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Examining Committee Members:

Prof. Dr. Engin BÜYÜKAŞIK
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ABSTRACT

INJECTIVE MODULES AND THEIR GENERALIZATIONS

The main goal of this thesis is to give a survey about some different generaliza-

tions of injective modules, namely, C1, C2, C3-conditions and the modules which satisfy

the simple versions of these conditions. A right R-module M is called simple-direct-

injective if every simple submodule which is isomorphic to a direct summand of M is

itself a summand, or if the direct sum of any two simple summands whose intersection is

zero is a direct summand of M. Firstly, various basic properties and some characterizations

of these modules are presented. The relation between simple-direct-injective modules and

C3-modules is exhibited. Also, we obtain the structure of simple-direct-injective modules

over the ring of integers and over semilocal rings. It is shown that over a commutative

ring every nonsingular module is simple-direct-injective.
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ÖZET

İNJEKTİF MODÜLLER VE GENELLEŞTİRMELERİ

Bu tezin temel amacı C1,C2, C3 şartları ve bu şartların basit versiyonlarını sağlayan

injektif modüllerin bazı farklı genelleştirmeleri hakkında araştırma yapmaktır. Bir M sağ

R-modülünün direkt toplananına izomorf olan her basit alt modülü yine M’nin direkt

toplananı ise ya da M’nin kesişimleri sıfır olan iki basit direkt toplananının direkt toplamı

M’nin direkt toplananı ise, M’ye basit-direkt-injektif modül denir. Öncelikle bu modül-

lerin çeşitli temel özellikleri ve bazı karakterizasyonları verilmiştir. Basit-direkt-injektif

modüllerle C3-modüller arasındaki ilişki gösterilmiştir. Ayrıca basit-direkt-injektif mod-

üllerin tam sayılar ve yarıyerel halkalar üzerindeki yapısı elde edilmiştir. Değişmeli hal-

kalar üzerinde her singuler olmayan modülün basit-direkt-injektif olduğu gösterilmiştir.
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CHAPTER 1

INTRODUCTION

Throughout this thesis, rings are associative with unity and modules are unitary

right R-modules. Let M be an R-module. If every submodule of M is essential in a direct

summand of M, then M satisfies the C1-condition. If M is C1-module, then every com-

plement submodule of M is a direct summand, so it is also called CS-module (Nicholson

and Yousif, 2003). If every submodule which is isomorphic to a direct summand of M is

itself a summand, then M satisfies the C2-condition and if, for direct summands A and B

of M with A∩ B = 0, A⊕ B ⊆⊕ M, then M satisfies the C3-condition. If, for a submodule

A of M, every map f : A→ M extends to an endomorphism of M, then M is called quasi-

injective. Every quasi-injective module satisfies the C1, C2 and C3-conditions. Also, C1,

C2 or C3-modules need not be closed under direct sum (See Example 4.1) (Mohamed

and Müller, 1990). (Nicholson and Yousif, 2003).

In this thesis, we study a recent generalization of C2-modules which is introduced and

studied in (Camillo, Ibrahim, Yousif and Zhou, 2014). A right R-module M is called

simple-direct-injective if every simple submodule which is isomorphic to a summand of

M is a summand, or if the direct sum of any two simple summands whose intersection

is zero is a summand of M. Our aim is to work on the concept of simple-direct-injective

modules and investigate the rings and modules that can be characterized via these mod-

ules. The notions of these modules were introduced and studied by (Camillo, Ibrahim,

Yousif and Zhou, 2014).

Chapter 2 deals with the definitions of some basic concepts and some of their proper-

ties which is needed for our further studies. In this chapter, the studies of (Hazewinkel,

Gubareni and Kirichenko, 2004), (Nicholson and Yousif, 2003), (Anderson and Fuller,

1992) and (Rotman, 1979) is utilized.

In the third chapter, the definitions of M-injective modules and the injective hull are given.

Also, we define quasi-injective modules and outline some of their characterizations. One

of the most important characterizations of quasi-injective modules is that, a module M is

quasi-injective if and only if f (M) ⊆ M for every f ∈ End(E(M)), (see, (Mohamed and

Müller, 1990)).

In chapter 4, we study the C1, C2 and C3-conditions and their properties. An R-module M

is called continuous if it satisfies the C1 and C2-conditions, and is called quasi-continuous
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if it satisfies the C1 and C3-conditions. It is known that

in jective⇒ quasi − in jective⇒ continuous⇒ quasi − continuous⇒ CS − module

and that the opposite direction of this implications is not always true (Nicholson and

Yousif, 2003).

In the final chapter, the simple versions of C2 and C3-conditions are presented (Min-C2

and Min-C3 (Nicholson and Yousif, 2003)). Some basic properties of these modules are

studied. Several characterizations of these modules appear in (Camillo, Ibrahim, Yousif

and Zhou, 2014). Although some characterizations of simple-direct-injective modules are

known, there is not much about their structure over particular rings. We investigate the

structure of the simple-direct-injective abelian groups. We show that every nonsingular

module over a commutative ring is simple-direct-injective. Also, we give a characteriza-

tion of simple-direct-injective modules over semilocal rings.
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CHAPTER 2

PRELIMINARIES

In the first section, we start with necessary concepts. Also, by a ring, we mean

associative ring with unity in our work.

2.1. Modules, Submodules and Module Homomorphisms

Definition 2.1 An abelian group M is called right R-module if there is a map f : MxR→
M, by (m, r) 
→ mr where m ∈ M and r ∈ R, satisfying the following axioms for all

1, r, r′ ∈ R and for all m,m′ ∈ M:

1. (m + m′)r = mr + mr′

2. m(r + r′) = mr + mr′

3. m(rr′) = (mr)r′

4. m · 1 = m

and denoted by MR.

In a similar way, we can define the concept of left R-module. In this thesis, our mod-

ules are always right R-modules and we will use "R-modules" or "modules" by right

R-modules.

Example 2.1 1- Any ring R is a module over itself.

2- Let I be a right ideal of the ring R; then I is a right R-module.

3- Let M = Mmn(R) be the set of all mxn matrices with entries in R. Then M is an R-

module with matrix addition and matrix multiplication.

4-If R is any ring, then Rn, the set of all n-tuples with components in R, is an R-module,

with the usual addition and the scalar multiplication.

5- Every abelian group is a Z-module.

A submodule K of an R-module M is a subgroup which is closed under scalar multipli-

cation: k ∈ K ⇒ kr ∈ K for all r ∈ R. Also, a nonzero submodule S of M is called simple

3



if it has only submodules 0 and S . If, for a nonzero submodule N of M and for any sub-

module N′ with N′ ⊆ N, either N = N′ or N′ = 0, then N is called a minimal submodule

of M. A proper submodule K of M is called maximal if, for a proper submodule K of M

and for any submodule K′ with K ⊆ K′, either K = K′ or K′ = M.

For any right R-module M, the right annihilator of M is defined to be

annr(M) = {r ∈ R : Mr = 0}.

Proposition 2.1 ( (Anderson and Fuller, 1992), Proposition 2.14) Let M be a left R-

module and X be a subset of M. Then annr(X) is a left ideal of R. Moreover, if X is a

submodule of M, then annr(X) is an ideal of R.

Definition 2.2 A homomorphism from a right R-module M to a right R-module N is a

map f : M → N satisfying the following conditions:

1. f (m1 + m2) = f (m1) + f (m2) for all m1,m2 ∈ M.

2. f (mr) = f (m)r for all m ∈ M, r ∈ R.

Let f : M → M′ be an R-module homomorphism. If f is one-to-one, then f is called

monomorphism and if f is onto, then f is called epimorphism. A one-to-one and onto

module homomorphism is called isomorphism. The set

Ker f = {m ∈ M | f (m) = 0}

is a submodule of M and is called the Kernel of the homomorphism f . The image of the

homomorphism f is the set

Im f = { f (m) | m ∈ M}

and it is a submodule of M′.

Let K be a submodule of an R-module M. Consider the set M/K of equivalence classes
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m + K, m ∈ M. An R-module M/K is called quotient module of M defining by

(m + K) + (m′ + K) = (m + m′) + K,

r(m + K) = rm + K.

Also, there is a natural map π : M → M/K by π(m) = m+K. Clearly, it is an epimorphism

and is called natural projection of M onto M/K.

Let M and N be R-modules. All R-homomorphisms from M to N form an additive group

and denoted by HomR(M,N).

Proposition 2.2 ( (Anderson and Fuller, 1992), Proposition 4.1) If M and N are left R-

modules, then HomR(M,N) is an abelian group with respect to the operation of addition

( f , g) 
→ f + g defined by

( f + g)(x) = f (x) + g(x)(x ∈ M).

Also, the endomorphisms of an R-module M is denoted by EndR(M).

Definition 2.3 Let M be an R-module. A submodule N of M is called fully invariant if

f (N) ⊆ N for every f ∈ EndR(M).

Corollary 2.1 ( (Anderson and Fuller, 1992), Corollary 3.7) Let M and N be right R-

modules.

1. If f : M → N is an epimorphism with Ker f = K, then there is a unique isomor-

phism η : M/K → N such that η(m + K) = f (m) for all m ∈ M.

2. If K ⊆ L ⊆ M, then M/L � (M/K)/(L/K).

3. If H ⊆ M and K ⊆ M, then (H + K)/K � H/(H ∩ K)

Theorem 2.1 ( (Anderson and Fuller, 1992), Theorem 3.6, The Factor Theorem) Let M,

M′, N and N′ be R-modules and let f : M → N be an R-homomorphism.

1. If g : M → M′ is an epimorphism with Ker(g) ⊆ Ker( f ), then there exists a unique

homomorphism h : M′ → N such that

f = hg.

5



Moreover, Kerh = g(Ker f ) and Im(h) = Im( f ), so that h is monic if and only if

Ker(g) = Ker( f ) and h is epic if and only if f is epic.

2. If g : N′ → N is a monomorphism with Im f ⊆ Img, then there exists a unique

homomorphism h : M → N′ such that

f = gh.

Moreover, Kerh = Ker f and Im(h) = g←Im( f ), so that h is monic if and only if f

is monic and h is epic if and only if Img = Im f .

The following useful theorem is Modular Law.

Theorem 2.2 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Modular Law) Let A, B

and C be submodules of M with B ⊆ A. Then A ∩ (B +C) = B + (A ∩C).

2.2. Direct Product and Direct Sum

Now we introduce the concepts of direct product, direct sum and projection.

Definition 2.4 Let {Mi}i∈A be a family of right R-modules. Then the cartesian product

Xi∈AMi is a right module under the componentwise operations, that is, for (xi), (yi) ∈
Xi∈AMi and r ∈ R

(xi) + (yi) = (xi + yi),

(xi)r = (xir).

The resulting module is called the direct product of {Mi}i∈A and is denoted by
∏

A Mα.

If Mα = M for all α ∈ A, then we use MA =
∏

A M. The homomorphism pα =
∏

A Mα →
Mα defined by pα((xα)) = xα is the projection map on Mα.

Definition 2.5 Let M be a right R-module and (Mα)α∈A a family of submodules of M. If

Mα ∩ (
∑
β�α Mβ) = 0 for each α ∈ A, then (Mα)α∈A is called independent. If (Mα)α∈A is an

independent family of submodules of M, then we write
∑

A Mα =
⊕

A Mα. In addition, if

M =
⊕

A Mα, then M is called the direct sum of the family (Mα)α∈A.

6



Clearly, if A is a finite set, then
⊕

A Mα =
∏

A Mα.

Definition 2.6 Let M be a nonzero R-module. M is called indecomposable if it cannot

be written direct sum of nonzero two submodules of it.

2.3. Exact Sequences and Functors

Now the next concept is exact sequence.

Definition 2.7 Let {Mn | n ∈ Z} be a family of R-modules and the sequence

· · · → Mn+1

fn+1−−−→ Mn
fn−→ Mn−1 → · · ·

be R-homomorphisms. The sequence is said to be exact at Mn if for all n ∈ Z,

Im( fn+1) = Ker( fn).

Proposition 2.3 ( (Anderson and Fuller, 1992), Proposition 3.12) The sequence

0→ M
f−→ N

is exact if and only if Ker f = 0; that is, if and only if f is a monomorphism. Also, the

sequence

M
g−→ N → 0

is exact if and only if Img = N; that is, if and only if g is an epimorphism.

Definition 2.8 If the sequence 0 → A
f−→ B

g−→ C → 0 is exact, that is f is monic and

g is epic, such sequences are said to be short exact sequences. And, if there is a map

f ′ : B→ A such that f ′ f = 1A, this sequence splits.

7



Proposition 2.4 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Proposition 4.2.1) Let

0 → X
f−→ M

g−→ Y → 0 be an exact sequence. Then the following statements are

equivalent:

1. The sequence splits;

2. There exists a homomorphism g′ : Y → M such that gg′ = 1Y;

3. There exists a homomorphism f ′ : M → X such that f ′ f = 1X;

4. M � X ⊕ Y.

Recall that HomR(A, B) forms an additive abelian group. Now we will give the definition

of functor, and then we will show that HomR(−,M) is a contravariant functor from the

category Mod-R of right R-modules to the category Ab of abelian groups for each right

R-module M,.

Definition 2.9 If there are defined:

1. An Objects Class ObC, whose elements are called objects;

2. A Morphisms Set MorC, whose elements are called the morphisms;

3. for any morphism f ∈ MorC there is an ordered pair of objects (X,Y) of the cate-

gory C ( f is a morphism from an object X to an object Y and write f : X → Y);

4. for any ordered triple X,Y, Z ∈ ObC and any pair of morphisms f : X → Y and

g : Y → Z there is a uniquely defined morphism g f : X → Z, which is called the

composition or product of morphisms f and g;

5. composition of morphisms is associative,that is, h(g f ) = (hg) f for any morphisms

f ,g,h whose products are defined;

6. if X = X′ or Y = Y ′, then Hom(X,Y) and Hom(X′,Y ′) are disjoint sets;

7. for any object X ∈ ObC there exists a morphism 1X ∈ Hom(X, X) such that f ·1X = f

and 1X · g = g for any morphisms f : X → Y and g : Z → X. (1X is unique and is

called the identity morphism of the object X).

Example 2.2 Ab is the category of Abelian groups. ObAb is the class of all Abelian

groups. Hom(A, B) is a set of all abelian group homomorphisms from A to B. Mod-R is

the category of right R-modules. ObMod-R is the class of right R-modules. MorMod−R(M,N)

is the set of all R-module homomorphisms from M to N.

8



Definition 2.10 (Hazewinkel, Gubareni and Kirichenko, 2004) Let M and N be cate-

gories. A covariant functor F is a pair of maps Fob : ObM → ObN and Fmor : MorM →
MorN satisfying the following conditions:

1. If A, B ∈ ObM, then to each morphism f : A → B in MorM there corresponds a

morphism Fmor( f ) : Fob(A)→ Fob(B) in MorN;

2. Fmor(1A) = 1Fob(A) for all A ∈ ObM;

3. If the product of morphisms g f is defined in M, then

Fmor(g f ) = Fmor(g)Fmor( f ).

A contravariant functor F is a pair of maps Fob : ObM → ObN and Fmor : MorM →
MorN satisfying the following conditions:

1. If A, B ∈ ObM, then to each morphism f : A → B in MorM there corresponds a

morphism Fmor( f ) : Fob(B)→ Fob(A) in MorN;

2. Fmor(1A) = 1Fob(A) for all A ∈ ObM;

3. If the product of morphisms g f is defined in M, then

Fmor(g f ) = Fmor( f )Fmor(g).

Definition 2.11 A functor F is called additive if for any pair of morphisms f1 : A → B

and f2 : A→ B we have F( f1 + f2) = F( f1) + F( f2).

Definition 2.12 Let F : Mod-R→ Ab be a contravariant additive functor.

1. For any exact sequence of the form · · · → 0→ A
f−→ B

g−→ C → 0 · · · , if the sequence

· · · → 0→ F(C)
F(g)−−−→ F(B)

F( f )−−−→ F(A)→ 0 · · ·

is exact, then F is called an exact functor.

9



2. For any exact sequence of the form · · · → 0→ A
f−→ B

g−→ C, if the sequence

· · · → 0→ F(C)
F(g)−−−→ F(B)

F( f )−−−→ F(A)

is exact, then F is called a left exact functor.

3. For any exact sequence of the form A
f−→ B

g−→ C → 0 · · · , if the sequence

F(C)
F(g)−−−→ F(B)

F( f )−−−→ F(A)→ 0 · · ·

is exact, then F is called a right exact functor.

In a similar way, we can define exact functor for covariant functors.

To show that HomR(−,M) is a contravariant functor from the category Mod-R to Ab,

let A, B and C be right R-modules. If f : A → B is an R-homomorphism, then define

f ∗ = Hom( f ,M) : Hom(B,M) → Hom(A,M) by f ∗(g) = g f for any g ∈ Hom(B,M).

Thus, the composition is defined and g f ∈ Hom(A,M). Since

f ∗(g + h) = (g + h)( f ) = g f + h f = f ∗(g) + f ∗(h),

where g, h ∈ Hom(B,M), f ∗ is an homomorphism. If h ∈ Hom(B,C), then

( f h)∗(g) = g( f h) = ( f ∗(g))h = h∗( f ∗(g)) = h∗ f ∗(g).

Hence, ( f h)∗ = h∗ f ∗. Moreover, (1B)∗ = 1Hom(B,M). Also, since

( f + g)∗(h) = h( f + g) = h f + hg = f ∗(h) + g∗(h),

where h ∈ Hom(B,M), Hom(−,M)is a contravariant additive functor.

Proposition 2.5 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Proposition 4.3.3) The

Hom functor is left exact in each variable.
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2.4. Essential and Small Submodules

Before going to the Injective Modules it is necessary to give definitions of essential

and small submodules. Then we define a semisimple module and develop basic properties

of it.

Definition 2.13 Let K be a submodule of an R-module M. If K ∩Y � 0 for every nonzero

submodule Y of M, then K is called essential submodule of M and denoted by K ⊆ess M.

If K + L � M for every proper submodule L of M, then K is called small submodule of

M and denoted by K � M.

Lemma 2.1 ( (Nicholson and Yousif, 2003), Lemma 1.1) Let M be an R-module. The

following conditions hold;

1. If K ⊆ N ⊆ M then K ⊆ess M if and only if K ⊆ess N and N ⊆ess M.

2. K ⊆ess N ⊆ M and K′ ⊆ess N′ ⊆ M then K ∩ K′ ⊆ess N ∩ N′.

3. If f : M → N is an R-homomorphism and K ⊆ess N, then f −1(K) ⊆ess M.

4. Let M = ⊕i∈I Mi be a direct sum where Mi ⊆ M for each i, and let Ki ⊆ Mi for each

i. Then ⊕i∈IKi ⊆ess M if and only if Ki ⊆ess Mi for each i.

2.5. Socle and Radical of a Module

Let M be an R-module. The socle of the module M is characterized by

S ocM =
∑
{A ⊆ M : A is a simple submodule in M},

=
⋂
{B ⊆ M : B is an essential submodule in M}.

and the Jacobson radical of M is characterized by

RadM =
⋂
{B ⊆ M : B is a maximal submodule in M},

=
∑
{A ⊆ M : A is a small submodule in M}
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Proposition 2.6 ( (Anderson and Fuller, 1992), Proposition 9.8) Let M and N be R-

modules and f : M → N be an R-homomorphism. Then f (S ocM) ⊆ S ocN.

Proposition 2.7 ( (Anderson and Fuller, 1992), Proposition 9.14) Let M and N be R-

modules and f : M → N be an R-homomorphism. Then f (RadM) ⊆ RadN.

2.6. Finitely Generated and Finitely Cogenerated Modules

Definition 2.14 An R-module M is called finitely generated in case for every set A of

submodules of M that spans M, there is a finite set F ⊆ A spans M, i.e.,
∑

A = M ⇒
∑

F = M for some finite F ⊆ A. An R-module M is finitely cogenerated in case for every

family of submodules {Ai : i ∈ I} of M,
⋂

i∈I Ai ⇒ ⋂i∈F Ai for some finite subset F ⊆ I.

Finitely generated and finitely cogenerated modules are determined by the radical and the

socle,respectively.

Theorem 2.3 ( (Anderson and Fuller, 1992), Theorem 10.4) Let M be a left R-module.

Then

1. M is finitely generated if and only if M/RadM is finitely generated and RadM � M.

2. M is finitely cogenerated if and only if S ocM is finitely cogenerated and S ocM ⊆ess

M.

2.7. Semisimple Modules

Definition 2.15 Let M be an R-module and (S α)α∈I be an indexed set of simple submod-

ules of M. If M is the direct sum of this set, then M =
⊕

I Aα is a semisimple decomposi-

tion of M. A module is called semisimple if it has a semisimple decomposition.

Theorem 2.4 ( (Rotman, 1979), Theorem 4.11) An R-module M is semisimple if and only

if every submodule of M is a summand.

Proposition 2.8 ( (Anderson and Fuller, 1992), Proposition 10.15) Let M be an R-module.

Then the following are equivalent:

1. RadM = 0 and M is artinian;
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2. RadM = 0 and M is finitely cogenerated;

3. M is semisimple and finitely generated;

4. M is semisimple and noetherian;

5. M is the direct sum of a finite set of simple submodules.

Corollary 2.2 ( (Anderson and Fuller, 1992), Corollary 10.16) The following statements

are equivalent for a semisimple module M:

1. M is artinian;

2. M is noetherian;

3. M is finitely generated;

4. M is finitely cogenerated.

2.8. Noetherian and Artinian Modules

Now, we define noetherian and artinian modules.

Definition 2.16 Let {Ai | i ∈ I} be the family of submodules of an R-module M. If, for

every chain A1 ⊆ A2 ⊆ · · · ⊆ An ⊆ · · · , there is an n such that An+i = An (i = 1, 2, · · · ),
then M satisfies the ascending chain condition(ACC) and if, for every chain A1 ⊇ A2 ⊇
· · · ⊇ An ⊇ · · · , there is an n such that An+i = An (i = 1, 2, · · · ), then M satisfies the

descending chain condition(DCC).

A module M is said to be noetherian if every family of submodules satisfies the ACC and

a module is said to be artinian if every family of submodules satisfies the DCC.

Proposition 2.9 ( (Anderson and Fuller, 1992), Proposition 10.9 ) For a module M, the

following statements are equivalent;

1. M is noetherian;

2. Every submodule of M is finitely generated;

3. Every non-empty set of submodules of M has maximal element.

Proposition 2.10 ( (Anderson and Fuller, 1992), Proposition 10.10 ) For a module M the

following statements are equivalent;
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1. M is artinian;

2. Every factor module of M is finitely cogenerated;

3. Every non-empty set of submodules of M has minimal element.

2.9. Complement Submodules And Closure

Before ending this chapter, we will give some definitions and characterizations;

Definition 2.17 Let A be a submodule of an R-module M. A submodule C of M is called

a complement of A if C is maximal with respect to A∩C = 0 (It exists by Zorn’s Lemma).

Also, a submodule C of M is called closed in M if C is complement of some submodule of

M.

Now, we continue with essential lemma, and then the characterization of closed submod-

ules.

Lemma 2.2 ( (Nicholson and Yousif, 2003), Lemma 1.7) Let A ⊆ M and C be any com-

plement of A. Then A ⊕C ⊆ess M.

Proof Let B be a nonzero submodule of M. Our claim is (A⊕C)∩B � 0. If B ⊆ C, our

claim holds. If B � C, A∩(B+C) � 0 by maximality of C. Let 0 � a = b+c ∈ A∩(B+C).

Then 0 � a + (−c) = b. Hence 0 � b ∈ (A ⊕C) ∩ B, where A ∩C = 0. �

Proposition 2.11 ( (Nicholson and Yousif, 2003), Proposition 1.27) Let C be a submodule

of an R-module M. The following are equivalent;

1. C is closed in M.

2. If C ⊆ess K ⊆ M then C = K.

3. If C ⊆ K ⊆ess M then K/C ⊆ess M/C.

4. If N is any complement of C in M then C is a complement of N in M.

Proof (1) ⇒ (2): Let C be a complement of A and C ⊆ess K ⊆ M. Our claim is

A ∩ K = 0 (By maximality of C, C = K). If A ∩ K � 0, then C ∩ (A ∩ K) � 0 since

C ⊆ess K. So C ∩ A � 0 which is a contradiction by the definition of complement. Hence

A ∩ K = 0.

(2)⇒ (3): We will prove by contradiction. Let C ⊆ K ⊆ess M and suppose K/C ∩ X/C =
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0, where 0 � X/C ⊆ M/C. Since X/C � 0 and by our hypothesis, C is not essential in X.

Now, let C ∩ X′ = 0 where 0 � X′ ⊆ X. Hence

K ∩ X′ = K ∩ (X′ ∩ X) = (K ∩ X) ∩ X′ = C ∩ X′ = 0.

But since K ⊆ess M, there is a contradiction. So K/C ⊆ess M/C.

(3) ⇒ (4): Let N be a complement of C in M and N ∩ T = 0, where C ⊆ T . Our claim

is C = T . Since N is complement of C, N ⊕ C ⊆ess M by the Lemma 2.2. Then by our

hypothesis, (N ⊕ C)/C ⊆ess M/C. Now, we need to show that (N ⊕ C)/C ∩ (T/C) = 0.

Let n + C = t + C ∈ (N ⊕ C)/C ∩ (T/C), where n ∈ N and t ∈ T . Then n − t ∈ C ⊆ T .

Hence n ∈ (N ∩ T ) = 0 and so n = 0. Then t ∈ C. Therefore C = T .

(4)⇒ (1): Clear. �

Let A be a proper submodule of an R-module M. There are maximal submodules C in M

with respect to A ⊆ess C ⊆ M by Zorn’s Lemma and these maximal essential extensions

are closed by the Proposition 2.11 and is called closures of A in M.
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CHAPTER 3

INJECTIVES

Injective modules play a central role in this thesis. In this chapter, we consider

injective modules and present their important characterizations.

3.1. Injective Modules

Definition 3.1 A right R-module E is called injective if for every R-module monomor-

phism f : K → N and R-module homomorphism g : K → E there exists an R-

homomorphism h : N → E such that h ◦ f = g. In other words; the following diagram

commutes.

0 �� K
f ��

g
��

N

h���
�
�
�

E

Theorem 3.1 ( (Rotman, 1979), Theorem 3.17) If {E j : j ∈ J} is a family of injective

modules, then
∏

E j is injective.

Proof Let i j and pj be the injections and projections of the product
∏

E j, respectively.

Consider the diagram

∏
E j

p j �� E ji j

��

0 �� A α ��

f

��

B

g j

��

Since E j is injective, there is a map gj : B → E j with gjα = pj f . Define h : B → ∏ E j

by b 
→ (gjb). Then

hαa = (gjαa) = pj f a = f a,
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so that hα = f and
∏

E j is injective. �

Theorem 3.2 ( (Rotman, 1979), Theorem 3.18) Every direct summand K of an injective

module is injective.

Proof Consider the diagram

K i �� Ep
��

0 �� A α ��

f

��

B

g

��

where i and p are injection and projection, respectively. Since E is injective, there is a

map g : B→ E with gα = i f . Define h : B→ K by h = pg. Then

hα = pgα = pi f = f

since pi = 1K . Thus, K is injective. �

It can be said that every direct summand of injective R-module is injective, and also a

direct product of injective right R-modules is injective. But it is not true that every direct

sum of injective modules is injective.

Proposition 3.1 ( (Anderson and Fuller, 1992), Proposition 18.13) For a ring R, the fol-

lowing statements are equivalent:

1. Every direct sum of injective right R-modules is injective;

2. R is a right noetherian ring.

Lemma 3.1 ( (Nicholson and Yousif, 2003), Lemma 1.2) Let E be an R-module. Then E

is injective if and only if, for N ⊆ M, every R-homomorphism f : N → E extends to an

R-homomorphism g : M → E.

Proof Let f : K → M be an R-module monomorphism and g : K → E an R-module

homomorphism. Then f ′ : f (K) → K is well defined by f ′( f (k)) = k for k ∈ K. By

hypothesis, the map g f ′ : f (K) → E extends to h : M → E and h f = g. Conversely, it is

clear by the definition of injective module. �
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Lemma 3.2 ( (Nicholson and Yousif, 2003), Lemma 1.4, Baer Criterion) A right R-

module E is injective if and only if, whenever T ⊆ R is a right ideal, every map γ : T → E

extends to R→ E.

Proof Necessity is clear. For sufficiency, let K be a submodule of an R-module M and

β : K → E an R-homomorphism. Let Γ = {(K′, β′) : K ⊆ K′ ⊆ M and β′|K = β}. Since

(K, β) ∈ Γ, Γ � 0. Let (Ki, βi)i∈I be a chain of Γ for an index set I. Let L =
⋃

I Ki and

β′ : L→ E the map defined by β′(k) = βi(k) provided k ∈ Ki. Clearly, β′|K = β. Therefore

(L, β′) ∈ Γ is an upper bound for (Ki, βi)i∈I . Hence, by Zorn’s Lemma, let (K′′, β′′) be a

maximal element of Γ. Consider the diagram

K ��

β
��

K′′ ��

β′′����
��
��
��

M

E

We must show that K′′ = M. If not, let m ∈ M − K′′ and T = {r ∈ R : mr ∈ K′′}, a right

ideal, and define λ : T → E by λ(r) = β′′(mr). By hypothesis, there is a λ̂ : R → E that

extends λ. Now define β̂ : K′′ + mR → E by β̂(y + mr) = β′′(y) + λ̂(r), where y ∈ K′′

and r ∈ R. β̂ is well defined because y + mr = 0 implies that mr ∈ K′′. Also, β̂|K′′ = β′′.
Therefore (K′′ + mR, β̂) ∈ Γ. This contradicts with the maximality of (K′′, β′′) in Γ. As a

consequence K′′ = M, and so E is injective. �

Theorem 3.3 ( (Rotman, 1979), Theorem 3.16) A module E is injective if and only if

Hom(−, E) is exact.

Proposition 3.2 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Proposition 5.2.3) Let

E be an injective R-module. Then every exact sequence of R-modules

0→ E → M → N → 0

splits.

Proof Consider the diagram

0 �� E i ��

1E
��

M �� N �� 0

E
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where i is a monomorphism. Since E is injective, there exists a homomorphism f : M →
E such that i f = 1E. Then M � E ⊕ N and the sequence splits by Proposition 2.4. �

Definition 3.2 A right R-module M is called divisible if, for all r in R which are not zero

divisors, Mr = M.

Theorem 3.4 ( (Rotman, 1979), Theorem 3.23) Every injective module is divisible.

Proof Let m ∈ E and r0 ∈ R a non-zero divisor. Define f : Rr0 → E by f (rr0) = rm;

note that f is well defined because r0 is not a zero divisor. Since E is injective, there is a

map g : R→ E extending f . In particular,

m = f (r0) = g(r0) = r0g(1),

so that m is divisible by r0. �

Theorem 3.5 ( (Rotman, 1979), Theorem 3.24) If R is a principal ideal domain, then an

R-module D is divisible if and only if it is injective.

Proof By Baer Criterion, it suffices to extend every map f : I → D to R, where I is an

ideal of R. Since R is a PID, we know I = Rr0, r0 ∈ R; clearly, we may assume r0 � 0,

and thus r0 is not a zero divisor. Since D is divisible, there is an element d ∈ D with

r0d = f (r0). Define g : R→ D by r 
→ rd, and note that g extends f . �

Example 3.1 The additive group of the rational numbers Q and the Prüfer p-group Zp∞

for any prime p are divisible Z-modules. So they are injective by Theorem 3.5.

Next lemma shows that divisible groups can be used to construct injective modules.

Lemma 3.3 ( (Nicholson and Yousif, 2003), Lemma 1.5) The following conditions hold

for any ring R;

1. If D is divisible group, then HomZ(R,D) is an injective right R-module.

2. Every right R-module M embeds in an injective right module.

Proof

1. Write HomZ(R,D) = ER. If f ∈ E and a ∈ R, E becomes a right R-module by

( f · a)(r) = f (ar) for all r ∈ R. Let I be a right ideal of R and g : I → ER an
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R-homomorphism. Our claim is g extend to RR → ER. Now, define h : I → D by

h(t) = [g(t)](1). Then h is a Z-morphism since for t1, t2 ∈ T ,

h(t1 + t2) = [g(t1 + t2)](1)

= [g(t1) + g(t2)](1)

= [g(t1)](1) + [g(t2)](1)

= h(t1) + h(t2).

Since D is injective, there is an Z-morphism ĥ : R → D extending h. Since ĥ ∈
ER, define ĝ : R → E by ĝ(a) = ĥ · a for all a ∈ R. It is clear that ĝ is an

R-homomorphism. If r ∈ R, then

[ĝ(a)](r) = (ĥ · a)(r) = ĥ(ar) = h(ar) = [g(ar)](1) = [g(a) · r](1) = [g(a)](r)

since g is an isomorphism and g(a) ∈ ER. Thus ĝ extends g.

2. Let {Xα}α∈I be the set of generators for M. Then there is a group epimorphism

f : Z(I) → M. So ZM � Z(I)/K ⊆ Q(I)/K where K = Ker f . Write Q = Q(I)/K

and note that Q is divisible. We have MR � HomR(RR,MR) by m 
→ m·,that is

multiplication by an element m ∈ M. So

MR � HomR(RR,MR) ⊆ HomZ(R,M) ↪→ HomZ(R,Q).

Since HomZ(R,Q) is injective by (1), this proves (2).

�

Corollary 3.1 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Corollary 5.2.9) A mod-

ule E is injective if and only if every exact sequence of the form

0→ E → M → N → 0

splits.
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Proof If E is injective, then the condition holds by Proposition 3.2. Conversely, let E

be an R-module. By the Lemma 3.3, there exists an injective module M which contains

the module E, so there is a split exact sequence

0→ E → M → M/E → 0

by hypothesis. So M � E ⊕ M/E. By Theorem 3.2, E is injective. �

Corollary 3.2 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Corollary 5.2.10) A mod-

ule E is injective if and only if it is a direct summand of every module which contains it.

Proof Assume E is injective and E is a submodule of a module M, then there is a split

exact sequence 0 → E → M → M/E → 0 by the Corollary 3.1. Then E is a direct

summand of M. Conversely, let E be an arbitrary R-module, then, by Lemma 3.3, there

exists an injective module M containing E. Then, by hypothesis, E is a direct summand

of M, and so E is injective by Theorem 3.2. �

Recall that a submodule N of M is called essential in M if it has nonzero intersection with

every nonzero submodule of M. We also say that M is an essential extension of N.

Theorem 3.6 ( (Hazewinkel, Gubareni and Kirichenko, 2004), Theorem 5.3.3) A module

M is injective if and only if it has no proper essential extensions.

Proof Let M be an injective module and E′ an essential extension of it. So M is a direct

summand of E′ by Corollary 3.2, i.e., E′ = M ⊕ N where M ∩ N = 0. If N � 0, then M

has no essential extension, so N = 0 and M = E′. Conversely, suppose M has no proper

essential extensions. By Lemma 3.3, there exists an injective module E′ containing M.

Consider the set

A = {S ⊆ E′ : S ∩ M = 0}.

Since 0 ∈ A, A � 0. It is a partially ordered set with respect to the relation of subset

inclusion. Then, by Zorn’s Lemma, there exists a maximal element N ⊂ E′ in A. Then

M ∩ N = 0 and M + N ⊆ E′. Our claim is M + N = E′. Suppose M + N � E′, then

(M + N)/N ⊂ E′/N and (M + N)/N � E′/N. Let K/N be a nonzero submodule of E′/N.

Then N ⊂ K and N � K. Since N is maximal in A, M ∩ K � 0. Thus M ∩ K � N. So

N ⊂ K ∩ (M + N), which means that K/N ∩ (M + N)/N � 0 and so E′/N is an essential
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extension of (M + N)/N. Since M � M/(M ∩ N) � (M + N)/N, M is essential in E′/N.

Since, by hypothesis, M has no proper essential extensions, E′/N = (M + N)/N and this

implies E′ = M + N. Thus E′ = M ⊕ N. So M is an injective module by Theorem 3.2. �

Definition 3.3 If an R-module E′ is called injective hull (or injective envelope) of an R-

module M if it is both an injective module and essential extension of M, and denoted by

E′ = E(M).

Theorem 3.7 ( (Rotman, 1979), Theorem 3.30) Let E′ be an R-module and M ⊆ E′. The

following conditions are equivalent :

1. E′ is a maximal essential extension of M. (i.e., no proper extension of E′ is an

essential extension of M);

2. E′ is an essential extension of M and E′ is injective;

3. E′ is injective and there is no injective E′′ with M ⊂ E′′ � E′.

Moreover, such a module E′ exists.

3.2. Relative Injectivity

Definition 3.4 Let E and M be right R-modules. E is called M-injective if for any sub-

module A of M, every right R-module homomorphism f : A → E can be extended to a

right R-homomorphism g : M → E such that the diagram

A i ��

f
��

M

g
���
�
�
�

E

commutes.

Note that a module ER is injective in case it is M-injective for every module M. The

following proposition gives some useful properties of M-injective modules with an R-

module M.

Proposition 3.3 ( (Nicholson and Yousif, 2003), Lemma 1.12) Let E be an M-injective

module. If K ⊆ M, then E is K-injective and M/K-injective.
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Proof Let N ⊆ K and f : N → E be an R-homomorphism. Given f extends to

g : M → E since E is M-injective.

N i ��

f
��

M

g
���
�
�
�

E

i.e gi = f .

Then the restriction g|K : K → E extends f since for all n ∈ N, g|K(n) = g(n) = g(i(n)) =

f (n). So E is K-injective.

To show that E is M/K-injective, let N/K ⊆ M/K and f : N/K → E be an R-homomorphism

where K ⊆ N ⊆ M. Let p : N → N/K and p′ : M → M/K denote the natural epimor-

phisms. Since E is M-injective, there exist α : M → E such that α|N = f p.

N ��

p
��

M

p′
��

α

		�
�
�
�
�
�
�
�

N/K

f
��

�� M/K

β


�
�
�
�
�

E

Since α(K) = f p(K) = f (0) = 0, Kerp′ ⊆ Kerα. By Theorem 2.1, there exists β :

M/K → E such that βp′ = α. Hence β extends f since for all n ∈ N,

β(n + K) = β(p′(n)) = α(n) = f p(n) = f (n + K).

�

Lemma 3.4 ( (Nicholson and Yousif, 2003), Lemma 1.11) Let E =
∏

i∈I Ei be an R-

module. Then E is M-injective if and only if Ei is M-injective for each i ∈ I.

Proof Follows from Theorem 3.1 and 3.2. �

Proposition 3.4 ( (Nicholson and Yousif, 2003), Lemma 1.13) Let E and M =
⊕

i∈I Mi

be R-modules. Then E is M-injective if and only if E is Mi-injective for each i ∈ I.
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Proof Only if part holds by Proposition 3.3. Conversely, suppose E is Mi-injective for

each i ∈ I. Let A ⊆ M and f : A → E be an R-homomorphism. Let Ω denote the set of

pairs (A′, f ′) with A ⊆ A′ ⊆ M and f ′ : A′ → E extends f . Let (A′′, f ′′) be maximal with

A ⊆ A′′ ⊆ M and f ′′ : A′′ → E extends f (i.e f ′′|A = f ) in Ω by Zorn’s Lemma.

A i ��

f
��

A′′

f ′′���
�
�
�

E

Now we need to show that A′′ = M. There exists fi = Mi → E such that fi|Mi∩A′′ =

f ′′|Mi∩A′′ by hypotesis.

Mi ∩ A′′ ��

f ′′|Mi∩A′′
��

Mi

fi���
�
�
�
�

E

Define f ′i : Mi + A′′ → E by

f ′i (mi + a) = fi(mi) + f ′′|Mi∩A′′(a),

where mi ∈ Mi and a ∈ A′′. Then f ′i is well defined : for mi,m′i ∈ Mi and a, a′ ∈ A′′;

mi + a = m′i + a′

mi − m′i = a′ − a ∈ Mi ∩ A′′

fi(mi − m′i) = fi(a′ − a) = f ′′|Mi∩A′′(a′ − a)

fi(mi) + f ′′|Mi∩A′′(a) = fi(m′i) + f ′′|Mi∩A′′(a′)

f ′i (mi + a) = f ′i (m′i + a′)

and also f ′i extends f : for all a ∈ A,

f ′i (a) = f ′i (0 + a) = fi(0) + f ′′|Mi∩A′′(a) = 0 + f (a) = f (a)
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By the maximality of (A′′, f ′′), Mi+A′′ = A′′ and so Mi ⊆ A′′ for each i. Thus, M = A′′. �

The next lemma presents connection between M-injective modules and injective hull, and

also it will give characterization of quasi-injective modules.

Lemma 3.5 ( (Nicholson and Yousif, 2003), Lemma 1.14) Let M and N be R-modules.

Then M is N-injective if and only if β(N) ⊆ M for every β : E(N)→ E(M).

Proof If the condition holds, let α : K → M be an R-homomorphism, where K ⊆ N.

K ��

α

��

E(N)

β

���
�
�
�
�
�
�
�

M

i
��

E(M)

Since E(M) is injective, there exists β : E(N) → E(M) which extends α. By hypothesis,

β(N) ⊆ M. Thus the restriction β|N : N → M extends α. Hence, M is N-injective.

To show that only if part, let β : E(N) → E(M) be an R-homomorphism. Our claim is

β(N) ⊆ M. Let K = {n ∈ N | β(n) ∈ M}.

K ��

β|K
��

N ��

α


	
	
	
	
	

E(N)

β



		
		
		
		
		
		
		
		
		
		

M

i
��

E(M)

Since M is N-injective, there exists α : N → M extends β|K . i.e α|K = β|K .

Now we need to show that (β − α)(N) = 0. Since M is essential in its injective hull, we

can only show that M ∩ ((β − α)(N)) = 0. Let m = (β − α)(n) where m ∈ M and n ∈ N.

Then

β(n) = α(n) + m ∈ M
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since α(n) ∈ M. Thus, n ∈ K. By the definition of α ,

β(n) = α(n).

Lastly,

m = (β − α)(n) = 0.

Therefore β(N) ⊆ M. �

Example 3.2 Let B be an R-module. If B is semisimple, then every R-module A is B-

injective.

Proof Let K be a submodule of B and f : K → A be an R-homomorphism. By Theorem

2.8, K is a summand of B. Consider the projection p : B→ K and the following diagram;

K
f
��

Bp
��

A

So there exists g : B→ A such that g = f p. Thus, if we take the inclusion map i : K ↪→ B,

clearly, g extends f . �

3.3. Quasi-Injective Modules

Definition 3.5 Let M be a right R-module. M is said to be quasi-injective if M is M-

injective, that is, for any submodule A of M if every map f : A → M extends to an

endomorphisms of M.

Corollary 3.3 ( (Mohamed and Müller, 1990), Corollary 1.14) A module M is quasi-

injective if and only if f (M) ⊆ M for every f ∈ End(E(M)).

Proof Follows from Lemma 3.5. �
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Corollary 3.4 ( (Mohamed and Müller, 1990), Corollary 1.15) Every module has a min-

imal quasi-injective extension, which is unique up to isomorphism.

Example 3.3 1. Every injective R-module is quasi injective.

2. Semisimple modules are quasi-injective.

3. Recall that Zp∞ is infinite p-group for any prime p whose subgroups are totally

ordered by inclusion

0 =< c0 >⊂< c1 >⊂< c1 >⊂ · · · ⊂< cn >⊂ · · ·

and every < ci >� Zpi for each positive integer i > 1. Zpn is a quasi-injective

module for any prime p and n an integer such that n > 1.

Proof Let < cn >⊆ Zp∞ and f ∈ End(Zp∞) defined by f (cn) = a. Then

pna = pn f (cn) = f (pncn) = f (0) = 0

Thus, a ∈< cn >. Hence f (< cn >) ⊆< cn >. So < cn >� Zpn is quasi injective. �

4. By example (3), Zpn is a quasi injective module but not injective since it is not

divisible Z-module.

Corollary 3.5 ( (Nicholson and Yousif, 2003), Corollary 1.16) Let M be a quasi-injective

module. If E(M) = ⊕i∈IAi, then M = ⊕i∈I(M ∩ Ai).

Now, we show that direct summands of quasi-injective modules are quasi-injective.

Lemma 3.6 ( (Nicholson and Yousif, 2003), Lemma1.17) Let M be a quasi-injective mod-

ule. Then every direct summand of M is also quasi-injective.
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Proof Suppose M is quasi-injective. Let M = A⊕B and f : X → A be R-homomorphism

where X ⊆ A. Consider the diagram

X ��

f
��

M

g

��
















A

i
��

M

Since M is quasi-injective, f extends to g : M → M. Let p : M → A be the projection

onto A with Kerp = B. Then (pg)|A extends f since for all x ∈ X,

(pg)|A(x) = pg(x) = p( f (x)) = f (x).

So A is quasi-injective. �

Remark 3.1 ( (Nicholson and Yousif, 2003)) The direct sum of quasi-injective modules

need not be quasi-injective. For example; Q and Zp are quasi-injective modules but

Q ⊕ Zp is not quasi-injective. Because if it is quasi-injective then Q ⊕ Zp is Q ⊕ Zp-

injective, and also Q ⊕ Zp is Q-injective by Proposition 3.4. Then, by Lemma 3.4, Q is

Zp-injective but there is no nonzero map from Q to Zp.

So next proposition states that there is a necessary condition for a direct sum M = ⊕i∈I Mi

to be quasi-injective.

Proposition 3.5 ( (Mohamed and Müller, 1990), Proposition 1.18) Let the direct sum

M = ⊕i∈I Mi be an R-module. The following conditions are equivalent;

1. M is quasi-injective;

2. Mi is Mj-injective for all i, j ∈ I.
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CHAPTER 4

C1,C2 AND C3 CONDITIONS

In this chapter, we give three conditions and the definitions of continuous and

quasi-continuous modules. After this, we look at some examples.

C1, C2 and C3 conditions for a right R-module M are as follows;

1. If every submodule of M is essential in a direct summand of M, then M satisfies the

C1-condition.

2. If every submodule which is isomorphic to a summand of M is itself a direct sum-

mand, then M satisfies the C2-condition.

3. If A ⊕ B ⊆⊕ M for direct summands A and B of M with A ∩ B = 0, then M satisfies

the C3-condition.

The module is called C1-module (respectively, C2 or C3) if it satisfies the C1-condition

(C2 or C3). A ring R is called right C1-ring (C2-ring or C3-ring,respectively) if the

module RR has the condition C1 (C2 or C3).

Proposition 4.1 ( (Mohamed and Müller, 1990), Proposition 2.2) Let M be a right R-

module. If M satisfies the C2-condition, then it satisfies the C3-condition.

Proof Suppose M satisfies the C2-condition. Let A and B be direct summands of M

with A ∩ B = 0. Our claim is A ⊕ B ⊆⊕ M. Say M = A ⊕ X, where X ⊆ M, and let

p : M → X be the projection onto X along A with Kerp = A. If b ∈ B and b = a + x,

where a ∈ A and x ∈ X, then p(b) = x. So b = a + p(b) ∈ A ⊕ p(B). Hence

A ⊕ B = A ⊕ p(B).

Now, our new claim is A ⊕ p(B) ⊆⊕ M. Consider the restriction p|B : B → X of p. Since

Kerp|B = B ∩ Kerp = B ∩ A = 0, p|B is monic and p|B(B) = p(B) � B ⊆⊕ M. So by

hypothesis, p(B) ⊆⊕ M. Now,

X = X ∩ M = X ∩ (p(B) ⊕ Y),
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Y ⊆ M. By Theorem 2.2, X = p(B) ⊕ (X ∩ Y). Hence

M = A ⊕ X = A ⊕ p(B) ⊕ (X ∩ Y).

�

Remark 4.1 (Nicholson and Yousif, 2003) Let M be an indecomposable right R-module.

• Clearly, M satisfies the C3-condition;

• M satisfies the C1-condition if and only if it is uniform;

Proof If the condition holds, let K ⊆ M. Since M is indecomposable and uniform,

K ∩K′ � 0 for all nonzero K′ ⊆ M. So K is essential in M. The converse is clear. �

• M satisfies the C2-condition if and only if monomorphisms in End(M) are isomor-

phisms.

Proof For only if part, let f : M → M be R-monic. So M � f (M). By C2,

f (M) ⊆⊕ M. Since M is indecomposable, f (M) = M. Conversely, if the condition

holds, let A be a submodule that is isomorphic to a summand of M. Since M is

indecomposable, A � M. Write f : M → A is an isomorphism. So M
f−→ A

i−→ M

where i is the inclusion. By hypothesis, i f is an isomorphism. So i is epic. Hence

A = M. �

Example 4.1 1. Z satisfies the C1 and C3-conditions because Z is indecomposable

and uniform as an abelian group. But it does not satisfy the C2-condition. For a

submodule 2Z of Z, let f : 2Z→ Z be an R-homomorphism defined by f (2n) = n,

n ∈ Z. It is clear that f is an isomorphism. Hence 2Z � Z but 2Z is not a summand

of M.

2. Direct sum of C1, C2 or C3-modules need not satisfy these conditions. For example,

the Z-module Z2 and Z8 are both satisfy the C1, C2 and C3-conditions. But the

direct sum of Z2 ⊕ Z8 does not satisfy the C1 and C2-conditions.

The following proposition is about injective modules.

Proposition 4.2 ( (Nicholson and Yousif, 2003), Proposition 1.22) Quasi-injective mod-

ules satisfy C1 and C2-conditions.
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Proof Let M be a quasi-injective right R-module. For C1, let K be a submodule of M.

Since E(K) is injective, E(M) = E(K) ⊕ E(K′) for some submodule K′ of M. Since, by

Corollary 3.5, M = (M ∩ E(K)) ⊕ (M ∩ E(K′)). Then K ⊆ess M ∩ E(K). So M satisfies

the C1-condition.

For C2, let A � B ⊆⊕ M. Then B is M-injective by Lemma 3.4, and hence A is M-

injective. By the following diagram,

A i ��

1A
��

M

f���
�
�
�

A

the identity map 1A extends to f : M → A. Hence M = Ker f⊕ Imi = Ker f ⊕ A. So

A ⊆⊕ M. �

Definition 4.1 An R-module is called continuous if it satisfies the C1 and C2-conditions,

and an R-module is called quasi-continuous if it satisfies the C1 and C3-conditions.

Example 4.2 Recall that semisimple and injective modules are both quasi-injective, so

they satisfy C1, C2 and C3-conditions. Hence, they are (quasi-) continuous modules.

Since C2-condition implies C3-condition, every continuous module is quasi-continuous.

Remark 4.2 Let A be a direct summand of an R-module M and A ⊆ess B ⊆ M. Write

M = A ⊕ A′ where A′ ⊆ M. Then

M ∩ B = (A ⊕ A′) ∩ B = (B ∩ A′) ⊕ A

by Theorem 2.2. Hence B = (B∩A′)⊕A and it follows that A ⊆⊕ B. Since A is a summand

of B and it is essential in B, A = B. Therefore by Proposition 2.11 A is closed in M. Hence

every direct summand of M is closed in M.

Let M satisfy the C1-condition and C be a closed submodule of M. Then C is essential in

a summand of M by C1, and by Proposition 2.11, C is a summand of M. Conversely, let

every closed submodule be a direct summand of M. Our claim is M holds C1-condition.

Let A be a submodule of M and C be the closure of A in M. So C is closed and so a

summand of M by hypothesis.(i.e A ⊆ess C ⊆⊕ M). Thus M satisfies C1. Hence a module

which satisfies the C1-condition are called as CS-module.
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Recall that direct sum of C1, C2 or C3-modules need not satisfy C1, C2 or C3-conditions,

respectively. But direct summands of C1, C2 or C3-modules satisfy C1, C2 or C3-

conditions, respectively. Now, we will show it in the following proposition.

Proposition 4.3 Direct summands of a (quasi-) continuous modules are (quasi-) contin-

uous.

Proof Let M be a (quasi-) continuous module and M′ ⊆⊕ M. Our claim is that M′

satisfies the C1, C2 and C3-conditions. Note that M′ is closed in M. Let A be closed in

M′. Thus A is closed in M since closure is transitive. Hence A is a summand of M by C1,

and also a summand of M′. So M′ holds C1. The rest of the proof is clear. �

Now the following theorem gives the characterization of quasi-continuous modules.

Theorem 4.1 ( (Nicholson and Yousif, 2003), Theorem 1.31) Let M be an R-module. The

following conditions are equivalent;

1. M is quasi-continuous.

2. If C and N are complements of each other then M = C ⊕ N.

3. f (M) ⊆ M for every f 2 = f ∈ End(E(M)).

4. If E(M) = ⊕i∈IEi then M = ⊕i∈I(M ∩ Ei).

The other important theorem is the following ;

Theorem 4.2 ( (Nicholson and Yousif, 2003), Theorem 1.33) Let M be a direct sum of

submodules Mi for i = 1, 2, ..., n. The following conditions are equivalent;

1. M is quasi-continuous.

2. Each Mi is quasi-continuous and Mi is Mj-injective for all i � j.

In conclusion, we have this implication;

in jective⇒ quasi − in jective⇒ continuous⇒ quasi − continuous⇒ CS − module

But the opposite direction of this implication is not always true. Now, we have some

examples about it.

Example 4.3 1. Zpn is a quasi-injective module but not injective for any prime p and

n an integer such that n > 1.
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2. Recall that the integers Z satisfies the C1 and C3-conditions but not C2. So it is

quasi-continuous but not continuous.

3. Let R =

⎡⎢⎢⎢⎢⎢⎢⎣
F F

0 F

⎤⎥⎥⎥⎥⎥⎥⎦ where F is a field. Then R is right CS-ring but not right C2-ring

so not continuous.

Proof

⎡⎢⎢⎢⎢⎢⎢⎣
F F

0 F

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
0 F

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
0 F

0 F

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
F F

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 F

⎤⎥⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ are

right ideals of R. The Jacobson radical J(R) of R is

⎡⎢⎢⎢⎢⎢⎢⎣
0 F

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ � e12R ⊆⊕ R, where

e12 is the matrix unit. But J(R) is not a direct summand of R, and so R is not right

C2-ring. Now, let I be a nonzero right ideal of R. The S ocR of R is

⎡⎢⎢⎢⎢⎢⎢⎣
0 F

0 F

⎤⎥⎥⎥⎥⎥⎥⎦ and if

I � S ocR, then I = e11R or I = R. So I = e11R ⊆⊕ R or I = R. Thus I is a summand.

If I = S ocR, then I is essential in R since R is right artinian. Now, assume that

dimF(I) = 1. Let I = aR where a ∈ S ocR. If a2 = a � 0, then I = aR is a summand

of R. Now, if a ∈ J(R), then I = aR = J(R) and I =

⎡⎢⎢⎢⎢⎢⎢⎣
0 F

0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ⊆ess e11R ⊆⊕ R. So R

is right C1-ring and so right CS-ring. �
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CHAPTER 5

SIMPLE-DIRECT-INJECTIVE MODULES

In this chapter, firstly, we give the definition of "mininjective module" and some

properties of it, then we investigate the modules which satisfy the simple versions of C2

and C3-conditions.

5.1. Mininjective Modules

Definition 5.1 A right ideal I of the ring R is called extensive if every R-homomorphism

α : I → RR is extended to β : RR → RR; that is, α = a· is left multiplication by an element

a ∈ R.

Definition 5.2 (Nicholson and Yousif, 2003) Let M be a right R-module. M is called

mininjective if, for every simple right ideal I of the ring R, every R-homomorphism f :

I → MR extends to g : R→ MR; that is, f = m· is multiplication by some m ∈ M.

Clearly, RR is right mininjective if and only if every simple right ideal I of R is extensive.

Definition 5.3 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M and N be right R-

modules. If for any simple submodule K of N, every R-homomorphism f : K → M

extends to g : N → M, then M is called min-N-injective. If M is min-M-injective, then it

is called min-quasi-injective. M is called mininjective if it is min-R-injective.

Lemma 5.1 ( (Nicholson and Yousif, 2003), Lemma 2.1) Let R be a ring. Then the fol-

lowing statements are equivalent :

1. R is right mininjective.

2. If aR is simple for a ∈ R, then lr(a) = Ra.

3. If aR is simple for a ∈ R and r(a) ⊆ r(b) for b ∈ R, then Rb ⊆ Ra.

4. If aR is simple for a ∈ R and f : aR→ R is R-homomorphism, then f (a) ∈ Ra.
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Proof (1) ⇒ (2): Suppose R is right mininjective. We will show that lr(a) ⊆ Ra. Let

a′ ∈ lr(a). Then a′r(a) = 0 and so r(a) ⊆ r(a′). Thus f : aR → R is well defined by

f (ar) = a′r. By our hypothesis, f = c· for some c ∈ R. Then a′ = f (a) = ca ∈ Ra. Hence

lr(a) ⊆ Ra. The other inclusion is always true.

(2)⇒ (3): Suppose (2) holds. Since r(a) ⊆ r(b), b ∈ lr(a) = Ra. Thus Rb ⊆ Ra.

(3) ⇒ (4): Given (3), let f : aR → R be an R-homomorphism. If f (a) = b, then

r(a) ⊆ r(b). So b ∈ Ra by (3).

(4) ⇒ (1): Let f : aR → R be an R-homomorphism. By our hypothesis, f (a) ∈ Ra. So

f (a) = ka where k ∈ R. Thus f = k· is left multiplication by some k ∈ R. �

The following proposition gives that "right mininjective rings" satisfy min-C2 and min-

C3-conditions.

Proposition 5.1 ( (Nicholson and Yousif, 2003), Proposition 2.18) Let R be a right min-

injective ring.

1. (Min-C2) If I is a simple right ideal and I is isomorphic to a summand of R, then I

is a summand of R.

2. (Min-C3) If I and I′ are simple summands of R with I � I′, then I ⊕ I′ is also a

summand of R.

Proof

1. Let f : I → eR be an isomorphism. Since R is right mininjective, f = a·, a ∈ R.

Then aI = eR � J(R). Hence I2 � 0 and I is a summand of R since I is simple.

2. Note that eR ⊕ f R = eR ⊕ (1 − e) f R. If (1 − e) f R = 0, then (2) holds. If not, then

(1 − e) f R � f R. By (1), (1 − e) f R = gR, where g2 = g. Now

eg = e(1 − e) f = e f − e2 f = e f − e f = 0

and

(e + g − ge)(e + g − ge) = e + g − eg.

Say e + g − ge = h is an idempotent with eh = e = he and gh = g = hg. So

eR ⊕ f R = eR ⊕ gR = hR ⊆⊕ R.

�
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5.2. Simple-Direct-Injective Modules

In this section, all of notions can be found in (Camillo, Ibrahim, Yousif and Zhou,

2014).

Definition 5.4 A right R-module M is called simple-direct-injective if every simple sub-

module which is isomorphic to a summand of M is a summand, or equivalently, if the

direct sum of any two simple summands whose intersection is zero is a summand of M.

Example 5.1 1. Every indecomposable module is simple-direct-injective, in particu-

lar ZZ is simple-direct-injective.

2. Every min-quasi-injective module is simple-direct-injective.

Proof Follows from Proposition 4.2. �

Proposition 5.2 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be a right R-module.

The following statements are equivalent :

1. For any simple submodule K and simple summand N of M with K � N, K ⊆⊕ M.

2. For any simple summands K and N of M with K ∩ N = 0, K ⊕ N ⊆⊕ M.

3. If M = K ⊕ N, where K is simple and f : K → N is an R-homomorphism, then

Im f ⊆⊕ N.

Proof (1)⇒ (2): By Proposition 4.1.

(2) ⇒ (3): Assume (2) holds. Without loss of generality, we may assume that f � 0. So

f is an R-monomorphism. Let X = {k + f (k) : k ∈ K} be a submodule of M. Our claim is

M = X ⊕ N. For all a ∈ M, a = k + n, where k ∈ K and n ∈ N. Then

a = k + f (k) − f (k) + n ∈ X + N.

Thus, M = X+N. Now we need to show that X∩N = 0. Let x ∈ X∩N. Then x = k+ f (k)

for some k ∈ K, and so k = x − f (k) ∈ K ∩ N = 0. Hence x = 0. Therefore M = X ⊕ N.

Now our new claim is K ∩ X = 0. Let y ∈ K ∩ X. Then y = k′ + f (k′) for some k′ ∈ K

and y − k′ = f (k′) ∈ K ∩ N = 0. Since f is monomorphism, k′ = 0, and so y = 0. Thus

K ∩ X = 0. Since X � M/N � K, X is simple. By (2), K ⊕ X ⊆⊕ M. Our last claim is
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K ⊕ X = K ⊕ Im f . Let n ∈ Im f , then n = f (k) for some k ∈ K. So

n = −k + k + f (k) ∈ K + X.

Hence K ⊕ X = K ⊕ Im f , and so Im f ⊆⊕ M. Thus Im f ⊆⊕ N.

(3)⇒ (1): Suppose (3) holds. Let f : K → N be the isomorphism for a simple submodule

K and a simple summand N of M. If K ∩ N � 0, we are done. Otherwise, suppose that

K ∩ N = 0. Let M = N ⊕ X for some X ⊆ M and p : M → X be the projection

onto X. If, for all k ∈ K, k = n + x, where n ∈ N and x ∈ X, then p(k) = x. So

k = n + p(k) ∈ N ⊕ p(K). Thus N ⊕ K = N ⊕ p(K). Consider the restriction p|K : K → X

of p. Since K � p|K(K) = p(K) and K is simple, p(K) is simple. Then the composition

map p|K f −1 : N → X is a monomorphism since N is simple. Now

Im(p|K f −1) = p|K( f −1(N)) = p|K(K) = p(K).

So Im(p|K f −1) = p(K) ⊆⊕ X by hypothesis. Hence

M = N ⊕ X = N ⊕ p(K) ⊕ Y = N ⊕ K ⊕ Y

for some Y ⊆ M. Therefore K ⊆⊕ M. �

Lemma 5.2 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be a simple-direct-injective

module. Then:

1.
n∑

i=1

Ai ⊆⊕ M for any finite set {A1, A2, · · · , An} of simple summands of M.

2. The sum of all simple summands of M is fully invariant in M.

Proposition 5.3 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be a finitely generated

module. If M is simple-direct-injective, then, for any semisimple submodules K and N of

M with K � N ⊆⊕ M, K ⊆⊕ M.

Proof K and N are both finitely generated for any semisimple submodule K, N of M

with K � N ⊆⊕ M. So K =
∑k

i=1 Ki and N =
∑k

i=1 Ni, where Ki and Ni are simple for each

i. Since N is a summand of M and Ni is simple for each i, Ni is also a summand of M for
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each i. Write an isomorphism f : K → N. Consider the restriction f |Ki of f . Since

Ker f |Ki = Ker f ∩ Ki = 0 ∩ Ki = 0,

f |Ki is a monomorphism, and so f |Ki(Ki) = f (Ki) � Ki, where Ki simple for each i. Hence

f (Ki) = Ni for some i ∈ I. Thus Ki � Ni. By Proposition 5.2, each Ki is a summand of M

and by Lemma 5.2, K is a summand of M. �

Proposition 5.4 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be a module such that

the sum of all simple summands is essential in a summand of M. Then M is simple-direct-

injective if and only if M = K ⊕ N where soc(K) ∩ rad(K) = 0, soc(K) is fully invariant

in M, and soc(N) ⊆ rad(N).

Definition 5.5 Let M be an R-module. The direct sum
⊕

i∈I Ai of simple submodules of M

is called locally simple summand of M if there is a finite subset F of I such that
⊕

i∈F Ai

is a summand of M.

Proposition 5.5 (Camillo, Ibrahim, Yousif and Zhou, 2014) Suppose every locally simple

summand of M is a summand. Then M is simple-direct-injective if and only if M = K ⊕N

where K is fully invariant semisimple submodule of M and soc(N) ⊆ rad(N).

Remark 5.1 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be an R-module and sat-

isfy ascending chain condition(ACC) on summands. Then every locally simple summand

of M is a direct sum of finitely many simple summands, thus it is a summand of M.

The next corollary follows from the remark 5.1 and Proposition 5.5.

Corollary 5.1 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be an R-module and

satisfy ascending chain condition(ACC) on summands. Then M is simple-direct-injective

if and only if M = K ⊕ N, where K is fully invariant semisimple submodule of M and

soc(N) ⊆ rad(N).

Corollary 5.2 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M be an R-module and

satisfy ascending chain condition(ACC) on summands. If M is simple-direct-injective,

then for any semisimple submodules K and N of M with K � N ⊆⊕ M, K ⊆⊕ M.

Lemma 5.3 (Camillo, Ibrahim, Yousif and Zhou, 2014) Let M =
⊕

i∈I Mi be a direct

sum of right R-modules. Then a right R-module E is min-M-injective if and only if E is

min-Mi-injective for each i ∈ I.
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Lemma 5.4 (Camillo, Ibrahim, Yousif and Zhou, 2014) If M is simple-direct-injective

right R-module, then every simple summand of M is min-M-injective.

Proof Let K be a simple summand of M and f : N → K an R-homomorphism, where

N is a simple submodule of M. We need to show that f extends to M. If f = 0, we are

done. Otherwise, N � K. Since M is simple-direct-injective, N is also a summand of M.

Let p : M → N be the projection onto N. Consider the diagram

N
f
��

Mp
��

g���
�
�
�

K

so there is g : M → K such that f p = g. Also, it extends f . Thus K is min-M-injective. �

5.2.1. When do Simple-Direct-Injective Modules satisfy

C3-Condition?

Now, we continue with the rings of which simple-direct-injective modules satisfy

the C3-condition. We begin with the following lemma.

Lemma 5.5 ( (Camillo, Ibrahim, Yousif and Zhou, 2014), Lemma 3.1) Any direct sum of

injective modules is simple-direct-injective.

Proof Let M =
⊕

i∈I Mi be a direct sum of injective modules and K � N ⊆⊕ M, where

K and N are simple submodules of M. We need to show that K ⊆⊕ M. Since N is simple,

N ⊆⊕ (
⊕

i∈F Mi) for a finite subset F of I. Thus, N is injective. Since K � N, K is also

injective and K ⊆⊕ M. �

Lemma 5.6 ( (Camillo, Ibrahim, Yousif and Zhou, 2014), Lemma 3.2)

1. If M = K ⊕ N is a C3-module and f : K → N is an R-monomorphism, then

Im f ⊆⊕ N.

2. If M ⊕ M is a C3-module, then M is a C2-module.

Lemma 5.7 If M is indecomposable module which is not simple, then M⊕E(M) is simple-

direct-injective.
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Before giving the characterization of rings whose simple-direct-injective modules satisfy

C3-condition, we need to give the definitions of uniserial modules and rings.

Definition 5.6 A module is called uniserial if the lattice of its submodules is totally or-

dered under inclusion. A ring R is called left uniserial if RR is a uniserial module. A ring

is called serial if both modules RR and RR are direct sums of uniserial modules.

Theorem 5.1 ( (Camillo, Ibrahim, Yousif and Zhou, 2014), Theorem 3.4) Let R be a ring.

The following conditions are equivalent:

1. Every simple-direct-injective right R-module is a C3-module.

2. Every simple-direct-injective right R-module is quasi-injective.

3. Every right R-module is a direct sum of a semisimple module and a family of injec-

tive uniserial modules of length 2.

4. Every right R-module is a direct sum of a semisimple module and an injective mod-

ule.

5. R is an artinian serial ring with J(R)2 = 0.

5.2.2. When is Every Right R-Module Simple-Direct-Injective?

Definition 5.7 A ring R is called right V-ring if every simple right R-module is injective.

In the following proposition, the rings all of whose right modules simple-direct-injective

are characterized.

Proposition 5.6 ( (Camillo, Ibrahim, Yousif and Zhou, 2014), Proposition 4.1) Let R be

a ring. The following statements are equivalent:

1. R is right V-ring.

2. Every right R-module is simple-direct-injective.

3. Every finitely cogenerated right R-module is simple-direct-injective.

4. Direct sums of simple-direct-injective modules are simple-direct-injective.

5. Every 2-genereted right R-module is simple-direct-injective.
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Definition 5.8 A ring R is called von Neumann regular if for any a ∈ R, there exists

x ∈ R such that a = axa.

From now on, by a regular ring, we mean a von Neumann regular ring.

Theorem 5.2 ( (Camillo, Ibrahim, Yousif and Zhou, 2014), Theorem 4.4) A regular ring

R is right V-ring if and only if every cyclic right R-module is simple-direct-injective.

5.3. On the Structure of Simple-Direct-Injective Modules

The results that we have presented so far are related with the properties of simple-

direct-injective modules over arbitrary rings. In this section we characterize simple-direct-

injective modules over some particular rings. First, we shall give a characterization of

simple-direct-injective modules over the ring of integers.

Definition 5.9 An element a of a group G is divisible by n, denoted by n|a, if there is an

element x in G such that nx = a for integer n, or equivalently, if a belongs to nG.

Definition 5.10 A group G is called bounded if the orders of the elements of G remain

under a fixed finite bound n (i.e. nG = 0 for integer n).

Definition 5.11 A subgroup S of a group G is called pure if the equation nx = a ∈ S is

solvable in S whenever it has a solution in G for every natural number n; that is, if n|a in

G implies n|a in S .

It is more convenient to express purity in the form of an equation: S is pure if and only if

nS = S ∩ nG for every natural number n. (Fuchs, 1970)

Theorem 5.3 ( (Fuchs, 1970), Theorem 27.5) A bounded pure subgroup is a direct sum-

mand.

Lemma 5.8 ( (Fuchs, 1970), Lemma 26.1) Let A, B be subgroups of G such that A ⊆ B ⊆
G. If A is pure in B and B is pure in G , then A is pure in G.

Now let define the following; for an R-module M,

S ′ :=
∑
{U ⊆ M | U is simple and U ⊆⊕ M}.
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Theorem 5.4 For an abelian group G, the following are equivalent:

1. G is simple-direct-injective.

2. S ′ is a fully invariant subgroup of G.

3. S ′ is a pure subgroup of G.

Proof (1)⇒ (2): Follows from Lemma 5.2 (1)

(2)⇒ (3): Let U1 and U2 be simple subgroups of S ′. So

G = U1 ⊕ K = U2 ⊕ K′,

where K,K′ ⊆ G. Our claim is U1 ⊕ U2 ⊆⊕ G. Let U2 =< a >, a ∈ U2, and a = b + c

where b ∈ U1 and c ∈ K. Let p : G → K be the projection onto K along U1. Then

p(a) = c ∈ S ocK by Proposition 2.6. Since S ′ is fully invariant in G, p(U2) =< c >� S ′,

where < c > is simple. So p(U2) is a summand of G. Also, U1 ⊕U2 = U1 ⊕ p(U2). Hence

we show that U1 ⊕ p(U2) ⊆⊕ G. Since

K = K ∩G

= K ∩ (p(U2) ⊕ X)

= p(U2) ⊕ (K ∩ X)

by Modular Law, where X ⊆ G, p(U2) ⊆⊕ K. Therefore U1 ⊕ U2 ⊆⊕ G.

By induction every finitely generated subgroup of S ′ is a direct summand of G. To prove

S ′ is a pure subgroup of G, let n ∈ Z+ and x ∈ S ′ ∩ nG. Then there is a finitely generated

submodule L of S ′ such that x ∈ L. So L is a direct summand of G. Therefore x ∈
L ∩ nG = nL ⊆ nS ′. Hence S ′ is a pure subgroup of G.

(3) ⇒ (1): Let A and B be simple direct summands of G with A ∩ B = 0. So A, B ⊆ S ′.

We need to show that A ⊕ B ⊆⊕ G. Since A ⊕ B is pure in S ′ and S ′ is pure in G, so A ⊕ B

is pure in G by Lemma 5.8. Since A⊕ B is pure and bounded, it is a direct summand of G

by Theorem 5.3. �

An immediate consequence of Theorem 5.4 is the following.

Corollary 5.3 A finitely generated abelian group G is simple-direct-injective if and only
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if

G � Zp0
⊕ Zp1

⊕ · · · ⊕ Zpn ⊕ Zq
k0
0

⊕ · · · ⊕ Zqkt
t
⊕ Zm,

where p0, · · · , pn, q0, · · · qt are distinct prime integers, ki = 0 or ki ≥ 2 for i = 0, · · · , t,
and n, t,m are positive integers.

Definition 5.12 A ring R is called semilocal if R/RadR is a left artinian ring,or, equiva-

lently R/RadR is semisimple ring.

By similar arguments as in the proof of Theorem 5.4, we have the following.

Theorem 5.5 Let R be a semilocal ring. For a right R-module M, the following are

equivalent:

1. M is simple-direct-injective.

2. S ′ is a fully invariant submodule of M.

3. S ′ is fully invariant pure submodule of M.

Definition 5.13 Let M be a right R-module. An element m in M is called singular el-

ement of M if the right ideal ann(m) is essential in R. The set of all singular elements

of M is called the singular submodule of M and denoted by Z(M). MR is called sin-

gular(respectively, nonsingular) module if Z(M) = M (respectively, Z(M) = 0). (Lam,

1999)

Note that a simple right module is either singular or projective. This fact will be used in

the following theorem. The following theorem shows that, over commutative rings, every

nonsingular module is simple-direct-injective.

Theorem 5.6 Let R be a commutative ring. Then every nonsingular module is simple-

direct-injective.

Proof Let M be a nonsingular module. Let A and B be simple submodules of M such

that A is a direct summand of M and A � B. Since M is nonsingular, A is nonsingular too.

Thus A is projective, and so B is projective. Then B is injective by ( (Ware, 1971), Lemma

2.6). Hence B is a direct summand of M. This proves that M is simple-direct-injective. �
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CHAPTER 6

CONCLUSION

In this thesis, we study a recent generalization of C2-modules which is introduced

and studied in (Camillo, Ibrahim, Yousif and Zhou, 2014). A right R-module M is called

simple-direct-injective if every simple submodule which is isomorphic to a summand of

M is a summand, or if the direct sum of any two simple summands whose intersection is

zero is a summand of M. Although some characterizations of simple-direct-injective mod-

ules are known, there is not much about their structure over particular rings. We consider

the structure of the simple-direct-injective abelian groups. The relation between simple-

direct-injective modules and C3-modules is exhibited. We show that every nonsingular

module over a commutative ring is simple-direct-injective. Also, we give a characteriza-

tion of simple-direct-injective modules over semilocal rings.
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