
1 

Synthesis of Scalable Planar Scissor Linkages 

with Anti-Parallelogram Loops 

Ş. Gür1, C. Karagöz2, G. Kiper3 and K. Korkmaz4 

1İzmir Institute of Technology, Turkey, e-mail: sebnemgur@iyte.edu.tr 

2İzmir Institute of Technology, Turkey, e-mail: cevahirkaragoz@iyte.edu.tr 

3İzmir Institute of Technology, Turkey, e-mail: gokhankiper@iyte.edu.tr 

4İzmir Institute of Technology, Turkey, e-mail: koraykorkmaz@iyte.edu.tr 

Abstract.  

Scissor linkages are commonly used as mechanisms for scaling objects. They constitute a significant 

portion of deployable structures. Since 1960s many researchers sought to form novel structures using 

the scissor units. In 1990s Hoberman brought a new perspective to the field when he used the loops, 

not the units to form linkages. Starting from mid 2000s, other researchers joined into this new approach 

of design. One of the latest researches presented a design for scaling a circular forms with anti-

parallelogram loops. This study shows that an anti-parallelogram loop assembly can also be used for 

scaling planar curves with variable curvature. 
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1 Introduction 

Mechanisms that can transform between an open (deployed) and a closed (stowed) 

configuration are called deployable structures [8]. Scissor linkages are widely 

used for deployable structures. Scissor-like elements (SLEs) are ternary links with 

revolute joints. Two SLEs connected at the middle joint constitute a scissor unit. 

The first academic study on SLEs was conducted by Pinero in 1961 for his design 

of a deployable theater composed of pantographic elements [17]. Escrig defined 

the foldability conditions [2, 3]. The subject remains to be of interest today for 

many other researchers [13, 16, 22].  

A special type of deployable structures is scaling mechanisms. As the name 

suggests these mechanisms maintain a specific form while they expand and shrink. 

Hoberman introduced angulated SLEs in 1990 for scaling mechanisms [10, 11]. 

Endpoints of an angulated SLE follows radial lines during deployment while pre-

serving the angle in between provided that the SLE satisfies certain geometrical 
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conditions. In 1997 You and Pellegrino [20] reported the necessary conditions for 

deployment with subtended angles and introduced Generalized Angulated Ele-

ments (GAEs) of Type I and Type II. 

Hoberman’s invention also introduces a novel approach: assembling loops to 

synthesize structures. Unlike the commonly used method of assembling scissor 

units, Hoberman places rhombus loops on a closed curve and determines the link 

lengths of the angulated SLEs using the edges of the rhombi [9, 10]. Liao and Li 

[14], Kiper and Söylemez [12] also made use of rhombi for scaling planar graphs 

and polygons. Yar et al. [19] used kite and dart loops and Gür et al. [5] used anti-

parallelogram loops to obtain planar linkages comprising SLEs.  

2 Assembly of Loops 

There are several ways to classify scissor units used in scissor linkages. In the 

most common classification scissor linkages are composed of three types of scis-

sor units: transitional, polar and angulated units. Another classification by Zhang 

et al. [21] reveals three corresponding types: parallel, symmetric and isogonal 

units. Basically, these units are used for altering either the linear lengths, or the 

circular arc length or the curvature of a curve segment. Maden et al. [15] present 

the alternative assemblies of scissor units and provide analysis and design criteria. 

When the scissor linkages in the literature are examined, it is seen that rhombus, 

kite, dart, parallelogram, anti-parallelogram and general convex and concave 

shaped loops can be found. As an example, a translational linkage with rhombus 

loops and a polar linkage with kite loops are seen in Fig. 1. 

 

Fig. 1 Loop geometries of two scissor structures produced with primary scissor elements 

In order to form a scalable polygon, Hoberman [9] places rhombi on the edges 

of a polygon, which is usually a segmented approximation of a continuous curve 

(Fig. 2). In this study, anti-parallelogram loops are used to form scaling linkages.  
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Fig. 2 Loop assembly method as shown in MIT Class 6.S080 by Hoberman [9] 

3 Anti-Parallelogram Loop Assemblies 

Anti-parallelogram, also known as crossed parallelogram or contraparallelogram, 

has two short and two crossing long edges of equal length. A linkage forming an 

anti-parallelogram loop can be folded flat in both directions of the motion. Mirror 

symmetry of the loop about a vertical axis is preserved during deployment. The 

symmetry axis passes through the crossing point of the long edges (Fig. 3). 

 

Fig. 3 Motion of anti-parallelogram loop 

The loops in an assembly are connected at the corners which symbolize the 

joint positions. There are many possible alternatives of connecting the loops de-

pending on the choice of connection corner and also their rotation and configura-

tion. The alternatives of anti-parallelogram loop arrays were studied by Gür in de-

tail and a real-life application of one of the linkages resulting from the study was 

published in 2017 [4, 6]. In another former study of Gür et al. [5] an assembly 

with an alternating order of anti-parallelogram loops was used to form ring-like 

structures with radial deployment. This study presents the use of anti-

parallelogram loops to form linkages for scaling planar curves with variable cur-

vature using the same array type used in [5] for ring-like structures (Fig. 4). 

SolidWorks software is used to create a kinematic model and visualize the motion. 

It is observed that the curve form is preserved during the motion (Fig. 5).  
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Fig. 4 Anti-parallelogram loop assembly on a polyline with variable curvature 

 

Fig. 5 Deployment of the linkage 

When a planar curve is given, it can be discretized at some points to approxi-

mate it as a polyline. The discretization points can be selected to be equally spaced 

on the curve, or the spacing can be decided based on the change in curvature [7] or 

according to special design criteria of a specific problem. Since the main charac-

teristics of a curve is how it is curved as one moves on the curve, the curvature 

must be somehow represented with the polyline approximation. This can be done 

considering the centers of the circles passing through every three consecutive 

points of the polyline or considering the angle between two consecutive line seg-

ments of the polyline (Fig. 6). The center of a circle passing through three points 

is the intersection of perpendicular bisectors of two pairs of points. Hoberman 

makes uses of these “normal lines” in [11] for his construction with rhombi. For 

most scissor units, the normal lines pass through joints, however this is not the 

general case. In [1, 21] unit lines are defined as the lines connecting the joint pairs 

on the two sides of a scissor unit, but these unit lines do not always coincide with 
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normal lines and may not correspond to any geometrical characteristics of the ap-

proximated curve. 

For an anti-parallelogram, the vertical symmetry axis, which does not pass 

through any joints but passes through the intersection of the crossing links, corre-

sponds to the normal lines when the loops are assembled on a polyline. 

 

Fig. 6 Parameters of the linkage 

Let the line segment lengths of a polyline be represented by Sn for segment n. 

The ratio of nth segment length to the first one can be determined as kn: 

32 n
2 3 n

1 1 1

SS S
k   ,   k   ...   k

S S S
    

The link lengths of the anti-parallelogram loops are determined using the ratio 

between the short (a1) and long edge (b1). The ratio R should be equal for all loops 

on every segment, hence resulting in GAEs of Type II, i.e. similar GAEs: 

1 2 n

1 2 n

b b b
R ...

a a a
     

At the fully deployed form, the sum of the link lengths is equal to segment 

lengths. Therefore, the kink angle nn+1 of an angulated SLE meeting at the vertex 

of a polyline is simply the angle between the segments meeting at the vertex. The 

kink angle at a vertex is equal to the summation of halves of subtended angles of 

the neighboring segments. nn+1 + (nn+1 + n+1n)/2 = 180 in Fig. 6. Since the kink 

angles of a pair of angulated SLEs meeting at a vertex are equal to each other, all 

anti-parallelogram loops deploy with the same ratio during the motion, hence re-

sulting in a scaling linkage. A more detailed proof can be found in [5]. The re-

maining link lengths can be found as follows: 
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Also the maximum deployed-to-compact form ratio can be found as: 

n n

n n

b a R 1
Compactness ratio: 100 100

b a R 1

 
  

 
  

The ratio R and compactness ratio can be utilized as design measures. Once the 

link lengths are decided, kinematic analysis of the resulting linkage can be per-

formed. Derivation of the kinematic analysis formulations are straightforward (see 

for ex. [18]) and are not presented here for conciseness. The formulations are im-

plemented in Microsoft Office Excel (Fig. 7). Cells highlighted in blue color are 

the inputs. The fully deployed and partially deployed forms of a polyline with a 

closed contour, i.e. a polygon, can be seen in Fig. 8. In Fig. 8, the link lengths ra-

tio is R = 2.5, but any ratio can be selected by the designer. 

 

Fig. 7 Kinematic analysis in Excel 
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Fig. 8 Deployment of a linkage visualized in Excel graphics 

4 Conclusions 

Previous studies showed that a circular assembly of anti-parallelogram loops in a 

specific array, whether they are identical or similar, is capable of radial deploy-

ment. In this study an assembly of same array type is used for deployable structure 

that can scale a curve with variable curvature. SolidWorks and Excel softwares are 

used for modelling and calculation. Once the curve is approximated by a poly-line, 

there is only one free parameter, ratio R, in order to determine the link lengths of 

the linkage. It is demonstrated that such a linkage is capable of radial deployment 

with subtended angles. Along with many other scissor mechanisms, anti-

parallelogram loop assemblies have potential applications in kinetic architecture. 
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