
ANALYSIS OF FEATURE PATTERN MINING
APPROACHES ON SOCIAL NETWORK: A CASE

STUDY ON FACEBOOK

A Thesis Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

in Computer Engineering

by
Elife ÖZTÜRK

December 2017
İZMİR

ACKNOWLEDGMENTS

First of all, I would like to express my precious gratitude to my advisor, Asst.

Prof. Dr. Serap Şahin who provide full support at all stages of my thesis process and

contribute to my academic development.

I would also like to thank Asst. Prof. Dr. Selma Tekir and Assoc. Prof. Dr. Belgin

Ergenç, for their suggestions and evaluations in some stages of this study.

I would like to thank all of my colleagues for their warm friendship and desirable

behaviors.

And finally, I would like to express my endless thanks to my family for attention,

motivation, and love.

ABSTRACT

ANALYSIS OF FEATURE PATTERN MINING APPROACHES ON SOCIAL

NETWORK: A CASE STUDY ON FACEBOOK

Pattern mining algorithms obtain patterns frequently seen in a database and com-

plex graphs which are available from gene networks to social networks. Complex graphs

contain lots of valuable information on their nodes or edges. For this reason, pattern

mining algorithms can be used to extract data from complex networks. However, these

algorithms usually work on the graphs whose nodes have a single label. If these algo-

rithms are implemented on multi labeled (multi-attributed) complex graphs, their com-

plexities belong to NP-Complete. For this reason, in this study, different approaches have

been evaluated to find patterns. The goal is to understand related methods and algorithms

with their pros and cons to obtain common feature patterns from multi-attributed com-

plex graphs. We also selected Facebook social network complex graph data set (SNAP

- Stanford University FaceBook anonymized data set) as an application domain and we

analyzed the most frequent feature patterns on friendship relations.

iv

ÖZET

SOSYAL AĞLARDA ÖZELLİK ÖRÜNTÜ MADENCİLİĞİ YAKLAŞIMLARININ

ANALİZİ: FACEBOOK ÜZERİNDE DURUM ÇALIŞMASI

Günümüzde, kompleks çizgeler gen ağlarından sosyal ağlara kadar her alanda

bulunmaktadır. Kompleks çizgeler diğer yapılara göre daha fazla veri içerdiğinden, kom-

pleks çizgelerin madenciliği sonucunda daha anlamlı ve değerli bilgiler elde edilebilir. Bu

çalışmada kompleks çizgelerden ortak özelliklere sahip örüntüler elde edilmek istenmiştir.

Örüntü madenciliği algoritmaları bir veritabanından sıklıkla görülen örüntülerin elde edil-

mesini sağlar. Bu nedenle kompleks ağlardan veri elde edebilmek için örüntü maden-

ciliği algoritmaları kullanılabilir. Ancak bu algoritmalar genellikle düğümleri tek etikete

sahip olan çizgeler üzerinde çalışmaktadır. Bu algoritmalar, sosyal ağ çizgeleri gibi çok

etiketli kompleks çizgelere uygulandığında maalesef algoritmaların karmaşıklık derecesi

NP-tam sınıfına ait olmaktadır. Bu nedenle, bu çalışma kapsamında ilgili çizge algo-

ritmaları, çizgenin veri setlerine dönüştürülmesi ve dönüşüm sonrası oluşturulan data

setinde standart desen bulma algoritmalarının kullanılması gibi yöntemler incelenmiştir.

Bu yöntemler güçlü ve zayıf yönleri ile, çok etiketli kompleks çizgelerinde desen analizi

hedefi için değerlendirilmiştir. Bu çalışma sürecinde, uygulama alanı olarak Facebook

SNAP veri seti kullanılmış, arkadaşlık ilişkilerinde en yüksek sıklıkla görülen ortak etiket

deseni araştırılmıştır.

v

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF ABBREVIATIONS . x

CHAPTER 1. INTRODUCTION . 1

1.1. Thesis’ Motivation . 2

1.2. Thesis’ Aim and Contributions . 3

1.3. Methodology of Thesis. 4

1.4. Outline of Thesis . 4

CHAPTER 2. DATASET . 6

CHAPTER 3. GRAPH-BASED FEATURE PATTERN MINING 12

3.1. Background . 12

3.1.1. Candidate Generation . 14

3.1.1.1. Apriori-based Approach . 14

3.1.1.2. Pattern-Growth Approach . 14

3.1.2. Support Computation . 15

3.1.2.1. Support Computation in a Set of Graphs 16

3.1.2.2. Support Computation in a Single Graph 16

3.2. Related Work . 18

3.3. Algorithms . 19

3.3.1. gSpan Algorithm . 20

3.3.2. Grami Algorithm . 23

3.3.2.1. Explanation of Grami Algorithm . 24

3.3.2.2. Grami Algorithm using Single-label Graph 25

3.3.2.3. Grami Algorithm using Multi-label Graph 26

3.4. Experimental Work . 28

3.4.1. Complexity Analysis of gSpan Algorithm . 29

vi

3.4.2. Complexity Analysis of Grami Algorithm . 29

3.4.3. gSpan Algorithm Results from ego network 3980 30

3.4.4. gSpan Algorithm Results from ego network 698 31

3.4.5. Grami Algorithm Results from ego network 3980 31

3.5. Results . 32

CHAPTER 4. TRANSFORMATION OF GRAPH DATA TO TRANSACTIONAL

DATA . 33

4.1. Background and Related Work . 33

4.2. Experiment . 35

4.3. Result . 36

CHAPTER 5. ITEMSET PATTERN MINING ON TRANSACTIONAL DATA 38

5.1. Background . 38

5.2. Algorithms . 39

5.2.1. Apriori Algorithm . 39

5.2.2. FP-Growth Algorithm . 41

5.2.3. Max-Miner Algorithm . 42

5.3. Experimental Work . 44

5.3.1. Analysis of Itemset Mining Algorithms. 46

5.3.1.1. Analysis of Apriori Algorithm . 46

5.3.1.2. Analysis of FP-Growth Algorithm . 49

5.3.1.3. Analysis of Max-Miner Algorithm . 49

5.4. Results . 50

CHAPTER 6. EVALUATION OF IMPLEMENTED METHODS 51

CHAPTER 7. CONCLUSION AND FUTURE WORK . 52

REFERENCES . 54

APPENDIX A. PSEUDOCODE OF ALGORITHMS . 58

vii

LIST OF FIGURES

Figure Page

1.1 Example of attributed graph data. 1

1.2 Figure shows the nodes that have common features with the same color. 2

2.1 Facebook Dataset. 6

2.2 Smallest Ego Network from Facebook Dataset. 7

2.3 Ego nodes with degrees. 8

2.4 First and second smallest ego networks . 10

2.5 Small samples with node ids are shown from networks. 10

3.1 Examples from directed and undirected graphs . 13

3.2 Example of graph and subgraph isomorphism . 13

3.3 Two k-size similar graphs join to generate candidate . 15

3.4 Pattern-growth approach explanation . 15

3.5 Frequent pattern example from graph dataset . 16

3.6 Violation of downward closure property . 17

3.7 MNI technique . 18

3.8 Example of attributed graph data. 20

3.9 Separated subgraphs according to node features. 21

3.10 Two simple graphs for gSpan example. 22

3.11 Possible frequent edges are generated from two graphs. 22

3.12 Right most path extensions from C1. 23

3.13 Node images. 24

3.14 Grami single-labeled graph and pattern example. 26

3.15 Multi-Labeled Graph . 27

3.16 Grami support computation of a multi-labeled pattern . 28

5.1 The Apriori Algorithm on sample dataset . 40

5.2 Frequent 1-itemsets are found and sorted . 42

5.3 Step 1. FP-Tree Construction . 43

5.4 Step 2. Constructing Conditional FP-Trees to generate itemsets 44

5.5 Frequent Itemsets . 45

5.6 Working procedure of MaxMiner algorithm. 46

viii

LIST OF TABLES

Table Page

2.1 The number of nodes and edges of all ego networks are given in the table. 7

2.2 Facebook dataset includes 26 distinct features. 9

2.3 Features and ids of Ego network 698 . 9

2.4 Table shows the some examples from 698.featname file. 11

3.1 Frequent pattern mining algorithms . 19

3.2 Support values of initial edges in Graph G. 28

3.3 gSpan algorithm results on the smallest ego network 3980. 30

3.4 gSpan algorithm results on the smallest ego network 698. 31

3.5 Grami algorithm results on the smallest dataset 3980. 32

4.1 Some nodes and their feature ids are shown in the table. 36

4.2 This table shows common features of nodes. 36

4.3 Properties of two smallest ego networks . 37

5.1 Result of the smallest ego network . 47

5.2 Result of the second smallest ego network . 48

5.3 Execution time of algorithms according to given thresholds . 48

ix

LIST OF ABBREVIATIONS

SN . Social Network

BFS. .Breadth First Search

DFS . Depth First Search

gSpan . Graph-based Substructure Pattern Mining

MIS . Maximum Independent Set Support Computation

HO . Harmful Overlap Support Computation

MNI . Minimum Image Based Support Computation

AGM . Apriori-based Graph Mining

FSG . Frequent Subgraph Discovery

CSP . Constraint Satisfaction Problem

ISG. Itemset-based Subgraph Mining

x

CHAPTER 1

INTRODUCTION

Graph data are used for a variety of subjects from DNA and protein sequences to

social networks (SN). They are becoming increasingly preferred over relational databases

to represent real-world and complex relationships [30, 3]. These relationships can be

shown with different kinds of graphs such as chemical components are modeled as small

graphs, and SNs are represented as a single large graph [1].

Graph pattern mining aims to discover frequent patterns in a graph dataset which

can be small set of graphs or a single large graph. In graph pattern mining studies, graphs

are generally represented with one label for one vertex; these are called single-labeled

graphs. However, the vertices in large graphs such as those representing SNs related

with additional information called features or attributes. Such graphs are called multi-

labeled and corresponding networks are called complex or attributed. A small example of

attributed graph from the dataset used in our study is shown in Figure 1.1, which indicates

a social network with profile information regarding gender, location and education for

some of its members. Many people in this network may have the same features; this is

called the common feature pattern, which this study is interested in. Common feature

patterns indicate groups that are connected and have common features in a network.

Figure 1.1. Example of attributed graph data.

1

These complex graphs make it possible to obtain more precious patterns than

single-labeled graphs using node attributes or features. For example, it is possible to un-

derstand how many groups have the same feature patterns and which nodes create these

patterns in an entire network. This information can be used to summarize a network.

For example, Figure 1.2 shows an attributed network such as red colored nodes have two

common features, and green colored nodes have three common features. It means that

these nodes have the same features. Then results show that there are two different feature

patterns and red colored patterns are commonly seen in this network.

Figure 1.2. Figure shows the nodes that have common features with the same color.

In graph mining, most of the studies focus on single-labeled graphs to obtain pat-

terns. However, finding patterns from multi-labeled graphs are more difficult than single-

labeled since such patterns can be found by preserving graph structure and identifying

common attributes as itemsets. Therefore, to analyze complex networks, in this study,

different approaches are evaluated from graph pattern mining and itemset pattern mining.

1.1. Thesis’ Motivation

Frequent pattern mining is a sub-branch of graph mining that finds frequently seen

patterns in a graph. To obtain the most common feature patterns, we use frequent pattern

mining algorithms. However, in pattern mining, graphs are generally represented using

one label for one vertex. For this reason, a whole graph is separated into subgraphs related

to each attribute. We obtain many subgraphs and should be able to find the common

graph patterns among these subgraphs. This method requires high cost in memory and

2

CPU time. Therefore, the motivation of this thesis is to use more economic ways to find

common feature sets from multi-labeled graphs. The aim, methodology and structure of

this thesis are given in the following sections.

1.2. Thesis’ Aim and Contributions

The aim of this thesis is to obtain feature patterns that are commonly seen in a

multi-labeled graph such as an SN. The most common feature patterns on labeled graph

related with frequent pattern mining on graphs. Therefore, frequent pattern mining al-

gorithms are used to find commonly seen feature sets. However, as mentioned above,

generally, single-labeled graphs are used for pattern mining algorithms. Therefore, this

study evaluates the suitability of attributed network and how it can be applied to find fea-

ture sets. Two types of algorithms are investigated in this study to find common features.

First, since SNs are represented as graphs, graph mining algorithms are used. Second,

since attributes of network members are considered as itemsets, itemset mining algo-

rithms are used after graph transformation. After that, time complexity of algorithms is

evaluated. The objectives of this thesis are:

• To understand graph feature pattern mining algorithms.

• To show the problem of feature pattern mining on multi labeled graphs.

• To handle this problem, transformation of graph data to itemsets for using itemset

mining algorithms

• Evaluation of these algorithms according to our pattern mining objectives and their

complexities.

This thesis contributes to the literature by:

• Demonstrating the problem of obtaining common patterns in large and multi labeled

graphs using frequent pattern mining algorithms.

• Modifying Grami algorithm [10] to work on multi-labeled graph data.

• Implementing Apriori [5], Fp-Growth [16] and Max-Miner [6] algorithms on an SN

dataset that is transformed from graph data to transactional data.

3

• Finding common attribute sets by converting graph data to transactional data.

• Showing the similarity of results among analysed and implemented algorithms.

1.3. Methodology of Thesis

In this thesis, we apply both graph and itemset mining approaches to obtain com-

mon feature patterns in an SN. gSpan and Grami algorithms are selected from graph

pattern mining, Apriori, FP-Growth and Max-Miner algorithms are used from itemset

pattern mining.

• For gSpan algorithm, new graphs are created from single large graph according to

nodes with a specific single feature. Since gSpan algorithm takes one label for one

node, attributed graph dataset is converted for one label, then gSpan algorithm is

applied on this input data.

• For Grami algorithm, modification is made on the code implementation because

although it can be applied on multiple labeled graph data according to authors [10],

currently deployed version does not support multiple labels. Therefore, first, we

modified Grami algorithm and then it is applied to selected dataset.

• Subgraph mining algorithms check on graph structure however, itemset mining al-

gorithms do not need to check structure matching and it can be more efficient than

subgraph mining algorithms. Therefore, dataset is converted into itemsets and then,

itemset mining algorithms Apriori, FP-Growth and Max-Miner are applied.

• Results are compared with regard to patterns found. All experiments are conducted

on 2.6 GHz Intel Core i7 PC with 12 GB of RAM and 1 TB HDD.

1.4. Outline of Thesis

The organization of the thesis as follows :

• Chapter 2 shows the used dataset information.

4

• Chapter 3 explains studies, experimental work and analysis of graph-based feature

pattern mining algorithms.

• Chapter 4 shows transformation of graph data to transactional data.

• Chapter 5 explains studies, experimental work and analysis of itemset pattern min-

ing algorithms.

• Chapter 6 evaluates the implemented methods

• Chapter 7 concludes this thesis and it gives a summary and future research.

5

CHAPTER 2

DATASET

In this thesis, we used Facebook dataset which was obtained from Stanford Net-

work Analysis Platform (SNAP) that includes a collection of large network datasets. In

order to get profile and network information from Facebook members, a Facebook appli-

cation was used by Leskovec et al. from Stanford University [25]. This dataset includes

10 ego-networks for different 10 facebook members as illustrated in Figure 2.1, consist

of 4.039 nodes (members and their friends) and 88.234 edges (relations).

Figure 2.1. Facebook Dataset.

Figure 2.2 shows the smallest network in Facebook dataset in order to understand

the ego network structure better. The red color represents ego node and others represent

alters. Ego node has the largest friendship connection as a hub point and other nodes

(alters) directly connected to ego node. Alters may have a connection to each other.

In addition to this, an ego node may have a connection to any node from another ego

network.

6

Figure 2.2. Smallest Ego Network from Facebook Dataset.

In Facebook dataset, ego nodes are defined by numbers called node id. For ex-

ample, ego node id’s are 0, 107, 348, 414, 686, 698, 1684, 1912, 3437, 3980. Figure 2.3

shows the degree of each ego node which defines the number of friendship connection.

As we understand from Figure 2.3, ego network 107 is the largest ego network with 1045

connections and ego network 3980 is the smallest ego network with 59 connected nodes.

Table 2.1 shows edges and nodes in ego networks. Using this table we can decide

which ego networks can be chosen for the algorithms. For example, gSpan algorithm

supports small networks. Hence, we select the smallest networks to run the algorithm.

Table 2.1. The number of nodes and edges of all ego networks are given in the table.

Ego node id

0 107 348 414 686 698 1684 1912 3437 3980

of nodes 348 1046 230 160 171 69 793 756 548 60

of edges 2866 27795 3441 1857 1831 367 14817 30780 5360 205

According to given dataset information, feature data contain 26 categories consist-

ing users’ gender, education, work location, hometown information etc. Table 2.2 shows

all features in Facebook dataset.

Each feature is divided into subcategories for instance, ”gender” feature contains

7

Figure 2.3. Ego nodes with degrees.

two feature ids (Fid) 77 and 78 to represent gender types; male and female. Members

may have many different school id. Therefore there may be several subcategories that

belong to feature ”education;school;id”. A few example is given from the dataset: it

includes 346 different ”education;school;id”, 54 different ”location;id”, 10 ”locale” and

3 different ”education;type” features. From 26 categories, 1283 different features are

obtained. Every node has feature vector which shows whether an information about a

category exists or not. For instance, looking at feature vector of a node we can see that this

user has specific location information. In this dataset, the mostly seen feature is 127 which

specify a locale information. However, we do not know real location information because

this datum is anonymous. Nevertheless, using the anonymized data we can understand

whether two users have the same location feature.

In order to show the graph representation two smallest ego networks from Face-

book dataset are chosen. As shown in Figure 2.4a and 2.4b, the first and second smallest

ego networks with ids 3980 and 698 are shown.

Small sample groups are taken from these two networks as illustrated in Fig-

ure 2.5a and Figure 2.5b. Each part includes 4 nodes from network 3980 and 698, and

node ids which belong to these networks are 3990, 4007, 4016, 4025 and 857, 862, 865,

868 respectively.

8

Table 2.2. Facebook dataset includes 26 distinct features.

birthday education;classes;id work;position;id

first name education;school;id work;start date

last name education;year;id work;end date

middle name education;degree;id work;location;id

home town;id education;with;id work;projects;id

gender education;concentration;id work;employer;id

languages;id education;type work;with;id

location;id religion work;from;id

locale political

As shown in Table 2.3, features of nodes are given in a text file including node id

and binary numbers which represents that this feature exists for this node if number is 1.

These features are matched with names of the features in feature name file.

Table 2.3. Ego network 698 includes node number and features of nodes. For each

line, the first number is node id and others represent features. if node has

feature, number is 1.

Node id Features of node
857 0 1 0 0 0 0 0 0 1 0 1

862 0 0 0 0 1 1 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

865 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0

868 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

Table 2.4 shows the feature names of ego network 698. Although this file con-

tains 48 feature names, the figure shows only some of them. For instance, according

to Table 2.3, node 868 has six features, two of them are in the fifth and seventh place

in the binary list. Table 2.4 shows the name of the features: fifth feature is ”educa-

tion;degree;id;anonymized feature 22” and seventh feature is ”education;school;id;anonymized

feature 341”. It means features 22 and 341 exist in node 868.

9

(a) The smallest ego network (b) Second smallest ego network

Figure 2.4. First and second smallest ego networks 3980 and 698 with their node ids

in Facebook dataset.

(a) Small part of Network 3980 (b) Small part of Network 698

Figure 2.5. Small samples with node ids are shown from networks.

10

Table 2.4. Table shows the some examples from 698.featname file.

0 birthday anonymized feature 2

1 birthday anonymized feature 3

2 education;classes;id anonymized feature 335

3 education;classes;id anonymized feature 336

4 education;concentration;id anonymized feature 14

5 education;degree;id anonymized feature 22

6 education;school;id anonymized feature 340

7 education;school;id anonymized feature 341

11

CHAPTER 3

GRAPH-BASED FEATURE PATTERN MINING

The goal of graph pattern mining is to obtain frequent subgraphs whose occur-

rences are higher than a minimum support in a single graph or set of graphs [4]. First,

basic terms are explained in this section. Then, related work on attributed graph and

selected algorithms and experimental work are demonstrated.

3.1. Background

Graphs provide structural representation to analyze real networks. Social Net-

works are represented as different kinds of graphs. In a social network (SN), nodes are

people and links are relations between nodes. A graph G = (V,E) corresponding to this

network consists of a set of vertices V , set of edges E that connect the vertices. Therefore,

in this study, vertices and edges are used when mentioning a graph, nodes and links are

used to describe a network. L(u) and L(u, v) represent label of the vertex u and label of

the edge (u, v) respectively. In an undirected graph, edges (”relations” or ”friendships”)

are symmetric. For instance, the edge (v, u) ε E is identical for edge (u, v) such that

E(u, v) = E(v, u). On the other hand, in a directed graph, vertices can go in one direc-

tion. This means that edges do not have to be symmetrical. Figure 3.1 shows examples of

directed and undirected graphs.

A graph G = (V
′
, E

′
) is isomorphic to graph G = (V,E) if there is a bijective

function f : V
′ → V :

1. (u, v) εE
′ ⇔ (f(u), f(v)) εE

2. ∀u ε V ′
, L(u) = L(f(u))

3. ∀(u, v) εE ′
, L(u, v) = L(f(u), f(v))

There is a mapping from vertex V
′

to V such that each edge in E
′

is mapped to an edge

in E. A pair of vertices u, v is adjacent in V
′

if and only if the image pair f(u), f(v) is

adjacent in V . For every edge in E
′
, the label of edge (u, v) is the same as the label of

12

Figure 3.1. Toy examples from directed (left) and undirected (right) graphs. Twitter

and Facebook platforms can be given as example for directed and undi-

rected graphs respectively.

edge (f(u), f(v)). In other words, if two graphs are isomorphic, they must have the same

number of vertices, edges, connected components and the same degrees for corresponding

vertices.

Subgraph isomorphism is a generalization of graph isomorphism that checks whether

subgraph S exactly matches graph G in terms of vertices, edges and labels [10]. A sub-

graph S(V
′
, E

′
) of a graph G is a graph whose set of vertices and set of edges are all

subsets of G(V,E), V
′ ⊆ V and E

′ ⊆ E , denoted by S ⊆ G. Figure 3.2 shows exam-

ples of graph and subgraph isomorphism.

Figure 3.2. Graph G and S are isomorphic graphs because they include same vertices

and edges with the same connections. Graph T is given an example for

subgraph isomorphic for Graph G and S.

The primary processes of pattern mining are generation and frequency computa-

13

tion of patterns. When generating new candidates, the same patterns can be obtained.

To check duplicate patterns, graph isomorphism should be controlled and to find the fre-

quency of patterns, subgraph isomorphism should be checked [36]. As we see, isomor-

phism checking is required in graph pattern mining. However, it is considered one of the

major problems, since it is known to be NP − Complete [2].

3.1.1. Candidate Generation

Before examining support computation of patterns, candidate patterns should be

determined. Candidate generation has two approaches: Apriori-based and Pattern-growth.

3.1.1.1. Apriori-based Approach

The general approach is to begin with small-sized subgraphs and explore new,

larger subgraphs by joining them. To generate new candidates, frequent subgraphs of the

same sizes are joined. Next, the frequency of new candidates is checked. The Apriori-

based approach provides downward closure property (also called anti-monotonicity) [13]

which claims that if a subgraph is infrequent, all of its supersets are infrequent. This prop-

erty allows for the pruning of redundant candidate generation. Apriori-based algorithms

use Breadth First Search (BFS), and candidates are generated level by level. It means that

all k-sized subgraphs are generated first, and then all k+1 sized subgraphs are constructed.

This process is explained in Figure 3.3.

3.1.1.2. Pattern-Growth Approach

In the pattern-growth approach, new patterns are constructed directly by adding a

new edge or a new vertex to a frequent subgraph. This approach uses Depth First Search

(DFS) strategy. Hence, edges or vertices are added recursively. Figure 3.4 provides a

small example of pattern-growth approach.

Although this approach does not include a join operation like Apriori does, it still

has some problems with extension. Namely, the same graphs can be detected many times

14

Figure 3.3. Two k-size similar graphs join to generate candidate k+1 size graph. In

this example, k represents vertex number therefore this is a vertex growing

example.

Figure 3.4. Pattern-growth approach starts with small size graph. In each iteration an

edge is added and graph is extended.

in an edge extension. Existing approaches try to address this reproduction. For example,

Graph-based Substructure Pattern Mining (gSpan) algorithm [35] uses right-most path

extension technique to prevent this problem. Briefly, it traverses a graph with DFS and

constructs a DFS Tree. But one graph may have many DFS Trees, and only one of them

should be kept for more extensions. Therefore, the algorithm uses DFS lexicographic

order and creates DFS codes of a graph. If a DFS code is not minimum it is pruned.

These processes will be explained in Section 3.3.1.

15

3.1.2. Support Computation

After the new candidates are generated, their support values should be computed.

The support value of a subgraph has a different meaning depending on the input graph

type. Therefore, support calculations can change based on input graphs.

3.1.2.1. Support Computation in a Set of Graphs

Set of graphs means a graph dataset consists of more than one graph, and gen-

erally, these graphs are small. To find the support value of a subgraph, it is controlled

whether this subgraph exists in a graph. If it exists in a graph, the count is increased, and

the next graph is examined. If the support value is greater than or equal to the threshold,

the candidate subgraph is considered frequent. Figure 3.5 shows an example of support

computation for a set of graphs. Graph dataset has 3 input graphs and given threshold is

3. Each frequent pattern which is found from input set occurs in all input graphs.

Figure 3.5. Graph dataset consists of three graphs. It is assumed that the minimum

support is 3 and frequents patterns are given.

16

3.1.2.2. Support Computation in a Single Graph

All of the above-mentioned pattern mining algorithms take input as a set of graphs,

but in some cases, input can be a single large graph such as an SN. As mentioned earlier,

finding the support value of a subgraph in a set of graphs requires simply knowing the

number of graphs that include the subgraph. On the other hand, finding the support com-

putation in a single graph is much more difficult. For a subgraph to be frequent, the

number of all embeddings in a single graph should exceed a predetermined threshold.

When calculating the number of embeddings, overlaps of a subgraph can occur [7]. This

can violate the downward closure property, which is satisfied in support computation in

a set of graphs [9]. However, the downward closure property provides pruning and de-

creases search space. Figure 3.6 shows how support values of small and larger subgraphs

are computed and how this violates the property.

Figure 3.6. Graph G is main graph, S and T are subgraphs. T is larger than S. Occur-

rence of S in main graph G is 1 but occurrence of T is 2. This situation

does not provide the downward closure property.

To preserve this property, three techniques have been proposed [9, 11], which can

be categorized in two sections: These methods are summarized in two sections.

1. Overlap-based methods

• Maximal Independent Set (MIS)

This method first finds overlaps and then it counts the number of maximum

independent non-overlapping subgraphs. According to MIS, all overlaps are

harmful.

17

• Harmful Overlap (HO)

This technique allows overlapping if it does not violate anti-monotonicity

property.

2. Non-Overlap-based methods

• Minimum Image Based (MNI)

The most appropriate method for support computation is minimum image

based (MNI) support. Because MIS and HO are known as NP-Complete [7,

11, 10]. MNI checks the number of unique vertices that map to vertices in

the graph for each vertex of a subgraph. Then, it takes the minimum number

as the support value. Figure 3.7 shows how this method is implemented on a

graph.

Figure 3.7. To find occurrences of graph S in graph G, MNI technique finds all map-

pings of nodes in G. Minimum unique number specifies the support value

or occurrence value.

3.2. Related Work

There are many algorithms that use Apriori-based approach. The first introduced

and well-known algorithms are Apriori-based Graph Mining (AGM) and Frequent Sub-

18

graph Discovery (FSG) [34] which were proposed in 2000 and 2001 respectively. In

AGM [18], candidates are grown by adding a new vertex. In FSG [21], candidates are

generated by adding a new edge. Since joining two subgraphs causes overhead, some

algorithms have been introduced that use the pattern-growth approach instead.

Graph-based Substructure Pattern Mining (gSpan) algorithm [35], Molecular Frag-

ment Miner (MoFa) and Spanning tree based maximal graph mining (SPIN) are mostly

known algorithms that use pattern-growth approach.

When we examine algorithms in terms of input types, two categories are separated.

Aforementioned algorithms are generally used as graph pattern mining and take a set of

small graphs as input. However, other algorithms that take single graph as input have been

proposed as shown in Table 3.1. The SiGram [23] and Grew [22] algorithms use MNI for

support computation. Grami algorithm uses MNI [10] benefits from optimizations and

can find approximate and exact patterns, and the AGrap algorithm [12] uses MNI and finds

inexact patterns. AGrap algorithm utilizes similarity measure to control inexactness, but

this algorithm is unable to obtain patterns from dense graphs [9].

Table 3.1. Frequent pattern mining algorithms that takes single large graph with dif-

ferent support counting.

Algorithm Input Type Candidate Generation Support Comp.
SiGram (2005) Undirected Graph Apriori-based MIS

Grew (2004) Undirected Graph Apriori-based MIS

Grami (2014) Directed or Undirected Pattern-growth MNI

AGrap (2014) Directed or Undirected Pattern-growth MNI

The above algorithms use a single large graph, but they assume that nodes have

only one label (except for the Grami algorithm). Since the aim of this thesis is to obtain

common features from Facebook dataset whose vertices have more than one label, we

evaluated previous studies. Although we work on a single large graph, we try to examine

how to get patterns using two different kinds of algorithms. Therefore, first, we select

gSpan algorithm from transactional graph settings because it is the basis of other graph

mining algorithms. Moreover, it is the most well-known and studied algorithm in graph

mining. Second, Grami algorithm is selected from single graphs because authors specify

that it supports multi-labeled graphs and it takes single large graph as input.

19

3.3. Algorithms

In this section, gSpan and Grami algorithms are explained with small examples to

understand clearly.

3.3.1. gSpan Algorithm

gSpan algorithm uses a set of graphs whose nodes are single-labeled to mine sub-

graphs. However, in studied dataset, nodes have ids and attributes (profile information).

In this case, we employed an intuitive way; we try to generate new graphs whose nodes

have only one and the same feature. In Figure 3.8, graph nodes have 5 features totally:

i1, i2, i3, i4, i5.

Figure 3.8. Example of attributed graph data.

Main graph is separated into subgraphs and we obtain five subgraphs whose nodes

have only one feature: i1, i2, i3, i4 and i5 as we see in Figure 3.9. Since all nodes have

the same label in a subgraph, we use node ids as their labels. Now we can see easily

that a pattern which consists of nodes 0 and 2 has common features: i1, i2, i4 because this

pattern is seen in three generated subgraphs. As a result of the algorithm, we can see

which nodes have common features.

To generate these subgraphs, we traverse main graph with Breadth First Search

(BFS) starting from a random node and checking whether this node has a specific feature.

Then if a feature does not exist in a node, this node is removed from graph otherwise it is

20

Figure 3.9. Separated subgraphs according to node features.

kept in graph and labeled with its own node id. This process is executed for all features.

In this way, new graphs are generated from the dataset. This pre-process takes O (E +

V. w) time where V is the number of vertices, E is the number of edges, and w refers to

average attribute number of nodes. Using this labeling, gSpan algorithm can be applied,

and this set of subgraphs is given as input and new frequent subgraphs are extracted.

gSpan algorithm is based on pattern-growth approach. That is, there is no candi-

date generation like in Apriori-based algorithms. It uses right-most path extension tech-

nique to construct new subgraphs. According to right-most path extension technique,

new edges can be added following the right-most path. It constitutes the DFS Code of

a subgraph. The same subgraphs can be generated because of isomorphic candidates.

Therefore, we only need to keep one of them for extension. To avoid this duplication,

among DFS Codes, the minimum code is selected which is called canonical. Minimum

DFS Code has the smallest lexicographic order.

Example in the Figure 3.10 [36] which includes only two small graphs is given to

understand the gSpan algorithm better. We assume minimum support is 2. Ids of vertices

are 1,2,3,4 and labels are a and b.

Edges are represented as 5-tuple:(vi, vj, L(vi), L(vj), L(vi, vj)) = (0, 1, a, a,)

21

Figure 3.10. Two simple graphs for gSpan example.

where vi, and vj are discovery times of nodes, L(vi), L(vj), and L(vi, vj) denote the label

of vi, label of vj and label of edge between them respectively. First, all possible edges

are found from these two graphs as we see in Figure 3.11. These are shown as candidates

C1, C2, C3 and C4.

Figure 3.11. Possible frequent edges are generated from two graphs.

If any edge is not canonical or not frequent, it is eliminated. To find canonicality,

it is checked whether a code is minimum or not. DFS Code of a pattern is a sequence

of edges such as (0,1,a,a). A pattern may have many DFS Codes. Extension from the

same DFS Code which was seen in previous step is redundant because same patterns

are found. Therefore, to eliminate redundant DFS codes, lexicographic ordering is used.

For example DFS Code of C2 and C3 are (0,1,a,b) and (0,1,b,a) respectively. These are

the same graphs and one of them should be excluded. So, the minimum one is kept

extending and another one is removed. According to lexicographic order, DFS Code of

C2 is minimum which is called canonical so C3 is eliminated. In this example, C1 and

22

C2 is canonical but C3 is not canonical and C4 is not frequent because this edge does not

exist in two graphs. Therefore, C3 and C4 are excluded. Then, right-most path extension

continues from C1 because of DFS as shown in Figure 3.12. This process continues until

no new candidate is found. The algorithm works in this process.

Figure 3.12. Right most path extensions from C1.

3.3.2. Grami Algorithm

In Section 3.3.1, massive input subgraphs can be constructed because of the num-

ber of nodes and features. Unlike most subgraph mining algorithms, GRAMI is applied

for single, large and multi-labeled graphs. However, currently deployed version of Grami

algorithm does not support multiple labels and it does not find frequencies of multiple

labels accurately. Therefore, the algorithm is modified to work on multi-labeled graph. In

addition to this, it is modified to find only common feature patterns.

First, Grami algorithm and how it works on single-labeled and multi-labeled dataset

23

is explained. Then how we modify it to obtain the correct results is shown.

3.3.2.1. Explanation of Grami Algorithm

Grami algorithm uses MNI support computation metric [10] to find frequencies of

patterns. For example, in Figure 3.13 MNI calculation example is given. We want to find

the frequency of pattern P = B−A−C whose vertices v1, v2, v3 correspond to variables

x1, x2, x3 in a variable set X. Support value of pattern P is obtained by looking for do-

main of each variables on graph G. Embedding (”instance” or ”subgraph isomorphism”)

B1, A1, C1 and B1, A1, C2 can be found for domain of all variables. All images (number

of unique nodes) are found for x1, x2, x3 and minimum number of unique node images

gives support value of pattern P which is equal to 1 for this example.

Figure 3.13. Node images.

Grami algorithm converts frequent subgraph problem to Constraint Satisfaction

Problem (CSP). It aims to provide all constraints and shown as a tuple (X,D,C): where

X is a set of variables, D is a set of domains and C is a set of constraints between variables

in X . The aim of CSP is to find a solution that provides all constraints. The problem can

be mapped to a CSP as follows:

Assume S(V s,Es, Ls) is a subgraph of G,

1. There is a variable xv εX for each vertex in subgraph S.

2. There is a domain set D for each variable xv εX .

3. C contains constraints as follows:

24

• All variables xv, xj inX is distinct, xv �= xj .

• For each variable xv inX , label of vertex v and label of variable xv are the

same.

• For all variables that has an edge in graph, labels of vertices and variables are

the same.

In the preparation phase, vertices are grouped according to their labels, then whose

labels are greater than threshold value marked as frequent. For each frequent vertex,

reachable nodes are found within the given distance threshold δ which is equal to 1 for

subgraph mining. Algorithm consists of two functions: Search and ISFrequent. Search

function starts with all frequent edges. New candidate subgraphs are found by using right-

most path extension. The algorithm uses the CSP (Constraint Satisfaction Problem) model

to evaluate the frequencies of the candidate subgraphs in ISFrequent function. If the

number of assignments in each domain is at least the threshold value, candidate subgraph

is frequent. The algorithm is explained with single and multi-labeled graph examples in

subsections.

3.3.2.2. Grami Algorithm using Single-label Graph

Figure 3.14 shows an example from a collaboration network that nodes represents

author and edges refer to co-authorship. Research interests of authors are software engi-

neering (SE), computer vision (CV) and data mining (DM). P is a pattern which wanted to

find the frequency, Graph is G and threshold is selected as 3. Frequent labels are found us-

ing support values of SE, CV and DM which are 2, 5, and 3 respectively. SE is eliminated

and frequent labels are CV and DM whose nodes are U1, U4, U5, U9, U10 and U2, U6, U7 re-

spectively. For each node, reachable nodes are found. For example, node U2 is reachable

for node U1. Then, using frequent nodes, initial candidate edges are generated: CV-CV,

CV-DM and DM-DM. Since all of them are frequent, new patterns are extended. Assume

one of the extensions is pattern P (DM-CV-CV). To find the frequency of P, it is mapped

to CSP.

Vertices in patterns consist of variables. Each variable x in X set corresponds to

vertices v1, v2, v3 in pattern. Each domain in D contains vertices in Graph G u1, u2, u3....u10.

Constraints include that all vertices and edges are different such that v1 �= v2 �= v3 and

25

Figure 3.14. Grami single-labeled graph and pattern example.

L(v1) = DM L(v2) = L(v3) = CV . A solution (”subgraph” or ”embedding”) for this

CSP problem can be (v1, v2, v3) = (u2, u4, u5). The domains that are constructed for each

variable x corresponding to a vertex in pattern P are as follows:

• For vertex v1, domain set is (u2, u6, u7).

• For vertex v2, domain set is (u4, u5, u9).

• For vertex v3, domain set is (u5, u4, u10).

Since minimum unique node number is 3 for all domains, according to MNI sup-

port value of pattern P is 3. Therefore, it is frequent. New candidate patterns are generated

by extending frequent patterns until no new candidates are generated.

3.3.2.3. Grami Algorithm using Multi-label Graph

Grami algorithm works properly on single labeled dataset. This section shows

how it works on multi-labeled graphs. Since original implementation does not give correct

results, our contribution includes this part. An example is given in Figure 3.15.

Two of the four vertices in the graph are single labeled and two of them have more

than one label and we assume that threshold is 2. According to Original Grami Algorithm,

26

Figure 3.15. Graph includes nodes associated with multiple labels. Node ids are 0,1,2,3

and node labels are specified above the nodes.

all labels are extracted as 12, 22, 24, 100 (new label for 12 and 24) and their frequencies

are found as 2. As we see, if there is a multi-labeled node in the graph, new label is

generated starting at 100 which corresponds to the combination of labels such as label

100 is generated for combinations of labels 12 and 24. Then, reachable nodes of vertices

that have frequent label are found:

• for node 0 which has [12, 24] labels, reachable node is (1:[22]) means that node 1

with label 22.

• for node 2 (2:[12, 24]), reachable nodes are (1:[22]) and (3:[22]).

• for node 1 (1:[22]) reachable nodes are (0:[24, 12]) and (2:[24, 12]).

• for node 3 (3:[22]), reachable node is (2:[24, 12]).

For nodes 1 and 3, label 100 is not added to reachable node. Therefore, initial

edges (0,1,100,22), (0,1,22,24), (0,1,22,12) and their support values are constructed as

0, 2, 2 respectively as shown in Table 3.2. However, support value of edge 100-22 is

not computed correctly because label 100 does not exist in reachable node sets. This is

the first part that we modified. We added multiple label ids to reachable node sets if it

requires. After this modification, frequency of all initial edges becomes 2 and algorithm

extend these edges. For example, extension 100-22-24 is generated from initial edge 100-

22. As Figure 3.16, extension 100-22-24 is given and we expect that the support value of

this pattern should be 1 because minimum number of unique nodes is 1.

However, when a vertex has multi attributes, original algorithm assumes that there

are different vertices for each attribute. So, it does not find support values correctly. This

27

Table 3.2. Support values of initial edges in Graph G.

Initial edges Support value

0

2

2

Figure 3.16. Grami support computation of a multi-labeled pattern

is the second part that we modified. To solve this problem, we use hash table to store

domain sets of variables. We store label as key of the table and domain set as value such

as for extension 100-22-24, keys are 100, 22 and 24, values are {0, 2}, {1, 3}, {0, 2}
respectively. Then we check whether frequency of a value is greater than 0 or not. If it

is greater than 0, there are the same nodes in this pattern. For example, {0, 2} occurs

two times and it means that, the same nodes are given as different nodes. So, we can

eliminate this pattern and continue from other patterns. Finally, after this modification,

we obtain the correct results. For graph in the Figure 3.15, we obtain patterns (100-22),

(22-24),(22-12). After that, we add a pruning phase to find only common features.

28

3.4. Experimental Work

3.4.1. Complexity Analysis of gSpan Algorithm

Since subgraph isomorphism is NP-Complete, at worst case, run time of gSpan

algorithm should be exponential. However, it can be measured by taking the number of

subgraph isomorphism tests. O(kFD) gives the number of isomorphism tests to obtain

frequent subgraphs from discovered frequent subgraphs where F is the number of frequent

subgraphs, D is the dataset size which means how many graphs exist in this dataset and k

is the maximum number of subgraph isomorphism that occur between a frequent subgraph

and a graph [35]. If we assume that frequent subgraph has n number of nodes and graph

has N number of nodes, k takes O(Nn) times. If dataset and number of frequent subgraphs

are small then number of subgraph isomorphism become small. It decreases the execution

time.

3.4.2. Complexity Analysis of Grami Algorithm

Grami algorithm consists of two functions which are given in Appendix A. It

computes all subgraphs and takes a subgraph as input and extend it with frequent edges.

it requires O(2N) times where N shows the number of nodes in graph G. Then it finds

the frequency of subgraphs which require subgraph isomorphism that takes O(Nn) times

where n is the number of a subgraph. Because each node in a subgraph should be checked

that it exactly the same node in a Graph G. Total computational complexity is O(2N .Nn)

which is exponential. Therefore, Grami algorithm uses some optimizations to improve

performance [10].

If we calculate the performance of this algorithm on our computer, we should take

the number of operations performed into consideration. Our computer performs (2.6 ×
109)×8 operations per second because it is influenced by Clock frequency (GHz) which is

equal to 2.6 GHz with 8 CPUs. Total operation of algorithm with real data is calculated as

O(260×601) = 6.9712755e+35 because N is equal to the number of nodes of the smallest

ego network and n number of subgraph that we assume it is equal to 1. Then we divide

29

these two numbers to find the time which requires. (6.9712755e+ 35)/((2.6× 109)× 8)

gives approximately 38.492 days.

Since graph mining algorithms are not scalable for the large graphs [20], to eval-

uate them, we use two smallest ego networks 3980 and 698 from Facebook dataset which

is explained in Section 4. Also, we use 8 features [14, 22, 53, 54, 55, 77, 78, 127] for eval-

uation since i) the algorithm does not scalable for large feature set and ii) these features

are mostly seen in networks that we will see in Section 5.

3.4.3. gSpan Algorithm Results from ego network 3980

To evaluate gSpan algorithm, ego network is traversed and 8 different subgraphs

are generated according to feature set as explained in Section 3.3.1. These graphs consist

of input dataset for gSpan algorithm. According to Table 3.3, in the feature set, a feature

shows a subgraph whose nodes have only this feature. Therefore, if a feature set has

4 features, this input dataset includes 4 graphs. Support value is specified according to

feature set size. If support value is equal to feature set size, the pattern found indicates

that all nodes in this pattern have common features which is feature set.

Table 3.3. gSpan algorithm results on the smallest ego network 3980.

Feature Set Support # of Patterns found

[14, 22, 53, 54, 55, 78, 127] 7 807

[22, 53, 54, 55, 78, 127] 6 25756

[14, 22, 53, 54, 55, 77, 127] 7 0

[14, 22, 53, 54, 55, 127] 6 807

[22, 53, 54, 55, 77, 127] 6 0

[22, 53, 54, 55, 127] 5 25756

Number of patterns found shows that how many subgraph patterns are generated

from gSpan algorithm. Patterns found from the subgraphs are like (0, 1, ’3980’, ’4038’,)

means that in this ego network nodes with id 3980 and id 4038 have common features

and these nodes are connected. We observe from the Table 3.3, gender information (77,

78) makes a difference among results. It shows that ego node has gender 78 and most

of his/her connections have gender 78 because when feature set includes gender 77, no

30

pattern is found.

3.4.4. gSpan Algorithm Results from ego network 698

Table 3.4 shows that nodes in the ego network 698 do not have features in the

feature set as common attributes. Because the number of patterns found is 0 or 1.

Table 3.4. gSpan algorithm results on the smallest ego network 698.

Feature Set Support # of Patterns found

[14, 22, 53, 54, 55, 78, 127] 7 0

[22, 53, 54, 55, 78, 127] 6 1

[14, 22, 53, 54, 55, 77, 127] 7 0

[14, 22, 53, 54, 55, 127] 6 0

[22, 53, 54, 55, 77, 127] 6 0

[22, 53, 54, 55, 127] 5 1

To obtain patterns, all combinations of features should be evaluated. For example

26 features require C(26,26) + C(26,25) + ...+C(26,2) combinations and it means high

complexity.

3.4.5. Grami Algorithm Results from ego network 3980

gSpan algorithm finds frequent subgraph whose nodes have common features and

this subgraph includes their node ids because of our input type. However, Grami algo-

rithm only finds frequent patterns. It means that it could not find node ids in a frequent

pattern. Also in grami algorithm, dataset is taken as a single graph therefore, support cal-

culation is different from gSpan algorithm. As the result is shown in Table 3.5, we give

different support values to get patterns. At supports 51 and 47, a pattern whose nodes have

a feature (127) is found. It means that this pattern is seen greater or equal to threshold

times in this graph. But algorithm does not give the exact support numbers. If support

value is equal to 43, 5 patterns are generated and visual results are seen in table. If support

value is smaller than or equal to 40, algorithm takes long time and it does not give any

31

result because feature numbers of each node increase the number of possible candidate

graphs.

Table 3.5. Grami algorithm results on the smallest dataset 3980.

Support # of Patterns Patterns Visual Results
55 - - no pattern found

51 1 127-127

47 1 127-127

43 5 127-127-127 78-78
40 - - -

3.5. Results

In this section, the study of graph mining algorithms on an attributed graph which

takes two different input sets has been examined. The graph dataset for the gSpan al-

gorithm is separated for each feature. If all features are taken into consideration, the

algorithm will fail because of feature combinations. gSpan algorithm is suitable for small

datasets.

Grami algorithm works on graphs with a single label. However, it is exponential

in the worst case. Increasing the number of labels causes overhead because it increments

the label combination.

32

CHAPTER 4

TRANSFORMATION OF GRAPH DATA TO

TRANSACTIONAL DATA

Given subgraph mining algorithms require computationally expensive operations

due to i) having lots of features for one node, ii) searching for subgraph isomorphism or

iii) constructing many graphs for input. From a different point of view, graphs can be

represented in a different format to reduce these problems.

4.1. Background and Related Work

Graphs can have lots of information about nodes and edges. To obtain precious

information from graph data in an efficient way, graph transformation can be used. In a

study [19], frequent itemset mining is used for learning from graph data. Authors convert

graph data to itemset data because of the graph mining computational complexity. After

converting itemset data they can use itemset mining algorithms. Edge lists represent graph

edge information and L = (λ(Vi), λ(Vj), μ(ek)) is an element of edge list which has two

node labels with an edge label between them. Edge lists allow to represent graph edge

information as a list but this list can include more than one node that has the same label.

However, an itemset does not contain the same item. Therefore, each element in the edge

list is represented as a tuple (W, i), W is an element and i is the number of occurrence

of W in L. This list does not contain elements which have the same labels and this is

called edge set. At this point, different frequent pattern mining algorithms can be applied.

Using these methods, they showed that itemset mining algorithms are computationally

more straightforward than graph mining algorithms. However, they only consider simple

labeled graph not attributed graph and it is not suitable for a single graph input.

Frequent subgraph mining looks for the same structure means that there are the

same node labels with the same edges between subgraphs. Cule et al. [8] have not look

for exactly the same connections between nodes and edges. They give the definition of

interesting itemsets in graph datasets. If nodes with the same labels frequently occur

33

near each other in a graph dataset, these labels called interesting. It is not necessary to

make exactly the same connections for becoming interesting. To mine interesting itemsets

authors proposed two methods: traditional itemset mining and cohesive itemset mining.

In first approach, graph dataset is transformed into itemsets. Labels of neighbors for each

node is written as itemsets. These itemsets consist of transactions. After this step, one

of the existing frequent itemset mining algorithms, FP-Growth, is applied. In second

approach, to find interestingness of an itemset X, cohesion and coverage values of X

should be calculated. Number of nodes has an item from itemset X |N (X)| is divided

by number of total nodes |G| and coverage is calculated as P (X) = |N(X)|
|G| . To find

cohesion of itemset X, we look total distance (W) of a node that has an item from itemset

X to neighbors which has other items in X. C(X) = |X|−1

W (X)
gives the cohesion of an

itemset X where |X| is itemset size. Finally, interest of X is calculated as product of

its coverage and cohesion I(X) = P(X)C(X). Although, first approach, traditional itemset

mining, is not available for multiple graph setting, cohesive mining is applied for single

and multiple graph datasets. Experiments show that frequent itemset mining is better than

cohesive mining in terms of time efficiency but they find same itemsets for single graph. In

multiple graph setting cohesive algorithm is compared with GASTON algorithm because

for multiple graph setting frequent itemset mining cannot be applied. While GASTON

algorithm discovers subgraphs, Cohesive algorithm extracts frequent itemsets. Although

this method finds patterns which are not discovered by subgraph mining, there are some

drawbacks. An interesting itemset can include items that infrequently occur in the dataset.

In study [17], frequent cohesive itemsets are found using algorithm in the previous study

by the same authors. Because in the previous study, interesting itemsets are found but

each item in an interesting itemset does not controlled whether they are frequent or not.

Therefore, it should be checked that each item in a discovered itemset must be frequent.

To find frequent cohesive itemsets, firstly, infrequent items are excluded then candidate

itemsets are generated using depth first search. Cohesions of itemset are found like in

the previous study. It is more efficient than subgraph mining because costly isomorphism

testing does not perform.

Apart from previous studies, some studies use more than one conversion. For

example, Thomas et al. proposed Itemset-based Subgraph Mining (ISG) algorithm [33]

to obtain subgraphs using frequent itemset mining algorithms. ISG can be summarized in

five steps:

• Graph data are converted to itemset data.

34

• Maximal frequent itemsets are found.

• Each maximal itemset is converted to graph data.

• If these converted graphs are ambiguous then preprocessing is done.

• Itemsets are converted graphs and maximal subgraphs are found.

Some graphs have the same converted itemsets therefore they cannot be trans-

formed to a graph uniquely and they cause ambiguity. To handle this ambiguity item

ids of edges are added to this conversion. After all, using itemset mining, maximal sub-

graphs are found from graphs with unique edges. This algorithm is compared with SPIN,

MARGIN and gSpan algorithms in terms of time-efficiency by this study. But they took

into consideration unique edge labeled graphs. Our graph datasets do not have edge label

because all edges are friendship relation and same.

Many of the above studies [19, 33, 17] input graph is considered as set of small

graphs and some of them [19, 33] take graphs which has nodes only one labeled. The

study [17] claims that they handle with multiple labels using transformation on the given

graph. Each node is replaced with a dummy node which has a unique label. Then this

node is connected to a new set of nodes. But the details and implementation are not shown

in the paper.

4.2. Experiment

As we see from background information, graph transformation can be more ef-

ficient than graph mining algorithms. Therefore, this section explains how we represent

graph data as transactional data. Features of sample nodes are given in Table 4.1. As we

see from the table, some nodes have many features, while others have few. In addition,

the same features are seen in many nodes in a network.

According to transformation algorithm which is given in Appendix A, edges of

a network are considered as transactions. Therefore, every edge between nodes is writ-

ten as transaction id, and common features of nodes represent items. For this reason, all

edges are traversed using breadth first search and common features are getting from the

end nodes of this edge. Common features are intersection of two node features and they

constitute of transactions.

35

Table 4.1. Some nodes and their feature ids are shown in the table.

Node id Features

857 [78, 127]

862 [14, 22, 53, 54, 55, 78, 127, 154, 216, 253, 296, 341, 720, 1065, 1191]

865 [53, 78, 127, 154, 341]

868 [22, 54, 78, 127, 341]

3990 [6, 53, 55, 77, 125, 1277]

4007 [6, 78, 125, 1275, 1276]

4016 [55, 78, 125, 1276]

4025 [77, 125, 1276]

After graph transformation we obtain edges in a graph and common features of

these nodes as shown in Table 4.2. For itemset mining algorithms, only common features

column will be used.

Table 4.2. This table shows common features of nodes. Edges are written as Tid and

common features are items.

Edge Tid Common Features (items)

857-862 1 78,127
857-865 2 78,127
857-868 3 78,127
862-868 4 22, 54, 78, 127, 341
862-865 5 53, 78, 127, 154, 341
865-868 6 78, 127, 341

3990-4007 7 6,125
3990-4016 8 55, 125
3990-4025 9 77, 125
4016-4025 10 125, 1276
4007-4025 11 125, 1276
4007-4016 12 78, 125, 1276

36

4.3. Result

Properties of acquired transactional dataset are given in Table 4.3. According to

table, given properties show that these two datasets are highly similar.

Table 4.3. After transformation, transactional dataset properties of two smallest ego

networks

Ego Network # of Transactions # of items # of Average Transaction Size
3980 204 40 3

698 289 44 2

Since every edge and node is traversed, and all features of two nodes are com-

pared, edge number E, vertex number V and average attribute number w of each node

become important for this pre-process. Time complexity of this pre-process is O(E ∗
w2 + V).

37

CHAPTER 5

ITEMSET PATTERN MINING ON TRANSACTIONAL

DATA

In Chapter 4, multi-attributed graph dataset is transformed into transactional data.

Therefore in this chapter, itemset pattern mining algorithms are examined on this trans-

formed data. First, background information about itemset mining is given and then se-

lected algorithms are applied and the results are compared with regard to complexity,

performance and the number of patterns which is found.

5.1. Background

Association rule problem which was proposed by Agrawal et al. [4] tries to un-

derstand buying patterns that increase supermarket sales. Transaction database T consists

of transactions T = {T1, T2, T3...Tn}. Each transaction refers to a set of items bought by

customers. If a set consists of l items, it is called l − itemset. The objective of associ-

ation rule mining is to find all frequent itemsets and to generate useful rules from these

itemsets which consist of large amount of data. For example, rule X → Y where X and Y

are frequent itemsets denotes that if X is purchased, then Y is purchased [1]. Two metrics

are used to evaluate the results, namely support and confidence [24].

The support of an itemset X means the number of transactions that include X in a

dataset D. It is calculated as ratio of transactions including item to all transactions in the

database sup (X) = Xcount

|D| and is used to find frequent patterns. If sup (X) is greater than

or equal to the minimum support value, it is said that this itemset is frequent. To obtain

frequent itemsets candidates are generated then support values are computed.

Each generated itemset I is potentially a candidate frequent pattern. Therefore, the

candidate itemset search space is exponential because there are 2|I| potentially frequent

itemsets. For example, if set of items I = {A,B,C,D,E} and 2|I| = 25 = 32 − 1

(except empty set) possible itemsets are generated. However, many of these candidates

may not be frequent. Apriori property (also called downward closure property) provides

38

the concept that a subset of a frequent itemset is also a frequent itemset. For instance, if

itemset {AB} is a frequent itemset then {A} and {B} should also be frequent. if {AB}
is not frequent, then any superset of it can not be frequent. Thanks to this property, search

space is decreased.

Apriori and FP-Growth algorithms are well known itemset mining algorithms and

each has different approaches to find frequent itemsets [5, 16].

5.2. Algorithms

After converting graph data to transactional data, itemset pattern mining algo-

rithms can be applied. Selected itemset mining algorithms are Apriori, FP-Growth and

Max-Miner algorithms. In this section algorithms are explained using the same example.

5.2.1. Apriori Algorithm

Apriori Algorithm [5] runs on our small dataset and steps are shown briefly as

follows:

• Initially, support counts of k-itemsets are found, k is 1 at first step.

• k+1 candidate itemsets are generated from k itemsets.

• According to Apriori principle, some itemsets are pruned.

• Support counts of itemsets are found, and then some of the candidates are elimi-

nated because of insufficient support.

• The procedure is repeated until the candidate set is empty.

As described in above, support counts of all 1-itemsets are calculated using transformed

data in Table 4.2. Results are shown as ”one-item itemset key and their support values

such as; ’78’: 7, ’127’: 6, ’125’: 6, ’341’: 3, ’1276’: 3, ’154’: 1, ’22’: 1, ’55’: 1, ’54’: 1,

’6’: 1, ’53’: 1, ’77’: 1”. Minimum support value (”threshold”) is specified by user. For

this example, minimum support value is determined as 3. That is, if an itemset is shown

more than or equal to 3 transactions, this itemset is taken as candidate for the next step.

39

Items whose support value is smaller than minimum support are eliminated and remaining

items are ’78’: 7, ’127’: 6, ’125’: 6, ’341’: 3, ’1276’: 3. Itemsets which have 2-items

are created from remaining items. In this step, algorithm checks if Apriori property is

required. It means that, all k items which is used to create k+ 1 items are checked whether

they are frequent because according to apriori property a subset of a frequent itemset must

also be a frequent. But this property does not occur for this example. That is, all subsets

satisfy the Apriori property. All these phases are shown in Figure 5.1 step by step.

Figure 5.1. The Apriori Algorithm on sample dataset

As shown in the figure, from 1-item to 3-items frequent itemsets are found. Re-

40

sult that include all k-itemsets is [[’127’, ’341’, ’78’], [’78’, ’127’], [’341’, ’78’], [’125’,

’1276’], [’341’, ’127’], [’127’], [’341’], [’125’], [’78’], [’1276’]]. This means that, fea-

tures 127, 341 and 78 are the most common patterns for this network in 3-itemsets.

These numerical values have feature names like 1276 : lastname, 78 : gender, 341 :

education; school; id, 125 : locale, 127 : locale. Database is scanned for every support

counting phase as shown in Figure 5.1. In addition to this, Apriori Algorithm generate

infrequent itemsets as candidates and all itemsets are checked.

5.2.2. FP-Growth Algorithm

Apriori algorithm is easy to understand and efficient when database is small. How-

ever, it generates lots of candidates and scans the database many times. On the other hand,

FP-Growth algorithm [16] finds frequent itemsets without candidate generation. This al-

gorithm has two approaches:

1. A data structure called FP-Tree is built.

2. Frequent itemsets are obtained from FP-Tree.

To construct FP-Tree, database is scanned once and frequent 1-itemsets are found.

Then, Frequent itemsets are sorted in descending order called priority list. In transactions,

infrequent items are removed and transactions are sorted according to the list. Root of FP-

Tree is created and labeled as null. The database is scanned for the second time to add

items to the tree. After constructing FP-Tree, for each item conditional FP-Trees are

created directly on FP-Tree. After that conditional patterns are found. Same toy example

explains how FP-Growth algorithm works in detail.

In Figure 5.2 database is scanned and frequent 1-itemsets are found. Items are

sorted by support count and this created list is called priority list. According to this list,

items in the transactions are sorted.

After that, transactions are scanned and all items in the transaction are added re-

cursively to the FP-Tree as shown in Figure 5.3.

After constructing FP-Tree, frequent itemsets are found directly from this tree as

shown in Figure 5.4. Items are extracted from bottom, for instance, item 1276 is extracted

and items on this path are written as conditional FP-Tree items such as item 125 occurs

41

Figure 5.2. Frequent 1-itemsets are found and sorted

on this path two times, 78 and 125 are on this path one time. Using conditional FP-

Tree items, according to minimum support some items are eliminated and others create

frequent patterns. In previous example, support count of item 125 is three but support of

item 78 is one. For this reason, item 78 is eliminated, then for item 1276, pattern 125,

1276 is created as shown in Figure 5.5.

To show final results 1-item frequent sets should be added to this table. Results

are the same with Apriori Algorithm. (125, 1276) : 3, (341) : 3, (127, 78) : 6, (127) :

6, (125) : 6, (78) : 7, (341, 78) : 3, (127, 341) : 3, (127, 341, 78) : 3, (1276) : 3 are

frequent itemsets for this example.

5.2.3. Max-Miner Algorithm

The aim of Max-Miner algorithm [6] is to find maximal patterns instead of finding

of all frequent patterns. This algorithm uses both the superset-frequency and the subset-

42

Figure 5.3. Step 1. FP-Tree Construction

infrequency for pruning.

Algorithm initially scans database and gets the 1 − itemsets which are initial

candidate groups. After finding 1 − itemsets, in main function, for every candidate,

dataset is scanned and supports of all candidate groups are found. A candidate itemset

group g is shown as head and tail groups. First part of the group g shows the head h (g)

and second part which means that all items not in h (g) shows the tail t (g). For example,

for node a, h(g) = a, t(g) = b, c, d. According to the algorithm, for each g in candidates,

find the support of h (g) ∪ t (g) and if it is frequent then any subset of this itemset be

frequent but not maximal. Therefore, sub-nodes are not found and all of them are pruned.

This operation is called as superset-frequency pruning. For each g in if h(g) ∪ t(g) is

not frequent then new sub nodes are generated. if h(g) ∪ {i} is not frequent, item i is

removed from t(g). This is called subset infrequency. Example is shown in Figure 5.6

43

Figure 5.4. Step 2. Constructing Conditional FP-Trees to generate itemsets

with the same dataset. Initially, database is scanned and all frequent 1-itemsets are found.

New candidates are generated using frequent items.

For example in this figure, new candidates are generated from (78, 127, 125, 341,

1276) such as 78(127, 125, 341, 1276) where h(g) = 78 and t(g) = (127, 125, 341, 1276).

For each candidate group check whether h(g)∪ t(g) is frequent. if h(g)∪ t(g) is frequent,

then node g is not expanded and all subsets are pruned. if not, new candidates are gen-

erated such that h(g) ∪ {i} where i ε t(g). If h(g) ∪ {i} is not frequent, then item i is

removed from parenthesis. For example, (78, 125) and (78, 341) are not frequent then

items 125 and 341 are removed from parenthesis. After whole processes, the result is

[(127, 341, 78), (125, 1276)].

44

Figure 5.5. Frequent Itemsets

5.3. Experimental Work

In this section, we give the results of itemset mining algorithms for transformed

data. Itemset mining algorithms Apriori, FP-Growth and Max-Miner are implemented in

Python using Networkx library. Like in graph approach, for the experiments, two smallest

ego networks (3980 and 698) are selected. Minimum support threshold is given from 10%

to 90%. For instance, threshold is 10% for the dataset means that if an itemset is frequent,

this itemset is seen at least in (67.557×10)÷100 = 6.755 transactions. Frequent patterns

found from itemset mining algorithms are given in Table 5.1 and Table 5.2 for ego network

3980 and 698 respectively.

As shown from these tables that Apriori and FP-Growth algorithms find the same

frequent itemsets according to different thresholds. For instance, at 0.1 threshold in Ta-

ble 5.1, number of patterns found from Apriori and FP-Growth algorithms is 53. As we

see pattern ′127′ is the most commonly seen feature. Looking these result, we make an in-

ference that nodes have some common attributes with their neighbors such as at threshold

0.1 we obtain [’54’, ’78’, ’53’, ’22’, ’127’]. It means that this pattern has at least 6.755

relations among people. Also we know the meaning of these features such that ”78” is

a gender feature, [”53”, ”54”] education type features, [”22”] refers to education degree

and [”127”] refers to locale information. In addition, itemset mining algorithms show

the number of frequent itemsets. For example, pattern [”54”, ”78”, ”53”, ”22”, ”127”] is

shown in 21 transactions and it means 21 relations between nodes have this feature pattern

in the network.

Table 5.3 shows the execution time of the algorithms. If the threshold is low,

number of produced patterns increases. However, algorithms have small execution times.

45

Figure 5.6. Working procedure of MaxMiner algorithm.

Performance of Apriori algorithm is worse than other algorithms since it requires many

scanning from database.

5.3.1. Analysis of Itemset Mining Algorithms

This section provides analysis of Apriori, FP-Growth and Max-Miner algorithms.

Algorithm pseudocodes are given in Appendix A.

5.3.1.1. Analysis of Apriori Algorithm

Algorithms takes transaction database and threshold as input and gives frequent

itemsets as output. To find frequent {large 1− itemsets}, Fk = {i | i ε I ∧ σ (i}) ≥

46

Table 5.1. Result of the smallest ego network (3980) according to itemset mining

algorithms

Threshold
Algorithms

Apriori FP-Growth Max-Miner

Patterns # Patterns # Patterns

0.1 53

[’54’, ’78’,’53’, ’22’, ’127’]
[’55’, ’54’,’78’, ’53’, ’127’]
[’55’, ’54’, ’53’, ’127’]
[’54’, ’53’, ’22’, ’127’],
....
.....
[’78’], [’127’], [’53’]
[’55’], [’22’], [’14’]]

53

[’54’, ’78’, ’53’, ’22’, ’127’]
[’55’, ’54’, ’78’, ’53’, ’127’]
[’55’, ’54’,’53’, ’127’],
[’54’, ’53’, ’22’, ’127’]
.....
.....
[’78’], [’127’], [’53’]
[’55’], [’22’], [’14’]]

4

[’127’,’53’, ’54’, ’55’, ’78’]
[’127’, ’22’, ’53’, ’54’, ’78’]
[’127’, ’14’,’54’]
[’127’, ’14’, ’53’]

0.2 21

[’54’, ’78’, ’53’, ’127’]
[’127’, ’53’, ’78’],
[’54’, ’53’, ’78’],
[’54’], [’55’], [’78’],
[’127’], [’53’]

21

[’54’, ’78’, ’53’, ’127’]
[’127’, ’53’, ’78’],
[’54’, ’53’, ’78’],
[’54’], [’55’], [’78’],
[’127’], [’53’]

3
[’127’,’53’, ’54’, ’78’]
[’127’, ’53’, ’55’]
[’53’, ’54’, ’55’]

0.3 9

[’127’,’78’], [’54’, ’53’],
[’54’, ’78’], [’53’, ’127’],
[’54’, ’127’], [’54’],
[’78’], [’127’], [’53’]

9

[’127’,’78’], [’54’, ’53’],
[’54’, ’78’], [’53’, ’127’],
[’54’, ’127’], [’54’],
[’78’], [’127’], [’53’]]

5
[’54’,’78’],[’127’,’78’],
[’53’, ’54’], [’127’, ’53’],
[’127’, ’54’]]

0.4 3 [’127’,’78’],
[’78’], [’127’]

3 [’127’,’78’],
[’78’], [’127’]]

1 [’127’,’78’]

0.5 3 [’127’,’78’],
[’78’], [’127’]

3 [’127’,’78’],
[’78’], [’127’]

1 [’127’,’78’]

0.6 3 [’127’,’78’]
[’78’], [’127’]

3 [’127’,’78’],
[’78’], [’127’]

1 [’127’,’78’]

0.7 2 [’78’],[’127’] 2 [’78’],[’127’] 1 [’127’]

0.8 1 [’127’] 1 [’127’] 0 -

0.9 0 - 0 - 0 -

N × minsup formula is used (step 2 in pseudocode). This algorithm is affected by

some factors such as minsup threshold, number of items, and number of transactions

etc. To obtain frequent 1-itemsets support count of every item in database is found (step

2). To find support counts, every transaction is traversed so assuming that total num-

ber of transactions is N and average transaction width is w, O(Nw) time is required.

Candidate generation is implemented using a function called apriori gen (step 5). This

function follows two operations: Candidate Generation and Candidate Pruning. Several

methods are used to generate candidates. The most available method is Fk−1 x Fk−1

which propose if first (k − 2) items are identical of two (k − 2) itemsets, these itemsets

can be merged. For instance, Bread,Diaper and Bread,Milk are merged to form a

3-itemset Bread,Diaper,Milk. At worst case scenario,algorithm must merge every fre-

quent (k − 1) − itemsets to find k − itemsets. Therefore, cost of merging itemsets is:

cost of merging <
∑w

k=2(k − 2) |Fk−1|2

47

Table 5.2. Result of the second smallest ego network (698) according to itemset min-

ing algorithms.

Threshold
Algorithms

Apriori FP-Growth Max-Miner
Patterns # Patterns # Patterns

0.1 10

[’127’,’78’], [’55’, ’340’],
[’55’, ’53’], [’78’], [’126’],
[’77’], [’127’], [’53’],
[’55’], [’340’]

10
[’127’,’78’], [’55’, ’340’],
[’55’, ’53’], [’78’], [’126’],
[’77’], [’127’], [’53’],[’55’], [’340’]

5 [[’127’,
’78’], [’340’, ’55’], [’53’, ’55’], [’126’], [’77’]]

0.2 6 [[’78’], [’126’], [’77’], [’127’], [’53’], [’55’]] 6 [[’78’], [’126’], [’77’], [’127’], [’53’], [’55’]] 5 [[’126’],
[’127’], [’53’], [’55’], [’77’]]

0.3 2 [[’127’], [’78’]] 2 [[’127’], [’78’]] 1 [’127’]

0.4 1 [[’78’]] 1 [[’78’]] 0 -

0.5 0 - 0 - 0 -

0.6 0 - 0 - 0 -

0.7 0 - 0 - 0 -

0.8 0 - 0 - 0 -

0.9 0 - 0 - 0 -

Table 5.3. Execution time of algorithms according to given thresholds

After this step, It should be controlled whether created new itemsets have frequent

subsets. Candidate Pruning step checks all frequent subsets. Hash tree is used to keep can-

didate itemsets and depth of the tree is k maximum. Populating the hash tree of the item-

sets is O (
∑w

k=2 k |Ck|) check that k−2 subsets are frequent then O (
∑w

k=2 k(k − 2) |Ck|)
time is required. Now we have candidate itemsets and we should find support counts of

itemsets. To count the support of the candidates, the algorithm needs to make an addi-

tional pass over the data set (steps 6-10). The subset function is used to determine all the

candidate itemsets in Ck that are contained in each transaction t. In this section hash struc-

ture is used to keep number of each itemset. Itemsets are hashed into different buckets

and using this method instead of comparing every itemset with all transactions, itemsets

compared with available buckets. Assume that transactions have length |t| and size of

itemsets |k| then
(|t|
k

)
itemsets are produced. The cost for counting is O

(
N

∑
k

(
w
k

)
αk

)

where w width of maximum transaction and αk is the cost to update the support count of

a candidate k− itemset in the hash tree [32]. After counting their supports, the algorithm

48

eliminates all candidate itemsets whose support counts are less than minsup (step 12).

The algorithm terminates when there are no new frequent itemsets generated in step 13

Fk = φ [32].

5.3.1.2. Analysis of FP-Growth Algorithm

This algorithm takes database and threshold and it gives frequent itemsets and it

defines an empty list (F list) initially. FP-Growth algorithm uses a data structure called as

FP-Tree to store all data. It scans database two times; at first scan support values of items

are calculated, at second scan FP-Tree is constructed.

Algorithm consists of three steps; counting support values of items, creating FP-

Tree and obtaining frequent itemsets from FP-Tree.

From Step 1 to 4, support values of items are calculated. Like Apriori, every

transaction is traversed so assuming that total number of transactions is N and average

transaction width is w, O(Nw) time is required. At step 6, ordered items are added

to F list. Then, in step 8-10 each transaction is ordered according to F list and mean-

while FP-Tree is constructed with ConstructTree function. Tree creation depends on

the number of items in the database DB. To insert a transaction into tree, number of

frequent items in transaction is considered which is equal to O(|DB|). Then recursive

function Growth is called to obtain frequent itemsets from tree paths. This operation

takes O (header count2 ∗ depth of tree) times.

5.3.1.3. Analysis of Max-Miner Algorithm

Max-Miner algorithm extracts maximal frequent itemsets. It takes a transaction

set and minimum support specified by the user implicitly as input. Algorithm calls func-

tion GEN-INITIAL-GROUPS to obtain frequent 1 − itemsets as given pseudocode in

Appendix A. This function initially scan database and get frequent 1 − itemsets. Then

it generates new candidates. After that, in main function, for every candidate, dataset is

scanned and supports of all candidate groups are found.

Therefore, we start with GEN-INITIAL-GROUPS function to analyze algorithm.

Assume N shows the number of transactions, w is average transaction width, F1 denotes

49

the number of frequent 1-itemsets, l shows the length of the longest frequent itemset.

Scanning all transactions T requires O(Nw) like Apriori, then for each frequent item new

candidate groups are created. It means GEN-INITIAL-GROUPS takes O(Nw) times. This

is the first database scan in Max-Miner algorithm. After analysing of GEN-INITIAL-

GROUPS function, we return main function. It finds support values of all candidates

which are obtained from initial function. If candidate is not frequent, according to GEN-

SUB-NODES function, firstly infrequent items in t (g) are removed. Item g is shown as

h (g) + t (g). Then each item i in t (g) is merged with h (g) and check whether items

h (g) + {i} are frequent.

This operation takes (l − 1) ∗ N times. Number of items in t (g) is equal to l-

1 because first element in the longest itemset is in h (g) and others are in t (g) also N

denotes the transaction number. Therefore, all transactions are checked number of items

in t (g) times means (l − 1)∗N times. Other operations take less time than this operation.

GEN-SUB-NODES takes O ((l − 1) ∗N) times.

At final step, we examine main function Max-Miner, first scanning is performed

by initial function. Then while loop is executed until variable C is empty. At worst case

C becomes l (longest itemset size) because if longest itemset is frequent set of candidates

group Cnew becomes empty and it terminates the algorithm. In other case, if longest

algorithm is infrequent we have to generate itemset longer than n which is impossible.

It means that Max-Miner algorithm scans database at most 1+1 times. Considering all

functions, Max-Miner algorithm takes O (Nw) +O ((l − 1) ∗N) times.

5.4. Results

Patterns are found exactly the same from Apriori and FP-Growth algorithms.

Max-miner algorithm finds only maximal patterns so it is the most efficient algorithm

among these graphs. Apriori scans database many times so it takes a lot of time. FP-

Growth scans two times and FP-Tree creation affects the algorithm.

50

CHAPTER 6

EVALUATION OF IMPLEMENTED METHODS

Our experimental question was finding the most frequent feature patterns on friend-

ship relation of selected SNAP Facebook dataset. Therefore, we examined two different

kinds of algorithms which are from graph mining and itemset mining to obtain frequent

feature patterns. To evaluate these we modified algorithm or dataset. Both types of algo-

rithms have pros and cons. For itemset mining, graph transformation requires preprocess-

ing and after transformation, algorithms do not give exact graph structure. We extracted

frequent itemsets that commonly seen in graph nodes using itemset mining algorithms.

On the other hand, graph mining algorithms do not have to preprocess. It gives exact

pattern structure. Yet, graph mining algorithms require costly operations. So, if studies

do not need to graph structure, itemset mining can be a good option.

51

CHAPTER 7

CONCLUSION AND FUTURE WORK

Pattern mining algorithms obtain frequent patterns from different type of datasets

i.e. transactional or graph. The most efficient way to represent a social network is graph

data. However, the existent algorithms generally concentrate on single-labeled graphs.

They assume that nodes or edges have only one label. Yet, complex graphs like social

networks have more information than simple graphs, additionally, we have to consider

the size of these datasets. They are accepted as big data. Therefore, to deal with such

graphs become important.

In this thesis, we evaluate graph and itemset pattern mining algorithms on multi-

labeled graph data to obtain common feature patterns. To work with gSpan algorithm

which takes single-labeled graph as input, we separate entire graph into subgraphs whose

nodes become single-labeled. After applying the algorithm we obtain patterns which

include graph structure and common attributes. Moreover, we use Grami algorithm that

handles multi-labeled graphs to find patterns. This algorithm works well for small number

of features but performance of the algorithm is not well when the number of features

increases.

While graphs reflect the interaction of networks successfully, from the analytical

point of view, they face serious problems with algorithmic complexity. We try to convert

graph data to itemset data. After transformation, itemset mining algorithms are applied.

The result shows that itemset mining algorithms extract common attributes from all edges

in a complex graph. However, graph structure and node id information are not kept. As

a result, to benefit from transaction algorithms it needs preprocessing cost to transform

graph data and it loses graph structure. For this reason, each approach has advantages and

disadvantages according to desired patterns.

The result of experimental works shows that the most common feature patterns in

friendship relationships of Facebook dataset are 78-78 and 127-127. It means that feature

127 and 78 are shown frequently in relationships and former indicates the location and

latter represents gender information.

As future works; to mine the most frequent patterns;

52

1. on complex graph datasets; the complexity of existent solutions should be reduced,

• new graph based algorithms can be explored,

• existent algorithms work on static data, but SN’s environment changes very

dynamically, Artificial Intelligence and Machine Learning algorithms can present

new ways on this objective. If graph data is transformed into suitable data for-

mat Machine learning algorithms can be applied to classify patterns.

2. New data representation alternatives can be studied to support this huge and very

dynamic environment with their new algorithms.

53

REFERENCES

[1] C. C. Aggarwal. Data mining: the textbook. Springer, 2015.

[2] C. C. Aggarwal and J. Han. Frequent pattern mining. Springer, 2014.

[3] C. C. Aggarwal and H. Wang. Managing and Mining Graph Data. Springer Publishing

Company, Incorporated, 1st edition, 2010.

[4] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of

items in large databases. In Acm sigmod record, volume 22, pages 207–216. ACM,

1993.

[5] R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc.

20th int. conf. very large data bases, VLDB, volume 1215, pages 487–499, 1994.

[6] R. J. Bayardo Jr. Efficiently mining long patterns from databases. ACM Sigmod Record,

27(2):85–93, 1998.

[7] B. Bringmann and S. Nijssen. What is frequent in a single graph? Advances in Knowl-

edge Discovery and Data Mining, pages 858–863, 2008.

[8] B. Cule, B. Goethals, and T. Hendrickx. Mining interesting itemsets in graph datasets.

In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 237–

248. Springer, 2013.

[9] A. Dhiman and S. Jain. Frequent subgraph mining algorithms for single large

graphs a brief survey. In Advances in Computing, Communication, & Automation

(ICACCA)(Spring), International Conference on, pages 1–6. IEEE, 2016.

[10] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis. Grami: Frequent subgraph

and pattern mining in a single large graph. Proceedings of the VLDB Endowment,

7(7):517–528, 2014.

[11] M. Fiedler and C. Borgelt. Subgraph support in a single large graph. In Data Mining

54

Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference

on, pages 399–404. IEEE, 2007.

[12] M. Flores-Garrido, J.-A. Carrasco-Ochoa, and J. F. Martı́nez-Trinidad. Agrap: an al-

gorithm for mining frequent patterns in a single graph using inexact matching.

Knowledge and Information Systems, 44(2):385–406, 2015.

[13] P. Fournier-Viger, J. C.-W. Lin, B. Vo, T. T. Chi, J. Zhang, and H. B. Le. A survey

of itemset mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, 2017.

[14] M. Fukuzaki, M. Seki, H. Kashima, and J. Sese. Finding itemset-sharing patterns in a

large itemset-associated graph. In Pacific-Asia Conference on Knowledge Discov-

ery and Data Mining, pages 147–159. Springer, 2010.

[15] E. Gudes. Graph and web mining-motivation, applications and algorithms. Interna-

tional Journal on Software Bug Management, 2010.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In

ACM sigmod record, volume 29, pages 1–12. ACM, 2000.

[17] T. Hendrickx, B. Cule, and B. Goethals. Mining cohesive itemsets in graphs. In Dis-

covery Science, pages 111–122. Springer, 2014.

[18] A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining fre-

quent substructures from graph data. Principles of Data Mining and Knowledge

Discovery, pages 13–23, 2000.

[19] T. Karunaratne and H. Bostrom. Can frequent itemset mining be efficiently and effec-

tively used for learning from graph data? In Machine Learning and Applications

(ICMLA), 2012 11th International Conference on, volume 1, pages 409–414. IEEE,

2012.

[20] V. Krishna, N. R. Suri, and G. Athithan. A comparative survey of algorithms for fre-

quent subgraph discovery. Current Science, pages 190–198, 2011.

55

[21] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Data Mining, 2001.

ICDM 2001, Proceedings IEEE International Conference on, pages 313–320.

IEEE, 2001.

[22] M. Kuramochi and G. Karypis. Grew-a scalable frequent subgraph discovery algo-

rithm. In Data Mining, 2004. ICDM’04. Fourth IEEE International Conference on,

pages 439–442. IEEE, 2004.

[23] M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. Data

mining and knowledge discovery, 11(3):243–271, 2005.

[24] K. Lai and N. Cerpa. Support vs. confidence in association rule algorithms. In Pro-

ceedings of the OPTIMA Conference, Curicó, 2001.

[25] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.

[26] Y. Mitsunaga, T. Washio, and H. Motoda. Mining quantitative frequent itemsets using

adaptive density-based subspace clustering. Transactions of the Japanese Society

for Artificial Intelligence, 21:439–449, 2006.

[27] Y. Miyoshi, T. Ozaki, and T. Ohkawa. Frequent pattern discovery from a single graph

with quantitative itemsets. In Data Mining Workshops, 2009. ICDMW’09. IEEE

International Conference on, pages 527–532. IEEE, 2009.

[28] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from graphs

with feature vectors. In Proceedings of the 2009 SIAM International Conference

on Data Mining, pages 593–604. SIAM, 2009.

[29] C. Pasquier, F. Flouvat, J. Sanhes, and N. Selmaoui-Folcher. Attributed graph mining

in the presence of automorphism. Knowledge and Information Systems, 50(2):569–

584, 2017.

[30] I. Robinson, J. Webber, and E. Eifrem. Graph databases: new opportunities for con-

nected data. ” O’Reilly Media, Inc.”, 2015.

56

[31] J. Sese, M. Seki, and M. Fukuzaki. Mining networks with shared items. In Proceedings

of the 19th ACM international conference on Information and knowledge manage-

ment, pages 1681–1684. ACM, 2010.

[32] P.-N. Tan et al. Introduction to data mining. Pearson Education India, 2006.

[33] L. Thomas, S. Valluri, and K. Karlapalem. Isg: Itemset based subgraph mining. Tech-

nical report, Technical Report, IIIT, Hyderabad, December2009, 2009.

[34] G. Xu, Y. Zong, and Z. Yang. Applied data mining. CRC Press, 2013.

[35] X. Yan and J. Han. gspan: Graph-based substructure pattern mining. In Data Mining,

2002. ICDM 2003. Proceedings. 2002 IEEE International Conference on, pages

721–724. IEEE, 2002.

[36] M. J. Zaki, W. Meira Jr, and W. Meira. Data mining and analysis: fundamental con-

cepts and algorithms. Cambridge University Press, 2014.

57

APPENDIX A

PSEUDOCODE OF ALGORITHMS

Algorithm 1 Frequent Subgraph Mining (Grami)

Input: A graph G and the frequency threshold τ ;
Output: All subgraph S of G such that SG(S) ≥ τ

1: result ← θ
2: Let fEdges be the set of all frequent edges of G
3: for each eεfEdges do
4: result ← result ∪ SubgraphExtension(e,G, τ, fEdges)
5: remove e from G and fEdges

6: return result

Algorithm 2 SubgraphExtension (Grami)

Input: A subgraph S of a graph data G, the frequency threshold τ and the set of frequent
edges fEdges of G;
Output: All frequent subgraphs of G that extend S

1: result ← S, candidateSet ← θ
2: for each edge e in fEdges and node u of S do
3: if e can be used to extend u then
4: Let ext be the extension of S with e
5: if ext is not already generated then
6: candidateSet ← candidateSet ∪ ext
7: for c ε candidateSet do
8: if SG(c) ≥ τ then
9: result ← result ∪ SubgraphExtension(c, G, τ, fEdges)

10: return result

58

Algorithm 3 SubgraphExtension (Modified Grami)

Input: A subgraph S of a graph data G, the frequency threshold τ and the set of frequent
edges fEdges of G;
Output: All frequent subgraphs of G that extend S

1: result ← S, candidateSet ← θ
2: for each edge e in fEdges and node u of S do
3: if e can be used to extend u then
4: Let ext be the extension of S with e
5: if ext does not include same node items then
6: if ext is not already generated then
7: candidateSet ← candidateSet ∪ ext
8: for c ε candidateSet do
9: if SG(c) ≥ τ then

10: result ← result ∪ SubgraphExtension(c, G, τ, fEdges)

11: return result

Algorithm 4 BFS Itemset Transformation Algorithm

Input: Graph: Ego Graph;
start: Starting vertex
Output: Text file containing transactions

1: for each v ∈ Graph do
2: visited vertex[v] := False

3: end for
4: Queue := φ
5: Enqueue(Queue, start)
6: while Queue is not empty do
7: vertex := Dequeue(Queue)

8: if vertex not in visited vertex then
9: visited vertex[vertex] := True

10: for each w in Graph.Adj[vertex] do
11: if w is not in visited vertex then
12: node features := features of vertex
13: neighbor features := features of v
14: for each feature in node features do
15: if feature in neighbor features then
16: add feature to common features
17: end if
18: end for
19: if common features > 0 then
20: write common features to file
21: end if
22: Enqueue(Queue, w)

23: end if
24: end for
25: end if
26: end while

59

Algorithm 5 Apriori Algorithm

Input:
D: transaction database;
min sup: Minimum support threshold
Output: frequent itemsets

1: k = 1
2: Fk = {large 1− itemsets} ;
3: repeat
4: k = k + 1
5: Ck = apriori gen(Fk−1); // New candidates are generated
6: for each transaction t ∈ D do begin
7: Ct = subset(Ck, t); // Candidates contained in t
8: for each candidate itemset c ∈ Ct do
9: σ (c) = σ (c) + 1; // Increment support count

10: end for
11: end for
12: Fk = {c ∈ Ck|c.count ≥ min sup}
13: until Fk = φ
14: return F =

⋃
k Fk;

Algorithm 6 FP-Growth Algorithm

Procedure: FPGrowth(DB, ξ)
Define and clear F-List: F[]

1: for each transaction Ti in DB do
2: for each item aj in Ti do
3: F [ai] + +;

4: end for
5: end for
6: Sort F[];
7: Define and clear the root of FP-tree : r;
8: for each transaction Ti in DB do
9: Make Ti ordered according to F ;

10: Call ConstructTree(Ti, r);

11: end for
12: for each item ai in I
13: for each transaction Ti in DB do
14: Call Growth(r, ai, ξ)

15: end for

60

Algorithm 7 Max-Miner Algorithm

Input:
D: transaction database;
min sup: Minimum support threshold
Output: set of maximal frequent itemsets
Define and clear set of candidate groups C

1: Set of itemsets F ← Gen Initial Groups(D,C)
2: while C is non-empty do
3: scan D to count the support of all candiate groups in C
4: for each g εC such that h (g) ∪ t (g) is frequent do
5: F = F ∪ {h (g) ∪ t (g)}
6: Set of Candidate Groups Cnew ← {}
7: for each g εC such that h (g) ∪ t (g) is infrequent do
8: F ← F ∪Gen Sub Nodes(g, Cnew)

9: C ← Cnew

10: remove from F any itemset with a proper superset in F
11: remove from C any group g such that h (g) ∪ t (g) has a superset in F .

12: return F

61

