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İzmir Institute of Technology İzmir Institute of Technology
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ABSTRACT

INVESTIGATION OF ANHARMONIC EFFECTS IN PHONON

TRANSPORT

Phonons are quantum mechanical particles corresponding to ionic vibrations. They

are similar to electrons in a way that they interact with other particles and defects, and they

are responsible for thermal conduction in insulators like electrons are responsible for elec-

trical conduction in conductors. Most of the physical properties due to ionic vibrations

can be determined by using harmonic approximation which consider phonons as indepen-

dent quantum mechanical harmonic oscillators having quadratic potentials depending on

the displacements of atoms in their equilbirium positions. However, there are some phys-

ical processes such as finite thermal conductivity and thermal expansion which cannot be

explained with only harmonic phonons. To investigate these physical processes anhar-

monicity needs to be taken into account. Anharmonicity is related to the higher order

terms in the interatomic potential and corresponds to phonon-phonon interactions. The

strength of these interactions depends on the temperature which is related to the available

thermal energy, or, the number of phonons given by the Bose-Einstein distribution. In this

thesis, the effects of anharmonicity on quantum thermal transport are studied in nanoscale

systems by using Green functions. Non-Equilibrium Green Functions (NEGF) method is

a perturbative approach to study transport properties of both electronic and phononic sys-

tems. Anharmonic terms in interatomic potential are incorporated into NEGF method

in the form of a self-energy which can be computed self-consistently. This approach

provides high accuracy with high computational cost. As an alternative, mean field tech-

nique is computationally more feasible which allows to do calculations for larger systems.

In this study, we investigate anharmonic transport properties of one-dimensional chains

using NEGF method. Our calculations involve self-energies of third and fourth order

anharmonic terms. In addition, mean field calculation for fourth order anharmonicity is

performed for comparison.
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ÖZET

FONON İLETİMİNDE ANHARMONİK ETKİLERİN İNCELENMESİ

Fononlar iyonik titreşimlere karşılık gelen kuantum mekaniksel parçacıklardır.

Fononlar diğer para̧cıklar ve kusurlarla etkileşme ve elektronların iletkenlerdeki elektrik-

sel iletimden sorumlu olduğu gibi yalıtkanların ısıl iletimden sorumlu olma yönünden

elektronlara benzemektedirler. İyonik titreşimlere bağlı olan fiziksel özelliklerin birçoğu,

fononları atomların denge noktaları etrafında yer değiştirmelerine bağlı olan karesel potan-

siyele sahip bağımsız kuantum mekaniksel harmonik osilatörler olarak dikkate alan har-

monik yaklaşma kullanılarak elde edilebilir. Fakat, sonlu ısıl iletkenlik ve ısıl genleşme

gibi sadece harmonik fononlar ile açıklanamayan bazı fiziksel süreçler mevcuttur. Bu

fiziksel süreçleri incelemek için anharmonisitenin dikkate alınması gerekir. Anharmoni-

site, interatomik potansiyeldeki yüksek dereceli terimlerle ilgilidir ve fonon-fonon etkileşi-

mine karşılık gelmektedir. Bu etkileşimlerin gücü mevcut ısıl enerji veya Bose-Einstein

dag̈ılımıyla verilen, mevcut fonon sayısıyla ilgili olan sıcaklığa bağlıdır. Bu tezde an-

harmonisitenin ısıl taşınım üzerindeki etkileri nano ölçekteki sistemlerde Green fonksi-

yonları kullanılarak çalışılmıştır. Denge Dışı Green Fonksiyonları (NEGF) Yöntemi,

hem elektronik hem de fononik sistemlerin taşınım özelliklerini çalışmak için olan bir

pertürbatif yaklaşımdır. İnteratomik potansiyeldeki anharmonik terimler özuyumlu olarak

hesaplanabilen bir özenerji biçiminde NEGF yöntemine dahil edilebilirler. Bu yaklaşım

yüksek hesaplama maliyeti ile yüksek doğruluk sağlar. Alternatif olarak, ortalama alan

tekniği, daha büyük sistemler için hesaplar yapmamızı sağlayan, hesaplama açısından

daha olası bir yöntemdir. Bu çalışmada, NEGF yöntemini kullanarak tek boyutlu zincir-

lerin anharmonik taşınım özelliklerini araştırmaktayız. Hesaplarımız üçüncü ve dördüncü

derece anharmonik terimlerin özenerjilerini içerir. Ek olarak, karşılaştırma için dördüncü

derece anharmonisite için ortalama alan hesabı yapılmaktadır.
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CHAPTER 1

INTRODUCTION

1.1. Temperature and Heat

In classical statistical mechanics, equipartition theorem (Fowler (1967)) provides

us a relation between mean energy and temperature. Energy of a system involves dif-

ferent degrees of freedom such as translational, vibrational and rotational. Heat can be

transferred via energy exchange between different particles and different degrees of free-

dom.

As an example, suppose that there is some gas in a container, increasing the tem-

perature of a small portion of the container will increase the kinetic energy of the particles

in that portion. The kinetic energy as a form of heat will then be exchanged between each

particle until the system reaches equilibrium, where all particles have the same average

kinetic energy, that is, the same temperature.

There are three types of heat transfer, conduction, convection and radiation (Simon

R. Phillpot (2005)). In solids, heat transport occurs by conduction. Conductivity is the

measure of the ability to transfer heat under a temperature gradient. In metals, heat is

transferred by a large number of free electrons as heat carriers. Thermal conductivity

corresponding to this type of heat transer is called electrical thermal conductivity and

Wiedemann-Franz Law describes the proportionality of electrical thermal conductivity to

the electrical conductivity with a factor that depends on temperature, given by (Ziman

(1972)),

κel =
π2

3

k2B
e2
Tσ (1.1)

where κel is the electrical thermal conductivity, σ is the electrical conductivity, kB is

the Boltzmann constant, e is the charge of an electron (−1.602× 10−19 C) and T is the

temperature. Heat conduction is dominated by lattice conduction in semiconductors and

insulators which have a small number or no free electrons available as heat carriers (Ziman

(1972)).

In lattice conduction, heat is carried by vibrations of atoms with respect to their

equilibrium positions (lattice points) along the system.By using harmonic approximation

these vibrations can be modelled by classical waves. Although this approach leads to a

1



correct dispersion relation and density of states (Chen (2000)), to explain certain proper-

ties such as heat capacity these vibrations can be modelled as a superposition of quantum

mechanical particles called phonons (Hofmann (2015)).

1.2. Lattice Vibrations and Phonons

In this section, the basic mathematical formulation for phonons is described. The

first of the three subsections describes lattice vibrations as simple harmonic oscillators

by using classical mechanics. The second one, then provide a description for harmonic

oscillators using operator formalism via quantum mechanics. The third one describes

phonons in many-body physics perspective.

1.2.1. Classical Model

The available thermal energy kBT at a definite temperature T where kB is the

Boltzmann constant, causes atoms to vibrate around their equilibrium positions at a cer-

tain frequency. Lattice potential causes the atoms to move around their equilibrium po-

sitions. These vibrations behave like waves with certain wavelengths corresponding to

their frequencies. Depending on the orientation of the wave, there are different polar-

izations such as transverse and longitudinal. A visualization of transverse vibrations of

one-dimensional monoatomic chain is given in Figure 1.1.

The total energy of a one-dimensional array of particles can be written as the

summation of the kinetic energy and the potential energy (Ziman (2001)),

H =
1

2

N∑
i

miẋ
2 + U(x1, x2, · · · , xN) (1.2)

For a one-dimensional chain with first nearest neighbor interaction, the potential energy

is given in terms of a function of nearest neighbor distances by,

U(x1, x2, · · · , xN) =
N−1∑
i=1

f(xi − xi+1) (1.3)

The potential energy can be defined in terms of the displacements of atoms with respect

to the lattice points.
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Suppose we have a one-dimensional lattice with a lattice constant a,

un = xn − na (1.4)

un − un+1 = xn − na− xn+1 + (n+ 1)a (1.5)

= xn − xn+1 + a (1.6)

where un is the displacement vector of nth atom. At equilibrium configuration, there is

no net force on the system, so F = −∑
n dV/dxn|xn=na = 0 (Mahan (2010)), implying

that dV/dun|un=0 = 0. So the potential can be approximated harmonically by using the

first nonzero term in the Taylor series as below,

V (u1, u2, · · · , uN) = V0 +
1

2

∑
ij

uiuj
∂2V

∂ui∂uj

∣∣∣∣
ui=uj=0

(1.7)

= V0 +
1

2

∑
ij

Tijuiuj (1.8)

where V0 is the ground state energy, and Tij is defined by,

Tij =
∂2V

∂ui∂uj

∣∣∣∣
ui=uj=0

(1.9)

Classical solution for the equation of motion is given by Hooke’s law for an harmonic os-

Figure 1.1. Transverse vibrations of one-dimensional monoatomic chain, each of the

atoms has the same mass m and each bond corresponds to the same force

constant K. Equilibrium positions, or lattice points of an unperturbed sys-

tem is shown with gray dots, while the actual positions are shown by red

dots. The collection of these vibrations make up a wave with a wavelength

λ.

cillator where Tij are the force constants implying the strength of the vibration. Hooke’s

law for each particle in an infinite mono-atomic chain can be defined by (Srivastava

(1990)),

mω2un = 2Kun −Kun−1 −Kun+1 (1.10)
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where K is the force constant between nearest neighbor displacements. In general, for

different masses and force constants, the equation of motion for each particle has the

form,

−mnω
2un = Kn,n+1(un+1 − un)−Kn−1,n(un − un−1) (1.11)

In general, mass-normalized coordinates are used where uj → uj
√
mj , Tij → 1√

mimj
Tij .

This is an eigenvalue problem where eigenstates represent displacements, eigenvalues

correspond to different modes of oscillation, and the matrix to be diagonalized is called

dynamical matrix.

1.2.2. Quantum Mechanical Harmonic Oscillator

A quantum-mechanical approach starts by defining these vibrations as a collection

of quantized particles called phonons each of which is an independent simple harmonic

oscillator. The Hamiltonian of a harmonic oscillator is given by (Wang et al. (2013)),

H =
1

2m
p2 +

1

2
Kx2 (1.12)

with the definition K = mω2 the Hamiltonian for a quantum harmonic oscillator in mass

normalized coordinates (u→ x
√
m) is,

Ĥ =
1

2
p̂2 +

1

2
ω2û2 (1.13)

= �ω

(
â†â+

1

2

)
(1.14)

In bra-ket notation, the ladder operators transform a harmonic oscillator eigenstate into a

higher energy or lower energy eigenstate such that,

â |n〉 =
√
n |n− 1〉 (1.15)

â† |n〉 =
√
n+ 1 |n+ 1〉 (1.16)

where creation (â) and annihilation (â†) operators are defined by,

â =

√
ω

2�
û+ i

1√
2�ω

p̂ (1.17)

â† =

√
ω

2�
û− i

1√
2�ω

p̂ (1.18)

such that the position and momentum operators are,

û =

√
�

2ω
(â† + â) (1.19)

p̂ = i

√
�ω

2
(â† − â) (1.20)
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The expectation value of the Hamiltonian becomes,

En = 〈n|Ĥ|n〉 = �ω

(
n̂+

1

2

)
(1.21)

n = 〈n|n̂|n〉 (1.22)

where n̂ is the number operator given by n̂ = â†â. In phonon picture, it corresponds to

the number of phonons related to a displacement and â and â† are called phonon creation

and annihilation operators. As one can see in the last equation, the system has discrete

energy levels each of which differ from each other by a quantum of energy �ω.

1.2.3. Phonons

To describe phonons as a collection of quantum harmonic oscillators, normal co-

ordinates are defined for each displacement and momentum operators un and pn in terms

of fourier series of displacement operators corresponding to each wavenumber k in 1D

(or wavevector in higher dimensions) by (Mahan (2000)),

ûn =
1√
N

∑
k

exp(ikan)ûk, (1.23)

p̂n =
1√
N

∑
k

exp(−ikan)p̂k (1.24)

and each uk,pk as,

ûk =
1√
N

∑
n

exp(−ikan)ûn, (1.25)

p̂k =
1√
N

∑
n

exp(ikan)p̂n (1.26)

where the periodicity of the lattice implies that exp(ikaN) = 1, whereN is the number of

displacements. Since there are N atoms in the unit cell, k = 2π/(Na). The commutation

relation between the operators of different atomic indices,

[ûn, ûm] = 0, (1.27)

[p̂n, p̂m] = 0, (1.28)

[ûn, p̂m] = i�δnm (1.29)

These relations can be expressed in the space of wave vectors,

[ûk, ûk′ ] =
1

N

∑
n,n′

exp(−ikan− ik′an′)[un, un′ ] (1.30)

= 0 (1.31)
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since [un, un′ ] = 0.

Similarly [pn, pn′ ] = 0. The third relation,

[ûk, p̂k′ ] =
1

N

∑
n,n′

exp(−ikan+ ik′an′)[un, pn′ ] (1.32)

=
1

N

∑
n,n′

exp(−ikan+ ik′an′)i�δn,n′ (1.33)

= i�
1

N

∑
n,n′

exp(−i(k − k′)an) (1.34)

= i� δk,k′ (1.35)

The harmonic potential for a monoatomic chain can be written as,

1

2
K

∑
n

(ûn − ûn+1)
2 =

1

2
K

∑
n

(ûnûn − ûn+1ûn − ûnûn+1 + ûn+1ûn+1) (1.36)

where K is the force constant between nearest-neighbor atoms. To write the potential in

the wave vector space,∑
n

ûn+mûn+s =
∑
k,k′

exp(ikam) exp(ik′as)ûkûk′
1

N

∑
n

exp(ian(k + k′)) (1.37)

=
∑
k,k′

exp(ikam) exp(ik′as)ûkûk′δk′,−k (1.38)

=
∑
k

ûkû−k exp(ika(m− s)) (1.39)

where the delta function is given by,

δ(x− a) =
1

N

N∑
n

exp(i(x− a)) (1.40)

by using (1.39), (1.36) can be given by,

1

2
K

∑
n

(ûn − ûn+1)
2 =

1

2
K

∑
k

ûkû−k(2− exp(ika)− exp(−ika)) (1.41)

=
∑
k

K(1− cos(ka))ûkû−k (1.42)

The solution can be simplified further, consider the classical equation of motion given in

equation 1.10,

ω2un = K(2un − un−1 − un+1) (1.43)

By assuming that the solution has a form given by (Mahan (2000)),

un = u0 cos(kan) (1.44)

=
1

2
u+0 exp(ikan) +

1

2
u−
0 exp(−ikan) (1.45)
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we obtain,

un+1 =
1

2
u+0 exp(ikan) exp(ika) +

1

2
u−
0 exp(−ikan) exp(−ika) (1.46)

un−1 =
1

2
u+0 exp(ikan) exp(−ika) + 1

2
u−
0 exp(−ikan) exp(+ika) (1.47)

un+1 + un−1 = 2 cos(ka)un (1.48)

ω2kun = 2K(1− cos(ka))un (1.49)

The last equation can be written in the form,

ω2k = 2K(1− cos(ka)) (1.50)

which is called a dispersion relation. By using the dispersion relation, the potential can

be written in terms of frequency ωk,

1

2
K

∑
n

(ûn − ûn+1)
2 =

∑
k

K(1− cos(ka))ûkû−k (1.51)

=
1

2

∑
n

ω2kûkû−k (1.52)

The kinetic energy term,

1

2

∑
n

p2n =
1

2

∑
k,k′

p̂kp̂k′
1

N

∑
n

exp(ian(k + k′)) (1.53)

=
1

2

∑
k,k′

p̂kp̂k′δk′,−k (1.54)

=
1

2

∑
k

p̂kp̂−k (1.55)

The total Hamiltonian becomes,

Ĥ =
1

2

∑
k

(p̂kp̂−k + ω2kûkû−k) (1.56)

If two operators are defined in the form similar to those given by (Kittel and Kahn (1965)),

âk = αkûk + iβkp̂−k (1.57)

â†k = αkû−k − iβkp̂k (1.58)

where αk and βk are k dependent constants. So,∑
k

â†kâk =
∑
k

(α2kû−kûk + β2k p̂kp̂−k − iαkβk(p̂kûk − û−kp̂−k)) (1.59)
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since the summation is over −∞ to ∞, the terms below can be collected under the same

summation, ∑
k

â†kâk =
∑
k

(α2kûkû−k + β2k p̂kp̂−k + iαkβk[ûk, p̂k]) (1.60)

=
∑
k

(α2kûkû−k + β2k p̂kp̂−k − �αkβk) (1.61)

by letting αk =
√

ωk
2�

and βk =
√

1
2�ωk

, we have

Ĥ =
∑
k

�ωk

(
â†kâk +

1

2

)
(1.62)

with

âk =

√
ωk
2�

ûk + i

√
1

2�ωk
p̂−k (1.63)

â†k =

√
ωk
2�

û−k − i

√
1

2�ωk
p̂k (1.64)

position and displecement operators of each wavenumber k are given by,

ûk =

√
�

2ωk
(âk + â†−k) (1.65)

p̂k = −i
√

�ωk
2

(â−k − â†k) (1.66)

The operator n̂k = â†kâk is called the number operator and it corresponds to the number of

phonons that have a wavenumber k. In equilibrium, Bose-Einstein distribution function

gives the number of phonons oscillating a specific frequancy ωk at a temperature T (Wang

et al. (2013)),

〈n̂k〉 = fBE(ωk,T) =
1

eβ�ωk − 1
(1.67)

where 〈· · ·〉 corresponds to a trace over density matrix Tr[ρ̂ · · · ]. The canonical density

operator is given by,

ρ̂ =
e−β ̂H

Tr
(
e−β ̂H

) (1.68)

where β = (kBT)
−1, so the expectation values of any operator Â are evaluated as

〈A〉 = Tr(ρÂ) (1.69)

where n̂ is the number operator obeying the definitions below,

〈â†â〉 = fBE(ω,T) = 〈n̂〉 (1.70)

〈ââ†〉 = 1 + fBE(ω,T) = 1 + 〈n̂〉 (1.71)
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which allows us to write a commutation relation [â, â†] as,

〈[â, â†]〉 = 〈ââ† − â†â〉 = 1 (1.72)

hence [â, â†] = 1. The total energy is given by (Hofmann (2015)),

〈E〉 =
∫ ∞

0

dω �ω D(ω)

(
fBE(ω,T) +

1

2

)
(1.73)

where D(ω) is the density of states at ω defined by,

D(ω) =
dN
dω

(1.74)

where N is the number of modes. In a one-dimensional periodic lattice, the number of

vibrational modes is equal to the number of atoms in a unit cell or supercell. If there is a

non-periodic 1-d chain with N atoms, then there will be N-1 real positive eigenvalues and

a zero eigenvalue which corresponds to a translation in the longitudinal axis.

For a fixed length L = Na containing N atoms, wavenumber k can have discrete

values (Kittel (2005)),

k = N π

L
(1.75)

The density of states,

D(ω) =
1

L

dN
dk

dk

dω
(1.76)

=
1

π

(
dω

dk

)−1
(1.77)

By using the dispersion relation (1.50) we can calculate the derivative dω/dk,

2ω
dω

dk
= 2Ka sin(ka) (1.78)

dω

dk
=

Ka

ω
sin(ka) (1.79)

By using trigonometric identities on dispersion relation, we have

1− ω2

2K
= cos(ka) = 1− 2 sin2

(
ka

2

)
= 2 cos2

(
ka

2

)
− 1 (1.80)

so that we have,

sin

(
ka

2

)
=

(
ω2

4K

)1/2
(1.81)

cos

(
ka

2

)
=

(
1− ω2

4K

)1/2
(1.82)
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hence,

dω

dk
=

Ka

ω
sin(ka) =

Ka

ω
2 sin

(
ka

2

)
cos

(
ka

2

)
(1.83)

=
√
Ka

(
1− ω2

4K

)1/2
(1.84)

then the density of states can be written as,

D(ω) =
1

πa

[
K

(
1− ω2

4K

)]−1/2
(1.85)

Figure 1.2 shows DOS of a monoatomic chain computed by equation (1.85).
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)

Monoatomic Chain DOS vs Frequency

Figure 1.2. Analyttical calculation of Density of States (DOS) of a monoatomic chain

by using equation (1.85) by using 2000 points between [0,4].

1.3. Anharmonicity

Harmonic approximation of the lattice potential V , allows us to determine the

physics at low temperature, as it neglects any interaction between phonons. The higher

order terms can be written as,

V (u1, u2, · · · , uN) = V0 +
1

2

∑
ij

uiuj
∂2V

∂ui∂uj

∣∣∣∣
0

+
1

3!

∑
ijk

uiujuk
∂3V

∂ui∂uj∂uk

∣∣∣∣
0

+
1

4!

∑
ijkl

uiujukul
∂4V

∂ui∂uj∂uk∂ul

∣∣∣∣
0

+ · · · (1.86)
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where ”0” indicates that the derivatives are evaluated at equilibrium. The third order term

represents the three phonon process, the forth order one represents four-phonon process,

and so on. These higher order terms are temperature dependent and their contribution to

the energy increases with increasing temperature.

In a perfect crystal, harmonic phonons would have infinite lifetime resulting infi-

nite thermal conductivity; however, in real crystals, anharmonic processes and scattering

from defects and boundaries reduce their lifetimes to finite values so that the thermal

conductivity becomes finite (Srivastava (2006)).

-10 -5 0 5 10

x
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f(
x)

ax2

ax2+bx3

Figure 1.3. A plot of two arbitrary potentials involving 2nd and 3rd order terms in the

forms ax2 and bx3 respectively, where a = 1.0 and b = −0.01. Effect

of the bx3 term on the equilibrium position of the harmonic potential with

respect to the energy is shown with green dots. Equilibrium positions of

the quadratic potential is zero for all energies.

Thermal expansion is an observable physical property of solids. Because thermal

expansion is related mostly to the third order term in the potential, it is neglected in

harmonic approximation. If the temperature is increased, the equilibrium point is shifted

with respect to the equilibrium point at zero temperature. A simplified model for the 3rd

order term is shown in Figure 1.3. The oscillation frequencies (phonon modes) are also

shifted with compression or expansion and this behavior is approximated by Grüneisen

parameter (Mahan (2010)).

11



1.4. Transport Phenomena

In this section, the basic concepts about quantum transport are represented. Most

of these concepts have been introduced to the field to understand electronic transport for

historical reasons, and they are valid for both electron and phonon transport in mesoscale

and nanoscale systems.

Nanoscale is the length scale at the order of a nanometer, and mesoscale is de-

fined as the length scale about the phase coherence length where quantum effects like

interference, and weak localization are observed (Buot (2009)).

Depending on the system size there are three regimes of quantum transport, bal-

listic, diffusive and localization regimes.

1.4.1. Transport regimes

The transport is ballistic, if system size is much less than the mean free path

(MFP). A classical definition for mean free path is given by the average distance be-

tween two scattering events which is proportional to the inverse lifetime of a particle.

Another definition for MFP can be given in terms of the quantized conductance given by

Landauer formula dependent on the transmission function τ which is equal to the num-

ber of transport channels at a frequency (in electronic transport it is a function of the

energy). Number of transport channels is equal to the number of phonon (or electronic)

bands available at certain frequency ω. We define mean free path as the length where

transmission gets halved. Transmission function as a function of length and mean free

path is given by the equation (Datta (1995)),

τL
τ0

=
lm

lm + L
(1.87)

where τL is the transmission function of a device of length L, lm is the mean free path. If

the system size is at the order of MFP or larger, the transport is diffusive.

In general, there are multiple types of scatterings inside a crystal. Scattering with

defects, grain boundaries, other particles contribute to the mean path of the particles. This

is described by so called Mathiessen’s Law, and it can be written for phonons as (Cahill

et al. (2014)),

1

τ
=

1

τu
+

1

τd
+

1

τb
· · · (1.88)
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where τu, τd, τb correspond to the lifetimes due to umklapp scattering, defect scattering,

grain boundary scattering respectively.

Under strong disorder, the interference effects reduce transmission exponentially

with respect to the system size, causing different phonon modes to localize at certain ener-

gies. Localization length is the measure of the reduction in transmission function. In elec-

tronic systems, this can be shown with strong Anderson disorder imposed on the hopping

parameters or onsite energies in Tight-Binding model. There are several works regard-

ing phonon localization due to mass disorder (Hopkins and Serrano (2009)),(Mendoza

and Chen (2016)). Another study (Zhou et al. (2016)) shows that long-range interaction

suppresses the localization caused by the mass impurities.

1.4.2. Heat Flow and Fourier’s Law

When a material is subjected to a temperature gradient between a hot and a cold

reservoirs, the phonons start moving from the hot end to the cold end. After waiting long

enough, the system reaches steady state, which allows us to determine transport properties

of the system. A representation of a one-dimensional model system is given in Figure 1.4.

Left Center Right

Figure 1.4. An example of a partitioned one-dimensional model for heat transport un-

der a temperature gradient. The temperature gradient is shown by a color

gradient from hot reservoir (Left region) to cold reservoir (Right region)

through the device (Center region)

Reservoirs which are semi-infinitely long and in equilibrium. For a macroscopic

system which is classical, Fourier’s Law gives the thermal conductivity under a thermal

gradient (Cahill et al. (2003)),

J = −κth∇T (1.89)

where J is the heat flux, T is the temperature, and κth is the thermal conductivity. The

negative sign indicates the flux is in the reverse direction with respect to the temperature

gradient.
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As discussed by Cahill (Cahill et al. (2003)), for out of equilibrium systems one

should define local temperature which changes region to region, instead of defining a

global temperature. For macroscopic systems which are very large, one can define local

temperature for each region of space. But for nanoscale systems, the definition of such

local temperature for a region is closely related to the average phonon mean free path

(MFP) at that region, because MFP is a function of frequency (Cahill et al. (2003)). For

three phonon Umklapp process, the phonon MFP is proportional to inverse of the squared

frequency (l3ph ∝ ω−2), while the MFP due to defects is proportional to ld = ω−4 (Ohno

(1999)).

1.4.3. Landauer Formula

For an electronic system, when the system size is large enough, Ohm’s law holds

for a one-dimensional wire,

G ∝ σ

L
(1.90)

where G is the electrical conductance, σ is the electrical conductivity and L is the length

of the wire. But Ohm’s law does not hold if the system is much smaller than the phase

coherence length. In this case, the conductance is given by Landauer Formula. Assuming

that transmission function is independent of energy, the quantized conductance for single-

channel is given by (Datta (1995)),

G =
2e2

h
τ (1.91)

where τ is the transmission function, h is the Planck’s constant, and 2e2/h is the electrical

conductance quantum. Conductance G is a function of energy, or frequency in phononic

systems. The thermal conductance quantum is π2k2BT/3h (Zhang (2015)).

For single channel, transmission function is equal to the transmission probability.

The transmission probability is at its maximum value (τ = 1) when there is no scattering.

For multiple channels, it is given by the sum over transmission probabilities at different

channels (Zhang (2015)),

τ(ω) =
∑
n

τn(ω) (1.92)

where τn(ω) is the transmission probability related to each channel at frequency ω. In

ballistic regime,

τ(ω) = N(ω) (1.93)
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where N(ω) is the number channels at frequency ω.

1.5. A note on the units of force constants

For the force constants of nth order, we take [Kn] = eV/Å
n
. Converting to the

mass-normalized coordinates, the equation of motion for a monoatomic chain is,

mω2x = −dV

dx
(1.94)

mω2x = K1 +K2x+K3x
2 +K4x

3 + · · · (1.95)
√
mω2u = K1 +m1/2K2u+mK3u

2 +m3/2K4u
3 + · · · (1.96)

ω2u = K1m
−1/2 +m−1K2u+m−3/2K3u

2 +m−2K4u
3 + · · · (1.97)

ω2u = K ′
1 +K ′

2u+K ′
3u
2 + · · · (1.98)

and one can determine that

K ′
n = m−n/2Kn (1.99)

hence the units of K ′
n is given by,

[K ′
n] = eV Å

−n
kg−n/2 (1.100)
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CHAPTER 2

METHODS

2.1. Green Functions

Non-equilibrium Green Functions are used to determine the physics of both equi-

librium and nonequilibrium systems. Equilibrium systems are those which are in ther-

modynamic equilibrium with reservoirs. For both equilibrium and non-equilibrium case,

reservoir couplings are considered as a perturbation and Dyson equation for this perturba-

tion can be expressed in the form of reservoir self-energies. In this section, definitions of

Green function method are given for mostly for equilibrium systems. We mainly follow

the formulation given by Wang et al. (2013) for both equilibrium and non-equilibrium

systems.

In general, there are six Green functions in total: lesser, greater, time ordered,

anti-time ordered, retarded and advanced. The greater and the lesser Green functions are

given by,

g>(t, t′) = − i

�
〈û(t)û(t′)〉 , (2.1)

g<(t, t′) = − i

�
〈û(t′)û(t)〉 = g>(t′, t). (2.2)

where û(t) are the displacements as field operators, t, and t′ are time variables. The

time-ordered and anti-time ordered Green functions are given by,

gt(t, t′) = − i

�

〈
T̂ û(t)û(t′)

〉
. (2.3)

gt(t, t′) = − i

�

〈
T̂ û(t)û(t′)

〉
(2.4)

where T̂ is the time ordering operator which orders succeeding operators in ascending

time, and T̂ is the anti-time ordering operator which orders succeeding operators in de-

scending time. The the time-ordered Green function can be expressed in terms of lesser

and greater Green functions as,

gt(t, t′) = θ(t− t′)g>(t, t′) + θ(t′ − t)g<(t, t′). (2.5)

where θ(t) is the Heaviside step function given by,
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θ(t) =

⎧⎨⎩1 t ≥ 0

0 t < 0
(2.6)

In a similar way, anti-time ordered Green functions can be defined by,

gt(t, t′) = θ(t′ − t)g>(t, t′) + θ(t− t′)g<(t, t′), (2.7)

There are two more important Green functions called retarded and advanced Green func-

tions which are given by,

gr(t, t′) = − i

�
θ(t− t′) 〈[u(t), u(t′)]〉 , (2.8)

ga(t, t′) =
i

�
θ(t′ − t) 〈[u(t), u(t′)]〉 , (2.9)

(2.10)

Retarded Green function allows us to compute observable quantities such as dielectric

susceptibility in a dielectric material, and density of states. In classical physics, it corre-

sponds to the equation (Wang et al. (2013)),

g̈r(t) + ω2gr(t) = −δ(t) (2.11)

To obtain steady-state transport properties, the Green functions are defined as functions

of frequency by calculating their Fourier transform,

gr(ω) =

∫ ∞

−∞
gr(t)eiωtdt, (2.12)

gr(t) =

∫ ∞

−∞

dω

2π
gr(ω)e−iωt. (2.13)

The six Green functions are related to each other with the following equations,

gt + gt = g> + g<, (2.14)

gr − ga = g> − g<, (2.15)

gr + ga = gt − gt, (2.16)

where gr(ω) = (ga(ω))†. These equations hold both in time and frequency space.

2.1.1. Single Particle Green Function

For a non-interacting particle, one can evaluate the retarded Green function. The

time dependence of of an operator Â in Heisenberg picture are given by (Sakurai and
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Napolitano (2010)),

dÂ

dt
= − i

�
[Â, Ĥ] (2.17)

where Ĥ is the Hamiltonian operator. The time evolution of the annihilation operator can

be calculated as below,

− i

�
[â, Ĥ] =

[
â, �ω

(
â†â+

1

2

)]
(2.18)

By using the identity,

[A,BC] = [A,B]C +B[A,C] (2.19)

the time evolution of â becomes,

dâ

dt
= − i

�
(�ω[â, â†]â+ �ωâ†[â, â]) (2.20)

= −iω (2.21)

Here, the identity [â, â†] = 1 is used shown in Section 1.2. Similarly, for creation operator

â†,

dâ†

dt
= − i

�
(�ω[â†, â†]â− �ωâ†[â, â†]) (2.22)

= iω (2.23)

and finally, the operators can be written in Heisenberg picture as,

â(t) = â0 exp(−iωt) (2.24)

â†(t) = â†0 exp(iωt) (2.25)

where â0 and â†0 are the operators in Schrödinger picture. By using these operators, single

particle retarded Green function can be expressed as (Wang et al. (2013)),

gr(t, t′) = − i

�
θ(t− t′) 〈[u(t), u(t′)]〉 (2.26)

= − i

�
θ(t− t′) 〈 �

2ω
â†0â exp(iω(t− t′))− �

2ω
â†0â0 exp(−iω(t− t′))〉

+ 〈 �

2ω
â0â

† exp(iω(t− t′))− �

2ω
â0â

†
0 exp(−iω(t− t′))〉 (2.27)

= −iθ(t− t′)
i

ω
sin(ω(t− t′))fBE(ω)

− iθ(t− t′)(1 + fBE(ω))

(
− i

ω

)
sin(ω(t− t′)) (2.28)

= −iθ(t− t′)
sin(ω(t− t′))

ω
(2.29)
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In frequency domain,

gr(ω′) =
∫ ∞

−∞
dt gr(t) exp(iω′t) (2.30)

gr(ω′) = −
∫ ∞

−∞
dt θ(t− t′)

sin(ω(t− t′))
ω

exp(iω′t) (2.31)

Letting t′ = 0, and adding an infinitesimal factor exp(−ηt) for the integration to

converge,

gr(ω′) = lim
η→0+

∫ ∞

−∞
dt θ(t)

sin(ω(t))

ω
exp(iω′t− ηt) (2.32)

= − lim
η→0+

{∫ ∞

−∞
dt θ(t)

exp(i(ω′ + iη + ω)t)

2iω

}
+ lim

η→0+

{∫ ∞

−∞
dt θ(t)

exp(i(ω′ + iη − ω)t)

2iω

}
(2.33)

= lim
η→0+

1

2ω

(
1

ω′ + iη − ω
− 1

ω′ + iη + ω

)
(2.34)

= lim
η→0+

1

(ω′ + iη)2 − ω2
(2.35)

If we expand the first term in the denominator,

gr(ω′) = lim
η→0+

1

ω′2 + 2iηω′ − η2 − ω2
(2.36)

as η → 0, η2 converges to zero faster than η, so η2 can safely be neglected. The other

term 2ω′η becomes zero in the limit η → 0 since 2ω′ is constant with respect to η. So,

one can rewrite gr(ω),

gr(ω′) =
1

ω′2 − ω2 + iη
(2.37)

The real part of gr(ω′),

Re {gr(ω′)} =
ω′2 − ω2

η2 + (ω′2 − ω2)2
(2.38)

and the imaginary part,

Im {gr(ω′)} = − η

η2 + (ω′2 − ω2)2
(2.39)

The delta function is defined by (Liu (2012)),

δ(x) =
1

π
lim
η→0

η

η2 + x2
(2.40)

and the imaginary part can be defined in terms of a delta function,

Im{gr(ω′)} = −πδ(ω2 − ω′2) (2.41)
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and this quantity is related to the density of states (DOS) (Zhang (2015)),

N =

∫ ∞

0

d(ω2) D(ω2) (2.42)

where D is DOS, and N is the total number of modes. In our case, since there is only one

particle, there is one mode. Variables of the integral equation can be changed to express

DOS as a function of frequency,

N =

∫ ∞

0

2ω dω D(ω2) (2.43)

hence,

D(ω) = −2ω

π
Im[gr(ω)] (2.44)

2.1.2. Matrix Representation

The single particle retarded Green function can be expressed as a matrix operator

of displacements of each atom in a unit cell,

gr(ω) = ((ω + iη)2I −K)−1 (2.45)

where I is the identity matrix and K is the dynamical matrix which consists of the force

constants of atoms. For N particles, the size of the matrix is N × N , and it has N

eigenvalues corresponding to different oscillation modes. For N = 1 it is just a number

K,

gr(ω) = ((ω + iη)2 −K)−1 (2.46)

where K = ω′2, and ω′ can be interpreted as the angular frequency of a spring. In matrix

representation, the density of states can be written as,

D(ω) = −2ω

π
Tr{Im[gr(ω)]} (2.47)

where Tr is the matrix trace operation. Vibrational modes are identified with positive

eigenvalues of K. Because eigenvalues of K correspond to squared frequencies, and neg-

ative eigenvalues correspond to imaginary frequencies which are not physical. As it can

be seen in Figure 2.1, a non-periodic finite chain has a mode with zero frequency that cor-

responds to translational motion as mentioned in Section 1.2, and DOS is a combination

of delta functions at these discrete frequencies. The calculation is performed by using the

harmonic force constant determined from DFT data given by equation (3.2).
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Regarding Figure 2.1, the peaks in DOS of a finite chain are described as delta

functions occur from discrete eigenmodes, but it is also known that delta functions δ(ω−
ωm) should diverge at each oscillation mode ωm. The reason why they do not diverge

in our plot is the fact that we use a finite imaginary number iη which is supposed to be

infinitesimal. By choosing the η parameter as a relatively large value, we introduce a

broadening to the peaks which are supposed to be divergent. The half-widths of these

peaks are at the order of this η parameter. Frequency mesh is another factor to determine

these peaks, because if the distance between two mesh points is larger than broadening,

some of the singularities may not be determined.
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Figure 2.1. DOS as a function of frequency. DOS is shown by blue curve, and red

dashed lines represent square root of eigenvalues of the dynamical matrix.

N = 6, K = 4.36× 1027eVÅ
−2
kg−1, η = 10−3 and ω is sampled with

10000 points between 0 and 2
√
K = 132.06 THz.

For a perodic unit cell, we have Bloch terms exp(±iqa) in the dynamical matrix,

where a is the unit cell length, and q is the wavenumber. So K1N(φ) = exp(−iφ) and

KN1(φ) = exp(iφ). So the eigenvalues of this system is a function of phase φ, hence DOS

is needed to be integrated over all possible wavenumbers which exist in the 1st Brillouin

zone where φ ∈ [−π, π],
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D(ω) = −2ω

π

∫ π

−π

dφ

2π
Tr{Im[gr(ω, φ)]} (2.48)

= −2ω

π

Nφ∑
n

Δφ

2π
Tr{Im[gr(ω, φ)]} (2.49)

with a uniform mesh between [−π, π], Δφ = 2π/Nφ, hence,

D(ω) = − 2ω

πNφ

Nφ∑
n=1

Tr{Im[gr(ω, φn)]} (2.50)
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Figure 2.2. (a) 1-dimensional band structure of a 6 atom unit-cell periodic chain.(b)

DOS as a function of frequency integrated over the first Brillouin zone.

N = 6, K = 4.36× 1027eVÅ
−2
kg−1, η = 10−3, ω mesh has 2000 points

between 0 and 4
√
K = 264.12 THz, and φ ∈ [−π, π] sampled with 2000

points. The integral of DOS over frequency is equal to 5.99

2.1.3. Reservoir Self-Energies

In equilibrium Green functions, reservoir couplings are treated as a perturbation

which allows us to write Dyson’s equation in terms of uncoupled Green functions. The
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main assumption is that the system is uncoupled at time −∞ and the state of the un-

coupled system is known. As the system evolves with time t → t0 the perturbation is

switched on adiabatically, and it is switched off adiabatically as t goes to ∞. The time-

evolution of the Green function with |φ〉0 at t → −∞, and u(t) as the field operators is

given by (Mahan (2000)),

Gij(t, t
′) = − i

�

〈φ0|T̂ S(∞,−∞)ûi(t)ûj(t
′)|φ0〉

〈φ0|S(∞,−∞)|φ0〉
(2.51)

where S(t, t′) is the S-matrix and i, j are cite indices,

S(t, t′) = T̂ exp

(
− i

�

∫ t

t′
dt1 V̂ (t1)

)
(2.52)

S(∞,−∞) =
∞∑
n=0

(−i/�)n
n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn T̂ V̂ (t1) · · · V̂ (tn) (2.53)

where V̂ is the perturbation potential, T̂ is the time-ordering operator. If the system is

in equilibrium, (2.53) is just a phase. Gij(t, t
′) can be expanded in series and the terms

in the series can be represented by diagrams and one only needs to evaluate connected

diagrams. The irreducible diagrams contribute to the so-called self-energy. The reservoir

coupling is defined as such a self-energy expression Σ(t, t′). These relations can also be

described in frequency space. Suppose we have a force constant matrix K and a coupling

matrix V , the retarded Green function can be expanded in series (Hirose and Kobayashi

(2014))

G = (ω2I −K − V )−1 (2.54)

= {(ω2I −K)(I − (ω2I −K)−1V )}−1

= (I − gV )−1g

= g + gV g + gV gV g + · · · (2.55)

= g + gV (g + gV g + · · · )

= g + gV G (2.56)

where g is the uncoupled retarded Green function, and g and G are functions of the fre-

quency ω. We can rewrite (2.55) as,

G = g + (gV + gV gV + · · · )g

= g +GV g (2.57)
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(2.56) and (2.57) are two equivalent representations of Dyson equation. In time domain,

they are given by,

G(t, t′) =
∫ ∞

−∞
dt1g(t, t1)V G(t1, t

′) (2.58)

G(t, t′) =
∫ ∞

−∞
dt1G(t, t1)V g(t1, t

′) (2.59)

The terms in (2.55) include all multiple scatterings, but we only need to evaluate

irreducible diagrams that cannot be split into two parts by the cut of a single line and

Dyson equation is given by (Hirose and Kobayashi (2014)),

G = g + gΣG (2.60)

G = g +GΣg (2.61)

where Σ is the retarded self energy including all irreducible diagrams. In time domain

they are given by (Stefanucci and van Leeuwen (2013)),

G(t, t′) = g(t, t′) +
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 g(t, t1) Σ(t1, t2) G(t2, t

′) (2.62)

G(t, t′) = g(t, t′) +
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2 G(t, t1) Σ(t1, t2) g(t2, t

′) (2.63)

The partitioned form of the Hamiltonian for the system in Figure 1.4 is given by

(Wang et al. (2013)),

H = HL +HC +HR + uTLV
LCuC + uTRV

RCuC (2.64)

=
∑

j∈L,C,R
Hj + uTLV

LCuC + uTRV
RCuC (2.65)

where the the indices C, L, R correspond to the center, left and right region respectively,

and,

Hj =
1

2

{
pTj pj + uTj Kuj

}
(2.66)

In partitioned base of L,C and R; the quadratic Hamiltonian is defined by,

K + V =

⎡⎢⎢⎣
KL V LC 0

V CL KC V CR

0 V RC KR

⎤⎥⎥⎦ (2.67)

where the coupling matrix V is defined by,

V =

⎡⎢⎢⎣
0 V LC 0

V CL 0 V CR

0 V RC 0

⎤⎥⎥⎦ (2.68)
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where V ij are the interactions between partitions i and j where i, j ∈ {L,R}. Note that

the reservoirs are not coupled to each other. We can write the retarded Green function

equation in matrix form,⎡⎢⎢⎣
Ω2 −KL V LC 0

V CL Ω2 −KC V CR

0 V RC Ω2 −KR

⎤⎥⎥⎦
⎡⎢⎢⎣
GL GLC GLR

GCL GC GCR

GRL GRC GR

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0

0 1 0

0 0 1

⎤⎥⎥⎦ (2.69)

where Ω = (ω+ iη), and it does not necessary for LR and RL parts of the retarded Green

function to be zero. Also, r superscript is dropped. By using the second column of the

identity matrix (right-hand side), the following identities are obtained (Ryndyk (2016)),

(Ω2 −KL)GLC + V LCGC = 0 (2.70)

V CLGLC + (Ω2 −KC)GC + V CRGRC = 1 (2.71)

V RCGC + (Ω2 −KR)GRC = 0 (2.72)

we solve for GLC and GRC in (2.70) and (2.72) respectively,

GLC = −(Ω2 −KL)−1V LCGC (2.73)

GRC = −(Ω2 −KR)−1V RCGC (2.74)

and these can be substituted into (2.71) to obtain,

{(Ω2 −KC)− V CL(Ω2 −KL)−1V LC − V CR(Ω2 −KR)−1V RC}GC = 1 (2.75)

it means that one can write an effective dynamical matrix as,

K̃C = KC + V CL(Ω2 −KL)−1V LC + V CR(Ω2 −KR)−1V RC (2.76)

and solve the retarded Green function for this effective dynamical matrix in a similar way

that it is done for the uncoupled system.

GC = (Ω2 − K̃C)−1 (2.77)

These effective terms in the dynamical matrix are called reservoir self energies, defined

by

ΣL = V CLgLV LC (2.78)

ΣR = V CRgRV RC (2.79)

where gL/R are the uncoupled retarded Green functions of the reservoirs,

gL = (Ω2 −KL)−1 (2.80)

gR = (Ω2 −KR)−1 (2.81)
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For thermalization to occur, reservoirs are choosen to be semi-infinitely long and

repetitive. The exact dynamical matrices of reservoirs are supposed to be infinitely large

which cannot be inverted.

Instead, one can use a numerically efficient recursive algorithm to compute these

Green functions which is based on periodic nature of these reservoir unit cells (Sancho

et al. (1985)). For phonon transport, a pseudo-code is given by (Wang et al. (2007)) to

compute these reservoir Green functions, or Surface Green Functions (SGF).

2.1.4. Level Broadening and Transmission Function

The central region which is called the device, has a finite number of discrete en-

ergy levels when it is not coupled to the reservoirs. After the device is coupled to these

ideal reservoirs and the system evolves into a steady state, these energy levels may shift

and broaden due to the continuum in the reservoir states (Hirose and Kobayashi (2014)).

The shift in energy levels is proportional to the real part of the retarded self-energy, and

broadening (or level-width function) is given by the imaginary part of the self energy

(Ryndyk (2016)),

ΓL/R = i
(
ΣL/R − ΣL/R

†)
(2.82)

The transmission function for these equilibrium systems is given by (Ryndyk (2016)),

T (ω) = Tr
[
ΓLGCΓRGC†]

(2.83)

where all operators in the trace are functions of frequency ω.

2.1.5. An example calculation

For a semi-infinite one-dimensional reservoir with tight-binding model, the un-

coupled retarded Green functions evaluated analytically by Müller et al. (2000) for elec-

tronic transport. The terms in the dynamical matrix for a chain are similar to those in

tight-binding model, so Müller’s formula can be written for phonon transport,

gs = −1

k
exp (iθ) , θ = cos−1

(
1− (ω + iη)2

2k

)
. (2.84)

where gs is the Green function of reservoir ”s” (s ∈ {L,R}) called surface Green function,

K is the harmonic force constant, ω is frequency as an independent parameter, and η is
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the small damping factor. Assuming that there is only one atom in the device region, the

retarded self-energy becomes,

Σs = V CsgsV sC (2.85)

= −k exp (iθ) . (2.86)

There are two reservoirs, so it is multiplied by two and the retarded Green function of the

system is,

Gr (ω) =
(
ω2 − 2k − 2Σs

)−1
(2.87)

=
(
ω2 − 2k + 2k exp (iθ)

)−1
. (2.88)

and DOS is given by,

D (ω) = −2ω

π
Im {Tr [Gr]} , (2.89)

= −2ω

π
Im

[(
ω2 − 2k + 2k exp (iθ)

)−1]
(2.90)

where η is only used in reservoirs for this model and that is enough to avoid singularities.

If we rewrite (2.84) by using the definition Ω = ω + iη,

cos(θ) = 1− Ω2

2k
(2.91)

= 2 cos2
(
θ

2

)
− 1 = 1− 2 sin2

(
θ

2

)
(2.92)

we have,

sin

(
θ

2

)
=

(
Ω2

4k

)1/2
(2.93)

cos

(
θ

2

)
=

(
1− Ω2

4k

)1/2
(2.94)

so that we can rewrite the term in the paranthesis in equation (2.90) as,

ω2 + 2k(exp(iθ)− 1) = ω2 + 2k(cos(θ) + i sin(θ)− 1) (2.95)

= ω2 + 2k

(
cos(θ) + 2i sin

(
θ

2

)
cos

(
θ

2

)
− 1

)
(2.96)

= ω2 + 2k

(
−Ω2

2k
+ 2i

(
Ω2

4k

)1/2(
1− Ω2

4k

)1/2)
(2.97)

as Ω → ω we have,

D(ω) =
1

π

[
k

(
1− ω2

4k

)]−1/2
(2.98)
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which is identical to the analytical formula (1.85). Broadening function is given by the

imaginary part of the self-energy,

Γs = i(Σs − Σs†) (2.99)

− ik(exp(iθ)− exp(−iθ)) (2.100)

= 2k sin (θ) (2.101)

If we expand this equation by using trigonometric identities, we obtain

Γs = 4k sin

(
θ

2

)
cos

(
θ

2

)
(2.102)

= 4k

(
Ω2

4k

)1/2(
1− Ω2

4k

)1/2
(2.103)

= 2Ω

[
k

(
1− Ω2

4k

)]1/2
(2.104)

in the last equation we see that we have a divergent imaginary part for Ω2 > 4k. Also,

we know that broadening is real, because it is the imaginary part of the self-energy, so we

can discard that imaginary part completely by re-defining the broadening as,

Γs = 2kRe[sin (θ)] (2.105)

The transmission function is given by,

T (ω) = Tr[ΓL(ω)Gr(ω)ΓR(ω)Ga(ω)] (2.106)

For monoatomic chain, the functions in the trace in the last equation are just numbers, so

we can rewrite transmission as,

T (ω) = ΓL(ω)ΓR(ω)Gr(ω)Ga(ω) (2.107)

by using equation (2.104), we obtain

ΓL(ω)ΓR(ω) = 4Ω2k

(
1− Ω2

4k

)
(2.108)

and by using equation (2.97), as Ω → ω, we can write

Gr(ω)Ga(ω) =
1

4kω2
(
1− ω2

4k

) (2.109)

hence,

T (ω) = 1, ω2 ≤ 4k (2.110)

28



By using equations (2.88) and (2.105) the transmission function can also be written as,

T (ω) = 4k2Re
[
sin2 (θ)

] ∣∣∣(ω2 − 2k + 2k exp (iθ)
)−1∣∣∣2 (2.111)

For monoatomic chain, surface green function, DOS and Transmission function are shown

in Figure 2.3. The calculations for Figure 2.3 are done by using equations (2.84),(2.90)

and (2.111). Because SGF is proportional to the self-energy with a factor K−2 for this

model, SGF in Figure 2.3 can be interpreted as a self-energy.
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Figure 2.3. An example calculation of the SGF (a), DOS (b), and transmission function

(c) for the analytical formula derived in Section 2.1.5. In (a), blue line

shows the real part of the SGF, while red line shows the imaginary part.

The parameters are K = 1eV Å
−2

kg−1,η = 10−5,ω ∈ [0, 4]Hz sampled

with 500 points.

2.2. Non-equilibrium Green Functions

In this section, the basic concepts of NEGF like contour time, and operators of

contour time is introduced. Then, mathematical tools like Langreth theorem is repre-

sented. In the last part of this section, heat current and conductance are represented in

NEGF formalism.
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2.2.1. Green Functions of Contour Time

In equilibrium systems, the perturbation is introduced slowly as t → t0, and then

slowly decays as t→ ±∞. The unperturbed state of the system is known at t→ ±∞ and

Gell-Mann and Low theorem states that they are equal to each other except for a phase

factor (Haug and Jauho (2007)). However, in non-equilibrium systems, the perturbation

does not decay as t → ∞, hence the Gell-Mann and Low theorem does not hold (Zhu

et al. (2016)).

Because the time-reversal symmetry is broken, the time evolution is defined on a

contour which starts and ends at t0, travels through the upper branch and the lower branch

respectively. Such a contour is shown as,

where τ is called a contour time. As stated by Wang et al. (2013), the common choices for

t0 are 0 and −∞. Hirose and Kobayashi (2014) assume t0 → −∞, and define S-Matrix

by,

Ŝ(−∞,∞) = T̂c exp

(
− i

�

∫
c

V̂ (τ)dτ

)
(2.112)

where T̂c is the contour time ordering operator on a contour c. Green functions of contour

time are similar to the Green functions of real time (Wang et al. (2013)),

g>(τ, τ ′) = − i

�
〈û(τ)û(τ ′)〉 , (2.113)

g<(τ, τ ′) = − i

�
〈û(τ ′)û(τ)〉 = g>(τ ′, τ), (2.114)

gt(τ, τ ′) = − i

�
〈T̂cû(τ)û(τ ′)〉 , (2.115)

gt(τ, τ ′) = − i

�
〈T cû(τ)û(τ ′)〉 (2.116)

where T̂ c is the contour anti-time ordering operator. Contour time τ corresponds to a real

time t with a branch index σ, where σ ∈ {+,−}, (+ for upper branch, - for lower branch).

The type of Green function depends where time variables exists on the contour (Mahan

(2000)). If they both are at the upper (lower) branch, the Green function is contour time

(anti-time) ordered. If t is at the upper (lower) branch and t′ is at the lower (upper) branch,

it is lesser (greater) Green function. This explains the identity in Equation 2.114. If the
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time variables are replaced in lesser Green function, we obtain greater Green function and

vice versa.

2.2.2. Multiple Contours and Langreth Theorem

To compute Dyson’s equation, one needs to evaluate convolution of multiple op-

erators. To express the lesser part of the Green function, this convolution is expressed as

a combination of different contours. First, self-energy is considered as a Green function.

Two Green functions under a convolution integral on a contour c is given by,

C(τ, τ ′) =
∫
c

dτ1 A(τ, τ1)B(τ1, τ
′) (2.117)

the equation can be represented by a combination of contours c1 and c2,

�

�

τ exists on c1 and τ ′ exists on c2 and the integral can be written as,

C(τ, τ ′) =
∫
c1

dτ1 A(τ, τ1)B(τ1, τ
′) +

∫
c2

dτ1 A(τ, τ1)B(τ1, τ
′) (2.118)

the lesser part of the Green function becomes,

C<(τ, τ ′) =
∫
c1

dτ1 A(τ, τ1)B
<(τ1, τ

′) +
∫
c2

dτ1 A
<(τ, τ1)B(τ1, τ

′) (2.119)

Note that for the integration on c1, we always have τ1 < τ ′. Similarly, on c2, we always

have t < t1. By converting to the real time, when t, t1 we have A<(t, t1) and when t > t1

we have A>(t, t1). Then the right hand side can be written as (Hirose and Kobayashi

(2014)),

A<(t, t′) =
∫ ∞

−∞
dt1 {Ar(t, t1)B

<(t1, t
′) + A<(t, t1)B

a(t1, t
′)} (2.120)

Similarly,

A>(t, t′) =
∫ ∞

−∞
dt1 {Ar(t, t1)B

<(t1, t
′) + A<(t, t1)B

a(t1, t
′)} (2.121)
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which is known as Langreth theorem (Devreese (1976)). The detailed derivations of these

formula are given by Hirose and Kobayashi (2014). These derivations are based on writ-

ing the integral as a summation of two; one is over (−∞, t] and the other is over [t,∞)

and making use of the relations between Gr, Ga with G<, G>, and eventually taking the

limit t→∞. These relations can be expressed in a symbolic form,

C< = ArB< + A<Ba (2.122)

C> = ArB> + A>Ba (2.123)

and the retarded part is given by (Hirose and Kobayashi (2014))

Cr = ArBr (2.124)

similarly, the advanced Green function can be defined by,

Ca = AaBa (2.125)

For three Green functions A,B, and C such that D = ABC,

D< = Ar(BC)< + A<(BC)a (2.126)

= ArBrC< + ArB<Ca + A<BaCa (2.127)

2.2.3. Dyson Equation

In Section 2.1.3, Dyson’s equation (Equation 2.58 and 2.62) for reservoir coupling

is introduced. For non-equilibrium self-energies they can be defined by,

G(τ, τ ′) = g(τ, τ ′) +
∫
c

dτ1g(τ, τ1)V G(τ1, τ
′) (2.128)

G(τ, τ ′) = g(τ, τ ′) +
∫
c

dτ1dτ2 g(τ, τ1)Σ(τ1, τ2)G(τ2, τ
′) (2.129)

the lesser part can be written by using Langreth’s theorem given by Equation 2.127,

G< = g< + grΣrG< + grΣ<Ga + g<ΣaGa (2.130)

this recursive relation can be represented in an equivalent form (Haug and Jauho (2007)),

G< = (1 +GrΣr)g<(1 + ΣaGa) +GrΣ<Ga (2.131)
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as stated by Wang et al. (2013), for the equilibrium systems in steady state the first term

is zero, so

G< = GrΣ<Ga (2.132)

in a similar way,

G> = GrΣ>Ga (2.133)

and the retarded part is simply,

Gr = gr + grΣrGr (2.134)

For a system in equilibrium with the reservoirs, (2.132) and (2.133) reduces to the equa-

tions below,

G<(ω) = fBE(ω)(G
r(ω)−Ga(ω)) (2.135)

G>(ω) = (1 + fBE(ω))(G
r(ω)−Ga(ω)) (2.136)

The Dyson equation for all Green functions except for the time and anti-time ordered are

then,

Gr = gr(1 + ΣrGr) (2.137)

Ga = ga(1 + ΣaGa) (2.138)

G> = GrΣ>Ga (2.139)

G< = GrΣ<Ga (2.140)

2.2.4. Heat Current and Conductance

In this section, we describe the heat and conductance in terms of Green functions

in matrix form and we mainly follow the work by Wang et al. (2013). Heat current is

defined by the rate of change in the energy in one of the reservoirs (Wang et al. (2013)),

IL(t) = −〈dHL(t)

dt
〉 (2.141)

= 〈u̇L(t)TV LCuC(t)〉 (2.142)

The time dependence is introduced to the system via reservoir couplings,

IL(t) = i�
∂

∂t′
Tr

[
G≶
CL(t, t

′)V LC
]∣∣
t′=t (2.143)
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This leads to the following equation in frequency space,

IL(t) =

∫ ∞

−∞

dω

4π
�ω Tr[G<Σ>

L −G>
LΣ

<
L ] (2.144)

In equilibrium, by using (2.135) and (2.136), and the relations among the Green functions

the trace term can be reduced to (2.83).

Conductance in equilibrium is given by,

κ =
1

2π

∫ ∞

0

dω �ω T (ω)
df(ω, T )

dT
(2.145)

by letting x = x(ω) = �ω/kBT the equation becomes,

κ =
1

2π

∫ ∞

0

(
kBT

�
dx

)
kBTx τ(x)

(
− x

T

)(
− exp(x)

(exp(x)− 1)2

)
(2.146)

=
k2BT

2π�

∫ ∞

0

x2 exp(x)

(exp(x)− 1)2
τ(x) (2.147)

where τ is the transmission function. We may choose an upper limit ωmax and corre-

sponding xmax for the integral beyond which transmission is zero.

2.3. Anharmonic Self-Energies

Non-linear terms in the Hamiltonian can be incorporated into NEGF method in

the form of self-energies corresponding to these terms. Then we can solve for Gr with an

equation similar to the one with the equilibrium Green function,

Gr = ((ω + iη)2I −K − Σ)−1 (2.148)

but this time the retarded self-energy Σ corresponds to

Σ = ΣL + ΣR + Σn (2.149)

where ΣL/R are the reservoir self-energies, and Σn is the self energy due to the non-linear

interactions such as anharmonic coupling.

2.3.1. Diagrammatic Technique

Phonon-phonon coupling can be evaluated using diagrammatic perturbation tech-

nique. The lowest order diagram for the 3rd order term corresponding to 3-phonon inter-

action can be shown as (Mingo (2006)),
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the terms occur from diagrams can be evaluated by following some set of rules given by

Wang et al. (Wang et al. (2007)). According to these rules, labeling the left vertex as

Tj1,j3,j5 , and right vertex as Tj2,j4,j6 where the lines connected to a vertex are labeled as

(τi, ji), the diagram corresponds to the term below,

i

�
Σj1,j2(τ1, τ2) =

∑
j3,j4,j5,j6

∫
dτ3dτ4dτ5dτ6 Tj1,j3,j5(τ1, τ3, τ5)Tj2,j4,j6(τ2, τ4, τ6)

× Gj3,j4(τ3, τ4)Gj5,j6(τ5, τ6) (2.150)

where G is the linear self-energy without non-linear interactions. At each vertex, the

contour times should be equal and we have two delta functions,

i

�
Σj1,j2(τ1, τ2) =

∑
j3,j4,j5,j6

∫
dτ3dτ4dτ5dτ6 δ(τ1 − τ3)δ(τ3 − τ5)Tj1,j3,j5(τ1, τ3, τ5)

× δ(τ2 − τ4)δ(τ4 − τ6)Tj2,j4,j6(τ2, τ4, τ6)

× Gj3,j4(τ3, τ4)Gj5,j6(τ5, τ6) (2.151)

=
∑

j3,j4,j5,j6

Tj1,j3,j5Tj2,j4,j6Gj3,j4(τ1, τ2)Gj5,j6(τ1, τ2) (2.152)

To obtain the lesser part of this self-energy, we need to convert to real time with branch

index τ → tσ, and this indices are transferred to the Green function,

i

�
Σσ1,σ2(t1 − t2) =

∑
j3,j4,j5,j6

Tj1,j3,j5Tj2,j4,j6G
σ1,σ2
j3,j4

(t1 − t2)G
σ1,σ2
j5,j6

(t1 − t2) (2.153)

The lesser self-energy can be represented as Σ+−(t − t′) where t is on the upper branch,

and t′ is on the lower branch,

i

�
Σ<(t1 − t2) =

∑
j3,j4,j5,j6

Tj1,j3,j5Tj2,j4,j6G
<
j3,j4

(t1 − t2)G
<
j5,j6

(t1 − t2) (2.154)

We need to use Fourier transform to express this self energy in frequency space,

i

�
Σ<(t1 − t2) =

∑
j3,j4,j5,j6

∫
dω1
2π

∫
dω2
2π

Tj1,j3,j5Tj2,j4,j6

×G<
j3,j4

(ω1)G
<
j5,j6

(ω2) exp(−i(ω1 + ω2)t) (2.155)

=

∫
Σ<
j1,j2

(ω)
dω

2π
exp(−iωt) (2.156)
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Since all integrations are on (−∞,∞), by letting ω = ω1 + ω2, we can express the self-

energy as,∫
Σ<
j1,j2

(ω)
dω

2π
exp(−iωt) =

∫
Σ<
j1,j2

(ω) exp(−iωt)dω1
2π

+

∫
Σ<
j1,j2

(ω) exp(−iωt)dω2
2π

(2.157)

each term has equal contribution since the integral is over all frequencies. Then the first

term in the integration can be defined by,

i

�

∫
Σ<
j1,j2

(ω) exp(−iωt)dω1
2π

=
1

2

∑
j3,j4,j5,j6

∫
dω1
2π

∫
dω2
2π

Tj1,j3,j5Tj2,j4,j6

×G<
j3,j4

(ω1)G
<
j5,j6

(ω2) exp(−iωt) (2.158)

Hence,

i

�
Σ<
j1,j2

(ω) =
∑

j3,j4,j5,j6

∫
dω2
4π

Tj1,j3,j5Tj2,j4,j6G
<
j3,j4

(ω − ω2)G
<
j5,j6

(ω2) (2.159)

the same result is shown by Mingo (2006) with a factor 4π.

the greater self-energy is related to the lesser self-energy with a relation given in

Section 2.2.1,

Σ<(t− t′) = Σ>(t′ − t) (2.160)

if we choose t′ as zero and take the Fourier transform,∫ ∞

−∞

dω

2π
Σ<(ω) exp(−iωt) =

∫ ∞

−∞

dω

2π
Σ>(ω) exp(iωt) (2.161)

by changing the variable from ω to −ω in the right-hand side and putting a minus sign to

preserve limits gives,∫ ∞

−∞

dω

2π
Σ<(ω) exp(−iωt) =

∫ ∞

−∞

dω

2π
Σ>(−ω) exp(−iωt) (2.162)

hence,

Σ<(ω) = Σ>(−ω) (2.163)

now, we can compute the imaginary part of the retarded self-energy,

Im{Σr(ω)} =
1

2
[Σr(ω)− Σa(ω)] (2.164)

=
1

2
[Σ>(ω)− Σ<(ω)] (2.165)
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The real and imaginary parts of a retarded Green function are related to each other with

so-called Hilbert transform,

Re{Σr(ω)} = H{Im{Σr(ω)}} (2.166)

2.3.2. Mean-Field Approach

In some quantum-mechanical problems, it is hard to tackle with the computational

complexities of many-body interactions, and one may perform a mean-field calculation by

approximating the interaction as one-body interaction. One such example is the Hartree

approximation, where a many-electron wavefunction is approximated by a multiplication

of one-electron wavefunctions (Torres (2013)).

Recently, it was shown by Zhang et al. (2013) that the quantum self-consistent

mean-field (QSCMF) model for quartic anharmonicity is very accurate in comparison

with quantum master equation for systems with weak system-bath coupling. They also

showed that nonlinearity enhances thermal transport at the interface of their one-dimensional

model with two-atoms. In QSCMF model, the effective dynamical matrix is given by,

K̃ij = Kij + 6i�
∑
kl

Tijkl

∫ ∞

0

dω

2π
G<
kl(ω) (2.167)

Since G<(ω) depends on Gr(ω) which also depends on K̃, a self-consistent calculation

is required.

2.3.3. Anharmonic Force Constants in 1D

In 1-dimensions, the potential energy can be expanded for a finite chain with each

bond having a force constant K,

K

N−1∑
n=1

(ûn − ûn+1)
2 = K

N−1∑
n=1

(û2n + û2n+1 − ûnûn+1 − ûn+1ûn) (2.168)

Then we can write harmonic force constants Tij =
1
2

∂2V
∂ui∂uj

∣∣∣
ui=uj=0

as,

Tij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K , i = j = 1 or i = j = N

2K , i = j and 1 < i < N

−K , i = j ± 1

0 , otherwise

(2.169)
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The 3rd order term,

K3

N−1∑
n=1

(ûn − ûn+1)
3 = K3

N−1∑
n=1

(û3n + ûnû
2
n+1 − û2nûn+1 − ûnûn+1ûn

−ûn+1û2n − û3n+1 + ûn+1ûnûn+1 + û2n+1ûn) (2.170)

and the force constants Tijk =
1
3!

∂3V
∂ui∂uj∂uk

∣∣∣
ui=uj=uk=0

are,

Tijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K3 , i = j = k = 1 or i = j = k = N

K3 , i+ 1 = j = k or i = j + 1 = k

or i = j = k + 1

−K3 , i− 1 = j = k or i = j − 1 = k

or i = j = k − 1

0 , otherwise

(2.171)

The 4th order term,

K4

N−1∑
n=1

(ûn − ûn+1)
4 = K4

N−1∑
n=1

(û4n − û3nûn+1 − û2nûn+1ûn

+ û2nû
2
n+1 − ûnûn+1û

2
n + ûnûn+1ûnûn+1

+ ûn+1û
2
nûn+1 − ûnû

3
n+1 − ûn+1û

3
n

+ ûn+1û
2
nûn+1 + ûn+1ûnûn+1ûn − ûn+1ûnû

2
n+1

+ ûn+1û
2
n − û2n+1ûnûn+1 − û3n+1ûn + û4n+1) (2.172)

and Tijkl =
1
4!

∂4V
∂ui∂uj∂uk∂ul

∣∣∣
ui=uj=uk=ul=0

are,

Tijkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K4 , i = j = k = 1 or i = j = k = N

2K4 , i = j = k and i �= 1 and i �= N

−K4 , i± 1 = j = k = l or i = j ± 1 = k = l

or i = j = k ± 1 = l or i = j = k = l ± 1

K4 , i = j and k = l and j = k ± 1

or i = l and k = j and i = j ± 1

or i = k and l = j and i = j ± 1

0 , otherwise

(2.173)
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CHAPTER 3

NUMERICAL CALCULATIONS AND RESULTS

3.1. Software Used for Numerical Calculations

Our transport calculations were performed by using MATLAB (2018). VASP soft-

ware package (Kresse and Hafner (1993, 1994); Kresse and Furthmüller (1996); Kresse

and Furthmüller (1996)) were used to perform DFT calculations with projector augmented

wave (PAW) method (Blöchl (1994); Kresse and Joubert (1999)) with generalized gradi-

ent approximation (GGA) (Perdew et al. (1992, 1993)). SciPy (Jones et al. (01 )) library

is used to analyse our DFT results, and Matplotlib (Hunter (2007)) library is used to vi-

sualize the results.

3.2. Carbon Chain Force Constants

For a one-dimensional carbon chain, VASP DFT calculation is performed for 2

atoms per unit cell with 600 eV plane wave cutoff, projector augmented wave method

with generalized gradient approximation pseudopotentials, and Brilloin zone is sampled

with 9 points. The calculation is performed for varying C-C bond lengths between 1.0

and 3.0 to find minimum energy. This calculation is performed to determine the orders of

magnitude of force constants in real crystals.

Figure By using the data from DFT, a 8th order curve fit is performed, and energy

as a function of displacement is plotted (Figure 3.1). The y-axis is shifted to zero (K0 =

0). As we can see in Figure 3.1, 2nd,3rd and 4th terms are the largest contribution to the

potential at the order of a nanometer. The potential due to these terms is given by,

V (x) = 8.557× 101 x4 − 1.678× 102 x3 + 8.687× 101 x2 (3.1)

where x is the displacement in Å and [V (x)] = eV.

To determine the contribution of each term, their separate plots are given in Figure

3.2. The effect of the 4th order term is almost negligible at very small displacements where

harmonic term dominates. Also Figure 3.2 shows that at the order of 0.1 eV ≈ 106K,
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Figure 3.1. Energy vs. displacement for a chain of carbon atoms. All terms of the 8th

order curve fit (blue line), and selected terms corresponding to the 2nd,3rd

and 4th terms (orange line) and DFT data (green dots) are shown.

n = 3 term is significant. At room temperature 300K ≈ 0.025 meV the curve for n = 3

becomes as flat as that of n = 4, indicating no significance.

To calculate corresponding mass-normalized force constants, we need to consider

mass of a carbon = 12.01× 1.660× 10−27 kg = 1.993 66× 10−26 kg. By using (1.99),

V (u) = 4.36× 1027 u2 − 5.96× 1040 u3 + 2.153× 1053 u4 (3.2)

3.3. Calculations for the Diagrammatic Technique

The self-energies corresponding to the selected diagrams are computed using a

self-consistent procedure. The algorithm includes the following steps;

1. Computation of retarded self-energies of the reservoirs ΣL/R(ω), broadening func-

tions ΓL/R(ω) and lesser self-energies of the equilibrium system, Σ<
L/R(ω).
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Figure 3.2. Plot of total energy and nth term for n=2,3,4 versus displacement. The

most important contribution is from harmonic term. As n increases, the

contribution of nth term to the potential decreases.

2. Computation of lesser Green function of the device using the equilibrium lesser

self-energy,

G<
C (ω) =

∑
i∈{L,R}

Gr
C(ω)Σ

<
j (ω)G

a
C(ω) (3.3)

3. With the retarded self energies known, computation of retarded Green function of

the device by using (2.76).

4. For each iteration,

• Computation of the lesser anharmonic self-energy, Σ<
C (ω) by using the lesser

and greater Green functions of the device G<
C (ω).

• With Σ<
C(ω) = Σ>

C(−ω) is known, by using (2.15) computation of the imagi-

nary part of the retarded anharmonic self-energy ΣrC.

• Computation of the real part from the imaginary part of the retarded anhar-

monic self energy via Hilbert transform.
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• Computation of the retarded green function of the device with (2.76) by using,

K̃ = K + ΣrL + ΣrR + ΣrC (3.4)

• Computation of lesser and greater Green functions by using the definitions

(2.135) and (2.136) for equilibrium, with the retarded Green function of the

central part.

• Check convergence with the change in total energy

δE =
En+1 − EN

En+1 + En

(3.5)

5. After the convergence is achieved, compute DOS via (2.44) and transmission coef-

ficient via (2.83) by using self-consistently calculated Gr
C(ω).

In our calculations, ω is chosen between −ωmax and ωmax where ωmax > 0. The

reason is that by only calculating lesser or greater Green function on a symmetric mesh,

one can determine greater (lesser) Green function from lesser (greater) Green function

by using the identity (2.114). η is chosen to be 10−8, harmonic force constant K =

4.36× 1027eV Å
−2

kg−1. For the recursive calculation of reservoir Green functions, a

cutoff value of 10−8 and 1000 maximum iterations are chosen as convergence conditions

for the recursive algorithm.

DOS, transmission function and conductance are calculated by using both 3rd and

4th order diagrams and QSCMF method for 4th order term. In conductance calculations,

we consider that the system is in thermal equilibrium with the reservoirs.

Figures 3.3,3.4 show how DOS and Transmission functions of two-atom device

vary with anharmonic coupling strength at constant temperature for the 3rd and 4th order

diagrammatic self-energies respectively. The effect of anharmonicity due to the coupling

determined from DFT calculation is so small that it is negligible. Increasing anharmonic

coupling strength about several orders of magnitude can provide significant results. How-

ever, increasing the coupling strength makes it harder to determine convergency in self-

consistent calculation. For this reason, we only consider the temperatures up to 1000

Kelvin which is much more greater than the room temperature. As coupling strength in-

creases, the transmission function gets smaller in band edge as a result of scattering of

phonons from other phonons which can be seen in the figures.

In section 1.4.2, it is mentioned that MFP for 3-phonon scattering is inversely

proportional to the square of the frequency. Currently, our codes are not efficient enough

to calculate larger systems to investigate diffusive behavior, however the decay at band
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edge (higher frequencies) with increasing anharmonicity indicates that the mean free path

is smaller at large frequencies which is consistent with literature.

The results are highly dependent on the frequency mesh, because we perform a

numerical integration. Convergence is checked by the difference in total energy between

consecutive iterations n and n + 1 as δE = (En+1 − En)/(En+1 + En), and a mix-

ing is performed for better convergence. For 3rd order diagram, convergence cutoff for

self-consistent iterations is chosen to be 10−4 and for 4th order diagram and mean-field

calculation it is choosen to be 10−8.

As it is shown in Figure 3.5, if temperature increases the effect of anharmonicity

increases. Y-axis is choosen to be [0.99,1] to see the difference clearly. We can determine

this behavior from both DOS and Transmission plots in the figure. The effect of the 4th

order term is much smaller than the 3rd order term, so we cannot see any variation in DOS

and transmission with respect to the temperature as shown in Figure 3.6 for 4th order

diagram.

The conductance as a function of temperature for different coupling strengths due

to the 3rd and 4th order diagrams are given in Figure 3.7 and Figure 3.8 respectively. Even

though phonons which carry heat increase thermal conductance at lower temperatures, at

higher temperatures the number of phonons which scatter from each other increases and

this cause the suppression of thermal conductance at higher temperatures with respect

to the temperature corresponding to a hill in conductance. Our results do not have this

behavior in temperatures below 1000 Kelvin for a small system (∼10 atoms), however

the suppression in conductance due to anharmonicity can be observed in the figures.

3.4. Mean-Field Calculations

The algorithm for the mean-field calculation is similar, however we modify the

dynamical matrix instead of modifying self-energy at each iteration. When it comes to

computing retarded Green function, both methods involve an effective dynamical matrix.

The effective dynamical matrix is given by (Zhang et al. (2013)),

K̃ij = Kij + 6i�
∑
kl

∫ ∞

0

dω TijklG
<
kl(ω) (3.6)

The lowest order diagram for the 4th order term is shown as below,
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The self energy corresponding to this diagram is given by Mingo (2006),

iΣrij = �

∑
kl

∫ ∞

−∞
dω Tiklj(G

<
kl(ω) +G>

lk(ω)) (3.7)

In Figure 3.9 and Figure 3.10, mean-field DOS and transmission values for varying

anharmonic coupling and for varying temperature is represented respectively. In compar-

ison with the diagrammatic method in Figure 3.6, the variation in DOS and Transmission

with respect to the temperature is smaller. However the the differences are less than 10−3,

so the conductance curves are nearly equivalent as it can be seen in Figures 3.8 and 3.11.
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Figure 3.3. Plot of DOS and Transmission function of a two-atom device from a 3rd

order diagram with respect to frequency for varying anharmonic coupling

strength at T = 343.3K. ωmax = 528.2THz sampled with 400 points. The

unit of K3 is eV Å
−3
kg−3/2.

A comparison of conductance determined by using QSCMF and diagrammatic

method is given by Figure 3.13. For temperatures up to 1000 K, as temperature increases

the discrepancy in conductance curves obtained by two methods increases. For small

coupling in this temperature range, we can observe that the results from both methods are

equivalent.

As number of atoms in the device increases, the number of displacements which

contribute to anharmonicity increases, so the effect is expected to be stronger. However

our results for temperatures up to 1000 K shows in Figure 3.12 that 10-atom anharmonic

chain is still a small system to observe such effects with the anharmonic constant at the

order of which is determined from DFT.
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Figure 3.4. Plot of DOS and Transmission function of a two-atom device from a 4th

order diagram with respect to frequency for varying anharmonic coupling

strength at T = 343.3K. ωmax = 528.2THz sampled with 400 points. The

unit of K4 is eV Å
−4
kg−2.
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Figure 3.5. Plot of DOS and Transmission function of a two-atom device from a 3rd

order diagram with respect to frequency for varying temperature at K3 =

−1040eV Å
−3

kg−3/2. ωmax = 528.2THz sampled with 400 points.
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Figure 3.6. Plot of DOS and Transmission function of a two-atom device from a 4th

order diagram with respect to frequency for varying temperature at K4 =

1053eV Å
−4

kg−2. ωmax = 528.2THz sampled with 400 points.
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Figure 3.7. Plot of conductance of a two-atom device from a 3rd order diagram as

a function of temperature for varying anharmonic coupling. ωmax =
528.2THz sampled with 400 points, T is sampled with 10 points between

10 and 1010. The unit of K3 is eV Å
−3
kg−3/2.
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Figure 3.8. Plot of conductance of a two-atom device from a 4th order diagram as

a function of temperature for varying anharmonic coupling. ωmax =
528.2THz sampled with 400 points, T is sampled with 10 points between

10 and 1010. The unit of K4 is eV Å
−4
kg−2.
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Figure 3.9. Plot of 4th Mean-Field DOS and Transmission function of a two-atom de-

vice with respect to frequency for varying anharmonic coupling strength at

T = 343.3K. ωmax = 528.2THz sampled with 400 points. The unit of K4

is eV Å
−4
kg−2.
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Figure 3.10. Plot of 4th order mean-field DOS and Transmission function of a two-

atom device with respect to frequency for varying temperature at K4 =

1053eV Å
−4

kg−2. ωmax = 528.2THz sampled with 400 points.
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Figure 3.11. Plot of 4th mean-field conductance as a function of temperature for vary-

ing anharmonic coupling. ωmax = 528.2THz sampled with 400 points,

T is sampled with 10 points between 10 and 1010. The unit of K4 is

eV Å
−4
kg−2.

48



0 200 400 600 800 1000 1200
Temperature (K)

0

0.05

0.1

0.15

0.2

0.25

0.3

C
on

du
ct

an
ce

 (
nW

 K
-1

)

Figure 3.12. 4th order mean-field conductance plot of a 10-atom device for K4 =

1054eV Å
−4

kg−2. ωmax = 528.2THz sampled with 400 points, and T
is sampled with 10 points between 10 and 1010.
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Figure 3.13. Comparison of conductance curves determined by diagrammatic method

and QSCMF for different coupling strength as a function of temperature.

Blue curve corresponds to diagrammatic method, while red curve corre-

sponds to QSCMF method. ωmax = 528.2THz sampled with 400 points,

and T is sampled with 10 points between 10 and 1010. The unit of K4 is

eV Å
−4
kg−2
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CHAPTER 4

CONCLUSION

In this study, we investigate anharmonicity using NEGF method in one-dimensional

monoatomic chains. Anharmonic force constants are determined from DFT calculation

of energy for a monoatomic chain of carbon atoms which is performed for varying bond

lengths. By curve-fitting this data, we obtain higher order terms in energy as a polyno-

mial function of displacement the coefficients of which can be used to compute transport

properties.

In real crystals there are very large numbers of atoms corresponding to very large

number of displacements interacting with each other. This cause a suppression in ther-

mal conductance. By increasing the number of atoms to 10, we cannot see a significant

difference in conductance for temperatures less than 1000 K (Figure 3.12).

The suppression of conductance also depends on the temperature, and can be seen

more clearly in Figure 3.7. It indicates that as temperature increases the suppression effect

increases, which is the expected behavior in real systems. The reason is that temperature

is related to the number of phonons, as the number of phonons increase, the probability

that a phonon interact with another phonon increases, hence conductance decreases. As

mentioned in 1.4.2, MFP due to the 3rd order term is proportional to the ω−2. Our results

show that at higher frequencies MFP is smaller and this is consistent with the literature.

Because of the high computational cost in diagrammatic method, one may adopt a

mean-field theoretical model (QSCMF) which is computationally more feasible than dia-

grammatic method, since in diagrammatic method one must take multiple diagrams into

account, though we considered only the diagram corresponding to the lowest order self-

energy. However, as it is pointed out before, convergence may not be achieved easily for

strong coupling and/or very high temperature, and it should be checked for consistency.

To check convergency, we can calculate the differences in total energy which is related to

DOS as the imaginary part of the Green function for each consecutive iteration. Because

the real and the imaginary parts of the Green function are dependent on each other via

Hilbert transformation, convergent imaginary (or real) part leads to a convergent Green

function. A mixing between consecutive iterations may lead convergence in some cases

where the system gets stuck between two saddle points without converging.

The next step for this study is to derive expressions for other anharmonic terms
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to perform a similar self-consistent calculation. Further, some numerical tricks should be

considered for calculation of effective dynamical matrix. For example, if force constants

are stored in a multi-dimensional array a large number of unnecessary multiplication with

zeros will be performed due to (3.6). Instead, the equations corresponding to nonzero

multiplications in summation may be hardcoded into a for loop to make the calculation

much faster than before, making calculations for larger systems possible. Also, it is pos-

sible for this model to predict a larger system by observing how self-energy or effective

dynamical matrix elements of a smaller convergent system vary spatially.
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APPENDIX A

NUMBERICAL HILBERT TRANSFORMATION

Given that a complex valued function H(s) is analytic in the entire right half-

plane, Kramers-Krönig relations describes the relation between real and imaginary parts

of the function (Liu (2012)),

HI(ω) =
1

π

∫ ∞

−∞

HR(u)du

ω − u
(A.1)

HR(ω) = − 1

π

∫ ∞

−∞

HI(u)du

ω − u
(A.2)

and Hilbert transform is given by (Liu (2012)),

g(x) =
1

π

∫ ∞

−∞
f(u)

1

x− u
du (A.3)

so that,

HI(ω) = g(HR(u)) (A.4)

HR(ω) = −g(HI(u)) (A.5)

A physical example to this case is dielectric susceptibility,

χ(ω) = ε(ω)/ε0 − 1 (A.6)

Dielectric susceptibility is given by the Fourier transform of a response function (Brau

(2003)),

χ(ω) =

∫ ∞

−∞
G(τ) exp(iωτ)dτ (A.7)

where G(τ) is the response function. As an example, we can choose G(τ) as,

G(τ) = θ(τ) exp(−ατ) (A.8)

such that the response function becomes,

χ(ω) =
1

α− iω

=
α

α2 + ω2
+ i

ω

α2 + ω2
(A.9)

Note that χ(ω) has a form similar to Equation 2.37. The exact values and Hilbert trans-

formed real and imaginary parts are compared in Figure A.1.

The calculation of susceptibility for Figure A.1 is performed on a 201-point mesh

on the interval [-100,100] with α = 1.

57



-100 -50 0 50 100
-0.2

0

0.2

0.4

0.6

0.8

1

R
e[

]

Real part

-100 -50 0 50 100
-0.5

0

0.5

Im
[

]

Imaginary part

Figure A.1. Negative the Hilbert transform of the imaginary part of the susceptibility

(left), and the imaginary part of the susceptibility (right). Blue line shows

the exact value while red line represents the Hilbert transform of the imag-

inary part.
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