.14)

These equations are derived in Appendix C. Equating these two equations gives;

n∑
k=0

[
n
k

]
F

BF
n−k(x) = xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j.

After expanding k = n case in the left hand side,

n−1∑
k=0

[
n
k

]
F

BF
n−k(x) + BF

0 (x) = xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j

xn − 1 =

n−1∑
k=0

[
n
k

]
F

BF
n−k(x) −

n∑
j=2

[
n
j

]
F
bF

j xn− j
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xn − 1 =

n−1∑
k=0

[
n
k

]
F

BF
n−k(x) −

([
n
2

]
F
bF

2 xn−2 + . . . +

[
n

n − 1

]
F
bF

n−1x +
[
n
n

]
F
bF

n

)

Now putting x = 0 gives,

−1 =

n−1∑
k=0

[
n
k

]
F
bF

n−k − bF
n .

Firstly, expanding the sum for k = 0 in the right hand side,

−1 =

n−1∑
k=1

[
n
k

]
F
bF

n−k +

[
n
0

]
F
bF

n − bF
n ,

thus, we get;

n−1∑
k=1

[
n
k

]
F
bF

n−k + 1 = 0.

By using symmetry property of Fibonomial coefficients, we can rewrite it as,

n−1∑
k=1

[
n

n − k

]
F
bF

n−k + 1 = 0.

After denoting n − k = j it gives,

1∑
j=n−1

[
n
j

]
F
bF

j + 1 = 0.

Since bF
0 = 1;

n−1∑
j=1

[
n
j

]
F
bF

j +

[
n
0

]
F
bF

0 = 0

115



Therefore, we obtained the desired result;

n−1∑
j=0

[
n
j

]
F
bF

j = 0

�

Proposition 7.9 (Compare with Proposition (7.5))

Bernoulli-Fibonacci polynomials and corresponding Bernoulli-Fibonacci num-

bers satisfy the following equation;

BF
n (1) = bF

n (7.15)

where n = 2, 3, . . .

Proof Starting with,

ezx
F − 1

ez
F − 1

=

(
ezx

F

ez
F − 1

− 1

ez
F − 1

)
=

(
ezx

F

ez
F − 1

− 1

ez
F − 1

)
z
z
=

(
z ezx

F

ez
F − 1

− z
ez

F − 1

)
1

z

(7.7)
=

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

BF
n (x)

zn

Fn!
− z

ez
F − 1

⎞⎟⎟⎟⎟⎟⎠ 1

z

(7.9)
=

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

BF
n (x)

zn

Fn!
−
∞∑

n=0

bF
n

zn

Fn!

⎞⎟⎟⎟⎟⎟⎠ 1

z

=

∞∑
n=0

(
BF

n (x) − bF
n

) zn−1

Fn!

Thus, we have,

ezx
F − 1

ez
F − 1

=
(
BF

0 (x) − bF
0

) z−1

F0!
+
(
BF

1 (x) − bF
1

) 1

F1!
+

∞∑
n=2

(
BF

n (x) − bF
n

) zn−1

Fn!

ezx
F − 1

ez
F − 1

= (1 − 1)
z−1

F0!
+ (x − 1 − (−1))

1

F1!
+

∞∑
n=2

(
BF

n (x) − bF
n

) zn−1

Fn!

ezx
F − 1

ez
F − 1

= x +
∞∑

n=2

(
BF

n (x) − bF
n

) zn−1

Fn!
(7.16)
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From this expansion, if we put x = 1;

ez
F − 1

ez
F − 1

= 1 +

∞∑
n=2

(
BF

n (1) − bF
n

) zn−1

Fn!

∞∑
n=2

(
BF

n (1) − bF
n

) zn−1

Fn!
= 0.

Since this infinite sum is zero for any z, the coefficients at every power of z are also zero.

Therefore,

BF
n (1) − bF

n = 0 (7.17)

for n = 2, 3, 4, . . . �
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CHAPTER 8

FIBONACCI MEETS APOLLONIOUS

8.1. Apollonious Gaskets

The following theorem is assigned to ancient Greek mathematician Apollonious

from Perga (BC 240):

”Given three fixed circles, find a circle that (kisses) touches each of them.”

It is possible to prove that if the given circles are mutually tangential, then there

exists two circles satisfying this property. (Simplest proof is based on inversion of circles.)

Let r1, r2, and r3 denote the radiuses of the given circles, and R and r are radiuses

of external and internal circles, respectively. Assume r1 < r2 < r3 and r < R.

Figure 8.1. Solution of Apollonious Problem

In above figure, circles with radiuses r1, r2, r3, r and r1, r2, r3,R are kissing each

other at six distinct points. These circles are mutually tangential to each other.

Theorem 8.1 (Descartes Theorem)

In plane geometry, if four circles with radiuses r1, r2, r3, r4 are mutually tangential

to each other at six distinct points, then the circles’ curvatures κi = 1
ri

(i = 1, ..., 4) are
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connected by quadratic relation:

(κ1 + κ2 + κ3 + κ4)2 = 2 (κ1
2 + κ2

2 + κ3
2 + κ4

2) (8.1)

Applied to Apollonious problem, the Descartes formula relates radiuses(or curva-

tures) of four circles:

1

r1

,
1

r2

,
1

r3

,
1

r
&

1

r1

,
1

r2

,
1

r3

,
1

R

Example 8.1 We choose the kissing circles’ radiuses as;

r1 =
1

2
, r2 =

1

2
, r3 =

1

3
.

Now, by putting them into Descartes Theorem, formula (8.1), we can find radiuses of the

circles, touching these three circles as,

(2 + 2 + 3 + κ4)2 = 2
(
22 + 22 + 32 + κ4

2
)

κ4 = 15 and κ4 = −1 ⇒ r4 =
1

15
and r4 = 1

The positive and negative sign of curvature in these formulas is related with so

called signed curvature in plane (positive or negative direction of rotation).

By choosing new sets of three kissing circles, one can derive the recursion process

for the so called Apollonious Gasket. In figure 4.2, example of integer Apollonious gasket

is shown.
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Figure 8.2. Apollonious Gaskets

Proposition 8.1 For three kissing circles with arbitrary radiuses r1, r2, r3, the correspond-

ing radiuses of mutually kissing circles are;

r =
r1 r2 r3

r1r2 + r1r3 + r2r3 + 2
√

r1r2r3 (r1 + r2 + r3)
(8.2)

R =
r1 r2 r3

r1r2 + r1r3 + r2r3 − 2
√

r1r2r3 (r1 + r2 + r3)
(8.3)

Proof Let κ be the curvature of the mutually kissing circles. Our goal is to find κ from

the Descartes formula,

2 (κ1
2 + κ2

2 + κ3
2 + κ2) = (κ1 + κ2 + κ3 + κ)

2.

One can reduce this equation to quadratic one in κ,

κ2 − 2 (κ1 + κ2 + κ3) κ + κ1
2 + κ2

2 + κ3
2 − 2 (κ1κ2 + κ1κ3 + κ2κ3) = 0

Let κ+ and κ− be the solutions of this quadratic equation,i.e, κ+ and κ− be the curvatures

of the circles with radiuses r and R, respectively,

κ+ =
1

r
and κ− =

1

R
.
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Then,

κ+, κ− =
2 (κ1 + κ2 + κ3) ± √16 (κ1κ2 + κ1κ3 + κ2κ3)

2

and,

κ+ = (κ1 + κ2 + κ3) + 2
√

(κ1κ2 + κ1κ3 + κ2κ3)

κ− = (κ1 + κ2 + κ3) − 2
√

(κ1κ2 + κ1κ3 + κ2κ3)

Substituting corresponding curvatures κi =
1
ri

, where i = 1, 2, 3, gives;

1

r
=

(
1

r1

+
1

r2

+
1

r3

)
+ 2

√(
1

r1

1

r2

+
1

r1

1

r3

+
1

r2

1

r3

)

1

R
=

(
1

r1

+
1

r2

+
1

r3

)
− 2

√(
1

r1

1

r2

+
1

r1

1

r3

+
1

r2

1

r3

)

So, we easily obtain;

r =
r1 r2 r3

r1r2 + r1r3 + r2r3 + 2
√

r1r2r3 (r1 + r2 + r3)

R =
r1 r2 r3

r1r2 + r1r3 + r2r3 − 2
√

r1r2r3 (r1 + r2 + r3)

�

8.2. Fibonacci Apollonious Gaskets

Here we consider the special case of three kissing circles with integer radiuses,

r1n = FnFn+1, r2n = FnFn+2, r3n = Fn+1Fn+3 (8.4)

satisfying inequality r1n < r2n < r3n (Koshy, T., 2001).
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Proposition 8.2 Triangle with vertices at centers of kissing circles of radiuses r1n , r2n , r3n

given by (8.4) is a Pythagorean Triangle.

Figure 8.3. Pythagorean Triangle

Proof Sides of this triangle are r1n + r2n , r1n + r3n , r2n + r3n . Let’s denote these sides as;

r1n + r2n = FnFn+3 ≡ an

r1n + r3n = Fn+1(Fn + Fn+3) ≡ bn

r2n + r3n = FnFn+2 + Fn+1Fn+3 ≡ cn.

We have to prove that c2
n = b2

n + a2
n, or

a2
n = c2

n − b2
n ⇒ a2

n = (cn − bn)(cn + bn).

By calculating right hand side,

(cn − bn) (cn + bn) =
(
FnFn+2 + Fn+1Fn+3 − FnFn+1 − Fn+1Fn+3

)
·(

FnFn+2 + Fn+1Fn+3 + FnFn+1 + Fn+1Fn+3

)
= (Fn(Fn+2 − Fn+1)) (Fn(Fn+1 + Fn+2) + 2Fn+1Fn+3)

= F2
n (Fn+3(Fn + 2Fn+1))

= F2
n (Fn+3(Fn + Fn+1 + Fn+1))

= F2
n (Fn+3(Fn+2 + Fn+1))
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= F2
n F2

n+3 = a2
n

�

Corollary 8.1 Three numbers an, bn and cn written in terms of Fibonacci numbers,

an = FnFn+3

bn = 2Fn+1Fn+2

cn = F2
n+1 + F2

n+2

are Pythagorean triples(see the following figure).

Figure 8.4. Pythagorean triples

Example 8.2 For n = 1, sides of the Pythagorean triangle becomes 3, 4 and 5. Also for

n = 2, sides become 5,12 and 13.

By using angle αn, we can write,

cosαn =
an

cn
=

FnFn+3

F2
n+1
+ F2

n+2

sinαn =
bn

cn
=

2Fn+1Fn+2

F2
n+1
+ F2

n+2
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tanαn =
bn

an
=

2Fn+1Fn+2

FnFn+3

Proposition 8.3 Limit of these results is written in terms of Golden ratio ϕ,

lim
n→∞ cosαn ≡ cosα =

ϕ

ϕ + 2
(8.5)

lim
n→∞ sinαn ≡ sinα =

2ϕ

ϕ + 2
(8.6)

lim
n→∞ tanαn ≡ tanα = 2 (8.7)

Proof Firstly,

cosα ≡ lim
n→∞ cosαn = lim

n→∞
FnFn+3

F2
n+1
+ F2

n+2

= lim
n→∞

(ϕn − ϕ′n)
(
ϕn+3 − ϕ′n+3

)
(
ϕn+1 − ϕ′n+1

)2
+
(
ϕn+3 − ϕ′n+3

)2
=

ϕnϕn+3

ϕ2(n+1) + ϕ2(n+2)
=

ϕ3

ϕ2 + ϕ4
=
ϕ

1 + ϕ2
=
ϕ

ϕ + 2

Secondly,

sinα ≡ lim
n→∞ sinαn = lim

n→∞
2Fn+1Fn+2

F2
n+1
+ F2

n+2

= lim
n→∞ 2

(
ϕn+1 − ϕ′n+1

) (
ϕn+2 − ϕ′n+2

)
(
ϕn+1 − ϕ′n+1

)2
+
(
ϕn+2 − ϕ′n+2

)2
= 2

ϕn+1ϕn+2

ϕ2(n+1) + ϕ2(n+2)
=

2ϕ

1 + ϕ2
=

2ϕ

1 + ϕ2
=

2ϕ

ϕ + 2

Thirdly,

tanα ≡ lim
n→∞ tanαn = lim

n→∞
sinαn

cosαn
=

limn→∞ sinαn

limn→∞ cosαn
=

2ϕ

ϕ+2

ϕ

ϕ+2

= 2

�

Proposition 8.4 By using (8.5) and (8.6), we have trigonometric identity;

cos2 α + sin2 α = 1 (8.8)
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Proof

cos2 α + sin2 α =
ϕ2

(ϕ + 2)2
+

4ϕ2

(ϕ + 2)2
=

5ϕ2

ϕ2 + 4ϕ + 4

(2.8)
=

5(ϕ + 1)

ϕ + 1 + 4ϕ + 4
= 1

�

In the limiting case, when n→ ∞, our Phytagorean Triangle becomes the ”Golden

Phytagorean Triangle”. Because all sides of this triangle are written by using number

′′ϕ′′ : ϕ, 2ϕ, ϕ + 2. (See Figure 8.5)

Figure 8.5. Golden Phytagorean Triangle

Proposition 8.5 For three kissing circles with radiuses,

r1n = FnFn+1, r2n = FnFn+2, r3n = Fn+1Fn+3

the corresponding radiuses of mutually kissing circles are:

Rn = Fn+2Fn+3 , rn =
FnFn+1Fn+2Fn+3

4Fn+2Fn+3 − FnFn+1

(8.9)
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Proof By using Proposition (8.1), we calculate rn and Rn.

r1n r2n r3n = FnFn+1FnFn+2Fn+1Fn+3 = F2
nF2

n+1Fn+2Fn+3

r1nr2n + r1nr3n + r2nr3n = FnFn+1FnFn+2 + FnFn+1Fn+1Fn+3 + FnFn+2Fn+1Fn+3

= F2
nFn+1Fn+2 + FnF2

n+1Fn+3 + FnFn+1Fn+2Fn+3

r1nr2nr3n

(
r1n + r2n + r3n

)
= F2

nF2
n+1Fn+2Fn+3 (FnFn+1 + FnFn+2 + Fn+1Fn+3)

= F2
nF2

n+1Fn+2Fn+3 (FnFn+3 + Fn+1Fn+3)

= F2
nF2

n+1Fn+2Fn+3 (Fn+2Fn+3) = F2
nF2

n+1F2
n+2F2

n+3

Starting from rn;

rn =
F2

nF2
n+1Fn+2Fn+3

F2
nFn+1Fn+2 + FnF2

n+1
Fn+3 + FnFn+1Fn+2Fn+3 + 2

√
F2

nF2
n+1

F2
n+2

F2
n+3

=
F2

nF2
n+1Fn+2Fn+3

F2
nFn+1Fn+2 + FnF2

n+1
Fn+3 + FnFn+1Fn+2Fn+3 + 2FnFn+1Fn+2Fn+3

=
FnFn+1Fn+2Fn+3

FnFn+2 + Fn+1Fn+3 + 3Fn+2Fn+3

=
FnFn+1Fn+2Fn+3

FnFn+2 + (Fn+2 − Fn) Fn+3 + 3Fn+2Fn+3

=
FnFn+1Fn+2Fn+3

FnFn+2 + Fn+2Fn+3 − FnFn+3 + 3Fn+2Fn+3

=
FnFn+1Fn+2Fn+3

4Fn+2Fn+3 − Fn (Fn+3 − Fn+2)

=
FnFn+1Fn+2Fn+3

4Fn+2Fn+3 − FnFn+1

.

Calculating Rn;

Rn =
F2

nF2
n+1Fn+2Fn+3

F2
nFn+1Fn+2 + FnF2

n+1
Fn+3 + FnFn+1Fn+2Fn+3 − 2

√
F2

nF2
n+1

F2
n+2

F2
n+3

=
FnFn+1Fn+2Fn+3

FnFn+2 + Fn+1Fn+3 − Fn+2Fn+3

=
FnFn+1Fn+2Fn+3

FnFn+2 + Fn+3 (Fn+1 − Fn+2)

=
FnFn+1Fn+2Fn+3

FnFn+2 − Fn+3Fn
=

FnFn+1Fn+2Fn+3

Fn (Fn+2 − Fn+3)
= −FnFn+1Fn+2Fn+3

FnFn+1

= −Fn+2Fn+3.

Here Rn comes with negative sign, due to signed curvature. �

Proposition 8.6 The limit of the internal and external radiuses rn and Rn, given by (8.9)
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is finite and equal to:

lim
n→∞

rn

Rn
=

1

12ϕ + 7
(8.10)

Proof

lim
n→∞

rn

Rn
= lim

n→∞
FnFn+1

4Fn+2Fn+3 − FnFn+1

= lim
n→∞

1

4 Fn+2

Fn+1

Fn+3

Fn
− 1

(2.6)
=

1

4 ϕ4 − 1
=

1

12ϕ + 7

�

Example 8.3 From equation (8.4), if n = 1, the kissing circles’ radiuses are;

r11
= F1 F2 = 1, r21

= F1 F3 = 2, r31
= F2 F4 = 3

Substituting them into Descartes formula gives;

(
1 +

1

2
+

1

3
+ κ4

)2

= 2

(
1 +

1

4
+

1

9
+ κ4

2

)

κ4 = −1

6
and κ4 =

23

6

Corresponding radiuses become;

⇒ R1 = F3 F4 = 6 and r1 =
F1 F2 F3 F4

4F3 F4 − F1 F2

=
6

23

Corollary 8.2 The ratio of two kissing circles’ radiuses, when n goes to infinity is related

with Golden Ratio;

lim
n→∞

r1n

r2n

=
1

ϕ
, lim

n→∞
r1n

r3n

=
1

ϕ3
, lim

n→∞
r2n

r3n

=
1

ϕ2
.

It means that side an in the limit n → ∞ is divided in Golden ratio ϕ. Side bn in the limit

n→ ∞ is divided in qubic Golden ratio ϕ3 = 2ϕ+1. Side cn in the limit n→ ∞ is divided

in square Golden ratio ϕ2 = ϕ + 1.
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Theorem 8.2 Since centers of r1n , r2n , r3n given in (8.4) form the vertices of a Pythagorean

triangle, the area of this Pythagorean triangle is;

An = FnFn+1Fn+2Fn+3 (8.11)

Proof From Figure 4.2, Pythagorean triangle’s area is expressed as;

An =

(
r1n + r2n

) (
r1n + r3n

)
2

=
(FnFn+1 + FnFn+2) (FnFn+1 + Fn+1Fn+3)

2

=
Fn (Fn+1 + Fn+2) (FnFn+1 + Fn+1Fn+3)

2
=

FnFn+3 (FnFn+1 + Fn+1Fn+3)

2

=
F2

nFn+1Fn+3 + FnFn+1F2
n+3

2
=

FnFn+1Fn+3 (Fn + Fn+3)

2

=
FnFn+1Fn+3 (Fn + Fn+3)

2
=

2FnFn+1Fn+3Fn+2

2

= FnFn+1Fn+2Fn+3

�

Example 8.4 For different values of n, areas can be calculated,

A1 = F1F2F3F4 = 1 · 1 · 2 · 3 = 6

A2 = F2F3F4F5 = 1 · 2 · 3 · 5 = 30

A3 = F3F4F5F6 = 2 · 3 · 5 · 8 = 240

Corollary 8.3 The limit of the ratio of two consecutive areas,

lim
n→∞

An+1

An
= ϕ4

Definition 8.1 Suppose we have three mutually tangential kissing circles. Circle which is

passing through the intersection points of these three circles is called the dual circle.(See

Figure 8.6)

Proposition 8.7 The radius of the dual circle, to the ones with r1n , r2n , r3n given by (8.4)
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is found as;

rdual = r1n = FnFn+1 (8.12)

Figure 8.6. Radius of dual circle

Proof The area of the Pythagorean triangle in (8.11) is written;

FnFn+1Fn+2Fn+3 =
rdual (r1 + r2)

2
+

rdual (r1 + r3)

2
+

rdual (r2 + r3)

2

FnFn+1Fn+2Fn+3 =
1

2
rdual [2(r1 + r2 + r3)]

= rdual (FnFn+1 + FnFn+2 + Fn+1Fn+3)

= rdual (FnFn+3 + Fn+1Fn+3)

= rdual Fn+2Fn+3

Thus, the radius rdual is;

rdual = r1n = FnFn+1.

�
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Proposition 8.8 The radius of the circle, circumscribed around the triangle with sides

a,b,c is given by,

RS =
abc√

(a + b + c) (b + c − a) (c + a − b) (a + b − c)
(8.13)

Figure 8.7. Radius of RS

Proposition 8.9 The radius of circumscribed circle around the triangle with sides r1n+r2n ,

r1n + r3n , r2n + r3n given by (8.4) is found as,

F2
n+1 + F2

n+2

2
(8.14)

Proof By using the previous proposition, we can denote,

a ≡ r1n + r2n

b ≡ r1n + r3n

c ≡ r2n + r3n
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Then,

a + b + c = 2
(
r1n + r2n + r3n

)
= 2 (FnFn+1 + FnFn+2 + Fn+1Fn+3) = 2Fn+2Fn+3

b + c − a = a + b + c − 2a = 2Fn+2Fn+3 − 2FnFn+3 = 2Fn+3 (Fn+2 − Fn) = 2Fn+1Fn+3

c + a − b = a + b + c − 2b = 2Fn+2Fn+3 − 2FnFn+1 − 2Fn+1Fn+3 = 2FnFn+2

a + b − c = a + b + c − 2c = 2Fn+2Fn+3 − 2FnFn+2 − 2Fn+1Fn+3 = 2FnFn+1

Therefore RS becomes,

RS =
FnFn+3 (Fn+1(Fn + Fn+3)) (FnFn+2 + Fn+1Fn+3)√

(2Fn+2Fn+3) (2Fn+1Fn+3) (2FnFn+2) (2FnFn+1)

=
FnFn+3Fn+1(Fn + Fn+3) (FnFn+2 + Fn+1Fn+3)

4FnFn+1Fn+2Fn+3

=
(Fn + Fn+3) (FnFn+2 + Fn+1Fn+3)

4Fn+2

=
(Fn + Fn+3) (FnFn+2 + Fn+1Fn+2 + Fn+1Fn+1)

4Fn+2

=
(Fn + Fn+3) (Fn+2Fn+2 + Fn+1Fn+1)

4Fn+2

=
(Fn + Fn+2 + Fn+1)

(
F2

n+2 + F2
n+1

)
4Fn+2

=
2Fn+2

(
F2

n+2 + F2
n+1

)
4Fn+2

=
F2

n+1 + F2
n+2

2

�

By using kissing circles with radiuses r1n , r2n , r3n , from Descartes formula, we have

obtained rn and Rn respectively, given by (8.9). Here, by applying Descartes Formula

iteratively for the new set of kissing circles, we can find the radiuses r13n , r12n , r23n which

are given in the following Figure 8.8.
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Figure 8.8. Forming Fibonacci-Apollonious Gaskets

Here r13n is kissing r1n and r3n . r12n is kissing r1n and r2n and r23n is kissing r2n and

r3n . All of them are kissing external circle Rn. By this way, we get the construction of

Fibonacci-Apollonious gaskets in plane.

Proposition 8.10 Radiuses of the gasket are obtained as;

r12n =
F2

nFn+1Fn+2Fn+3

Fn+2F2
n+3
− 4F3

n+1

, r13n =
FnF2

n+1Fn+2Fn+3

F2
n+2

Fn+3 − F3
n
, r23n =

FnFn+1F2
n+2Fn+3

F2
n+1

Fn+3 + F3
n

(8.15)

Proof To get r12n , we use the Descartes formula and the radiuses r1n , r2n ,Rn. By substi-

tuting them into Descartes formula,

2

⎛⎜⎜⎜⎜⎜⎝ 1

r2
1n

+
1

r2
2n

+

(
− 1

Rn

)2

+ κ

⎞⎟⎟⎟⎟⎟⎠ =
(

1

r1n

+
1

r2n

− 1

Rn
+ κ

)2

2

(
1

F2
nF2

n+1

+
1

F2
nF2

n+2

+
1

F2
n+2

F2
n+3

+ κ

)
=

(
1

F2
nF2

n+1

+
1

F2
nF2

n+2

− 1

F2
n+2

F2
n+3

+ κ

)2

By solving this quadratic equation using the recursion formula for Fibonacci numbers, we

can get the radiuses of circles,

r12n =
F2

nFn+1Fn+2Fn+3

Fn+2F2
n+3
− 4F3

n+1

r3n = Fn+1Fn+3
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which are kissing the circles with radiuses r1n , r2n ,Rn. With the similar logic r13n and r23n

can be obtained. �

8.3. Lucas-Apollonious Gaskets

In this Section, we choose the radiuses of kissing circles as Lucas numbers in the

form;

r1n = LnLn+1, r2n = LnLn+2, r3n = Ln+1Ln+3 (8.16)

After appliying Descartes formula, we obtain kissing circles’ radiuses in the form similar

to the case of Fibonacci-Apollonious Gaskets.

Rn = Ln+2Ln+3 , rn =
LnLn+1Ln+2Ln+3

4Ln+2Ln+3 − LnLn+1

. (8.17)

This result follows easily from observation that recursion formulas for Fibonacci and

Lucas numbers are the same, and in the proof we use only these recurrence relations.

In addition, by applying the Descartes Formula (8.1) we find radiuses the Lucas-

Apollonious Gaskets r13n , r12n , r23n as;

r12n =
L2

nLn+1Ln+2Ln+3

Ln+2L2
n+3
− 4L3

n+1

, r13n =
LnL2

n+1Ln+2Ln+3

L2
n+2

Ln+3 − L3
n
, r23n =

LnLn+1L2
n+2Ln+3

L2
n+1

Ln+3 + L3
n

(8.18)

8.4. More General Family of Apollonious Gaskets

In this section, generalizing previous results, we can choose the kissing circles

radiuses as;

r1 = GnGn+1, r2 = GnGn+2, r3 = Gn+1Gn+3, (8.19)
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where Gn is the Generalized Fibonacci sequence (Definition(2.2)) with recursion relation;

Gn+1 = Gn +Gn−1

and initial values G0 and G1. This sequence can be described as addition of two Fibonacci

sequences:

Gn = G1Fn +G0Fn−1.

By using (8.2) and (8.3), we obtain the kissing circles’ radiuses as;

rn =
GnGn+1Gn+2Gn+3

4Gn+2Gn+3 −GnGn+1

, (8.20)

Rn = Gn+2Gn+3. (8.21)

By substituting Gn = G1Fn + G0Fn−1, one finds these radiuses in terms of Fibonacci

numbers and the initial values as,

rn =
(G1Fn +G0Fn−1) (G1Fn+1 +G0Fn) (G1Fn+2 +G0Fn+1) (G1Fn+3 +G0Fn+2)

4 (G1Fn+3 +G0Fn+2) (G1Fn+2 +G0Fn+1) − (G1Fn+1 +G0Fn) (G1Fn +G0Fn−1)

and,

Rn = (G1Fn+2 +G0Fn+1) (G1Fn+3 +G0Fn+2) . (8.22)

These results determine the Generalized Fibonacci Apollonious gasket with kissing ra-

diuses;

r12n =
G2

n Gn+1 Gn+2 Gn+3

Gn+2 G2
n+3
− 4G3

n+1

r13n =
Gn G2

n+1 Gn+2 Gn+3

G2
n+2

Gn+3 −G3
n
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r23n =
Gn Gn+1 G2

n+2 Gn+3

G2
n+1

Gn+3 +G3
n

By substituting Gn’s it gives;

r12n =
(G1Fn +G0Fn−1)2 (G1Fn+1 +G0Fn) (G1Fn+2 +G0Fn+1) (G1Fn+3 +G0Fn+2)

(G1Fn+2 +G0Fn+1) (G1Fn+3 +G0Fn+2)2 − 4 (G1Fn+1 +G0Fn)3

r13n =
(G1Fn +G0Fn−1)2 (G1Fn+1 +G0Fn)2 (G1Fn+2 +G0Fn+1) (G1Fn+3 +G0Fn+2)

(G1Fn+2 +G0Fn+1)2 (G1Fn+3 +G0Fn+2) − (G1Fn+1 +G0Fn−1)3

r23n =
(G1Fn +G0Fn−1) (G1Fn+1 +G0Fn) (G1Fn+2 +G0Fn+1)2 (G1Fn+3 +G0Fn+2)

(G1Fn+1 +G0Fn)2 (G1Fn+3 +G0Fn+2) + (G1Fn +G0Fn−1)3

As a particular cases we get,

• G0 = 0 and G1 = 1 ⇒ Fibonacci-Apollonious Gasket

• G0 = 2 and G1 = 1 ⇒ Lucas-Apollonious Gasket
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CHAPTER 9

CONCLUSION

In conclusions, we emphasize main results obtained in this thesis. By introduc-

ing Golden-Fibonacci calculus in terms of finite difference operator with bases ϕ and ϕ′,

we constructed generating functions for the Fibonacci numbers. The entire generating

functions for Fibonacci numbers were derived as Golden exponential functions.

In terms of these functions, the Golden trigonometric and hyperbolic functions

for Golden oscillator were derived. By the Golden binomial, the Golden-heat and the

Golden-wave equations and corresponding solutions were obtained.

The Golden calculus was generalized to higher order Golden Fibonacci calculus

by introducing higher order Golden Fibonacci derivatives. By using these derivatives, we

found generating function for higher order Fibonacci numbers, higher Fibonomials and

higher Golden binomials. As we proved, the higher Golden binomials are equivalent to

Carlitz’s characteristic polynomials for combinatorial matrices.

The congruency of Fibonacci and Lucas numbers as combinations of k = 2 higher

order Fibonacci numbers of mod 5 integer numbers were constructed.

By using Golden exponential function ex
F , the generating function for new type of

polynomials, which we called Bernoulli-Fibonacci polynomials was derived. Properties

of these polynomials and corresponding numbers, similar to usual ones were studied.

As a geometrical application, the Apollonious gasket of kissing circles was de-

rived and the set of Fibonacci, Lucas and General family of Apollonious gaskets were

obtained.

136



REFERENCES

Carlitz, L., 1965. The Characteristic Polynomial of a certain matrix of Binomial Coef-

ficients. The Fibonacci Quarterly, Vol. 3.2, pp. 81-89.

Kac, V. and Cheung, P., 2002. Quantum Calculus. Springer.

Koshy, T., 2001. Fibonacci and Lucas numbers with applications. John Wiley & Sons

Press.

Pashaev O.K. and Özvatan M., 2017. Generalized Fibonacci Sequences and Binet-

Fibonacci Curves. arXiv:1707.09151v1.

Pashaev O.K. and Nalci S., 2012: Golden Quantum Oscillator and Binet-Fibonacci

Calculus. J.Phys.A:Math.Theor., Vol.45, 015303.

Pashaev O.K. and Nalci S. , 2014. Exactly Solvable Q-Extended Nonlinear Classical
and Quantum Models. Lap Lambert Academic Publishing.

137



APPENDIX A

INTRODUCTION

A.1. Another representation of Binet Formula

Derivation of formula (2.9)

Fn = 2n−1

n−1∑
k=0

(−1)k cosn−k−1
(
π

5

)
sink

(
π

10

)

will be done.

Since we know from (Koshy, T., 2001) that,

ϕ = 2 cos
(
π

5

)
and ϕ′ = −2 sin

(
π

10

)
, (A.1)

we can employ these trigonometric values of ϕ and ϕ′ to develop a trigonometric summa-

tion formula for Fn.

By Binet Formula, we have;

Fn =
ϕn − ϕ′n
ϕ − ϕ′ =

(ϕ − ϕ′)(ϕn−1 + ϕn−2ϕ′ + ϕn−3ϕ′2 + . . . + ϕϕ′n−2 + ϕ′n−1)

ϕ − ϕ′
= ϕn−1 + ϕn−2ϕ′ + ϕn−3ϕ′2 + . . . + ϕϕ′n−2 + ϕ′n−1

=

n−1∑
k=0

ϕn−k−1ϕ′k after substituting (A.1) gives us,

=

n−1∑
k=0

[
2 cos

(
π

5

)]n−k−1 [
−2 sin

(
π

10

)]k

=

n−1∑
k=0

2n−k−1 cosn−k−1
(
π

5

)
(−2)k sink

(
π

10

)

= 2n−1

n−1∑
k=0

2−k cosn−k−1
(
π

5

)
(−1)k(2)k sink

(
π

10

)
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= 2n−1

n−1∑
k=0

(−1)k cosn−k−1
(
π

5

)
sink

(
π

10

)

So,

Fn = 2n−1

n−1∑
k=0

(−1)k cosn−k−1
(
π

5

)
sink

(
π

10

)
(A.2)

is obtained.
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APPENDIX B

FIBONACCI CALCULUS

B.1. Showing the Golden periodicity of function A(x) = sin
(
π

lnϕ
ln |x|

)

Let’s show the Golden periodicity of the function;

A(x) = sin

(
π

lnϕ
ln |x|

)
(B.1)

To say that it is Golden periodic function, we should show that A(ϕx) = A
(
− x
ϕ

)
.

A(ϕx) = sin

(
π

lnϕ
ln |ϕx|

)
= sin

(
π

lnϕ
ln |ϕ| + π

lnϕ
ln |x|

)
= sin

(
π +

π

lnϕ
ln |x|

)

= sin(π) cos

(
π

lnϕ
ln |x|

)
+ sin

(
π

lnϕ
ln |x|

)
cos(π)

= − sin

(
π

lnϕ
ln |x|

)
(B.2)

A
(
− x
ϕ

)
= sin

(
π

lnϕ
ln

∣∣∣∣∣− x
ϕ

∣∣∣∣∣
)
= sin

(
π

lnϕ
(ln |x| − ln | − ϕ|)

)

= sin

(
π

lnϕ
ln |x| − π

lnϕ
ln | − ϕ|

)

= sin

(
π

lnϕ
ln |x| − π

lnϕ
lnϕ

)

= sin

(
π

lnϕ
ln |x| − π

)

= sin

(
π

lnϕ
ln |x|

)
cos(π) − sin(π) cos

(
π

lnϕ
ln |x|

)

= − sin

(
π

lnϕ
ln |x|

)
(B.3)
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Thus, we got the same results from both sides of equality. So,

A(x) = sin

(
π

lnϕ
ln |x|

)
(B.4)

is Golden periodic function.

B.2. Showing Golden derivative applications to Golden Binomials

The application of the Golden derivative Dx
F to the Golden Binomial (x+y)n

F gives;

Dx
F(x + y)n

F = Dx
F

⎛⎜⎜⎜⎜⎜⎝ n∑
k=0

[
n
k

]
F
(−1)

k(k−1)
2 xn−kyk

⎞⎟⎟⎟⎟⎟⎠
= Dx

F

⎛⎜⎜⎜⎜⎜⎝ n∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kyk

⎞⎟⎟⎟⎟⎟⎠
= Dx

F

(
Fn!

Fn!F0!
xn +

Fn!

Fn−1!F1!
xn−1y + . . . +

Fn!

F0!Fn!
(−1)

n(n−1)
2 yn

)

= Dx
F

⎛⎜⎜⎜⎜⎜⎝ n−1∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kyk

⎞⎟⎟⎟⎟⎟⎠
=

n−1∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 Dx

F(xn−k) yk

=

n−1∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 (Fn−k xn−k−1) yk

=

n−1∑
k=0

Fn!

Fn−k−1!Fk!
(−1)

k(k−1)
2 xn−k−1 yk

=

n−1∑
k=0

FnFn−1!

Fn−1−k!Fk!
(−1)

k(k−1)
2 x(n−1)−k yk

= Fn

n−1∑
k=0

Fn−1!

Fn−1−k!Fk!
(−1)

k(k−1)
2 x(n−1)−k yk

= Fn (x + y)n−1
F (B.5)

So, it is proved that Dx
F(x + y)n

F = Fn(x + y)n−1
F .
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The application of the Golden derivative Dy
F to the Golden Binomial (x+y)n

F gives;

Dy
F(x + y)n

F = Dy
F

⎛⎜⎜⎜⎜⎜⎝ n∑
k=0

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kyk

⎞⎟⎟⎟⎟⎟⎠
= Dy

F

(
Fn!

Fn!F0!
xn +

Fn!

Fn−1!F1!
xn−1y + . . . +

Fn!

F0!Fn!
(−1)

n(n−1)
2 yn

)

= Dy
F

⎛⎜⎜⎜⎜⎜⎝ n∑
k=1

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kyk

⎞⎟⎟⎟⎟⎟⎠
=

n∑
k=1

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−kDy

F(yk)

=

n∑
k=1

Fn!

Fn−k!Fk!
(−1)

k(k−1)
2 xn−k(Fk yk−1)

=

n−1∑
k=0

Fn!

Fn−(k+1)!Fk+1!
(−1)

(k+1)(k+1−1)
2 xn−(k+1)(Fk+1 y(k+1)−1)

=

n−1∑
k=0

Fn!

F(n−1)−k!Fk+1!
(−1)

(k2+k)
2 x(n−1)−k(Fk+1 yk)

=

n−1∑
k=0

Fn!

F(n−1)−k!Fk!
(−1)

(k2+(k−k)+k)
2 x(n−1)−k yk

=

n−1∑
k=0

Fn!

F(n−1)−k!Fk!
(−1)

k(k−1)
2 x(n−1)−k (−y)k

= Fn

n−1∑
k=0

Fn−1!

F(n−1)−k!Fk!
(−1)

k(k−1)
2 x(n−1)−k (−y)k

= Fn (x − y)n−1
F (B.6)

So, it is proved that,

Dy
F(x + y)n

F = Fn(x − y)n−1
F .

With another type of approach, also we can prove,

Dy
F(x − y)n

F = −Fn(x + y)n−1
F (B.7)
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Dy
F(x − y)n

F =
(x − ϕy)n

F − (x − ϕ′y)n
F

(ϕ − ϕ′)y
=

(x − ϕny) . . . (x − (−1)n−1ϕ−n+2y) − (x + ϕn−2y) . . . (x − (−1)nϕ−ny)

(ϕ − ϕ′)y
=

(x + ϕn−2y) . . . (x − (−1)n−1ϕ−n+2y)
[
x − ϕny − x + (−1)nϕ−ny

]
(ϕ − ϕ′)y

= (x + y)n−1
F

(
− (ϕn − ϕ′n)y

(ϕ − ϕ′)y
)

= −Fn(x + y)n−1
F (B.8)

Therefore, we proved that

Dy
F(x − y)n

F = −Fn(x + y)n−1
F . (B.9)

B.3. Golden Heat Equation

B.3.1. Golden derivative applications to the function eF(t + x)F

After application of Dt
F ,

Dt
F(eF(t + x)F) = Dt

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(t + x)n
F

Fn!

⎞⎟⎟⎟⎟⎟⎠
= Dt

F

(
1

F0!
+

(t + x)1
F

F1!
+

(t + x)2
F

F2!
+ . . .

)

=

∞∑
n=1

Dt
F(t + x)n

F

Fn!
=

∞∑
n=1

Fn(t + x)n−1
F

Fn!

=

∞∑
n=1

(t + x)n−1
F

Fn−1!
=

∞∑
k=0

(t + x)k
F

Fk!

= eF(t + x)F
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We obtain the equality Dt
F (eF(t + x)F) = eF(t + x)F . Application of Dx

F gives,

Dx
F eF(t + x)F = Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(t + x)n
F

Fn!

⎞⎟⎟⎟⎟⎟⎠
= Dt

F

(
1

F0!
+

(t + x)1
F

F1!
+

(t + x)2
F

F2!
+ . . .

)

=

∞∑
n=1

Dx
F(t + x)n

F

Fn!
=

∞∑
n=1

Fn(t − x)n−1
F

Fn!

=

∞∑
n=1

(t − x)n−1
F

Fn−1!
=

∞∑
k=0

(t − x)k
F

Fk!

= eF(t − x)F

Thus, it is obtained Dx
F (eF(t + x)F) = eF(t − x)F . Application of Dx

F to the eF(t − x)F ,

Dx
F eF(t − x)F = Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(t − x)n
F

Fn!

⎞⎟⎟⎟⎟⎟⎠
= Dt

F

(
1

F0!
+

(t − x)1
F

F1!
+

(t − x)2
F

F2!
+ . . .

)

=

∞∑
n=1

Dx
F(t − x)n

F

Fn!
=

∞∑
n=1

−Fn(t + x)n−1
F

Fn!

=

∞∑
n=1

− (t + x)n−1
F

Fn−1!
= −

∞∑
k=0

(t + x)k
F

Fk!

= −eF(t + x)F

So, we proved that,

Dx
F (eF(t − x)F) = −eF(t + x)F (B.10)
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B.3.2. Golden derivative applications to the function eF(ωt + kx)F

After application Dt
F gives,

Dt
F(eF(ωt + kx)F) = Dt

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(ωt + kx)n
F

Fn!

⎞⎟⎟⎟⎟⎟⎠
= Dt

F

(
1

F0!
+

(ωt + kx)1
F

F1!
+

(ωt + kx)2
F

F2!
+ . . .

)

=

∞∑
n=1

Dt
F(ωt + kx)n

F

Fn!

To calculate Dt
F(ωt + kx)n

F;

Dx
F(kx + y)n

F =
(kϕx + y)n

F − (kϕ′x + y)n
F

(ϕ − ϕ′)x
= kn

(
ϕx + y

k

)n
F
−
(
ϕ′x + y

k

)n
F

(ϕ − ϕ′)x
(B.11)

Also we have,

Dz
F(z + ω)n

F =
(zϕ + ω)n

F − (zϕ′ + ω)n
F

(ϕ − ϕ′)z = Fn (z + ω)n−1
F (B.12)

Comparing results (B.11) and (B.12) says that if we choose z = x and ω = y
k , equation

(B.11) becomes;

Dx
F(kx + y)n

F = knDx
F

(
x +

y
k

)n

F
= kn Fn

(
x +

y
k

)n−1

F
= k Fn (kx + y)n−1

F (B.13)

Thus,

Dx
F(kx + y)n

F = k Fn (kx + y)n−1
F (B.14)

So, we can conclude that,

Dt
F(ωt + kx)n

F = ω Fn (ωt + kx)n−1
F (B.15)
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Dt
F(eF(ωt + kx)F) = . . . =

∞∑
n=1

Dt
F(ωt + kx)n

F

Fn!
(by using the result (B.15))

=

∞∑
n=1

ω Fn (ωt + kx)n−1
F

Fn!

= ω

∞∑
n=1

(ωt + kx)n−1
F

Fn−1!
(denoting n-1=m)

= ω

∞∑
m=0

(ωt + kx)m
F

Fm!

= ω eF(ωt + kx)F (B.16)

Therefore, the desired result came as;

Dt
F(eF(ωt + kx)F) = ω eF(ωt + kx)F (B.17)

With the similar logic, it can be shown that,

(Dx
F)2(eF(ωt + kx)F) = −k2 eF(ωt + kx)F (B.18)

Application of Dx
F gives,

Dx
F(eF(ωt + kx)F) = Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=0

(ωt + kx)n
F

Fn!

⎞⎟⎟⎟⎟⎟⎠
= Dx

F

(
1

F0!
+

(ωt + kx)1
F

F1!
+

(ωt + kx)2
F

F2!
+ . . .

)

=

∞∑
n=1

Dx
F(ωt + kx)n

F

Fn!

Let’s calculate Dx
F(ωt + kx)n

F .

Dy
F(x + ωy)n

F =
(x + ωϕy)n

F − (x + ωϕ′y)n
F

(ϕ − ϕ′)y = ωn

(
x
ω
+ ϕy

)n
F
−
(

x
ω
+ ϕ′y

)n
F

(ϕ − ϕ′)y (B.19)
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Also we have,

Dz
F(a + z)n

F =
(a + ϕz)n

F − (a + ϕ′z)n
F

(ϕ − ϕ′)z = Fn (a − z)n−1
F (B.20)

Comparing results (B.19) and (B.20) says that if we choose z = y and a = x
ω

, equation

(B.19) becomes;

Dy
F(x + ωy)n

F = ωnDy
F

( x
ω
+ y

)n

F
= ωn Fn

( x
ω
− y

)n−1

F
= ω Fn (x − ωy)n−1

F (B.21)

Thus,

Dy
F(x + ωy)n

F = ω Fn (x − ωy)n−1
F (B.22)

So, we can conclude that,

Dx
F(ωt + kx)n

F = k Fn (ωt − kx)n−1
F (B.23)

Dx
F(eF(ωt + kx)F) = . . . =

∞∑
n=1

Dx
F(ωt + kx)n

F

Fn!
(by using the result (B.23))

=

∞∑
n=1

k Fn (ωt − kx)n−1
F

Fn!

= k
∞∑

n=1

(ωt − kx)n−1
F

Fn−1!
(denoting n-1=p)

= k
∞∑

p=0

(ωt − kx)
p
F

Fp!

= k eF(ωt − kx)F (B.24)

So, we can obtain;

Dx
F(eF(ωt + kx)F) = k eF(ωt − kx)F (B.25)
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Then,

(Dx
F)2(eF(ωt + kx)F) = Dx

F(keF(ωt − kx)F) = k(−k) eF(ωt + kx)F

(Dx
F)2(eF(ωt + kx)F) = −k2 eF(ωt + kx)F

B.3.3. Proof of Factorization property

We will prove the factorization property of Higher Golden binomials;

(k) (x − a)n+m
F = (k)

(
x − ϕkma

)n
F (k)

(
x − ϕ′kna

)m
F

(B.26)

= (k)

(
x − ϕ′kma

)n
F (k)

(
x − ϕkna

)m
F

(B.27)

By using the definition,

(k) (x − a)n
F =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ 1, if n = 0;(
x − ϕk(n−1)a

) (
x − ϕk(n−2)ϕ′ka

)
. . .

(
x − ϕkϕ′k(n−2)a

) (
x − ϕ′k(n−1)a

)
, if n ≥ 1.

We can write,

(k) (x − a)N
F =

(
x − ϕk(N−1)a

) (
x − ϕk(N−2)ϕ′ka

)
. . .

(
x − ϕkϕ′k(N−2)a

) (
x − ϕ′k(N−1)a

)
(B.28)

After denoting N = n + m,

(k) (x − a)n+m
F =

(
x − ϕk(n+m−1)a

) (
x − ϕk(n+m−2)ϕ′ka

)
. . .

(
x − ϕkϕ′k(n+m−2)a

) (
x − ϕ′k(n+m−1)a

)
=

(
x − ϕk(n+m−1)a

) (
x − ϕk(n+m−2)ϕ′ka

) (
x − ϕk(n+m−3)ϕ′2ka

)
. . .(

x − ϕk(n+m−n)ϕ′(n−1)ka
)
·
(
x − ϕk(n+m−(n+1))ϕ′(kn)a

) (
x − ϕk(n+m−(n+2))ϕ′(n+1)ka

)
. . .

(
x − ϕk(n+m−(n+m−2))ϕ′(n+m−3)ka

) (
x − ϕk(n+m−(n+m−1))ϕ′k(n+m−2)a

)
(
x − ϕk(n+m−(n+m))ϕ′k(n+m−1)a

)
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=
(
x − ϕk(n−1)

(
ϕkma

)) (
x − ϕk(n−2)ϕ′k

(
ϕkma

)) (
x − ϕk(n−3)ϕ′2k

(
ϕkma

))
. . .

(
x − ϕk(n−n)ϕ′(n−1)k

(
ϕkma

))
·
(
x − ϕk(m−1)

(
ϕ′kna

)) (
x − ϕk(m−2)ϕ′k

(
ϕ′kna

))
. . .

(
x − ϕ2kϕ′k(m−3)

(
ϕ′kna

)) (
x − ϕkϕ′k(m−2)

(
ϕ′kna

)) (
x − ϕ′k(m−1)

(
ϕ′kna

))
(B.28)
= (k)

(
x − ϕkma

)n
F
·
(
x − ϕk(m−1)

(
ϕ′kna

)) (
x − ϕk(m−2)ϕ′k

(
ϕ′kna

))
. . .

(
x − ϕ2kϕ′k(m−3)

(
ϕ′kna

)) (
x − ϕkϕ′k(m−2)

(
ϕ′kna

)) (
x − ϕ′k(m−1)

(
ϕ′kna

))
(B.28)
= (k)

(
x − ϕkma

)n
F
·(k)

(
x − ϕ′kna

)m
F

After changing n↔ m it gives the another result as,

(k) (x − a)m+n
F =(k)

(
x − ϕ′kma

)n
F (k)

(
x − ϕkna

)m
F
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APPENDIX C

BERNOULLI FIBONACCI POLYNOMIALS

C.1. Getting BF
n (x) + Fnxn−1 in two ways

Our aim is to get the equation;

BF
n (x) + Fnxn−1 = Hn(x) =

n∑
k=0

[
n
k

]
F

BF
n−k(x) (C.1)

Starting with,

BF
n (x) + Fnxn−1 = Hn(x)

∞∑
n=0

BF
n (x)

zn

Fn!
+

∞∑
n=0

Fnxn−1 zn

Fn!
=

∞∑
n=0

Hn(x)
zn

Fn!

∞∑
n=0

Hn(x)
zn

Fn!
−
∞∑

n=0

BF
n (x)

zn

Fn!
=

∞∑
n=0

Fnxn−1 zn

Fn!

For the right hand side, we get;

z ezx
F = Dx

F(ezx
F ) = Dx

F

⎛⎜⎜⎜⎜⎜⎝ ∞∑
n=1

xnzn

Fn!

⎞⎟⎟⎟⎟⎟⎠ = ∞∑
n=1

Fn xn−1zn

Fn!
=

∞∑
n=0

Fnxn−1zn

Fn!

Then, we have;

∞∑
n=0

Hn(x)
zn

Fn!
−
∞∑

n=0

BF
n (x)

zn

Fn!
= z ezx

F

∞∑
n=0

Hn(x)
zn

Fn!
= z ezx

F +

∞∑
n=0

BF
n (x)

zn

Fn!
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∞∑
n=0

Hn(x)
zn

Fn!
= z ezx

F +
z ezx

F

ez
F − 1

∞∑
n=0

Hn(x)
zn

Fn!
= z ezx

F

(
1 +

1

ez
F − 1

)
= z ezx

F

ez
F

ez
F − 1

∞∑
n=0

Hn(x)
zn

Fn!
=

∞∑
n=0

BF
n (x)

zn

Fn!
· ez

F

∞∑
n=0

Hn(x)
zn

Fn!
=

∞∑
n=0

BF
n (x)

zn

Fn!
·
∞∑

k=0

zk

Fk!

∞∑
n=0

Hn(x)
zn

Fn!
=

∞∑
n=0

∞∑
k=0

BF
n (x)

Fn!

zn+k

Fk!

∞∑
n=0

Hn(x)
zn

Fn!

(n+k=N)
=

∞∑
N=0

N∑
k=0

BF
N−k(x)

FN−k!

zN

Fk!

(
FN!

FN!

)
∞∑

n=0

Hn(x)
zn

Fn!
=

∞∑
N=0

zN

FN!

N∑
k=0

FN!

FN−k!Fk!
BF

N−k(x)

∞∑
n=0

Hn(x)
zn

Fn!
=

∞∑
N=0

zN

FN!

N∑
k=0

[
N
k

]
F

BF
N−k(x)

∞∑
n=0

Hn(x)
zn

Fn!

(N=n)
=

∞∑
n=0

zn

Fn!

n∑
k=0

[
n
k

]
F

BF
n−k(x)

By equating two series, we get;

Hn(x) =

n∑
k=0

[
n
k

]
F

BF
n−k(x) (C.2)

Following in another way we show that,

BF
n (x) + Fnxn−1 = Hn(x) = xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j

Starting with,

BF
n (x) + Fnxn−1 (7.11)

=

n∑
j=0

[
n
j

]
F
bF

j xn− j + Fnxn−1

=

[
n
0

]
F
bF

0 xn +

[
n
1

]
F
bF

1 xn−1 +

n∑
j=2

[
n
j

]
F
bF

j xn− j + Fnxn−1
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= xn − Fn!

Fn−1!F1!
xn−1 +

n∑
j=2

[
n
j

]
F
bF

j xn− j + Fnxn−1

= xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j

Thus, we obtained;

BF
n (x) + Fnxn−1 = Hn(x) = xn +

n∑
j=2

[
n
j

]
F
bF

j xn− j (C.3)
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