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and advise he has provided throughout my thesis work
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ABSTRACT

QUANTUM DYNAMICS OF NOISE ASSISTED EXCITATION
TRANSPORT

In this thesis, different types of systems are studied to investigate the effects of the

environmental factors on diffusion and transfer time. Each system consists of different

energy levels and excitation transfers between them. The mismatch between the energy

levels leads to the Anderson localization. Localization has a negative effect on transport.

It is shown that Anderson localization is suppressed due to interaction with the environ-

ment. To describe the dynamical evolution of the open quantum system Lindblad master

equation is used. The transition times of the system from the pure state to the completely

mixed state are examined with the help of the density matrix. In consequence of our

study, because of the interaction between the system and environment the change in the

wavefunction, the loss in the interference terms and an irreversible information flow in the

total system are observed. Destructive effects of the environmental noise on localization

are observed for different scenarios and diffusion enhanced. However, when the interac-

tion with the environment becomes larger than a critical value, the system exhibits Zeno

effect. In the Zeno regime, the time evolution of the quantum state of the system as well

as the diffusion is suppressed.
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ÖZET

GÜRÜLTÜ ETKİSİNDE UYARIMLARIN TAŞINIMININ KUANTUM
DİNAMİĞİ

Bu tezde, açık kuantum sistemlerinde çevresel etkilerin sistemin difüzyon ve taşınım

süreleri üzerindeki etkileri çalışılmıştır. Her bir sistem farklı enerji seviyelerinden oluşur

ve egziton bu seviyeler arasında transfer olur. Enerji seviyeleri arasındaki bu fark Ander-

son lokalizasyonuna neden olur. Lokalizasyonun transfer üzerinde negatif bir etkisi vardır.

Çevre ile etkileşimler sayesinde Anderson lokalizasyonun azaldığı gösterilmiştir. Açık

kuantum sisteminin zaman içerisindeki değişimini matematiksel olarak ifade edebilmek

için Lindblad master denklemi kullanılmıştır. Yoğunluk matrisinin yardımıyla sistemin

saf durumdan karmaşık duruma geçiş süreleri incelenmiştir. Çalışmalarımız sonucunda,

çevre ve sistem arasındaki etkileşim nedeniyle dalga denklemininde değişim, girişim ter-

imlerinde kayıp ve sistemde tek yönlü bilgi kaybı gözlemlendi. Çevresel gürültünün bazı

bölgelerde lokalizasyon üzerindeki yok edici etkisi farklı durumlar için gözlemlendi ve

taşınım hızlandı. Ancak çevre ile etkileşim kritik değerden büyük olduğ unda, sistem

Zeno alanının özelliklerini gösterdi. Zeno alanında sistemin kuantum durumlarının za-

man içerisindeki değişimi ve difüzyon baskılandı.
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CHAPTER 1

INTRODUCTION

Excitation transport in open quantum systems is a highly crucial topic nowadays

and concepts of the mechanism of several physical systems. Energy transfer in photo-

synthetic system(Lee, Cheng, and Fleming 2007; Ishizaki and Fleming 2012; Rebentrost

et al. 2009; Engel et al. 2007) and Rydberg gases(Schönleber et al. 2015) are generally

preferred as a model to study these mechanisms.

The Fenna-Matthews-Olson protein complex which is present in the green sulphur

bacteria used as a prototype to explain the effects of the quantum coherence on energy

transfer in photosynthetic systems. Green sulphur bacteria consists of chlorosome an-

tenna and the Fenna-Matthews-Olson protein (Blankenship 2014). When light harvesting

antenna interacts with light, the Fenna-Matthews-Olson protein achieves energy transfer

between the chlorosome antenna complex and reaction center. On the other hand Rydberg

atoms generally used to observe coherent excitation transfer experimentally because of

their controllability(Singer et al. 2004; Saffman, Walker, and Mølmer 2010). They can be

used as background atoms around aggregate atoms and act like environment (Schönleber

et al. 2015). When laser is applied to the system, the background atoms get transparent.

However, the strong interaction between Rydberg atoms disturbed transparency. When

transparency lost, atoms become detectable and excitation transport can be observed. In

the classical limit excitation transfer is described by Brownian motion which is result

in very long transfer times with low transfer efficiency. On the other hand according to

quantum mechanical description, the system should exhibit Anderson localization which

again leads to low transfer efficiency. Therefore, it is important to model these systems as

an open quantum system taking into account the quantum mechanical effects as well as

noise due to environment

An open quantum system interacts another quantum system with a high number

of degrees of freedom which is called the environment (Breuer and Petruccione 2002).

Both open system and environment compose to total system together. The total system

generally is a closed system and evolves under unitary dynamics. Unlike closed quantum

systems, the interaction between the system and the environment leads to a different dy-

namical evolution in the open quantum system. Since there is a noise on the environment,

the dynamics of the open system should also contain a non-unitary part as well. This part
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includes a dephasing term which is responsible for the decay of the coherences.

In this thesis, the effects of the noisy environment on the quantum transfer effi-

ciency for different systems was investigated. As a basic toy model, first two-level system

was studied. Then a ring, a ribbon and a two-dimensional lattice was used as an higher

dimensional cases. For each system, it was assumed that there is an energy difference

between sites which is called disorder. The disorder has a negative effect on quantum

transport and lead to localization (Anderson 1958). To break this localization, dephasing

and artificial magnetic was introduced into systems.

In open quantum systems, the interaction between the system and the environment

leads to uncertainty in the knowledge of the system state. In this case, the state of the

quantum system was described by using ensemble of the known states by using the density

operator (Joos et al. 2013). To describe the evolution of the density matrix the Lindblad

master equation was used. For each type of system, first the system Hamiltonian and

Lindblad operators were defined. Then, boundary conditions were determined. Finally,

the Lindblad master equation was converted to the first order linear differential form and

this linear equation was solved with MATLAB numerically.

The first chapter includes a review of some basic concepts of open quantum sys-

tems. In Chapter 2, the effects of dephasing on localization are investigated for two-level

system both analytically and numerically. The changes in the population dynamics of the

density matrix with respect to disorder and dephasing are investigated. Energy difference

between sites(disorder) caused Anderson localization. However, localization is broken

by dephasing in some regions. In Chapter 3, the system is generalized to N sites with

closed boundary conditions. The relation between participation number and entropy is

obtained. Numerical solutions are given for ring of 20 sites in the presence of dephas-

ing. It is observed that, in the weak dephasing regime quantum transport increases. In

Chapter 4, the effects of the artificial magnetic field on localization is investigated for a

ring and ribbon type configurations with closed boundary conditions and a 2D lattice with

open boundary conditions. For ring and 2D lattice, under weak magnetic field quantum

transfer increases.
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1.1. Dynamics of the Open Quantum Systems

An open system is a quantum system which is coupled to another quantum system

called environment. Since there is an information flow between system and environment,

the state of the open system depends on both its own dynamics and also on surround-

ings(Breuer and Petruccione 2002).

Depending on this information flow open systems can be Markovian or non-

Markovion. If there is an information flow from the system to the environment, these

systems are Markovian systems. If there is also backflow information from the environ-

ment to the system, then these systems called non-Markovian open systems.

The total Hamiltonian can be written as

H(t) = HS ⊗ 1̂ + 1̂⊗HE +HSE(t) (1.1)

where HS is system Hamiltonian, HE is environment Hamiltonian and HSE is the inter-

action Hamiltonian.

1.2. Density Matrix

When there is an incomplete information about a system, we can specify proba-

bility distribution over possible states. The system can be represented as a large collection

of systems in different states with different probabilities. This collection called ensemble.

The same approach can also be used in quantum mechanics too. Instead of specifying a

unique state vector |Ψ〉, a collection of state vectors in different states with different prob-

abilities can be listed by using density operator (Joos et al. 2013). The density operator

can be written in terms of an ensemble of normalized states as

ρ =
∑
n

pn |φn〉 〈φn| (1.2)

where pn refers the probability of being in the state |φn〉. Total probability must be equals

to 1 and 0 ≤ pn ≤ 1. ∑
n

pn = 1 (1.3)
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Any density matrix satisfy the following properties: (Schaller 2014)

• Normalization: tr(ρ) = 1

• Positivity: 〈Ψn| ρ |Ψn〉 ≥ 0

• Hermiticity : ρ† = ρ

In the matrix formalization

ρ =


p11 〈ψ1| ρ |ψ1〉 ... p1N 〈ψ1| ρ |ψN〉

...
...

pN1 〈ψN | ρ |ψ1〉 · · · pNN 〈ψN | ρ |ψN〉

 (1.4)

The diagonal elements of the density matrix represent the population terms while

the off-diagonal elements represent the interference terms. The interference terms deter-

mine the correlation between states which is called coherence. Eventually because of the

interactions between system and environment these terms decay. This is called dephasing.

For pure states (Ableitinger et al. 2008)

trρ2 = 1, (1.5)

For mixed states

trρ2 < 1. (1.6)

The evolution of the density operator is different for pure states and mixed states.

A system called as in a pure state if we know where the system exactly is. For pure states

density operator can be written as

ρ(t) = |Ψ(t)〉 〈Ψ(t)| (1.7)

and evolves according to Liouville-von Neumann equation.

d

dt
ρ(t) = −i[H(t), ρ(t)] (1.8)

However, in open quantum systems because of the interaction between the system and
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environment, there is a partial knowledge or no knowledge of the system and these system

states called mixed states. For mixed states it is not relevant to use unitary evolution and

the Liouville-von Neumann equation needs to be modified.

d

dt
ρS(t) = −itrE[H(t), ρ(t)] (1.9)

To do that reduced system dynamics can be used and to obtain the reduced system dy-

namics environment degrees of freedom can be traced out.

ρS = trEρ (1.10)

1.3. The Lindblad Master Equation

The Lindblad master equation (Lindblad 1976) is a first order differential equation

and describes the equation of motion of the density matrix. It can be derived from the

Liouville-von Neumann equation by using two approximations (Breuer and Petruccione

2002). These are Markov approximation and Born approximation.

The combined Hamiltonian consists of three parts and can be written as

Ĥ(t) = ĤS + ĤE + ĤSE, (1.11)

where ĤS , ĤE and ĤSE describe system Hamiltonian, environment Hamiltonian and

interaction Hamiltonian respectively. By the Liouville-Von Neumann equation

d

dt
ρ̂SE = − i

~

[
ĤS + ĤE + ĤSE, ρ̂SE

]
(1.12)

Equation (1.12) can be written in the interaction picture as

d

dt
ρ̂(t) = − i

~

[
V̂ (t), ρ̂(t)

]
(1.13)
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where

ρ̂(t) = e
i
~ (ĤS+ĤE)tρ̂SE(t)e−

i
~ (ĤS+ĤE)t (1.14)

and

V̂ (t) = e
i
~ (ĤS+ĤE)tĤSEe

− i
~ (ĤS+ĤE)t. (1.15)

Here, V̂ indicates the total Hamiltonian in the interaction picture.

The integration of Equation (1.12) yields

ρ̂(t) = ρ̂(0)− i

~

∫ t

0

[
V̂ (t′), ρ̂(t′)

]
dt′. (1.16)

Substituting Equation(1.15) into Equation (1.12), Equation (1.12) becomes

d

dt
ρ̂(t) = − i

~

[
V̂ (t), ρ̂(0)

]
− 1

~2

[
V̂ (t),

∫ t

0

[
V̂ (t′), ρ̂(t′)

]
dt′
]
. (1.17)

where

ρ(t) = ρE(0)⊗ ρS(t). (1.18)

According to the Born approximation, the environment has a large number of degrees

of freedom and not affected by coupling much. Therefore, it is possible to trace out

environment degrees of freedom.

Equation(1.17) will be

d

dt
ρ̂S(t) = − i

~
trE

{[
V̂ (t), ρ̂(0)

]}
− 1

~2
trE

{[
V̂ (t),

∫ t

0

[
V̂ (t′), ρ̂(t′)

]
dt′
]}

. (1.19)

Assume that

trE[V (t), ρ(0)] = 0 (1.20)

Therefore,
d

dt
ρ̂S(t) = − 1

~2
trE

{[
V̂ (t),

∫ t

0

[
V̂ (t′), ρ̂(t′)

]
dt′
]}

. (1.21)

After inserting the Equation (1.18) inside the integral in the Equation (1.20), Equation

(1.20) becomes

d

dt
ρ̂S(t) = − 1

~2

∫ ∞
0

dt′trE

{[
V̂ (t),

[
V̂ (t′), ρ̂E(0)ρ̂S(t)

]]}
. (1.22)
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Equation (1.22) is called Born-Markov master equation. The interaction Hamiltonian is

defined as (Brasil, Fanchini, and Napolitano 2013)

ĤSE = ~(ŜÊ† + Ŝ†Ê) (1.23)

where Ŝ indicates the part of the Hamiltonian that acts only on the system and Ê indicates

the part of the Hamiltonian that acts only on the environment.

If Ŝ and ĤS commute,

[Ŝ, ĤS] = 0, (1.24)

Then the system Ŝ does not depend on time. In the case of a Bosonic environment, the

environmental part of the Hamiltonian can be written as

ĤE = ~
∑
k

wkâ
†
kâk. (1.25)

âk and â†k indicate the annihilation and creation operators for environment respectively

and wk are the characteristic frequencies of each mode.

The environment operator is defined in the interaction picture as

Ê =
∑
k

g?kâke
−iwkt (1.26)

where g?k are coupling constants. Inserting these assumptions into the Equation (1.20)

d

dt
ρ̂S(t) =

∫ t

0

trE

{(
Ŝ†Ê(t)− Ê†(t)Ŝ

)
,
[
(Ŝ†Ê(t′)− Ê†(t′)†Ŝ), ρ̂E(0)ρ̂S(t′)

]}
dt′.

(1.27)

Define

trE

{
Ê(t)ρ̂E(0)Ê†(t′)

}
= trE

{
Ê†(t′)Ê(t)ρ̂E(0)

}
=
〈
Ê†(t′)Ê(t)

〉
(1.28)

and

trE

{
Ê†(t′)Ê(t)ρ̂E(0)

}
= trE

{
Ê†(t′)Ê(t)ρ̂E(0)

}
= 0. (1.29)
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The equation can be written in the form

d

dt
ρ̂S(t) =

∫ t

0

dt′
(

[ŜρS(t′)Ŝ† − Ŝ†ŜρS(t′)]
〈
Ê(t)Ê†(t′)

〉
+ [ŜρS(t′)Ŝ† − ρS(t′)Ŝ†Ŝ]

〈
Ê(t′)Ê†(t)

〉
+ [Ŝ†ρS(t′)Ŝ − ŜŜ†ρS(t′)]

〈
Ê†(t)Ê(t′)

〉
+ [Ŝ†ρS(t′)Ŝ − ρS(t′)ŜŜ†]

〈
Ê(t′)†Ê(t)

〉
− [Ŝ†ρS(t′)Ŝ† − (Ŝ†)2ρS(t′)]

〈
Ê(t)Ê(t′)

〉
− [Ŝ†ρS(t′)Ŝ† − ρS(t′)(Ŝ†)2]

〈
Ê(t′)Ê(t)

〉
− [ŜρS(t′)Ŝ − Ŝ2ρS(t′)]

〈
Ê†(t)Ê†(t′)

〉
− [ŜρS(t′)Ŝ − ρS(t′)Ŝ2]

〈
Ê†(t′)Ê†(t)

〉)

(1.30)

d

dt
ρ̂S(t) = −[ŜŜ†ρ̂S(t)− Ŝ†ρ̂S(t)Ŝ]

〈
Ê†(t)Ê(t′)

〉
− [ρ̂S(t)Ŝ†Ŝ]

〈
Ê(t′)Ê†(t)

〉
−[Ŝ†Ŝρ̂S(t)− Ŝρ̂S(t)Ŝ†]

〈
Ê(t)Ê†(t′)

〉
− [ρ̂S(t)ŜŜ† − Ŝ†ρ̂S(t)Ŝ]

〈
Ê†(t′)Ê(t)

〉
(1.31)

If the environment is initially in the vacuum state

ρ̂E = (|0〉 |0〉 ...)⊗ (〈0| 〈0| ...) (1.32)

Then 〈
Ê†(t′)Ê(t)

〉
= trE

{
Ê†(t′)Ê(t))ρ̂E(0)

}
= 0 (1.33)

and

〈
Ê(t)Ê†(t′)

〉
=
〈
Ê(t′)Ê†(t)

〉
(1.34)

where

〈
Ê(t)Ê†(t′)

〉
=
∑
k,k′

g?kgk′

∫ t

0

dt′e−i(wkt−w′
kt

′) (1.35)

Consider the environment as a harmonic oscillators. To understand the characterization of

the frequencies of the bath modes and the coupling between the environment and system,

spectral density can be defined as

8



J(w) =
∑
n

|gn|2δ(w − wn). (1.36)

The Equation (1.35) can be expressed in terms of the spectral density as

〈
Ê(t)Ê†(t′)

〉
=

∫ ∞
0

dwJ(w)

∫ t

0

dt′e−iw(t−t
′). (1.37)

The integral can be simplified by using change of variable

τ = t− t′,

dτ = −dt′.

Therefore, 〈
Ê(t)Ê†(t′)

〉
=

∫ ∞
0

dwJ(w)

∫ t

0

dτe−iwτ . (1.38)

According to the Markov approximation, the memory time of the environment is shorter

than the time scale of the system. In other words, system has no memory effects. When

limit as t goes to infinity, by the Cauchy principle value integral

∫ ∞
0

dre−iεr = πδ(ε)− iP 1

ε
(1.39)

Therefore, 〈
Ê(t)Ê†(t′)

〉
= πδ(w)− iP 1

w
(1.40)

where P refers to Cauchy principle part and contains imaginary part. This part is

responsible for the frequency shift.

Equation 1.39 becomes

π

∫ ∞
0

dwJ(w)δ(w)− iP
∫ ∞
0

dw
J(w)

w
(1.41)

To simplify the equation, define

γ ≡ 2π

∫ ∞
0

dwJ(w)δ(w) (1.42)
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and

ε ≡ −2P
∫ ∞
0

dw
J(w)

w
(1.43)

Then Equation 1.41 becomes
γ + iε

2
(1.44)

and Equation 1.31 will be

d

dt
ρ̂S(t) =

[
ρ̂S(t)Ŝ†Ŝ − Ŝρ̂S(t)Ŝ†

]γ − iε
2
−
[
Ŝ†Ŝρ̂S(t)− Ŝρ̂S(t)Ŝ

]γ + iε

2
. (1.45)

For the case ε = 0

d

dt
ρ̂S(t) = −γ

2

[
ρ̂S(t)Ŝ†Ŝ − ŜρS(t)Ŝ† + Ŝ†Ŝρ̂S(t)− Ŝρ̂S(t)Ŝ†

]
. (1.46)

ρ̂S(t) = e
i
~ ĤS(t)ρ̂Se

− i
~ ĤS(t) (1.47)

Using Equation (1.46), transform Equation (1.45) to the initial picture form

dρ̂S
dt

= − i
~

[
ĤS, ρ̂S

]
+ γ
[
Ŝρ̂SŜ

† − 1

2
{Ŝ†Ŝ, ρ̂S}

]
. (1.48)

General form of the Lindblad equation is

d

dt
ρ̂S = − i

~
[HS, ρ̂S] +

∑
n

γn

[
L̂nρ̂SL̂

†
n −

1

2
L̂†nL̂nρ̂S −

1

2
ρ̂SL̂

†
nL̂n

]
(1.49)

where γ indicates dephasing term and L̂ operators are Lindblad operators.

Lindblad master equation can be examined in two parts. The first term on the right hand

side of the equation describes the unitary evolution of the density operator.

The second term describes possible transitions and non-unitary evolution of the density

matrix. This term includes dephasing term and Lindblad operators and describes possible

transitions.
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1.4. Anderson Localization

According to Einstein, at too short scales process is not Markovian. There is a

memory effect and there is no diffusion. On the other hand, at large scales if the system

has no memory there will be always diffusion. (Einstein 1905)

〈r2〉 = Dt (1.50)

where D is the diffusion constant.

According to Anderson, it is not always true for quantum particles. The wave is co-

herently scattered by impurities. Interferences of multiple scatterings with higher return

probability leads to quantum correction to diffusion. If disorder is strong enough, for

infinitely long time disorder may leads to localization (Anderson 1958)

〈r2〉 −−−→
t−→∞

constant (1.51)

and

D = 0

(a) (b)

Figure 1.1. The wave function of (a)extended state, (b)localized state
Source: (Lee and Ramakrishnan 1985)
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The wave function decays

| Ψ(~r) |∼ exp(−| ~r − ~r0 |
ξ

) (1.52)

where ξ is localization length and l is the mean free path.

Since dephasing leads to loss of the interference terms, in this study we used

dephasing to break Anderson localization.
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CHAPTER 2

DELOCALIZATION IN A TWO LEVEL SYSTEM WITH

DISORDER

As a basic toy model first a two level system was studied. Energy difference

between sites which is called disorder was introduced to the system and effects of disorder

on localization was observed. To break the localization dephasing was introduced to the

system. The Hamiltonian of two level system for a spin 1
2

particle in the presence of the

Figure 2.1. A two-level system with a hopping strength v/2

single excitation is

HS =
ε

2
(|1〉〈1| − |2〉〈2|) +

v

2
(|1〉〈2|+ |2〉〈1|) (2.1)

where ε indicates site energies and v is the hopping strength between two sites. |1〉 and

|2〉 refer to the localization site of the particle.

The system Hamiltonian can be written in terms of Pauli spin matrices as

HS =
ε

2
σ̂z +

v

2
σ̂x. (2.2)

The Hamiltonian of a charged particle under the magnetic field is

H = −~µ ~B, (2.3)

13



The magnetic dipole moment of a spinning charge particle which is proportional to spin

angular momentum ( S ) is

~µ = γ~S (2.4)

where γ is the gyromagnetic ratio.

In terms of the gyromagnetic ratio, the Hamiltonian can be written as

H = −γ~S ~B. (2.5)

H = (−γ~
2

)~σ ~B =
Ω

2
~n′~σ (2.6)

where n̂′ = cosθẑ + sinθx̂ is the unit vector in the xz plane.

The Larmor frequency Ω is defined as

Ω =

√
ε2

4
+
v2

4
. (2.7)

Initially particle localized at site 1 and system rotates in the x-z plane. Eventually, displays

from z axis by Ω.

Density matrix can be written in terms of Pauli spin matrices as

ρ =
1

2
(1 + ~n~σ) (2.8)

which can be represented in the matrix formalism as

ρ =
1

2

(
1 + nz nx − iny
nx + iny 1− nz

)
(2.9)

where n = (nx, ny, nz) is an arbitrary real vector.

Bloch sphere is a graphical representation of two level systems. (Nielsen and

Chuang 2010) The points on the top of the sphere |0〉 and the bottom of the sphere |1〉
represent excited and ground states or spin up and spin down states. These points refer to

pure states. The radius of the Bloch sphere can be used to determine whether the system

mixed or pure. If radius is one, the point is on the surface of the sphere and indicates pure

state. If radius is less than one the point is inside the sphere and corresponds to the mixed

14



Figure 2.2. Bloch sphere for spin 1/2 particle. |Ψ〉 is any qubit represented by angles
θ and φ where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π and r is the radius of the Bloch
sphere Source: (Nielsen and Chuang 2010)

state.

The qubit |Ψ〉 can be represented as a linear combination |e〉 and |g〉

|Ψ〉 = cos
θ

2
|e〉+ eiφsin

θ

2
|g〉 . (2.10)

Here, θ and φ are the arbitrary real numbers. |e〉 and |g〉 are the excited state and the

ground state respectively.

The Lindblad master equation for two level system is given by

ρ̇ = −i[HS, ρ] +
2∑

n=1

γn[Anρ(t)A†n −
1

2
AnA

†
nρ(t)− 1

2
ρ(t)A†nAn] (2.11)

where An are projection operators. For a two level system, there are two different projec-

tion operators A1 = |1〉 〈1| and A2 = |2〉 〈2| respectively.

The Lindblad master equation in terms of the Bloch vectors is

ρ̇ = −i[Ω
2
~n′~σ,

1 + ~n~σ

2
]− γ1 + γ2

2
(nxσx + nyσy) (2.12)
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~̇n~σ

2
=

Ω

2
~σ(~n′ × ~n)− γ

2
(~n− nz)~σ (2.13)

The final form of the equation is

~̇n

2
=

Ω

2
× ~n− γ

2
(~n− nz). (2.14)

Equation (2.13) can be written in the matrix form to simply the calculations


ṅx

ṅy

ṅz

 =


−γ −δ 0

δ −γ −v
0 v 0



nx

ny

nz

 (2.15)

where δ is disorder, γ is dephasing and v is a hopping strength between two sites.

(a) (b)

Figure 2.3. The time evolution of the diagonal elements of the density matrix.(a) in the
absance of disorder (b) in the presence of disorder

Initially, particle is localized at site 1. In Figure 2.3.a, there is no energy differ-

ence between sites. Since there is no disorder, particle can easily hops between the site

one and site two with a hopping strength v. In the Figure 2.3.b, there is an energy differ-

ence(disorder) between sites.nz changes between 1 and 0.5 but cannot reach -1 (site 2).

In this case disorder leads to localization.
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To break this localization, different values of dephasing introduced to the system.

According to Figure 2.4, when dephasing increases fluctuations decreases and system

Figure 2.4. Time evolution of the diagonal elements of the density matrix for three
different dephasing values in the presence of disorder

becomes mixed faster. Therefore, introducing dephasing can break the localization.

For the case δ = 0 the solution of the linear system in Equation (2.13) is

ṅx = −γnx

ṅy = −vnz − γny

ṅz = vny

(2.16)

n̈z + γṅz + v2nz = 0 (2.17)

System behaves like a damped harmonic oscillator (mẍ+γẋ+ω2x = 0) with the

roots:

r = −γ
2
±
√
γ2

4
− v2 (2.18)

There are three different cases for a damped harmonic oscillator

• γ2

4
− v2 > 0 over damped

• γ2

4
− v2 = 0 critically damped

17



• γ2

4
− v2 < 0 under damped

where γ/v = 2 is critical point

Figure 2.5. The evolution of the diagonal elements of the density matrix for three dif-
ferent dephasing values in the absance of disorder

When the Lindblad master equation is solved for different dephasing rates, three

different case are obtained. Figure 2.5 shows the time evolution of the diagonal elements

of the density matrix for three characteristic values of γ. According to Figure 2.5, γ/v = 2

is the critical point for this system. For γ/v > 2 overdamped oscillation is observed while

for γ/v < 2, underdamped oscillation is observed.
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CHAPTER 3

TRANSPORT ON A DISORDERED RING

In this chapter as a higher dimensional model a ring was studied. Random energy

differences between sites which is called disorder was introduced into the system. Then

dephasing was addded to remove the effect of disorder and to break the Anderson local-

ization. To solve the dynamical evolution of the system Lindblad master equation was

used in the more general form with closed boundary conditions.

Figure 3.1. N-site ring with a nearest neighbors hopping v

The Hamiltonian of N level system in the presence of single excitation is (May

et al. 2008)

HS =
N∑
m=1

εm(|m〉〈m|) +
N∑

n<m

vmn(|m〉〈n|+ |n〉〈m|) (3.1)

where εm indicates site energies and vmn is the hopping strengths only between the nearest

neighbour interactions. |n〉 and |m〉 is the localization site of the particle at site n and m

respectively. The equation of motion for the density operator is given by

ρ̇(t) = − i
~

[HS(t), ρ(t)] + L(ρ(t)). (3.2)

where

L(ρ(t)) = γ
∑
n

[Anρ(t)A†n −
1

2
AnA

†
nρ(t)− 1

2
ρ(t)A†nAn] (3.3)
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Here Lindblad operators are projection operators. An = |n〉 〈n| and γ is pure dephasing

rate.

Lindblad master equation is impractical for calculations especially for higher level sys-

tems. To simplify the calculations we converted Lindblad master equation into the first

order linear differential form. To do that we mapped density matrix to the density vector

form by using f function

f(i, j) = (i− 1)N + j. (3.4)

In our systems the Hilbert space is a N dimensional space. When converting density ma-

trix to density vector form, we are mapping N × N matrix to N2 dimensional vector.

(Schaller 2014)

After using this mapping density matrix becomes

ρ =


ρ11 ... ρ1N

...
...

ρN1 · · · ρNN

⇔ ||ρ〉〉 =



ρ11
...

ρ1N

ρ21
...

ρNN


(3.5)

This process decreases our dimension of work space and makes easier our calculations.

Eventually Lindblad master equation gains linear form

ρ̇ = Lρ (3.6)

Here ρ is a N2 dimensional vector and L is N2 × N2 matrix. In our systems complexity

scales with O(6) for N2 ×N2 L matrix.

The equilibration time was defined by taking weighted average over diagonal elements

of the density matrix. Equilibration time describes diffusion dynamics of the diagonal

elements of the density matrix.

teq =

∑
n |c1n|

1
Re(λn)

+
∑

n |c2n|
1

Re(λn)
+ ...+

∑
n |cnn|

1
Re(λn)∑

i,n |cin|
(3.7)

where

ρii =
∑
n

cine
−λnt (3.8)
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Here, λ is eigenvalues of L matrix.

The random disorder was introduced into the system as −0.5 ≤ η ≤ 0.5 where η = ε/v.

Figure 3.2. The relation between the equilibration time and dephasing rate for ring of
20 sites

According to Figure 3.2, when disorder increases entropic time increases. Disorder leads

to localization. To break the localization we introduce dephasing into the system. If

dephasing is weak (η < 4), equilibration time decreases with γ and quantum transfer

increases. However at the strong dephasing regime, particle enters Zeno regime and time

increases again.

In the Zeno regime because of the frequent measurements system cannot evolve and quan-

tum transfer always suppressed. Here, dephasing acts like measurement on the system and

suppressed quantum trasnport (Misra and Sudarshan 1977).

To understand whether system mixed or pure we used entropy and participation number

definition.Von Neuman entropy can be calculated from (Neumann 2013)

S(ρ) = −trρlog2ρ. (3.9)

If entropy is zero that indicates system is in a pure state and pure quantum states corre-

sponds to maximum information. When system becomes mixed entropy increases and in

that case there is a missing information.
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For completely mixed state entropy reaches maximum value and can be calculated from

S(
1

N
1) = − 1

N
tr(log2

1

N
1) = log2N. (3.10)

We defined participation number as

PN =
∑
n

ρ2nn (3.11)

Participation number describes the diffusion dynamics of the system and can be expressed

in terms of the diagonal elements of the density matrix.

Initially particle is localized at the middle site.

Figure 3.3. The relation between participation number and entropy with respect to time
for ring of 20 sites

Since there is a localization, participation number is 1. According to Figure 3.3, even-

tually participation number increases and converges to its minimum value. On the other

hand,initially entropy is 0 because system is in a pure state.

When system becomes mixed, entropy increases and attains its asymptotic value which

can be calculated as

S(
1

20
1) = log220 = 4.32 (3.12)

for ring of 20 sites.
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3.1. Rate Equations for a Ring (Zeno Regime)

In this part the Lindblad master equation was solved analytically. The quantum

transport in the strong dephasing regime0 (Zeno regime) was investigated.

The Lindblad master equation is

ρ̇ = −i[H, ρ] +
γ

2
L[ρ]. (3.13)

By the Einstein summation convention

ρ̇nm = −(Hnkρkm − ρnkHkm)− γρnm(1− δnm) (3.14)

= −(εnρnm − εmρnm)− iv
∑
σ=±1

(ρn+σ,m − ρn,m+σ)− γρnm(1− δnm) (3.15)

where εm and εn refers to site energies.

If n=m, the first terms of the equation gives zero. Then equation becomes

ρ̇nn = −iv
∑
σ=±1

(ρn+σ,n − ρn,n+σ). (3.16)

If n 6= m, there is a mismatch between site energies.

ρ̇nm = −γρnm − iεnmρnm − iv
∑
σ=±1

(ρn+σ,m − ρn,m+σ) (3.17)

where εnm = (εn − εm). Integrate both sides of the Equation (3.17)

ρnm = e−(iεnm+γ)tρnm(0)− i
∫ t

0

e−(iεnm+γ)(t−t′)[−iv
∑
σ=±1

(ρn+σ,m − ρn,m+σ)]dt. (3.18)

In case of a strong dephasing ( γ � v ), first term yields zero. Hence

ρnm = −iv 1

γ + iεnm

∑
σ=±1

(ρn+σ,m − ρn,m+σ) (3.19)
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case 1: If ε = 0, there is no disorder

Letting n = m in Equation (3.16) yields

ρ̇nn = −iv(ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1). (3.20)

If n 6= m from the Equation (3.19), we get

ρnm = −iv(ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1)
1

γ
. (3.21)

Insert Equation (3.21) into Equation (3.20) and assume that there is only nearest neigh-

bour interactions

ρ̇nn =
(−iv)(−iv)

γ
[(ρn,n+ρn+1,n+1+ρn,n−ρn−1,n−1−ρn+1,n+1+ρn,n−ρn−1,n−1+ρn,n]

(3.22)

Equation (3.22) can be reduced to the form

ρ̇nn = −v
2

γ
[4ρnn − 2(ρn+1,n+1 + ρn−1,n−1)]. (3.23)

For a two level system

ρ̇11 =
v2

γ
[−4ρ11 + 4ρ22] (3.24)

ρ̇22 =
v2

γ
[−4ρ22 + 4ρ11] (3.25)

where
∑

n ρ̇nn = 0

case 2: Disorder different than zero

By the Equation (3.20)

˙ρnn = −iv(ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1) (3.26)
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and the Equation (3.19)

ρnm = −iv(ρn+1,n + ρn−1,n − ρn,n+1 − ρn,n−1)
1

γ + iεnm
(3.27)

Insert the Equation (3.27) into Equation (3.26)

˙ρnn = (−iv)(−iv)[(
1

γ + iεn+1,n

(ρn,n − ρn+1,n+1) +
1

γ + iεn−1,n
(ρn,n − ρn−1,n−1))

+
1

γ + iεn,n+1

(−ρn+1,n − ρn,n) +
1

γ + iεn−1,n−1
(−ρn−1,n−1 + ρn,n)]

˙ρnn = v2[(
1

γ + iεn+1,n

+
1

γ + iεn−1,n
+

1

γ + iεn,n+1

+
1

γ + iεn,n−1
)(−ρnn)]

+v2[(
1

γ + iεn+1,n

+
1

γ + iεn,n+1

)(ρn+1,n+1)]

+v2[(
1

γ + iεn,n−1
+

1

γ + iεn−1,n
)(ρn−1,n−1)]

The equation becomes

˙ρnn = (
γv2

γ2 + ε2n+1,n

(ρn+1,n+1)+
γv2

γ2 + ε2n−1,n
(ρn−1,n−1)−

γv2

γ2 + ε2n+1,n

(ρn,n)− γv2

γ2 + ε2n−1,n
(ρnn)

Let us assume that

A =
γv2

γ2 + ε2n+1,n

(3.28)

and

B =
γv2

γ2 + ε2n−1,n
. (3.29)

Then, the result can be written in the form

ρ̇nn = −(A+B)ρnn + Aρn+1,n+1 +Bρn−1,n−1. (3.30)

In the Zeno regime, there are only population terms. If dephasing is strong enough, coef-

ficient A and B proportional to 1
γ

. When γ increases diffusion rate decreases.
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CHAPTER 4

THE EFFECTS OF THE MAGNETIC FIELD ON

TRANSPORT

In this chapter, the effects of the artificial magnetic field on localization was inves-

tigated in addition to dephasing. A ring and a ribbon with closed boundary conditions and

a two-dimensional lattice with open boundary conditions was used. The Aharanov-Bohm

phase was introduced into these systems to break the Anderson localization.

According to the Aharonov-Bohm effect, when a charged particle moves along a

closed path in the presence of a vector potential, it acquires a geometric phase after com-

pletes one tour. This phase called Aharonov Bohm phase (Aharonov and Bohm 1959).

ΦAB = − e
~

∮
C

A · dr (4.1)

4.1. Transport on a Ring

Figure 4.1. N-site ring with nearest neighbor hoppings ve−iφ/N and veiφ/N under arti-
ficial magnetic field Φ where Φ = Nφ
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The Hamiltonian of N level ring in the presence of single excitation under the

magnetic field is

HS =
N∑
n=1

εn(|n〉〈n|) +
∑

(ve−iφ |n〉 〈n+ 1|+ veiφ |n+ 1〉 〈n|) (4.2)

where εn are site energies and ve±iφ are hopping strengths only nearest neighbours.

where

φ = Φ/N (4.3)

and Φ is Aharanov- Bohm phase which is called Peierls phase on lattice.

The extra phase terms is introduced to the system as

v → v exp(i

∫ rm

rn

A · dr) (4.4)

(a) (b)

Figure 4.2. The relation between the dephasing and time for a ring of 20 sites under
the magnetic field (a) for equilibration time (b) for entropic time

According to Figure 4.2, in the weak dephasing regime time decreases with de-

phasing while in the strong dephasing regime time increases again. In the Figure 4.2.a,

Zeno regime can still be observed.
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(a) (b)

(c) (d)

Figure 4.3. The relation between magnetic field and time for a ring of 20 sites (a) for
equilibration time (b) for entropic time (c) for equilibration time scaled
down to 100-120 (d) for entropic time scaled down to 18-21

Figure 4.3 shows the relation between magnetic field and time for different values

of dephasing. According to Figure 4.3.a and 4.3.b, the magnetic field is independent of

time. However on a closer inspection it is possible to see the effects of magnetic field on

localization clearly. According to Figure 4.3.c and 4.3.d, when φ < π/2 time decreases

with magnetic field and when φ > π/2 time increase again. So for ring, in some regions

magnetic field can increase the quantum transport.

In this case in addition to equilibration time dephasing relation the entropic time

dephasing relation was also investigated too. tent was described from the entropy defini-
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tion. According to Figure 4.4, τ indicates the time where entropy reaches maximum value

and t′ is an entropic time for our calculations.

Figure 4.4. The relation between entropy and time where κ = 1− 1/e2

Then the effects of the magnetic field on both participation number and entropy

for ring of 20 sites was investigated.

Figure 4.5. The relation between participation number and entropy with respect to time
for ring of 20 sites under magnetic field

According to Figure 4.5, entropy and participation number are inversely propor-

tional to each other. For a ring, magnetic field is independent of both participation number
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and entropy. Eventually entropy reaches its asymptotic value and participation number

converges to it minimum value.

4.2. Transport on a Ribbon

Figure 4.6. N-site ribbon with nearest neighbor hoppings ve−iφ/4 and veiφ/4 under
magnetic field Φ where Φ = 4φ

The Hamiltonian of N level ribbon in the presence of a single excitation under the

magnetic field is

HS =
N∑

n=1,4,7...

εn(|n〉〈n|) +
∑

(ve−iφ |n〉 〈n+ 1|+ veiφ |n+ 1〉 〈n|) (4.5)

where εn are site energies at the knots and v is hopping strength for only nearest neigh-

bours.

v → v exp(i

∫ rm

rn

A · dr) (4.6)

where

φ = Φ/4 (4.7)

According to Figure 4.7, in the weak dephasing regime time decreases with de-

phasing while in the strong dephasing regime time increases. In the Figure 4.7.a, for

strong dephasing the effects of the magnetic field on time begin to disappear. However,

Zeno effect can still be observed.
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(a) (b)

Figure 4.7. The relation between the dephasing and time for a ribbon of 30 sites under
the magnetic field (a) for equilibration time (b) for entropic time

(a) (b)

Figure 4.8. The relation between magnetic field and time for a ribbon of 30 sites (a)
for equilibration time (b) for entropic time
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Figure 4.9. The relation between participation number and entropy with respect to time
for ribbon of 30 sites under magnetic field

According to Figure 4.8, time increases with magnetic field. In the strong de-

phasing regime effects of magnetic field begin to disappear. When φ = π time reaches

maximum value. At this point destructive interferences lead to strong localization.

According to Figure 4.9, when φ increases entropy attains its asymptotic value and par-

ticipation number converges to minimum value at a later time.

4.3. Transport on a 2D Lattice

The Hamiltonian for N × N lattice in the presence of single excitation under the

magnetic field is

H =
N=5∑

nx,ny=1

ε |nx, ny〉 〈nx, ny|+ v
∑

[einxφ |nx, ny + 1〉 〈nx, ny|

+e−inyφ |nx + 1, ny〉 〈nx, ny|) + h.c] (4.8)

Here nx and ny indicate lattice sites along the x and y direction respectively. ε indicates

site energies and the hopping strength along both directions is given by v. Extra phase

term is introduced into the hopping term and to create the artificial magnetic field sym-

metric gauge is used.
~A =

B0

2
(−y, x, 0) (4.9)
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(a) (b)

Figure 4.10. (a) A two dimensional lattice in the x-y plane with an artificial magnetic
field 2Φ (b) Schematic representation of lattice sites with hopping strengths
ve±iφx and ve±iφy where φ = Φ/2.

where

φ = Φ/2 (4.10)

According to symmetric gauge, when particle hops nearest neighbors along the x

axis, it gains phase in terms of y while along the y axis it gains phase in terms of x. These

interactions cause extra phase contribution for each plaquette as 2φ.

According to Figure 4.11, for two-dimensional lattice it is possible to observe

Zeno effect for both entropic time and equilibration time figures. In the entropic time

figure when phi increases equilibration time decreases.

According to Figure 4.12, there are degenerate states in the system initially. These

degeneracies lead to localization. When degeneracies break, ∆E increases and ∆t de-

creases. As a result, quantum transfer increases. Eventually new degeneracies occur at

the new points and time increases again.

By the energy-time uncertainty relation

∆E ·∆t ≥ ~/2 (4.11)
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(a) (b)

Figure 4.11. The relation between the dephasing and time for 5 × 5 lattice under the
magnetic field (a) for equilibration time (b) for entropic time

Figure 4.12. Energy-φ relation for 5× 5 lattice where Φ = 2φ
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(a) (b)

(c) (d)

Figure 4.13. The relation between the magnetic field and time for 5 × 5 lattice (a) for
equilibration time (b) for entropic time (c) for equilibration time scaled
down to 100 to 120 (d) for equilibration time scaled down to 18 to 21

According to Figure 4.12, when φ equals to 0 or π, there are maximum number of

degeneracies in the system. Therefore, at these points there is a strong localization.

According to Figure 4.13, the relation between the magnetic field and time for

2D lattice is different from ring and ribbon. There are local maximum and minimum

points due to lifting of degeneracies. According to Figure 4.14, the participation number

and entropy relation for 2D lattice is similar as ring. However for lattice entropy and

participation number are slightly dependent on φ.
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Figure 4.14. The relation between participation number and entropy with respect to time
for 5× 5 lattice under the magnetic field
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CHAPTER 5

CONCLUSIONS

In open quantum systems, there is an interaction between the system and the envi-

ronment. Therefore, the dynamics of the evolution of the open quantum system is different

than closed quantum system. In addition to the unitary part, the open quantum systems

contains also non-unitary part. The dynamical evolution of the open system can be de-

scribed by Lindblad master equation. In this study the Markovian limit of the Lindblad

master equation is used. According to Markovian dynamics, the memory effects of the

environment can be neglected. Hence, the environment degrees of freedom is traced out

and reduced system dynamics is obtained. After the Hamiltonian is constructed for each

system the Lindblad master equation is solved numerically.

In this thesis, the effects of the dephasing and the magnetic field on the localiza-

tion was studied for different type of systems. The energy difference between the sites

of these systems leads to localization and make difficult to transition of the exciton. If

energy difference (disorder) is high enough, excitation cannot spread to other sites. When

dephasing is introduced to these systems, Anderson localization is lifted, both equilibra-

tion time and entropic time decrease. However, at the Zeno regime where dephasing is

higher than a critical value, transfer is suppressed again.

Then, the relation between the participation number and entropy is observed.

Since system is in a pure state initially, participation number equals to one and entropy

is zero. When system becomes mixed, participation number converges to its minimum

value and entropy increases and attains to its asymptotic value.

Finally, magnetic field is introduced to these systems. In that case, the effects

of the magnetic field and dephasing on quantum transport is investigated together. Our

results indicate that, the magnetic field also influences quantum transport. At low mag-

netic field, the localization is weakly suppressed thus the diffusion gets faster. However at

strong magnetic field, destructive interference due to magnetic field leads to localization

and diffusion is suppressed.

Generally the effects of environment on quantum transport is expected to be neg-

ative. However in open quantum system under proper conditions the interaction between

the system and environment can increase quantum transport.
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