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ABSTRACT

GENERALIZED GOLDEN-FIBONACCI CALCULUS AND
APPLICATIONS

In the present thesis the Golden-Fibonacci calculus is developed and several ap-
plications of this calculus are obtained. The calculus is based on the Golden deriva-
tive as a finite difference operator with Golden and Silver ratio bases, which allowed
us to introduce Golden polynomials and Taylor expansion in terms of these polynomi-
als. The Golden binomial and its expansion in terms of Fibonomial coefficients is de-
rived. We proved that Golden binomials coincide with Carlitz’ characteristic polynomials.
By Golden Fibonacci exponential functions and related entire functions, the Golden-heat
and the Golden-wave equations are introduced and solved. By introducing higher order
Golden Fibonacci derivatives, related with powers of golden ratio, we develop the higher
order Golden Fibonacci calculus. The higher order Fibonacci numbers, higher Golden pe-
riodic functions and higher Fibonomials appear as ingredients of this calculus. By using
Golden Fibonacci exponential function, we introduce the generating function for new type
of polynomials, the Bernoulli-Fibonacci polynomials and study their properties. As a ge-
ometrical application, the Apollonious type gaskets are described in terms of Fibonacci,
Lucas and generalized Fibonacci numbers. Some mod 5 congruencies associated with

Fibonacci and Lucas numbers are obtained.
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OZET

GENELLESTIRILMIS ALTIN-FIBONACCI HESAPLAMASI VE
UYGULAMALARI

Bu tezde, Altin-Fibonacci hesaplamasi gelistirilmis ve bu hesaplamanin ¢esitli
uygulamalar1 elde edilmigtir. Bu hesaplama, altin polinomlar1 ve bu polinomlar cinsin-
den yazilan Taylor acilimini tanitmamiza izin veren, altin ve giimiis oran tabanlari ile
sonlu bir fark operatorii olarak yazilan Altin tiirevine dayanir. Altin binomu ve altin
binomun Fibonomial katsayilar1 cinsinden acilimi tiiretilmistir. Altin binomlarinin Car-
litz’in karakteristik polinomlari ile eglestigini ispatladik. Altin Fibonacci iistel fonksiy-
onlart ve ilgili analitik fonksiyonlari ile, Altin-1s1 ve Altin-dalga denklemleri tanitilmig
ve ¢oziilmiistiir. Altin oranin kuvvetleri ile ilgili olan yiiksek mertebeden Altin Fibonacci
tirevlerini tanimlayarak, yiliksek mertebeden Altin Fibonacci hesaplamasini gelistiririz.
Yiiksek mertebeden Fibonacci sayilari, yiliksek Altin periodik fonksiyonlar ve yiiksek Fi-
bonomialler bu hesaplamanin bilesenleri olarak goriiniir. Altin Fibonacci iistel fonksiy-
onunu kullanarak, yeni tip polinom olan Bernoulli-Fibonacci polinomlar: igin tiretim
fonksiyonunu tanittik ve bu polinomlarin 6zelliklerini inceledik. Geometriksel bir uygu-
lama olarak, Apollonious’un teget cemberler dizisi Fibonacci, Lucas ve genellestirilmis
Fibonacci sayilari cinsinden tanimlanmistir. Fibonacci ve Lucas sayilar ile iligkili bazi

mod 5 denklikleri elde edilmistir.
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CHAPTER 1

INTRODUCTION

The Golden ratio ¢ is a special number determining the so called Golden propor-
tion and approximately it is equal to 1.618 (Koshy, T., 2001). It appears in geometry,
art, architecture and varies from sunflowers to proportions of human body. From math-
ematical point of view, Golden ratio is defined by Golden proportion or Golden section
and it is related with the sequence of Fibonacci numbers F,, where n = 0,1,2,... The
Fibonacci numbers are given by the recursion relation F,.y = F, + F,_;, with initial val-
ues Fyp = 0 and F/; = 1. These numbers (0,1,1,2,3,5,8,13,...) are named after Italian

mathematician of Middle Ages, Leonardo of Pisa or Leonardo Fibonacci.

Fn+1

If we take the ratio of two consecutive Fibonacci numbers , then in the limit
n — oo, it becomes the Golden ratio ¢. This is why these numbers are nintrinsically related
with Golden ratio and Golden proportion. Due to numereous applications in mathematics,
science and art, Fibonacci numbers are also called as "Nature’s Perfect numbers” (Koshy,
T., 2001).

The present thesis is devoted to description of Fibonacci numbers, their properties
and applications by the so called Golden Fibonacci calculus. The main ingredient of this
calculus is the Golden Fibonacci derivative as a finite difference derivative with Golden
and Silver ratio as bases. This derivative was first introduced in paper (Pashaev O.K.
and Nalci S., 2012). The derivative allows one to construct Golden binomials, and Taylor
expansion in terms of Golden binomials. According to this expansion, the Golden expo-
nential functions were introduced, and trigonometric and hyperbolic Golden functions, as
solutions of Golden ordinary differential equation and partial differential equation have
been discussed.

In the present work, we generalize this Golden Fibonacci calculus. Starting from
definition of higher order Fibonacci numbers, as a q numbers with two bases ¢* and ¢’*,
we show that they are integer numbers, appearing as the ratio of two Fibonacci numbers.

These higher Order Fibonacci numbers are related with higher order Fibonacci
derivatives, allowing to derive corresponding higher Golden periodic functions, higher
Fibonomials and higher Golden binomials. As we prove in present thesis, these higher or-
der Fibonacci binomials coincide with Carlitz characteristic polynomials for the so called

combinatorial matrices (Carlitz, L., 1965). Powers of these combinatorial matrices allow



us to find mod 5 congruence relations for higher order Fibonacci numbers.

By Golden exponential function, we introduce generating function for new type
of polynomials, called the Bernoulli-Fibonacci polynomials, and study their properties.

As a geometrical application of Fibonacci numbers, the problem of intersection
(kissing) between circles in plane, called as Apollonious gasket, and Descartes theorem
are studied. Specific radiuses of kissing circles, given by products of Fibonacci numbers,
allow us to introduce Fibonacci, Lucas, and Generalized Apollonious gaskets.

The thesis is organized as follows.

In Chapter 2, we briefly review Fibonacci numbers and their generalizations, in
Sections 2.1-2.4.

Problem of division of Fibonacci numbers, Section 2.5, lead us to Higher order
Fibonacci numbers in Section 2.6. These numbers, as a special case of Fibonacci polyno-
mials are considered in Section 2.7. The Cassini formula and generalizations are studied
in Section 2.8.

In Chapter 3, we introduce the Golden derivatives, Section 3.1 and, formulate
main properties, including Leibnitz rule and Golden periodic functions.

In Section 3.2, the generating function for Fibonacci numbers is derived by Golden
derivative and in addition the entire generating function is obtained.

The Golden Taylor formula is studied in Section 3.3. The Golden exponential
functions as entire functions are introduced in Section 3.4, and corresponding Golden
trigonometric and hyperbolic functions are derived in Section 3.5. These functions repre-
sent solutions of Golden oscillator in Section 3.5.1. The Golden binomials are subject of
Section 3.6. Remarkable limit of these binomials is derived in Section 3.7.

In Section 3.8, Fibonacci exponential function of two arguments is defined and in
terms of this function, a solution of the Golden heat equation is obtained. Solution of the
Golden wave equation is given in Section 3.9.

Chapter 4 is devoted to higher order Fibonacci derivatives and their applications.
In Section 4.1, we start from definition of higher order Golden derivative, its main prop-
erties and corresponding periodic functions. Then, we introduce higher Fibonomial and
higher order Golden binomials.

In Chapter 3, the Carlitz characteristic polynomials are introduced, as polynomials
with roots given in terms of powers of golden ratio. These polynomials are related with
combinatorial matrices. The main identity between higher order Golden binomials and
Carlitz’s characteristic polynomials is established in Section 5.1. Powers of combinatorial

matrices and their properties are derived in Section 5.2.



In Chapter 6, the mod 5 congruence relations for higher order Fibonacci numbers
with even index are derived.

In Chapter 7, by using Golden exponential function, we introduce and study
Fibonacci analog of Bernoulli polynomials and numbers. We call them the Bernoulli-
Fibonacci polynomials and numbers.

In Chapter 8, the Apollonious gaskets related with Fibonacci numbers are stud-
ied. Starting from definition of Apollonious gasket in Section 8.1, we derive Fibonacci-
Apollonious gasket in Section 8.2. In Section 8.3, the Lucas Apollonious gasket and the
general Apollonious gasket (Section 8.4) are introduced. In all these cases the recursion
formula has the same form and the difference is only in initial conditions. By Descartes
theorem, the radiuses of kissing circles in terms of Fibonacci numbers are obtained.

In Conclusion, Chapter 9, we summarize main results obtained in this thesis. De-

tails of some calculations are presented in Appendices A, B and C.



CHAPTER 2

FIBONACCI NUMBERS

2.1. Fibonacci and Lucas Sequences

The Fibonacci sequence is defined by recursion formula;

Foo=F,+F,, (2.1)

where Fo =0, F,=1,n=1,2,3,... First few Fibonacci numbers are;

0,1,1,2,3,5,8,13,21,34, 55,89, 144,233,377,610,987 . ..

The sequence is named after Leonardo Fibonacci(1170-1250). Fibonacci numbers ap-
pear in Nature so frequently that they can be considered as Nature’s Perfect Numbers.
Also, another important Nature’s number, the Golden ratio, which is seen in every area
of life and art, and usually it is associated with aesthetics, is directly related to Fibonacci
sequence.

There is another famous sequence, which is called the Lucas sequence. The Lucas

numbers give the sequence of integers, defined by same recurrence formula;

Ly =L, + L,

but with different initial values Ly = 2, L; = 1. First few of Lucas numbers are,

2,1,3,4,7,11,18,29,47,76, 123, . ..



There is a relation between Fibonacci and Lucas numbers, given by formula,

L,=F,+F,, (2.2)

and meaning that Lucas sequence is addition of two Fibonacci sequences.

2.2. Binet Formula

Formula giving Fibonacci number F,, for given n is called the Binet formula. To
derive Binet Formula for Fibonacci numbers, let F,, = A", which by substituting in the

recursion formula (2.1) gives us;
n+l1 n n—1 1 2
AT ="+ A = /1:1+§ = A"=4+1

This quadratic equation has characteristic roots denoted by ¢ and ¢’, having the values;

,_
+
S

~ 1,6180339... and ¢ = ~ —0,6180339...

~ 1- 5
v= 2

2

Number ¢ and ¢” are called the Golden and Silver ratio, respectively.
Also, from the quadratic equation, it can be seen that; o’ = -1 & ¢+ ¢" = 1.

Then, the solution F, is a linear combination;
F,=c ¢"+c, ¢",

with arbitrary ¢, ¢, constants. By using initial values Fy = 0, F; = 1 constants ¢; and

¢, can be fixed as;

C1+C2:F0:0, C1§D+C2¢,:F1:1 = (1 = .
Y-



Due to this, Fibonacci numbers-F,, can be expressed explicitly by Binet Formula;

F,= . (2.3)

The Binet type formula for Lucas sequence can be derived by the same logic in the form;

L,=¢" +¢".

From formula (2.3), due to irrational character of ¢ and ¢’, it is not evident at all that F),
are integer numbers. Though it is clear from the recursion formula (2.1).
Binet formula allows one to find Fibonacci numbers directly, without using recur-

sions. For example, to find F,( by using Binet formula we have;

@20 — /20

Fy = -
-

= 6765.

Binet formula allows one to define also Fibonacci numbers for negative n;

11

e :"D—n_‘pl—n:‘pn—ﬁ:wm_‘pn. 1
-y o—¢  o—¢ ()

and since p¢’ = —1,

Son - (,0m 1 1 n n+l1
I - P = R = C1ME,
p—¢ (1) (=1

So, we have;

F_, = (_1)n+1Fn 2.4)

For Lucas sequence, similar calculations gives;

o n QO” + ‘pln
Lo=gire = (')

=(D'L,=> |L,=(C1'L, (2.5)




Definition 2.1 Fibonacci and Lucas numbers for negative integers n are respectively de-

fined by relations,

F—n (_1)n+1Fn’

L—n (_1)nLn

If we take any two successive Fibonacci numbers, their ratio while going to infinity be-

99 9

come more and more close to the Golden Ratio "¢”.

n+1 m+1 n+1

F, -
lim +1 2 Y

= lim = lim = . (2.6)
n—oo n n—oo gp” — Sp’" n—oo (p”
The same result is valid for Lucas numbers;
Ln n+1 + rn+1 n+1
lim = = fim £ —im = 2.7)
n—eo [, n—oo Q" 4 " n—eo QN

Proposition 2.1 Any integer power of Golden and Silver ratios can be expressed in terms

of Fibonacci numbers as;

"' =¢F,+F, 1 and ¢" = ¢'F,+ F,_,. (2.8)
Proof Proof will be done by using Principle of Mathematical induction. For n = 1,

¢ = @. Assume that forn € Z, ¢" = ¢F, + F,_; is true. Then the case n + 1 gives;

e @) = (@F, + Fou)p = 9°Fy + @F,1 = (o + DF, + ¢F
(;D(Fn+Fn—l)+Fn:Q0Fn+l+Fn-

S
Il

Since, ¢"*! = ¢F,.; + F, is obtained, the proof is done. Similarly, ¢""*! = ¢'F,.; + F,

can be proved. O



2.3. Trigonometric Representation of Fibonacci Numbers

Starting from Binet Formula (2.3), we can derive following formula for Fibonacci

numbers in summation form;

n—1

F, =2 ;(—1)" cos" k! (%)sink (%) 2.9)

For derivation of this formula, see Appendix A.1.

2.4. Generalized Fibonacci Numbers

Fibonacci and Lucas numbers are numbers determined by the same recursion for-
mula (2.1) but with different initial values. Here, we are going to generalize these num-
bers, by choosing different initial numbers G, and G, but preserving the recursion for-
mula (2.1). We can call them as Generalized Fibonacci numbers. For example, if Gy = 0,

G, = 4, we have the sequence;

4,4,8,12,20,32,52, ...

Definition 2.2 Generalized Fibonacci number sequence is defined by the recursion for-
mula,

Gi1 =G, +G,
and an arbitrary initial numbers G, G.

To get Binet type formula for these numbers, we substitute G, = " to the recursion

formula,
ﬁn+l :ﬁn +ﬁn—1.

After cancelling the powers 8"’s gives us;

52:5+1 = fi=¢ and B, = ¢



Then, generic G, can be written as a linear combination of these solutions with arbitrary

constants ¢y, ¢;:

G,=c; ¢"+c ¢".

Constants ¢y, ¢, can be fixed by the initial values G , G;

G —¢'G G — oG
ci+c =Gy, clp+oy =G = C1=1—(p,0, 02:—1—"0,0,
Y- Y-y

After substituting ¢; and ¢;,

G = (G = ¢'Go)¢" = (G1 = ¢Go)¢™
! -y
Proposition 2.2 The Binet formula for Generalized Fibonacci numbers G, satisfying

Goi1 = G, + G,_y and initial values Gy , G, is;

_ (61 = ¢'Go)¢" ~ (G1 = 9Go)p™
p-¢

Gy (2.10)

In particular cases;

o If Gy = 0 and G; = 1, our equation becomes Binet formula (2.3) for Fibonacci

numbers.

e If Gy = 2 and G, = 1, then Lucas sequence appears.

Formula (2.10) allows us to represent generalized Fibonacci number sequence as a linear

combination of two Fibonacci sequences;

G, =G F, +GoF,_, (2.11)




2.5. Addition and Division of Fibonacci Numbers

The Addition Formula for Fibonacci numbers is given by the following proposi-

tion.

Proposition 2.3 (Addition formula)

Foom=F,Foi1+F,F,.1 where m,ne€Z (2.12)

Proof First, begin to write corresponding Binet Formula for F,,,,,

F B ‘pn+m _ ‘p/n+m 3 SOflsofn ‘,Dln(plm
n+m , - , - ,
-y Y- p-@
_ n((pm _ (p’m + (p/l’l’l) B - (QD’" — (p}’l + (pi’l)
p—¢ p—¢
- Q0}1(}7}”_’_ SD /)+(p,m(Fn_ SD ,)
Y- -y
= (pnFm'i‘SOSO ,+(,0,an_"0 (’0,
-y Y-
= ¢"F,+¢"F,.
Therefore, we obtain;
Foim=¢@"Fop+¢"F,. (2.13)

Substituting ¢" = ¢F, + F,_; and ¢""" = ¢'F,, + F,,_; gives,

Foom = @"Fut+@"Fy=(pF,+ Fy))Fp + (9" Fp + Fr))F,
= @F,F,+F, \F,+¢F,F,+F,_F,
= (¢+¢@VF,Fp+ F,\F,+F,_ F,
= FF,+F,F,+F,F,
= (F,+F,)F,+F,,\F,
= F,F,+F,F,

10



In the addition formula (2.12), if we denote n + m = N, then n = N — m, and we get;

Fn=Fy_wFy1 + FpuFyn i

After writing N = n, it gives;

Fo=FpnFni1+ FnFymn (2.14)

Again denoting n + m = N, but now m = N — n, we get another partition of F;

Fn=FnyFpa+ FoFy .

After writing n = m, it gives;

Fy=FymFu + FpFnop.

Finally, denoting N = n;

’Fn = FpmFp1 + FuFop | (2.15)

Equations (2.14) and (2.15) give two different partitions of Fibonacci number F,.

From addition formula (2.12), Fibonacci numbers for even n are;

216

where L;- Lucas numbers.

Indeed, Fa = Fix = Fi Fioy + Fr Fio = Fi (Fio + Frgy) = Fi Ly

11



Also,

Fyo = Fy (Fo1 + Fr Lk)‘ (2.17)

It is easy to see from;

Fazr = Fron=Fi Foyoy + Frgy (Fo) = Fi Fooy + Fry (Fi L) = Fir(Fo—y + Frg Ly)

To continue,

Fao = Fr Ly Ly (2.13)

is obtained from,

Fuy = Fopyor = For Foo1 + Forqt Fox = Fou(Fopoy + Fog) = For Low = Fr Ly Ly

From above results, we have next divisibility property of F.

Proposition 2.4 F,; is divisible by F.
Proof Proof by induction on n. For n = 1, F} is divisible by Fy, clearly. For n, suppose
F.« = Fy X(k,n), where X(k,n) € Z. For the case n + 1, by using the equality (2.12), we

have;

2.12)
Foiik = Frome = Fr Fyo1 + [Ful Fra

= FyFyo + [Fye X(k,n)] Fiy

Fi( Fur + X(k,n) Frgp). (2.19)

This is why F,.1) 18 divisible by Fy. So, by principle of mathematical induction, F is

divisible by Fy, for any n. O

12



2.6. Higher Order Fibonacci Numbers

Since F is divisible by F, the ratio % is an integer. These numbers we call the

"Higher Order Fibonacci numbers".

Definition 2.3 Higher order Fibonacci numbers are defined as,

F,
F® = % (2.20)
Fy

Then, all Higher order Fibonacci numbers are integer.

Proposition 2.5 Binet type formula for Higher order Fibonacci numbers is,

()" = (™)

(k) _
F,W = s 2.21)
Proof It is derived simply by using the Binet formula,
@) =@ @) =@ e -t (@) = ()
F”k - ’ - k rk ;T k rk Fk'
Al (a2 (A" "
Thus, Higher Order Fibonacci numbers are written as a ratio;
FO ()" = (@™ _ Fu . (2.22)
n QDk _ (,D’k Fk
O
Due to above definition, we have formula for factorization of Fibonacci numbers;
Fy=F, FV,
For example, Higher order Fibonacci numbers F’ ) for k = 3 are given by;
F F F F F
FP=2=0F"=2=1,FY=2=4F)=2=17,FY = -2 =72,..(2.23)
F3 F3 F3 F% F3

13



Now, we are going to derive the recursion relation formula for Higher Order Fi-

bonacci numbers. It is given by the next theorem.

Theorem 2.1 (Recurrence relation for Higher Order Fibonacci numbers)

F®

n+l

= LiFP + (=D FY,. (2.24)

This formula is particular case of more general relation, given by Theorem 2.2.

Theorem 2.2

Fininia = LiFinra + D Fr1yio where a=0,1,...,k—1. (2.25)

Proof First we prove Theorem 2.2.

Fkn+k+a — , [¢kn+k+a Slen+k+(x:|
-
— . _1 " I:gokn+(lg0k (,D’kn+a‘,0lk]
— . _1 " [QOanZQDk + (_‘p/kn+a(pk n (p’knﬂyng) _ ‘p/kn+a90/k]
— . _1 - [((pkn+a _ (prknﬂz)gpk + QD/anngk _ (prknﬂx‘p/k]
— Fkn+(t‘;0 + . SO, [‘plknﬂxsok _ ‘prkn+a¢/k]
= Fusa [(pk + (= ‘prk)] 4 ; _1 > [ ek _ gk ‘p/k]

’ ’ 1 rkn+a tkn+a 1
= Fkn+a(sok+‘10k)_Fkn+a90k+—[90k+ ¢k_90k+ ‘pk]

4
= Fupoli + / [(p/knﬂt‘p/k _ QDkn+aQ0,k + (p/kn+a‘pk _ S0/kn+a()0/k]
-9
1 rkn+a n+a, 1
= LiFua + — ¢ — "%
Y-
(,Dk@,k
= LiFppey + ’ [Qﬁlkn_k+a SDkn—k+(z:|
L
(pk‘p/k
= LiFio — , [(pkn—kﬂr (p/kn—k+a:|
g
(90(p/)k n— a ITKN—, a . ’
= L=~ | = ke since (p) = (<),
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Lkan+a + (_1)k+1Fkn—k+a and since (_1)k+1(_1)_2 = (_l)k_l’

LiFinsa + (=" Fltia
Therefore,
Fk(n+l)+a/ = LiFipia + (_l)k_le(n—l)ﬂr (226)

is obtained. By choosing @ = 0 and dividing both sides of the equation with F gives us

the desired recursion formula (2.24),

F(k)

n+1

= LFY + (-D)'FP

The total set of Fibonacci numbers F), is the sum of subsets for each k;
k=2: F2n9 F2n+l
k=3: Fs, F3pi1, F3p0

k=k: Fi Finsts--.s Fineg-n
Equation (2.26) says that for given k, the subsequences Fi,, Fins1s Finsas- - Frnti-1)s

satisfy the same recursion formula;
k-1
Frpityra = LiFinse + (1) Fr-1)1a

This type of recursion formula is special case Fibonacci polynomials, which we are study-

ing in Section 2.7.

Example 2.1 Let us think sequences with k = 3;
a=0 = F;3=0,2,834,...
a=1 = F3, =1,3,13,55,...

a=2 = F3,=15,21,89,...

15



To generate each of three sequences, we have the same recursion relation,
3-1
F3(n+1)+(1 = L3F3,40 + (—1) F3(n—1)+m where « = 0, 1,2.

Also, we can notice that all of the sequences F5,,F,.1,F3,42 starts with different initial

values. In their union set, they cover the whole Fibonacci sequence.

Example 2.2 For k = 3, with the initial numbers F(()3) =0and F (13) = 1, we can derive
the Higher Order Fibonacci number sequence given in (2.23) by using 3" Lucas number
and alternating sign function, i.e, Fr(i)l = L3F,(13) + (_1)3_1F;(13—)1-
n=l: F)=4-1+(-1)>-0=4

n=2: F{) =4 -4+ (-1)>-1=17

n=3: F) =417+ (-1)>-4="72

n=4: F =4-72+ (-1)>- 17 = 305

Proposition 2.6 By extending n and k to negative integer numbers for Higher order Fi-

bonacci numbers F®, the formulas can be derived as;

F® = (-t p® (2.27)
Ffl_k) — (_1)(n+1)k Fflk) (228)
FGOPO = (=11 F® (2.29)
Proof
F(k) — (()Dk)_n _ ((p/k)—n _ 1 (L B 1 ) _ 1 (_(pkn _ ()D/kn)
-n QDk _ Sle QDk _ SD/k SDkn (p/kn SDk _ QD’k (SDQD’)kn

()" = (")

— (_1)kﬂ+l — (_1)kn+l Fflk)
L2

As a special case, by choosing k = 1, we obtain our previous result (2.4).

(QD_k)n _ (QD’_k)n ~ QD,kn _ SDkn (QDQDI)k B SD/kn _ QDkn ((PSD,)k (_1)kn

Fob o = . . _ .
‘,O_k _ 90/—k (QO(,D,)kn ‘,O’k _ ‘,Dk (‘,090/)101 (,le _ (,Dk (_1)kn
_ (,Dkn _ (p/kn (_1)(n+1)k _ (_1)(n+1)k F(k)
QDk _ ¢/k n
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(()Onk) _ (Qﬁ/nk) _ ()Onk _ (p/nk (Pk _ ‘Plk B F(k) ()Ok _ Qﬂ/k _ F(k) (’pk _ (Plk

FP

—— = ——————— = F =FY = (pg')
gk — gk @k — @k gk — L -5 @'k — gk

(2 (2
(_ 1)k+1 F,(,lk)

These formulas determine F ,(1]‘) for each k € Z, and each n € Z.
There is an important proposition, which gives relation between powers of Golden-

Silver ratio and Higher order Fibonacci numbers.

Proposition 2.7 Fork € Zandn € Z,

@ = ¢ FP+ (D) FY (2.30)
@ = ¢ EY+ DU ED (2.31)

Proof By definition of Higher Order Fibonacci numbers, we need to prove,

Foii

F
k\n k L nk k+1
© = o — + (-1

To prove it, we will show the equality;
Fr (@) = ¢ Fuy+ (D" Fooppe

Starting from right hand side, it gets;

(n=Dk _ _r(n-Dk

nk _  mk
L4 ¢—¢
—1 mn n— tkn—
= e QD’ [90ﬂk+k - k(,Ok + (_1)k+1(,0k k + (—l)kQO k k]
_ (panDk + (=)<t lpk N (=1)kgrknk _ gk gk
p—¢ p—¢
LA (i)
= ¢ p + -
-9 -
k 1\k
WG e
= ‘pkn ‘/’I + / ( _l)k — - on)
p-¢  ¢-y (¢)
k 1k 1kn
2 — P "2 "
= (pk + ((Pk _ SDk) _ Sﬁk Fy.

p-—¢  p-¢

17



With the similar logic, (¢*%)" = ¢’* F¥ + (=1)**' F ,(1](_)1 can be proved, also. m]

2.7. Fibonacci Polynomials

Here, we modify recursion formula (2.1) by introducing two arbitrary coeflicients

p and q;

Fpo = pFy+qF, (2.32)

By choosing initial values Fy = 0, F; = 1, the corresponding sequence will depend on
two numbers p and q. This sequence of two variable polynomials-F,(p, g) is called the
Fibonacci polynomials.

For solution of this equation, let F,(p,q) = y". Then, with the recursion formula
(2.32) characteristic equation becomes y* = py + g. By denoting our roots as a and b, we

have a + b = p and ab = —q. Then, Fibonacci polynomial F,(p, g) is written as;

F.(p,q) = cid" + ¢ b". (2.33)

With the help of our initial values, coefficients can be found as;

1 1
cite=Fop,q)=0, ciat+tcb=Fi(p,g)=1 = c;=——, c2=—
a—->b a—>b

By this way, we obtain Binet type formula for Fibonacci polynomials as;

an_bn
Fulp.q) = ——=

(2.34)

Py NPt

2 — 2

where a, b =
In the recursion formula (2.32), if p and q are arbitrary integer numbers, then we get the
sequence of integer numbers;

Fo(p.q) =0

Filp.q) =1

18



Fy(p,g)=p

Fi(p,q) = p* +q

Fy(p.q) = p(p* + q) + qp

Fs(p,q) = p*(p* +2q) + q(p* + )

Fs(p.q) = P’(p* +2q) + 2qp(p* + @) + ¢°p
Fi(p,q) = p*(p* +29) + 3p*q + 6p°¢" + ¢°

which we call Fibonacci polynomial numbers.
Also, when we choose p = g = 1, the recursion relation will be standard Fibonacci

recursion and Fibonacci numbers. Therefore, F,,(1,1) = F,,.

2.8. Cassini Formula and Generalizations
In Chapter 5, following matrix is introduced
Fn—l Fn
Al = )
Fn Fn+1

Determinant of this matrix det(A%) = F,, 1 F,_y — F ,% can be calculated by using Cassini’s

Formula.

Proposition 2.8 (Cassini’s Formula) For every positive integer n,

FoiFp = Fp = (1) (2.35)

Proof (Koshy, T., 2001) Proof will be done by using Principal of Mathematical induc-

tion. For n = 1, we have;

FoF,—F:=0-1-17=(-1)' = -1.

Suppose that it is true for all £k > 1, that is for n = &,

Fi1Fi = Fp = (1)~ (2.36)
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Then for the case n = k + 1, we have;

FiFro = Fiyy = (Fen = Fict) (Fe + Fran) = Fyy

Fasn-1F g — Fioy
=  FiFi + Fl - FiFioy — FioFra — Fr,
= FiFi — FiFio — FioyF — Fi + F}
= Fka+1_Fka—l_sz_(Fk—leH_F]%)

FiFi — FuFpy = Ff — (-1

= FiFa — Fe(Fioy + F) — (=D

= FiFr = FiFr = (=1

= (<1

Now, we can derive similar formula for Fibonacci Polynomials, F,(p, g).
By using Fibonacci Polynomials from previous section, we start with;
n=1: Fy(p,q) F(p.q) — FX(p,q)=0-p—1*= -1
n=2: Fi(p.q) F3s(p.q) - F5(p.9) = 1-(P’+q) - p* = ¢
n=3: F2(p.q) Fa(p,q) = F3(p,q) = p- (p(p* + @) + qp) = (p* + 9)* = =¢
n=4: F3(p,q) Fs(p,q)~Fi(p,q) = (P*+q)-(P*(P*+2)+q(p*+)~(p(P*+@)+qp)* = ¢’

Thus, generalized Cassini formula can be claimed and proved as a next proposition.

Proposition 2.9 Cassini’s formula for Fibonacci polynomials is given by,

Fuei(p,q) Fouui(p.q) — Fr(p,q) = (-1)"¢"" (2.37)

Proof Substituting the Binet type formula for Fibonacci polynomials,

an—l _ bn—l an+l _ bn+1 a' — bn 2
Fn—l(p’ C])Fn+1(P, Q) - F,%(p, Q) = . _( )

-b a->b a—>b

1 2
( b) [a2n _ an—lbn+l _ an+lbn—l + b2n _ (a2n _ Z(ab)n + b2n)]
a —

(73] [or (-5
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~ U V[ o (@ =2ab+b?)
- (=) =)

~ 1YV o @-by
=[] @)

— _(ab)n—l

(ab=—q) .
=7 (™!

= @

If p = g = 1, then equation (2.37) reduces to the equation (2.35).
Now, let’s define A,(p, g) matrix by using Fibonacci polynomials introduced in

Section 2.7.

Definition 2.4 Let

Fo(p,q) Fi(p.q) ) (2.38)

Asx(p,q) = [
qFi(p,q) Fa(p,q)

Arbitrary n” power of A,(p, ¢) matrix is found by next proposition.

Proposition 2.10 For every positive integer n, we have;

gFuw1(p.q)  Fu(p,q) ] (2.39)

9F,(p.q)  Fpi(p,q)
Proof Proof will be done by Principal of Mathematical Induction on n. For n = 1, we

[A2(p, @]" = [
have;

Fo(p,q) Fl(p,q)]:[O 1]

Ax(p,q) = (
qFi(p.q) Fa(p,q) q p

Suppose that for n = £,

qFi.(p,q)  Fi(p,q) ]

[A:(p. )] = (
qF(p.q)  Fra(p,q)
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is true. For the case n = k + 1, we obtain;

[Ax(p, )]

aFi1(p,q)  Fi(p,q) ](0 1)
aF(p.q9) Fia(p.q) J\ g p

[As(p, D] As(p, q) = [

| aFup.9) qu_1<p,q>+ka<p,q)]
qF1(p.q) qF(p,q) + pFra(p,q)

e | 9Fdp,q) Fk+1(p,4)]
qF (P, q)  Fiea(p,q)

O

The equation (2.37) will be helpful if we calculate the determinant of the matrix
[A2(p, )]

Foa(p, Fu(p,
det(Asp.g) = | 1P q) (P.q)
qaF(p.@)  Fpi(p,q)
= q|Fai(p.q) - Funr(p. ) = F(p. )|
@37 q[(_l)nqn—l]
= (=D'¢"=(9"
Thus;
q[Fui(pq) - Funr(p, @) = Fi(p, )| = (—@)" (2.40)
or,
det ([A2(p, 9)]") = (=D"¢" (2.41)
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CHAPTER 3

FIBONACCI CALCULUS

In this Chapter, we follow notations and some results from (Pashaev O.K. and
Nalci S., 2012).

3.1. Golden Derivative

Definition 3.1 The Golden derivative operator Dy. acts on arbitrary function f(x) ac-

cording to formula;

) = (=0 flex) - f(¢'x)
() e

Dif(0)] = (3.1)

The Golden derivative operator is a linear operator since for every pair of functions f and

g and scalar 4, the following properties hold;
o Dip(f(x) + g(x)) = Dp(f(x) + Di(g(x))

® Dip(Af(x)) = A Dp(f(x)

3.1.1. Golden Leibnitz Rule

By using definition of Golden derivative, the Golden Leibnitz Rule can be derived

in the following way;

fenuten—r(-2)e(-)

Di(f(x)g(x)) p—
p—¢)x
(e -r (=) (-2))sen - 1 (-2)e(-3)
B (¢ —¢)x
_ f@(@ md ) OO - oo wr i w)
o —¢)x (p—¢)x (p—¢)x
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glpx) — ¢ (—g))

: _x
D(f(x) glpx) + f( g0) o

DE(f(x)) glex) + f(—g) D(g(x))

This is why we have the following proposition.

Proposition 3.1 (Golden Leibnitz Rule)

1) DE(f(0g(x) = DLf(x) g(«,ox)+f(—§) D(g(x)) (3.2)
2) DE(f()g(x) = Dﬁf(x))g(—g)ﬁ(gox) D(g(x) (3.3)
i . g(sz)+g(—£)
3) Dp(f(R)g() = Dp(f(a)| —————
; fen + f(-2)
+ Di(g(0) . (3.4)
4) DE(f(0)g(x) = (af(—g +(1 —a)f(sox)) Di(g(x))
+ (ag(sox)+(1—a)g(—g))Dﬁ(f(x)) (3.5)

From the definition of Golden derivative (3.1), by symmetry, we can interchange ¢ < ¢’
to get 2). Formulas 1) and 2) can be rewritten in explicitly symmetrical form 3). By
multiplying (3.2) with e, (3.3) with (1 —«) and adding them, more general form of Golden
Leibnitz formula is obtained, which is given with an arbitrary « in 4). By choosing @ = 1,

we have (3.2), and for @ = 3, (3.4) is obtained.

Example 3.1 For function F(x) = x°, golden derivative is obtained as;

Dy (x’) = Fs Xt =5x*,

As an another way, by using (3.2) and choosing f(x) = x*, g(x) = x°;

Di(x¥) = Dp(x*-x*) = Dp(x®) (92 + (¢'x)° Di(x) = Fa x(x)” + (¢'x)*F3x?

= @ x + 207" = (0 + 200t = Qo+ 1 +2(¢" + D)t = 5x%,
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So,the same result is obtained by using Golden Leibnitz rule.

Now we may compute the Golden derivative of the quotient of f(x) and g(x) as;

f(x)
Dp(f(x)) = Dy ( ()—
F(f Fl8 (%)
and by using (3.2),
fpx) ( X) (f(X))
Dip(f(x)) = Dp(g(x) ——+g|-=| Dr|—/=|-
v P8 g0 T Te) T e
If we leave alone Dy, (%) in the right hand side, we can get the Golden derivative of the
quotient.
Proposition 3.2

D (f(X)) _ DrU () 8(ex) — flpx) Di(g(x) 3.6)
&%) 2lex) g(-2)

Similar to the product rule, the quotient rule can be written in several different

forms.

3.1.2. Golden Periodic Function

Definition 3.2 Function A(x) is called the Golden periodic function if;

Dj; (Ax))=0 — A(px) = A (—g) (3.7)
or,
Alpx) = A(g'x) & A(@*x) = A(-x) (3.8)

The Golden periodic function has interesting symmetry; rescaling argument x by

¢? in positive direction is equivalent to value of function at reflected point —x.
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As an example, we consider;

m@:gqllmm) (3.9)
Ing

This function is Golden periodic. (See the Appendix B.1.) And, it is an even function

A(x) = A(—x). As a result, for this function we have golden periodicity condition in the

form;

A(g*x) = A(x). (3.10)

So, this function satisfies self similarity property with ¢? scaling factor. It is seen from

Figure 3.1 and Figure 3.2 that rescaling interval of x by ¢? does not change shape of the

function. This is the property of Golden self-similar even function.

Figure 3.1. Graph of the function A(x) on interval 0 < x < 2

Figure 3.2. Graph of the function A(x) on interval 0 < x < 2¢?
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3.2. Generating Functions for Fibonacci Numbers

Example 3.2 Application of the Golden derivative operator D}. on x" generates Fibonacci

numbers;

D;(xn) — (‘)Dx) - (‘)0 x) — ‘)D _‘10 xn—l — Fn xn—l

(p—¢)x o—¢

So, Fibonacci numbers can be represented also as,

F, F(f ) 3.11)
X"
Definition 3.3 The function F(x),
F(x) = Z Fx" (3.12)

is called the generating function of Fibonacci numbers F,. According to Taylor formula;

Fr=~ 4 ke (3.13)

n! dx" =0

in a disk of analyticity around x = 0. Explicit form of the series is;
F(X)=x+x2+2xX +3x* +5X° + ... (3.14)

Proposition 3.3 Generating function F(x) which is convergent in domain |x| < |¢’| has

explicit representation;

F(x)—ZFx 1—x e (3.15)
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Proof To find the domain of convergency, we apply the ratio test:

n+1
Fn+1x
F,x"

n—oo

o = lim

n—oo

lim [x| = ¢|x]
n n—oo

For convergency p < 1 implies,
.
x| < —=l¢|
2

and as follows |x| < |¢’| < 1. By using Golden derivative, we have;

Fx) = i F.x" = xi F,x"! 61D xi Dyp(x") = x Dy i x"
n=0 n=0 n=0 n=0
|x|_<]

. 1
= xDy T—x

(€B)) (1—1¢x B 1—1“)
- (p—¢)x
X X

T-p0(l-¢x) 1-x—2

Corollary 3.1 F(x) is meromorphic function with one zero at x = 0 and two single poles

at x = —p and x = —¢'. Indeed,

l—-px=0=>x=

l-¢x=0=x=

3.2.1. Entire Generating Function

In previous section, we considered generating function F(x) for Fibonacci num-

bers in disk [x| < |¢’|. Here, we introduce generating function for Fibonacci numbers
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which is entire function.

By calculating the Golden derivative of exponential function e*, in power series

form;
o NERE (1 x ¥ X
bred = D[Z—)D (6+1_!+2_z+§+"')
- X" X"
= D);_(—): F -
so that,

& n

Di(e" = Z;Flﬁ (3.16)

As easy to see by ratio test, the right hand side is an entire function. From another side,

calculating Dy.(e*) by using Golden derivative formula (3.1) gives;

Q
—
+
)
S
P

- lx ﬁx —ﬁx X .
Do) oFF _ ¥ F_ e(l Ll e (e e s ) e22 s1nh(%§x)
e =y -_— —_— —_— .

g (p—¢)x (1“g —~ I‘T\E)x V5x V5x

Thus, by this alternative way, we obtain;

De? sinh( x)
Dy.(e*) = T (3.17)
X

wls,

By equating both results (3.16) & (3.17), we obtain identity;

o s1nh(
' V5.
(n + ! Py

NI&

)

N\k

(3.18)

This relation can be considered as entire generating function of Fibonacci numbers(up to

factorial).
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By setting x = 1, the sum of the series;

s ; | smh(ﬁ)
; — = e’ Tz (3.19)

1s obtained.

After replacing x — ix in equation (3.18), we get,

oo (5
Fo. N smh(sz)
'x'=e? 3.20
el T T, (3-20)

2

By using sinh(ix) = isin(x) at the right hand side of equality, and splitting the sum at the
left hand side to even and odd parts with n = 2k and n = 2k + 1 gives;

[eS) 00 \/g
F . F . . sin T)X
ﬁ( )Zk 2% (2k2_|k_+§)1( )2k+1 2+l _ o5 - 3.21)
k=0 ’ k=0 : >X
Since i? = -1,
(o] . \/5
Fapr 1)k 2k Foio 1y ket o S Tx)
T =e? ————— 3.22
£ (2K + 1)' Z 2k + 2)1 )x ¢ gx (3.22)
Writing e = cos(%) + isin(%),
0 0 in( X3 in( X3
ﬂ( 1 4 Fon (=) 2! :Cos(f)sm 2 x) +isin(f)sm 2 x)
— 2k + 1! £ (2k +2)! 2} %, 2 —TSX

Now, equating real and imaginary parts, we have new identities, as generating functions

for even and odd order Fibonacci numbers,

(o)

P

F2k+1 k 2k (x) SiIl X)
1 = - — 3.23
4 2k + 1),( ) x™ = cos > 5, (3.23)
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and,

Foin (=12 = Sin(g) sin x)

£ (2k +2)! By

(oY)

“

(3.24)

Functions in (3.23) and (3.24) are entire functions, giving several interesting identities for

different values of x.

From (3.23) follow identities for:

1) x=mn,
- F2k+1 k_2k
—(-D'7" =0
e 2k + 1)!
— 2r
2) x= 75
- Fops (_1)k(27f)2k -0
— 2k + 1)! 5k
3) x= \LG’
0 F2k+1 (_1)1{7'[_% _ 2COS(#§)
e 2k + 1)! 5k b/g
4) x =2mn,
© Py 1 sin( \/gn)
= 2k + 1! \5r
5) x=1,
Forn (=1 = cos 1 sm(T)
— 2k + 1)! 2 N5

2

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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Also, from equation (3.24) follow identities for:

1) x=mn,
i~ V5
F2k+2 (_1)k 2k+1 — s Tﬂ)
£ (2k +2)! By
_ 2r
2) X = 75,
00 Fon (_l)k(z_ﬂ.)2k+1 0
£ (2k +2)! NG
3) x= %,
S iy k3 2Ue+1 _ 23in(ﬁ§)
£ (2k +2)! NG n
4) x =2m,
- F
k=0 ’
5) x=1,
Fopin (—1)* = sin 1 s1n(7)
L4 (2k +2)! 2] A5
= 2

3.3. Golden Taylor Formula

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

Taylor expansion of arbitrary polynomial to the set of polynomials is determined

by Theorem (Kac, V. and Cheung, P., 2002). Here, we apply this theorem to Golden

polynomials.
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Theorem 3.1 (Golden Taylor Expansion)
The Golden derivative operator Dy. as a linear operator acts on the space of poly-

nomials, and

xl’l xl’l

P,(x) = _r
W= =F E L

satisfy the following conditions:

(i) Po(0) =1 and P,(0)=0 for any n>1;

(ii) deg(P,) = n;

(iii) D.(P,(x)) = P,_1(x) foranyn > 1, and D(1) =

Then, for any polynomial f(x) of degree N, one has the following Taylor formula;

f0 = wamwm—

In the limit N — oo (if it exists) this formula determines expansion of the function;

fm—Zwﬂ"

If an infinite series,

- X
Z s (3.35)

n=0

is convergent in some domain, then it determines function,

Jr(x) = i

(3.36)
n=0 ”‘
in this domain, which we call the Golden-Fibonacci function.
Let’s check the convergency of functions;
*© X s X
f@ =) janis and fr()= ) anr (3.37)

n=0 ’ n=0
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By the ratio test, we have;

1

| bus Ay X" n! . 1 Apel
p=lim |[—|= LR = |x| lim s (3.38)
n—| b, n—oo | (n+ 1)! a,x" n—on+ 11| a,
1
. Cn+l . a 1)Cn+ F,! . 1 A+
pr = lim [2=| = lim [2——~""| = |x| lim = (3.39)
n—oo Cn n—oo Fn+1 ‘ an_xn n—oo Fn+1 an
The second limit implies,
. 1 ||ans oo n+1 1 Ayil
lim = lim
=0 [ [py | Ay noeo | Fpop lin+ 111 a,
. . . . apt . .
If f(x) is entire function, then lim | - 0. Since lim = 0, then as
n—oo (N + 1 a, n—oco n+1

follows function fr(x) is also entire. This means that to every entire function f(x) we can
relate another entire function fr(x).
As an example, here we consider e* which is entire function. Then, corresponding

Golden exponential as,

X N X
ey =) 7 (3.40)
is also entire function.
3.4. Golden Exponential Functions

The 1% and 2" type of Golden Exponential functions are defined as;

0 N xn
€r = Z(; Fol (3.41)
and
- o= X"
EL = Z(—n T (3.42)
n=0 n
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Both of these are entire functions.

Definition 3.4

1, ifn=0;
F,! = (3.43)
F1F2F3...Fn, n>1.

Proposition 3.4 There is a relation between these functions:
Ep=elp
Proof To show this, we write;

n(n—1)

> nn .xn 1
- Z(_ o F ()—n(»jl) - Z( DA 1) n(n )
pury Fal (™ U F,

S SN
EX = nZ:(;(—l) =
_ i X!

= DR
By using (2.4), we calculate,

(24) n— n—
F.,F ,...Fy = (=1)"'F, (=1)"?F,_, ... F

(l>

F_,!
— ( 1)(11 D+(n-2)+.. +1F ! _( 1)

and obtain that,

n(n=1)

=(-1)"7 F, (3.44)

Then, it gives;

(o)

Z 1)n(n21)F |

0

(3.45)

Graphs of two exponential functions can be seen in the Figures 3.3 and 3.4.
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Figure 3.3. Graph of the function ey,

Figure 3.4. Graph of the function E7.

Conjecture: Function ej. has no zeros, but function E7. has infinitely many zeros

and these zeros are located at Fibonacci numbers.
Theorem 3.2 The Golden derivative of Golden exponential functions is found as;
Di(el) = kek (3.46)

(3.47)

DL(EY) = KkE*

for an arbitrary k.
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Proof

o = pr [ "
o =07 3 %

Dy(EY) = DF[

Dl

n=0

X

=

Dt 1 +kx k2x2+k3x3+
F\Fy! " F\!  F,!  F3!
NESL AR 0D
i knann—l _ i knxn—l
n=1 F,! B n=1 Fot!
© kn+1xn o (kx)"
2 F,! =k F,!
n=0 n n=0 n
kekx
_ 1 kx  kxr Bx® N
- TFR\Fy)  F! Fy Fy! T
an-1) K"
— Dx[z( 1)< )] x)
_ n(n 1) F( n)
B Z(_ F,!
woy o Fu ™!
: z< st
_ _ n
= ;( Dk F,
> (112+n) xl’l
= k -1z K
; )R
(kx)"

k Z( 1

kE—kx

K i(_ 1 (n2+n2)7n+n

kZ( 1)n(n 1)( l)n (kX)n

(- kx}”

F,!
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3.4.1. Estimating the Number ey

Fibonacci exponential function,

27

n=0 = "

~ 2.718.

x=1

determines Fibonacci analog of Euler number e = ¢*

To estimate it, first we have ey, = er as the sum;

x=1

S I S S R e
:Z = —+—+—+——+——+—+— Z
4FD T RURU R R R R R AR
11 N
= 1+1+1+= +—+—
276 Z

(o)

X

This gives the lower bound,

To get the upper bound, we combine

1 1 1 1 1 1
ep = 3+ —+—+ + I+ —=—+ +
F3!  Fy! Fy...F4-Fs F,...Fy-Fs-Fg F;  F;-Fg
1 1 1
= 3.6666 +0.0333 + — |1 + — + +...
240( F;  F7-Fg )
Since,

F,>12 forall n>7 = <

1 1
F, 12
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€r

€F

93

€r

1 1

1 1
3.6666 + 0.0333 + 320 (1 + —=+

240 1

1
1 12
3.6666 + 0.0333 + 7011

1
3.6666 + 0.0333 + ——
* " 220

3.6666 + 0.0333 + 1 ( ! )

Therefore, upper bound is obtained, as

ARV ARV AN

|

Combining both, the lower and the upper bounds of this number, we get estimation;

3.5. Golden Trigonometric and Hyperbolic Functions

3.7041 < ep < 3.7044

(3.48)

Definition 3.5 Fibonacci cosine and sine functions are defined by the power series,

& x2n
cose(x) = ) (=1,
n=0 2n
] B & . x2n+1
sing(x) = ) (=1 .
=0 2n+1
& 2n
X
coshp(x) = Ak
=0 2n-
) & x2n+1
sinhp(x) =
=0 F2n+1'

(3.49)

(3.50)

(3.51)

(3.52)
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Proposition 3.5 Since

representations are valid, then;

ix —ix X —X
ep +ept E. + EL

cosp(x) = 5 7 (3.53)
sinp( = F ;ie;ix _Er ;E;x (3.54)
coshp(x) = ;e;x _ B J;E’_”ix (3.55)
sinhy(x) = 7 —Ze;x _ B ;iE;“ix (3.56)

are shown in Figures 3.5 and 3.6.

Figure 3.5. Graph of function cosg(x)

Since,

E;+E;x E;;‘+Ejf7
2 a 2

cosp(x) = = COSp(—x),

it is even function and it is symmetric about y-axis.



Figure 3.6. Graph of function sing(x)

Since,

sing(x) = = - = —sing(—x),

E;L - E E; - Ey
2

F F F
2

sing(x) is odd function and it is symmetric about the origin.

Graphics of coshz(x) and sinhz(x) are shown in Figure 3.7 and 3.8.

Figure 3.7. Graph of function coshz(x)
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Since,

e, +e’ el +e;
coshp(x) = F 5 F_ZF 5 F:coshF(—x),

it is even function and it is symmetric about y-axis.

Figure 3.8. Graph of function sinhz(x)

Since,

sinhp(x) = il _2eF = - (eF Z_eF) = —sinhg(—x),

sinhg(x) is odd function and it is symmetric about the origin.

Due to Proposition 3.5, we get analogues of Euler formula.

Proposition 3.6

e = cosp(x) +ising(x)
EZ = coshg(x) + isinhg(x)
er = coshp(x) + sinhp(x)
Er = cosp(x) + sing(x)

(3.57)
(3.58)
(3.59)
(3.60)
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We know that, hyperbolic and trigonometric functions are related,

eix + e—ix e — p7i*

cosh(ix) = ——— = cos(x) and sinh(ix) = ——— = isin(x).

2 2

Similar relations exist between coshz(x) & cosg(x) and sinhg(x) & sing(x);

' 0 (l'x)Zn sl l'Zn x2n o xZn
coshr(ix) = = = -1 = cosp(x
#(ix) 2o Z; o ZO]( V' gy = Cosr(®)

= ] sinhj(ix) = i sing(x) \

3.5.1. Golden Oscillator

Lemma 3.1 Golden derivatives of cosg(x) and sing(x) functions are,

Dy(cosp(x))

—sing(x)

Dpy(sing(x)) cosp(x)

(3.61)

(3.62)
(3.63)
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Proof

X 1 X IX —ix 1 . ix . —ix i ix —ix 6? B e;jx
Dy(cosp(x)) = EDF(eF +ep) = E(leF —iep") = E(eF —ep) =— >
= —sing(x)
. o i e wier™) (e +ep™)
Dy (sinp(x)) = EDF ep —ep) = E 57 F-o__F > F~ = cosp(x)
O
It can be generalized to arbitrary number k;
Dy(cosp(kx)) = —ksing(kx) (3.64)
Dy (sing(kx)) = kcosp(kx) (3.65)

By appliying the second derivative,

= (D¥)*(cosp(kx)) = Di(~ksing(kx)) = —kk cosp(kx) = —k? cos(kx) (3.66)

So, we have (D})Z(COSF(kx)) = —k?cosp(kx). Since cosp(kx) satisfy this equation, it

should also satisfy the following equation, which is called as Golden Oscillator equation;

[(D})? + k*] cosp(kx) = 0 (3.67)

Definition 3.6 Golden oscillator equation is defined as,

[(DF)” + K] y(x) = 0 (3.68)

From another side, since D3(EX) = kE;**, and if we replace k « —k we have,

DL(E;") = —kEX (3.69)
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Appliying it twice,
—kxy (3:69)

(D} (EXY) = (DRYKEF™) =" k(-k)EY = —K*EX* = (D}) (EY) = K ER

and we obtain,

[(D})? + K*1EE =0 (3.70)

Since Ef* and E;** from one side and cosy(kx) from another side satisfy the same equa-
tions (3.67) and (3.70), they should be dependent. Their dependency can be seen from
equation (3.53),

cosp(x) = w (3.71)
Also, easy to check that sing(kx) satisfies the same equation as;
[(D:)? + k*](sing(kx)) = 0 (3.72)
Then, the general solution is written by superposition;
f(x) = Aj(x) cosp(kx) + Ay(x) sinp(kx), (3.73)

where A;(x) and A,(x) are Golden periodic and even functions.

3.6. Golden Binomial (x + y).

In this Section we study Golden analogue of binomial. To introduce it, we need

first define Fibonomials and their properties.
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3.6.1. Fibonomial and Golden Pascal Triangle

Definition 3.7 The product of Fibonacci numbers,

F\F,...F, = ﬂFi =F,! (3.74)

i=1

is called the Fibonacci factorial. Another common name and notation for this number is

the Fibonorial;
n'r=F,! (3.75)

Definition 3.8 The Fibonacci-binomial coefficients are defined as,

n F.Fpy.. .. Foy F,! nlp!
_ Falur Famn S (3.76)
m|p FmFm—1~~-F1 Fn—m'Fm' [n_m]F![m]F!

with n and m being nonnegative integers(n > m). These coefficients are called Fibonomial

coefficients.

We know that any number in the interior of Pascal’s Triangle will be the sum of

the two numbers appearing above it. Thus, we have formula;

AR

Golden analog of this formula exists. Let’s begin with;

n B F,! F, [n—1]F!
k., Fui!F! o [kle! [n—klp [n—k—1]F!
F, [n—1]p!

= =K W k=T 377)
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By using addition formula (2.13), we can write F;
ey 1 k
Fo=Fuir = (—;) Fox+¢"™" Fy

Then, the ratio FF—"k becomes;

n—

F, 1 F
Fn_k:(_é) A (3.78)
Substituting this into (3.77) gives,
I (I A Ay ' [n— 115!
[k]p_’” ) (_5) Y Fn_k) K7 [n—k— 115!
R S N b . F [n—1]5!
) _E) Kir! n—k—11p0 ¢ Fot Ikl [n—k— 1],
o -1 [n— 115!
- _5) kLT =11 Py -k = 1!
_ _l)kﬁ—l v g [n—1]5!
o) | k |, [k— 117! [1n— k]p!
o -1 -1
- _;) L k _F+‘p |:k_1:|F‘

So, we get the formula to construct the Golden Pascal Triangle,

nl 1\[n—-1 wx =1
I A o

By using next property of Fibonomials,

n|  F,! F,! | on
klp Fos!Fi! Fun!Fai!  |n—k|,

we can derive equivalent rule to determine Golden Pascal Triangle.
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If in (3.79) we replace k — n — k,

n| 1\ *[n-1
kl. @ n—k

1\ [n-1 | on-1
@ n—k|. n—k-1|,

IR ]

n—1
n-1D-m-k-1)|,

¢ n—1-(n-k) ¢
_ _l"_kh—l g n—l
©® k—1],

Next equivalent rule also determine the Golden Pascal Triangle,

n| 1N =1 fn—1 1.80
i) B a0

where 1 <k<n-1.

Thus, by using formula (3.79), we can construct the Golden Pascal Triangle as

shown in Figure 3.9.

I |

¢N /¢
l I |
AN Lo N

l 2 2 l

¢'3\| v ¢’2\ /L/JQ gp’\ /(PJ
| 3 6 3 |

| 5 13 15 3 |

Figure 3.9. Golden Pascal Triangle
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3.6.2. Golden Binomial

Definition 3.9 The Golden Binomial is defined as;

(x+y)r= (x + go"_ly)<

n-2 s

X+¢" y) . (x + gogo'"_zy) (x + go'”_ly)

Since ¢¢’ = =1, Golden Binomial can be written in terms of just ¢,

(x+y)r= (x + go"_ly) (x - cp”_3y) . (x - go’"_3y) (x + (—1)”‘190_””)7) (3.81)

For the Golden Binomial, the next expansion is also valid (Pashaev O.K. and Nalci S.,

2012).
(x+y)p= D) [Z] (-1 Ty (3.82)
k=0 F
In particular,
(x—1F = (x - 90’”_1) (x + (,0’"_3) .. (x - (—1)m_1<p_”’+1) (3.83)
First few binomial are,
(x— 1)L x—1
(x—Dj (x=@)x—¢")
(x— Dy (x— @) (x+ D(x—¢)
(x-Dp = (x-)x+)(x+¢)x—¢?)

and corresponding zeros are,
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m=2 = x=¢,x=¢

m=3 = x=¢’, x=-1,x=¢"?

m=4 = x:‘,03,x:—90,x=—90/,x=90'3 (3.84)

For arbitrary n, we have following zeros of Golden binomial.

1) n = 2k= (X— 1)7: — (X— 1)%1{ . 9012—1’¢/n—1’_90n—3,_¢/n—3,.“’i"p’ i(,DI (385)
)n = 2k+1=(x-1D%=x-DF ol o —¢"3, -3, ., £1(3.86)

These zeros completely determine Golden binomials.

Lemma 3.2 The application of the Golden derivative to the Golden Binomials gives;

Di(x+Y)i = Fux+yi', (3.87)
Dp(x+y) = Fux-yp, (3.88)
Di(x=y)p = —F(x+y)p'. (3.89)
Proof For proof, see Appendix B.2. m|

Appliying derivative several times, we get;

D)* (x + )3 = (=D'Fy! and (D)™ (x + 9)F™ = (1) Fap!

Proposition 3.7
ef Bl =ef e, =, (3.90)
where,
R (X; . Ui (3.91)
n=0 "
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Proof

Xy
ep Ey

[l
TR
||
o

™
3

S5 ) S

n=0

- Zzﬂ( D (Letn+k=N)

— F,\FiIFy!

N

S | Fy! k)
— -1 N-k_k
2 F! kzz(; Fodbg D Ty

M

=~
1l

N=0
(x+y)y
oo ey
- NZ:O o

This function eg(f + x)r, we will use in Section 3.8.

3.7. Remarkable Limit

From Golden Binomial expansion, we have;

(x+ 3] =Z[ ] (1)

k=0

If we set x = 1 and y — <, then it gives us;

n n k
2] - Sl vz
¢"Jr k=0 klp ¢

(3.92)
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By opening Fibonomials and taking the limit as n goes to infinity;

= lim Y —%— (-1

y )n & F,! kD) N
noeo id Fy il F! @k

_ N FuFi oo FygonyFy! [y N
B "gg F_k! Fk' (_ ) ()ﬁ
k=0 n
® FF, i.. Fy Y
n—oo = ! %
. i e TN Gl ) SRR
0o £ (p—¢) Fi! @
= lim DA 1) »
now (o — @) Fl @
(k=D
Cm S et e
n—oo £ (()p — Sp’)k F;! gp”k
[ee) 1 3 k
- ZF GRS yk KD
k=0 © K (p—¢) ¢ 2

Since, we have;

Fk = ’ = = (’0 = 5 k=1 [k]_¢2
oo (5 (5-1) A
= Fr = ¢ k] (3.93)
Multiplying FyFy_; ... F; gives,
k(k—1)
1 2
Fy! = (——) [k]_g2! (3.94)
¥
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After substituting Fy!,

Thus, it is obtained,

Z N (-
=0 (-1) 7 (k!
i 1 ( Y )k
=0 [k]_¢2! (p2 +1

= (2%)

kZ:;‘ (k]!

(3]

As a last step, after choosing y = V5 , we obtain;

[1+i§] = e (1)
LA

k(k=1)
2

k

y
(p-¢) o

(3.95)

(3.96)

(3.97)

Now, our aim is to calculate e_,(1). From g-Calculus, we know the Jackson exponential

function;

X
(x) =
eq(x ;[k]q!

*® k

(3.98)
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By choosing g = —¢? and x = 1, we have;

- 1
_2() = .
e_p(1) kzz(;[k]—gﬂ!

k(k=1) k(k=1)

From (3.94), [k]_,2! = (=1) 7 F;! ¢ 7 . By substituting this gives,

(o)

1 N 1
e_2(1)= : — = _— 3.99
- Z(—l)k(kzl) Folo's Z o (3:99)

k=0

As a final result we can write,

n 00 00 k(k=1)
5 1 A
lim(1+ ‘/_) =Y =D L (3.100)
F

n—oo Spn

3.8. Golden Heat Equation

Definition 3.10 Fibonacci-exponential function of two arguments is defined as;

(o8]

A = et e = Y

n=0

(t+ 2%
F,!

(3.101)

Lemma 3.3 By applying the D'. and D}, operators to ep(t + x)p and ep(t — X), we obtain

results,
Di(er(t+x)r) = ep(t+X)r, (3.102)
Di(er(t+x)r) = er(t— X, (3.103)
Dy(er(t—x)p) = —ep(t+x)F. (3.104)
Proof For proof, see Appendix B.3.1. O
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3.8.1. Function ex(t + x)r and Golden Heat Equation

It is known that,

ou 0*u

— =u— 3.105

o Hox G105
is the Heat Equation for temparature distribution u(x, ). By choosing ¢ = —1 and replac-

ing partial derivatives with Golden derivatives as % — D and % — (D})? gives the

Golden Heat equation,

[(D})* + D Jup(x,t) = 0 (3.106)

for unknown function ug(x, t). As we have seen,

Dip(er(t + X)F) = ep(t + X)r

and as follows,

(Dy)*(ep(t + X)p) = Dy(er(t — x)p) = —ep(t + X)F.

Adding these equations gives,

[(D})? + Dy lep(t + x)p = 0. (3.107)

As aresult, ep(t + x)F is a solution of the Golden Heat equation.

This solution can be generalized for arbitrary number k. Assume that

(wt+kx)p

up(x,t) = ep(wt + kx)r = e (3.108)

is a solution of Golden Heat equation (3.106).
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Lemma 3.4 It is obtained that,

Di(ep(wt + kx)p) = w ep(wt+kx)r (3.109)
(Do) (ep(wt + kx)p) = —k* ep(wt + kx)p (3.110)
Proof For proof, see Appendix B.3.2. O

By substituting ep(wt + kx)r in the Golden Heat equation (3.106) gives,
[(DX)? + Dylep(wt + kx)p = (—K + w)er(wt + kx)r = 0= K +w = 0 =

So, w dependency in terms of k as dispersion relation w = w(k) is obtained. Therefore,
er(k*t + kx)p is one parametric solution for Golden Heat equation.

Since equation is linear, we can consider superposition of these functions as;

Up(x, 1) = Z ar ep (K2t + kx)p (3.111)
k

with arbitrary coeflicients a; (more generally these are Golden periodic functions) as gen-

eral solution of Golden heat equation.

3.9. Golden Wave Equation

In previous section, we studied Golden Heat equation and found its general solu-
tion. In this section, we search general solution of the Golden Wave equation.

The standard wave equation is known as,

u 0%

By choosing ¢ = 1 and replacing partial derivatives with Golden derivatives as g—; —

(D%.)* and % — (D3%)* gives the Golden wave equation,

[(D3)? = (D) lup(x,0) = 0 (3.113)
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Let er(wt + kx)r be solution of Golden wave equation;

[(D})? — (DY) ]ep(wt + kx)p = 0. (3.114)

By using Lemma 3.4 , we have;

[(D})* = (D) ler(wt + kx)r (D) (er(wt + kx)F) = (D) (ep(wt + kx)r)

(=kD)er(wt + kx)p — W2 er(wt + kx)r

—[w?* + K*] ep(wt + kx)F = 0.

Then w? + k* =0 = w = +ik gives solutions for the Golden Wave equation as ex(ikt +
kx)r and ep(—ikt + kx)p. Since all linear combinations also become solution, the general

solution is,

Ux,t) = Z arerp(ikt + kx)p + brep(—ikt + kx)p (3.115)
k

where a;’s and b;’s are arbitrary constants(or more generally-Golden periodic functions).
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CHAPTER 4

HIGHER ORDER FIBONACCI CALCULUS

4.1. Higher Order Fibonacci Derivatives

In this section, we introduce Higher Order Fibonacci derivative operators () Dy..

Definition 4.1 For arbitrary function f(x),

kY rk
wDplf(x)] = f(f‘;,f)_ (pf,k(;p B %) 4.1)

where k € Z.

The operator (D}, we call the Higher k" order Golden derivative operator. It is the linear
operator.

For the case k = 1, it coincides with Golden derivative.

wDrlf(0)] = Delf(x)] (4.2)

Application of this derivative operator to function x" produces Fibonacci numbers;

mDp(xX") = () - (?0 W _ ¢ ()0, T =F, 7
(o —¢)x P
Now, by applying the Higher k" Order Golden derivative 4 D% to function x", we get the

Higher order Fibonacci numbers F...

(P x)" = (¢"x)" _ @) = (™" ol = ol
(¢ — ¢M)x ¢r =gt e

wDr[x"] =
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or
wDplx"] = F0x1 (4.3)
For negative values of k, this formula produces the numbers,
FOb =~k po

according to (2.28). For Higher k™ Order Golden derivative the Leibnitz and quotient

rules can be derived.

Proposition 4.1 (The Leibnitz Rule)

wDE(F(08(x) =@ DH(f(x) g(@"x) + f (¢x) wDf(g(x) (4.4)

Proposition 4.2 (The Quotient Rule)

. ( f(x)) _ wDE(f(0) g(¢*x) = f(@*x) @D (g(x) 5)
W g 8(¢*x) g (¢"*x) '
Example 4.1 We know that,
WD) = FOx 1, (4.6)
Now, we calculate this in another way, by splitting the power;
X n X n—m (44) X n—m I m X n—m
w©DF(") = DE("X"™) = D) (@) + (@) g DX
— F’g];)xm_l(QDk)n_an_m + (‘plk mmel(jc—)mxn—m—l
— I:Fr(r]:) (ka)n_m + F;ik_)m (Sﬂ,k)m] .Xn_l (47)

Comparing the results (4.6) and (4.7) gives next corollary.
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Corollary 4.1 For any m < n,

F,(lk) — F’(jl() ((pk)n—m + F,gk_)m ((p/k)m (48)

This corollary allows us to formulate following proposition.

Proposition 4.3

®) _ g gk k1 (k) k)
F,=F,,F ., +(1) TF, F . 4.9)
For k = 1 this gives equation (2.15) for Fibonacci numbers.
Fn:Fn—mFm+l+Fan—m—l
Proof Due to corollary,
F;(lk) — F,(,,I;) (‘pk)n—m + Fflk_)m (‘plk)m
by substituting (2.30) and (2.31), we get;
FO = FO(SFR, + DFL Y+ FE, (¢ FP + (D' FY )
= FREO (¢ +¢" )+ GO ER FE L+ CDMED, FY,
= FOFY L+ (D) FOFY 4 (1) FER, FO
= FO (L FP+ (1) FO )+ D' FO FY
(2.24)
= FO, F,(vfil + (=D EY Fr(zk—)m—l
O

Proposition 4.4 Addition formula for higher order Fibonacci numbers is given by,

F®

n+m

k k k+1 k k
= FO FY 4+ (=11 FO F9
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For k = 1, this gives standard addition formula (2.12).

4.1.1. Higher Golden Periodic Functions

Proposition 4.5 Every Golden periodic function D.(f(x)) = 0 (f(ex) = f(¢'x)) is

also periodic for arbitrary Higher Order Golden derivatives, i.e;

wDE(f(0) =0= Dp(f(x) =0, Dp(f(x) =0,..., (Dp(f(x)) =0. (4.10)

It means that relation f(epx) = f(¢'x) implies;

F(@*x) = f(¢*x), f(@’x) = f(@"x),..., fg"x) = f("x), (4.11)

where k =2,3,...

Proof Proof will be done by Principal of Mathematical induction. The statement is

valid for kK = 1. Let us show that it is valid also for k = 2.

F(@*x) = flplex)) = f(¢'(9x)) = fle(¢'x)) = f(¢' (¢ X)) = f(¢*x) (4.12)

Thus;

WDE(f(x) = oDp(f(x)

Now, let us suppose that the statement is valid for arbitrary k — 1 and k:

a-nDE(f(0)) = 0 and D (f(x)) =0

It means,
[0 = f¢" '), (4.13)
F(@*x) = fe™x). (4.14)
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Let us show that it is valid also for k + 1:

@y DE(f(0)) =0 and f('x) = f(¢" %)

Calculating;

F@0 = fden) 2 fp exn) = f—* %)
F@ 0 = fle*e'n) 2 (e’ x) = f(— )

for k + 1 derivative;

F@x) = f(@" 1)
((,0k+1 _ (p’k”)x

(k+1)D;(f(X)) =

we get,
x fE ) = f(=¢ ) f(@* N (=x) = f T (-x)
wnDp(f(0) = (T — ) = (1 — gkrl)x
@13 @ (=x) = f(@"(-x))
- ((pk+1 _ ()le+l)x
= 0.
Therefore,

D)) =0 = (@ x) = (@)

Example 4.2 We know that f(x) = sin (L In le) is Golden periodic function:

Ing
Dy(f(x) =0

Due to previous proposition, it should be also periodic according to every Higher k™
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Order Golden derivative, which means;
wDE(f(x) =0 & f(ex) = fl¢"0).
Indeed,

flgkx) = sin(& In |t,0kx|) - sin(& (Inl¢*] + lnlxl)) - sin(&klngo + & In |x|)
= sin (ﬂk + T In |x|)
Ing
) T (o
= sin (k) cos| — In|x|| + sin| —— In |x| | cos (k)
Ing Ing

= (=1 sin(i In |x|)
Ing

and,

f(@*x) = sin & 1n|<p’kx|) - sin(& (Inl¢*| +1In |x|)) - sin(ﬁkln 1| + é In |x|)

= sin|——"klng + ——In|x|
Ing Ing

= sin-mk + =—1n |x|)
Ing

= —sin (ﬂk T lnlxl)
Ing

= —|sin (k) cos | == In ||| - sin | - 1n [x]| cos (k)
Inp Ing

= (=D sin(i In |x|)
Ing

Therefore f(¢*x) = f(¢’*x), and it is periodic according to Higher k™ Order Golden

derivative.

As we have seen by Proposition 4.5, every Golden periodic function (k = 1) is periodic
for arbitrary k = 2,3,4,...

But opposite is not true in general. If function f(x) is k periodic,

wDHf(0)) =0 & f¢'x) = fe" ).
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it is not necessarily k = 1 periodic. This can be seen from following example.

Example 4.3 Function f(x) = sin (# In le) is Golden periodic function withk = 2, i.e

@ Dr(f(x)) = 0. Let us calculate Golden derivative of this function.

s T

< In lx]) = sin (25 In | x])
(= ¢)x '

sin (

D (f(x)) = ——*

In the numerator, we have;

) n L m T . T
sin Ing? In|px|| = sin 21n<plng0+21ngoln|x| = sin §+mln|x|

and

sin [ ——1n || + —
2Ing 4 n

Inlx) = sin{ -2 + —— In|x]
xl| = sin|-= x
2Ing 2 In(¢?)

_ . T T _ . T T
= Sin —§+mln|)€| = —SIn E—mlnl.ﬂ

sin[ -2 In|¢’x]
1 X
In 2 4

Then, as we can see the derivative doesn’t vanish,

cos (@ In |x|)

#0
(p—¢)x

Dy(f(x) =2

This is why this function is not the Golden periodic function.



4.2. Generating Function for Higher Order Fibonacci Numbers

Example 4.4 We know that application of Dy on x" generates Higher order Fibonacci

numbers;

WD) = FO ! (4.15)

So, these numbers can be represented also as,

Dy.(x")
k _ WHF
Fr == (4.16)
Definition 4.2 Function,
wF(x) = Z FPy" 4.17)
n=0

is called the generating function of Higher order Fibonacci numbers F ®. According to

Taylor formula;

w_1d

" n! dx"

w0 F(x) 3 (4.18)
in a disk of analyticity around x = 0. Explicit form of the series is;
WwF@) = F + FOx+ FOx? + FOX + FOx* + FO% + . (4.19)

Proposition 4.6 Generating function ¢, F(x) in domain |x| < ﬁ has explicit representa-

tion;

1
1 — Lix + (=1)kx?

wF() =) FPx" = (4.20)
n=0
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Proof To find the domain of convergency, we apply the ratio test:

(k) xn+l F(k)
= lim |[—=Y | = lim |- 1im |x| = ¢* |x
p n—oo F,(qk)x” n—oo F’gk) n—»ool | (’0 | |

For convergency p < 1 implies,

)

k
and as follows |x| < (}0) < 1 for any fixed positive value k. By using Golden derivative;

- = _ - | @15) O
(k)F(X) = Z Fr(lk)xn = F(()k) + Z XF,(lk)Xn 1= 0+ Z X Fflk) x" 1 = ) Z X (k)D}v;(Xn)
n=0 n=1 n=1 n=1

= x(k)D’;Zx":x(k)Dﬁ(x+x2+x3+...)

n=1

= x(k)D}f-x(1+x+x2+...)

Ixl<1 . 1 X fx—1+1
R e R e R

1 1
= e i ()= <o (75

1 1
4.1) (l—cpkx l—w’kx)

(" —¢™)x
_ X
(=g - ¢ty
_ X
1= (¢* + @) + (9 ¥
X

1-Lx+(=DFx2

Corollary 4.2 ,F(x) is the rational function with one zero at x = 0 and two single poles

at,
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Example 4.5 If k=1, it reduces to generating function for Fibonacci numbers;

X X

WF() = F(x) = ) F,x" = = 4.21)
n=0

I-x—-x* (1-ex)(1-¢'x)
If k=2, it gives generating function for even " mod 2" Fibonacci numbers;

- X X
F(x) = Frx" = = 4.22
@F () ZO T T a2 (-l — o) (*22)

If k=3, it is the generating function for " mod 3" Fibonacci numbers;

X

e
oF0 =3 Z et (1 - @01 - ¢*x) (4:23)

For arbitrary k, it represents generating function for " mod k" Fibonacci numbers;

IS x X
Foo = LS F o _ 424
Wk =7 ;:O: k 1— Lix+ (=12~ (1 -¢*0)(1 - ¢™x) 29

4.2.1. Entire Generating Function for Higher Order Fibonacci

Numbers

Applying ) Dy to e* in power series form;

D (o I x X X
0 Dr(e?) gttt

| |
g =
M %
= =
TR
% Mg
S|le 2%
I
=
-]
~=
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and so that,

(o)

X"
lﬁ@ﬁ:§ o e — (4.25)
HHF n+l1

L7 (n 4 1)

This series converges for arbitrary x. By using definition (4.1) from another side,

P

k_ rk rk_  k k_ rk k_ rk
X " (w ¢ )x (w ¢ )x (w ¢ )x _(w ¢ )x
X/ x efr—ef* A ﬁxe z —e\ ? wkw’kxe 2 —e 2
- -  _— 2 2 = 2
wDpe) = ————=e7"e Kk = k _ ok
(¢ = h)x (¢* =) x (¢ —¢*)x

Since ¢* + ¢’* = L; and ¢* — ¢’* = Fi(¢ — ¢’), we have;

., sinh (%(g - ¢)x)
e NPT
(o

Since ¢ — ¢’ = V5, finally we get;

1, sinh (Fkgx)

Di(e') = e2? (4.26)
KHF
(Fis)
Consequently, by equating both results (4.25) & (4.26), we obtain identity;
o F(k)1 1, sinh (Fk gx)
G X =ent 7 4.27)
i+ 1) (Fu L)

In particular case k = 1, it reduces to (3.18). This relation represents entire generating

function for Higher Order Fibonacci numbers. For x = 1, it is;

i F® _ sinh(Fkg)
n!

(4.28)
=0 (Fkg)
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or,

oo ; N5
oo 2l
n=0 ( 2 )

In equation (4.27), after replacing x — ix we get,

© F(’jr)l 1, sinh (Fk—lx)
ml Gy =t ————— 2 (4.29)
o (r+ D (iFSx)

By using the identity sinh(ix) = i sin(x) at the right hand side of equality, and splitting the

sum at the left hand side to even and odd parts with n = 2/ and n = 2] + 1 gives;

o g co ®) : N5
F y sm(Fk x)
2z+1 120, - 2042 1 20+1 ik x 2
+ — =7 (-1 =2t —— — 7~ 4.30
ZZ TR e Gl D= Filx (4-30)

Writing ¢~ = cos(%x) + i sin( &
g e'>* = cos(Fx) +isin( 3 x),

) (k) 00 (k)

\f \f
ol 121 Fyla 1 20+1 sm( k7 ) sm( k= )
—(=D'x"+i Yy ————(-D'x"" —cos( ) +zs1n( )
Zi 20+ 1)! £ (20 +2)! 2 R %y 2 b

By splitting to real and imaginary parts, we get generating functions for even and odd

Higher order Fibonacci numbers as;

P sin(Fi )
a2 = ( ) 431
2 are U e 2f #31)
and,
0 ® s1n( Flx )
20+2 1,21+1 2
——(-1)'x"" = sm( ) (4.32)
£ 21+ 2)! Fy By
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From these entire functions, several identities follow. From (4.31) follow identities;

1) For x = m,

Since cos(%x) = cos(’—erk), then;

2 () in(F, 2
Fyl 120 _ T Sm(F" 2 ﬂ)
@i T meo ) T

o @+ D! Fr5n

2

The right hand side vanishes for odd values of Lucas numbers L;.

_
2)x—(5,

Since sin(F) = 0, then;

(k)
Foi (—1) Q2n)* _

21+ 1) 5!

8

0

~

(98]
N
=

Il
5

S F w2 n n
Bl L N A Sy v '(F—)
L1 2+ VT = Ea COS( k2\/§) ST

For even values of Fj the right hand side vanishes.

4) x =2mn,
o F ;21 Sin(F" \/gﬂ)
—_—nen)? = cos(Lir) ——=
L4 20+ 1)) e F VB
5) x=1,
oo (k) ; N5
Fo (-1) = COS(&) Sln(Fk 2 )
£ (21 + 1) 2 Fkg

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)
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N Fg;)l | Y
+
e L2 ) (_) =0 (4.38)
£ (21 +1)! Ly
7 x= \FF

> _Fain n”
— (-1 == =0 (4.39)

; Q21+ 1)! S5U(F;)2

In a similar way from (4.32) follow identities;
1) x=n

o ) sin(F, L
2042 '(_l)z(ﬂ)zm _ sin(ng) ( \fz ) (4.40)
— 21+ 2)! Fk75”
For even Lucas numbers, the right hand side is zero.
2) x= \F’
Since sin(F ) = 0, then;
%) F(k) 2 20+1
e
ial+ s
3) x=%
oo F;I;l . o\ ’
—(—1)’(—) . sm(L —) sm(F ) (4.42)
;(2”2)! NG Fur “2\5 )
For even Fibonacci numbers F the right hand side vanishes.
4) x =2mn,
00 (k)
20+2 2041 _
1) 2n 4.43
Z(zl Hi-nen (4.43)
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5) x=1,

sy nfle) 205
— 21+ 2)! 2 Fkg
6) x= 7,
WA )
ol -l
L4 (20 +2)! L £ iy
_ 2n
7) X = L_k’

Since sin(%z—:) = sin(r) = 0, then;

o (k) 20+1
i(_l)l 2 ' =0
(21 +2)! Ly

From both (4.31) and (4.32) for x = —2—, we have;

3F,
o P a2 (L7
@i+ 01 5 T 2N\ s
1=0 : k kK2V5

and,

Lkﬂ'

00 (k)
Foi (=1Y
21 (20 +2)]

4.3. Higher Fibonomials

Definition 4.3 The product,

k-2k-3k...nk=n,,0x

w4
= —sin| ———
\/ng) m (sz\/g

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)
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is called mod k factorial. It is equal,

n

]—[ik: nik"

i=1

and for particular case it reduces to;
k=1 = n!modl =n!

Definition 4.4 Product of Fibonacci numbers defined as,

FiFo ... Fpy = nFik =F! yod ko
i=1

is called mod k Fibonacci factorial. For k = 1, it gives the Fibonacci factorial;

Fl’l!m()dl = F]FQ...Fn = Fn‘
For k = 2 and n is even, it gives the double Fibonacci factorial;
Fn!modZ = F2F4---F2n-

Definition 4.5 The product of Higher Fibonacci numbers,

n
(k) (k) k) — ®) = k)
FOFRY . FP = | FP = FPL,
i=1

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

is called the Higher Fibonacci factorial. This can be considered as the Higher Fibonorial

or generalized Fibonorial. In particular case k = 1, it reduces to Fibonacci factorial,

Ffll)! = F,\. For Fflk)! we have next formula;

Foy — FiFoFsp ... Fiyg _ FiFoFy ... Fop
" FkaFk...Fk (Fk)" ’

(4.55)
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or in terms of mod k Fibonacci factorial,

Fn! mo:
F®O1 = (F—)"k (4.56)
k

Definition 4.6 The higher order Fibonomial coefficients or shortly higher Fibonomial are

defined as;
(k) (k) (k)
n| _FUFy - ES0 F,)! (4.57)
Olml, ™ FOFO O FOFO ) '
For k =1, it reduces to Fibonomials (3.76),
nl F,!
ml,  Fon!Fp
For arbitrary k it can be represented by mod k Fibonacci factorials (4.56);
n F.!'Ye
(k)[ ] =7 dk, (4.58)
mip Fm-modk Fn—m-modk

Similar way as for Fibonomials, it is possible to derive recursion formula for
higher Fibonomials and interpretation of them in terms of Pascal type triangle. Higher

Fibonomials can be used to define higher golden binomials.

4.4. Higher Golden Binomials
Definition 4.7 The higher golden Binomial is the polynomial,

1, ifn=0;

W (x—a)p = (x B gpk(”_l)a) (x _ ()Ok(n—Z)(p/ka) o (x _ ()Ok‘p/k(n—Z)a) (x _ "O/k(n—l)a)’ ifn>1.

For particular case k = 1, it reduces to Golden binomial (3.81). These polynomials

satisfy the following formula.
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Proposition 4.7 (Factorization Property)

(k) (x - a)r;7+m = (k (x - (pkm(,l): (k) (x - cp'k"a):l (459)
= ® (x - go’k’”a)F ® (x - gok”a)F (4.60)
Proof Sketch of the proof would be in Appendix B.3.3. O

Theorem 4.1 Higher Golden binomial expansion is,

n

n D
<k><x+y>;=2(k>[m] (=D ey (4.61)
F

m=0

For particular case k = 1, it reduces to standard one in (3.82).

Proof Proof will be done by using the induction. Suppose for n, assumption in the

theorem is true. For n + 1, we will use the below factorization property such that,

1 k) i \' 2 k)
WwE+YE = w (x +¢ )’)F ® (x ty ")’)F = (x ty "y) *) (x +¢ )’)F
n
(4.61) & n ) e sk
=7 (x+¢y) Z(k)[ - X" y)"
m=0 m F
= 7”1 (m—1)
— Z ® (_l)kan—m+1ym90rkm
m=0 »mf F
& >n— (m—1)
+ Z ® (_l)k 5 n mym+190/km(pkn
m=0 "] F
“ 7n7 (m—1)
— Z ® (_1)kan—m+1ym90/km
m=0 |77 F
& >7’l— (m—1)
+ Z(k) (—l)k 5 n m m+1( 1)km k(n—m)
m
m=0 L AF

In the second summation shifting m — m — 1 gives us,

n
mm 1
® (x+y)n+l =... = Z(k)[n] (_ )k (m=1) X m+1ym‘,0/km
m=0 m F
n+1
f o m2) mmElym k(m=1) _k(n—m+1)
+ (k)|:m ] (-1 yi(=1 ¢
m=1
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Here in the first summation for m = n + 1, term equal to zero. Because the coefficient
) [HL]F = 0. Also, in the second summation for m = 0, term equal to zero. Because the

coeflicient [_"I]F = 0. Thus, we can continue as;

(k)(x+y)’}+1=... Yo

I
1 [M]
~
=
E
—=

] (-1 )km(m D p—m+1 m, rkm

[ n (- l>(m 2 m— —m+1_m k(n—m
T ni__l] (=D (b iyt
L F
[ m(m b KmELym rkm
= Z(k) ] (D
[ n m(m D n—m+1.m k(n-m
+ Z(k) i 1] (— DT eyt
L F

n+1 n n
k
= E ((k)[ ]¢'m+(k)
mF m —

m=0

m(m—1)
1] (pk(n—m+l)) (_ 1 )kT xn—m+1ym
F

It is easy to prove,

n tm [T 1 k(n—m) n—1
= + 4.62
(k)[m]F 4 (k)[ m ]F 4 ©lm-1 F (4.62)

by following the steps to get the equation (3.79). Therefore, we have;

n+1
n
x+y)pl = =
w0 (X +Y)p Z((k)[m

(p/km + w n on(n—m+l) (_1)k@ xn—m+1ym

m=0
(4.62) & o[n+1 (n-1)
. Jo =) —m+1
L V|| ey
m=0 F

]
Corollary 4.3 From this theorem, we obtain the identity,
W+ 1= (k)[ ] (-5 (4.63)
m=0 m F

Lemma 4.1 Higher order Fibonacci derivatives are acting on higher Golden binomials
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as,

wDr ® &+ = FO g+
n—1
FP o (x+ (DY),

_Fflk) ® (X _ (_l)ky)’;_l

WDy @ (X +Y)E

WDy @ (x=Y)E

For k = 1, these results give Lemma 3.2.

Proof To prove the first equality,

n
@61) n kw -
m=0 Mlr
n—1 (k)
Fn ! km(m—l)
- — . CDT T @D ()Y
F(k) 'F(k)'
m=0 * n—m m
n—1 (k)
Fn ! km(m—l) (k) 1
L IR —
k k "
m=0 Fr(t—)m' F’(")’
-1
= k k -
m=0 Fr(l—)m 1! F’(n)'
n—1 )
= F® n-1- (- e Ky
m=0 * p—-m—1° " m
-1
= F;)(k)(x"'y)l}?

To prove the second one,

n
n km(mfl) _
wDr w&+yE = wDp Z(k)[ ] (CIVANE '"ym]
m=0 m F
$ F®1 gt

= D D

n—m m
X D)
L g0y p®) WD 0™

n (k)
F ! m(m—1)
— = n 5 (_ k=5— X F]SI;) ym—l
m=1 Fn—m! Fy'!
_ i Fr(lk)! (_ ki'"(";l) n-m _m—1
= ECRTCR oy
m=1 % n-m** m;m-1°
-1 i’
(m—m+1) S Fﬁl)' KD G Dy m
- 7O gy Ty
m=0 F(n—l)—m' Fm :

(4.64)
(4.65)
(4.66)
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n-1 F(k)'
B Z FO gy =D
(n—1)-m
n—1 F(k) . F(k) |

= Dy D ()

(k) (k)
o Folpyom! Fm'!

m(m—1)
k 2

(_l)km x(n—l)—m ym

n-1 (k)
- (k)Z F,! (_l)k"“";”
F(k) F(k)y

(n— l)m m

— p® n
= F, Z(k)

= FP g (x+ (- 1)")

K= D=m ((_ 1)ky)m

—1 m(m—1) n—1-m m
N ] (-DF XD (- 1fy)

To prove the thirth equality,

n & m(m 1) n_m m
WDy w0 =5 = @Dy Z(k)[ ] (=Df (=)
m=0

= Z — (-1 ca X (k)DyF (=»™)

FO O]

n k)
F}(l ‘ km(m—l)
_ (_ T (—l)m F(k) ym—l
(k) (k) m
L p® 1 oy
n k)
Ffl ! m(m—1)
= m s GO
F l(1k)m' F (k) '
n—1 (k)'
(m—m+1) Fn . Fesm G y—m m+1  m
- —_r (= 2 -
FO o A =Dy
m=0 % (n-1)-m" :
n—1 (k)
F | m(m+1) 1
- S i e e
(k) (k)
F(n 1)— m' F ’
(k) !
m(m+1)
— F(k)Z ( 1)k72 x(n—l)—m (_y)m
(k) (k)
F(n - m’ Fm !
(k) |
— (k)Z (- 1)](7:1.(;;;—1) (_l)km Kn=D-m (=y)"
(k) (k) Y
F(’1 . m' F,’!
n—1 (k)
_ _ (k)z n—1° _ kw (n=D=m | /_1\k . mn
O ) e D |(=DF - (=]
m=0 % (n-1)-m*> - m *
k k n—1
= —FPu(x-DY) (4.67)
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As we have seen in (4.3),

_ pr(k) n—1
wDyx" = FOx 1

This implies to introduce monomials;

X"
Pf,lk) = W’ (4.68)
such that
WD (PP) = PP, (4.69)

By these monomials we can derive the following Taylor expansion for arbitrary polyno-

mials, according to Theorem (Kac, V. and Cheung, P., 2002).

Theorem 4.2 (Higher Order Golden Taylor expansion)
The derivative operator Dy is a linear operator on the space of polynomials,

and

Xt x"
FOL - FO.FD P

PP(x) =

satisfy the following conditions:

(i) PY(0) =1 and PP(0)=0 for any n>1;

(ii) deg(Py) = n;

(iii) @ DE(PY(x)) = PY (x) for any n > 1, andyyDi(1) = 0.

Then, for any polynomial f(x) of degree N, one has the following Taylor formula;

N N n
F@ = D (@wDp)'f OPP) = 3 (0D})'f (0) ka)' (4.70)
n=0 n=0 n -

Example 4.6 Let’s expand function f(x) = (x+ 1)’ in terms of the polynomials P®,
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k = 2. The Taylor expansion becomes,

(x+ 1)° _Z((Z)D V' (0)—— T 4.71)
After expanding,
3 2

1
(x+1)* = (D)’ f (0)—5- 7 + (@D’ f O—5- o) +(@DPf O FO +/(0) 7O
)

We should calculate the coefficients (2)D7.)* f, (2 D3)* f, (2yD3) f at x = 0. The derivatives

are,
(@D (x+ 17 = (D)) (x*+3x7 +3x+ 1) = FPx? + 3F7x + 3FY
(D) (x+ 1 = (D) (FPx* +3FPx+3F?) = FPFPx + 3FP FP
2) ) 3 12 2 1
(@D (x+1) = (oD} )( (2)F§2)x + 3F§2)F§2)) = ng)Féz)ng)
At x =0,

(D)) (x + 1)} LT 3FPN

(o DE)* (x + 1)} = 3FP!
x=0

(oD% (x + 1)} = F{
x=0

Finally, substituting them gives,

(x+ 1) = FP1 PO (x) + 3FP1 PO (x) + 3FP1 PP (x) + P (x) (4.72)

SmceF()' 24, 3F(2)‘ 9, 3F(2)‘:3 we have;

(x + 1)* = 24PP(x) + 9PT(x) + 3PP (x) + PP (x). (4.73)
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In the limit N — oo (if it exists) the Taylor formula (4.70) determines expansion

of function 4, fr(x) in Pﬁ,k)(x) polynomials.

w Jr(x) = Z((k)D;f )"(0) F)(Ck)y
n=0 n -

Proposition 4.8 Let,

f@) = Z an%
n=0 :

is an entire complex valued function of complex variable z. Then exists complex function

w fr(z) determined by formula,

ha n

Z
(k) fr(2) = Zanw
n=0 Fn !

and this function is entire.

Proof To check convergency of these functions we apply the ratio test;

1 apt

p = [ limj——|— (4.74)
. 1 A+l

wpr = |zl lim |—= 4.75)
e Fn+1 n

. n+ 1 1 an+1
= |z| lim -
n—oo | K n+1|| a,
n+1

T n+1

= lim|——| p
Soo | 0
" Fn+1

Since lim

n—00

70 = 0 and for entire f(z) = p =0, then xpor = 0 and  fr(z) is entire. O

n+1
As an example we introduce higher order golden exponentials:
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Definition 4.8 (Higher Order Golden Exponentials)

(o) xn
X —
0eF = Z %)
n=0 Fn !
X _ = kn(nfl) x}’l
wkr = Z( ! *))
n=0 F’l

where,

Fk F2k & Fnk:Fk'sz'F3k---Fnk

F(k)!:F(k)-F(k)'F(k)...F(k):—'—'

(4.76)

4.77)

478
F' (4.78)

For the particular case if k = 1, it reduces to exponential functions in (3.41) and (3.42).

Proposition 4.9 The Higher k" order Golden derivative of these Higher order Golden

exponentials is found as;

A A
w D (wer) A wer

wD} (wEF)

for an arbitrary k.

Proof

[ee] A n
w&Dr [ ﬂ)

X Ax
WD (wer) 70
n=0 n -

[Se]

_ Z v b Dp(x")
B (k)
n=1 Fn !
b /lnF(k)xn—l
n
k
FO

n=1
o0 (o]

-1k
A wEZ"

/ln+1xn

/lnxn—l
- Z ® 4y Z
n=1 Fn—] ! n=0

(o0

Fo

(4.79)
(4.80)
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WD} (wEr) =w Df [Z(—l)
n=0

n
gt (19

FO!

|

Z 1 kn(n I)An(k)DF(xn)
= 7o)

k”(" ]) F() n—1
Z(_ Foy
1
k=) 1) a X
Z< R x
J zthin pias! x"
Z< D B

k(n +n)
AZ( D (k),

k(n +n) n+n (ﬂx)n
A Z( D 7o)

n(n—1) /l
AZ( D e

et (=D Ax)"
JZ( ) TR

Dk
ﬂ(k)E% o
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CHAPTER 5

CARLITZ CHARACTERISTIC POLYNOMIALS AND
GOLDEN BINOMIALS

5.1. Carlitz Polynomials

In Section 3.6, we have introduced the Golden binomials. In this Chapter, we
are going to relate these binomials with characteristic equations for some matrices, con-

structed from binomial coeflicients, which was derived by Carlitz (Carlitz, L., 1965).

Definition 5.1 We define an n + 1 X n + 1 matrix A, with binomial coefficients,

L)

wherer,s =0,1,2,...,n. Here,

"_!’ / k < ;
{1
s > n.

First few matrices are,
n=0 =>r=s5s=0= A1:>(0)]:(1)
n=l =rs=01= A2:>( " )—: (?) @):[O 1)
(AL =5/ (1) (0) 11

o (6
n=2-=rs=0,1,2 = A; = i = (é) (
( ) G
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Continuing, the general matrix A,,; of order (n + 1) can be written as,

An+l =

- o o o O
~ = O O O

A W o= O O
N W N = O
e e e T e T

(n+1)x(n+1)

We can notice that trace of first few matrices A,,; give Fibonacci numbers. It would be

shown in Theorem (5.2) equation (5.14) and it is valid for any n.

Definition 5.2 Characteristic polynomial of matrix A, .+, is determined by,

Pi1(x) = det(x] — Apy1) (5.3)

Let’s find first few polynomials;

n=0: Pi(x)=1-x

n=1: P,(x) =det(x] — Ay) =

n=2: P;(x) = det(x] — A3) =

n=3:

P4(X) = det(XI — A4) =

X -1
=x—x-1
-1 x-1
0 -1
x—1 -1 |=x-22-2x+1
-1 -2 x-1
x 0 0 -1

0 x -1 -1
0 -1 x-2 -1
-1 -3 -3 x-1

30 +6x2-3x-1
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Corresponding eigenvalues are represented by powers of ¢ and ¢’;
n=0 = x =1

’

n=1 = x=¢, x=¢

n=2 = x :goz, Xy =-—1, x3:go'2

n=3 = x;=¢ n=-px=—¢, x=¢">
Comparing zeros of first few characteristic polynomials, with zeros of Golden
Binomial (3.84), we notice that they coincide. According to this, we have following.
Conjecture: The characteristic equation (5.3) of matrix A,,,; coincides with Golden

Binomial;
Ppyi(x) = det(x] — Ay = (x = 1 (5.4)

As a first step to prove this conjecture we represent Golden binomials in the product form.

Proposition 5.1 The Golden binomial can be written as a product,

=1t =] | (x - ¢le™) (5.5)
Jj=0
Proof We have Golden binomial in product representation as;

n—1
(x+y)r = 1—[ (x — (-1 (,0”_1 go_ij) (5.6)
=0
Since,
A AR A
el
@ ®

then, after choosing y = —1;

=0

n—1
c-Dp =] [(r- /e )
J
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Shifting n & n + 1 gives,

-0yt = | [(x= 1 ¢ ™)

=0
R ) —1%

= (X—(—l)](pn( ))
=0 (p.l(p/
=] 5)
=0 e ¢’

= [](-¢)
=0

Here, at this step if we make j = n — m substitution,
(X— 1);1:+1 — 1—[ (X— ()Dm(P/ n—m )
m=0
This formula explicitly shows that zeros of Golden binomial in (3.85) and (3.86) are

determined by powers of ¢ and ¢’. O

Corollary 5.1 We can directly say that eigenvalues of the matrix A, ., are the numbers,

T T NN AN (5.8)

As it was shown by Carlitz (Carlitz, L., 1965) this product formula is just charac-
teristic equation (5.3) for matrix A,,;. Since zeros of two polynomials det(A,,; — xI) and

(x—-1 ;’;“1 coincide, then the conjecture is correct and we have following theorem.

Theorem 5.1 Characteristic equation for combinatorial matrix A, is given by Golden

binomial:

Ppii(x) = det(xl = Ayy) = (x = D! (5.9)
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5.2. Powers of Matrices Afl ., and Higher Fibonacci Numbers

Proposition 5.2 Arbitrary ' power of A, matrix is written in terms of Fibonacci num-

bers,

Fn— Fn
Al = ! (5.10)
Fn Fn+1

Proof Proof will be done by Principal of Mathematical induction. For n = 1,

0 1 Fy Fy
A2 = = .
I 1 Fi F,

Forn = 2,

Suppose for n = k,

is true. Then forn =k + 1,

Firon  Fy 0 1 Fy  Fr+ Fr Fr  Fia
A’;“:A’;Az:{ ]( = - )
Fr  Fia I 1 Fiyr Fr+ Fra Fiy1 Fro

This result can be understood from observation that eigenvalues of matrix A, are ¢ and
¢’, and eigenvalues of A] are powers ¢", ¢™ related with Fibonacci numbers.

O

As we have seen, eigenvalues of matrix A are 902, 90’2, —1. It implies that for A7,
eigenvalues are ¢*", ¢’*",(—1)", and this matrix can be expressed by F %) Higher order

Fibonacci numbers due to (2.30) and (2.31).
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Proposition 5.3 Arbitrary n'* power of As matrix can be expressed in terms of Higher

order Fibonacci numbers F ,(12),

QFY -3F? +2(-1") QFY +2F? +2(-1)") @BF -2F2 - 2(-1)"
.1
Ai=g| FEPHF2+D)  OF -4F2 + (1)) @F) = F2 - (1))
(2) 2 n ) 3 n () (2) n
GBFY —2F? —2(-1y") 8FY —2F? —2(-1y") (TFY =3F% +2(-1)")
Proof Let’s diagonalize the matrix As,

¢ =05 A; o3,
where ¢3 is the diagonalize matrix. Thus,

Az =03 @3 0'51.
Taking the n” power of both sides gives;

Ay = (03¢5 05) (03 $305) ... (03¢5 03") (03 ¢303)
—— ——

1 1

Therefore, we obtain;

Al =03 ¢ 05! (5.11)

By using the diagonalizing principle o3 and 075! matrices can be obtained as,

1 -0 § -

2
0'3—5 1 3 1
e -3 ¢
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and,

20'+2)  _ H¢'+2) 2(2¢"-1) , _ _
S(p—¢") S¢'(p—¢")  S¢'(p—¢") ) ¢+ 2 2(1 2"0) (2 + 90)
ool = 3 3 _3 - = 345 35 _3¥5
3 5 5 5 \/g 2 2 2
_ 2(p+2) Hp+2) 2(1-2¢) _ L _ ’
5(e=¢") 5p(e=¢") 5p(e—¢") (p+2) 2(1-2¢) 2+¢)

Since eigenvalues of matrix A% are (pz, -1, cp’z, the diagonal matrix ¢; is,

g0/2 0 0
=10 -1 0 [, (5.12)
0 0 90/2

and an arbitrary n™ power of this matrix is,

(90/2)n 0 0
=l 0 (-1 0 (5.13)
0 0 (¢

Now by using (5.11),

| QFY -3F% +2(-1)") QFY +2F? +2(-1)") GBFY -2F? -2(-1y")
Ai=z| FEPHF2+D)  OF) -4F2 + (1)) @F) - F2 - (-1))
GFY -2F? —2(-1) BFY -2F? —2(-1)") (TF? -3F?, +2(-1)")

is obtained. O

We can expect that these results can be generalized to arbitrary matrix A, ;. Since
eigenvalues of A, are powers ¢",¢”, ..., for AY | eigenvalues are ¢"V,¢"", ... But these
powers can be written in terms of higher Fibonacci numbers (2.30) and (2.31), and the
matrix A", | itself can be represented by higher Fibonacci numbers Fj(\;’). For powers of

matrix A, the following identities hold.
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Theorem 5.2 Invariants of A*, | matrix can be found as;

re(at) = Ceop 514
det(AL,)) = (-1 (5.15)

For k =1, it gives;

Tr(Ay) = Fau,
det (Aps1)

n(n+1)

(=D

Proof Let’s diagonalize the general matrix A, as,

-1
Oni1 = 0,41 Apsl Ot
where ¢, is diagonal. Thus,
-1
Apil = Opit Pns 0,41

Taking the k™ power of both sides gives;

k -1 -1 -1 -1
An+1 = (O n+1 Dni1 0-n+1) (O n+1 Oni1 0-n+1) e (O a1 Dni1 0-n+1) (O n+1 Dni1 0-n+1)
~——— — ——— ———

I 1

and,
A§+l = On+1 ¢§+1 O-;Jil' (516)
After taking trace of both sides and using the cyclic permutation property of trace;

THAL, ) = Tr (Tpar $hyy 0ty) = Tr (] Opat ¢h,) = Tr( ¢5,,) = Tr (¢4,
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we get,

Tr(AﬁH) =Tr (¢]:1+1)

The eigenvalues of matrix A, in (5.8), allow to construct the diagonal matrix ¢, .

Tr(A

k
n+

D=Tr

giving,

0
0
Tr(A*, ) =Tr

(")t

0 0
0 ‘pn—l QD’ 0
0 ‘pn—Z 90/2
902"0/11—2 0
(p‘p/n—l
0 ¢
0 0
(@1 0

0 ( ‘pn—Z S0/2)1{

( 902 (p/n—Z)k 0

0 0
0 (g
0 0

Since trace is the addition of the diagonal elements of the matrix,

Tr(A%, )
Tr(A%, )

@+ (@) "+ ()
((pk)n + (QDk)n_IQD/k +.. .+ (pk((p/k)n—l + ((prk)n

(5.17)
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The powers (¢*)" and (¢’*)" are known from equations (2.30) and (2.31), and substituting

it gives;

Tr(A%, )

(pp'==1)

(¢ FO + (D FO )+ (¢ FO 4 (D FO ) o+
+((pk F(k) + (_1)k+1 F(k)) ((p/k)n—l n (golk)n

G (FO+FO (") + FO 0" + ...+ F(">(¢”<)"—1)
+(_1)k+1 ( Ff;k) F(k)z(go'k) + F(k)3(90/k) + F(()k)(gofk)n—l)
+(""

Fro Fone, , Fo-op
M (¢") + ——
F Fy Fy

Fo-ve  Fo-ox, , Foay Fo o
+(_1)k+l( (n—1) + ( )(QDk)+ ( )((pk)2++FO(QDk) 1)
k

Vi F 7, n—
wW+m+ﬁw%j

Fy Fy Fy
+((p/k)n
Fin (n Dk (n Dk " Fv, 1o kot
1 1 R oy
F D+ —=(=D"" + F (@ )(@™)
Foiyi Fo Fa ,
—k(_l)k+1 + —( )k+1((,0 )+ F—(_l)k+1((;0 k)2

FO m— rk\n
+...+—(—1)k+](p N (L)

Fin - F(n Dk

n—-2)k ’
P (=D + (>(n%6+
Fn— n—1))k rk\n— Fn Fn ’
+ (I(?k )) (_1)]((901() 2 ( l)k( 1)k+] ( Z)k( 1)k+1( k)
F(n 3k

( 1)k+1( rk)2 + .+ F(_l)k+1(‘;0,k)n_2 + ((p/k)n
k

Fkn - F(n 1k
Fy

+F(’l 2)k (( l)k 1k +( 1)k+1 /k) 4 R F(” 3)k (( 1)k("0/k) +( 1)k+1(901k) )

(( 1)k (_1)k+1)

+. . 4= ((_1) ("D/k)n—2 + (_1)k+1((p/k)n—2) + ("le)n

Fn n n
£¢ “Wluu<m+(”ﬂn’M+(m
(n 3)k 1k rk\n+2
DM+ (=1) + . Fenw> (1 +(-1))
k
+(90”‘)
Fk" k rk\n
F ¢ + (")
& ‘,Dk + Sle F;k) + (_1)k+l F(k_)]
Fy n
Fkn k Fk(n—l)

F

sk L kn k+1
© +(D — 4+ _1
Fk ( ) Fk
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1 ,
F (Fkn‘Pk + @ Fpp + (=1 Fk(n—l))

( _ /kn) ()Ok + ‘p/k (()Okn _ ()Olkn) + (_1)k+1 ((’D(n—l)k _ (p/(n—l)k)]

k(n+1) (,len(,ok + ‘,OleOkn _ (P/k+kn + ( 1)k+1 (n—1k ( 1)k+190/(n—1)k]

Fk‘P 90'[
[

Fk‘P 90' 4

11 1\ 1\
L : [¢k(n+l) _ gk _ (__) o+ (__) O (1) gDk
Fro—o ¢ @

PR (n=Dk
)]

i 1 [ k(n+1) Sle(n+1) _ (_1)/0190]((1—}1) + (_1)]("0]((11—1) _ (_1)1{90]((11—1)
Fro—y¢
+(_1)k(_1)k(n—1)()0k(1—n)]

1 1 n 7k(n n n n n
F , [(pk( +1)_(pk( +1) — (- l)k gDk(l )+( 1) (- 1)k (- 1) —k _k(1- )]
kP —¢
1 1 n /K(n n n n —-n
F ,[ k( +1)_(pk( +1) — (- l)k k(1- )+( l)k k(1 )]
kP —¢
1 1 IK(n
F _/[ k(n+l) ‘pk( +1)]
kP—¢@
1 ()Dk(n+1) _ Solk(n+l)
Fy p—¢
1
—Fun
Fr k(n+1)
Finen
Fy

To prove det (A]f, +1) relation, we take the determinant of both sides in (5.16),

det (A%,,) = det(our ¢,y o) (5.18)

By using property of determinant,

det(AB) = det(A) det(B) (5.19)

we obtain,

det(AL,)) = det(ou) det(gh,,) det(ol,)
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= det(0,41) det(o-;il) det((ﬁﬁ“)
= det(0'n+1 0';11) det((ﬁﬁﬂ)

o
a
—t
—~
b

fot)

5+1)
det(AL,)) = det(r) det(¢},,)
det(AﬁH) = 1.det(¢>ﬁ+1)
det(ak,) = det(gt,,)

Since the matrix ¢’,‘l .1 1s known from (5.17), the above equation becomes;

det(Ar,) = @@ @D @ (e ()
_ (()Onk Dk =Dk 2k ()Ok) ("le @ Dk =Dk ()O/nk)
— ( ‘pnk+(n—1)k+(n—2)k+...+2k+k) ( ¢ k+2k+.,.+(n—2)k+(n—1)k+nk)
_ Q=D+ =2) 4t 241] o K424t 12+ n]
_ ) ()
- @)
= e ]
(W’;—l) (_1)kn< ]
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CHAPTER 6

MOD 5 CONGRUENCE OF F{ = F,y FIBONACCI
NUMBER SUPERPOSITIONS

In Section 5.1, we have seen the matrix,

A (6.1)

Il
- O O
o= O
—_— =

with integer valued elements. This means that an arbitrary power of this matrix A% is
also with integer valued elements. If we compare this with representation of matrix A
given in Proposition (5.3), we observe that, elements of this matrix are combinations of
F? = F,,-Fibonacci numbers with integer coefficients divided to 5. This result implies
that 9- combinations of these even index Fibonacci numbers are divisible to 5. These are
the mod 5 congruence relations.

To get the column matrix elements of matrix A%, we use;

1 2FY = 3F? +2(=1)

Ailo| = FP+F® + (=1 |, (6.2)
0 3F,Y - 2F2 - 2(-1)"
0 2FY +2F? 4 2(=1)

At 1| = % 6FY —4F? + (=1 |, (6.3)
0 8FY —2F? —2(=1)"
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0 3FY —2F?, = 2(=1)"

1
A0 = S| 4F7-F2 -1 | (6.4)
1 TFY = 3F2 +2(=1)"

6.1. Congruency of Fibonacci and Lucas Numbers

Matrix elements of A% are all integer. Then, we should show their divisibility by

5, which is stated at the following proposition.

Proposition 6.1 In the equality (6.2) all coefficients,

2F,) =3F2 +2(-1y"  FP+ FY =3F2 +2(=1)" oo F, = F\2, +2(=1)"

= 5 5 5
_ Foy = Frpoy +2(=1)"
5 2
y o B ED A G Fat Fay+ (1)
n 5 5 B
3R -2F2 21y 3FY - F2 - F2 = 2(=1)" o4 Fyy = F, = 2(=1)"
o= 5 - 5 - 5
_ Fogury = Fogny — 2(=1)"
- 5

are integer.
Here, since ¢, = a1, it is sufficient to prove only that b, and c, are integers. By

using equation (2.2), b, and a, can be written as,

Lo,_1 +(=1)"
bn — 2n—1 5( ) , (65)
Ly, +2(-1)
a, = 2n—-2 + ( ) ) (66)
5
To prove this, we should use following helpful proposition from (Koshy, T., 2001).
Proposition 6.2 Lucas numbers,
L,=(-1)"-2"""=2.3" (mod5) (6.7)
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Proof (Proof of Proposition 6.1) Firstly, we should show that,

Ly, + (-1)" =0 (mod)5)

If we choose n — 2n — 1 in the Proposition 6.2,

L2n—1 (_1)271—1 . 2(2n—1)+1 (mod 5)

—-2%)" (mod 5)

-(5-1)" (mod5).

From Newton Binomial formula,

(5—1)":2(") 5K (=1)F = (=1)" (mod 5).

k

k=0

Then we can deduce that,

Ly = (="' (mod5).

It says that b, is integer. Secondly, to prove a, is integer, we should show that;

Ly o, = 2-(=1)"" (mod5)

or,

Loy = 3-(=D""' (mod5),

where n — 1 = m. To prove this, we replace n — 2m in the Proposition 6.2;

LZm = (_1)2:11_22m+1 (m0d5)

(6.8)

(6.9)

(6.10)

(6.11)
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2-4" (mod5)

e
Mz
*

=3-(-D" (mod)5)

3-(=D)"" (mod 5)

=2 (=™ (mod 5)

2-(=1)" (mod)5).

After shifting m — n — 1, we get the desired equality,

Lo = 2-(=D" (mod 5).

Therefore, it says that a,, is also integer.

Our next goal is to prove that matrix elements in (6.3) and (6.4) are also integer.

Proposition 6.3 Matrix elements given in (6.3),

(2) @ n
2FP +2F? +2(-1)

5 b
6F,) —4F? +(-1)"
5 2
8FY —2F?, —2(=1)"
5

are integer. Or equivalently,

2F? +2F? +2(=1)" = 0 (mod5)
6F? —4F? +(=1)" = 0 (mod5)
8FP —2F? —2(-1)" = 0 (mod5)
Proof We have for the first one,
2FP +2F? +2(=1)" = 0 (mod5)
F,(f) + F,(12_)1 +(-1D" = 0 (mod5)
Fr,+Fyo+(=1)" = 0 (mod))
Ly +(=1)" = 0 (mod5)

O
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Ly = (-1 (mod 5).

Since it is just equation (6.9), then;

2 (2) n
2FP +2F7 +2(-1)

is proved. Secondly,

6FP —4F? + (-1)"

6F2, — 4F 1) + (—=1)"

2Fy, +4(Fyy — Fapn) + (1)
2F, +4F5, 1 + (=1)"

2(Fon + Fop1) + 2F 91 + (=1)"
2 (Fapsr + Fopp) + (1)

2L, + (—1)"

4L,, +2(-1)"

(=1) - Ly,

Ly,

Ly,

Since this is equation (6.11), then,

6FP —4F? +(-1)"

is proved. Thirdly,

8F® —2F? —2(-1)"

8Fy, = 2F 5, —2(-1)"

6F, +2(Fay — Fopn) — 2(=1)"

6F, +2(Fpp-1) = 2(=1)"

0 (mod 5)

SO o o o o o o O

—2(=1)" (mod 5)
2(-1)" (mod 5)
3= (mod 5)

(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)

0 (mod)5)

0 (mod 5)
0 (mod5)
0 (mod )5)
0 (mod )5)
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4F2n + 2(F2n + F2n—1) — 2(—1)" = 0 (I’I’ZOd 5)
4F,, + 2F5,41 — 2(—1)” = 0 (mod 5)
2F5, + 2 (F,, + F2n+]) - 2(—1)” = 0 (WLOd 5)
2(F2n + F2n+2) - 2(_1)n = 0 (mOd 5)
2(Fy + Foppa — (1)) = 0 (mod5)
2(Lopy — (1)) = 0 (mod5)
‘We know that if;
c-a=c-b (modn) (6.12)
then,
n
a=b (mod —), 6.13)
d
where d = gcd(c, n). Therefore, we have;
Lops1 —(=1)" = 0 (mod)5)
Ly, = (=1)" (mod)5)

By shiftingn — n -1,

Ly = (=)' (mod5)

gives equation (6.9). So,

8FP —2F? —2(-1)" = 0 (mod5)

is proved. O
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Proposition 6.4 Matrix elements given in (6.4),

3FY = 2F? = 2(=1)"

5
2) (2) n
4FP - F? —(-1)
5
(2) 2) n
TF? —3F? +2(-1)
5

are integer. Or equivalently,

3FP —2F® —2(-1)" = 0 (mod>5)
4FP - F® —(=1)" = 0 (mod5)
TFP —3F? +2(-1)" = 0 (mod 5)
Proof For the first congruency,
3FP —2F® —2(-1)" = 0 (mod>5)
3F2, = 2F2,0 = 2(-1)" = 0 (mod5)
Fop +2(Foy = F202) =2(=1)" = 0 (mod5)
Fo +2F5,_1 —2(-1)" = 0 (mod)5)
Fop+ Fopy + Fapoy =2(=1)" = 0 (mod5)
Fopr + Foy =2(=1)" = 0 (mod 5)

L,, = 2-(-1)" (mod5)
Ly, = (=3)-(=1)" (mod)5)
L, = 3-(=D)"' (mod5)

Since this is just equation (6.11), then,

3F@ —2F? —2(=1)" = 0 (mod5)
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is proved. Secondly,

4FP —F2 —(-1)"

4F5, — Fopp — (=1)"

3Fy, + Fop — Fopy — (=1)"

3F2n + F2n—l - (_l)n

2F2n + F2n + F2n—1 - (_1)n
2F2n + F2n+1 - (_1)n

F2n+F2n+F2n+l _(_1)n

Fay + Fopyp — (=1)"
Loy — (=1)"

L2n+1

Shifting n — n — 1 gives,

h
(]
i
L

I

h
o
T
L

I

This is equation (6.9), then,

4FP —F? — (-1 =

is proved. To prove the third congruency,

TFP —3F? +2(-1)"

TFap = 3F2, +2(=1)"

4F2, + 3 (Fyy — Fapp) + 2(=1)"
4F5, + 3F5,- +2(-1)"

Fou +3(Fop + Fopy) +2(=1)"
Fon + 3F 41 +2(-1)"

o o o o o o o o o

(_

(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)

1" (mod 5)

(=)' (mod 5)
(=" (mod 5)

0 (mod5)

(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)
(mod 5)

o o o o o O
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2Fn41 + Fap + Foppy +2(-1)"
2F541 + Fopn +2(-1)"

Font + Fongr + Fopgn +2(=1)"
Fouer + Fones +2(=1)"

Lopr +2(-1)"

L2n+2
Lot

After shifting n + 1 — m, it gives,
L,, = 2(-D)"

Since it is equation (6.11), then;

TF® —3F? +2(=1)"

is proved.

(mod 5)

(mod 5)

(mod 5)

0
0
0 (mod)5)
0
0 (mod)5)

2= (mod 5)
2= (mod 5)

(mod 5).

= 0 (mod)5)
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CHAPTER 7

BERNOULLI FIBONACCI POLYNOMIALS

Definition 7.1 The generating function for Bernoulli polynomials is defined by Taylor

series expansion,

(o)

= ) B0, (7.1)

n=0

7z &

where B,(x) are the Bernoulli polynomials in x, for all n > 0.
Bernoulli numbers are a special values of the Bernoulli polynomials B,(x), b, =

B, (0). The generating function for Bernoulli numbers is;

z N
7 = Zb,%. (7.2)

n=0

First few Bernoulli polynomials are;

By(x) = 1
1
Bl(X) = X—- 5
1
By(x) = xX*—x+ 3
3 1
Bi(x) = x’- Exz + 7x
1
B = o3 o —
4(X) X X+ X 30
5 1
Bs(x) = x - §x4 + §x3 - gx
5 1 1
B . T v
6(X) X X+ 2x 2x + )
Corresponding Bernoulli numbers are;
1 1 1 1
bp=1, bi=—-=, by=—=, b3=0, bs=—-——=, bs=0, bg=—,...
0 1 > 2= 5 3 4 30 5 6= 15

Following propositions are valid for Bernoulli numbers and polynomials (Kac, V. and
Cheung, P., 2002).
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Proposition 7.1 [t is known that for odd Bernoulli numbers;
b1 =0 (7.3)

wheren=1,2,...

Proposition 7.2 Derivative of n™ Bernoulli polynom gives,

4 Bo(x) = B(x) = n B,) (7.4)
dx

Proposition 7.3 For any n > 0, we have,

By(n)= Y (’;) b, X (7.5)

J=0

Proposition 7.4 For any n > 1, we have,

n—1
(n) Bi(x)=n X!
=0 ]

J:
Corollary 7.1 For any n > 2, from previous proposition if x = 0;
n—1 n
o
=0\

Proposition 7.5 For any n > 2, we have;
B,(1) = b, (7.6)

Definition of Golden exponential function ey in (3.41) suggests to introduce gen-

erating function and corresponding polynomials, similar to the Bernoulli polynomials.

Definition 7.2 Generating function for Bernoulli-Fibonacci polynomials BE (x) is defined
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by series expansion,

z e 00 Zn
AT (1.7)
n=0 .

e;—lz F,\"

The Bernoulli-Fibonacci numbers are a special values of polynomials BE (x) such that,

b = BL(0), (7.8)
with generating function,
z 7
T ;bn N (7.9)

For the first few Bernoulli-Fibonacci polynomials we have,

By(x) = 1
Fooy = X _ 1
B = w0~
X 1 1
BF = 2—_+___
200 = Yt e TR
F3! F3! 1 21
Bi(x) = -2 + e+ = - ——F
300 = = X(Fl!(le)z Fl!) Rl F, 3
Fu! F)!  F,
BF _ 4.3 + 2 _
a0 = x X(F3!F2!) ST
Fy! Fy! 1
+ x|- +2 - —
FIEY  “FIFIF Fyl
Fy! Fu! T U
+ L3 . P2l - —
(F)Y (F)PFY  Fy! (F3)? Fs
FS' F5' F5‘
BF N ) i +
() = x x( F4!F2!) UTEY T RIE)
L oof Fst o, Fst Fsl
FalFy " T(FRF (Fa))
1 Fs! Fs! Fs! Fs!
+ x|-—+ +2 - +
Fil D FNF? RIS FFE! F(Fa )
Fs! Fs! Fs! Fs! Fs! 2 Fs
S RS . A O . S S . SR . A S
(FY (R Fs C(F0)PF) (FRFsl CFlF Bl Rl
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In Figures 7.1, 7.2 and 7.3 we compare first three Bernoulli and Bernoulli-Fibonacci Poly-

nomials on interval —1 < x < 2.

Figure 7.1. Graph of the polynomials B;(x) and Bf (%)

Since,
r 1
Bi(x) = By (x) + 5

then we have the constant shift by % in vertical direction.

Figure 7.2. Graph of the polynomials B,(x) and B} (x)
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Since,
r 1
B>(x) = B, (x) — 3

we have the constant shift by —% in vertical direction.

~5 —Bg(x)

Figure 7.3. Graph of the polynomials B;(x) and B§ (%)

Since,

2 1
Bs(x) = B§(x)+(% - g + §),

then we have the parabolic shift in vertical direction. For example, at x = 0, we have
shifting on % units in vertical direction.
We notice that all coefficients of Bernoulli-Fibonacci polynomials are Fibonacci

rational.

Proposition 7.6 (Compare with Proposition (7.2))

Golden derivative application to Bernoulli-Fibonacci polynomials BE (x) gives;

D}(B}(x)) = F, B}_,(x) (7.10)
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Proof Taking Golden derivative of both sides in the equation (7.7),

Dx z e? _ Dx ZBF
et -1) o F'
z Dp(ep F F Z F 22
S EE — D BF(x) + BF (x)—— + BE (x)— + ...
-1 P\ Potd+ By Oy + B0y

For the left hand side, Golden derivative can be calculated from equation (3.46). For the

right hand side, it is clear that;

Dp(By(x)) = Dyp(l)=

Then,

R
Z;Bf ;n! =
s BF Zn+l
2B

& Zn+l
F _
Z B, F!
n=0 n
i n+1
Foon% _
Z B, F1
n=0 n

From equality of these two series, we have;

D (BY,,(0)

Bf(x) =
Fn+1
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Since bf = BF(0), we can find Bernoulli-Fibonacci numbers from Bernoulli-

Fibonacci polynomials as;

1 1 3 5 101
by =1, bt =-1, bgzz, b§:—§, bf:E, bgz—g, bgzg
Proposition 7.7 (Compare with Proposition (7.3))
Another representation for Bernoulli Fibonacci Polynomials is;
n n '
Bl (x) = H bt X (7.11)
2,1

=0
Proof We show that if (7.11) is valid then Bf (x) are satisfying equation (7.10).

: 5 [n : n n n
Dy [BIw)| "= Df ZH bh X :D;HO bE x| | BF X+ bf]
= LF F F g
n n n
= Dj ]ng”+ by X4+ b,f]
0], 1 g
[ n—1
n
= Dj H by X"
=0 L1r
n—1 Efl
_ F X —
- ]] b/ DF (xn j)
j=o L/F
n—1 *n
S
=0 L1r
n—1
F,!
= Z bJF F,_; X!
L4F, I F)!
n—1
F,!
- Tl 2
L4F, !
n—1
= Fn Fn_l! bF X" !
L4, FjL
"R BL®
O

Proposition 7.8 (Compare with Proposition (7.4))
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For n > 1, Bernoulli-Fibonacci polynomials can be calculated recursively by:

n—1

Z["] B (x) = F, x"!
l F

1=0
Proof We know the generating function,

Multiplying this by e7;

and taking the difference, one gets;

n

Zﬁ( -1)=> (Bix) e;—B,fu))FZ,
=0

n n

zen = Z (Bf(x) ey — B,f(x)) ;n'

n=0 n:

D () = > (Blx) €. - Bl (x) Ifn,

n=0 n:

D;( (;x)‘"] = > (Bi ) € - BL () ;n‘
n: n=0 n:

=

D;( ) ZFx!"] _ Z(;(Brf(x) e;—B,f(x))FZ ,

n n

ZM = > (Bl e;—B,f(x))FZ '

n=1 F"’ n=0
b Zn Fn xn—l i - . 1 had - Zn
Z F,! _ZBI (x) eFF_Z "(X)an
n=1 1=0 n=0
In the right hand side of this equation
i . ! i i . i i . A
B/ (x) e.— = B (X)—— = B; (x)
1=0 ! 1=0 k=0 PR e FilF!
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After substituting this,

® 'F, X1 el " ) =
o 2y x! _ pF 0] F F Foy 2
- B"(x)[o_ 7 (_ 20l (’0) s 20
= " n—1 S 7" n] F N
F, x = B, (X))
; F,! ; F,! = AP =l

By equating the series, we have;

D, [”] Bf(x) - Bj(x) = F, ¥,
! F

1=0
where n > 1. Expanding n* term in the summation,

n—1

[”] BF(x) + BF (x) ["] — Bl (x) = F, ',
[ n

n—1

=0 F

finally, we get the desired equality,

n—1
["] Bf(x) = F, ¥
l F

=0

Corollary 7.2 (Compare with Corollary (7.1))

From previous proposition if x = 0, the formula allows us to compute the Bernoulli
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numbers inductively,

= LJ

J=

n—1
[”] b =0 (7.12)
0 F

where n > 2.

Proof  Proof will be done by equating expansion of Bf(x) + F,x""!, obtained in two

ways. On the one hand, we obtain;

Bf () + F X" = x"+ Z ",] bixX". (7.13)
= Ul
On the other hand, we found that;
Bi(x) + Fx'™ = Hy(x) = ) [Z] Bl (%) (7.14)
k=0 F

These equations are derived in Appendix C. Equating these two equations gives;

n

> [Z] BE (x)=x"+ Z
F j=2

k=0

”} br .
Jr’
After expanding k = n case in the left hand side,

n—1 n:| n
B () + Bj(x) = X" +
HECILCEEES)

J=2

n] bl X"
Jlg
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n

bF
nlp "

n
bt x+
n-— I]F n-1%

Now putting x = 0 gives,

N

-1
_ ny o r G F
_I‘Z[kLb"-k br.

k=0

Firstly, expanding the sum for k£ = 0 in the right hand side,

n

bt — bt
0 n n

F

n—1
_ nyor
1= Z [kLb"-k +

k=1

thus, we get;

n—1
n
[k]be_k +1=0.

k=1

By using symmetry property of Fibonomial coefficients, we can rewrite it as,

—_

N

n
bt +1=0.
[”_k]F ok

=~
1l

1

After denoting n — k = j it gives,

1
[”, pr+1=0
J
j=n—1 F
Since b{j = 1;
A n n
A5+ | By =0
—1 [] F ! 0 F
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Therefore, we obtained the desired result;

n—1

=0

~.

n
| vf =
[]]F ’

Proposition 7.9 (Compare with Proposition (7.5))

Bernoulli-Fibonacci polynomials and corresponding Bernoulli-Fibonacci num-

bers satisfy the following equation;

B (1) = bf

wheren =2,3,...

Proof Starting with,

(7.15)

e —1 er 1\ [ e 1 \z (ze z \1
-1 \e& -1 e; -1 é&-1)z \é&-1 é&-1)z
a7 P 1
= B! Z
% F‘ ez z
w0 [ pr r |1
- Z;B F,! Z F,,!)z
© n—l
= > (Blw- =
n=0 Fy!
Thus, we have,
-1 _ (BF(x)—bF)£+(BF(x)—bFL+i By (x) - bF
¢ -1 ‘ T F -
er —1 77! 1 . o 2
F T " (1—1)ﬁ+(x—1—(—1))F—1!+nzz(Bn(x)—bn)Fn!
e — 1 O [ pF !
T " x+; B (x) - bE) n! (7.16)
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From this expansion, if we put x = 1;

s -1

BF(l) bF =0.
=2

F,!
n

Since this infinite sum is zero for any z, the coeflicients at every power of z are also zero.

Therefore,

Bi(h)-bI =0

forn=2,3,4,...

(7.17)
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CHAPTER 8

FIBONACCI MEETS APOLLONIOUS

8.1. Apollonious Gaskets

The following theorem is assigned to ancient Greek mathematician Apollonious
from Perga (BC 240):

”Given three fixed circles, find a circle that (kisses) touches each of them.”

It is possible to prove that if the given circles are mutually tangential, then there
exists two circles satisfying this property. (Simplest proof is based on inversion of circles.)

Let ry, r», and r3 denote the radiuses of the given circles, and R and r are radiuses

of external and internal circles, respectively. Assume r; < r, < r3 and r < R.

AN

Vo’
\|

Figure 8.1. Solution of Apollonious Problem

In above figure, circles with radiuses ry, r», r3, ¥ and ry, r», r3, R are kissing each

other at six distinct points. These circles are mutually tangential to each other.

Theorem 8.1 (Descartes Theorem)
In plane geometry, if four circles with radiuses ry, r», r3, r4 are mutually tangential

to each other at six distinct points, then the circles’ curvatures k; = rl (i =1,...,4) are
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connected by quadratic relation:

(ki + Ky + K3 + K2)? = 2 (k12 + k2% + K32 + K4D) (8.1)

Applied to Apollonious problem, the Descartes formula relates radiuses(or curva-

tures) of four circles:

r 1 11_ 1111
S

b 9 b b b b
rnrhor3sr r rr3R

Example 8.1 We choose the kissing circles’ radiuses as;

W] —

rs3 =

| =

I =

| =

ry =

Now, by putting them into Descartes Theorem, formula (8.1), we can find radiuses of the

circles, touching these three circles as,
Q+2+3+k) =2(22+22+3% +&,7)

ke =15 and ks =-1 = sz and ry =1

The positive and negative sign of curvature in these formulas is related with so
called signed curvature in plane (positive or negative direction of rotation).

By choosing new sets of three kissing circles, one can derive the recursion process
for the so called Apollonious Gasket. In figure 4.2, example of integer Apollonious gasket

is shown.
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k¢ 15 54
o AR <
My )
6] 3 Is6

S\ # )

Figure 8.2. Apollonious Gaskets

Proposition 8.1 For three kissing circles with arbitrary radiuses ry, r,, r3, the correspond-

ing radiuses of mutually kissing circles are;

rrnr
= ; (8.2)
riry +rir3 + rr3 + 2\/1"11’21’3 (1”1 + 71+ 73)
rrnr
R= : (8.3)

rirp +rir3 + ryrz — 2\/1"11”21’3 (l”] + 1y + 1"3)
Proof Let k be the curvature of the mutually kissing circles. Our goal is to find « from

the Descartes formula,
2 (k12 + K% + K32+ K2) = (k) + Ky + K3 + K)2.
One can reduce this equation to quadratic one in «,
K =2 (ki + Ko + K3) K + K2+ Ky + k32 — 2 (K1Ky + K1K3 + Kok3) = 0

Let «, and «_ be the solutions of this quadratic equation,i.e, x; and x_ be the curvatures

of the circles with radiuses r and R, respectively,

1
k. =— and k_ = —.
r R
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Then,

2(K1 + Ky + K3) + \/16(K1K2 + K1K3 + K2K3)

Ki, Ko =

2
and,
Ky = (Ki+Kky+k3)+2 \/(K1K2 + K1K3 + K2K3)
k. = (ki +Ky+k3)—2 \/(K1K2 + K1K3 + K2K3)

Substituting corresponding curvatures k; = %, where i = 1,2, 3, gives;

(1 1 1) \/(11 11 11)
—+— 4+ — |+ 24—+ ——
r 1) rs ry rn ryr3 I r3

1 (1 1 1) \/(11 11 11)
— —t—+— |24 ——+ ——
R rt r rs ry r ryra Iy r3

So, we easily obtain;

N |-

ryryrs
r =
rirp +rir3 + rr3 +2\/r1r2r3 (l’l + 7 + 7'3)
ryryrs
R =

rry+rr3+rr; —2\/}"1}"2}"3 (}"1 + +7'3)

]
8.2. Fibonacci Apollonious Gaskets
Here we consider the special case of three kissing circles with integer radiuses,
r, =F.Fo, 1, =F,Fo, 13, =FF.3 (8.4)

satisfying inequality ry, < ry, <r3, (Koshy, T., 2001).
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Proposition 8.2 Triangle with vertices at centers of kissing circles of radiuses ry,,1>,,73,

‘Q

given by (8.4) is a Pythagorean Triangle.

Figure 8.3. Pythagorean Triangle

Proof  Sides of this triangle are |, + 1, 71, +13,, 12, + 13,. Let’s denote these sides as;

r],,+r2,, FnFn+3Ean

ry, *rs, = Fn+l(Fn+Fn+3)Ebn

r, + r3, FnFn+2 + Fn+1Fn+3 = Cp.

We have to prove that ¢> = b2 + a2, or
2_ 2 g2 2
a, =¢,— bn = a,= (¢n = bu)(cn + Dy).

By calculating right hand side,

(cn - bn) (Cn + bn)

(FnFn+2 + Fn+1Fn+3 - FnFn+l - Fn+1Fn+3) :

(F,,F,,+2 + Fo Fo + FoF g + Fn+1Fn+3)
= (Fy(Fus2 = Fue1)) (Fu(Fut + Fua) + 2F 1 Foz)
= F? (Fu3(Fy +2F,.1)
= F; (Fu3(Fy + Foo + Fpi)
= F; (Fu3(Fpiz + Fpi1)
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— 2 2 _ 2
- FnFn+3_an

Corollary 8.1 Three numbers a,, b, and c, written in terms of Fibonacci numbers,

a, = F,F,3
b, = 2F,.F,o

Cn F2 , +F?

n+2

are Pythagorean triples(see the following figure).

by = 2Fpi1Fus ay = FnFn.;.j,

7 b
Cn = Iy g Fn+2

Figure 8.4. Pythagorean triples

Example 8.2 For n = 1, sides of the Pythagorean triangle becomes 3,4 and 5. Also for
n = 2, sides become 5,12 and 13.

By using angle «,, we can write,

COS @ _ a, _ FnFn+3
n - - = 2 2

Cn Fn+1 + Fn+2

. _ bn _ 2Fn+1Fn+2
noT T T T 2

Cn Fn+1 + Fn+2
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tan a _ ﬁ _ 2Fn+1Fn+2
" ay FnFn+3

Proposition 8.3 Limit of these results is written in terms of Golden ratio ¢,

Proof Firstly,

cosa = lim cosa,

n—oo

Secondly,

. 4

lim cosq, =cosa = 8.5
L : 2¢

lim sing, =sina = (8.6)
n—oo @+ 2

lim tanq, =tana = 2 (8.7)
‘ FnFn+3 ‘ (‘pn _ (p/n) (‘pn+3 _ S01n+3)

lim -5 = lim 5 >

n—o0 Fn+l + Fn+2 n—00 ((pn+l _ 90/n+1) + ("On+3 _ (,Dln+3)

A ¢ ¢

Q2D 20D T g2 4 b T 1+ o = ¢ +2

2Fn+1Fn+2 s ((pn+l _ (p/n+l) (‘,Dn+2 _ S0/n+2)

sina = lim sina, = I 5 S = 5 )
e e Fr Pl S (g =) 4 (2 )

(’Dn+l(pn+2 B 290 B 2§0 B 2()0

Q2n+1) 4 p2(n+2) 1 + @2 1 + @2 N 0+2
Thirdly,
. 1 . 2¢
) . sina im,_, Sin @ )
tana = lim tane, = lim L= —= nZ%:Z
n— oo n—oo COS @, llmn_,oo COS @), m

Proposition 8.4 By using (8.5) and (8.6), we have trigonometric identity;

cos’a +sin‘a = 1 (8.8)

124



Proof

¢ 4> 5¢ @8 _ Se+1)

+ —_ =
(@+2)2 (p+2)? *+4¢p+4 o+1+4p+4

cos’a +sin‘a =

O

In the limiting case, when n — oo, our Phytagorean Triangle becomes the “Golden
Phytagorean Triangle”. Because all sides of this triangle are written by using number

""" 1, 20,0 + 2. (See Figure 8.5)

Figure 8.5. Golden Phytagorean Triangle

Proposition 8.5 For three kissing circles with radiuses,

r, = FoFy., r, = FoFy.o, r3, = FriFps

the corresponding radiuses of mutually kissing circles are:

— FnFn+1Fn+2Fn+3
4Fn+2Fn+3 - FnFrH—l

R,=F,oF,3 , 1, (8.9)
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Proof By using Proposition (8.1), we calculate r, and R,,.

_ 22
r, 2, 13, FoFpo FoF o by Fos = FF, (FrpoFps

n® n+l
r,r, tr,r, v, = FoFpaFoFuo + FoF g Fog Fos + FoF o Fo Fris
= F,%Fn+an+2 + FnF,3+1Fn+3 + FoF i FraFoys
s, (r, + 1, +13) = FaFa FuoFus (FuFu + FaFoo + FoogFos)

= FIF} FyF,3(F Fos+ FoiFoys)

n" n+l

= F.F} FyF,3(FuaF,) = FIF F>,F?

n* n+l n® n+l1" n+2% n+3

Starting from r,,;

F2F2 Fn+2Fn+3

n- n+l

F;%Fn+1Fn+2 + FnF,21+1Fn+3 + FnFn+an+2Fn+3 + 2\/F%F,21+]F5+2F,21+3
F2F2 Fn+2Fn+3

n- n+l
F%Fn+1Fn+2 + FnF,21+]Fn+3 + FnFn+an+2Fn+3 + 2F'nF'n+lF'n+2F‘n+3

FnFn+1Fn+2Fn+3 FnFn+1Fn+2Fn+3

FnFn+2 + Fn+1Fn+3 + 3F‘n+2F‘n+3 - FnFn+2 + (Fn+2 - Fn) Fn+3 + 3F‘n+2F‘n+3
FnFn+1Fn+2Fn+3 FnFn+1Fn+2Fn+3

FnFn+2 + Fn+2Fn+3 - FnFn+3 + 3Fn+2Fn+3 B 4Fn+2Fn+3 - Fn (Fn+3 - Fn+2)
FnFn+1Fn+2Fn+3
4Fn+2Fn+3 - FnFn+1 .

Calculating R,;

FoF, FroFos

n" n+l

F2F i Fusa + FuF2, Fuis + FyFo FuoFos = 2 \[F2F, F2

n n+l" n+2
FnFn+1Fn+2Fn+3 _ FnFn+1Fn+2Fn+3
FnFn+2 + Fn+1Fn+3 - Fn+2Fn+3 - FnFn+2 + Fn+3 (Fn+1 - Fn+2)
FnFn+1Fn+2Fn+3 _ FnFn+an+2Fn+3 _ _FnFn+1Fn+2Fn+3
FnFn+2_Fn+3Fn_Fn(Fn+2_Fn+3)_ FnFn+l
= —FpolF,s.

F2

n+3

Here R, comes with negative sign, due to signed curvature.

Proposition 8.6 The limit of the internal and external radiuses r, and R,, given by (8.9)
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is finite and equal to:

im — = 8.10
e R, 12¢0+7 (8.10)
Proof
. Iy . FoF, . ) 1 2.6) 1 1
lim — = lim = lim = =
n—eo R, n—oo 4‘Fn+2Fn+3_FnFn+l n—oo 4_§ﬂ+2_F1';+3 -1 4904—1 12¢+7
n+l n
O

Example 8.3 From equation (8.4), if n = 1, the kissing circles’ radiuses are;
I”ll:FlFQ:l, 7‘21:F1F3:2, 1”31:F2F4:3

Substituting them into Descartes formula gives;

11 ? ES T
(1+§+§+K4) —2(1+Z+§+K4)

23

1
K4:—6 and K4:€

Corresponding radiuses become;

F,F,F5 F 6
= R1:F3F4:6 and r1:4F1F2 SF;‘ :ﬁ
3004 — 111 "2

Corollary 8.2 The ratio of two kissing circles’ radiuses, when n goes to infinity is related

with Golden Ratio;

. ) . I, 1
lim =—, lim = —, lim =
n—oo ]"371 QO

5

It means that side a,, in the limit n — oo is divided in Golden ratio ¢. Side b, in the limit
n — oo is divided in qubic Golden ratio ¢* = 2+ 1. Side c, in the limit n — oo is divided

in square Golden ratio ¢* = ¢ + 1.
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Theorem 8.2 Since centers of r\,, r»,, 3, given in (8.4) form the vertices of a Pythagorean

triangle, the area of this Pythagorean triangle is;

Ap=FoFoFraFays (8.11)

Proof From Figure 4.2, Pythagorean triangle’s area is expressed as;

(rln + an) (rln + r3n) _ (FpuFp + FuF ) (FoF o + Foo Fuys)
2 - 2
Fn (Fn+1 + Fn+2) (FnFn+1 + Fn+1Fn+3) — FnFn+3 (FnFn+1 + Fn+1Fn+3)
2 2
F,%Fn+1Fn+3 + FnFn+1F,2,+3 _ FnFn+1Fn+3 (Fn + Fn+3)

2 2
FnFn+1Fn+3 (Fn + Fn+3) — 2FnFn+1Fn+3Fn+2
2 2
FnFn+1Fn+2Fn+3

A, =

Example 8.4 For different values of n, areas can be calculated,

Al = FiF,F3F4=1-1-2-3=6
A2 = F2F3F4F5:1'2'3'5:30
A3 = F3F4F5F6:2358:24O

Corollary 8.3 The limit of the ratio of two consecutive areas,

. An+1 4
lim =
n1—>oo An SD

Definition 8.1 Suppose we have three mutually tangential kissing circles. Circle which is
passing through the intersection points of these three circles is called the dual circle.(See

Figure 8.6)

Proposition 8.7 The radius of the dual circle, to the ones with r,,, r»,, 13, given by (8.4)
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is found as;

Ydyal = 11, = FoFni (8.12)

Figure 8.6. Radius of dual circle

Proof The area of the Pythagorean triangle in (8.11) is written;

Faual ('t +12)  Tauar (r1 +13)  Fayar (r2 +13)
2 2 2
1
FoF o FonlFhs = E Vdual [2(1"1 + 71+ 1’3)]
= Tdual (FnFn+l + F,Fpo+ Fn+1Fn+3)

FnFn+1Fn+2Fn+3

= Fauat (FuFpss + Fppi1Friy3)

= Tdual Fn+2Fn+3

Thus, the radius r,, 1S;

Ydyal = 11, = FnFn+l-
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Proposition 8.8 The radius of the circle, circumscribed around the triangle with sides

a,b,c is given by,

Re = abc
S Va+tb+robtc—alcra-ba+b-0

(8.13)

\i/
Figure 8.7. Radius of Ry

Proposition 8.9 The radius of circumscribed circle around the triangle with sides ry +r»,,

ri, + 13, 1, + 13, given by (8.4) is found as,

F?, +F?

Proof By using the previous proposition, we can denote,

a = ry,+n,
b = ry, +r3,
C = I, +r3,
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Then,

a+b+c = 2(r,+ry,+r3,)=2(F,Fp + FyFp+ Fo Fris) = 2F0F 03
b+c—a = a+b+c—-2a=2F,»)F,3—2F,F,3=2F,3(Fp—F,) =2F,F,;
cta-b = a+b+c—-2b=2F,»F,3—2F,F,.1 —2F, 1 F,.3 =2F,F,.»
a+b—-c = a+b+c—2c=2F, 2F,;3 —2F,F,0 —2F, 1 Fpi3 = 2F, F 1

Therefore Ry becomes,

FnFn+3 (Fn+l(Fn + Fn+3)) (FnFn+2 + Fn+an+3)
\/(ZFn+2Fn+3) (2Fn+1Fn+3) (2F}1Fn+2) (2FnFn+1)
FnFn+3Fn+l(Fn + Fn+3) (FnFn+2 + Fn+1Fn+3)
4FnFn+1Fn+2Fn+3
(Fn + Fn+3) (FnFn+2 + Fn+1Fn+3)
4‘Fn+2
(Fn + Fn+3) (FnFn+2 + Fn+1Fn+2 + Fn+1Fn+l)
4Fn+2
(Fn + Fn+3) (Fn+2Fn+2 + Fn+1Fn+1)
4Fn+2
(Fu+ Fuia + Fo) (F2,, + F2,))
4Fn+2

2F s (F5+2 + F3+1)

4Fn+2

2
+ Fn+2
2

F2

n+1

O

By using kissing circles with radiuses r;,, r»,, r3,, from Descartes formula, we have
obtained r, and R, respectively, given by (8.9). Here, by applying Descartes Formula
iteratively for the new set of kissing circles, we can find the radiuses ry3,, 712,, 723, which

are given in the following Figure 8.8.
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Figure 8.8. Forming Fibonacci-Apollonious Gaskets

Here r3, is kissing r, and r3,. ry», is kissing r;, and r,, and ry3, is kissing r,, and
r3,. All of them are kissing external circle R,. By this way, we get the construction of

Fibonacci-Apollonious gaskets in plane.

Proposition 8.10 Radiuses of the gasket are obtained as;

Frlen+1Fn+2Fn+3 FnF5+1Fn+2Fn+3 FnFn+]F,3+2Fn+3
o, = 5 3 13, = 5 3 123, = 5 3 (8.15)
F”+2Fn+3 - 4'Fn+l Fn+2F”+3 - Fn Fn+1F”+3 + Fﬁ

Proof To get ry,,, we use the Descartes formula and the radiuses r;,, r,,, R,. By substi-

tuting them into Descartes formula,

[\
—
'—‘\I\)|’—‘

+
St —

+

|
&=
—

+
N,

I

==
=

+

S| =
|
&)=

+

=

5 (1 1 1 ~ 1 1 1 ?
e e e X)) T \pe e, e e TF
n- n+ n- n+ n- n+

n+2" n+3 n" n+l n+2" n+3

By solving this quadratic equation using the recursion formula for Fibonacci numbers, we

can get the radiuses of circles,

2
_ FFuaFuoFu;
N 2V
n+247 13 n+l

r3, = FuFns
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which are kissing the circles with radiuses r; , r,, R,. With the similar logic rj3, and ry3,

can be obtained. O

8.3. Lucas-Apollonious Gaskets

In this Section, we choose the radiuses of kissing circles as Lucas numbers in the

form;

r, = L,Ly.1, r, = L,L,,, r3, = Lyi1Lyys3 (8.16)

After appliying Descartes formula, we obtain kissing circles’ radiuses in the form similar

to the case of Fibonacci-Apollonious Gaskets.

— LnLn+1Ln+2Ln+3
4Ln+2Ln+3 - LnLn+l '

R, =LyaLlyz 5 1y (8.17)

This result follows easily from observation that recursion formulas for Fibonacci and
Lucas numbers are the same, and in the proof we use only these recurrence relations.
In addition, by applying the Descartes Formula (8.1) we find radiuses the Lucas-

Apollonious Gaskets ry3,, 712, 23, as;

L%Ln+1Ln+2Ln+3 LnLi+1Ln+2Ln+3 LnLn+lLﬁ+2Ln+3
1’12n = 2 3 ’ r13n = 2 3 r23,, = P 3 (818)
L”‘+2Ln+3 - 4-Ln+1 Ln+2Ln+3 - L;l Ln+1L"+3 + Ln

8.4. More General Family of Apollonious Gaskets

In this section, generalizing previous results, we can choose the kissing circles

radiuses as;

rn = GnGn+1’ = GnGn+2’ r3 = Gn+lGn+3’ (819)
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where G, is the Generalized Fibonacci sequence (Definition(2.2)) with recursion relation;

Gn+1 = Gn + Gn—l

and initial values G, and G,. This sequence can be described as addition of two Fibonacci

sequences:

G,=G\F,+GyF,,.

By using (8.2) and (8.3), we obtain the kissing circles’ radiuses as;

G.G11Gui2Gyy

r, = +1Yn+2Yn+3 ’ (820)
4Gn+2Gn+3 - GnGn+1

R, = G,12Gp3. (8.21)

By substituting G, = GF, + GoF,_;, one finds these radiuses in terms of Fibonacci

numbers and the initial values as,

.o (G1F, + GoF,21) (G Fpiy + GoFy) (G F i + GoF i) (G F iz + GoFpi2)
" 4(GFpi3 + GoFyi2) (G Frin + GoFpi1) — (G Fryy + GoFy) (G Fy + GoF-p)

and,

R, = (G Fp2 + GoF 1) (G Fpi3 + GoF i) (8.22)

These results determine the Generalized Fibonacci Apollonious gasket with kissing ra-

diuses;

Gy2, Gn+1 Gn+2 Gn+3

Fi2, =
2 _ 3
G”+2 Gn+3 4Gn+l
2
Gn Gn+l Gn+2 Gn+3
s, =
2 —-G3
Gn+2 G"+3 Gn
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Gn Gn+1 G2 Gn+3

n+2

G2, Gz +G3

n+1

I3,

By substituting G,,’s it gives;

(G1F, + GoF,_1)* (G\F 1 + GoF,) (G F iz + GoF 1) (G F i3 + GoF 1)

= (G1Forz + GoF 1) (G1Fyus + GoFyia)? — 4(G1 Fyur + GoF,)?

ry = GiFut GoFut)” (GiFus + GoFa)* (GiFusa ¥ GoFyan) (GiFiss + GoFusa)
! (G1Fpi2 + GoFy31)* (G Fyz + GoFi2) = (G Fre1 + GoF,_y)’

ry, = (G\F,, + GoF 1) (G1F 1 + GoF,) (G Fpi2 + GoF,1)* (G1F i3 + GoF y2)

(G1F i1 + GoF,)* (G F i3 + GoF,10) + (G F,, + GoF, )’

As a particular cases we get,
e Gyp=0and G; =1 = Fibonacci-Apollonious Gasket

e Gpo=2and G; =1 = Lucas-Apollonious Gasket
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CHAPTER 9

CONCLUSION

In conclusions, we emphasize main results obtained in this thesis. By introduc-
ing Golden-Fibonacci calculus in terms of finite difference operator with bases ¢ and ¢’,
we constructed generating functions for the Fibonacci numbers. The entire generating
functions for Fibonacci numbers were derived as Golden exponential functions.

In terms of these functions, the Golden trigonometric and hyperbolic functions
for Golden oscillator were derived. By the Golden binomial, the Golden-heat and the
Golden-wave equations and corresponding solutions were obtained.

The Golden calculus was generalized to higher order Golden Fibonacci calculus
by introducing higher order Golden Fibonacci derivatives. By using these derivatives, we
found generating function for higher order Fibonacci numbers, higher Fibonomials and
higher Golden binomials. As we proved, the higher Golden binomials are equivalent to
Carlitz’s characteristic polynomials for combinatorial matrices.

The congruency of Fibonacci and Lucas numbers as combinations of k = 2 higher
order Fibonacci numbers of mod 5 integer numbers were constructed.

By using Golden exponential function ey., the generating function for new type of
polynomials, which we called Bernoulli-Fibonacci polynomials was derived. Properties
of these polynomials and corresponding numbers, similar to usual ones were studied.

As a geometrical application, the Apollonious gasket of kissing circles was de-
rived and the set of Fibonacci, Lucas and General family of Apollonious gaskets were

obtained.
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APPENDIX A

INTRODUCTION

A.1. Another representation of Binet Formula

Derivation of formula (2.9)

F,=2" IZ( 1Y cos™* l(g)sm (17;)

k=0

will be done.

Since we know from (Koshy, T., 2001) that,

Vs , T
@ = 2cos(§) and ¢’ = 2s1n(10) (A.1)

we can employ these trigonometric values of ¢ and ¢’ to develop a trigonometric summa-
tion formula for F,,.

By Binet Formula, we have;

n m

P A e 0 (i A A A s AT 2 A A

¢ ¢

n— n-3 12 n— 2 n—1

= T T P T " T

= @1 after substituting (A.1) gives us,

- Seeofs) ™ sl
- St ()earsw ()

k=

_ 2"-122—kcos"-k—l( )( 14(2)* sin (10)

(=]
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n—1

2! ;(—l)k cos" ! (;—T) sin (17T_O)

So,

n—1
F=27" Y (=) cos™™*! (g)sink (1—7:)) (A2)
k=0

1s obtained.
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APPENDIX B

FIBONACCI CALCULUS

B.1. Showing the Golden periodicity of function A(x) = sin (ﬁ In |x|)

Let’s show the Golden periodicity of the function;
Y
A(x) = sin (— In |x|) (B.1)
Ing

To say that it is Golden periodic function, we should show that A(px) = A (—fa).

Alpx) = sin|——TInjpxl| = sin[ —— In|g| + —— In|x|| = sin |7 + —— In |
Ing Ing Ing Ing

sin(7r) cos Lln |x|] + sin Lln |x| | cos(r)
Ing Ing

_ sin (i In |x|) (B.2)
Ing

A(—E) = sin iln

¥

= sin[Z—In|x| - L1n|—¢|)
@ Ingp

. T 4
= sin|— In|x| — —lngo)
n Ing

= sin T In |x| ] cos(rr) — sin(rr) cos T In |x|
Ing Ing
(7
= —sin (— In le) (B.3)
Ing
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Thus, we got the same results from both sides of equality. So,

AQx) = sin(i In |x|)
Ing

is Golden periodic function.

(B.4)

B.2. Showing Golden derivative applications to Golden Binomials

The application of the Golden derivative Dy. to the Golden Binomial (x+y)}. gives;

X n X C n k(L D n
Di(x+y). = Dy [k] (-1 kk]
k=0 F
- F,! kk=1)
= DI — (=1 xR
"\ & Fo! B!
F,! F,!
— D; xn+ n—1
F,\Fy! F,_1\Fy!
n—1
F,! k(k=1)
- D I (_1) > xn—kyk
F kZ:(;Fn_k!Fk!
n—1
£y MED - yx onky Lk
= D gy DT DIy
k=0 = "~
n—1
F k(A 1) ke
= D r gy CD T Fe
= Fo-ilF
n—1
— Z Fn' (_1)@ xn—k—l yk
o Fpi [ F!
n—1
_ Fulia! R =k 3
o Fpo1i Fi!
n—1
- F (n—-1)—k

= Fn ()C y)F

So, it is proved that D7.(x + y)}. =

Z ( 1)k(k21)
! e Fy k'Fk

F,(x+ y)’[é‘l.

yk

(B.5)
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The application of the Golden derivative D). to the Golden Binomial (x+y)}. gives;

1 F,! k(k 1
D.(x+y); = D, (=1) 7 X"y
F Y)F F kz_(; Fn k'Fk
= D Fu: X+ Fu: ly+ 4+ Fu: (—1)“T
F\F,IF,! F,_\F! FolF,!
& F,! kk=1)
— DY _Tn (_1) 5 xn—kyk
r ;F,,_k!Fk!
¢ F,! K |> “k
= S o D’
ZFn_k!Fk! (-1 DG
k=1
N F,!
= DTk (F, Y
Dy GO E Y
k=1
n—1
Fn' (k+1)(k+1-1)
— (_l)fxn—(k+l)(Fk | y(k+l)—l)
kZ:(; Fn—(k+1)!Fk+l! ’
n—1
F,! #2+h)
_ n _ (n—1)-k k
= Z—Fm_l)_kzm! (=D T AR EL
k=0
n—1
= ZF—”' (_1)7“2“"2‘“*") =Dk gk
- Fp-1)- Fi!
n—1
F,! Kk-1)
= _on (_1) 5 x(n—l)—k (_y)k
= Fn- Fi!
n—1
F,_ LS
— Fn o= ( 1) (n—l)—k (_ )k
kz(; Fo-1)- k'Fk Y
= F, (x—y)}" (B.6)
So, it is proved that,
Dy(x+ ) = Fo(x = y)p .
With another type of approach, also we can prove,
Dy(x—y)f = —Fu(x+y)§! (B.7)
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(x =)y — (x— ¢y}

Di(x -y =
=Y (o — @)y
_ ¢y (- (=1l ™2y) — (x+ " 2y) . (x — (1))
(o —¢)y
_ Gty = DY) [x -ty — x4 (<D™
(o—¢)y
_ mlJW—WW)
u+wF( (@ —¢@)y
= —-F,(x+ y)'];1 (B.8)
Therefore, we proved that
Dl (x =y =—Fu(x+ 5. (B.9)

B.3. Golden Heat Equation

B.3.1. Golden derivative applications to the function ez (¢ + x)p

After application of D,

Dip(er(t + x)F)

= (t+ x)
t F
Dr [Zg F,!

1 t+ x)! t+ x)2
D}—+( )F+( )F+...
Foy! F,! F,!
S DL+ )% o Fut+ x)%!
- ZT_ T

n=1 =1

Z (t+ x)" ! i x)k
B n=1 Foy! =0 Fy!
= €F(l + X)F
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We obtain the equality D (ep(f + x)r) = ep(t + x)r. Application of D7, gives,

. e (+ X))
D} ep(t+x)r = DF[Z T
n=0 n:
1 t+ x)! + x)>
= D}—+( U G
Fo! Fy! F5!
) Z”:D;(Hx)';_iﬂ(z—x)';—l
B R R F,!
~ i(r—x)’j;] _i(t—x)';
=1 Foi! =0 Fy!
= ep(t—X)F

DY er(t- )y = D;[Z(I_X);)

1 t—x)! t — x)>
= D}—+( )F+( )F+...
Fy! F! F,!

~ i Di(t-x); i —F,(t + x5!
- n=1 F”' B n=1 Fn'
_ i_& :_imﬂ’%

e F,_! e F;!
= —ep(t+X)F

So, we proved that,
Dy (ep(t —x)p) = —ep(t + X)F (B.10)
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B.3.2. Golden derivative applications to the function ez (wt + kx)p

After application D', gives,

=2\ (wt + kx)"
D' (ep(wt + kx)r) D', (Z(; i F
1 wt + kx)! wt + kx)>
D.|— + ( Ui + ( Ui +
Fo! Fy! F5!
— Dl (wt + kx)ly

F,!

=
Il
—_

To calculate D', (wt + kx)};

kox +y). — (k@' x + y)" Q0X+Xn—90'x+zn
Dikx + )l = (kpx + y)p — (k' + V) _ k"( k)p ( k)p B.11)
(o —¢)x (p—¢)x
Also we have,
70 + W) — (z¢" + W)
D (z + w)p Gyt W) — & )F:F;@+wﬂﬂ (B.12)

(¢ —9¢)z

Comparing results (B.11) and (B.12) says that if we choose z = x and w = 7, equation

(B.11) becomes;
X n o _ n X y " _1n y -l _ n—1
Dy(kx+y)p, = k'"Dp x+% =k"F, x+E =k F, (kx+y) (B.13)
F F
Thus,

Di(kx + y)h = k F, (kx + y)&! (B.14)

So, we can conclude that,

Dy (wt + kx)h = w F, (wt + kx)}! (B.15)

145



Di(ep(wt + kx)p) = ...

Z wF, (a)t+kx)"1

n=1

(a)t + kx)’} .
Z ——————— (by using the result (B.15))

wt + kx)'!
= w Z g (denoting n-1=m)

F,!

n=1

— (wt + kx)™
_ wz(w X)7

o~ Fy!

= werp(wt+kx)r

Therefore, the desired result came as;

Di(ep(wt + kx)r) = w ep(wt + kx)p

With the similar logic, it can be shown that,

(D) (ep(wt + kx)p) = —k* ep(wt + kx)p

Application of Dy. gives,

Dr(ep(wt + kx)F)

~=

b o (wt + kx)].
— F,!

|
(=]

(B.16)

(B.17)

(B.18)

1 (wt + kx)llp (wt + kx)2
+

= Dp|— +
F(Fb! Fy!

o DY (wt + kx)
P A

Let’s calculate Dy.(wt + kx)}.

Dyp(x+ wy)p =

(o - oy (o) - (e

L
i

(p—¢)y

B.19
(p—¢)y ®.19
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Also we have,

(a+ ¢y —(a+ ¢k »
Di(a+2)yp = = F, (a - 2);
F F (¢ —¢)z i

(B.20)

Comparing results (B.19) and (B.20) says that if we choose z = y and @ = =, equation

(B.19) becomes;

Il
8:
2

D (x + wy)}

w F

Thus,

Dy(x+ wy)p = @ F, (x = 0y’

So, we can conclude that,

Di(wt + kx)} = k F,, (wt — kx)}"

i Di(wt + kx)}

Dr(ep(wt + kx)p) = ... 1

n=1
Kk Fy (0t = k)
a Z F,!

n=1

. i (wt — kx)y!

71 (denoting n-1=p)
n—1-

n=1

_ ki (wt — kx)?,

|
i F,!

= kep(wt—kx)p

So, we can obtain;

Dy.(ep(wt + kx)r) = k ep(wt — kx)Fp

x n ; X n—1 .
F(—+y) " F, (——y) =wkF, (x—-wy)y

£ (by using the result (B.23))

L' B.21)

(B.22)

(B.23)

(B.24)

(B.25)
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Then,

(D})z(ep(a)t + kx)r) = Dy(kep(wt — kx)r) = k(=k) ep(wt + kx)p

(D) (ep(wt + kx)p) = —k* ep(wt + kx)p

B.3.3. Proof of Factorization property

We will prove the factorization property of Higher Golden binomials;

n+m  _ km \" rkn \™
o @x=—aF" = @ (x - a)F ) (x - a)F (B.26)
= (% (.X - cp’k’"a)F (k) ()C - gok"a)F (B27)
By using the definition,
1, if n=0;

S (x = ¢ Va) (x = g Dga) .. (x - " 2a) (x — " Da), ifn > 1.

‘We can write,
o (x — a)g — (x _ gDk(N—l)a) (x _ gOk(N—z)(pnka) o (x _ (pkgp/k(N—Z)a) (x _ (p/k(N—l)a) (B.28)
After denoting N = n + m,

o (x—am = (x _ (pk(’”’”‘ ”a) ( Y S01<(n+m—2) (p/k a) o ( y— ()Ok "Olk(n+m—2) a) ( X— ‘plk(n+m—1) a)
- ( X — gok(’”m_l)a) (x - (pk(“m_z)(p’ka) (x - gak(”+’"_3)90'2ka) .
( X = S0k(n+m—n) (p’(n—l)k a) . ( X — 9Dk(n+m—(n+1)> ()D,am) a) ( x— ()Dk(n+m—(n+2))¢/(n+1)k a)
o ( x — Qrm=(rem=2) r(rem=3k a) ( x — QRrbm=(nsm=1) rk(mtm=2) a)
k(n+m—(n+m)) golk(n+m—1) a)

(o
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— (X _ QOk(n_l) ((pkma)) ()C _ gak("_z)go'k ((pkma» ( k(n 3) 2k ( ))

e () (1 )
(x ‘sz(pk(m 3)(90kna))(x (pk"ok(m 2)(90kna))(

k(m 2)

“(¢"a))
k(m 1) (90 rkn ))

B o] ) - )

(x 902k‘pk(m 3)(90kna))(x ‘pk‘pk(m 2)(90kna))(x_

"=y (k) (x 90 a) (k) (X—SD a)r;

After changing n < m it gives the another result as,

© ()C _ a)l}:Hn =0 (X _ go'k'"a)’; © (X _ (’Dkna):

‘plk(m—l) ( ‘prkn a))
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APPENDIX C

BERNOULLI FIBONACCI POLYNOMIALS

C.1. Getting Bf (x) + F,x""! in two ways

Our aim is to get the equation;

n

BY(x) + F, "' = H,(x) = Z [Z] Bl () (C.D
F

k=0

Starting with,

Bf(x)+ F. X' = H,(x)
(o) F Zn (o) _1 Zn (o] Z
Z(;Bn (x)Fn! + Z(;an" ] Z(;Hn(x)Fn!

o) Zn o) . Zn ~ 00 . Zn
D H@0r = ) Bl = ) R
n=0 n n=0 n: n=0 n:
For the right hand side, we get;
o n.n © n—1_n © n—1_n
X Y, — X X an—z_ F,x"'z
“er ‘DF(eF)_DF(Z_; F,,!]_Z_; F, _Z_(; F,!
Then, we have;
o0 Zn ~ o0 F Zn - .
D 0= ) Bl = 2
n:O n n:O n
& Zn B . o0 . Zn
ZOH"(X)Fn! ST Z_:: B E]
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By equating two series, we get;

zey
=  zep+
e —1
1 e
= zey (1 + ) =zep
e — 1 e, — 1
_ N F < Z
- ZBn (5 e
= B, (x) . —
n ' '
=0 Fy! =0 Fi
~ i Z’O: Brf(x) Zn+k
- ! ]
=0 k=0 F,l Fy
(r+k=N) i ZN: By, (%) ¥ (Fy!
L Fyy! Fi! \Fy!

n

Hy(x)= ) [’,j B (%)
F

k=0

Following in another way we show that,

Bi(x)+ Fyx'™ = Hy(x) = X"+ )
=2

Starting with,

”,] pE i
Il

BE(x) + F,x™! 71D B 4 F !
n n . j n
F

n n
[l

= 1/

n
1

X! + Z
F j=2

n .
] bfx”_f + F, X"
JIF

(C.2)
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I
XS
+

[

Thus, we obtained;

Bi(x)+ Fyx'™ = Hy(x) = X"+ )

’;] bE i (C.3)
F
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