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ABSTRACT

EFFECTS OF STIFFENERS ON VIBRATIONS OF FIBER-REINFORCED
AND LAMINATED COMPOSITE SHELLS

Vibration characteristics of fiber-reinforced and laminated composite paraboloidal
shells with stiffeners are studied by Finite Element Method. The effects of stiffeners on
natural frequencies are investigated by using a developed code in ANSYS. The developed
code is verified by using several case studies on special cases of the present problem due to
the lack of the present case in the reachable literature. Case studies are related with
determination of natural frequencies of composite square plate, composite cylindrical shell,
stiffened isotropic square plate, and isotropic paraboloidal shell of revolution. After
validation of the developed computer code, effects of number of stiffener and cross-section
of the stiffener on natural frequencies of fiber-reinforced and laminated composite

paraboloidal shells are presented.
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OZET

FEDERLERIN FIBER TAKVIYELI VE TABAKALI KOMPOZIT
KABUKLARIN TITRESIMLERINE ETKILERI

Federlerleri olan fiber takviyeli ve tabakali kompozit paraboloid kabuklarin titresim
ozellikleri Sonlu Elemanlar Yontemi ile incelenmistir. Federlerin dogal frekanslar
tizerindeki etkileri ANSYS'de gelistirilmis bir kod kullanilarak arastirilmistir. Mevcut
problemin ulagilabilir literatiirde olmamas1 nedeniyle, gelistirilen kod mevcut problemin
0zel durumlart iizerine yapilmis birkag durum calismasi kullanilarak dogrulanmistir.
Durum ¢alismalar1 kompozit kare plaka, kompozit silindirik kabuk, federli izotropik kare
plak ve izotropik parabolik kabuklarmin dogal frekanslarinin belirlenmesi ile ilgilidir.
Gelistirilen bilgisayar kodunun dogrulanmasindan sonra, feder sayisinin ve federlerin enine
kesitinin fiber takviyeli ve tabakali kompozit parabolik kabuklarin dogal frekanslari

tizerindeki etkileri sunulmustur.
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CHAPTER 1

GENERAL INTRODUCTION

1.1. Literature Review

It is known that stiffened plates and shells exhibit superior performance in practical
usage in different applications such as aircraft, ship, roof, submarine, bridge etc. In other
words, usage of stiffeners in plates and shells provide the desired strength to mass ratio.
Without classifying the shell and stiffener type, literature review on the aforementioned
topic are presented in next paragraphs.

Hoppmann et al (1963, 1964) presented a discussion of the theory of vibration of a
paraboloidal shell of revolution shown in Figure 1.1 that is associated with the work of
Love (1944). They studied on the equations of motion considering both flexural and
membrane stresses. Also, they performed the extensive experimental study of the

vibrations of two models of thin paraboloidal shells.

———————
-
————
-
-

a= constant

p= constant

Figure 1.1. Paraboloidal shell of revolution
(Source: Hoppmann et al, 1964)



Mikulas and McElman (1965) derived dynamic equilibrium equations and boundary
conditions from energy principles for eccentrically stiffened cylinder shown in Figure 1.2
and flat plates by neglegting the in-plane inertias. They obtained the frequency expressions
for simple-support boundary conditions for both the cylinder and the plate. Then, they

found that eccentricities may have a significant effect on natural frequencies.

Figure 1.2. Geometry of eccentrically stiffened cylinder
(Source: Mikulas and McElman, 1965)

Bacon and Bert (1967) analyzed numerically free vibrations of shells of revolution
for both axisymmetric and imsymmetric cases. They extended Love's first-approximation
shell theory by including transverse-shear deformation and sandwich effects, and also
translational and rotatory inertia. Their solution is based on Rayleigh-Ritz technique with
three terms for each modal function for truncated-conical-shell elements as doubly curved
shells of revolution. They studied for the axisymmetric and unsymmetric modes of a

sandwich truncated conical shell and truncated paraboloid shell, respectively.



Sewall and Naumann (1968) presented the analytical and experimental results of
vibration of cylindrical shells with and without external or internal integral longitudinal
stiffeners as shown in Figure 1.3. Their analytical study is based on the Rayleigh-Ritz
procedure. They concluded that the minimum frequencies of the externally stiffened shells
are significantly higher than the minimum frequencies of the corresponding internally
stiffened shells. Also, they found that the effect of stiffener rotatory inertia in the analysis
is negligible. Although this study is mainly concerned with stringer-stiffened shells; two
ring-stiffened shells are also considered to validate the averaged-stiffener assumption for

the discussed configurations.

Internally stiffened Unstiffened Externally stiffened
Q25in. 300in.
025in. | (635mm) | 3(762mm) 100 in.

(2.54mm)

T

(635 mm)

1

{635 mm)

9.55in.  S.55in,
(242.57mm) (242.57mm) (242.57 mm)

Figure 1.3. Geometrical and structural details of models
(Source: Sewall and Naumann, 1968)

Egle and Sewall (1968) developed a free vibration analysis for a ring-and-stringer-
stiffened circular cylindrical shell, as shown in Figure 1.4, having various boundary
conditions. They treated the stiffeners as discrete elements. They showed that stringers
couple circumferential modes of different wave numbers and also couple symmetric and

antisymmetric circumferential modes.

STRINGER RING
DETAIL DETAIL

Figure 1.4. Model of discretely stiffened cylindrical shell
(Source: Egle and Sewall, 1968)



Naumann et al (1971) investigated the vibratory behavior of internally ring-stiffened
truncated-cone shells by experimental and analytical methods. Figure 1.5 shows the rings
before attached to the inner wall of the shell. In analytical method, linear thin-shell theory

and the Rayleigh-Ritz method are employed.

Ap— ¢» Ring 3

AT D Ring 2

]

« Ring 1

S———* Base ring
le— 1

7.620
[ em
S kases> Base plate

|-.__r2 = 60,960 cm

Figure 1.5. Schematic representations of model
(Source: Naumann et al, 1971)

Prokopenko (1979) presented the intrinsic oscillation frequency of a laminar
reinforced cylindrical shell based on an energetics method. He studied on the effect of the
number of reinforcing ribs and their thickness on the intrinsic oscillation frequency.

Venkatesh and Rao (1983) described a finite element analysis of laminated
cylindrical shells with laminated stiffeners for stiffeners described in their paper. Later,
Venkatesh and Rao (1985) extended their aforesaid study for laminated shells of revolution
reinforced with laminated stiffeners.

Mustafa and Ali (1989) presented a method for the determination of natural
frequencies of stiffened circular cylindrical shells considering the bending in two planes
and rotary inertia of the stiffeners. Ring stiffened, stringer stiffened and orthogonally

stiffened shells have been examined by using energy method.



Srinivasan and Krishnan (1989) interested in the analysis of dynamic response of
stiffened conical shell panels by using an integral equation method. He studied on the
effect of eccentricity of stiffeners by using the smearing technique for closely spaced
stiffeners. The mode superposition method is used for the dynamic response analysis.

Bhimaraddi et al (1989) presented a finite element analysis of orthogonally stiffened
laminated shells of revolution by combining isoparametric shell of revolution element and
a isoparametric laminated curved beam element which take into account the effects of
shear deformation and rotary.

Liao and Reddy (1990) developed a degenerate shell element with a degenerate
curved beam element as a stiffener for the geometric nonlinear analysis of laminated,
anisotropic, stiffened shells.

Bert and Kim (1993) analyzed free vibration characteristics of thin-walled circular
cylindrical shells having composite materials and stiffeners in the form of ring and/or
stringer. They presented numerical results for graphite-epoxy shells with stiffeners.

Goswami and Mukhopadhyay (1994) analysed composite stiffened shells by using
two different elements which are incorporating shear deformation. Concentric and
eccentric stiffened composite shells have been analyzed.

Raj et al (1995) reported the effects of stiffeners on vibration of conical shell models
with and without circumferential ring stiffeners by both theoretical and experimental
methods.

Sinha and Mukhopadhyay (1995) presented a review on the static and dynamic
analysis of stiffened shells.

Huang and Chen (1996) employed a modified receptance method for the vibration
analysis of a spinning cylindrical shell with internal, symmetric, or external ring stiffeners.
They discussed the effects of types, numbers of stiffeners and of spin speed on the shell
frequencies.

Lee and Kim (1998) used the energy method for the analytical solutions of the free
vibration analysis of the rotating composite cylindrical shells with axial and
circumferential stiffeners. They employed the Love's shell theory based on the discrete
stiffener theory. They studied on the effect of the geometric parameters of the stiffeners on
natural frequencies.

Gunay (1999) developed a finite element model for an anisotropic thin/thick shallow

laminated shell with stringer-type stiffeners.



Prusty and Satsangi (2001) presented a modified approach of a curved shear flexible
element. They carried out a static analysis for stiffened shells by using an eight-noded
isoparametric finite element for the shell and a three-noded curved beam element for the
stiffener.

Ruotolo (2001) compared the Donnell's, Love's, Sanders' and Fliigge's thin shell
theories in the evaluation of natural frequencies of cylinders stiffened with rings and
stringers. He used the smeared approach for stiffeners. He concluded that Donnell's theory
gives highly inaccurate results with respect to the other three theories.

Zhao et al (2002) used energy method for vibration analysis of simply supported
rotating cross-ply laminated cylindrical shells with stringers and rings. They considered the
effects of initial hoop tension, centrifugal and Coriolis forces due to the rotation.
Moreover, eccentricity of stiffener is taken into account.

Prusty (2003) presented a linear static analysis of laminated composite panels with

the hat-shaped stiffener shown in Figure 1.6 by using finite elements.

Segment-2—m- \ ’, _
Segment-1 Segment-3

Figure 1.6. Laminated hat stiffened shell showing stiffener segments
(Source: Prusty, 2003)

Jafari and Bagheri (2006) investigated the free vibration analysis of simply
supported cylindrical shells with circumferential stiffeners with non-uniform stiffeners
eccentricity and unequal stiffeners spacing by using analytical method based on Ritz
method, experimental modal analysis, and finite elements models employing shell and

beam elements in ANSYS.



Pan et al (2008) studied on the vibration of ring-stiffened cylinders with arbitrary
boundary conditions. They adopted the classical linear shell theory of Flugge (1934) along
with the trigonometric functions for displacements of cylinders and used ‘‘smeared frame”’
approach for ring-type stiffeners.

Torkamani et al (2009) developed scaling laws for free vibrations of orthogonally
stiffened cylindrical shells, shown in Figure 1.7, using the similitude theory that is applied
to for vibrating thin shells by Soedel (1971). They used the Donnell-type nonlinear strain-

displacement relations along with the smearing theory.

Figure 1.7. Geometry of a typical orthogonally stiffened cylindrical shell
(Source: Torkamani et al, 2009)

Gan et al (2009) used the wave propagation approach to analyze the free vibration of
ring-stiffened cylindrical shell based on Flugge (1973) classical thin shell theory and the

smeared approach.



Luan et al (2011) combined the improved smeared plate technique with the equation
of motion for a doubly curved thin rectangular shell. They validated their prediction
technique by comparing natural frequencies, mode shapes, and forced responses from
simulation results with the results from experiments of a doubly curved cross-stiffened
shell.

Edalat et al (2013) focused on the dynamic response and free vibration analysis of
stiffened shells with parabolic curvatures, shown in Figure 1.8, by using the equivalent
structure approach. They employed energy method to determine of the equivalent
orthotropic shell parameters of parabolic stiffened shells. Their longitudinal stiffener

arrangements in shell are shown in Figure 1.9.

Figure 1.8. Finite element model of stiffened shells with parabolic curvatures
(Source: Edalat et al, 2013)

I

External stiffener Central stiffener Internal stiffener

Figure 1.9. Longitudinal stiffener arrangement in shell
(Source: Edalat et al, 2013)



1.2. Objectives of the Study

Objective of this study is to determine the effects of stiffeners on vibration analysis
of fiber-reinforced and laminated composite paraboloidal shells. A critical damage of this
type of structure has been experienced due to the heavy rainfall in the plane flying at 4,000
ft as shown in Figure 1.10.

Due to the complexity of the geometrical properties and mathematical model of the
stiffened shell structure, finite element method is employed to study the current topic. A
commonly used finite element package ANSYS is used to model and solve the problem. A
computer code is developed by using APDL (ANSYS Parametric Design Language) in
ANSYS. The developed code is confirmed by using several case studies available in the
reachable literature. After validation of the developed computer code, effects of number of
stiffener and cross-section of the stiffener on natural frequencies of fiber-reinforced and

laminated composite paraboloidal shells are presented.

Figure 1.10. Airplane damaged by nose and windshield during hailstorm
(Source: QHA, 2017)



CHAPTER 2

THEORETICAL BACKGROUND

2.1. Theory of Shell

In this thesis, the first-order shear deformation theory of shell is presented. The
differential element of a doubly curved shell with orthogonal curvilinear coordinate is
shown in Figure 2.1. R; and R, are the principal radii of the middle surface. Also, d4; and

dA, are elements of area of cross sections.

Figure 2.1. Differential element of a doubly curved shell
(Source: Reddy, 1984)

The position vectors 7 and R are used to represent any point on the middle surface

and any point at the distance ¢ from the middle surface, respectively.

Figure 2.2. Position vectors 7 and R
(Source: Reddy, 1984)
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The differential distance vector of two points on the middle surface is written as

dr =rdé, +rdé, 2.1
where

rn=0r/0¢& v, =0r/0&, (2.2)
Thus, the differential distance ds between two points on the middle surface is expressed as

(ds)* =dr.dr = o] (dE)” + a5 (dE))° (2.3)
where a; and a; are surface metrics and defined by

2

al=ii . a=Ri (2.4)

Similarly, the differential distance vector of two points on the surface at the distance

¢ from the middle surface is written as

dR = (OR/ d&)dE, + (OR | 0&,)dE, + (R / 0¢)dg (2.5)

and the differential distance dS is obtained as

(dS)’ = dRdR = L3 (d&)’ + 13(d&,)* + L3 (dg)’ (2.6)

where L, L, and L; are Lame’ coefficients and defined by

L=a(+¢/R) 2.7)
L, =a,(1+5/R)) (2.8)
L, =1 (2.9)

11



Therefore, the elements of area of cross sections dA4; and dA, are given by

dA, =Ld&ds =a,(1+¢/R)dEds (2.10)

dA, = L,dé,dc = a,(1+ ¢/ R,))dé,dc (2.11)

The stress resultants of a shell element are illustrated in Figure 2.3.

Figure 2.3. Stress resultants of a shell element
(Source: Reddy, 1984)

They are given by Reddy (1984) as follows:

=

o,(1+¢/R))
o,(1+¢/R)
o,(1+¢/R,)
o,(1+¢/R))

w2 | os(l1+6/R,)
J.—W o,(1+¢/R)
go,(1+¢/R,)
go,(1+¢/R,))
gog(1+¢/R,)
gos(1+5/R,))

=2 =

d¢ (2.12)

SIS

[\

S

[S]

Since &/ R, and &/ R, are negligable in comparison with unity for thin shells (4/R;,
h/R; less than 1/20), N, and N,; are equal to N and M), and M,; are equal to M.

The displacement fields based on the first-order shear deformation theory are given

by Reddy (1984) as

12



7= (L) + o (2.13)
(04

1

N

<

7, =~ (Lyuy) + ¢, (2.14)
[04

2

m (2.15)

N
W

Il

N
w2

where (u,,u,,u;) is the displacements of a point (£,5,) along the (&1,6,,() coordinates;
and (u,,u,,u,) is the displacements of a point (£1,¢>,0). The following strain-displacement

relations are obtained by substituting Equations (2.13)-(2.15) into the strain-displacement

relations of an orthogonal curvilinear coordinate system,

g =& +¢K, i=12,6 (2.16)
g =g, i=45 (2.17)
where
=1 O U (2.18)
a, 0, R

Lo Lo uy 2.19

’ a, 05, R, ( )

g L0y U (2.20)
a2 a§2 R2

ety 2.21)
a, 0, R,

(2.22)

13



_ 104

= 2.23
K o, O (2.23)
1 o,
K =——% 2.24
' oa, 04, 229
108 104
6
a, 0 a, 0
1 él 2 §2 (225)

+1(L_L](L%_L%j
2 R2 Rl a] agl 0{2 6§2

in which ¢ and ¢, are the rotations of the reference surface, ¢ =0, about the &,- and &, -

coordinate axes, respectively.
2.2. Mechanics of Lamina

The shell and material coordinate systems of kth lamina is illustrated in Figure 2.4.
As seen in figure, the principle material 1 axis is oriented at the angle 6 from the shell 1

axis in the counterclockwise sense.

materialg

)

materialy

Figure 2.4. Coordinate systems for a typical lamina (modified)
(Source: Reddy, 2004)

The stress—strain relations of the kth lamina in the shell coordinate system in terms

of the parameters known in material coordinate system is given in matrix form as (Reddy,

2004)

14



o " _Qn 0, 0 0 Q0 I & "
0, O, On 0 0 0O &
o, =/ 0 0 QM Qs 0 &,
Os 0 0 @45 _55 0 &s
O _Qé §26 0 0 st 1 1%

(2.26)

where Q.j are the transformed stiffnesses of Ath layer and given by using the notation

c=Cos(0), s=Sin(0), and also omitting the supercript (k) for brevity as follows:
0, =0,,¢* + 0,5 +2(0,, +20,,)s*c’
O1p =(Qu + 05 —404)s¢” + Qi (¢* +57)
0, = 05" +05c* +2(0,, +204)s°c’
016 = (011 = 01 —2045)5¢” = (0ny = 0, —20)s°c
Oy = (01 = 01, —2045)es™ = (s = 0y =204
O = (01 + 02y =20, =204 )c™s™ + Oy (s* +¢*)
QM = Q4402 + Q55s2

Ous =(Oss —0uy)sc

st = Q5502 + Q4452

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

in which Qj are the lamina stiffnesses referred to the principal material coordinates of the

kth lamina and given by

15



O, = (2.36)
1_Uzlulz
E
0, =122 (2.37)
=050,
E
sz = 2 (2.38)
l1-v,0),
0, =06y, (2.39)
st = G13 (2.40)
st = G12 (2.41)

where Ei, E», Gz, Gi3, G, vip, and v, are modulus of elasticities, shear modulus of

elasticities and Poisson’s ratios in the directions denoted by subscripts.

2.3. Mechanics of Laminated Composite Shells

If shell is composed of orthotropic layers as shown in Figure 2.5.a, the stress

resultants of a shell element are expressed by using mechanics of composite materials.

Figure 2.5. Geometry of laminated shell
(Source: Reddy, 1984)

16



Therefore, the stress resultants given in Equation (2.12) can be expressed as (Reddy,

2004)
{{N}}{[A] [B]H{g()}} 242)
3] 81 [D1]] fx) |

{%}:K{j‘m j45:|{8£} (2.43)
| 45 ss | €5

where the matrices [4], [B], and [D] are known as the extensional, coupling, and bending

stiffness matrices, respectively. Their elements are expressed as

N

; 09 (6a—6), 1j=126 (2.44)

B, =%g§i}“(giﬂ —¢i), 1,j=126 (2.45)
i =%§Q}“(9§H —c1), Lj=12,6 (2.46)
ﬁ: 1 (Gea =), 1j=45 (2.47)

k=1

in which N is the number of layers in the shell, and {;+; and {; are the top and bottom (-
coordinates of the kth lamina. Also, Ky is the shear correction factor.

The equations of motion are given by Reddy (2004) as

2 2
aiJr—(N oM+ 2 108”20 1]‘9‘? (2.48)
ox, Ox, R, ot ot

2 2
—(N CM)+8N %=105V20 118"22 (2.49)
ox, ox, R, ot ot
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where

@+@_(&+&j+

ox, Ox, R, R,

2
oM, +8M6 _lelza ¢251
ox,  Ox, ot

oM, oM,

+ —_ =
ox,  Ox, 2 o’
¢ 111

2\ R, R,
I U
ox, a; 0¢

+1,

o’u,
ot

2 2
_, 20 O

' or

N
Ch+1 i .
Ii - ;Lk p(k)(G) dga 1= 031:2

2.4. Mechanics of Stiffeners

orthogonally stiffened doubly curved shell is depicted in Figure 2.6.

Figure 2.6. Doubly curved shell with orthogonal stiffeners

(2.50)

2.51)

2.51)

(2.52)

(2.53)

(2.54)

Curved beams are used as stiffeners in doubly curved shells. An example of
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The stiffener arrangements in shell are introduced in Figure 1.9 as external, central,
and internal stiffeners. According to this classification, Figure 2.6 shows central stiffeners.
The displacements of middle surface of shell and central axis of curved beam are the same
for the centrally located stiffeners. If the stiffeners have an eccentricity due to the locating
of the central axis of the curved beam, it is considered in displacement field of curved
beam axis.

The stiffener in the direction s shown in Figure 2.6 is considered. Coordinates of a
curved beam is depicted in Figure 2.7. The axial, radial, and rotational displacements of

curved beam are given in Figure 2.8 (Cook, 1989).

W

R

Figure 2.7. Coordinates of curved beam
(Source: Cook, 1989)

/
1
Y e

8,.= —=w,,

a. Axial displacement b. Radial displacement  c. Rotational displacement

Figure 2.8. Displacements of a curved beam
(Source: Cook, 1989)

Using the formulations expressed in Figure 2.8, the strain of curved beam in

circumferential direction is written as (Cook, 1989)

£ =3(5a+5c)+K
ds R

2.55
_Ou w Z(l@u 82wj ( )

o R

Ros 0s’
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If the approximation O, ~u 1is introduced, the first term inside of the parenthesis

disappears. Equation (2.55) can be written alternatively as

E, =€, +zK (2.56)
where
. =%+% (2.57)
S
2
K=%g—u—g‘;‘} (2.58)
A A

in which ¢, and x are membrane strain and change of curvature, respectively.

The stiffener in the direction s is affected from the deformation in direction » shown
in Figure 2.6. In order to show this effect, geometrical interpretation of twisting of middle

surface of shell is shown in Figure 2.9 (Yardimoglu, 2016).

o

dr

Figure 2.9. Geometrical interpretation of twisting of middle surface of shell

Therefore, the curved beam on hand has twisting as follows:

o*w

’Z’ =
Oros

(2.59)
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2.5. Strain and Kinetic Energies of Stiffened Shells

In order to express the strain energy of laminated shell, Equation (2.26) may be

written in closed form as

{0} = {0}V (e} (2.60)

Thus, the strain energy of laminated shell composed by N layer is written as

U = ZM@@W 2.61)

Kinetic energy of shell is written as
Toen = ZJ P(k)(ul + “z + “3 )dV (2.62)

where iz, is the velocity of the any point of the shell in direction i.

On the other hand, the strain and kinetic energies of a stiffener in the direction s can

be expressed as (Egle and Sewall, 1968)

U = Z{j j szmds+(GJ)mJ:rzds} (2.63)

lm s .
T@=—Zaﬁdﬂu2m&+

(V=z, W) +W + p2Ww’ +dow)ds

m r m S

(2.64)

where m is the number of ring in direction s. Other notations are listed in the Notation part

of this thesis. The strain energies of other rings in direction 7 can be written similarly.
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2.6. Modal Analysis by Finite Element Method

The equation of motion for multi-degree-of-freedom system for free vibration is

written as

[M]35(0) +[K]{x(®)} = {0} (2.65)

where [M] and [K] are mass and stiffness matrices, respectively. Also, {x(?)} 1is
displacement vector. In order to find the vibration characteristics of the discrete system, the
generalized eigenvalue equation is obtained by substituting a harmonic response function

{x(1)} ={X}sinwtin Equation (2.65). Thus, the generalized eigenvalue problem is

obtained as

(K- @ [M])u,} = {0} (2.66)

where w; is i natural frequency and {u;} is the i" vibration mode shape vector.

Solution of Equation (2.66) is known as “Modal Analysis”. Some of the mode-

extraction methods available in ANSYS are given below:

e Block Lanczos (default): This method is used for large symmetric eigenvalue
problems and uses the sparse matrix solver.

e Subspace: This method is also used for large symmetric eigenvalue problems.
Several subspace iteration processes such as the frontal solver, JCG solver, or
the Block Lanczos mode-extraction method are available.

e Power Dynamics: This method is used for very large models having DOFs
more than 100000 and especially useful to find the first several modes.

e Reduced (Householder) method: Since this method uses reduced system
matrices to calculate the solution, it is faster than the subspace method.

e Unsymmetric: The unsymmetric method is wused for problems with
unsymmetric matrices.

In this study, subspace method is selected to find the natural frequencies of the finite
element model.

Finite element model of the shell is modeled by SHELL99 due to the first-order

shear deformation theory. This finite element has eight nodes as shown in Figure 2.10.
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LN = Layer Number

NL = Total Number of Layers BOTTOM

Figure 2.10. SHELL99 finite element
(Source: ANSYS Inc, 2007)

At each node, SHELL99 has six freedoms {UX, UY, UZ, ROTX, ROTY, ROTZ}.
Moreover, SHELL99 is used for layered applications as illustrated in Figure 2.10. The
element is defined by average or corner layer thicknesses, layer material direction angles,
and orthotropic material properties. However, SHELL99 has assumptions and restrictions.
Some of these are given below:

o Shear deflections are included in the element, however, normals to the center
plane before deformation are assumed to remain straight after deformation.
e The stress varies linearly through the thickness of each layer.
e Interlaminar transverse shear stresses are based on the assumption that no shear
is carried at the top and bottom surfaces of an element.
Finite element model of the stiffener in this study is modeled by BEAM188. This
finite element is defined by nodes I, J, and K in the global coordinate system in Figure

2.11. Node K is used to define the orientation of the element.

Figure 2.11. BEAM188 finite element
(Source: ANSYS Inc, 2007)
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BEAMI188 has six freedoms {UX, UY, UZ, ROTX, ROTY, ROTZ} at each node,
Therefore, it is appropriate to use as stiffener with SHELL99.

BEAMI188 1is suitable for analyzing slender to moderately stubby/thick beam
structures. This element is based on Timoshenko beam theory. Shear deformation effects
are included.

Cross-section of the stiffener is defined by using the command SECTYPE along
with BEAMI188. Rectangular and I-shaped section are selected as beam cross section

subtypes in this command.
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CHAPTER 3

NUMERICAL RESULTS AND DISCUSSIONS

3.1. Case Studies for Verification of Finite Element Model

Several case studies are presented step by step in this section to verify the finite
element model developed in ANSYS.
First case study is selected as vibration of composite square plate of which geometry

is shown in Figure 3.1. Geometrical and material properties are given as

a thickness It

I a {

Figure 3.1. Square plate

E, =25E,;
G,.=0.2E,;

» ? (3.1)
G, =G, =0.5E,;
v, =0.25
K'=K;=5/6 (3.2)
alh=100 (3.3)

Linear layered structural shell element SHELL99 in ANSYS is selected for finite
element modelling of shell. The numbers of elements in both directions used to model the
structure are determined after trying several numbers of elements to mesh it by looking to
desired value of non-dimensional fundamental frequencies given by Reddy (1984). Thus,

10x10 SHELL99 are used to model the square plate.
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The present non-dimensional fundamental frequencies @ = @ a’+/p/E, / h obtained

from ANSYS and the results from Reddy (1984) are given in Table 3.1 for comparisons.

Thus, the present model is confirmed for this case.

Table 3.1. Comparison of the present non-dimensional
fundamental frequencies with ones in the literature

Layers 0°/90°/0° 0°/90°/90°/0°
Reddy (1984) 15.183 15.184
Present 15.164 15.164

Second case study is selected as vibration of composite cylindrical shell shown in

Figure 3.2 and having the same numerical data with the first case study except R.

Figure 3.2. Cylindrical shell

The present non-dimensional fundamental frequencies @ = a’+/p/E, /h

obtained from ANSYS by using again 10x10 SHELL99 mesh and the results from Reddy
(1984) are given for comparisons in Table 3.2. Thus, the present model is confirmed for

second case too.

Table 3.2. Comparison of the present non-dimensional
fundamental frequencies with ones in the literature

Layers 0°/90°/0° 0°/90°/90°/0°

Reddy (1984)

36.770 36.858

Present

36.252

36.362




Third case study is selected as vibration of square plate shown in Figure 3.3.

clamped
¥

]

clamped
symnetiic stiffener
clamped

clamped

Figure 3.3. Clamped square plate with stiffener
(Source: Nair and Rao, 1984)

Geometrical and material properties of stiffened plate shown in Figure 3.3 are given

by Nair and Rao (1984) and Palani et al (1993) below:

e dimensions of plate : 600x600x1 mm,

e dimensions of stiffener : 3.31x20.25x600 mm,
e Young modulus of plate and stiffener : E=6.87x104 MPa,

e Density of of plate and stiffener : p=2.78x10-6 kg/mm3,

e Posison ratio of plate and stiffener :v=0.34

In order to provide the continuity condition between shell and stiffeners, BEAM44,
which has also six degrees of freedom at each node, is used to model the stiffeners. It is a
uniaxial element with tension, compression, torsion, and bending capabilities. Two mesh
types as 10x10 and 20x20 are used to find the natural frequencies as Hz in this case study.

Table 3.3 and 3.4 show the comparison of present results with the results of STIFPT1
developed by Nair and Rao (1984). STIFPT1 uses a triangular plate bending element for

the panel with the nodal freedoms {w, W, W, wyy} and beam element with the

xx2 "Uxy?2

nodal freedoms {w, wx,wy,wxy,wyy}. However, SHELL99 has nodal freedoms {UX, UY,

UZ, ROTX, ROTY, ROTZ!.
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Table 3.3. Comparison of natural frequencies of unstiffened plate

Mode No f[Hz] by Present f[Hz] Present f/[Hz]

STIFPT1 10x10 20x20
1 24.27 24.292 24.272
2 49.51 49.616 49.501
2 49.51 49.616 49.501
3 73.04 73.555 72.992
4 88.77 89. 686 88.742
5 89.24 89.134 89.171
6 111.48 112.95 111.31
6 111.48 112.95 111.31
7 142.22 143.51 142.01
7 142.21 143.51 142.01
8 149.00 152.98 148.49

Table 3.4. Comparison of natural frequencies of stiffened plate

Mode No f[Hz] by Present f/[Hz] Present f[Hz]

STIFPT1 10x10 20x20
1 50.45 55.586 55.421
2 63.71 63.877 63.649
3 75.16 82.223 81.337
4 85.50 86.661 85.395
5 113.69 121.41 118.65
6 120.89 124.46 120.63

It can be said from the comparisons of the results in Table 3.3 and 3.4 that results of
the present model are in good agreement with the results in literature.

Finally, fourth case study is selected as vibration of paraboloidal shell studied by
Tornabene and Viola (2008). The geometry of the shell of revolution with a parabolic

curved meridian shown in Figure 3.4 can be expressed analytically as follows:
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R2—[(s?—d*)/S]x,=0 (3.4)

o lr‘ SJ. P‘
X,
Figure 3.4. Geometry of paraboloidal shell of revolotion

Numerical values of the geometry of paraboloidal shell of revolotion based on
Figure 3.4 are detailed as: d=0, S=2 m, so=1 m, 5s;=4 m and thickness #=0.1 m.

Material properties of the paraboloidal shell are given by Tornabene and Viola
(2008) as

e Young modulus of shell :E=2.1x1011 Pa,

e Density of of shell :p=2.1x1011 kg/m3,
e Poisson’s ratio of shell :v=0.3
e Shear factor : x=6/5.

The paraboloidal shell of revolution shown in Figure 3.5 is geometrically modeled in
APDL code ANSYS by using Equation (3.4). As seen from Figure 3.5 that upper and
lower circles have four segments. Also, its upper edge is fixed.

In order to decide the minimum number of element in axial and circumferential
directions of the paraboloidal shell of revolution, convergence of first natural frequencies
of it is studied by using different meshes. The selected mesh having N=7 and 4 times N
elements in axial and circumferential directions, respectively, is shown in Figure 3.6 by

considering the convergence curve of first natural frequencies shown in Figure 3.7.
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Figure 3.5. Geometrical model of paraboloidal shell

Figure 3.6. Finite element model of paraboloidal shell with SHELL99
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Figure 3.7. Convergence curve of first natural frequencies of paraboloidal shell

Present natural frequencies and the results of Tornabene and Viola (2008) are given
in Table 3.5 including the number of elements and element types. GDQ in Table 3.5 are
initials of the Generalized Differential Quadrature. It should be mentioned that Shell93 is

not used for layered applications.

Table 3.5. Comparison of natural frequencies of paraboloidal shell of revolution

Mode No | Present f[Hz] f[Hz] given by Tornabene and Viola (2008)
sg2121§9 GDQ Method | ABAQUS ANSYS
21x21 28x28 S&R6 28x28 Shell93

1 91.24 91.24 91.29 91.28
2 91.24 91.24 91.29 91.28
3 131.50 131.29 131.39 131.49
4 131.50 131.29 131.39 131.49
5 155.40 154.90 155.12 155.29
6 155.40 154.90 155.12 155.29
7 158.02 157.99 158.12 158.02
8 158.02 157.99 158.12 158.03
9 170.48 169.66 169.84 170.21
10 170.48 169.68 169.84 170.21

It is seen from Table 3.5 that the first and second natural frequencies of the present

model are in very good agreement with the results given for GDQ Method.
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The definition of percentage difference given below can be used to discuss the other

comparisons.

v

v, +v,)/2

% difference = 100 (3.9

Maximum percentage difference for first natural frequencies is 0.0548.

3.2. Paraboloidal Shell with Stiffeners

The geometrical model of paraboloidal shell used in fourth case study is selected to
add stiffeners. Laminated composite with laminate code 0°/90°/90°/0° is selected for that
paraboloidal shell. Material properties of shell is obtained by taking E,=7000 MPa in
Equation (3.1). Also density of shell is considered as pge=7.85x10 ton/mm’. Rectangular
and I cross-sections are used for stiffeners in order to see the effects of cross-section of
stiffereners on natural frequencies. Aluminum is selected for material of the stiffereners.
Material properties of aluminum given in the third case study are used for stiffeners.

The paraboloidal shell and stifferners are meshed by SHELL99 and BEAMI18S,
respectively. Finite element models of a paraboloidal shell with four and eigth rectangular
cross-sectioned stiffereners are shown in Figures 3.8 and 3.9. Also, finite element models
of a paraboloidal shell with four and eigth I cross-sectioned stiffeners are shown in Figures
3.10 and 3.11. Rectangular cross-sectioned sfiffener has 40x200 mm dimensions for width
x height. Geometrical data for cross-section of I-type stiffener is given in Figure 3.12.

In order to mesh the meshed paraboloidal shell with four stiffeners, node numbers of
the paraboloidal shell in the planes xy and yz shown in Figure 3.8 are used. It can be seen
from Figure 3.8 that the axial edges of SHELL99 are located in these planes. Therefore,
each axial edge of SHELL99 in these planes has two BEAM188 elements. However, to
mesh the meshed paraboloidal shell with eight stiffeners, node numbers of the paraboloidal
shell in the eight planes equally distributed about the axis y are used as seen in Figure 3.9.
In this case, fifth to eighth stiffeners are located in the nodes of the SHELL99 having
nodes on edges in circumferential directions. Thus, each SHELL99 element in these

directions has only one BEAM188 as shown in Figure 3.9.
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Figure 3.8. FEM of a paraboloidal shell with 4 rectangular cross-sectioned stiffereners

Figure 3.9. FEM of a paraboloidal shell with 8 rectangular cross-sectioned stiffereners
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Figure 3.10. FEM of a paraboloidal shell with 4 I cross-sectioned stiffereners

Figure 3.11. FEM of a paraboloidal shell with 8 I cross-sectioned stiffereners
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Figure 3.12. Cross-sectional data for I type stifferener

Natural frequencies of paraboloidal shell with different types of stiffeners are given

in Table 3.6.

Table 3.6. Natural frequencies f [Hz] of paraboloidal shell with different stiffeners

Shell Shell with 4 | Shell with & Shell with4 | Shell with 8
Mode No | without rectangular | rectangular . .
) . . I stiffeners I stiffeners
stiffeners stiffeners stiffeners
1 19.374 19.338 19.660 19.356 19.835
2 19.422 19.776 19.719 19.971 19.907
3 26.520 26.917 27.226 27.123 27.544
4 26.520 26.917 27.226 27.123 27.544
5 42211 42.009 41.695 41.931 41.060
6 42.111 42.009 41.815 41.931 41.664
7 43.106 42.386 41.815 42.045 41.664
8 43.119 44.037 44.826 44.529 45.625
9 46.374 47.256 48.042 47.844 49.002
10 46.374 47.256 48.042 47.844 49.002

The following discussions can be drawn from Table 3.6:

e Shell with stiffener has higher natural frequencies than without ones except

modes 1, 5, 6, and 7.

e The number of stiffener and the stiffener type has not common effect on natural

frequencies.
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e Due to the double mass in the stiffener axis based on SHELL99 and BEAM188,
it is not possible to compare the unstiffened and stiffened ones.

e Moreover, it is not possible to compare the effects of number of stiffener on
natural frequencies due to the reason given above.

e [-type stiffener has more effect than rectangular cross-sectioned stiffener on
first to fourth and eighth to tenth natural frequencies of both four and eight
stiffened paraboloidal shell.

e Since the paraboloidal shell is obtained from the revolution of the parabola
defined by the Equation (3.4), natural frequencies of even and odd numbered
modes are almost equal to each other.

Mode shapes of stiffened paraboloidal shell shown in Figure 3.8 are illustrated in

Figures 3.13-3.22.

Figure 3.13. First mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.14. Second mode shape of stiffened paraboloidal shell shown in Figure 3.8
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Figure 3.15. Third mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.16. Fourth mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.17. Fifth mode shape of stiffened paraboloidal shell shown in Figure 3.8
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Figure 3.18. Sixth mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.19. Seventh mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.20. Eighth mode shape of stiffened paraboloidal shell shown in Figure 3.8
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Figure 3.21. Nineth mode shape of stiffened paraboloidal shell shown in Figure 3.8

Figure 3.22. Tenth mode shape of stiffened paraboloidal shell shown in Figure 3.8

39



CHAPTER 4

CONCLUSIONS

Vibration characteristics of fiber-reinforced and laminated composite paraboloidal
shells with stiffeners are studied with a computer code developed by using APDL (ANSYS
Parametric Design Language) in ANSYS which is a finite element software. The
developed code is verified by using several results available in the reachable literature.

The effects of stiffeners on natural frequencies are investigated by selecting different
number of stiffener in different geometries. It is found that I-type stiffener is more
effective than the rectangular cross-sectioned stiffener for first to fourth and eighth to tenth
natural frequencies of both four and eight stiffened paraboloidal shell. Thus, it can be said
that the number of stiffener and the stiffener type has not common effect on natural

frequencies.
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