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ABSTRACT

GENERALISED BAYESIAN MODEL SELECTION USING
REVERSIBLE JUMP MARKOV CHAIN MONTE CARLO

The main objective of this thesis is to suggest a general Bayesian framework for

model selection based on reversible jump Markov chain Monte Carlo (RJMCMC) algo-

rithm. In particular, we aim to reveal the undiscovered potentials of RJMCMC in model

selection applications by exploiting the original formulation to explore spaces of different

classes or structures and thus, to show that RJMCMC offers a wider interpretation than

just being a trans-dimensional model selection algorithm.

The general practice is to use RJMCMC in a trans-dimensional framework e.g.

in model estimation studies of linear time series, such as AR and ARMA and mixture

processes, etc. In this thesis, we propose a new interpretation on RJMCMC which reveals

the undiscovered potentials of the algorithm. This new interpretation, firstly, extends the

classical trans-dimensional approach to a much wider meaning by exploring the spaces

of linear and nonlinear models in terms of the nonlinear (polynomial) time series mod-

els. Polynomial process modelling is followed by the definition of a new type of RJM-

CMC move that performs transitions between various generic model spaces irrespective

of model sizes. Then, we apply this new framework to the identification of Volterra sys-

tems with an application of nonlinear channel estimation of an OFDM communication

system. The proposed RJMCMC move has been adjusted to explore the spaces of differ-

ent distribution families by matching the common properties of the model spaces such as

norm, and this leads us to perform a distribution estimation study of the observed real-life

data sets including, impulsive noise in power-line communications, seismic acceleration

time series, remote sensing images, etc.

Simulation results demonstrate the remarkable performance of the proposed method

in nonlinearity degree estimation and in transitions between different classes of models.

The proposed method uses RJMCMC in an unorthodox way and reveals its potential to

be a general estimation method by performing the reversible jump mechanism between

spaces of different model classes.
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ÖZET

TERSİNE ATLAMALI MARKOV ZİNCİRİ MONTE CARLO
KULLANARAK GENELLEŞTİRİLMİŞ BAYESÇİ MODEL SEÇİMİ

Bu tezin temel amacı, tersine atlamalı Markov zinciri Monte Carlo (RJMCMC)

algoritmasına dayanan model seçimi için genel Bayesçi bir çerçeve önermektir. Özellikle,

farklı sınıfların veya yapıların uzaylarını keşfetmek şeklindeki orijinal formülasyonundan

istifade ederek RJMCMC’nin keşfedilmemiş potansiyellerini model seçim uygulamala-

rında ortaya koymayı ve böylece RJMCMC’nin sadece boyutlar arası bir model seçim

algoritması olmaktan daha geniş bir yorum sunduğunu göstermeyi amaçlıyoruz.

Genel uygulama, RJMCMC’yi boyutlar arası çerçevede, örneğin; AR ve ARMA

ve karışım süreçleri gibi doğrusal zaman serilerinin model kestirimi çalışmalarında kul-

lanmak yönündedir. Biz bu tezde, RJMCMC üzerine, algoritmanın keşfedilmemiş potan-

siyelini ortaya koyan yeni bir yorum öneriyoruz. Bu yeni yorum, önce doğrusal ve

doğrusal olmayan modellerin uzaylarını, doğrusal olmayan (polinom) zaman serisi mo-

delleri ile araştırarak, klasik boyutlar arası yaklaşımdan çok daha derin bir anlama genişlet-

mektedir. Polinom süreç modelleme çalışmasını takiben, model boyutlarına bakılmak-

sızın çeşitli genel model uzayları arasında geçişler gerçekleştiren yeni tip bir RJMCMC

geçişinin tanımı yapılmıştır. Ardından, bu yeni yaklaşımı bir OFDM iletişim sisteminin

doğrusal olmayan kanal kestirimi uygulaması ile Volterra sistemlerinin tanılanmasında

kullanılmıştır. Önerilen RJMCMC geçişi, model uzaylarının ortak özelliklerini (norm

gibi) eşleştirerek farklı dağılım ailelerinin uzaylarını keşfetmek üzere ayarlanmış ve bu,

bize, gözlemlenen gerçek hayat veri setleri için, örneğin; güç hattı iletişim sistemlerindeki

dürtüsel gürültü, sismik ivme zaman serileri, uzaktan algılama imgeleri vb., bir dağılım

kestirimi çalışması yapmaya yöneltmiştir.

Benzetim sonuçları, doğrusal olmayan derece tahmininde ve farklı model sınıfları

arasındaki geçişlerde önerilen yöntemin olağanüstü performansını ortaya koymaktadır.

Önerilen yöntem, RJMCMC’yi alışılagelmemiş bir şekilde kullanmakta ve farklı model

sınıflarının uzayları arasında tersine atlama mekanizmasını gerçekleştirerek genel bir kes-

tirim yöntemi olma potansiyelini ortaya koymaktadır.
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Model Selection can be defined as the task of selecting the best (or the most suit-

able) statistical model from a set of candidate models, given data and over the years,

several approaches have been proposed for this purpose. Approaches such as Akaike In-

formation Criterion (AIC) , Bayesian Information Criterion (BIC) , Mallow’s Cp, Bayes

factors, etc. use a decision criterion by evaluating different properties of the models in

the model space (Kadane and Lazar, 2004). A problem arises when the number of candi-

date models in the model space is high. Thus, it is difficult to decide which model is the

best or which criterion you are going to deal with to select the most useful model for the

associated problem.

Approaches stated above can be classified as either frequentist or Bayesian. Fre-

quentist approaches use data dependent procedures and in decision procedure, never take

the prior and the probability of the hypothesis into account. On the other hand, if the selec-

tion criterion is based on prior information, the model selection is named to be Bayesian

Model Selection. Suppose we have a set of k models such as M = {M1, . . . ,Mk} all of

which have parameters Θ = {θ1, . . . , θk} under data Y . Data Y has density f (Y |θk,Mk)

where θk is a vector of unknown variables for the model Mk. The Bayesian formula for

the posterior density of model Mk given data Y can be written as (Chipman et al., 2001)

f (Mk|Y) =
f (Y |Mk) f (Mk)∑
k f (Y |Mk) f (Mk)

(1.1)

where the posterior model probability f (Mk|Y) is obtained by integrating out f (Mk, θk|Y)

over Θ. Additionally, f (Mk) is the model prior probability and the marginal likelihood

1



f (Y |Mk) can be obtained as

f (Y |Mk) =

∫
f (Y |θk,Mk) f (θk|Mk)dθk. (1.2)

Modelling posterior distributions f (M1|Y), . . . , f (Mk|Y) is the main object of in-

terest for the Bayesian model selection. By treating f (Mk|Y) as a measure of the truth of

model Mk, a natural and simple strategy for model selection is to choose the most proba-

ble Mk, the one for which f (Mk|Y) is the largest. This strategy is named as the maximum

posterior estimation (Chipman et al., 2001).

Bayesian methodology (1.1) involves calculation of summations (or integrations)

such as the normalization term,
∑

k f (Y |Mk) f (Mk), the denominator of (1.1), which may

be analytically intractable. Numerical and Monte Carlo methods provide a solution to

this problem. Monte Carlo simulation is a method that draws n i.i.d samples from a target

distribution f (·). These n samples are used to approximate these integrals or sums that

converge to the real value when n tends to infinity. When the target distribution does

not have a standard form, it is hard to apply direct sampling or inverse sampling meth-

ods and more sophisticated sampling techniques are needed such as; rejection sampling,

importance sampling and Markov Chain Monte Carlo (MCMC) (Andrieu et al., 2003).

MCMC uses certain properties of Markov chain theory such as irreducibility and

aperiodicity that ensures convergence to a stationary distribution to construct the correct

posterior using both prior information and the information from observations. There are

three main methods that implement the properties of MCMC algorithm: The Metropolis

(Metropolis et al., 1953) algorithm, The Metropolis-Hastings (MH) algorithm (Hastings,

1970) and The Gibbs Sampler (Geman and Geman, 1984).

Reversible Jump Markov Chain Monte Carlo (RJMCMC) is first introduced by

(Green, 1995) as a model identification tool. RJMCMC can also be defined as a general-

ization and an extended version of the classical MH method which allows the sampler to

jump between spaces of different dimensionality. In particular, in cases where the parame-

ter dimension is not known, it provides means to sample and hence estimate the dimension

of the parameter. This is achieved by doing Markov chain sampling in spaces of varying

dimensions. RJMCMC achieves this by treating the dimension as a new parameter in the

model parameter vector.

In Figure 1.1, a comparison between MCMC and RJMCMC is depicted. In

MCMC, there is only a single parameter space θ with dimension k, whereas RJMCMC

performs a search in multiple parameter subspaces, θt, each of which has dimension kt.
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(a) MCMC (b) RJMCMC

Figure 1.1. Illustration of (a) MCMC and (b) RJMCMC.
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As stated above, RJMCMC is able to change the dimension of the state space in a

move. This move is called a reversible jump. As it can be understood from the name of the

algorithm, any chosen move which is able to change the dimension should be reversible

so that the algorithm can switch back to the recent space with a later move (Smith, 2007).

Any move can be defined in RJMCMC as far as it is reversible. This gives the algorithm

a powerful flexibility and makes the acceptance ratio analytically tractable.

One key advantage of RJMCMC is to determine the “best" model by searching

the space through an intelligent random walk that avoids doing an exhaustive search and

hence it achieves computational gain compared to other classical methods performing an

exhaustive search. At this point, one might argue that training separate MCMC samplers

for each of the candidate model spaces and comparing them afterwards would be com-

putationally more advantageous. However, it can clearly be stated that using a single

Markov chain with RJMCMC could be simpler when there are unknown (or dramatically

large) number of candidate models. Furthermore, in cases where the number of models

is small, by efficiently choosing the proposal distributions, one can provide better mixing

between candidate model spaces (i.e. faster convergence to the stationary distribution)

and incorporating the reversible jump mechanism would be advantageous.

In the literature, the general practice is to use RJMCMC in linear model estimation

problems. In (Troughton and Godsill, 1998), model uncertainty problem for autoregres-

sive (AR) models has been studied by exploring the spaces for different AR orders. They

have developed their approach by proposing two types of proposals which are partially

and fully conditional. Apart from AR models, RJMCMC has also been used in autore-

gressive integrated moving average (ARIMA) models (Ehlers and Brooks, 2004) and in

fractional ARIMA (f-ARIMA) models (Eğri et al., 2010).

In addition to linear model estimation studies, RJMCMC has also been applied to

the problems of estimating the nonlinear threshold MA (TMA) models (Xia et al., 2010)

and in threshold autoregressive moving average (TARMA) models (Liang et al., 2017).

Furthermore, (Troughton and Godsill, 2001) employed RJMCMC in restoring nonlinearly

distorted AR signals. For financial time series models, a threshold nonlinearity test in

terms of GARCH and threshold GARCH (TGARCH) models have been discussed in (So

et al., 2005). RJMCMC has also been used to track a variable number of targets with

particle filters which are known to be successful in handling complicated and nonlinear

measurement models (Khan et al., 2005).

Another popular application of RJMCMC is to analyze mixtures of distributions.

In (Richardson and Green, 1997), RJMCMC has been employed to estimate the number
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of Gaussians in a mixture process, where (Viallefont et al., 2002; Salas-Gonzalez et al.,

2010) have performed similar estimations for the cases of Poisson and symmetric α-stable

distributions, respectively.

Apart from the popular applications above, RJMCMC has been used in other var-

ious applications such as detection of clusters in disease maps (Knorr-Held and Raßer,

2000), graphical models based variable selection and automatic curve fitting (Lunn et al.,

2009), log-linear model selection (Dellaportas and Forster, 1999), non-parametric drift

estimation (Van Der Meulen et al., 2014), delimiting species using multilocus sequence

data (Rannala and Yang, 2013), random effect models (Oedekoven et al., 2016), and gen-

eration of lane-accurate road network maps from vehicle trajectory data (Roeth et al.,

2017).

Despite having various application areas, all these studies have used RJMCMC in

a limited perspective, particularly, within the same classes of models and trans-dimensional

cases. However, the original formulation of Green lends itself to a much wider interpreta-

tion than just exploring spaces (“jumping" in RJMCMC jargon) of different dimensions.

A very interesting and important example that we study extensively in this thesis: the

same formulation can be used to explore spaces of different generic models such as linear

and nonlinear variable spaces. This is more than just exploring spaces of different sizes

corresponding to the dimension of the parameter vector.

1.2. Objectives of the Thesis

In this thesis, our most important aim is to reveal unknown potentials of RJMCMC

algorithm as a general Bayesian model selection method beyond trans-dimensionality.

Particularly, in order to demonstrate the capability of RJMCMC in exploring not only

model spaces of different dimensionality but also different generic models, we theoreti-

cally aim

• to propose new types of RJMCMC moves which extend the classical trans-dimensional

approaches to a wider meaning with applications to a system identification study for

Volterra system models,

• to perform model estimation studies on nonlinear time series models, firstly, by

proposing a perspective for classical trans-dimensional approaches in transitions

between linear and nonlinear model spaces.
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• to generalize the proposed approach and to utilize RJMCMC in exploring the spaces

of different generic models with applications in exploring different distribution fam-

ilies.

• to show that RJMCMC can be used to test the nonlinearity of any observed data set

by estimating the polynomial nonlinearity degree of the time series.

• and finally, to highlight future research directions on Bayesian signal processing

with RJMCMC algorithm.

These theoretical aims have the following application areas also studied in this thesis:

• Estimation of nonlinear time series models with polynomial nonlinearity which are

polynomial autoregressive (PAR), polynomial moving average (PMA) and poly-

nomial autoregressive moving average (PARMA) models

• Volterra system identification, the estimation of nonlinear communication channels

expressed in terms of discrete time baseband Volterra model

• Modelling distributions of various real life data, in particular distribution of impul-

sive noise

• Modelling the distribution of wind speed measurements of various places in the

world

1.3. Organization of the Thesis

We start our discussion in Chapter 2 with the general introduction of Bayesian

model selection methods. The main focus is the Metropolis-Hastings algorithm and its

extension to a reversible jump perspective. The new interpretation of RJMCMC will also

be addressed in this chapter.

Chapter 3 introduces the first application for the new perspective of RJMCMC. In

order to show the use of the classical trans-dimensional RJMCMC in transitions between

linear and nonlinear models, we have firstly performed nonlinear model estimation studies

of PAR, PMA and PARMA. In addition to the system memory and coefficients, estimating

the nonlinearity degree of the models is an important contribution of the proposed method.

Chapter 4 extends the model estimation studies of the previous chapter to a sys-

tem identification study. In this chapter, we study the identification of Volterra systems
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with RJMCMC. We propose a new type of move which performs transitions between

spaces of different structural models irrespective of model dimensions. This move is

called the switch move. As a case study, we investigate the performance of the proposed

method on synthetically generated data including orthogonal frequency division multi-

plexing (OFDM) communications over a nonlinear channel.

Chapter 5 includes distribution modelling of a given noise/data with RJMCMC.

Firstly, synthetically generated data sets are modeled with RJMCMC. We use the pro-

posed method to choose among various impulsive distribution families, such as symmet-

ric α-Stable, generalized Gaussian and Student’s t to model both synthetically generated

noise processes and real life measurements on powerline communications (PLC) impul-

sive noises, 2-D DWT coefficients and seismic acceleration time series. Moreover, an-

other simulation scenario is implemented in order to show the modelling performance

of the algorithm when the distribution in question is not symmetrical and positive semi-

infinite (envelope distributions). To achieve this, we create a distribution family space

with Nakagami, κ, Gamma, Weibull and Generalized Rayleigh distribution families. The

algorithm is tested to model distribution of real life measurements of wind speed from

various locations around the world.

We summarize and conclude the study presented in this thesis in Chapter 6. In the

end, current and future research directions with RJMCMC are given.
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CHAPTER 2

METHODOLOGY: BAYESIAN MODEL SELECTION

In this chapter, general information about Bayesian model selection will be pre-

sented in a perspective extending from Bayes Theorem to RJMCMC. In addition, the

linear AR model estimation study, which has a large preliminary in Bayesian model un-

certainty applications in the literature, will be presented as a toy example. This toy ex-

ample is crucial to see how the classical trans-dimensional RJMCMC approach works in

solving the model uncertainty applications and in estimating the models in question. The

following chapters will make references to this development and show how it is extended

for more complicated problems. The chapter will be concluded with a brief description

of the proposed method, the trans-space RJMCMC.

2.1. Bayes Theorem

Suppose we are given observed data y with parameter θ. The joint probability

distribution for θ and y can be expressed in terms of a product of two densities as (Gelman

et al., 2003)

f (θ, y) = f (θ) f (y|θ) (2.1)

where f (θ) refers to the prior distribution and p(y|θ) is the data distribution. Then, by

using the basic property of the conditional probability, Bayes’ rule, yields the posterior

density (Gelman et al., 2003)

f (θ|y) =
f (y|θ) f (θ)

f (y)
(2.2)

where f (y) is the total probability and can be expressed as
∫

f (y|θ) f (θ)dθ. The total

probability, f (y), does not depend on the parameter θ and is considered to be constant for

a fixed y. Thus, another representation of Bayes’s rule which omits the denominator of
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the equation (2.2), yields the unnormalized posterior density (Gelman et al., 2003)

f (θ|y) ∝ f (y|θ) f (θ). (2.3)

2.2. Bayes Factors

Let us suppose that we have two models, M1 and M2, with parameter vectors θ1

and θ2. The aim is to select the best model among these two models given the observed

data y. Then, by using the Bayes theorem in (2.2), the posterior probability of the model

M1 can be easily obtained as

f (M1|y) =
f (y|M1) f (M1)

f (y|M1) f (M1) + f (y|M2) f (M2)
(2.4)

where f (y|M1) refers to the marginal likelihood distribution for model M1. Similarly, the

same can be obtained for model M2.

In order to create a decision mechanism for questioning whether the observed

data support M2 over M1 or not, posterior odds which are the ratio of their posteriors are

measured. From (2.4), we can easily write

f (M2|y)
f (M1|y)

=

[
f (y|M2)
f (y|M1)

] [
f (M2)
f (M1)

]
(2.5)

where the term on the left-hand side is the posterior odds, the first term on the right-hand

side is named as Bayes factor for M2 against M1, denoted by B21 and is also the ratio of

the marginal likelihoods of the models. Moreover, the last term is the prior odds and thus,

(2.5) can be rewritten as

Posterior Odds = Bayes Factor × Prior Odds. (2.6)

Posterior odds are equal to Bayes factor when the models are equally likely (prior

odds are equal to 1). Usage and evaluation of the Bayes factors are studied first by Jeffreys
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who published some rules to decide between models (Jeffreys, 1998). According to these

rules, when Bi j > 1 data are more likely to be modeled with Mi, whereas for Bi j < 1

model M j is favourable. Table 2.1 shows the Jeffreys’ rules for evidence of Bayes factors

which is an example of subjective, qualitative partitioning of decision regions of Bayes

factor values (Raftery, 1995).

In some elementary cases, the marginal likelihood or the posterior distributions

can be easily evaluated analytically. However, in many cases, these distributions require

to solve intractable integrals and evaluating Bayes factors become impossible. Using

methods which provide approximations to these intractable integrals, makes it possible

to evaluate Bayes factors to decide between models. To name a few, Laplace’s Method

performs an asymptotic approximation by assuming that the posterior is highly peaky at

its maximum while Schwarz criterion (or namely BIC) performs a rough approximation

to the logarithm of the Bayes factors by avoiding using priors in the calculation of the

marginal likelihoods (Kass and Raftery, 1995).

Table 2.1. Evidence for Bayes factors

Bayes Factor Bi j Evidence for Mi
1 ≤ Bi j ≤ 3 not worth more than a bare mention

3 ≤ Bi j ≤ 10 positive
10 ≤ Bi j ≤ 100 strong

Bi j > 100 decisive

Another important approach is to estimate (or to approximate) the target distribu-

tion of interest (likelihood, posterior, etc.) via direct or inverse sampling by performing

Monte Carlo simulations. The problem occurs when it is not possible to sample directly

from target distribution of interest. Instead, other distinguished methods such as impor-

tance sampling, MCMC methods, etc., which enable to sample from a distribution which

becomes closer and closer to the target distribution at each iteration, can be used in these

cases.

2.3. Markov Chain Monte Carlo Methods

The key property of MCMC methods is to create a Markov process the station-

ary distribution π of which is equal to the target distribution of interest, even when we

10



have non-informative priors and likelihoods with systems that cannot be observed di-

rectly or with missing data (Besag et al., 1995). If we run the simulation long enough,

the distribution of our samples is close to this stationary distribution. This makes MCMC

fundamentally more outstanding than the other sampling algorithms such as importance

sampling and the like (Gelman et al., 2003).

We give an explanation about the notation. A probability distribution is used

sometimes for the probability density function (pdf) but generally to deal with a more

complete installation of the probabilities to all measurable subsets of outcomes. In the

rest of the dissertation, π (or f ) will be used to denote both probability distribution and

density in order to obtain a clear and simpler notation.

Firstly, suppose that a probability distribution π has a density with respect to a

measure µ, and let π be of the form (Tierney, 1998)

π(dx) = π(x)µ(dx) (2.7)

where π(x) represents the probability density.

In order to use the key properties of MCMC, we need to create a Markov chain

which is irreducible, aperiodic and time reversible. In particular,

• a Markov chain is irreducible with stationary distribution π, if it has a nonzero

probability to enter any states which π assigns a positive probability for any initial

states.

• a state of Markov chain has period d if any return to this state is the multiple of d

time steps. If this multiple d is equal to 1, the chain is aperiodic.

If a Markov chain with stationary distribution π, is irreducible and aperiodic, then π is the

unique stationary distribution and π is also the equilibrium distribution (Tierney, 1994;

Andrieu et al., 2003). One can easily design MCMC samplers providing the Markov

chain satisfies the detailed balance (or reversibility) equation (sufficient but not necessary)

which is (Tierney, 1998)

π(dx)P(x, dx′) = π(dx′)P(x′, dx) (2.8)

where π(dx) and π(dx′) are the stationary distributions for states x and x′, respectively,
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and P(x, dx′) is the Markov transition kernel1 from state x to x′.

The three main methods which implement the properties above will be examined

in this sub-section. First, MCMC methodology will be constructed by jointly providing

details of the Metropolis-Hastings (MH) algorithm (Hastings, 1970) which is the gener-

alization of the Metropolis (Metropolis et al., 1953) algorithm. Then, the Gibbs Sampler

(Geman and Geman, 1984) which is a special case of The MH algorithm will be exam-

ined.

2.3.1. The Metropolis-Hastings Algorithm

The MH algorithm accommodates many alternative transition kernels, P, in order

to have a Markov chain which has the properties above. The construction, at a given state

x is as follows. A candidate state x′ is proposed from a probability distribution q(dx′|x).

Let us assume that the transition kernel which satisfies the properties above has

been constructed in two steps; firstly proposing a new candidate space x′ and then ac-

cepting this state transition with a probability of α(x → x′). Thus, the transition kernel

is

P(x, dx′) = q(dx′|x)α(x→ x′) (2.10)

where q(dx′|x) is the proposal distribution which has a density with respect to a measure

in the same form that is shown in (2.8), and the Markov chain remains at the same state

with probability 1 − α(x→ x′).

In the MH algorithm, the main objective is to derive an expression for the accep-

tance ratio, α(x → x′), which achieves the stated aim of providing the detailed balance.

The transition kernel P satisfies the time reversibility condition in (2.8). So, substituting

1Definition: (Tierney, 1994) A Markov transition kernel, P(Xn, A), is a conditional probability repre-
sentation when defining a transition from the state Xn to the next state Xn+1 which is a member of A. The
transition kernel is defined by

P(Xn, A) = P{Xn+1 ∈ A|X0, . . . , Xn} (2.9)

for all measurable sets A.
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the expression in (2.10) into (2.8) gives

π(dx)q(dx′|x)α(x→ x′) = π(dx′)q(dx|x′)α(x′ → x). (2.11)

The time reversibility equality in (2.11) can be written as

α(x→ x′) = α(x′ → x)
π(dx′)q(dx|x′)
π(dx)q(dx′|x)

(2.12)

= α(x′ → x)r(x′ → x). (2.13)

As (Peskun, 1973) proved for the finite state space case, to make the acceptance

ratio as large as possible, α(x→ x′) is selected as

α(x→ x′) = min {1, r(x′ → x)} = min
{

1,
π(dx′)q(dx|x′)
π(dx)q(dx′|x)

}
= αMH(x→ x′). (2.14)

(Tierney, 1998) extends the results of (Peskun, 1973) from finite state space case

to the general state space case. (Tierney, 1998) states that the acceptance ratio in (2.14)

is optimal in the sense that it minimizes the asymptotic variance of the sample path aver-

ages among all acceptance rates satisfying (2.11). This acceptance ratio is the maximal

Metropolis-Hastings kernel for P.

Corollary 2.1 (Sawyer (2006), Corollary 2.4.1, pg. 9) The function α(x→ x′) in (2.14)

is the pointwise maximum value of all functions with 0 ≤ α(x → x′) ≤ 1 that satisfy the

reversibility condition in (2.8) for P(x, dx′) in (2.10).

Proof Let Q be the set of all functions β(x→ x′) such that 0 ≤ β(x→ x′) ≤ 1 and

π(dx)q(dx′|x)β(x→ x′) = π(dx′)q(dx|x′)β(x′ → x) (2.15)

for all x, x′ ∈ X. Note that if β1(x → x′) and β2(x → x′) both satisfy (2.15), then so

does β3(x → x′) = max{β1(x → x′), β2(x → x′)}, and similarly so does α(x → x′) =

maxβ∈Q β(x→ x′).

(i) If π(dx)q(dx′|x) = 0 then β(x→ x′) can take any value due to (2.15) is 0. α(x→ x′)

must be selected as 1, in order to provide the fact α(x→ x′) = maxβ∈Q β(x→ x′).
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(ii) If 0 ≤ π(dx′)q(dx|x′) ≤ π(dx)q(dx′|x) then r(x′ → x) ≤ 1. From the definition

β(x → x′) = β(x′ → x)r(x′ → x), α(x′ → x) must be 1 in order to provide the fact

α(x→ x′) = maxβ∈Q β(x→ x′). Thus,

α(x→ x′) =
π(dx′)q(dx|x′)
π(dx)q(dx′|x)

≤ 1. (2.16)

(iii) If 0 ≤ π(dx)q(dx′|x) ≤ π(dx′)q(dx|x′) then r(x′ → x) ≥ 1. From the definition

β(x → x′) = β(x′ → x)r(x′ → x), α(x′ → x) must be
1

r(x′ → x)
in order to provide

the facts α(x→ x′) = maxβ∈Q β(x→ x′) and 0 ≤ β(x→ x′) ≤ 1. Hence,

α(x→ x′) = 1. (2.17)

By using these three cases, acceptance ratio α(x→ x′) can be written clearly as

α(x→ x′) = min
{

1,
π(dx′)q(dx|x′)
π(dx)q(dx′|x)

}
. (2.18)

This completes the proof of Corollary 2.1.� �

Corollary 2.1 states that, the form of α(x→ x′) in (2.14), including all acceptance

ratio expressions satisfying (2.11), has the smallest probability of remaining at the same

state x for all x ∈ X.

Acceptance ratio can be defined with respect to probability densities by using the

property in (2.7)

αMH(x→ x′) = min
{

1,
π(x′)µ(dx′)q(x|x′)µ(dx)
π(x)µ(dx)q(x′|x)µ(dx′)

}
(2.19)

= min
{

1,
π(x′)q(x|x′)
π(x)q(x′|x)

}
. (2.20)

Substituting the target distribution for parameters θ given data y with equilibrium distri-
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bution gives

αMH(θ → θ∗) = min
{

1,
f (θ∗|y)q(θ|θ∗)
f (θ|y)q(θ∗|θ)

}
(2.21)

where θ∗ is the proposed parameters from distribution q(θ∗|θ). In Figure 2.1 an example

of Bayesian inference in terms of the MH algorithm is given for estimating a mixture of

two univariate Gaussian distributions.
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Figure 2.1. The Metropolis-Hastings Algorithm. Dotted line represents target distri-
bution and bars refer to the estimated distribution of Metropolis-Hastings
algorithm (Source: (Andrieu et al., 2003)).

2.3.2. The Metropolis Algorithm

The Metropolis Algorithm is constructed by (Metropolis et al., 1953) before Hast-

ings generalized the method in 1970. This method uses the facts in Subsection 2.3.1 in

a more specific manner. At every iteration, we sample θ∗ from a proposal distribution
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q(θ∗|θ). This proposal distribution which is used in the Metropolis algorithm should be

symmetric. This means that; q(θa|θb) = q(θb|θa). The ratio which is required to reach the

acceptance ratio is given by (Gelman et al., 2003) as

αMetropolis(θ → θ∗) = min
{

1,
f (θ∗|y)
f (θ|y)

}
. (2.22)

In Figure 2.2 an example of Metropolis algorithm is shown for estimating the

distribution of a univariate Gaussian distribution problem.
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Figure 2.2. The Metropolis Algorithm. Dotted line represents target distribution and
bars refer to the estimated distribution of Metropolis algorithm.

2.3.3. The Gibbs Sampler

Gibbs Sampler is an important Markov chain algorithm which is very useful in

many multidimensional problems. The parameter vector of Gibbs Sampler, θ, is divided

into d subvectors, θ = θ1, ..., θd. Gibbs sampler needs d conditional distributions for each
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subvector and at each iteration t, each θ j is sampled from these conditional distributions

given all other subvectors of θ (Gelman et al., 2003)

f (θ j|θ− j, y) (2.23)

where θ− j represents all the components of θ, except for θ j, at their current values

θ− j = (θ1, ..., θ j−1, θ j+1, ..., θd). (2.24)

Gibbs Sampler may be viewed as a special case of the MH algorithm where ac-

ceptance ratio is always equal to 1 leading to the result that every jump is accepted by

choosing the proposal distribution in (2.14) as

q(x′|x) = π(x′)⇒ αGibbs(x→ x′) = 1. (2.25)

In Figure 2.3 an example of Gibbs Sampler is shown for estimating the distribution

of a bivariate Gaussian distribution.

2.4. RJMCMC

Up to this point, we have seen in general what the Bayesian model selection is

and what type of Bayesian methods will ultimately achieve this. The MH algorithm has

been widely used for model estimation studies within a single model space. However, in

cases where the model space contains a huge number of models, estimating each model

space separately and deciding the best model can be computationally prohibitive. At

this point, Peter J. Green has extended the classical MH algorithm by treating the model

space dimension as a new parameter and hence provided a model determination algorithm

achieving transitions between model spaces of differing dimensions in (Green, 1995). The

most important feature of this method is that by locating model spaces of different dimen-

sionality in a general model space, it is possible to perform trans-dimensional transitions

between these spaces and decide the best model without performing an exhaustive search.

Following (Green, 1995), when the current state is x, we propose a move type m
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Figure 2.3. Contour plots for Gibbs Sampler. Figure on the left represents target dis-
tribution; figure on the right refers to the estimated distribution with dots.

with probability Pr(x → x′), which changes dimension, and takes the state to x′. The

algorithm follows the same procedure like MH algorithm and as usual, the proposal is not

automatically accepted. The acceptance probability which is denoted by α(x→ x′) needs

to be calculated.

The assumption of (Green, 1995) in pg.715 states that, if we suppose that π(dx)q(dx′|x)

has a finite (or discrete) density fm with respect to a symmetric measure ξm on C × C,

fm(dx, dx′) = fm(x, x′)ξm(dx, dx′) (2.26)

which can be written by using the property in (2.7), where C is the parameter space. Then,
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for Borel sets2 A and B,

∫
A
π(dx)

∫
B

q(dx′|x)α(x→ x′) =

∫
A

∫
B
ξm(dx, dx′) fm(x, x′)α(x→ x′) (2.27)

=

∫
B

∫
A
ξm(dx′, dx) fm(x′, x)α(x′ → x) (2.28)

=

∫
B
π(dx′)

∫
A

q(dx|x′)α(x′ → x). (2.29)

This equality holds by the assumed symmetry of ξm, provided that

fm(x, x′)α(x→ x′) = fm(x′, x)α(x′ → x). (2.30)

Equation (2.30) shows that detailed balance equation in (2.8) is satisfied under the

assumption of (Green, 1995) and the acceptance ratio can be constructed by using the

same procedure in MH part given in Corollary 2.1. Acceptance ratio can be written as

α(x→ x′) = min
{

1,
fm(dx′, dx)
fm(dx, dx′)

}
(2.31)

= min
{

1,
fm(x′, x)ξm(dx′, dx)
fm(x, x′)ξm(dx, dx′)

}
(2.32)

= min
{

1,
fm(x′, x)
fm(x, x′)

}
(2.33)

where density, fm is

fm(x, x′) = π(x)q(x′|x). (2.34)

We firstly consider a set-up before implementing the dimension matching require-

ment. A reversible move is a projection of state x to state x′ via a deterministic function

w. This deterministic function w must be reversible to apply a move from one space to

another. As stated above, RJMCMC provides jumping between spaces with different di-

mensions. As a result of this, dimension difference between the two states occurs and

2Definition: (Leon-Garcia, 2008) A Borel field B, is the σ-field generated by countable unions, count-
able intersections and complements of events. Thus, we can select our event field F as a Borel field in
probabilistic manner because B contains all events for discrete and countable sample spaces of real line.
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dimension matching is required. For this reason, auxiliary variables u1 with length m1,

and its reverse move counterpart u2 with length m2, are proposed from distributions q1(u1)

and q2(u2), respectively. Resulting dimension matching is (Green, 1995)

dimx′ + m2 = dimx + m1. (2.35)

For the moves that involve dimension change, we should also define a move that

switches back to the previous state. These moves can be named as reversible move pairs.

For example, a move which reduces the dimension of the state by 1 is a reversible move

pair with a move that increases the dimension by 1 (Smith, 2007).

Suppose we are at state x ∈ C1 with parameters θ and we propose a move to

another state x′ ∈ C2 with parameters θ∗ where C1 and C2 are subspaces of the main

parameter space C, such as C1 ⊂ C and C2 ⊂ C. Also suppose that f (θ|x) and f (θ∗|x′) are

proper densities in Rn1 and Rn2 . In applying this move, typically we propose a vector of

variables u1, independent of θ as stated above and set θ∗ in terms of u1 and θ. A similar

process should be applied in order to turn back to the current state. Specifically, we need

to propose a vector of variables u2 independent of θ∗, and set θ in terms of u2 and θ∗. There

must be a bijection3 between parameter spaces (θ,u1) and (θ∗,u2) in order to provide the

dimension matching. For this bijection, the deterministic function w will be used. At the

end, all of the parameters must satisfy the rule in (2.35). The proposal distribution q(x′|x)

can be defined by the distributions q1 and q2. These distributions are required to be proper

densities4 with respect to Lebesgue measures in Rm1 and Rm2 , respectively (Green, 1995).

This set-up shows us that now our proposal distribution should include both prob-

abilities of proposing a move from state x to x′ and proposing the new parameters (Ver-

maak et al., 2004). By using this fact, it is more appropriate to write proposal distribution

q(x′|x) in the form of q(x′, θ∗|x, θ). However, the proposal distribution includes both the

move probability and the probability of proposing the new parameters, which two prob-

abilities are independent. In order to provide this conditional independence, proposal

3Definition: (Wolf, 1997) If g is a one-to-one function from A onto B, g is called a bijection or one-to-

one correspondence between A and B. The Notation is: f : A
bi j
−−→ B

4Definition: (Stark and Woods, 2002) A proper density, g(x), is a probability density function which
satisfies the properties above

(i) g(x) ≥ 0,

(ii)
∫ ∞
−∞

g(x)dx = 1.
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distribution q(x′, θ∗|x, θ) can be written as a multiplication of two different densities such

as

q(x′, θ∗|x, θ) = Pr(x→ x′) f (θ∗|θ) (2.36)

where Pr(x → x′) represents the probability of choosing a move m from the state x to x′.

Since the only proposed parameter value is the auxiliary variable u1 in order to provide

the dimension change for move m, f (θ∗|θ) will be the probability of the auxiliary variable

u1 sampled from the distribution q1. The resulting equation for q(x′, θ∗|x, θ) is

q(x′, θ∗|x, θ) = Pr(x→ x′)q1(u1). (2.37)

The same procedure is appropriate for the case of reverse move version of the

distribution, which is

q(x, θ|x′, θ∗) = Pr(x′ → x) f (θ|θ∗) (2.38)

where Pr(x′ → x) is the probability of the reverse move that is from x′ to x and f (θ|θ∗)

is the proposal distribution when the recent state is x′ with parameters (θ∗,u2). This

parameter space is a mapping of (θ,u1) to (θ∗,u2) via a deterministic function w. This

operation needs a calculation in order to satisfy the following theorem.

Theorem 2.1 ((Vomisescu, 2003), Change of variables on Lebesgue measures) Let Ω ⊂

Rn be an open set and L be a Lebesgue measure on Ω. Let T (x) = (y1(x), . . . , yn(x))T and

x = (x1, . . . , xn)T be a homeomorphism5 T : Ω → Rn with continuous derivatives and

5Definition: (Hubbard and West, 1995) X and Y are the subsets of Rn and a mapping g : X → Y is a
homeomorphism if

• g is a continuous bijection,

• g is one-to-one and onto, so inverse function g−1 exists,

• g−1 is continuous.
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J(T, x) is the Jacobian matrix for all x ∈ Ω. Then, for any function f , we have

∫
TΩ

g(y)dy =

∫
Ω

g(T x) |J(T, x)| dx. (2.39)

Hence, f (θ|θ∗) can be written as

f (θ|θ∗) = q2(u2)
∣∣∣∣∣∂(θ∗,u2)
∂(θ,u1)

∣∣∣∣∣ (2.40)

and the resulting equation for q(x, θ|x′, θ∗) is

q(x, θ|x′, θ∗) = Pr(x′ → x)q2(u2)
∣∣∣∣∣∂(θ∗,u2)
∂(θ,u1)

∣∣∣∣∣ . (2.41)

Invoking the assumption of (Green, 1995) shown in (2.27), the finite densities

fm(x, x′) and fm(x′, x) are selected as

fm(x, x′) = π(x)q(x′, θ∗|x, θ) = f (θ|y)Pr(x→ x′)q1(u1) (2.42)

fm(x′, x) = π(x′)q(x, θ|x′, θ∗) = f (θ∗|y)Pr(x′ → x)q2(u2)
∣∣∣∣∣∂(θ∗,u2)
∂(θ,u1)

∣∣∣∣∣ . (2.43)

Combining (2.42) and (2.43) in (2.31), the general expression for the acceptance

ratio defining a move with a transition function w from state x to x′ is given as

αRJMCMC(x→ x′) = min
{

1,
f (θ∗|y)
f (θ|y)

×
Pr(x′ → x)
Pr(x→ x′)

×
q2(u2)
q1(u1)

×

∣∣∣∣∣∂(θ∗,u2)
∂(θ,u1)

∣∣∣∣∣} (2.44)

where f (.|y) is target distribution of interest, Pr(x → x′) and Pr(x′ → x) represent the

probabilities for move m and its reverse move, q1(u1) is the proposal distribution for aux-

iliary variable u1 for move m, q2(u2) is the proposal distribution for auxiliary variable u2

for reverse move and
∣∣∣∣∣∂(θ∗,u2)
∂(θ,u1)

∣∣∣∣∣ is the magnitude of the Jacobian determinant. This form

of acceptance ratio is also the one which is defined in (Green, 1995) as Equation (7).

In practice, generally, there is no need to generate an auxiliary variable ui for one

of the reversible move pairs. Here u2, which is the reverse move counterpart of u1, will

not be generated; so, the acceptance ratio is simplified. This simplified form of acceptance
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ratio is given below and it forms as it’s defined in (Green, 1995) as Equation (8)

αRJMCMC(x→ x′) = min
{

1,
f (θ∗|y)Pr(x′ → x)

f (θ|y)Pr(x→ x′)q1(u1)

∣∣∣∣∣ ∂θ∗

∂(θ,u1)

∣∣∣∣∣} . (2.45)

In this derivation, parameter u1 is generated independently from the parameter

vector θ. In real applications, u1 may be generated as depending on θ. This requires a

modification to be made. In these cases, q1(u1) in (2.45) is replaced by the conditional

density q1(u1|θ) (Green, 1995).

If we assume that target distributions are equal to likelihoods times priors the

general form of RJMCMC acceptance ratio is αRJMCMC(x → x′) = min{1, r} and where r

is (Green, 1995)

r =

 Likelihood

Ratio

 ×
 Prior

Ratio

 ×
 Proposal

Ratio

 × {Jacobian}. (2.46)

2.5. On Convergence and Complexity of (RJ)MCMC Algorithms

As stated in sections above, the central objective of (RJ)MCMC sampling algo-

rithms is to provide an approximation for the distribution of the samples to the target

distribution or the posterior. As long as we run the simulation long enough, the distribu-

tion of the samples converges to this stationary distribution. Estimation statistics such as

the mean and the autocorrelation may be used to monitor the convergence of (RJ)MCMC

methods, in the absence of techniques to select a suitable run length a priori. Although

there are diagnostic convergence tests which provide results about convergence, it is very

difficult to be sure that the convergence of a multivariate distribution has been adequately

monitored. The main reason is the high number of parameter dimensions (Hastie and

Green, 2012).

Consequently, selection of an optimal run length a priori or monitoring conver-

gence is an open problem. Despite all these ambiguities about the convergence, in the

literature, there are studies (Gelman and Rubin, 1992a,b; Brooks and Giudici, 2000;

Rosenthal, 1995) proposing methods to give an idea of the convergence. Particularly, in

(Gelman and Rubin, 1992a,b) authors proposed a method which tries to decide whether
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the algorithm converges to a stationary distribution by replicating multiple chains. This

method has been generalized as a two-way analysis of variance (ANOVA) based method

for univariate cases in (Brooks and Giudici, 2000). The multivariate version of Brooks

and Guidici’s method has been proposed in (Castelloe and Zimmerman, 2002). Sisson and

Fan proposed a specific distance-based diagnostic which is designed for trans-dimensional

cases and covers the modelling scenarios like finite-mixture problems and change point

analyses in (Sisson and Fan, 2007). In all the applications in this thesis, the convergence

of the algorithm was analyzed with some pre-tests, and the length of the algorithm was

determined according to these tests. Therefore, the selected Markov chain was assumed

to be long enough and it was assumed to converge correctly with a Markov chain in this

length.

Apart from the convergence of RJMCMC, the computational complexity is also

a key issue and known to be high as in the other sampling algorithms. It is also an

open problem as the convergence and directly related to the convergence of the algorithm.

Notwithstanding this, the complexity has also been studied in the literature. In (Belloni

and Chernozhukov, 2009), it has been shown that MCMC algorithms have polynomial

complexity in terms of computational time and computational complexity of MCMC

methods is lower than the classical maximum likelihood methods as long as the log-

likelihood are nonconcave or nonsmooth.

2.6. Toy Example: Autoregressive Model Estimation using

RJMCMC

A classical application of RJMCMC method in model estimation studies can be

basically discussed on AR model uncertainty. For some detailed studies on AR model

estimation, interested readers may see (Troughton and Godsill, 1998), (Vermaak et al.,

2004) and (Ehlers and Brooks, 2003). We provide a development of the RJMCMC ap-

proach for this previously studied problem since we will use this terminology on more

complicated problems in the following chapters.

The Autoregressive (AR) data model is given below

y(l) =

k∑
i=1

aiy(l − i) + ε(l) (2.47)
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where ε(l) is an excitation sequence the distribution of which is a zero mean Gaussian

distribution with a variance of σ2
e , which can be shown as N(0, σ2

e). Moreover, ai is the

AR coefficient for lag i and k is the model order.

This can be written in matrix-vector form as

y = Ya(k) + ε (2.48)

where y is data vector with length n, Y is n × k matrix of past samples of data, a(k) is

coefficient vector of AR(k) model and ε is vector of excitation sequence whose forms are

given below

y =
[
y(1), y(2), . . . , y(n)

]T (2.49)

Y =


y(0) y(−1) . . . y(1 − k)

y(1) y(0) . . . y(2 − k)
...

... . . . ...

y(n − 1) y(n − 2) . . . y(n − k)


, (2.50)

a(k) = [a1, a2, . . . , ak]T (2.51)

ε = [ε(1), ε(2), . . . , ε(n)]T . (2.52)

Since the excitation sequence is Gaussian, the approximate likelihood is (Troughton

and Godsill, 1998)

f (y|k, a(k), σ2
e) ≈ N(ε |0, σ2

eIn) (2.53)

where ε is the excitation sequence vector.
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2.6.1. Hierarchial Model and Priors

Target distribution f (θ|y) can be defined as shown below for AR model order

selection problem

f (θ|y) = f (k, a(k), σ2
e , σ

2
a|y) (2.54)

where σ2
a is the variance for parameter vector a(k). Hence, this posterior density can be

written from Bayes Theorem as

f (k, a(k), σ2
e , σ

2
a|y) ∝ f (y|k, a(k), σ2

e) f (a(k)|k) f (σ2
a) f (σ2

e) f (k). (2.55)

Determining the prior distributions of the parameters is effective on the conver-

gence speed of the RJMCMC algorithm. Firstly, we choose a uniform prior for model

order with maximum value kmax

f (k) = U(1, kmax). (2.56)

We also choose conjugate priors for other parameters (Gelman et al., 2003)

f (a(k)|k) = N(a(k)|0, σ2
aIk) (2.57)

f (σ2
a) = IG(σ2

a|αa, βa) (2.58)

f (σ2
e) = IG(σ2

e |αe, βe) (2.59)

where IG(α, β) is the Inverse Gamma distribution with shape parameter α and scale pa-

rameter β.
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2.6.2. RJMCMC Transitions

The general expression for acceptance ratio is given in (2.45). This equation will

be the main expression for this problem and by adding the probabilistic information about

the likelihood and the priors to this expression we are going to obtain a specific acceptance

ratio expression.

Sampling model order value k requires changing dimension in the algorithm.

Firstly, we define the move pairs for this problem. There are 4 types of moves for this

problem which are:

(a) birth of a new parameter,

(b) death of an existing parameter,

(c) life move, updating the AR coefficients via MH algorithm,

(d) updating σ2
e via Gibbs sampling.

Birth and death moves change dimension by 1 up and down, respectively and for

this birth-death-move, reversible jump mechanism is needed. We design these two moves

in tandem so that they are a reversible pair.

Life move does not require changing the dimension of the space, it updates the

AR coefficients for each move and applies MH algorithm to accept the proposals. Move

(d) is a Gibbs sampling application and it is repeated at each iteration according to the

values that are proposed with respect to the first 3 moves. Life move and move (d) are

designed in a condition so that the reversible pair is also move’s itself (Smith, 2007).

Each move has probabilities Pbirth for birth move, Pdeath for death move and Plife for

life move depending only on the current value of model order parameter k and satisfying

Pbirth + Pdeath + Plife = 1. There is no need to assign a probability for move (d) because it

is repeated at each iteration independently from the selected move. Naturally for k = kmax

Pbirth = 0 and Plife = 1 − Pdeath, for k = 1, Pdeath = 0 and Plife = 1 − Pbirth. Except these

constraints, these probabilities are chosen in a way that (Green, 1995)

Pbirth f (k) = Pdeath f (k + 1). (2.60)

Choosing birth and death move probabilities according to this condition would

guarantee the certain acceptance in the corresponding MH sampler for the model order

parameter.
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2.6.2.1. Birth-Death Moves

Firstly, we propose a move m which gives a transition from a space with model

order parameter k to a space with higher dimension k′ = k + 1. Due to the increasing

order, we should propose new parameters to provide the dimension matching. This move

is called birth move. By using the proposed model order value k′ and satisfying the

dimension matching, we apply RJMCMC for birth move according to Algorithm (1).

Acceptance ratio is defined as αbirth(k → k′) = min {1, rbirth}. According to this,

the corresponding value of rbirth which is based on the expression in (2.45), is given below

rbirth =
f (y|k′, a(k′), σ2

e) f (a(k′)|k′) f (σ2
a) f (σ2

e) f (k)Pdeath

f (y|kt−1, a(kt−1), σ2
e) f (a(kt−1)|kt−1) f (σ2

a) f (σ2
e) f (k)Pbirthq(u)

∣∣∣∣∣∣ ∂a(k′)

∂(a(kt−1), u)

∣∣∣∣∣∣ (2.61)

where u is the auxiliary variable with nu = 1 to match the dimension between two spaces

and q(u) is the distribution that we sample u from. Dimension change occurs in autore-

gressive parameter space. Thus, Jacobian calculation depends on these values. If we

simplify the equation, it attains the form given in (2.46)

rbirth =
f (y|k′, a(k′), σ2

e)
f (y|kt−1, a(kt−1), σ2

e)
×

f (a(k′)|k′)
f (a(kt−1)|kt−1)

×
Pdeath

Pbirthq(u)
×

∣∣∣∣∣∣ ∂a(k′)

∂(a(kt−1), u)

∣∣∣∣∣∣ . (2.62)

As we define above, birth and death moves are reversible pairs and so, acceptance

ratio for death move can be clearly determined. We propose a move m which changes

states from k to k′ = k − 1. Here no new parameters are proposed. We truncate a(kt−1) at

the k′th element. The resulting algorithm for death move is given in Algorithm 2.

For k > k′ then αdeath(k → k′) = min{1, rdeath} and the corresponding value for

acceptance ratio of death move is calculated directly from the expression below

αdeath(k → k′) = min{1, 1/rbirth} (2.63)

where rbirth is calculated from

αbirth(k′ → k) = min{1, rbirth}. (2.64)
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Algorithm 1 Birth Move
1: procedure BirthMove for AR Model Order Selection with RJMCMC
2: Given data y
3: kt,Niter, a(k0), αe, βe values are initialized at t = 0
4: RJMCMC will be performed for t = 1, . . . ,Niter
5: Assume a birth move proposed at iteration t
6: k′ ← kt−1 + 1
7: Propose u ∼ q(u)
8: Propose a(k′) according to the Scenario
9: Calculate αbirth(kt−1 → k′)

10: Propose num ∼ Unif(0, 1)
11: if num ≤ αbirth(kt−1 → k′) then
12: kt = k′
13: a(kt) = a(k′)

14: else
15: kt = kt−1
16: a(kt) = a(kt−1)

17: end if
18: Update σ2

e ∼ IG(αn, βn) via Gibbs sampling
19: end procedure

Algorithm 2 Death Move
1: procedure DeathMove for AR Model Order Selection with RJMCMC
2: Given data y
3: kt,Niter, a(k0), αe, βe values are initialized at t = 0
4: RJMCMC will be performed for t = 1, . . . ,Niter
5: Assume a death move proposed at iteration t
6: k′ ← kt−1 − 1 Truncate a to the first k_(t-1)-1 elements as a^(k’)
7: Truncate a(kt−1) to the first k′ elements as a(k′)

8: Calculate αdeath(kt−1 → k′)
9: Propose num ∼ Unif(0, 1)

10: if num ≤ αdeath(kt−1 → k′) then
11: kt = k′
12: a(kt) = a(k′)

13: else
14: kt = kt−1
15: a(kt) = a(kt−1)

16: end if
17: Update σ2

e ∼ IG(αn, βn) via Gibbs sampling
18: end procedure
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Algorithm 3 Life Move
1: procedure LifeMove for AR Model Order Selection with RJMCMC
2: Given data y
3: kt,Niter, a(k0), αe, βe values are initialized at t = 0
4: RJMCMC will be performed for t = 1, . . . ,Niter
5: Assume a life move proposed at iteration t
6: k′ ← kt−1
7: Propose a(k′) from q(a(k′)|k, a(kt−1))
8: Calculate αlife
9: Propose num ∼ Unif(0, 1)

10: if num ≤ αlife then
11: kt = k′
12: a(kt) = a(k′)

13: else
14: kt = kt−1
15: a(kt) = a(kt−1)

16: end if
17: Update σ2

e ∼ IG(αn, βn) via Gibbs sampling
18: end procedure

2.6.2.2. Life Move

Life move uses an MH application to update the AR coefficients with probability

Pli f e. We apply MH algorithm because there is no dimension change for life move. Life

move is shown in Algorithm 3 below.

Acceptance ratio is defined as αlife = min {1, r}. The corresponding value of r is

given below

r =
f (y|k′, a(k′), σ2

e)
f (y|kt−1, a(kt−1), σ2

e)
×

f (a(k′)|k′)
f (a(kt−1)|kt−1)

×
q(a(kt−1)|k′, a(k′))
q(a(k′)|k, a(kt−1))

(2.65)

where f (y|k′, a(k′), σ2
e) and f (y|kt−1, a(kt−1), σ2

e) are likelihood distributions and f (a(k′)|k′)

and f (a(kt−1)|kt−1) are prior distributions for parameter vector. Updated values of parame-

ters are proposed from the distribution q(a(k′)|k, a(kt−1)) which is defined below

a(k′) ∼ q(a(k′)|k, a(kt−1)) = N(a(k′)|µn, σ
2
eΣ
−1
n ) (2.66)
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where µn and Σn are

µn = a(kt−1) and Σn = YT Y +
1
σ2

a
Ik′ (2.67)

where Y represents the matrix consisting of the past values of data which is formed as in

(2.50) (Troughton and Godsill, 1998).

2.6.2.3. Updating Excitation variance σ2
e

Independently from defined reversible moves, excitation variance σ2
e is updated at

each iteration t by using all other parameters which are sampled at iteration t − 1. The

updating mechanism follows Gibbs sampling methodology. The posterior distribution for

σ2
e is calculated as

f (σ2
e |y, k, a

(k), σ2
a) ∝ f (y|k, a(k), σ2

a, σ
2
e) f (σ2

e). (2.68)

From (2.53) we can replace approximate likelihood in a way that

f (σ2
e |y, k, a

(k), σ2
a) ≈ N(ε |0, σ2

eIn)IG(σ2
e |αe, βe) (2.69)

∝
1√

(2πσ2
e)n

exp
(
−

1
σ2

e
εTε

)
σ−2(αe+1)

e exp
(
−
βe

σ2
e

)
(2.70)

= IG(σ2
e |αn, βn) (2.71)

where αn and βn are

αn = αe +
1
2

n and βn = βe +
1
2
εTε. (2.72)

Excitation variance σ2
e will be sampled directly at each iteration by using the In-

verse Gamma distribution as in (2.71).
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2.6.3. Defining the Proposals

As stated above, (Green, 1995) realized that to provide the dimension matching

we should introduce dim(k′)−dim(k) auxiliary variable u. After proposing these variables

we should define a deterministic function w that maps state x with dimension k to state x′

with dimension k′.

Suppose that we propose a birth move from dimension k to k′ = k + 1. Because

we have one difference between two spaces, a scalar u is proposed from distributions q(u)

which is defined as

u ∼ q(u) = N(0, σ2
a) (2.73)

where σ2
a is known at the beginning of the algorithm. We choose this proposal ratio in

order to obtain a scenario at which every birth move creates a new AR coefficient which

is independent of the other coefficients. This gives us the opportunity that Jacobian is

equal to unity. According to the Bayesian data analysis strategy, the posterior distribution

is Gaussian as far as the conjugate prior is Gaussian given the data (Gelman et al., 2003).

We select a Gaussian distribution for proposal distribution of newly born parameters in

order to satisfy this fact.

In light of this information about proposal ratio, each element of the coefficient

vector is defined as shown below

a(k) = [a1, a2, . . . , ak]1×k (2.74)

a(k′) =
[
a′1, a

′
2, . . . , a

′
k′
]
1×(k+1) . (2.75)

Using the parameters a(k) and u we define the mapping function w as

a(k′) = w(a(k), u) (2.76)

a′1 = a1, a′2 =a2, . . . , a′k′−1 = ak, a′k′ = u. (2.77)
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Computing the Jacobian value by using the expressions in (2.77) gives the result below

|J| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂a′1
∂a1

∂a′2
∂a1

. . .
∂a′k′
∂a1

∂a′1
∂a2

∂a′2
∂a2

. . .
∂a′k′
∂a2...

... . . . ...
∂a′1
∂u

∂a′2
∂u

. . .
∂a′k′
∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= det(Ik′) = 1 (2.78)

where Ik′ is the identity matrix with size k′ × k′.

2.6.4. Simulation Setup

Initial values for excitation variance prior distribution is selected as αe = 1 and

βe = 2. The initial value for model order, k(0) is set to 1. ak(0)
is sampled from the prior

distribution which is defined in (2.57). Auxiliary variable u is sampled according to the

procedure in Section 2.6.3.

Move probabilities are selected as 0.15, 0.15 and 0.7 respectively for Pbirth, Pdeath

and Plife. 20000 iterations are simulated to let sampled parameters converge. No burn-in

period is used in results in order to see all the characteristics of the algorithms. Success

of the results can be increased by truncating first Nb values as burn-in period.

Two different AR(k) data are used in the simulations with orders 4 and 10. Two

data sets have the same length of 10000 (data with length 15000 is created and first 5000

samples are truncated in order to provide the AR characteristics of the data. The remain-

ing 10000 samples are used as the data set). The coefficient vectors of AR processes

are a(4) = [0.8, -0.20, 0.45, -0.55] and a(10) = [0.9402, -0.43, 0.41679, -0.4969, 0.4771,

-0.5010, 0.0505,

-0.2357, 0.4024, -0.1549] both are driven with a Gaussian excitation sequence with vari-

ance of σ2
e = 1. Variance value of AR coefficients’ prior distribution is selected as

σ2
a = 0.1 and remains fixed at each iteration. No sampling is applied for σ2

a.

Performance of RJMCMC in AR model estimation has been studied under three

simulations. The first simulation refers to the general scenario which performs model es-

timation using the procedures explained in the previous sections. Figures to evaluate the

estimation performance of model order and model coefficients are shown in this simula-

tion.
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Other two simulations have been studied in order to test performance of RJMCMC

under different conditions. Simulation 2 studies the effect of initial model order value, k(0),

on overall estimation procedure where the rest of the parameters are the same as explained

in the previous sections. Simulation 3 studies the effect of different proposal distributions

to sample auxiliary variables, u. In both of the simulations, several figures are shown to

provide distinguished results according to changes in some RJMCMC parameters.

2.6.5. Simulation 1: General Simulation

In simulation 1, general simulation scenario which is explained in detail in Section

2.6 has been studied. There are two example AR models and RJMCMC has been run to

estimate the model order as well as the model coefficients and excitation variance.

In Figures 2.4 and 2.5, estimation performance of RJMCMC for AR(4) model is

depicted. In particular, in Figure 2.4, instantaneous estimate and the resulting posterior

for the model order, k is shown. Examining the figures, RJMCMC estimates correct

model order with a percentage of 90% and converges to the correct order after nearly 500

iterations. Moreover, in Figure 2.5 running mean plots in a single RJMCMC run for the

three out of four model coefficients and the excitation sequence, σ2
e (At iteration i, the

averages of the estimated parameters between iteration 1 and i have been calculated and

recorded. Resulting averages represent “running means" and this term will be used for

this operation for the rest of the text) is shown. Analyzing this figure shows that for all 4

parameters RJMCMC converges to correct value after 5000 iterations.

In Figures 2.6 and 2.7 the same analysis has been performed for the second exam-

ple AR model, AR(10). The performance of the proposed method is very similar to that of

AR(4) model. RJMCMC estimates correct model order in nearly 90% of the iterations and

converges to correct order after 1000 iterations. For model coefficient estimation (Figure

2.7), it takes nearly 5000 iterations to converge to the correct value of the parameter.

2.6.6. Simulation 2: Different Initial Model Orders

In Simulation 2, the effect of the initial model order, k(0) on model estimation

performance has been studied. Four different initial orders have been selected for both

of the example AR models and model order and coefficient estimation performance of

RJMCMC have been tested.
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Figure 2.4. Model order estimation for AR(4)
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Figure 2.5. Running mean plots for AR(4) model coefficients and excitation variance
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Figure 2.6. Model order estimation for AR(10)
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Figure 2.7. Running mean plots for AR(10) model coefficients and excitation variance
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In Figures 2.8 and 2.9, instantaneous estimates for the model order are depicted for

each example AR model. Initial model orders for AR(4) and AR(10) is [1, 5, 10, 15] and

[1, 7, 13, 20], respectively. For all the initial order and AR model, RJMCMC converges to

the correct value with a change on convergence time. In all the cases, it takes nearly 500

iterations to converge.

In Figures 2.10 and 2.11, running mean plots for the first model coefficient from

each AR model are shown. RJMCMC converges to the correct model coefficient for all

initial order selection after 2500-5000 iterations.

2.6.7. Simulation 3: Different Proposals

For the third simulation, RJMCMC performance under different proposal distri-

butions for the auxiliary variable, u. There are three proposal distributions which are

q1(u), q2(u) and q3(u) each of which has different characteristics.

The first proposal distribution, q1(u) is selected as the same as the one defined

in Section 2.6.3. Assuming that the same conditions in Section 2.6.3 are valid, for the

second proposal distribution the variable u is proposed from distributions q2(u) which is

defined as

u ∼ q2(u) = U(−1, 1). (2.79)

As long as the proposed coefficient u is independent from the recent coefficients,

Jacobian can be easily computed as |J2| = 1.

For the third proposal distribution, q3(u), a new mapping function w3 has been

utilized. A selection of this type creates newly born coefficients to be dependent on recent

coefficients and causes Jacobian of the space change is not equal to 1.

a(k′) = w(a(k), u) (2.80)

a′1 = a1, a′2 =a2, . . . , a′k′−1 = ak, a′k′ = u
1
k

k∑
i=1

ai (2.81)

37



0 100 200 300 400 500 600 700 800 900 1000

Iteration

0

5

10

15

E
st

im
at

ed
 M

od
el

 O
rd

er
, k

k(0) = 1

k(0) = 5

k(0) = 10

k(0) = 15

Figure 2.8. Model order estimation for different initial model orders - AR(4)
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Figure 2.9. Model order estimation for different initial model orders - AR(10)
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where the auxiliary variable u is sampled from q3(u) which is defined as

u ∼ q3(u) = U(−2, 2). (2.82)

Computing the Jacobian by using the expressions in (2.81) gives

|J3| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂a′1
∂a1

∂a′2
∂a1

. . .
∂a′k′
∂a1

∂a′1
∂a2

∂a′2
∂a2

. . .
∂a′k′
∂a2...

... . . . ...
∂a′1
∂u

∂a′2
∂u

. . .
∂a′k′
∂u

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . .
u
k

0 1 . . .
u
k

...
... . . . ...

0 0 . . .
1
k
∑k

i=1 ai

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣1k
k∑

i=1

ai

∣∣∣∣∣∣∣ . (2.83)

In Figures 2.12 and 2.13, instantaneous estimates for 3 different proposal distri-

butions are shown for AR(4) and AR(10), respectively. Examining both of the figures

shows that RJMCMC converge to correct model order value under different conditions.

Among example proposal distributions q1 provides faster convergence than the others. In

all the cases, RJMCMC converges to correct value nearly after 1250 iterations for AR(10)

model (after 500 iterations for AR(4) model), and difference of the proposal distributions

becomes indistinguishable in the figures.

2.7. Conclusions

In this chapter, a previously studied toy example, which is based on the AR model

estimation via RJMCMC has been implemented. We have created 3 simulation scenarios

under different conditions and obtained the following results:

• Simulation 1: The general framework of the previous studies about AR model esti-

mation has been sketched in this simulation. RJMCMC has been used to estimate

the correct AR model order given data as well as its coefficients and the excitation

sequence providing that the excitation sequence is normally distributed.

• Simulation 2: The effect of the initial model order has been tested in this simulation.

By the help of the Markov chain properties of RJMCMC, it would converge to the

correct model order even if it started from a state which is very far from the correct
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0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iteration

0

2

4

6

8

10

12

E
st

im
at

ed
 M

od
el

 O
rd

er
, k

q
1
(u)

q
2
(u)

q
3
(u)

Figure 2.13. Model order estimation for different proposals - AR(10)

41



value.

• Simulation 3: Here using three different proposal distributions clearly shows us

a very important fact about the key advantage of the RJMCMC algorithm, that

is, the algorithm converges to the true model order value if the Markov chain is

run long enough, even if we propose newly born coefficients from very irrelevant

distributions.

This toy example and other studies in the literature have clearly demonstrated that

the RJMCMC algorithm is an effective method that can be used to solve model uncer-

tainty. Following these examples, a simple but very important question might come to

mind: Can RJMCMC be used for more complex model transitions and therefore more

complex models? This thesis will draw a framework that is beyond trans-dimensional for

the RJMCMC algorithm and will present an approach which will be the answer to this

question.

2.8. Beyond Trans-dimensional RJMCMC

In spite of RJMCMC’s use in trans-dimensional cases, the original formulation in

(Green, 1995) holds a wider interpretation than just sampling between spaces of different

dimensions. In the beyond trans-dimensional RJMCMC point of view, the main require-

ments of RJMCMC stated by Green are still valid with one exception, that is, a change in

parameter space definition.

In the original formulation, Green firstly derives the condition for the satisfaction

of detailed balance requirements in terms of the Borel sets which the candidate models

belong to. In the continuation of the derivation, he specializes his discussion to moves

between spaces which differ only in dimensions and the general discussion is abandoned.

However, the parameter vectors in (2.30) may belong to Borel sets which differ not only

in their dimensions but also in the generic models they belong to. Thus, the algorithm can

be used for much more generic implementations.

Notwithstanding, this general interpretation should be taken with caution to have a

useful method. Particularly, the Borel sets should be related somehow, which can be con-

veniently set by matching a common property (i.e. norm) in defining the spaces. Defining

proposals in this way will provide sampling more efficient candidates and help algorithm

to converge faster. As an example, model transitions can be designed to provide fixed first

ordered moments between spaces. Thus, this moment based approach provides a more
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efficient way to explore all the candidate models within the combined space. Carrying

the trained information to a new generic model space is very crucial in this framework.

Otherwise, the algorithm would start to train from scratch repeatedly each time it changes

states and sampling across unrelated spaces would not give us a computational advantage.

In that case, one could solve for different spaces separately and compare the final results

to choose the best model. Two examples one can think of firstly, are:

1) x might correspond to a linear parametric model such as AR while x′ might correspond

to a nonlinear model such as Volterra AR.

2) x might correspond to a pdf pA with certain distribution parameters while x′ might

correspond to another pdf pB with some other distribution parameters.

To this end, we define a combined parameter space ϕ =
⋃

k ϕk including more

than one subspace. Assume that a move M from Markov chain state x ∈ ϕ1 to x′ ∈ ϕ2 is

defined and Borel sets A ⊂ ϕ1 and B ⊂ ϕ2 are related with a set of functions each of which

are invertible. Particularly, for any Borel sets in both of the spaces, ϕ1 and ϕ2, functions

h12 : A 7→ B and h21 : B 7→ A can be defined by matching a common property of the

spaces. For generality, if the proposed move requires matching the dimensions, auxiliary

variables u1 and u2 can be drawn from proper densities Q1(·) and Q2(·), respectively.

Otherwise, one can set u1 and u2 to ∅. Please note that the dimensions of the parameter

spaces at both sides of the transitions can be different or the same and reversible jump

mechanism is still applicable.

Consequently, although the candidate spaces are of different classes, since the

Borel sets are defined to be related, the assumption of Green which is given in (2.27) still

holds for a symmetric measure ξm and densities for joint proposal distributions, π(·)q(·, ·),

can be defined with respect to this symmetric measure by satisfying the equilibrium in

(2.30). Thus, the acceptance ratio can be written as

(2.84)A(x→ x′) = min
{

1,
π(x′)pMR Q2(u2)
π(x)pMQ1(u1)

∣∣∣∣∣∂h12(θ1,u1)
∂(θ1,u1)

∣∣∣∣∣}

where MR is the reverse move of M and pM and pMR represent the probabilities of the

moves. The Jacobian term appears in the equation as a result of the change of variables

operation between spaces.

It is straightforward to show that the acceptance ratios in (2.44) and (2.84) are of

the same kind. Hence, we add a few concluding remarks.
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Remark 2.1 The general usage of RJMCMC which is unfolded in this section makes it

possible to utilize the same formulation and the same trans-dimensional framework (birth-

death move pairs) in the model estimation studies of nonlinear models (i.e. Volterra series

expansion based linear-in-the-parameters models). Thus, RJMCMC can explore (or jump

between) the spaces of linear and nonlinear models.

Remark 2.2 This new utilization of RJMCMC will be named as trans-space rather than

trans-dimensional. Trans-space RJMCMC reveals a general framework for exploring the

spaces of different generic models whether or not their parameter spaces are of differ-

ent dimensionality. Consequently, the trans-dimensional case is a subset of trans-space

transitions.

Remark 2.3 Trans-space RJMCMC requires defining new types of moves due to the need

for more detailed operations than just being birth and death of the parameters. These

moves will be named as between-space moves and may include both birth and death of

the parameters at the same time or a mapping between the parameter spaces by using

their common properties. Switch move will be proposed as a between-space move, which

performs a switching between the candidate spaces of the generic model classes.

Remark 2.4 Our general interpretation includes both the trans-dimensional RJMCMC

and the MH algorithm. When searching a single parameter subspace, the trans-space ap-

proach will be simplified into an MH algorithm. Trans-dimensional transitions between

the same classes are also included in this approach as well as the transitions between

different generic classes all of which may have the same dimensions or not. To be more

clear about the contributions of the proposed approach, in Figure 2.14, a comparison is

shown visually between trans-space RJMCMC approach and MH and trans-dimensional

RJMCMC. Briefly, trans-space procedure provides an approach which can be defined as

beyond trans-dimensional. Transitions between different generic classes are irrespective

of their dimensions of the parameter spaces. Trans-space RJMCMC reveals a generaliza-

tion and unveils the great potential of the same formulation in (Green, 1995).
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Figure 2.14. Comparison for trans-space RJMCMC, MH and RJMCMC.45



CHAPTER 3

NONLINEAR (POLYNOMIAL) MODEL ESTIMATION

Due to their ease of use, linear process models have been generally used in mod-

elling various real life phenomena. In the first modelling studies, using linear time series

methods was common and there was no-need to nonlinear ones since the infinite mov-

ing average can be approximated with autoregressive processes with low orders (Potter,

1999). Nonlinear time series analysis have begun to get attention in the early 1980s, since

linear time series models are unable to model many real life data sets such as asymmetric

business cycles, volatility of stock markets, etc. (Tong, 2002).

There are various nonlinear time series models which have been utilized instead

of their linear counterparts. One of the nonlinear time series models is the Gaussian

autoregressive conditional heteroscedasticity (GARCH) model. The general form of a

GARCH model with order k is given as (Tong, 2002)

X(t) = ε(t)σ(t) (3.1)

where ε(t) is normally distributed and σ(t) =

√√
α0 +

k∑
i=1

αiX2(t − i). This model has been

used especially in the context of econometrics and finance in order to express the changes

(increase or decrease) of stocks, etc. over time.

Threshold autoregressive (TAR) model is another important example to nonlinear

time series methods. The general expression of TAR models can be expressed as (Tong,

2002)

X(t) = α
( j)
0 +

k∑
i=1

α(i)
j X(t − i) + h( j)

1 ε(t). (3.2)

TAR models are called as self-excited TAR (SETA) models when the conditional mean of

X(t) is piecewise linear and the conditional variance of X(t) is piecewise constant (Tong,

2002). SETA models have been favourable, especially when the data sets show some

periodic characteristics (Tsay, 1989; Tong, 2002). Additionally, random coefficient au-
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toregressive (RICA) models (Robinson, 1978; Tong, 2002)

X(t) =

k∑
i=1

(ηi + Bi(t))X(t − i) + ε(t), (3.3)

and product autoregressive models (Mckenzie, 1982; Tong, 2002)

X(t) = ε(t)X(t − 1)η, (3.4)

can be given as examples of nonlinear time series models.

However, most of those models do not provide a solution to estimating the model

parameters easily and their potential use is very limited. Since autoregressive moving

average (ARMA) based nonlinear models including polynomial nonlinearity (or namely

polynomial ARMA (PARMA) models) are linear-in-the-parameters, they differ from the

other nonlinear time series models and thus employing various mathematical applications

developed for linear models could be easier (Kuruoğlu, 2002). PARMA models also

include polynomial autoregressive, namely PAR, and polynomial moving average, namely

PMA models.

In the literature, general practice is to employ PARMA models in modelling real

world problems by assuming a fixed degree of nonlinearity. It is desirable to estimate also

the nonlinearity degree. However, estimating the nonlinearity degree may impose a heavy

burden of algebraic operations and hence, providing a simpler approach to have an idea

about the nonlinearity degree of the aforementioned models is of utmost importance.

Following the toy example presented in the previous chapter, we have seen un-

der different simulation cases that RJMCMC can be used to solve the linear time series

models uncertainty. The main objective of this chapter is to determine whether RJM-

CMC performs model estimation studies for linear-in-the-parameters nonlinear models

and whether it can be designed to switch between linear ARMA (or AR, or MA) and

nonlinear PARMA (or PAR, or PMA) models.

The approach presented in this chapter for RJMCMC can be used to solve all

model uncertainties, including nonlinearity degree, in PARMA based time series models

exemplified above. Trans-dimensional moves used in the toy example will also be used

in this chapter, and it will be clear that the original formulation of Green and the trans-

dimensional approach can be used for much more generic transitions. The results will
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be presented separately for PAR (Karakuş et al., 2015), PMA (Karakuş et al., 2016) and

PARMA (Karakuş et al., 2017b) models in the chronological order in which the work is

done during the thesis.

3.1. Models

3.1.1. Polynomial Autoregressive (PAR) Models

Autoregressive models (AR) are time series models in which the movement of a

variable is described in terms of its past values. AR models have been successful espe-

cially in representing the power spectrum of the speech/audio signals (Ganapathy et al.,

2009) and in prediction studies of wind (Palomares-Salas et al., 2009), econometrics

(Liew et al., 2003), etc. However, when the observed data exhibits nonlinear charac-

teristics, performance of AR modelling has shown a significant degradation. PAR models

are based on the Volterra series expansion as expressed by (3.5) which has had great suc-

cess in modelling many real life phenomena such as optical channel modelling (Mhatli

et al., 2015), loudspeaker system identification (Ji and Gan, 2012), short term wind speed

prediction (Lee, 2011), brain signals (Lahaye et al., 2003), seismology (Bekleric, 2008)

and communications (Fernandes et al., 2010).

PAR models can be represented as

x(l) = µ +

k∑
i

a(1)
i x(l − i) +

k∑
i

k∑
j

a(2)
i, j x(l − i)x(l − j) +

k,...∑
i,...

a(p)
i,...x(l − i)... + e(l) (3.5)

where e(l) refers to the excitation sequence with distribution N(0, σ2
e). PAR model coef-

ficients for first order, second order and pth order polynomials are represented by a(1)
i , a(2)

i, j

and a(p)
i,..., respectively. A PAR model can be represented in the notation: P(p)AR(k) with

the nonlinearity degree, p, and the AR memory, k.

Since PAR models are linear-in-the-parameters, a P(p)AR(k) model can be repre-

sented in matrix-vector form

x = µ + Xa(p,k) + e, where e ∼ N(0, σ2
eIn), (3.6)
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where x is an n-vector of data samples, X is an n×ηmatrix of past samples and polynomial

products of the data, a(p,k) is an η-vector of P(p)AR(k) model coefficients, η =
(p + k)!

p! k!
− 1

refers to number of model coefficients and e is an n-vector of excitation sequence

x = [x(1), x(2), . . . , x(n)]T , (3.7)

e = [e(1), e(2), . . . , e(n)]T , (3.8)

X =


x(0) . . . x(1 − k) x2(0) x(0)x(−1) . . . xp(1 − k)

x(1) . . . x(2 − k) x2(1) x(0)x(0) . . . xp(2 − k)
... . . . ...

...
... . . . ...

x(n − 1) . . . x(n − k) x2(n − 1) x(n − 1)x(n − 2) . . . xp(n − 1)


, (3.9)

a(p,k) =

a(1)
1 , . . . , a(1)

k , a(2)
1,1, a

(2)
1,2, . . . , a

(2)
k,k, . . . , a(p)

k,k,...,k︸︷︷︸
pTtH order


T

. (3.10)

In the last row of Table 3.1, the number of model coefficients, η, for different p

and k pairs are shown.

3.1.2. Polynomial Moving Average (PMA) Models

Utilizing nonlinear moving average (NOMA) models in modelling real life ap-

plications has drawn interest after the study of Robinson in 1977 (Robinson, 1977). To

name a few, NOMA based nonlinear models have been used in real life signals and sys-

tems, such as radio frequency power amplifiers (FR-PAS) (Isaksson et al., 2006), bridge

aerodynamics (Kareem and Wu, 2014), finance (Zaffaroni and d’Italia, 2003) and adap-

tive control of the nonlinear systems (Chikkula and Lee, 2000). The main motivation to

use NOMA based models in modelling is the case when the weighted sum of past values

of errors (or shocks) is more important than the weighted sum of past values of data itself.

Especially, in finance, in order to model volatility and exchange rates, considering the

errors rather than or along with autoregression is very important (Zaffaroni and d’Italia,

2003).

Polynomial moving average (PMA) models, also represented by P(p)MA(q), are
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linear-in-the-parameters Volterra based NOMA models and are expressed as

x(l) = µ +

q∑
i=1

b(1)
i e(l − i) +

q∑
i=1

q∑
j=1

b(2)
i, j e(l − i)e(l − j) +

q,...∑
i,...

b(p)
i,...e(l − i)... + e(l), (3.11)

where b(1)
i , b(2)

i, j and b(p)
i,... are PMA model coefficients for first order, second order and pth

order polynomials, respectively. MA memory of the PMA model is represented as q

whereas p refers to the nonlinearity degree.

The matrix-vector representation of a P(p)MA(q) model is

x = µ + Eb(p,q) + e, (3.12)

where E is n × γ matrix, the components of which are the past samples and polynomial

products of the excitation sequence and b(p,q) refers to a vector of P(p)MA(q) model co-

efficients length of which can be calculated as γ =
(p + q)!

p! q!
− 1. E and b(p,q) have the

form

E =


e(0) . . . e(1 − q) e2(0) e(0)e(−1) . . . ep(1 − q)

e(1) . . . e(2 − q) e2(1) e(1)e(0) . . . ep(2 − q)
... . . . ...

...
... . . . ...

e(n − 1) . . . e(n − q) e2(n − 1) e(n − 1)e(n − 2) . . . ep(n − q)

 , (3.13)

b(p,q) =

b(1)
1 , . . . , b(1)

q , b(2)
1,1, b

(2)
1,2, . . . , b

(2)
q,q, . . . , b

(p)
q,q,...,q︸︷︷︸

pth order


T

. (3.14)

3.1.3. Polynomial Autoregressive Moving Average (PARMA) Models

Due to their generality spanning both AR and MA models and their ease of es-

timation by methods such as Box-Jenkins (Box et al., 2011), ARMA models have been

preferable in time series prediction studies. Their usage area is diverse covering fields

such as speech (Peng et al., 2015; Ganapathy, 2015), seismology (Kozin, 1988), video

(Zhong et al., 2003), image (Cadzow et al., 1993), etc. Moreover, ARMA based models

have been utilized in energy and meteorological prediction studies of solar radiation (Ji
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and Chee, 2011; Benmouiza and Cheknane, 2016), electricity demand (Ohtsuka et al.,

2010; Pappas et al., 2010) and wind speed (Flores et al., 2012; Erdem and Shi, 2011).

Nonlinear ARMA (NARMA) or specifically, polynomial ARMA (PARMA) models

appear as natural alternatives to the linear ones in modelling problems including nonlin-

earity. NARMA based methods have also been used in the literature, for example in pre-

diction studies of electricity load (Connor et al., 1991), wind speed (Lydia et al., 2016),

in modelling a nonlinear networked control system (Zhang and Wang, 2008) and in fore-

casting of financial returns (Chen et al., 2015).

PARMA models, also represented by P(p)ARMA(k,q), can be defined as:

x(l) = µ+

p∑
d=1

k∑
τ1=1

. . .

k∑
τd=τd−1

a(d)
τ1,...,τd

d∏
j=1

x(l−τ j)+e(l)+
p∑

g=1

q∑
τ1=1

. . .

q∑
τg=τg−1

b(g)
τ1,...,τg

g∏
j=1

e(l−τ j),

(3.15)

The system of equations in (3.15) can be easily represented in matrix-vector form

for a P(p)ARMA(k, q) model as

x = µ + Xa(p,k) + Eb(p,q) + e, (3.16)

where n × η matrix X, η-vector a(p,k), n × γ matrix E and γ-vector b(p,q) have the forms

given in the Sections 3.1.1 and 3.1.2.

3.2. RJMCMC Nonlinear Model Estimation Procedure

As stated in the introduction part of this chapter, the classical trans-dimensional

procedures for RJMCMC have been utilized in estimating PAR, PMA and PARMA mod-

els. However, in contrast to the studies in the literature, we consider a model space, which

includes different structural models, i.e. linear and nonlinear. Sampling model orders (p,

k or q) requires changing the dimension at each RJMCMC iteration. There are 4 types of

moves for this problem:

• birth of a new parameter,

• death of an existing parameter,
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• updating the model coefficients via MH algorithm (life move),

• updating variance parameters via Gibbs Sampling.

Each move has probabilities Pbirth, Pdeath and Plife satisfying Pbirth + Pdeath + Plife = 1.

General procedure requires 2 (or 3 for PARMA models) cascaded RJMCMC

stages for model order parameters at each iteration. At each stage, one of the model

parameters (p, k or q) has been proposed while the others remain at their recent values.

Then, the acceptance ratio is calculated and the decision is tested for this candidate model

order. The procedure is depicted in Algorithm 4. The intercept, µ, for all three models is

chosen as 0 for simplicity.

Algorithm 4 RJMCMC scheme for PAR/PMA/PARMA Model Estimation
1: Given data x
2: Initialize model orders and coefficients for iteration t = 0
3: for do t = 1 : Niter
4: RJMCMC for the first model order.
5: Propose a move m with Pbirth, Pdeath, Plife
6: Propose a candidate model order for selected move m
7: Sample candidate coefficients from proposal distributions
8: Calculate acceptance ratio, A
9: if ρ <= A where ρ = U(0, 1) then

10: Update first model order with proposed value
11: Create a new model coefficient vector from existing and proposed coefficients.
12: Update coefficient vector with a new coefficient vector
13: else
14: Model order and coefficients remain the same. Discard proposed values.
15: end if
16: RJMCMC for the second model order.
17: Use recent values for model order 1 and the coefficient vector after first stage.
18: Repeat the same procedure in lines between 5 and 15

for the second model order.
19: RJMCMC for the third model order. (Only valid for PARMA models)
20: Use recent values for model order 1 and 2 and the coefficient vector after second stage.
21: Repeat the same procedure in lines between 5 and 15

for the third model order.
22: Update variance parameters via Gibbs Sampling
23: end for
24: end

In the case of a birth move, assume that it is required to propose λ = 4 candidate

model coefficients from a proposal distribution, χ(u), in order to satisfy the dimension

matching. This proposal distribution has the form

χ(u) =

λ∏
i=1

U(−δ, δ) and δ =
ν

E[|x|]
(3.17)
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where E[|x|] is the expectation of the absolute value of the observed data vector x. The

upper and lower bound, δ, is chosen to depend on the given data. Thus, different proposal

distributions with distinct limits can be constructed due to the fact that the magnitudes

of different data sets may vary in different ranges. So, utilizing an adhoc choice like

this adds variety for the proposed candidates. Moreover, after some trial-error process,

we see that using smaller δ values increases the number of accepted RJMCMC moves.

Therefore, values for ν are chosen as 0.1, 0.05 and 0.02 for PAR, PMA and PARMA

model estimation studies, respectively. Furthermore, each of the newly proposed model

coefficients is chosen to be independent from the recent coefficients which causes a unity

Jacobian.

3.3. Likelihoods and Priors for Models

An approximation of the likelihood function of ARMA models has been provided

by performing a recursive estimation procedure in the model itself for the unobserved

excitation values in (Box et al., 2011). This approach has been used in model estimation

studies for Bayesian analysis of ARMA based time series models (Troughton and Godsill,

1998; Ehlers and Brooks, 2004; Eğri et al., 2010).

On the other hand, in a previous study (Ivanov, 1987), it has been stated that

outputs of Volterra based models follow Gaussian characteristics for white inputs and

narrowband models. In addition, a Gaussian approximate likelihood has been used in

restoration of nonlinearly distorted AR signals when the whole system follows a nonlinear

AR model characteristics in (Troughton and Godsill, 2001). For PMA and PARMA model

estimation studies, we have experimentally verified the Gaussianity by testing the output

processes of the models.

Thus, an approximate likelihood function for a P(p)ARMA(k,q) has been used in

this study as,

f (x|θ) =
1√

(2πσ2
e)(n−qmax)

exp

 −1
2σ2

e

n∑
t=qmax+1

e2
t

 (3.18)

≈ N(x − Xa(p,k) − Eb(p,q)|0, σ2
eIn−qmax). (3.19)

It is straightforward to obtain likelihood functions for PAR and PMA models by

using the same expression in (3.18) for PAR models as q = 0 and for PMA models as
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k = 0

f (x|θ) ≈ N(x − Xa(p,k)|0, σ2
eIn), for PAR models, (3.20)

f (x|θ) ≈ N(x − Eb(p,q)|0, σ2
eIn−qmax), for PMA models. (3.21)

In the previous RJMCMC studies, generally uniform priors are selected for model

order parameters (Troughton and Godsill, 1998; Ehlers and Brooks, 2004; Eğri et al.,

2010). Correspondingly, in the model estimation study in this chapter, we assume that

each model is equiprobable and we choose the noninformative uniform priors for model

orders p, k, and q with upper bounds pmax, kmax and qmax, respectively:

f (p) = U(1, pmax), f (k) = U(1, kmax), f (q) = U(1, qmax). (3.22)

In order to provide conditional conjugacy, priors for model coefficients are as-

sumed to be normally distributed. Besides, the excitation variance and variance of the

model coefficients are assumed as inverse-Gamma distributed. These choices of priors

for variances are based on the conditional conjugacy of the inverse-Gamma distribution.

Then, the full posterior conditional distribution becomes also inverse-Gamma (Ehlers and

Brooks, 2004). All the priors are given as

f (a(p,k)|p, k, σ2
a) = N(a(p,k)|0, σ2

aIη), (3.23)

f (b(p,q)|p, q, σ2
b) = N(b(p,q)|0, σ2

bIγ), (3.24)

f (σ2
a) = IG(σ2

a|αa, βa), (3.25)

f (σ2
b) = IG(σ2

b|αb, βb), (3.26)

f (σ2
e) = IG(σ2

e |αe, βe), (3.27)

where IG(·) refers to an inverse Gamma distribution and αa, βa, αb, βb, αe, βe, are hyper-

parameters for variances.
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3.4. PAR Model Estimation

Bayesian hierarchy for the posterior density f (θ|x) corresponding to parameter

vector θ consisting of the parameters {p, k, a(p,k), σ2
e , σ

2
a} can be expressed as

f (p, k, a(p,k), σ2
e , σ

2
a|x) ∝ f (x|p, k, a(p,k), σ2

e) f (a(p,k)|p, k, σ2
a) f (σ2

a) f (σ2
e) f (k) f (p). (3.28)

In case of a birth move (birth of a new variable) from AR memory parameter k

to k′ for k′ > k where the nonlinearity degree p is fixed, the acceptance ratio, αbirth =

min{1, rbirth}, can be computed as

(3.29)rbirth =
f (x|p, k′, a(p,k′), σ2

e)
f (x|p, k, a(p,k), σ2

e)
×

f (a(p,k′)|p, k′, σ2
a)

f (a(p,k)|p, k, σ2
a)
×

Pdeath

Pbirthχ(u)
×

∣∣∣∣∣∣ ∂a(p,k′)

∂(a(p,k),u)

∣∣∣∣∣∣ .
For a death move, which changes states from k to k′ where k′ < k, no new param-

eters are needed to be proposed. We remove the coefficients which belong to AR memory

k of parameter vector a(p,k).

The acceptance ratio of a death move, αdeath(k → k′) = min{1, rdeath}, is calculated

directly via its reverse move αbirth(k′ → k). By definition, if

αbirth(k′ → k) = min
{
1, r′birth

}
, (3.30)

then we can directly write

αdeath(k → k′) = min
{
1, 1/r′birth

}
. (3.31)

A classical MH algorithm is applied to update the PAR coefficients when the pro-

posed and recent model orders are equal to each other causing no dimension change be-

tween the parameter spaces. Acceptance ratio is defined as αlife = min {1, rlife} where rlife

is

(3.32)rlife =
f (x|p, k′, a(p,k′), σ2

e)
f (x|p, k, a(p,k), σ2

e)
×

f (a(p,k′)|p, k′, σ2
a)

f (a(p,k)|p, k, σ2
a)
×

q(a(p,k)|p, k′, a(p,k′))
q(a(p,k′)|p, k, a(p,k))

.
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Since PAR models are linear-in-the-parameters and are written in matrix-vector

form (3.6), the proposal distribution which is derived for AR model estimation study in

(Ehlers and Brooks, 2003) and utilized as proposal distribution (2.66) in the toy example

in the previous chapter, is valid for PAR models after performing required changes. Up-

dated values of parameters are proposed from the distribution q(a(p,k′)|p, k, a(p,k)) which is

defined below

a(p,k′) ∼ q
(
a(p,k′)|p, k, a(p,k)

)
= N

(
a(p,k′)|µn,Σ

−1
n

)
, (3.33)

where µn and Σn are

µn = a(p,k) and Σn = σ−2
e XTX + σ−2

a Iη. (3.34)

At each iteration, the excitation variance σ2
e is updated by using (3.37). The up-

dating mechanism follows Gibbs sampling methodology. Following the same procedure

as in (2.71), the conditional posterior for σ2
e is derived as (Troughton and Godsill, 1998)

f (σ2
e |x, p, k, a(p,k)) ∝ f (x|k, a(p,k), σ2

e) f (σ2
e) (3.35)

f (σ2
e |x, p, k, a(p,k)) ≈ N(e|0, σ2

eIn)IG(σ2
e |αe, βe) (3.36)

= IG(σ2
e |αn, βn) (3.37)

where αn = αe +
1
2

n and βn = βe +
1
2

eTe.

3.4.1. Simulation & Results

In order to study performance of RJMCMC algorithm in PAR model estimation,

11 different PAR models (3 linear and 8 nonlinear) are generated synthetically each of

which has a length of 1000 samples (firstly, 50000 samples of data is generated and last

1000 samples are selected to ensure that the selected model coefficients are suitable and

model generates bounded data, i.e. with finite range). Each data set is driven with a Gaus-

sian excitation sequence with a variance of σ2
e . Variance parameter of PAR coefficients is

selected as σ2
a = 0.01 and no sampling is applied for σ2

a.
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Initial values (also the lower bounds) for model orders, k0 and p0 are set to 1.

Upper bounds for these parameters are set to 8 and 7, respectively. Additionally, hyperpa-

rameters for the prior distribution of excitation variance are selected as αe = 1 and βe = 2.

Birth and death moves are equiprobable with probabilities of Pbirth = Pdeath = 0.15. In or-

der to speed up the convergence of the model coefficient estimations to the correct values

during the operation of the algorithm, the life move, which is the coefficient update move,

is chosen more likely than the other within-model moves as Plife = 0.7. RJMCMC is run

for 10000 iterations to let sampled parameters converge.

In order to compare the model selection performance of RJMCMC, results ob-

tained by two popular model order selection methods with names AIC and BIC are pro-

vided. The equations for these are given as:

AIC = 2N + n log(RSS/n), (3.38)

BIC = log(n)N + n log(RSS/n), (3.39)

where N is number of parameters for the model, n data length and RSS is the residual

sum of squares which is RSS = xTx − xTX(XTX)−1XTx.

In Figure 3.1 running means of the coefficients of P(3)AR(2) model and the vari-

ance of the excitation sequence are plotted. PAR model for model orders (3, 2) has nine

coefficients; however, in the figure only five of them are plotted as well as estimated σ2
e .

Examining all the sub-figures, it can be stated that after nearly 2000 iterations, RJMCMC

converges to the estimated values.

In Figures through 3.2 and 3.5, the instantaneous estimates and the joint his-

tograms of the estimated parameters p and k for models P(2)AR(3) and P(3)AR(1) are

shown. Algorithm decides true order pair, (p, k) = (2, 3), nearly 80% of the iterations and

nearly 60% for (p, k) = (3, 1). For both of the models, RJMCMC converges to the correct

model orders within 1000 iterations.

Model order selection performances of RJMCMC, AIC and BIC are shown in Ta-

ble 3.1. Particularly, RJMCMC is superior to AIC for all 11 example models. On the

other hand, BIC performs better than RJMCMC especially for linear models. However,

this performance of BIC is caused by its bias which penalizes the model complexity. One

can clearly see that the cost of this bias becomes evident in model selection performance

of BIC for highly nonlinear models shown in the last four columns of Table 3.1 which

cannot reach even 5%. In order to demonstrate this effect, the percentages of model selec-
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Figure 3.1. Running Mean Plots for P(3)AR(2) Model Estimation. Horizontal axes for
each sub-figure refer to RJMCMC iteration.

tion for RJMCMC, AIC and BIC plotted as a function of nonlinearity degree, p, in Figure

3.6 for models P(2)AR(2) and P(3)AR(2). Figure 3.6 and Table 3.1 depict that RJMCMC

and BIC achieve very close results for models with small number of coefficients whereas

RJMCMC outperforms both AIC and BIC when the nonlinearity degree is increased ac-

companied by an increasing number of model coefficients.

Coefficient estimation performance are also shown in the last row of Table 3.1 in

terms of normalized mean square error (NMSE) values after 100 RJMCMC runs. The

NMSE is defined as

NMSE =
1
w

w∑
i=1

(ai − âi)2

‖a‖22
(3.40)

where ai and âi is the ith element of the η-dimensional coefficient vector a and its estimate

â. In addition, ‖a‖2 is the l2-norm of a. Examining the NMSE figures show that RJMCMC

estimates model coefficients for all example PAR models around an average NMSE error

of 10−2.
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Figure 3.2. Instantaneous plot for nonlinearity degree, p, and the AR order, k, for
P(2)AR(3)

Figure 3.3. Estimated joint histogram for P(2)AR(3) Model
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Figure 3.4. Instantaneous plot for nonlinearity degree, p and the AR order, k for
P(3)AR(1)

Figure 3.5. Estimated joint histogram for P(3)AR(1) Model
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Table 3.1. Detected Percentage of True Models

P(1)AR(1) P(1)AR(2) P(1)AR(3) P(2)AR(1) P(2)AR(2) P(2)AR(3)

RJMCMC 96% 100% 98% 82% 90% 88%
AIC 36% 45% 57% 51% 77% 73%
BIC 100% 100% 98% 100% 96% 66%

# of Coef. 1 2 3 2 5 9
Avg. NMSE of Coef. 0.0010 0.0039 0.0034 0.0037 0.0038 0.0017

Vector Estimate

P(3)AR(1) P(3)AR(2) P(3)AR(3) P(4)AR(1) P(5)AR(1)

RJMCMC 76% 76% 75% 60% 84%
AIC 66% 51% 43% 17% 17%
BIC 92% 4% 1% 2% 2%

# of Coef. 3 9 19 4 5
Avg. NMSE of Coef. 0.0049 0.0076 0.0200 0.0338 0.0073

Vector Estimate

3.5. PMA Model Estimation

With the help of Bayes theorem, the joint posterior density, or namely RJMCMC

target distribution, f (θ|x), is expressed as

f (p, q,b(p,q), σ2
e , σ

2
b|x) ∝ f (x|p, q,b(p,q), σ2

e) f (b(p,q)|p, q, σ2
b) f (σ2

b) f (σ2
e) f (q) f (p). (3.41)

In PMA model estimation study, RJMCMC moves are the same with the ones

described in PAR model estimation section. Firstly, for a birth move from q to q′ where

p is fixed, the acceptance ratio is αbirth = min{1, rbirth} where rbirth is

(3.42)rbirth =
f (x|p, q′,b(p,q′), σ2

e)
f (x|p, q,b(p,q), σ2

e)
×

f (b(p,q′)|p, q′, σ2
b)

f (b(p,q)|p, q, σ2
b)
×

Pdeath

Pbirthχ(u)
×

∣∣∣∣∣∣ ∂b(p,q′)

∂(b(p,q),u)

∣∣∣∣∣∣ .
When the proposed model order q′ is lower than the recent one, q (q′ < q), no new

parameters are proposed and a death move will be applied. The same procedure as in

PAR is executed and the acceptance ratio of the death move appears as αdeath(q → q′) =

min{1, 1/r′birth} where r′birth refers to the ratio of a birth move from q′ to q.

When the newly proposed model order is equal to the recent value, e.g. q′ = q, a
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Figure 3.6. Percentage of correct model decision comparison

life move will be applied. Acceptance ratio is defined as αlife = min {1, rlife}. So, rlife is

(3.43)rlife =
f (x|p, q′,b(p,q′), σ2

e)
f (x|p, q,b(p,q), σ2

e)
×

f (b(p,q′)|p, q′, σ2
b)

f (b(p,q)|p, q, σ2
b)
×
ψ(b(p,q)|p, q′,b(p,q′))
ψ(b(p,q′)|p, q,b(p,q))

.

In order to update model coefficients, a proposal distribution of ψ(·) is defined as

b(p,q′) ∼ ψ(b(p,q′)|p, q,b(p,q)), (3.44)

= N(b(p,q′)|µn,Σ
−1
n ), (3.45)

where µn = σ−2
e Σ−1

n XTx and Σn = σ−2
e XTX + σ−2

b Iγ.

Excitation variance, σ2
e , and variance of model coefficients, σ2

b, are updated at

each iteration via Gibbs Sampling. Constructing the full conditional distribution for σ2
e

follows the same steps in AR model selection example in Section 2.6.2.3 and is chosen to
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be inverse Gamma as (Troughton and Godsill, 1998)

f (σ2
e |x, p, q,b(p,q)) ∝ f (x|p, q,b(p,q), σ2

e) f (σ2
e) (3.46)

≈ N(e|0, σ2
eIn)IG(σ2

e |αe, βe) (3.47)

= IG(σ2
e |αen, βen) (3.48)

where αen = αe + 1
2n, βen = βe + 1

2eTe.

Similarly, the full conditional distribution for σ2
b is obtained as (Troughton and

Godsill, 1998)

f (σ2
b|x, p, q,b(p,q)) ∝ f (b(p,q)|σ2

b) f (σ2
b) (3.49)

≈ N(σ2
b|0, σ

2
bIγ)IG(σ2

b|αb, βb) (3.50)

= IG(σ2
b|αbn, βbn) (3.51)

where αbn = αb + 1
2γ and βbn = βb + 1

2 (b(p,q))Tb(p,q).

Model estimation procedure for PMA requires past samples of the excitation se-

quence. However, this sequence is an unobserved sequence and thus it is required to be

estimated. For this purpose, an initial excitation vector, e(0), is created and the complete

excitation vector e is estimated at each iteration via (3.11) starting from e(q+1) up to e(n)

by using e(0). Hence, the aforementioned initial excitation vector, e(0) is sampled from the

distribution

e(0) ∼ N(0, σ2
eIq). (3.52)

3.5.1. Simulation & Results

In order to study the RJMCMC performance on PMA model estimation, 6 differ-

ent PMA models (2 linear and 4 nonlinear) each of which has 500 samples, are generated

synthetically. Each data set is driven with a Gaussian excitation sequence with a variance

of σ2
e . So as to provide the output sequence of each PMA models are normally distributed,
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Kolmogorov-Smirnov and Kullback-Leibler tests have been performed. Hyperparameters

are set to αe = αb = 1 and βe = βb = 2. The initial model orders q0 and p0 are set to

1 and both of upper bounds pmax and qmax are set to 6. RJMCMC move probabilities are

selected as 0.15, 0.15 and 0.7, respectively, for Pbirth, Pdeath and Plife. 10000 iterations are

run to let sampled parameters converge.

AIC/BIC calculations have not been performed for PMA and PARMA simula-

tions. These results will not be used for PMA and PARMA because of the need for a

troublesome estimation step for the unobserved excitation sequence in AIC/BIC calcula-

tions. We also believe that the performance degradation of these model selection methods,

shown in the PAR results (Figure 3.6), will be further increased, taking into account the

error caused by the estimation of the unobserved excitation data in the PMA and PARMA

models.

Table 3.2. Model Estimation Results

P(1)MA(4) P(1)MA(5) P(2)MA(2)

Percentage of Detection 70% 70% 100%
Avg. NMSE of Coeff. Vector Estimate 0.0287 0.0448 0.0174

# of Coeff. (w) 4 5 5

P(2)MA(3) P(3)MA(2) P(4)MA(1)

Percentage of Detection 100% 65% 70%
Avg. NMSE of Coeff. Vector Estimate 0.0198 0.0308 0.0531

# of Coeff. (w) 9 9 4

Table 3.2 shows the percentage of detection for true model order pairs and esti-

mated model coefficient error values in terms of NMSE values. The NMSE for PMA

model coefficients is defined as:

NMSE =
1
w

w∑
i=1

(bi − b̂i)2

‖b‖22
. (3.53)

RJMCMC is run 20 times for each PMA model and average NMSE values after 20

repetitions are presented in Table 3.2. Examining the results in Table 3.2, for all example

PMA models RJMCMC estimates true model order pairs with at least 65% of percentage

within 20 simulations. Moreover, RJMCMC achieves reasonable performance on model

coefficients estimation by succeeding average NMSE of around 10−2 for all models.

In Figures 3.7 and 3.8, the instantaneous estimates and the joint posterior density
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of the model orders p and q for models P(1)MA(4) and P(2)MA(2) are plotted in a single

RJMCMC run. For both of the models, RJMCMC estimates the true model orders over

50% of the iterations.

3.6. PARMA Model Estimation

In PARMA model estimation study, the target distribution of RJMCMC f (θ|x) is

decomposed via Bayes Theorem for the parameter vector θ = {p, k, q, a(p,k),b(p,q), σ2
e , σ

2
a, σ

2
b}

f (θ|x) ∝ f (x|p, k, q, a(p,k),b(p,q), σ2
e) f (a(p,k)|p, k, σ2

a)×

f (b(p,q)|p, q, σ2
b) f (σ2

a) f (σ2
b) f (σ2

e) f (p) f (k) f (q). (3.54)

Assume that a birth move has been proposed from AR order k to k′ when p and q

are fixed. Then, resulting acceptance ratio is αbirth = min{1, rbirth} where rbirth can be given

as

(3.55)rbirth =
f (x|p, k′, q, a(p,k′),b(p,q), σ2

e)
f (x|p, k, q, a(p,k),b(p,q), σ2

e)
×

f (a(p,k′)|p, k′, σ2
a)

f (a(p,k)|p, k, σ2
a)
×

Pdeath

Pbirthχ(u)
×

∣∣∣∣∣∣ ∂a(p,k′)

∂(a(p,k),u)

∣∣∣∣∣∣ .
When a death move has been proposed from k to k′, no new parameters are being

proposed. Since birth and death moves are reversible move pairs, αdeath(k → k′) can be

written in terms of αbirth(k′ → k).

When k′ = k, a life move will be proposed with acceptance ratio, αlife = min {1, rlife}

with

(3.56)rlife =
f (x|p, k′, q, a(p,k′),b(p,q), σ2

e)
f (x|p, k, q, a(p,q),b(p,q), σ2

e)
×

f (a(p,k′)|p, k′, σ2
a)

f (a(p,k)|p, k, σ2
a)
×
ψ(a(p,k)|p, k′, a(p,k′))
ψ(a(p,k′)|p, k, a(p,k))

where the proposal distribution ψ(·) is

ψ(a(p,k)|p, k′, a(p,k′)) = N(a(p,k′)|µn,Σ
−1
n ), (3.57)

with µn = σ−2
e Σ−1

n XT(x − Eb(p,q)) and Σn = σ−2
e XTX + σ−2

a Iη.
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Figure 3.7. The instantaneous model order estimates and the joint posterior density of
the model orders of P(1)MA(4)
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Figure 3.8. The instantaneous model order estimates and the joint posterior density of
the model orders of P(2)MA(2)
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At each iteration several update moves are performed to update variance param-

eters and initial unobserved excitation vector e(0) = [e1, e2, . . . , eq] via Gibbs sampling.

The full conditional distribution for σ2
e is (Troughton and Godsill, 1998)

f (σ2
e |x, p, q,b(p,q)) = IG(σ2

e |αen, βen), (3.58)

where αen = αe + 1
2n, βen = βe + 1

2eTe. Similarly, the full conditionals for coefficient vector

variances appear as

f (σ2
a|x, p, k, a(p,k)) = IG(σ2

a|αan, βan), (3.59)

f (σ2
b|x, p, q,b(p,q)) = IG(σ2

b|αbn, βbn), (3.60)

where parameters for these inverse Gamma functions are αan = αa + 1
2η, βan = βa +

1
2 (a(p,k))Ta(p,k), αbn = αb + 1

2γ and βbn = βb + 1
2 (b(p,q))Tb(p,q).

Initial excitation vector e(0) can be sampled from the distribution given in (3.52).

3.6.1. Simulation & Results

In order to study the performance, 10 PARMA models have been generated for

simulations. Each model generates 20 zero mean (µ = 0) data sets each of length 750

samples. Each data set is driven with a Gaussian excitation sequence of variance of σ2
e .

Hyperparameters αa, αb, αe, βa, βb and βe are selected as 1. Each of the initial

values p0, k0 and q0 is also set to 1. Upper bounds, pmax, kmax and qmax, for model orders

are selected as 5, 6 and 6, respectively. RJMCMC offers birth and death model moves

with probability of 0.15 and life model move with a probability of 0.7. Apart from the

procedures in PAR and PMA model estimation, RJMCMC performs a training procedure

by applying 10 consecutive life moves to update the newly estimated model coefficients

if the proposed model order is accepted. Each RJMCMC run performs 25000 iterations

including a burn-in period of 10000 iterations. For PAR and PMA, there has been no need

to discriminate a burn-in period since the algorithm attains the characteristic of steady

state behavior in a very small number of samples compared to simulation length.

In order to measure the estimation performance of the proposed method for model

coefficients, NMSE has been used. The expression for NMSE in estimating PARMA
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model coefficients is

NMSE =
1

η + γ

η+γ∑
i=1

(hi − ĥi)2

‖h‖22
, (3.61)

where vector h includes both AR and MA model coefficients vectors a(p,k) and b(p,q) and

ĥ is its estimate.

Table 3.3 demonstrates results after 20 RJMCMC runs. These results reveal that

for all 10 PARMA models, RJMCMC estimates correct model orders with the highest

percentages. In addition, RJMCMC exhibits great performance on model coefficients

estimation with NMSE values between 6 × 10−4 and 1 × 10−2 for all the models.

Table 3.3. Model estimation results

(1,3,0) (1,0,4) (1,3,1) (1,2,2) (2,1,1)

% Perf. of Detection 85 65 80 80 95
Avg. NMSE 0.0015 0.0022 0.0081 0.0145 0.0079
# of Coeff. 3 4 4 4 4

(2,2,1) (2,3,1) (3,1,0) (3,0,1) (3,1,1)

% Perf. of Detection 90 100 70 80 80
Avg. NMSE 0.0050 0.0056 0.0006 0.0011 0.0030
# of Coeff. 7 11 3 3 6

Figure 3.9 depicts the estimated joint posteriors of model orders for 3 example

PARMA models in a single RJMCMC run. Each sub-figure shows 5 most frequently

estimated models and their probabilities after burn-in period. Examining the figure, we

can clearly state that models which have the highest probabilities are the correct models

and these posteriors depict that RJMCMC estimates the correct models.

In Figure 3.10, instantaneous estimates for each model order p, k and q for a

P(2)ARMA(2,1) model, are shown for a single RJMCMC run with 25000 iterations. Burn-

in period is also shown in Figure 3.10 in order to see the transient character of the algo-

rithm.

Figure 3.11 shows the posterior probabilities for model coefficients of P(1)ARMA(3,1)

in a single RJMCMC run. Vertical black line corresponds to the correct model coefficient

value for each sub-figure. Coefficient estimates for only correctly estimated model orders

after burn-in period have been used to obtain the distributions in this figure. Resulting pos-
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Figure 3.9. Estimated joint posteriors for model orders in a single RJMCMC run.
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Figure 3.10. The instantaneous model order estimates of P(2)ARMA(2,1).
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teriors show that RJMCMC estimates model coefficients with a remarkable performance

and the correct model coefficient values stand in 95% confidence interval (CI) (±2σ) for

b1 and a1 and 68% CI (±σ) for a2 and a3 of the estimated posteriors.
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Figure 3.11. Estimated posteriors for P(1)ARMA(3,1) coefficients (where the selected
coefficient vector is b∗ = [0.25, 0.5,−0.2, 0.38]). Vertical lines with“o"
marker are the correct coefficient values, vertical dashed lines with “∇"
and “*" markers refer to ±σ and ±2σ CIs, respectively.

3.7. Conclusions on Nonlinear Model Estimation

In this chapter of the thesis, we have presented a general framework for the es-

timation problems of Volterra based linear-in-the-parameters nonlinear models, namely

PAR, PMA, and PARMA by demonstrating the classical trans-dimensional RJMCMC

procedure in an anomalous way. Numerical results demonstrate promising performance

of the proposed method in estimating model orders and corresponding model coefficients

concurrently for all three nonlinear time series models. Particularly, model order selec-

tion performance of the proposed method provides remarkable performance compared to
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AIC and BIC, especially when the system nonlinearity degree is high. Additionally, the

coefficient estimation results of the proposed method are also very successful. Despite

not knowing the correct model orders, this automatic estimation procedure also reveals

that the proposed method is an important complete estimation method.

The given toy example about linear AR model uncertainty in the previous chapter,

has been extended to a nonlinear model estimation study, and thus the ability of RJMCMC

for making transitions between different structural models is demonstrated. This result

also suggests that the proposed method is an important method compared to the other

classical methods in nonlinear model selection applications, especially due to its ability

to estimate the polynomial nonlinearity degree of the models.

Another important contribution of the proposed method is that it can be used as a

nonlinearity test procedure for given sets of data in terms of polynomial nonlinearity. This

contribution is due to the ability of the proposed method to switch between the linear and

nonlinear models. The applicability of the classical trans-dimensional method in much

more complex applications is clearly demonstrated.

Contrary to its classical usage, the extension from linear models to nonlinear ones,

presented in this chapter, provides a very broad application framework addressed by RJM-

CMC. If the necessary modifications are made, the RJMCMC can be a model estimation

method that can be successfully used in the solution of much more difficult problems. To

name a few, the proposed use of RJMCMC in this section, are not limited to PARMA

based models. In addition, further applications are also not limited to Gaussian innova-

tion cases, and thus, this approach can also be applied to model estimation studies with

non-Gaussian innovation sequences.
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CHAPTER 4

BAYESIAN VOLTERRA SYSTEM IDENTIFICATION

Models for nonlinear systems can be classified as nonparametric and parametric.

Nonparametric models include state-space and nonlinear phase-space models all of which

generally have infinite number of parameters. Infinite ordered Volterra and Wiener mod-

els are also located within this group. In parametric nonlinear system models, one can

express the input-output relationship in terms of a mathematical function which has a fi-

nite number of parameters. Polynomial nonlinear models, which can also be defined as

truncated Volterra models, are important parametric nonlinear models (Nowak, 2002).

Among these nonlinear system models, Volterra models (Schetzen, 1980) are fa-

vorable due to their linear-in-the-parameters property. In addition, there are several rea-

sons which make Volterra models appealing in nonlinear modelling. Firstly, Volterra mod-

els provide approximation on continuously differentiable transfer functions with Taylor

series expansion. This makes them adaptable for representing many nonlinear systems.

Furthermore, various nonlinear differential equations such as Lotka-Volterra, Schrödinger

(Kang, 2004) can be rewritten as a Volterra system. Secondly, the inverse of a Volterra

model is also Volterra type and thus they provide easy-to-implement solutions for system

identification problems (Le Caillec, 2011).

A discrete time Volterra model with the output y(l) is given by (Alper, 1965)

y(l) = µ +

p∑
m=1

q∑
τ1=1

. . .

q∑
τm=τm−1

h(m)
τ1,...,τm

m∏
j=1

x(l − τ j) (4.1)

where x(·) is the input of the model and h(m)
τ1,...,τm refers to the mth order discrete Volterra

model coefficients (or namely kernels). The nonlinearity degree is denoted by p and q

indicates the system memory. The notation of V(p, q) can be used for Volterra models.

Examining (4.1), the matrix-vector form of the Volterra models is

y = µ + Xh(p,q) (4.2)

where µ refers to the intercept and the η × 1 coefficient vector h(p,q) and n × η data matrix
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X are

h(p,q) =

[
h(1)

1 , h(1)
2 , . . . , h(1)

q , h(2)
1,1, h(2)

1,2, . . . , h(2)
q,q, . . . , h(p)

q,q,...,q

]T
(4.3)

X =


x(0) x(−1) . . . x(1 − q) x2(0) x(0)x(−1) . . . x2(1 − q) . . . xp(1 − q)

x(1) x(0) . . . x(2 − q) x2(1) x(1)x(0) . . . x2(2 − q) . . . xp(2 − q)
...

... . . . ...
...

... . . . ... . . . ...

x(n − 1) x(n − 2) . . . x(n − q) x2(n − 1) x(n − 1)x(n − 2) . . . x2(n − q) . . . xp(n − q)


(4.4)

where n specifies the data length. The number of Volterra coefficients, also denoted by η,

can be calculated for a V(p, q) model by

η =

(
p + q

p

)
− 1 =

(p + q)!
p! q!

− 1. (4.5)

Volterra system models have been popular models and have achieved remarkable

success in modelling nonlinear systems in many real life applications. In signal process-

ing, Volterra models are widespread models and their application areas cover speech, im-

age, communications, audio, mechanical systems, etc. To name a few: in audio, Volterra

model has been used for parametric loudspeaker system identification in (Ji and Gan,

2012) and for acoustic echo cancellation in (Contan et al., 2013). Second order Volterra

models have been utilized in identification of drift oscillations of moored vessels objects

in (Koh and Powers, 1985). Nonlinear communication channels in satellite links have

been modelled with sparse third order (cubic) Volterra systems which were estimated

via adaptive algorithms (Kalouptsidis et al., 2011). Authors have proposed an indirect

Volterra model for predistorter application in compensation of a given system (Eun and

Powers, 1997). Volterra system models were applied also in (Mhatli et al., 2015) to co-

herent optical fiber systems outperforming the adaptive reference methods on equalizing

the fiber link channel effects. Volterra systems with complex coefficients have been used

in blind identification of single-input-single-output (SISO) communication channels with

second order nonlinearity in (Mileounis and Kalouptsidis, 2009) and for linear time invari-

ant (LTI) finite impulse response (FIR) multiple-input-multiple-output (MIMO) systems

in (Kotoulas et al., 2011). Generally in the literature, as shared by the mentioned applica-

tions, VSI methodology has been applied to the models with predetermined nonlinearity

degree and system memory. However, a prior knowledge of the nonlinearity degree is
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an unrealistic assumption for most of these applications and estimating the nonlinearity

degree is extremely important.

Recently, adaptive approaches are favourable to solve VSI problems. Particularly,

the aforementioned methods generally perform estimation studies about Volterra system

coefficients based on nonlinear least mean squares (NLMS) (Glentis et al., 2014; Chaud-

hary et al., 2016), nonlinear recursive least squares (NRLS) (Shi and Shi, 2011; Claser

et al., 2016), least mean pth power (LMP) (Lu et al., 2016), and extended Kalman filters

(Bouilloc and Favier, 2012; Batselier et al., 2016). In addition to adaptive approaches,

genetic algorithms (Abbas and Bayoumi, 2006; Merabti and Massicotte, 2014), QR de-

composition (Shoaib et al., 2010), neuro-fuzzy (Loussifi et al., 2016) and neural network

(Fortuna et al., 2003) architectures have also been utilized in VSI.

Several Bayesian approaches have been used in SI problems in the literature. A

MH based MCMC approach has used to identify dynamical systems in (Ninness and

Henriksen, 2010), authors (Beck, 2010) have proposed an identification scheme based

on probability logic with Bayesian updating. In addition to these, in order to identify

nonlinear dynamic systems transitional Markov chain Monte Carlo (TMCMC) (Green

and Worden, 2015) and simulated annealing (SA) (Green, 2015) are also used.

In the previous chapter, an approach has been presented which uses RJMCMC

in estimating the linear-in-the-parameters nonlinear time series methods. Particularly, a

complete approach has been established that RJMCMC can be used for transitions be-

tween linear/nonlinear models using the classical trans-dimensional approach and to esti-

mate the nonlinearity degrees of the PAR/PMA/PARMA models as well.

The procedure in this chapter will take the approach in the previous chapter one

step further, suggesting a more general RJMCMC move than the classical trans-dimensional

moves. This new RJMCMC procedure will be called as trans-structural. It is not trans-

dimensional because performs transitions between spaces regardless of their dimension

sizes. It is trans-structural because it performs transitions across multiple dimensions si-

multaneously and between different structural model classes, such as linear and nonlinear.

The trans-structural RJMCMC (Karakuş et al., 2017a) will be used for the identification

of Volterra system models. Thus, a solution will be presented for the fixed nonlinearity

degree problem in the above mentioned literature examples.
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4.1. Nonlinear System Identification

System identification is a task of determining the relationship between the input

and output of the unknown system in question, generally based on noisy output measure-

ments. Assume we have an unknown system with input x(t) and output y(t), identification

of this system is to estimate an expression for relation F such as (Nowak, 2002):

y(t) = F[x(t)] + e(t), (4.6)

where e(t) refers to noise on system output. When the relation F is a nonlinear operation,

the task is named as nonlinear system identification.

Another point of view defines nonlinear system identification to select the best

nonlinear model F from a set of candidate models F . The selection criterion may be

based on different metrics or cost functions, e.g. sum of squared errors. Thus, the identi-

fication process simply becomes a model selection operation from a set of models which

minimizes the cost function (Nowak, 2002).

Up to this chapter of the thesis, we have demonstrated the estimation of models

with polynomial nonlinearity by extending the methods derived for linear AR models.

This model estimation process may also be referred simply as nonlinear model selec-

tion. Therefore, it is very clear that the RJMCMC usage we have shown in the previous

chapters has a direct link between system identification process and can also be used in

identifying a nonlinear system in terms of Volterra system models by making the neces-

sary modifications.

In the literature, methods used to identify unknown systems provide information

about the uncertainties, especially in terms of formulations or mathematical expressions,

in case there is a little (or no) physical information about the systems. When the system

subject to be identified is linear, SI methods are well established and easy to implement.

However, it has been already stated that most of the real life applications exhibit nonlinear

characteristics. Hence, approaches to the solution for a nonlinear SI problem can be

challenging since the aforementioned systems may be highly nonlinear and the number

of possible model structures might be very high (Green and Worden, 2015).
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4.2. Trans-Structural RJMCMC for Volterra systems identification

In the previous chapter, we have stated that one of the main aims of this thesis is

to show the formulation which Peter Green derived in (Green, 1995) offers wider inter-

pretation of transitions between spaces which are not limited to trans-dimensional jumps.

Thus, by using the reversible jump mechanism of Green, it is possible to explore spaces

of the same dimensionality but with different structures, or both different dimensions

and structures. Defining transitions between linear and nonlinear spaces may be given

as an example for this type. In this chapter, transitions of this type are named as trans-

structural and particularly, other than being trans-dimensional, trans-structural RJMCMC

unveils the great potential of RJMCMC within deeper applications, i.e. across multiple

dimensions simultaneously and between spaces of the same dimensionality.

Firstly, a state space X =
⋃

k{k} × Rnk is supposed to be the union of k subspaces

which includes models with indicator k, Xk = {k} × Rnk and each model can be defined

as different types. Here, the term different types, is used for the cases e.g. linear and

nonlinear models or models which are driven with different probability distributions, etc.

Assume two subspaces X1 and X2 of different types where the dimensions n1 and n2 may

be equal. The subspaces X1 and X2 have parameters spaces θ1 and θ2 and both have

proper densities in Rn1 and Rn2 .

Define a move type “m", to perform a transition from state x ∈ X1 to state x′ ∈ X2,

with probability pm. A transition kernel is used to perform this transition which is applied

in two steps as indicated in (2.10) and thus the detailed balance should be satisfied. Unlike

the classical trans-dimensional approach, trans-structural RJMCMC transition between

spaces of different types performs transition across multiple dimensions at once and may

include both birth of new parameters and death of existing parameters at the same time.

Hence, number of parameters, (or namely dimension of the parameter space) may be the

same for both of the spaces. Briefly, transitions of this type switch the model spaces of

different types, and hence will be named as switch moves in trans-structural RJMCMC

concept.

In order to express the trans-structural RJMCMC approach more clearly, herein a

toy example is given. In particular, two different Volterra models are implemented each of

which has the same number of model coefficients but different structures. First model is a

linear Volterra model say V(1,2), and the other one is nonlinear, say V(2,1). The general
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expressions of the models from (4.1), are given below:

y(l) =h(1)
1 x(l − 1) + h(1)

2 x(l − 2), (4.7)

y(l) =h(1)
1 x(l − 1) + h(2)

1,1x2(l − 1). (4.8)

Then suppose, the data, y, observed from one of the candidate models is given

initially. For both of the candidate models two parameter subspaces X1 = {1} × R2 and

X2 = {2} × R2 can be written easily from the definition above. The parameter subspaces

for the models, V(1,2) and V(2,1) are x = (1, h(1)
1 , h(1)

2 ) ∈ X1 and x′ = (2, h(1)
1 , h(2)

1,1) ∈ X2,

respectively. A single between-model move is proposed which switches subspaces with

probability pm. The algorithm retains the same subspace with probability 1 − pm and

performs a within-model move to update model coefficients.

Particularly, in case of a transition from model V(1,2) to V(2,1), although the

parameter dimensions are the same, just one of the model coefficients is common, say

h(1)
1 . The other coefficient of the candidate model, say h(2)

1,1, should be proposed and h(1)
2

will be removed. For the reverse move, mR, performing a transition from model V(2,1) to

V(1,2) with probability, pmR , the same procedure will be applied, that h(1)
2 will be proposed

and h(2)
1,1 will be removed. Consequently, we can easily write

Move m→ ĥ(1)
1 = h(1)

1 , ĥ(2)
1,1 = u, h(1)

2 → removed (4.9)

Reverse move mR → ĥ(1)
1 = h(1)

1 , ĥ(1)
2 = u′, h(2)

1,1 → removed (4.10)

where coefficients with hats, e.g ĥ(1)
1 refer to the coefficients of the candidate model and

variables u and u′ are proposed from the densities q1 and q2, respectively. Hence, the

acceptance ratio for this transition appears as

α(x, y) = min
{

1,
π(x′|y)pmRq2(u′)
π(x|y)pmq1(u)

∣∣∣∣∣∂(x′, u′)
∂(x, u)

∣∣∣∣∣} . (4.11)

This derivation of a toy example constructed so far has been implemented in a

computer simulation and in particular, RJMCMC has been utilized to decide the true

model which the observed data y comes from. Both of the input and the output data sets

are initially provided to the algorithm and the algorithm performs identification of the
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unknown system. 100 distinct data sets from each model have been generated and exam-

ining the results of this simulation, for both of the models RJMCMC estimates the true

models with %100 performance. Estimated joint histograms of model orders belonging

to a single realization are shown in Figure 4.1 for both of the models.

4.2.1. Defining The Likelihood

When the input sequence is normally distributed, the output of a Volterra system

is not guaranteed to be Gaussian due to the nonlinear operations performed on the input

sequence. However, it was stated in a previous study (Ivanov, 1987) that output distri-

bution of a narrowband Volterra system with white inputs is Gaussian. Hence, when the

system memory of a Volterra system tends to infinity, its output is Gaussian.

Besides, in Bayesian approaches in SI studies, it is a widespread convention to

express the likelihood as a measure how well the estimated model fits the observed data.

Thus, in this study, we assume that the prediction error can be expressed as (Hadjidoukas

et al., 2014)

y = ŷ + e. (4.12)

where ŷ = [ŷ(1), ŷ(2), . . . , ŷ(n)] refers to the model prediction and the observed system

output is y = [y(1), y(2), . . . , y(n)].

In previous studies (Green, 2015; Simoen et al., 2013; Hadjidoukas et al., 2014;

Goulet and Smith, 2013), a zero mean Gaussian error-prediction model has been assumed.

In Figure 4.2, distributions of the prediction error sequences for three example Volterra

models which are implemented for the simulation case 1, are depicted. In order to provide

a measure about the Gaussianity of the prediction error sequences, Kullback-Leibler (KL)

divergence has been calculated with the fitted Gaussian distributions. Examining both the

visual and the numerical results in the sub-figures of Figure 4.2, it can be easily stated

that the prediction error distributions for all three Volterra models are Gaussian in terms

of KL divergence values all of which are lower than 0.05.
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(a) V(1,2)

(b) V(2,1)

Figure 4.1. Toy example model estimation histograms - (a) V(1,2) (b) V(2,1).
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Figure 4.2. Prediction error histograms and fitted Gaussians for models - (a) V(1,10)
(b) V(2,5) (c) V(3,3).
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Thus, using a Gaussian error-prediction model the likelihood function appears as

f (y|θ) = (2πσ2
e)−n/2 exp

 1
2σ2

e

n∑
t=1

(yt − ŷt)2

 (4.13)

≈ N(e|0, σ2
eIn) (4.14)

where θ is the parameter vector consisting of {p, q,h(p,q), σ2
e , σ

2
h}, n refers to the data

length, e = [e(1), e(2), . . . e(n)] is the prediction error and σ2
e is the error variance.

4.2.2. Hierarchical Bayes Model

The joint posterior distribution of RJMCMC for VSI, f (θ|x), can be decomposed

via Bayes theorem for the parameter vector θ = {p, q,h(p,q), σ2
e , σ

2
h} as

f (p, q,h(p,q), σ2
e , σ

2
h|y) ∝ f (y|p, q,h(p,q), σ2

e) f (h(p,q)|p, q, σ2
h) f (σ2

h) f (σ2
e) f (q) f (p). (4.15)

4.2.3. Prior Selection

In the absence of real prior information, using noninformative priors is very com-

mon (Green and Richardson, 2001). To name a few: in time series model estimation

studies using uniform priors for model orders has been a common choice (Troughton and

Godsill, 1998; Ehlers and Brooks, 2004; Eğri et al., 2010). Moreover, results which are

obtained by using uniform priors can be easily converted to other priors, that is achieved

by using the identity (Richardson and Green, 1997)

f ∗(k, θ(k)|y) ∝ f (k, θ(k)|y)
f ∗(k)
f (k)

(4.16)

where f ∗(·|y) refers to the posterior density for the prior f ∗.

Consequently, we are assuming that the model orders are independent and each

model is equiprobable with upper bounds pmax and qmax for model orders p and q, respec-

83



tively. Therefore, uniform priors are chosen for the model memory q and the nonlinearity

degree p

f (q) = U(1, qmax) and f (p) = U(1, pmax). (4.17)

Volterra model coefficients are assumed to be normally distributed a priori and for

the variances, σ2
e and σ2

h, we use conjugate priors (Ehlers and Brooks, 2004)

f (h(p,q)|p, q, σ2
h) = N(h(p,q)|0, σ2

hIη), (4.18)

f (σ2
h) = IG(σ2

h|αh, βh), (4.19)

f (σ2
e) = IG(σ2

e |αe, βe). (4.20)

4.2.4. RJMCMC Methodology for VSI

In this thesis, in Chapter 2, we have presented the trans-dimensional RJMCMC

derivation for linear AR, which is frequently discussed in the literature. This derivation

has been extended in Chapter 3 and been utilized to estimate models with polynomial

nonlinearity. These nonlinear models, PAR/PMA/PARMA, are linear-in-the-parameters

models and follow the Volterra series expansion. Although the stochastic modeling and

system identification procedures differ from each other in their essence, the approach

derived in Chapters 2 and 3 can also be used to identify the Volterra system models.

So, as mentioned in previous chapters, when we develop RJMCMC for VSI, we

propose a new RJMCMC move that we have not used before. This move is called a

switch move, and the classical trans-dimensional birth and death moves used in the pre-

vious chapters are combined into a single move to perform transitions across multiple

dimensions. In addition, switch move is one of the most important contributions in this

thesis as it offers to switch between the same size but different structural models.

Remark 4.1 Please note that the same dimensional transitions of this type cannot be

defined as a special case. On the contrary, as shown clearly in the toy example above, the

dimension of the parameter spaces during a transition can be the same, since it provides

transitions across multiple parameter dimensions simultaneously (e.g. V(1,2)→ V(2,1))
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and since it performs birth and/or death moves at the same time. In this case, even though

the total space size is the same between different models, the reversible jump mechanism

can still be used. For this reason, switch move should be seen as a much more general

move which also includes trans-dimensional moves. This situation can be obviously seen

in Figure 4.3.

Figure 4.3 depicts the difference between the trans-structural approach presented

in this chapter and the trans-dimensional approach in terms of RJMCMC model moves.

As can be clearly seen from the Figure 4.3, the classic birth and death steps can be per-

formed in a switch move, as well as the transitions between different models of the same

size, which have not been used for RJMCMC in previous studies. The general RJMCMC

implementation steps for VSI study is given in Algorithm 5.

Figure 4.3. Trans-structural vs. trans-dimensional RJMCMC. M(d)
i refers to ith model

with d-dimensional parameter space.

4.2.4.1. Switch Move

Between-model move, or namely switch move, explores the spaces of different

Volterra models at each time it is proposed. Candidate models may have different struc-
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Algorithm 5 RJMCMC Algorithm for VSI
1: Given I/O data sets x
2: Initialize parameters for iteration t = 0
3: for do i = 1 : Niter
4: Choose Life or Switch move with probabilities Plife, Pswitch.
5: if Switch is selected then
6: Sample candidate model orders, p′ and q′.
7: Perform Switch move to calculate acceptance ratio, A = αswitch.
8: elseif Life is selected then
9: Candidate model orders→ p′ = p(i−1), q′ = q(i−1).

10: Perform Life move in Section 5.3.5.1 to calculate acceptance ratio, A = αlife.
11: end if
12: Sample a random variable R ∼ U(0, 1)
13: if R ≤ A then
14: p(i) = p′ and q(i) = q′.
15: Update other parameters with proposed ones.
16: else
17: p(i) = p(i−1) and q(i) = q(i−1).
18: Do not change the values of other parameters.
19: end if
20: Perform Update move in Section 4.2.4.3 to update variances, σ2

e and σ2
h.

21: end for

tures and their space dimension may be different or the same.

The acceptance ratio for a switch move from (p, q) to (p′, q′), is defined as αswitch =

min{1, rswitch} where rswitch is expressed as:

rswitch =
f (y|p′, q′,h(p′,q′), σ2

e)
f (y|p, q,h(p,q), σ2

e)
×

f (h(p′,q′)|p′, q′, σ2
h)

f (h(p,q)|p, q, σ2
h)
×
χ(u′)
χ(u)

×

∣∣∣∣∣∣∂(h(p′,q′)),u′)
∂(h(p,q),u)

∣∣∣∣∣∣ . (4.21)

where χ(·) is the proposal distribution for the auxiliary variables and will be defined in

(4.31). After performing switch move, to turn back to the previous state another switch

move should be proposed. This means that the reverse move of the switch move is itself.

Thus, the ratio for the move probabilities in the original formulation is equal to 1 and

invisible in (4.21).

In particular, in (4.21) first two terms refer to the likelihood and the prior ratios,

respectively. Proposal ratio is the third term whereas the magnitude of the Jacobian is the

fourth term.
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4.2.4.2. Life Move

The proposed and accepted coefficients within the previously performed switch

moves, are updated in the life move. In cases when the algorithm remains at the same

model, a life move is performed. Acceptance ratio of the life move is αlife = min {1, rlife}

and hence, rlife is expressed as

rlife =
f (y|p, q, ĥ(p,q), σ2

e)
f (y|p, q,h(p,q), σ2

e)
×

f (̂h(p,q)|p, q, σ2
h)

f (h(p,q)|p, q, σ2
h)
×
ψ(h(p,q)|p, q, ĥ(p,q))

ψ(̂h(p,q)|p, q,h(p,q)
. (4.22)

Updating procedure in this type of move is performed via sampling from the dis-

tribution ψ(·)

ĥ(p,q) ∼ ψ(̂h(p,q)|p, q,h(p,q)) (4.23)

= N (̂h(p,q)|µn,Σ
−1
n ) (4.24)

where µn = σ−2
e Σ−1

n XT y and Σn = σ−2
e XT X + σ−2

h Iη.

4.2.4.3. Update Move - Updating Variances

As stated in Section 4.2.1, VSI mechanism in this chapter includes an error term.

The variance of this error term, σ2
e is updated at each iteration via Gibbs Sampling. The

full conditional distribution for σ2
e is constructed as (Troughton and Godsill, 1998)

f (σ2
e |y, p, q,h(p,q)) ∝ f (y|p, q,h(p,q), σ2

e) f (σ2
e) (4.25)

≈ N(e|0, σ2
eIn)IG(σ2

e |αe, βe) (4.26)

= IG(σ2
e |αen, βen), (4.27)

where αen = αe +
1
2

n and βen = βe +
1
2

eTe.

It is straightforward to derive the full conditional distribution for σ2
h as (Troughton
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and Godsill, 1998)

f (σ2
h|y, p, q,h(p,q)) ∝ f (h(p,q)|σ2

h) f (σ2
h) (4.28)

≈ N(σ2
h|0, σ

2
hIη)IG(σ2

h|αh, βh) (4.29)

= IG(σ2
h|αhn, βhn) (4.30)

where αhn = αh +
1
2
η and βhn = βh +

1
2

(h(p,q))Th(p,q) and η is the number of parameters as

defined in (4.5).

4.2.4.4. Proposing Candidates

Each RJMCMC iteration requires to select one of the switch or life move firstly

with probabilities Pswitch and Plife. Uniform prior is selected for all candidate switchable

models (with probability Pswitch/ρ for ρ possible models).

An adhoc selection is made based on the data observed at the system output for

the proposal distribution, χ(u). A vector of the candidate coefficients with a length of λ is

proposed from this proposal distribution which is assumed to be a multivariate Gaussian

distribution

χ(u) = N

(
0,

(
σ2

h

ζE[|y|]

)
Iλ

)
(4.31)

where E[|y|] is the expected value of the absolute value of the data vector y and ζ is the

modulation constant.

A selection of this kind is not a unique selection for the proposal distribution.

Interested users can choose a uniform distribution and the like, which may change the

mixing of the algorithm. We have tested several selections and decided to choose a pro-

posal distribution of this kind. The data dependency comes from the variance of this

proposal distribution which is chosen to depend on the data. In experimental analysis,

there are two distinct simulations (Simulation 1 and 2) the first of which has four cases

(See Table 4.2) in order to test performance of the algorithm under different noise effects.

Thus, to take these various additional noise sequences into consideration in the propos-

als, E[|y|] has been used in χ(·). Furthermore, in the case study of Simulation 2, which
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is about nonlinear communication channel estimation, various modulation schemes have

been used. This information is also used in χ(·) via parameter ζ. This data and modula-

tion dependent adhoc choice adds variety and provides an efficient sampling procedure for

the candidates. The modulation constant ζ is selected as log2(M) for M-ary modulations

(Simulation 2) whereas is equal to 1 for no modulation case (Simulation 1).

Additionally, the transition between the most recent model coefficient space to the

candidate space is chosen to be performed through an identity function which makes the

Jacobian equals to unity. An example for a model transition from V(1, 2) to V(1,3) which

is required to sample a single candidate coefficient, u is shown as

ĥ(1)
1 = h(1)

1 (4.32)

ĥ(1)
2 = h(1)

2 (4.33)

ĥ(1)
3 = u. (4.34)

4.3. Experimental Analysis

In this section, an experimental analysis to study the performance of the proposed

method is performed. In Figure 4.4, the block diagram of the proposed Bayesian VSI

scheme has been depicted for a system input and output sequences which are given as x

and y, respectively. In addition, the additive noise sequences for input and output are u

and w, respectively.

Estimated model order parameter pair ( p̂, q̂) and the resulting model coefficient

vector ĥ( p̂,̂q) have been utilized to perform 1-step ahead prediction for the output of the

system, ŷ, by using the Volterra model expression in (4.1).

4.3.1. Simulation 1: Synthetically Generated Data

The proposed method has been studied for synthetically generated data sets in

simulation case 1. Particularly, three Volterra models, V(1, 10), V(2, 5), V(3, 3) have been

implemented, model coefficients of which are shown in Table 4.1. The input sequence is

a Gaussian process of zero mean and unity variance for all the models and outputs with

lengths of 1000 samples from each model have been collected. The intercept, µ, is chosen
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Figure 4.4. The proposed method VSI block diagram.

as 0 for simplicity. Four cases have been employed to study the performance of the

RJMCMC based VSI procedure under different noise conditions (See Table 4.2).

Table 4.1. Details for Volterra models in Simulation 1

V(p, q) h(p,q) = [h(1), h(2), . . . , h(p)]T Calculated SNR(dB) values(∗)

V(1,10) h(1) = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5] 14.13/22.62/10.42/14.19

V(2,5)
h(1) = [0.7, 0, 0.2, 0,−0.7]

13.52/22.24/10.42/13.58h(2) = [0, 0.1, 0, 0,−0.25, 0.15, 0, 0.42, 0.02, 0, 0.7, 0,−0.31, 0, 0.28]

V(3,3)

h(1) = [−0.06, 0.2331,−1.3619]

17.69/26.33/10.44/17.77h(2) = [0, 0.7, 0, 0.3,−0.25, 0.15]
h(3) = [0.5, 0, 0,−0.44, 0.15,−0.25, 0,−0.37, 0, 0.58]

(∗) Calculated SNR values in dB are presented for Case 2/Case 3/Case 4-Input/Case 4-Output, respectively.

Initial values for hyperparameters of prior distribution ofσ2
e , are selected as αe = 1

and βe = 1 and those for σ2
h, are selected as αh = 35 and βh = 2. The initial model

orders for p0 and q0 are set to 1 and upper bounds pmax and qmax are set to 5 and 12,

respectively. Model moves are selected as equally likely, and thus Pswitch and Plife are both

0.5. Calculated signal-to-noise ratio (SNR) values in decibels for each model and each

case has been depicted in Table 4.1.

Model order estimation performance of RJMCMC is compared to two widely used

model order selection methods, which are AIC and BIC. In particular, AIC rewards good-

ness of fit, however, penalizes the number of estimated parameters of the model. On the

other hand, BIC is more informed then AIC and its penalty term is more stringent than
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that of AIC. So, BIC tends to choose smaller models than AIC.

RJMCMC has also a similar penalization when the algorithm tries to add redun-

dant variables. For example, increasing order by one and setting the additional coefficient

to zero does not change the likelihood, but the prior takes a lower value than before,

yielding a posterior probability lower than the previous one (Meyer-Gohde et al., 2014).

Table 4.2. Cases for Simulation 1

Details

Case 1 Both I/O are noise free

Case 2 Output is corrupted by a white Gaussian
noise process of mean 0 and variance 0.1

Case 3
Output is corrupted by a colored Gaussian noise process.

The white noise in Case 2 is filtered by an FIR filter,
and the output of the filter is used to corrupt the output.

Case 4 Both I/O are corrupted by white Gaussian
noise processes of mean 0 and variance 0.1

Table 4.3. Percentage of detecting correct model orders

Case 1 Case 2 Case 3 Case 4
RJMCMC 100% 100% 100% 100%

V(1,10) AIC 99% 84% 89% 76%
BIC 100% 100% 100% 100%

RJMCMC 100% 99% 100% 93%
V(2,5) AIC 93% 68% 85% 0%

BIC 99% 100% 100% 11%
RJMCMC 100% 100% 100% 89%

V(3,3) AIC 98% 83% 93% 0%
BIC 99% 100% 100% 13%

Table 4.3 presents the model selection percentages of RJMCMC and the reference

methods AIC and BIC after 100 realizations. In each RJMCMC realization the most

visited model after burn-in period is decided to be the detected model. Examining Table

4.3, AIC always falls short of selecting the true model order pair as compared to that of

RJMCMC and BIC. RJMCMC and BIC get generally the same percentages, however,

for the nonlinear models (V(2,5) and V(3,3)), RJMCMC performs better. Especially,
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for case 4, performance of RJMCMC is superior for nonlinear models and the detection

performance is at least %89, whereas BIC achieves at most %13 for the same models.

Figure 4.5 shows the joint posterior density of the model orders, p and q for ran-

domly selected cases in a single example realization. It is easy to state that RJMCMC

estimates true model orders higher than %50 for each example realizations.

In addition to model order selection performance, next we compare the success

of RJMCMC in estimating model coefficients to NLS estimate which is obtained via the

augmented data matrix X. NLS has been given the correct model orders p, and q and

performs estimation

ĥNLS = (XTX)−1XTy, (4.35)

where vector y refers to the output and X has the form defined in (4.4). The performance

comparison is based on the model coefficient estimation of RJMCMC and NLS in terms

of error measure, NMSE.

Table 4.4. Performance comparison of model coefficient estimation in terms of NMSE

Case 1 Case 2 Case 3 Case 4
V(1,10) RJMCMC 5.89E-07 2.36E-06 2.47E-06 1.43E-03

Informed NLS 2.42E-09 8.46E-07 7.86E-07 1.26E-03
V(2,5) RJMCMC 6.76E-08 2.06E-05 1.12E-07 1.42E-03

Informed NLS 8.42E-09 1.93E-05 7.73E-08 1.32E-03
V(3,3) RJMCMC 1.69E-04 1.84E-04 1.74E-04 6.07E-03

Informed NLS 6.76E-08 2.28E-07 3.90E-08 3.46E-03

In Table 4.4, coefficient estimation for all models and all cases are depicted in

terms of NMSE values. According to the results in Table 4.4, coefficients estimation with

NLS has slightly lower error values than RJMCMC for all the cases. However, the NMSE

figures of NLS are hypothetical since they are based on unavailable perfect model order

estimates. So, the performance of the proposed method is remarkable since it performs

estimation on model orders and coefficients at the same time.

Figure 4.6 demonstrates the estimated output data histograms for each case and

each synthetically generated Volterra model data. Examining each subplot in Figure 4.6

shows that real data means stand in the high probability ranges of estimated data distribu-

tions.
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(a) V(1,10) - Case 2

(b) V(2,5) - Case 3

(c) V(3,3) - Case 4

Figure 4.5. The joint posterior density of the model orders of (a) - V(1,10), (b) - V(2,5),
(c) - V(3,3).
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Figure 4.6. Estimated output histograms for all cases and all models in simulation 1
via RJMCMC. Real data mean values are plotted with a vertical line. Each
column shows the results for simulated models and each row shows the
results for simulation cases.
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Table 4.5. RJMCMC Computational Gain

Case 1 Case 2 Case 3 Case 4
Total∗ Avg.∗∗ Total∗ Avg.∗∗ Total∗ Avg.∗∗ Total∗ Avg.∗∗

V(1,10) 16 12.37 18 12.65 16 12.31 17 12.51
V(2,5) 20 10.22 15 9.08 20 10.98 20 13.3
V(3,3) 18 8.11 20 8.06 19 8.5 26 9.79

Each RJMCMC run has performed 30000 iterations, and number of visited Volterra models has been
recorded for each run.
∗ Numbers at Total cells represent the total number of distinct Volterra models visited after 100 RJMCMC
runs.
∗∗ Numbers at Avg. cells refer to the average number of Volterra models visited at a single run after 100
RJMCMC runs.
Model space includes 60 Volterra models.

As mentioned before, RJMCMC avoids performing exhaustive searches in its

learning process, instead searches model space by using the likelihood, the priors and

the data by visiting only plausible models. Calculations on computational gain of RJM-

CMC for Simulation 1 are shown in Table 4.5. Firstly, “Total" columns show that at most

50% of the candidate models (in all the cases these are including the correct models)

have been visited. Then, analysing the “Avg." columns show that the number of models

in search subset is less than the total amount and thus it is easily stated that RJMCMC

decides “true model" by examining at most only one fifth of the model space (at most

12-13 models over 60 possible models). Hence, this exhibits the computational gains of

RJMCMC compared with the other model selection methods AIC, BIC or the sampling

algorithms such as nested sampling, TMCMC, etc. where all perform exhaustive searches

on model space.

4.3.2. Simulation 2: Nonlinear Channel Estimation

Due to high-power amplifiers at the transmitter side and filtering operations at the

receiver side, in many communication systems it is very common to observe nonlinear

input-output characteristics, most of which can be approximated via Volterra series. A

nonlinear communication channel is expressed in terms of discrete time baseband Volterra
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model with symmetric coefficients as (Bouilloc and Favier, 2012; Mileounis et al., 2009)

y(l) =

p+1
2∑
ν=1

q∑
m1=1

. . .

q∑
m2ν−1=m2ν−2

h(2ν−1)
m1,...,m2ν−1

ν∏
i=1

x(l − mi)
2ν−1∏
j=ν+1

x∗(l − m j) (4.36)

where x(l) and y(l) refer to the complex input and output envelopes of the system, p and

q are the nonlinearity degree and the memory of the channel, respectively. The (2ν −

1)st-order Volterra coefficient is represented as h(2ν−1)
m1,...,m2ν−1 . In addition, in (Benedetto and

Biglieri, 1999) it is expressed that powers of even-ordered terms do not contribute to the

output. Thus, only odd-ordered terms {p = 1, 3, . . .} are taken into account for baseband

Volterra representation in (4.36).

OFDM technique is very widespread in many modern communication systems

such as asymmetric digital subscriber line (ADSL) modems, digital video broadcasting

(DVB) and recent mobile communication systems in 4G. Despite this popularity, OFDM

is very vulnerable to nonlinearities due to its high peak-to-average power ratio (Mileou-

nis et al., 2009). For these reasons, an OFDM communication system which transmits

through a nonlinear communication channel has been implemented. Then, the proposed

Bayesian VSI model has been used to perform a nonlinear channel estimation in terms of

Volterra series.

In particular, to study the performance, a baseband Volterra model in (4.36) is

assumed to represent the unknown nonlinear communication channel with nonlinearity

degree of 3 and memory of 2. Message sequences are uniformly distributed and modu-

lated via M-QAM modulations for M = 4, 16, 64 (4QAM will be denoted as QPSK for

the rest of the text). Following modulation, symbols are sent through an OFDM system

with 512 sub-carriers. Resulting symbols have been parallel-to-serial converted and trans-

mitted through the nonlinear channel. After adding white Gaussian noise, the transmitted

corrupted signal has been received at the receiver.

Pilot messages have been used to apply a VSI procedure. Thus, both pilot OFDM

output and the corrupted received signal are known at the receiver as input and output of

the unknown system, respectively. Performing the procedure expressed in the previous

sections, RJMCMC estimates the nonlinearity degree, the system memory and the cor-

responding channel coefficients. Initial hyperparameters are selected as αe = 1, βe = 1,

αh = 35 and βh = 2. The initial orders are q0 = 1 and p0 = 1 and the upper bounds are

qmax = 12 and pmax = 5. Performance of the proposed method is studied under different

additive noise conditions with symbol-to-noise ratio (Es/N0) values between -5 dB and
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25 dB. In a single RJMCMC run, 20000 iterations are performed and a total of 100 Monte

Carlo runs have been simulated. Results are presented as average of these repetitions in

order to remove random realization effects. The simulated nonlinear channel coefficients

are h1 = [0.5, 0.3] and h3 = [−0.7, −0.2, 0.34, −0.27] for linear and cubic terms

of the baseband Volterra model in (4.36), respectively.

Percentage of correctly estimated model orders for varying Es/N0 values are shown

in Figure 4.7. Analyzing Figure 4.7, when Es/N0 is higher than 0 dB, the true nonlinear

channel, V(3,2) is correctly estimated by RJMCMC, with a remarkable performance of at

least 99% after 100 RJMCMC runs for all the modulations while below 0 dB estimation

performance is at least 85% times of the repetitions.

In Figure 4.8 the log-scale NMSE values for the estimated channel coefficients

are depicted in increasing order of Es/N0. Examining Figure 4.8 shows that NMSE val-

ues are very close for both Informed NLS method and RJMCMC for all the cases. For

lower Es/N0 values, estimation performances are lower as expected and NMSE values are

around 10−3 for Es/N0 of 0 dB, when NMSE values for all the cases are below 10−5 at

Es/N0 of 25 dB.
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Figure 4.7. Percentage of correctly estimated model order via RJMCMC for varying
Es/N0 (Nonlinear channel, V(3,2)).
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4.4. Conclusions on VSI

In this chapter, the proposed method, the trans-structural RJMCMC (or trans-

space RJMCMC for different structural model), is used for the study of the Volterra system

models, and in summary the following results are obtained:

• This methodology has provided a compact method for VSI which estimated the

nonlinearity degree of the unknown system as well as the system memory and

model coefficients.

• In cases when the systems in question have varying degree of nonlinearities or no

prior information regarding nonlinearity degree is available, using the proposed

method in this chapter provides solution by estimating the nonlinearity degree of

the unknown systems in terms of Volterra systems.

• RJMCMC shows remarkable performance on nonlinear channel estimation in an

OFDM communication system. Performance results for QPSK, 16-QAM and 64-

QAM, are satisfactory for both channel model selection and coefficient estimation

studies.

• These results demonstrate the potential of RJMCMC in identifying nonlinear sys-
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tems and nonlinear communication channels in terms of Volterra models.

Up to this chapter, the classical formulation of RJMCMC has been shown to be

able to switch between different generic models by applying the necessary modifications.

With the approach which has been presented in this chapter, the classical interpretation

of the RJMCMC has been extended one step further. This very important extension also

incorporates a much more general RJMCMC move, which is newly proposed and includes

the classic trans-dimensional RJMCMC moves, e.g. birth and death, as its sub-moves.

Up to this point, the objectives mentioned in the introduction part of this the-

sis have been discussed through the Volterra models. In particular, the linear/nonlinear

model transitions and estimating the nonlinearity degree, which is generally assumed to

be known in the literature, clearly shows the importance of the applications so far. The

methods developed so far, have shown very clearly that RJMCMC can be used for tran-

sitions between more general and completely different spaces, apart from structurally

different transitions such as linear and nonlinear.
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CHAPTER 5

DISTRIBUTION MODELLING

In various real-life modelling problems, we have limited prior information regard-

ing which model family is more suitable for the problem. In such cases, a method that

would allow one to choose between different model families on the fly would be useful and

thus would eliminate the need for modelling with each candidate model class separately

and comparing to find the best. Such a method provides computational gains especially

when the number of parameters and candidate model classes is high. An example is the

choice between different probability density function (pdf) models for noise or signals.

The pdf estimation problem is a frequently encountered problem in signal pro-

cessing and statistics and their application fields such as image processing and telecom-

munications. In communication systems, channel modelling has been an important issue

so as to characterize the whole system. However, for most of the cases, performing a

deterministic channel modelling might be impossible and to represent real life systems,

statistical channel models are very important. In addition, in applications of noise re-

duction operations in image processing, power-line communication systems, etc. dealing

with a suitable statistical model beforehand is also important for the methods to be devel-

oped. Despite this importance, estimating the correct (or suitable) probability distribution

along with its parameters within a number of generic distribution models may necessi-

tate testing each candidate in order to choose the best possible model for the observed

data/noise.

In the literature, the general practice is to assume the generic distribution fam-

ily beforehand and estimate its parameters given the observed data. The most common

choice is the Gaussian probability model especially in communications, network mod-

elling, digital images, mainly due to its analytical ease. However, it has been reported in

the literature that the noise exhibits non-Gaussian and impulsive characteristics in appli-

cation areas such as wireless communications (Bhatti et al., 2009; Blackard et al., 1993),

power line communications (PLC) (Lin et al., 2013; Alsusa and Rabie, 2013), digital sub-

scriber lines (xDSL) (Al-Naffouri et al., 2011; Fantacci et al., 2010), image processing

(Simoncelli, 1997; Achim et al., 2003) and seismology (Yue and Peng, 2015). In the case

of non-Gaussian impulsive noise/data, various model families can be listed, for example,

Middleton Class A, Bernoulli-Gaussian, α-Stable, Generalized Gaussian (GG), Student’s
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t, etc.

Other than the impulsive distributions, Poisson and negative binomial distributions

have been widely used in modelling count data (Ver Hoef and Boveng, 2007; Hastie and

Green, 2012). In addition, Poisson distribution has been also popular in queueing theory

as well as exponential distribution (Brown et al., 2005; Wolff, 1982; Medhi, 2002). Other

popular type of distributions are envelope distributions which are positive valued distribu-

tions, such as Rayleigh, Rice, Weibull, Nakagami, log-normal and have been popular to

model positive valued real data sets. In the literature, distributions of this type have been

used in applications such as fading channel modelling in communications (Patzold et al.,

1998; Choudhary and Robinson, 2014; Rodrigo-Peñarrocha et al., 2016), SAR imaging

(Delignon and Pieczynski, 2002; Kuruoglu and Zerubia, 2004; Gao, 2010; Li et al., 2011),

wind speed distribution modelling (Chou and Corotis, 1983; Baïle et al., 2011; Harris and

Cook, 2014; Drobinski et al., 2015).

Previous studies mentioned above clearly demonstrate the importance of estimat-

ing or having an idea about which distribution an observed set of data comes from. Even

if the candidates are of different classes, selecting the best possible generic distribution

model in a large number of candidate model spaces can be performed by utilizing the

trans-space RJMCMC methodology presented in the previous chapters. This can be

achieved by avoiding performing an exhaustive search on the whole model space that

is, trying each model class separately. This chapter contributes to the literature with a

new interpretation on RJMCMC beyond trans-dimensional sampling and also presents a

generalization to the procedures presented in Chapters 3 and 4. The usage of RJMCMC

methodology in statistical models PAR, PMA and PARMA and VSI problems considered

in the previous chapters can be classified as an extension of common RJMCMC methodol-

ogy of making trans-dimensional jumps to performing multiple trans-dimensional jumps,

either in a cascaded fashion as in the cases of PAR, PMA and PARMA or concurrently as

in the case of VSI. However, jumping to be introduced in this chapter is between different

parameter spaces (classes) and transition between spaces of different probability distri-

bution families constitutes a suitable application area and a good example of this type of

transition.

5.1. Trans-distributional RJMCMC

The proposed method can use different names which explain the applications

clearly according to the cases that trans-space sampling is performed. For example, trans-
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space RJMCMC used for identification of Volterra systems in the previous chapter has

been named as trans-structural since linear and nonlinear Volterra models follow differ-

ent characteristics in a structural manner (even nonlinear Volterra models with different

nonlinearity degrees, e.g. quadratic Volterra models and cubic Volterra models). Although

the candidate models are structurally different from each other, all candidate models are

Volterra system models. Thus, the connection between models during RJMCMC tran-

sitions is established by means of the Volterra model in (4.1) and reformulation of the

RJMCMC procedures derived in Chapter 3 for nonlinear time series models can be easily

performed due to the linear-in-the-parameters nature of the Volterra system models in the

trans-structural approach.

On the other hand, the trans-space RJMCMC application in this chapter presents

a different approach, in particular, it explores the spaces of different distribution families

and thus will be named as trans-distributional. While the candidate distributions in a

single family can be connected to each other with the help of defined expressions of those

families, the transitions between different families are the most important challenge to

the trans-distributional approach because of the different mathematical expressions and

properties of all of the distribution families.

The trans-distributional approach necessitates additional considerations in order

not to lose the potential benefits offered by RJMCMC, unlike other trans-space approaches

presented up to this chapter. Sampling across unrelated spaces would not give us a com-

putational advantage. In that case, one could solve for different spaces separately and

compare the final results to choose the best model. Therefore, the Borel sets should be

related somehow. The relation in question can be conveniently established, e.g. through

matching norms in defining the spaces. Defining proposals in this way will provide sam-

pling more efficient candidates and help algorithm to converge faster (an example will be

discussed in Section 5.3.5.2).

5.2. Distribution Families

5.2.1. Impulsive Distribution Families

As mentioned in the above sections, although the Gaussian assumption is often

used in the literature, it is of vital importance to use impulse distribution models in many
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real-life problems. To give an example, coding schemes or channel capacity estimates ob-

tained using a wrong noise model can cause serious loss in communication systems (Wang

et al., 2011). Besides, the assumption of a wrong distribution in any other application area

can cause any developed method to perform below expectations. The general belief that

the impulsive distribution families have relatively more complex estimation methods than

the Gaussian distribution limit the utilization of impulsive distributions. Therefore, it is

very important to accurately predict which impulsive distribution family an observed data

comes from.

As impulsive distribution families, three families have been utilized in this thesis,

namely, SαS, GG and Student’s t (details are given in Appendix A). These three fam-

ilies cover many different noise modelling studies and include Gaussian distribution as

a special member, and many real life noise measurements can be modelled using these

distribution families.

For example, SαS family has various demonstrated application areas such as PLC

(Laguna-Sanchez and Lopez-Guerrero, 2015), SAR imaging (Achim et al., 2003), near

optimal receiver design (Kuruoglu et al., 1998), modelling of contourlet transform sub-

bands (Sadreazami et al., 2014), seismic amplitude data modelling (Yue and Peng, 2015),

as noise model for molecular communication (Farsad et al., 2015), reconstruction of non-

negative signals (Tzagkarakis and Tsakalides, 2010) (please see (Nolan, 2010) and refer-

ences therein for detailed applications).

GG distributions have found applications in wavelet based texture retrieval (Do

and Vetterli, 2002), image modelling in terms of Markov random fields (Bouman and

Sauer, 1993), multicomponent texture discrimination in color images (Verdoolaege and

Scheunders, 2011), wheezing sound detection (Le Cam et al., 2009), modelling sea-clutter

data (Novey et al., 2010).

Student’s t distribution is an alternative to Gaussian distribution especially for

small populations where the validity of central limit theorem is questionable. Student’s t

distribution has been used in applications of finance (Patton, 2006; Engle and Bollerslev,

1986), full-waveform inversion of seismic data (Aravkin et al., 2011), independent vector

analysis for speech separation (Liang et al., 2013), medical image segmentation (Nguyen

and Wu, 2012), growth curve modelling (Zhang et al., 2013).
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5.2.2. Envelope Distribution Families

Envelope distribution families in this case study are continuous distribution fam-

ilies which are supported on interval, [0,∞). Positive valued measurements have been

modelled by using distributions of this type. Members, such as Nakagami, Rayleigh,

Rice, Weibull, log-normal, have been utilized to model various applications of commu-

nication system channels, atmospherical instances such as wind speed, speckle noise of

SAR and ultrasound images, etc.

In particular, Nakagami distribution has been very popular in modelling commu-

nication fading channel along with Weibull distribution (Patzold et al., 1998; Choudhary

and Robinson, 2014; Rodrigo-Peñarrocha et al., 2016). Additionally, Nakagami distribu-

tion has been also used in classification and characterization of ultrasonic images (Shankar

et al., 2001; Shankar, 2001), wind speed modelling (Alavi et al., 2016), speckle suppres-

sion (Ghofrani et al., 2001).

In addition to its usage in communications, Weibull distribution has been exten-

sively used to model wind speed distribution (Chou and Corotis, 1983; Baïle et al., 2011;

Harris and Cook, 2014; Drobinski et al., 2015). Additionally, it has been also used in

modelling survival data (Mudholkar et al., 1996) and failure data (Cordeiro et al., 2010).

K-distribution has been popular in SAR imagery (Gao, 2010; Bian and Mercer,

2015), communications to model fast fading channels and shadowing effects (Reig and

Rubio, 2013; Tuli et al., 2014; Li, 2016), modelling polarimetric radar data (Yueh et al.,

1989), atmospheric general circulation model (Sekiguchi and Nakajima, 2008).

Gamma distribution has been used to model various signals in areas such as fad-

ing channel of communication systems (Shankar, 2004; Al-Ahmadi and Yanikomeroglu,

2010), SAR imagery (Gao et al., 2017), rainfall (Aksoy, 2000), bacterial-gene expressions

(Friedman et al., 2006). Generalized (heavy tailed) Rayleigh distribution (Kuruoglu and

Zerubia, 2004) has been proposed in order to model urban scenes SAR images with a

better performance than the classical distributions Rayleigh, Weibull and K .

5.3. RJMCMC for Impulsive Distribution Estimation

In this case study, we have applied RJMCMC to problems in which a stochastic

process, x, is given whose impulsive distribution is to be found. For this purpose, we have

defined a reversible jump mechanism which estimates the distribution family among three
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impulsive distribution families, namely, SαS, GG and Student’s t.

In the literature, RJMCMC usage in this problem has been limited and it has been

used to be examples of trans-dimensional approach deciding between two specific distri-

butions (Hastie and Green, 2012; Barker and Link, 2013). Particularly, when modelling

count data, reversible jump mechanism has been applied to choose between Poisson and

negative binomial distributions in (Hastie and Green, 2012). This study deals with the

question whether the count data is over-dispersed relative to Poisson distribution. In

(Barker and Link, 2013) an approach which is a combination of Gibbs sampler and RJM-

CMC has been used to decide between Poisson and geometric distributions by using a

universal parameter space called “palette". Both of the studies have utilized RJMCMC

in distribution estimation; however, the number of candidate distributions was limited to

two. In both of the studies, Poisson distribution is a special member of the distribution

families in question (or, there is a direct relation between Poisson and negative binomial

or geometric distributions) and the proposed methods in these questions can be handled

with a single family search.

The proposed method, trans-distributional RJMCMC, is much more general than

the examples above and aims to fit a distribution to a given process x among various distri-

butions by identifying the distribution’s family and estimating its shape and scale param-

eters. Two types of between-class moves have been defined, namely intra-class-switch

and inter-class-switch. These moves propose model class changes within and between

probability distribution families, respectively.

5.3.1. Parameter Space

RJMCMC construction for impulsive data modelling begins by first defining the

parameter space. Parameter space has been defined on the common parameters for all

three distribution families. These are: shape, scale and location parameters (α, γ and δ,

respectively). In addition to them, the family identifier, k, which refers to the estimated

distribution family is added to the parameter space. The k values of the distributions SαS,

GG and Student’s t are 1, 2 and 3, respectively. Therefore, the parameter vector θ can be

formed as: θ = {k, α, δ, γ}.

In this case study, the observed data from all three families are assumed to be

symmetric around the origin for simplicity. Therefore, δ, is set to 0. Hence, its effect

will be invisible in the simulations. Consequently, parameter vector θ is reduced to: θ =

{k, α, γ}.
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5.3.2. Hierarchical Bayesian Model

The target distribution, f (θ|x) can be decomposed to likelihood times priors due

to Bayes Theorem as

f (θ|x) ∝ f (x|k, α, γ) f (α|k) f (k) f (γ) (5.1)

where f (x|k, α, γ) represents the likelihood and f (α|k), f (k), and f (γ) are the priors.

5.3.3. Likelihood

We assume that the stochastic process x with a length of n comes from one of

the distributions in candidate families (SαS, GG and Student’s t). Then, the likelihood

corresponds to a pdf from one of these distributions

f (x|k, α, γ) =


∏n

i=1 SαS(γ), k = 1∏n
i=1 GGα(γ), k = 2∏n
i=1 tα(γ), k = 3

(5.2)

5.3.4. Priors

Priors are selected as the following

f (γ) = IG(a, b), (5.3)

f (k) = I{1/3,1/3,1/3} for k = 1, 2, 3, (5.4)

f (α|k) =


U(0, 2) k = 1,

U(0, αmax,GG) k = 2,

U(0, αmax,t) k = 3,

(5.5)
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where a and b represent the hyperparameters for scale parameter and they are generally

selected to take small values such as 1, 0.1 in the literature. The upper bounds for the

shape parameters of GG and Student’s t distributions are defined as αmax,GG and αmax,t,

respectively.

Choosing an inverse gamma prior for scale parameter has been a general practice

especially for Gaussian problems. Due to the lack of prior work about conjugate priors

for distributions other than the Gaussian case and since Gaussian distribution is common

for all three families, an inverse gamma conjugate prior for scale parameters is chosen

for simplicity. Furthermore, all families are equiprobable a priori and shape parameter is

uniformly distributed between lower and upper bounds.

5.3.5. Model Moves

Two RJMCMC model moves have been defined to perform trans-distributional

transitions discussed in the previous sections. These are: life and switch moves. Life

move performs classical MH algorithm to update scale parameter γ while k and α remain

the same. Switch move performs exploring the other distribution spaces. For this purpose,

two types of switch moves have been defined: intra-class-switch and inter-class-switch.

Intra-class-switch performs exploring the distributions in the same family, while inter-

class-switch explores spaces of different families. At each RJMCMC iteration, one of the

moves is chosen with probabilities Plife, Pintra-cl-sw and Pinter-cl-sw, respectively. In Figure

5.1 the flow diagram of the proposed method is depicted where the parameter N refers to

the maximum number of iterations.

5.3.5.1. Life Move

Life move defines a transition from parameter space (k, α, γ) to (k′, α′, γ′) and

only proposes a candidate for the scale parameter, γ (α′ = α and k′ = k). The proposal

distribution for scale parameter γ′ is chosen as

q(γ′|γ) = TN(γ, ξscale) for interval (0, γ + 1] (5.6)
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where TN(γ, ξscale) refers to a Gaussian distribution where its mean γ is the last value of

the scale parameter, and its variance is ξscale and is truncated to lie within the interval of

(0, γ + 1] afterwards by rejecting samples outside this interval. This truncation procedure

aims to satisfy the condition γ > 0 and forces candidate proposals not to lie far from the

last value of γ.

Hence, the resulting acceptance ratio for life move is:

Alife = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)

q(γ|γ′)
q(γ′|γ)

}
(5.7)

5.3.5.2. FLOM Based Proposals for γ Transitions

As mentioned earlier in this chapter, using a common feature among the candidate

model spaces for the transition to be made will provide efficient proposals and is important

in order to link the subspaces of different classes. Assume we have two candidate families

parameter vectors of which belong to Borel sets, A and B, respectively. Providing fixed

order norm for both of the Borel sets, the transition (e.g. h : A 7→ B) from one set

to another carries the information in the same direction which has been already learned

at the most recent Borel set. Considering the convergence and mixing of the algorithm,

such an approach is very important to determine the transition process between generic

distribution models, whether within the family or between families.

When dealing with distribution estimation problems, moments with various or-

ders, p, have been defined for all distribution families. Moments of t and GG families

have been defined at any orders for p > 0 and there are no restrictions on values of

p. However, moments of the SαS family have been defined subject to the constraint of

p < α. This constraint makes it possible to use the absolute fractional lower order mo-

ments (FLOMs) which has been also used in the parameter estimation methods of the

SαS family. Since absolute FLOM expressions are defined for all impulsive families, and

their success in estimating the parameters of SαS distributions is well documented in the

literature (Nikias and Shao, 1995), using an absolute FLOM based approach is employed

to construct a reversible jump sampler between different impulsive families, by linking

the candidate distributions through absolute FLOM.

In impulsive data modelling study in this thesis, absolute FLOM-based approach

will be used for the proposals of the γ parameter. In particular, to perform sampling be-
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tween related subspaces and generate efficient proposals on scale parameter γ, an absolute

FLOM-based method has been used. The newly proposed scale parameter, γ′, is calcu-

lated via a reversible function, g(·) (or w(·)), which provides equal absolute FLOMs with

order p for both the most recent and candidate distribution spaces. Thus, proposals on γ

carry the learned information to the candidate space via absolute FLOMs.

Figure 5.1. Flow Diagram for the Proposed method.

Absolute FLOMs are defined only for p values lower than α for the case of SαS

distributions. Moreover, there are several studies which suggest near-optimum values for

FLOM order p in order to estimate the scale parameter of SαS distributions. (Tsihrintzis
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and Nikias, 1996) suggests p = α/4 and (Ma and Nikias, 1995) suggests p = 0.2. How-

ever, in (Kuruoglu, 2001) it has been stated that decreasing p for a fixed value of α (i.e.

increasing α/p), increases the estimation performance of γ and (Kuruoglu, 2001) suggests

the choice p = α/10. Hence, considering this limitation of the SαS distributions, we have

utilized the value p = α/10 in our simulations for all the distribution families.

For a given data, x, in order to perform a transition from parameter space {k, α, γ}

to {k′, α′, γ′} we assume that the absolute FLOM is the same for both the most recent and

candidate distribution spaces. In particular,

Ek(|x|p) = Ek′(|x|p) (5.8)

where absolute FLOMs for all three candidate families are given in Appendix A. The

candidate proposal, γ′, is calculated via reversible functions which are derived by using

the relations in (A.2)-(A.9) for each transition. These functions have been derived for

both of the switch moves and are shown in Tables 5.1 and 5.2.

5.3.5.3. Intra-Class-Switch Move

RJMCMC performs a transition on shape and scale parameters in the same distri-

bution family (k′ = k) when an intra-class-switch move is proposed. The proposed shape

parameter α′ is sampled from a proposal distribution q(α′|α). In addition, the candidate

scale parameter γ′ is defined as a function g(α, α′, p, γ).

The γ transition in this move has been defined as dependent on the newly proposed

α′ parameter. For this reason, a step is first performed on shape parameter α to propose

α′, and this is used to calculate the candidate scale parameter γ′. For the shape parameter

α transition, a proposal distribution such as q(α′|α) has been used. For this distribution,

we first have assumed a symmetric distribution around the most recent α value. In addi-

tion, it has been preferred that the proposal distribution has heavier tails than Gaussian

in order to make it possible to sample candidates much farther than the most recent α

relative to the samples from the Gaussian distribution. Since the Laplace distribution is

a distribution that satisfies all these conditions, the proposal distribution is chosen as a

Laplace distribution. Due to the numerical calculation problems caused when α and α′

are close to each other (i.e. |α − α′|≤ 0.03), we have decided to utilize a finite number of

candidate distributions (i.e. a finite number of α values) and the space on α is discretized
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with increments of 0.05. That’s why a discretized Laplace (DL(α,Γ)) distribution where

the location parameter of which is equal to the most recent shape parameter α and scale

parameter is Γ has been utilized.

Importantly, our choice on the proposal distribution q(α′|α) is not restrictive; any

distribution other than Laplace can be selected as the proposal distribution (e.g. Gaussian

like). However, different selections will cause the algorithms to perform differently. An

example figure of the proposal distribution q(α′|α) is shown in Figure 5.2(a).

Candidate scale parameter γ′ is calculated via reversible functions, g(·), which are

derived for intra-class-switch move by using the method in Section 5.3.5.2. Functions for

each family are shown in Table 5.1.

Consequently, proposals for intra-class-switch move are

q(α′|α) = DL(α,Γ) (5.9)

γ′ = g(α, α′, p, γ). (5.10)

As a result of the details explained above, acceptance ratio for RJMCMC intra-

class-switch move can be expressed as

Aintra-cl-sw = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)
|J|

}
(5.11)

where |J| is the magnitude of the Jacobian (See Table 5.1).

5.3.5.4. Inter-Class-Switch Move

Different from intra-class-switch move, distribution family is also changed in

inter-class-switch move (k′ 6= k) as well as scale and shape parameters. Candidate distri-

bution families are equiprobable for the candidate set {1, 2, 3}\{k}, and we use functions

below to propose candidate parameters of α′ and γ′

α′ = ψ(α, k, k′) (5.12)

γ′ = w(α, α′, p, γ). (5.13)
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For intra-class transitions mentioned in the section above, the knowledge (about

scale γ) learned in the previous algorithm steps was carried to the next step by the pro-

posed method via FLOM based functions. The same approach is also utilized for γ tran-

sitions in inter-class-switch move and functions w(·) are derived. However, this time, the

sides of the transition are in different families. Details are shown in Table 5.2.

Using a similar approach in α transitions will allow the proposed method to con-

verge faster across different distribution families. However, this process should be taken

very carefully. That is to say that distribution families have common distributions. For

example, Gaussian distribution is common for all families and for SαS, GG, and t, val-

ues for α are 2, 2, and ∞, respectively. During intra-class transitions, disregarding these

relationships may cause the algorithm to converge to an incorrect distribution. In order

to prevent such situations and to perform efficient proposals for α in inter-class-switch

move, instead of using a random move, we perform a mapping, ψ(·) from one family to

another by taking into consideration the special members which are common for both of

the families. At this point, α transitions will also occur within the framework of more

consistent proposals and the convergence will be accelerated. For example, to derive an

invertible mapping function on α for a transition from SαS to Student’s t, we utilize the

information that Cauchy and Gauss distributions are common for both of the families.

Cauchy refers to α = 1 for both of the families and Gauss refers to α = 2 for SαS and

α = ∞ for Student’s t. Hence, the invertible function f2(α) performs the mapping for a

transition from SαS to Student’s t.

Similarly, Gauss distribution is common for both SαS and GG for α value of 2.

Thus, we derive another invertible function f1(α) to move from SαS to GG. Both of these

mapping functions are depicted in Figure 5.2(b). GG and Student’s t distributions have

only Gauss distribution in common for α values of 2 and ∞, respectively. Due to hav-

ing only one common distribution and infinite range of α, instead of deriving an invertible

mapping for transitions between these distributions, we perform a 2-stage mapping mech-

anism by firstly mapping α to SαS from the most recent family, then mapping this value

to the candidate family by using functions f1(·) or f2(·). Then the mapping from GG to

Student’s t is derived as: α′ = f2( f −1
1 (α)). It is straightforward to show that the reverse

transition between shape parameters from Student’s t to GG results as α′ = f1( f −1
2 (α)).

For all the transitions, mapping functions are shown in Table 5.2.
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Table 5.1. FLOM-based (Deterministic) Assignments for Intra-Class-Switch

Family Degree, p γ′ = g(α, α′, p, γ) Jacobian, |J|

SαS α′/10
(

Cα(p, α)
Cα(p, α′)

)α′/p

γα
′/α

(
Cα(p, α)
Cα(p, α′)

)α′/p
α′

α
γ(α′−α)/α

GG α′/10
(

CGG(p, α)
CGG(p, α′)

)1/p

γ

(
CGG(p, α)
CGG(p, α′)

)1/p

t α′/10
(

Ct(p, α)
Ct(p, α′)

)1/p

γ

(
Ct(p, α)
Ct(p, α′)

)1/p

Table 5.2. FLOM-based (Deterministic) Assignments for Inter-Class-Switch

(k → k′) Degree, p α′ = ψ(α, k, k′) γ′ = w(α, α′, p, γ)

1→ 2 α′/10 f1(α) =
α2

2

(
Cα(p, α)

CGG(p, α′)

)1/p

γ1/α

1→ 3 α′/10 f2(α) = logit
(
α + 2

4

) (
Cα(p, α)
Ct(p, α′)

)1/p

γ1/α

2→ 1 α′/10 f −1
1 (α)

(
CGG(p, α)
Cα(p, α′)

)α′/p

γα
′

2→ 3 α′/10 f2( f −1
1 (α))

(
CGG(p, α)
Ct(p, α′)

)1/p

γ

3→ 1 α′/10 f −1
2 (α)

(
Ct(p, α)
Cα(p, α′)

)α′/p

γα
′

3→ 2 α′/10 f1( f −1
2 (α))

(
Ct(p, α)

CGG(p, α′)

)1/p

γ
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Thus, the acceptance ratio for inter-class-switch move can be expressed as

Ainter-cl-sw = min
{

1,
f (x|k′, α′, γ′)
f (x|k, α, γ)

f (γ′)
f (γ)

f (α|k)
f (α′|k′)

|J|
}

(5.14)

where the magnitude of the Jacobian can be calculated as

|J| =

∣∣∣∣∣∣∣∣∣∣
∂γ′

∂γ

∂α′

∂γ
∂γ′

∂α

∂α′

∂α

∣∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
∂γ′

∂γ
0

0
∂α′

∂α

∣∣∣∣∣∣∣∣∣∣ =
∂γ′

∂γ

∂α′

∂α
. (5.15)

5.3.6. Experimental Study

We have studied four cases experimentally: synthetically generated noise, im-

pulsive noise on PLC channels, 2-D DWT coefficients and seismic acceleration time

series. Without loss of generality, distribution of data x is assumed to be symmetric

around zero (δ = 0). The algorithm starts with a Gaussian distribution model with initial

values k(0) = 2 and α(0) = 2. Initial value for scale parameter γ is selected as half of

the interquartile range of the given data x and upper bounds αmax,SαS, αmax,GG and αmax,t

are selected as 2, 2 and 5, respectively. Some intuitive selections have been performed

for the rest of the parameters. Move probabilities for intra-class-switch and inter-class-

switch moves are assumed to be equally likely during the simulations. Additionally, in

order to speed up the convergence of the distribution parameter estimations during the life

move, which is the coefficient update move, it is chosen a bit more likely than intra-class-

switch and inter-class-switch moves. Thus, the model move probabilities are selected as

Plife = 0.4, Pintra-cl-sw = 0.3 and Pinter-cl-sw = 0.3. Hyperparameters for prior distribution

of γ are set to a = b = 1 and variance of proposal distribution for γ in life move is set

to ξscale = 0.01. Scale parameter Γ of the discretized Laplace distribution for intra-class-

switch move is selected as 0.4.

RJMCMC performs 5000 iterations in a single RJMCMC run and half of the iter-

ations are discarded as burn-in period when estimating the distribution parameters. Ran-

dom numbers from all the families have been generated by using Matlab’s Statistics and
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Figure 5.2. (a) - Proposal distribution, q(α′|α) for intra-class-switch move (γ = 1,Γ =

0.4). (b) - Mapping functions on shape parameter for inter-class-switch
move
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Machine Learning Toolbox (for details please see1).

Performance comparison has been performed under two statistical significance

tests, namely Kullback-Leibler (KL) divergence and Kolmogorov-Smirnov (KS) statistics.

KL divergence has been utilized to measure fitting performance of the proposed method

between estimated pdf and data histogram. Two-sample KS test compares empirical CDF

of the data and the estimated CDF. It quantifies the distance between CDFs and performs

an hypothesis test under a null hypothesis that two samples are drawn from the same

distribution. Details about KL divergence and KS test have been discussed in Appendix

C.

5.3.6.1. Case Study 1: Synthetically Generated Noise Modeling

In order to test the proposed method on modelling synthetically generated im-

pulsive noise processes, six different distributions are chosen (2 distributions from each

family). In a single RJMCMC run, data with a length of 1000 samples have been gen-

erated from one of the example distributions. The example distributions are S1S(0.75),

S1.5S(2), GG0.5(0.5), GG1.7(1.4), t3(1) and t0.6(3).

40 RJMCMC runs have been performed for each distribution and estimated fam-

ilies with shape and scale parameters for each example distribution are shown in Table

5.3. Examining Table 5.3, fitting performances for all example distributions lie within

KL distance of at most 0.0465. Moreover, estimated CDFs under KS statistic score are

also very low and p-values are close to 1,0000. Please note that the estimation result in

the second row of Table 5.3 is meaningful for an example Cauchy distribution, since the

Cauchy distribution is a special member in both SαS and Student’s t families.

In Figure 5.3, instantaneous estimate of shape parameter α and estimated posterior

distribution of scale parameter γ are depicted for three example distributions. Results

represent the estimates obtained by a randomly selected RJMCMC run out of 40 runs.

Burn-in period is not removed in the sub-figures (a)-(c) in order to show the transient

characteristics of the algorithm. These plots show that the proposed method converges to

the correct shape parameters. In sub-figures (d)-(f), vertical dashed-lines with ∇ markers

refer to ±σ confidence interval (CI). Examining these sub-figures shows that correct scale

parameters lie within the ±σ CI of the posteriors.

Estimated pdfs and CDFs for three example distributions are depicted in Figure

1https://www.mathworks.com/help/stats/continuous-distributions.html
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5.4. In addition to the statistical significance test scores in Table 5.3, fitting performance

of the algorithm is presented visually. As can be seen from Figure 5.4, estimated pdfs

and CDFs are very similar to the data histograms and empirical CDFs, respectively and

provide evidence to the numerical results presented in Table 5.3.

Table 5.3. Modelling results for synthetically generated processes.

Distribution Est. Est. Est. KL Div. KS KS
Distribution Family Shape (α̂) Scale (γ̂) Score p-value

S1.5S(2) SαS 1.4769 1.9162 0.0169 0.0125 1.0000
S1S(0.75) t 0.9970 0.7300 0.0454 0.0489 > 0.9999
GG0.5(0.5) GG 0.4990 0.5199 0.0229 0.0152 1.0000
GG1.7(1.4) GG 1.6456 1.3374 0.0221 0.0202 1.0000

t3(1) t 2.9303 1.0039 0.0251 0.0203 1.0000
t0.6(3) t 0.6197 2.9869 0.0465 0.0452 > 0.9999

5.3.6.2. Case Study 2: Modelling Impulsive Noise on PLC Systems

PLC is an emerging technology which utilizes power-lines to carry telecommuni-

cation data. Telecommunication speeds up to 200 Mb/s with a good quality of service can

be achieved on PLC systems. Apart from this, PLC offers a physical medium for indoor

multimedia data traffic without additional cables (Laguna-Sanchez and Lopez-Guerrero,

2015).

A PLC system has various types of noise arising from electrical devices connected

to power line and external effects via electromagnetic radiation, etc. These noise se-

quences are generally non-Gaussian and they are classified into three groups, namely:

i) Impulsive noise, ii) Narrowband noise, iii) Background Noise (Cortes et al., 2010).

Among these, impulsive noise is the most common cause of decoding (or communica-

tions) errors in PLC systems due to its high amplitudes up to 40 dBs (Andreadou and

Pavlidou, 2010).

In this case study, we are going to use 3 different PLC noise measurements.

First measurement (named as PLC-1) has been performed during a project with number

PTDC/EEA-TEL/67979/2006. Details for the measurement scheme and other measure-

ments please see (Lopes et al., 2013). Data utilized in this thesis (PLC-1) is an amplified

impulsive noise measurement from a PLC system with a sampling rate of 200Msam-
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Figure 5.3. Synthetically generated noise modelling - parameter estimation results in
a single RJMCMC run. (a), (b), (c): Instantaneous α estimates. (d), (e),
(f): Estimated posterior distributions for γ after burn-in period. .
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Figure 5.4. Synthetically generated noise modelling results. (a), (c), (e): Estimated
pdfs, (b), (d), (f): Estimated CDFs. Estimated distributions for each row
are S0.7387S(1.3213), GG1.6456(1.3374), and t2.9303(1.0039), respectively.
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ples/sec. Measurements last for 5 ms and there are 100K samples in the data set. In order

to reduce the computational load, the data is downsampled with a factor of 50 and the

resulting 2001 samples have been used in this study. In Figure 5.5(a) a time plot of the

utilized downsampled data is depicted (For detailed description of the data please see2).

Table 5.4. Modelling results for PLC impulsive noise.

Data Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

PLC-1 SαS 1.2948 5.6969 0.0086 0.0112 1.0000
PLC-2 SαS 0.7042 0.1799 0.0441 0.0486 > 0.9999
PLC-3 SαS 1.3140 1.3488 0.0046 0.0132 1.0000

Remaining two data sets are periodic synchronous and asynchronous (named as

PLC-2 and PLC-3, respectively) impulsive noise measurements both of which have been

performed during project with number TIC2003-06842 (for details please see (Cortes

et al., 2010)). Periodic synchronous measurements last for 4 µs and contain 226 noise

samples. Periodic asynchronous measurements contain 1901 noise samples and last for 35

µs. In Figures 5.5(b) and 5.5(c) time plots are depicted for synchronous and asynchronous

noise sequences, respectively (for detailed description of the data please see3).

RJMCMC has been run 40 times for all three data sets. In Table 5.4, estimated dis-

tribution families and resulting scale and shape parameters are depicted with significance

test results. Estimated scale and shape parameters correspond to the average values after

40 repetitions. Examining the results in Table 5.4, we can state that all three considered

PLC noise processes follow SαS distribution characteristics. In the literature, there are

studies (Laguna-Sanchez and Lopez-Guerrero, 2015; Tran et al., 2013) which model the

impulsive noise in PLC systems by using stable distributions. Particularly, these studies

provide a direct modelling scheme via stable distribution, whereas the proposed method

has estimated the distribution among three impulsive distribution families. Thus, our es-

timation results for impulsive noise in PLC systems provide experimental verification of

these studies. According to the results of KL and KS tests shown in Table 5.4 on estimated

pdfs and CDFs and Figures through 5.6(a) and 5.6(f), RJMCMC fits real data within %5

significance scores. KS p-values are all approximately 1 (> 0.9999) and provide strong

evidence that the estimated and the correct distributions are the same kind.

2http://sips.inesc-id.pt/∼pacl/PLCNoise/index.html
3http://www.plc.uma.es/channels.htm
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Figure 5.5. PLC impulsive noise time plots. (a): an amplified impulsive noise mea-
surement from a PLC system, (b): periodic synchronous impulsive noise
measurements, (c): periodic asynchronous impulsive noise measurements.
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Figure 5.6. PLC impulsive noise modelling results. (a), (c), (e): Estimated pdfs,
(b), (d), (f): Estimated CDFs. Estimated distributions for each row are
S1.2948S(5.6969), S0.7042S(0.1799), and S1.3140S(1.3488), respectively
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In order to compare the estimation results of the proposed method with a classical

approach, maximum likelihood (ML) estimation method has been used for PLC noise

estimation case study. For each PLC noise measurement and each candidate distribution

family, k, parameters Θ(k) = [α, γ] have been estimated via the expression

Θ̂
(k)
ML = arg min

Θ(k)

{
− log

(
f
(
x|k,Θ(k)

))}
(5.16)

where f (x|·) refers to the likelihood function and x is the PLC noise measurement. A

constrained interior-point optimization method has been employed with a maximum of

100 iterations to find a solution to the expression in (5.16). Constraints are defined for

each of the shape and the scale parameters, which are upper and lower bounds given in the

previous sections for each distribution family. Optimization operation has been repeated

100 times for randomly selected initial estimates (Θ(k)
0 ), and the results which minimize

the expression in (5.16) are selected as the optimum solutions.

The optimum distribution from each family has been compared with others in

terms of the KL and KS values, then the best family and the corresponding distribution

has been decided to be the best fit. In Table 5.5, ML estimated families and parame-

ters are shown for each PLC noise measurement. Examining the results shows us that

ML estimated families and parameters are approximately the same as the results given for

RJMCMC in Table 5.4. This demonstrates the success of the proposed method in estimat-

ing the best fit and being an automatic approach both searching the family and estimating

the corresponding parameters.

Table 5.5. ML estimation results for PLC impulsive noise.

PLC-1 PLC-2 PLC-3
Est. Est. Est. Est. Est. Est. Est. Est. Est.

Family Shape (α̂) Scale (γ̂) Family Shape (α̂) Scale (γ̂) Family Shape (α̂) Scale (γ̂)
SαS 1.2990 5.6530 SαS 0.6942 0.1725 SαS 1.3147 1.3459
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5.3.6.3. Case Study 3: Statistical Modelling for Discrete Wavelet

Transform (DWT) Coefficients

DWT which provides a multiscale representation of an image is a very important

tool for recovering local and non-stationary features in an image. The resulting represen-

tation is closely related to the processing of the human visual system (Lee, 1996). DWT

obtains this multiscale representation by performing a decomposition of the image into a

low resolution approximation and three detail images capturing horizontal, vertical and

diagonal details. It has been observed by several researchers that they have heavier tails

and sharper peaks than Gaussian distribution (Simoncelli, 1997; Achim et al., 2003).

In this case study, the proposed method has been utilized to model the coeffi-

cients (e.g. subbands) of 2D-DWT, namely vertical (V), horizontal (H) and diagonal (D).

Four different images have been used to test the performance of the algorithm under sta-

tistical significance tests: Lena, synthetic aperture radar (SAR) (Artemis Inc., 2017),

magnetic resonance imaging (MRI) (MRI Scan Images Info., 2017) and mammogram

(Martinez Lara et al., 2012) which are shown in Figure 5.7.

The proposed method has been performed for 40 RJMCMC runs. Estimated re-

sults for distribution families and their parameters (α and γ) are depicted in Table 5.6 as

averages of 40 runs.

Table 5.6. Modelling results for 2D-DWT coefficients.

Image Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

Lena (V) GG 0.5002 1.7415 0.0271 0.0465 > 0.9999
Lena (H) t 1.0958 2.2422 0.0094 0.0349 > 0.9999
Lena (D) t 1.1628 1.7735 0.0145 0.0271 1.0000
SAR(V) SαS 1.5381 7.7395 0.0025 0.0123 1.0000
SAR(H) SαS 1.4500 8.6249 0.0043 0.0221 1.0000
SAR(D) SαS 1.7500 6.3710 0.0062 0.0125 1.0000
MRI(V) GG 0.3913 0.2693 0.0365 0.1152 0.8744
MRI(H) GG 0.3527 0.1039 0.0305 0.0548 > 0.9999
MRI(D) SαS 0.8504 0.5184 0.0245 0.0659 0.9998
Mammog.(V) t 1.6325 1.6411 0.0363 0.0907 0.9816
Mammog.(H) GG 0.7501 1.5154 0.0121 0.0555 > 0.9999
Mammog.(D) t 1.6430 0.4851 0.0073 0.0117 1.0000

Estimated distributions for wavelet coefficients of images in Table 5.6 show dif-

124



ferent characteristics. SAR and MRI images follow generally SαS characteristics while

results for Lena and mammogram images are generally GG or Student’s t. Moreover, de-

spite modelling with different distribution families, all the coefficients for all the images

have been modelled successfully according to the KL and KS test scores and p-values.

The estimated pdfs and CDFs in Figure 5.8 show remarkably good fitting and provide

support to the results which are obtained numerically in Table 5.6.

(a) Lena (b) SAR (Artemis Inc., 2017)

(c) MRI (MRI Scan Images Info., 2017) (d) Mammogram (Martinez Lara et al.,
2012)

Figure 5.7. Images used for 2D-DWT coefficients modelling.
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Figure 5.8. 2D-DWT coefficients modelling results. Estimated pdfs and CDFs. Es-
timated distributions are (a)-(e): t1.0958(2.2422), (b)-(f): S1.75S(6.3710),
(c)-(h): GG0.3913(0.2693), (d)-(g): t1.6430(0.4851).
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5.3.6.4. Case Study 4: Seismic Acceleration Time Series Modelling

Signal processing applications in seismology have been very popular in order to

interpret the complex nature of the earthquakes. General practice is to assume Gaussianity

for seismic signals and algorithms have been derived for denoising, seismic inversion, etc.

on the basis of the Gaussian statistical models. However, in seismology and geophysics

conditions are generally non-Gaussian. Hence, algorithms derived with the assumption

of Gaussianity face performance degradations under non-Gaussian conditions (Yue and

Peng, 2015).

In the literature, impulsive distributions are generally utilized for statistical mod-

elling of the seismic measurements. Lévy distribution, which is a special member of

α-Stable distributions, has been used to model slip and strike spatial distributions of the

well-known past earthquakes in (Lavallée et al., 2006, 2011). In addition, in (Yue and

Peng, 2015), seismic amplitude measurements obtained in earthquake sites in China have

been modelled with impulsive distributions.

In this case study, impulsive modelling procedure introduced in this chapter has

been performed to model seismic acceleration time series measurements from well-known

earthquakes which are El Centro 1979, Kobe 1995, Northridge 1994 and Kozani 1995

(COSMOS, 2017). All these data sets include three distinct measurements all of which

represent the directions x, y and z of the movement. In Figure 5.10, time series for all the

earthquakes in terms of x, y and z directions are plotted.

El Centro and Kobe earthquakes are characterized as strike slips whereas Northridge

and Kozani are dip slips. Images to explain the strike and the dip slip surface failures are

shown in Figure 5.9. Both of strike and dip slips define the failure of the earth surface

during an earthquake, particularly in a strike slip horizontal motion (left and right lateral)

occurs with a very little vertical motion whereas in a dip slip, motion is generally vertical

(normal and reverse).

20 RJMCMC runs have been performed for each movement direction and earth-

quake. Estimated results for distribution families and their parameters (α and γ) are shown

in Table 5.7 as averages of 20 runs. Examining the results in the table, acceleration time

series measurements for El Centro and Kobe earthquakes, failures of which are strike

slips, follow similar characteristics. Measurements for horizontal components which are

x and y, are modelled with GG distributions whereas the vertical component z is modelled

as an SαS. Results for Northridge and Kozani failures, which are dip slips, are modelled

as GG for all of their directions. For all the measurements, statistical significance test
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scores are low and the calculated p-values are very high (close to > 0.9999) providing

evidence to the remarkable performance of the proposed method.

(a) Strike slip (b) Dip slip

Figure 5.9. Earth surface faults.

Table 5.7. Modelling results for acceleration time series.

Earthquake Component Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

El Centro x GG 0.6816 11.8085 0.0286 0.0381 > 0.9999
y GG 0.5640 7.0624 0.0100 0.0250 1.0000
z SαS 0.9991 4.7199 0.0219 0.0232 1.0000

Kobe x GG 0.7355 9.6300 0.0263 0.0230 1.0000
y GG 0.5262 3.9587 0.0191 0.0212 1.0000
z SαS 1.2600 5.8229 0.0141 0.0163 1.0000

Northridge x GG 0.5188 3.8000 0.0114 0.0218 1.0000
y GG 0.5119 5.0762 0.0162 0.0216 1.0000
z GG 0.4500 1.8477 0.0388 0.0436 > 0.9999

Kozani x GG 0.4393 1.0550 0.0298 0.0136 1.0000
y GG 0.3930 0.5932 0.0169 0.0165 1.0000
z GG 0.4443 0.6658 0.0354 0.0491 > 0.9999

In Figure 5.11, 256-point FFT results for all data sets and for each direction com-

ponents are plotted. Examining the figure, we can state that for El Centro and Kobe, z

component follows different characteristics than x and y components, whereas all compo-

nents follow similar characteristics for Northridge and Kozani. Frequency analysis results

in Figure 5.11 are parallel with the modelling results and verify the distribution differences

within components of a single earthquake.
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In Figures between 5.12 and 5.15, the modelling performance of the proposed

method is demonstrated visually in terms of pdfs and CDFs. Based on both of visual and

statistical results, one can easily conclude that the proposed method model the seismic

acceleration time series with a remarkable performance.

5.3.6.5. Graphical Evaluation by Q-Q Plots for Data Estimated as

SαS

Figures between 5.16 and 5.18 show Q-Q plots for data sets estimated to be SαS.

Q-Q plots provide graphical performance results and their details have been discussed in

Appendix D. Examining the figures clearly shows a remarkable match between estimated

distribution and the data samples. Q-Q plots for PLC-2 and MRI-D results in Figure 5.17-

(a) and Figure 5.18-(d), respectively, show relatively lower performance than the others.

However, this result is expected because the numerical estimation results in terms of KL

and KS scores obtained for these two data sets are already higher than the others (KS

scores of 0.0486 and 0.0659, respectively), but still acceptable due to p-values of 0.9999

and 0.9998, respectively.

5.4. Envelope Distribution Modelling

As another group of distributions, we are going to consider the envelope distribu-

tions in order to model the distributions of hourly average wind speed measurements and

SAR images in terms of envelope distributions which are discussed in Section 5.2.2 and

Appendix B.

5.4.1. Likelihood and Priors

Envelope distribution modelling study follows partially the same procedure as in

impulsive data modelling section. The parameter space is formed as: θ = {k, α, γ} where

the family identifier k refers to Nakagami, K , Weibull, generalized Rayleigh and Gamma

for values between 1 and 5, respectively.
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Figure 5.10. Acceleration time series for four earthquakes.
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Figure 5.11. Frequency analysis of the datasets. For each component, 256 point FFT
has been computed and only positive frequency results are plotted.
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Figure 5.12. El Centro earthquake modelling results. Estimated distribution for each
row are GG0.6816(11.8085), GG0.5640(7.0624), S0.9991S(4.7199), respec-
tively.
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Figure 5.13. Kobe earthquake modelling results. Estimated distribution for each row
are GG0.7355(9.6300), GG0.5262(3.9587), S1.26S(5.8229), respectively.
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Figure 5.14. Northridge earthquake modelling results. Estimated distribution for each
row are GG0.5188(3.8), GG0.5119(5.0762), GG0.4500(1.8477), respectively.
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Figure 5.15. Kozani earthquake modelling results. Estimated distribution for each row
are GG0.4393(1.0550), GG0.3930(0.5932), GG0.4443(0.6658), respectively.
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Figure 5.16. Q-Q plots for SαS estimated data sets - 1.
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Figure 5.17. Q-Q plots for SαS estimated data sets - 2.
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Figure 5.18. Q-Q plots for SαS estimated data sets - 3.

The target distribution, f (θ|x), can be written as

f (θ|x) ∝ f (x|k, α, γ) f (α|k) f (k) f (γ) (5.17)

where f (x|k, α, γ) is the likelihood and corresponds to pdfs according to the value of k

f (x|k, α, γ) =



∏n
i=1 Nakagami(α, γ), k = 1∏n
i=1K(α, γ), k = 2∏n
i=1 Weibull(α, γ), k = 3∏n
i=1 GenRayl(α, γ), k = 4∏n
i=1 Gamma(α, γ), k = 5

(5.18)
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Priors are selected the same as in Section 5.4.1. The upper and lower bounds for

the shape parameter α are selected as

f (α|k) =



U(0.5, 2) k = 1,

U(0, 10) k = 2,

U(0.5, 5) k = 3,

U(0, 2) k = 4,

U(0.5, 6) k = 5

(5.19)

5.4.1.1. Model Moves

RJMCMC model moves for this case study are the same with the impulsive data

modelling part. The algorithm in Figure 5.1 is applied in order to find a distribution model

to wind speed measurements and SAR images. Life move performs the same procedure

as in 5.3.5.1. Intra and inter class switch moves are the same however this time with

different sampling operations for γ and α.

In both intra and inter class switch moves, instead of FLOM based proposals for γ

transitions, pth order moment based γ transitions are defined. For a given data, x, when a

transition from {k, α, γ} to {k′, α′, γ′} occurs, the learned information in the previous iter-

ations is transferred to the candidate distribution space by keeping the pth order moment

constant to the value at the most recent distribution space

Ek(xp) = Ek′(xp) (5.20)

where pth order moments for all the families are given in Appendix B.

For both of the switch moves, candidate values for the shape parameter α are

proposed by performing the same sampling strategy as in Section 5.3.5.3. This sampling

strategy includes sampling from a discretized Laplace (DL(·)) distribution the location

parameter of which is equal to the most recent shape parameter α and the scale parameter

is Γ.
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5.4.2. Case Study 5: Wind Speed Distribution Modelling

In this case study, we have experimentally modelled the wind speed distribution

by applying the proposed method. For this purpose, hourly average wind speed mea-

surements have been used from five distinct places in the world which are Karaburun

(Turkey), Basel (Switzerland), Bandon (Oregon, USA), Manson (Washington, USA) and

Vredenburg (South Africa). All data sets have a length of 1 year (8760 samples) and in

order to reduce the computational load, only half of these samples have been used in the

simulations by performing a downsampling operation by 2. In Figure 5.19, time plots for

all the locations are plotted.

As candidate distributions, we are going to deal with four distributions which

are Nakagami, K , Weibull and Gamma distributions (details are given in Appendix B).

Due to their popularity in wind speed modelling applications, Weibull and Nakagami are

natural choices. We have added the K and Gamma distributions to have heavier tailed

distributions in the model space than Weibull and Nakagami. A selection like this is not

unique, and interested users can vary the model space by adding distributions like, χ2,

Rice, log-normal, etc.

The algorithm starts with a Rayleigh distribution with initial values k(0) = 3 and

α(0) = 2. RJMCMC moves have been proposed with probabilities Plife = 0.4, Pintra-cl-sw =

0.3 and Pinter-cl-sw = 0.3. Hyperparameters for γ prior distributions are set to a = b = 1

and variance of proposal distribution for γ in life move is set to ξscale = 0.01. Scale

parameter Γ of the discretized Laplace distribution for intra-class-switch move is selected

as 0.5. For switch moves, moment order, p, is selected as 1 in order to use mean value

as the common property between candidate distributions. For all data sets the proposed

method has been run 40 times each of which lasts 5000 iterations. In Table 5.8, estimated

Table 5.8. Modelling results for acceleration time series.

Location Est. Est. Est. KL Div. KS KS
Family Shape (α̂) Scale (γ̂) Score p-value

Karaburun K 0.6392 2.2369 0.0409 0.0416 > 0.9999
Bandon Weibull 1.3599 2.1810 0.0228 0.0246 1.0000
Manson Weibull 1.2414 0.8412 0.0237 0.0354 > 0.9999

Basel K 0.6899 1.2688 0.0242 0.0488 > 0.9999
Vredenburg Nakagami 1.0973 25.8843 0.0117 0.0229 1.0000
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distribution families and resulting scale and shape parameters are shown together with

KL and KS test results. Examining the results in Table 5.8, we can state that locations

are divided into three distribution groups. First group which consists of data from Bandon

and Manson has been estimated to be Weibull distributed. Karaburun and Basel constitute

the second group and wind speed measurements from these locations are K distributed.

These results are more meaningful if we examine the histograms of the data from each

location in Figure 5.20. Bandon and Manson have much lighter tails than Karaburun

and Basel. Thus, the proposed method chose Weibull for Bandon and Manson whereas

it chose K for heavy tailed measurements. Examining the histograms in Figure 5.20,

Vredenburg measurements have a different characteristics from the others and Nakagami

distribution is the best match to this type of measurements. The CDF plots in Figure 5.21

and results of the significance tests in Table 5.8 demonstrate the remarkable modelling

performance of the proposed method both visually and numerically.

5.4.3. Case Study 6: Distribution Modelling of SAR Images

SAR imaging and statistical modelling of it have been favorable in the literature.

General practice is to model the distribution of SAR images with Weibull, K , Rayleigh,

Gamma, etc. In a previous study (Kuruoglu and Zerubia, 2004), authors have stated that

a generalization of Rayleigh distribution, which is the heavy-tailed Rayleigh distribution,

performs modelling of SAR images of urban areas better than any other envelope distri-

butions. Thus, we have chosen five candidate distributions for this purpose, which are

Weibull, K , Nakagami, Gamma, and generalized Rayleigh distributions.

Six SAR images have been used in this case study in order to investigate the

performance of the proposed method. All of the images are downloaded from (Artemis

Inc., 2017) and categorized into three groups according to their scenes which are urban (2

images), forrest (2 images) and agricultural (2 images). Additionally, there are different

frequency bands used in the acquisition of SAR images. The images used in this case

study were chosen to be of different frequency bands within each group. These bands are

X, L and UHF bands. In Figure 5.22, SAR images utilized in this case study are depicted.

The simulation environment for SAR image distribution modelling has been se-

lected as the same with wind speed modeling simulations with one exception. Since

positive order moments of generalized Rayleigh distribution are not defined, moment de-

gree, p, for the proposal distribution used in the scale parameter estimation step is chosen
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Figure 5.19. Hourly average wind speed measurements.
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(e) Vredenburg

Figure 5.20. Wind speed distribution modelling results 1 - Estimated pdfs. Estimated
distributions are (a): K(0.6392, 2.2369), (b): Weibull(1.3599, 2.1810), (c):
Weibull(1.2414, 0.8412), (d): K(0.6899, 1.2688), (e): Nakagami(1.0973,
25.8843).
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(e) Vredenburg

Figure 5.21. Wind speed distribution modelling results 2 - Estimated CDFs. Estimated
distributions are (a): K(0.6392, 2.2369), (b): Weibull(1.3599, 2.1810), (c):
Weibull(1.2414, 0.8412), (d): K(0.6899, 1.2688), (e): Nakagami(1.0973,
25.8843).

143



(a) SAR1 (b) SAR2

(c) SAR3 (d) SAR4

(e) SAR5 (f) SAR6

Figure 5.22. Images used for SAR distribution modelling.
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(f) SAR6

Figure 5.23. SAR image distribution modelling results 1 - Estimated pdfs. Es-
timated distributions are (a): GenRayl(1.6489, 234.820), (b): Gen-
Rayl(1.4479, 96.425), (c): K(7.933, 10.665), (d): Gamma(2.115, 0.0308),
(e): Weibull(3.333, 78.222), (f): Gamma(5.577, 0.078).
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Figure 5.24. SAR image distribution modelling results 2 - Estimated CDFs. Es-
timated distributions are (a): GenRayl(1.6489, 234.820), (b): Gen-
Rayl(1.4479, 96.425), (c): K(7.933, 10.665), (d): Gamma(2.115, 0.0308),
(e): Weibull(3.333, 78.222), (f): Gamma(5.577, 0.078).

146



as -1. In Table 5.9, estimated distribution parameters for six example images are shown

together with numerical performance metrics KL divergence and KS score. SAR image

distribution modelling performance of the proposed method is remarkable according to

statistical significance results for all six SAR images. In particular, modelling results of

urban scene SAR images provide empirical evidence to the previous studies (Kuruoglu

and Zerubia, 2004) and (Achim et al., 2006) by estimating generalized Rayleigh distri-

bution for these images. Moreover, results for forrest and agricultural images are also

remarkable and provide p-values of 1.0000 for all four images. Estimated pdfs and CDFs

for all the images are plotted in Figures 5.23 and 5.24, respectively. Both pdf and CDF

estimates shows the estimation performance of the algorithm visually.

Table 5.9. Modelling results for SAR Images.

Image Frequency Scene Est. Est. Est. KL Div. KS KS
Band Family Shape (α̂) Scale (γ̂) Score p-value

SAR1 X Urban GenRayl 1.6489 234.8200 0.0242 0.0269 1.0000
SAR2 L Urban GenRayl 1.4479 96.2450 0.1024 0.0718 0.9992
SAR3 X Forrest K 7.9330 10.6650 0.0166 0.0163 1.0000
SAR4 UHF Forrest Gamma 2.1150 0.0310 0.0222 0.0271 1.0000
SAR5 X Agricultural Weibull 3.3330 78.2220 0.0234 0.0296 1.0000
SAR6 L Agricultural Gamma 5.5770 0.0780 0.0151 0.0307 1.0000

5.5. Conclusion

In this chapter, the proposed method, trans-space RJMCMC, has been used in es-

timating the distribution of given sets of data for both synthetically generated and real

measurements. Simulation studies verify the remarkable performance in modelling the

distributions in terms of both visual and numerical tests. KL and KS tests show the nu-

merical results are statistically significant in terms of p-values which are higher than 0.85

for all the example data sets. In order to demonstrate the success of the proposed method,

PLC impulsive noise measurements were also modeled by the ML method and the ML

estimation results were compared to that of RJMCMC. Examining this comparison, we

can clearly state that estimated families and the corresponding distributions via RJMCMC

are the same as the results from the ML method. This shows the success of the proposed

method and confirms the accuracy of the estimated results.

The RJMCMC approach, developed in the previous chapters of this thesis, have
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reached its final form in this chapter and as case studies, probability distributions are

estimated including all their parameters. The most important contribution of this applica-

tion is that the transitions between different distribution families are realized by matching

some common features among the families. Thus, transitions between the model spaces

that are irrelevant of each other are performed more efficiently by increasing the mixing

of the algorithm and accelerating the convergence to the correct family.

One can expect higher benefits from the trans-space RJMCMC compared to con-

sidering different model classes separately in the cases when the different model class

spaces have intersections to exploit. The intersections for the trans-distributional RJM-

CMC considered in this chapter have been the common distributions in the impulsive

noise families. They made it possible to use the mapping functions benefitting from the

moments (norms) of the observed data. These functions in turn have enabled to transfer

the information learned while searching in one family to the subsequent search after an

inter-class-switch move.

This new perspective provided for RJMCMC also lends itself to much more com-

plex selection of model classes, such as kernel selection and classification with support

vector machines (SVM), stable process selection, automatic model selection.
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CHAPTER 6

CONCLUSIONS AND FUTURE DIRECTIONS

Expressing an observed real life signal with a mathematical model is of great im-

portance in solving the problems and improves the analysis of these problems. Although

various approaches have been developed in the literature to select “the best model", the

procedures pose serious problems especially when the number of candidate models is

high. A Bayesian numerical method, RJMCMC, offers an outstanding performance in

solving model uncertainty because it allows efficient exploration of spaces with varying

dimensions without requiring an exhaustive search. Despite its potential, the use of RJM-

CMC has remained limited to the trans-dimensional case in the literature.

In this thesis, we have shown that the formal presentation of RJMCMC (Green,

1995) can be used to explore more generic model spaces. We have shown that RJMCMC

is a general Bayesian model selection method that offers more general transitions than

just between different dimensions of the models of the same type.

Firstly, we have created an RJMCMC based general framework for linear-in-the-

parameters nonlinear models PAR, PMA and PARMA. Motivated by AR model estima-

tion study in the methodology chapter, we have designed RJMCMC to explore different

structural models and particularly, switch between linear and nonlinear models using the

trans-structural approach in an anomalous way. This approach provides a means to es-

timated polynomial nonlinearity degree of the models. Numerical results demonstrated

promising performance of the proposed method in estimating model orders and the corre-

sponding model coefficients concurrently for all three nonlinear time series models. Our

first application of RJMCMC to nonlinear model estimation has made it clear that RJM-

CMC is a method that can be used for model selection among different structural models

instead of focusing only on different dimensional space transitions. This utilization leads

us to demonstrate model selection applications involving different classes of models than

those used in this first application, PAR, PMA and PARMA.

Extending the nonlinear model estimation studies for PAR/PMA/PARMA mod-

els, we suggested a trans-structural RJMCMC framework, which enables RJMCMC tran-

sitions across multiple parameter dimensions concurrently regardless of the dimension

sizes. Transitions of this kind are performed with a new type of RJMCMC move, called

switch. This new type of move also includes classical trans-dimensional transitions and
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was described as a more general move. This approach was presented compactly for its use

in VSI problems and, unlike the general approach, allowed for the estimation of the non-

linearity degree of the unknown system. The approach we proposed in this thesis, offers a

very significant advantage especially when the unknown systems have variable degrees of

nonlinearity. In experimental analysis, apart from the synthetically generated data case,

the proposed method was used in the estimation of a nonlinear communication channel of

a synthetically generated OFDM communication system. Despite not having known the

correct model orders, our proposed method showed approximately the same performance

in coefficient estimation as the informed NLS method which perfectly knows the model

orders beforehand.

In various application areas, information such as what are statistical properties

of the observed data and what kind of distribution family it comes from is of great im-

portance especially in the development of parameter estimation methods. The Gaussian

assumption has seriously affected various application areas in the literature such as com-

munication channel models, wind speed, finance, and made possible the use of methods

such as least squares and mean square error. However, in those cases where the data

are more impulsive and skewed, Gaussian based methods cause serious problems. In

such cases, methods that can suggest us the choice of “the best (or suitable) pdf model"

avoiding searching all possible models, are very useful. In this thesis, we proposed an ap-

proach on RJMCMC by using it beyond trans-dimensional sampling framework, so that

it can provide transitions between different probability distribution families.

The approach suggested in Chapter 3, demonstrated transitions between different

structural models by performing a cascaded RJMCMC procedure in cases of creation of a

new parameter space (e.g. linear (p = 1)→ nonlinear (p > 1)) or removal of the existing

parameter space. With the new move proposed in Chapter 4, the proposed approach in this

thesis performed transitions across multiple parameter spaces simultaneously and had a

hierarchical structure. Transitions in both of the applications could be accomplished with

the combination of newly born coefficients or the death of existing ones, making it possi-

ble to explore linear and nonlinear model spaces in the same setup. Exploring irrelevant

spaces of different distribution spaces is much more challenging than the previous appli-

cations and cannot be accomplished with the same approach. Extending the RJMCMC

moves are suggested in Chapter 4, where the transitions between different distribution

spaces are accomplished by matching common properties of the distribution families (e.g.

norm). That is, the information learned at the most recent distribution was carried to a

new distribution and we enabled RJMCMC to choose the best model among the different
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distribution families. Simulation studies provide remarkable performance results in esti-

mating the distribution of given data set in terms of impulsive or envelope distributions.

Visual results were also supported numerically with statistical significance tests and all

these results demonstrate the remarkable success of the method.

The most important contribution of this thesis is invalidating the widespread opin-

ion that RJMCMC algorithm is a Bayesian tool which mainly enables dimension search.

Although the original formulation of Green was more general, the opinion that RJMCMC

is a trans-dimensional model estimation method has been strengthened by generally se-

lected applications. The thesis reveals that RJMCMC allows us to search in an indefinitely

extensible union of multiple spaces.

The multiplicity of the searched spaces does not decrease the efficiency of the

algorithm, i.e. the learned information in previous RJMCMC iterations can be transferred

without any loss to the search in the next space which is made possible by describing the

spaces subject to jump with some common attribute. This attribute was “norms" when

jumping between impulsive distribution families. Keeping this attribute constant during

an inter-class move, the point to jump in the next space is determined by the point in the

most recent space. The applications in the thesis give several examples to this efficient

jump. Additionally, we have seen in some experiments in which “blind" model transitions

were performed, the algorithm did not estimate the correct family in most of the cases

without a common feature-based model transition (trans-space moves), and got stuck in

the neighborhood of a distribution far from the correct one. This result emphasizes the

importance of using the approach of transferring the learned knowledge to the candidate

model space, that is, the trans-space approach proposed in this thesis, when it is desired

to use RJMCMC to switch between different classes of models.

6.1. Current and Future Research Directions

With this thesis, we contributed to the literature with a generalization on RJM-

CMC beyond its trans-dimensional usage. The applications are not limited to the ones

given in this thesis and we opened paths to many future research directions which will be

explained in this section.
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6.1.1. Multivariate RJMCMC

In this thesis, all models used in model selection and estimation studies are uni-

variate models. In the literature, the use of multivariate approaches, especially in the most

recent machine learning algorithms, has increased significantly. Additionally, multivari-

ate models such as vector autoregressive models also have applications in economics,

meteorology, etc.

A multivariate use of the RJMCMC will also offer using it in the applications

mentioned above. The trans-space approach demonstrated by this thesis brings to light

the potential that RJMCMC can make transitions among multivariate models. Such an

approach would reveal the feasibility of RJMCMC in spatio-temporal models. This will

also reveal that RJMCMC can be utilized in estimating spatio-temporal models e.g. for

more complex prediction tasks or for gene expression studies.

6.1.2. Time Varying RJMCMC

Time-varying systems have an important place in signal processing especially in

economics, channel modelling, tracking, etc. As the Bayesian approach, sequential Monte

Carlo algorithms or particle filtering operations are used in time-varying model estima-

tion, especially in applications such as tracking, financial modelling, machine learning,

etc (De Freitas et al., 2001).

The feasibility of the RJMCMC in time-varying modelling has also become an im-

portant research direction after this thesis. The ability of the RJMCMC to switch between

different models shown in this thesis motivates a potential for adaptation to time-varying

models. An RJMCMC approach combined with methods like Sequential Monte Carlo

will make a very significant contribution to the Bayesian learning literature.

6.1.3. Bayesian Prediction with Model Selection of Real

Measurements

The approach presented in this thesis on nonlinear (polynomial) time series mod-

els PAR, PMA and PARMA were implemented for only synthetically generated data sets.

These models can be favourable for various meteorological prediction studies such as
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wind, solar radiation, etc. In a previous study (Karakuş et al., 2017c), we have shown that

PAR models achieve remarkable performance among different nonlinear statistical mod-

els such as artificial neural networks (ANN) and adaptive neuro fuzzy inference system

(ANFIS) models for wind speed/power predictions up to 24 hours ahead of time.

A Bayesian prediction scheme based on RJMCMC can be constructed by using

the procedure presented in this thesis. This scheme offers a complete Bayesian prediction

framework which performs model estimation and prediction at the same time. In addition,

the proposed approach in this sub-section is not limited to the application of wind speed

prediction. Other meteorological events such as solar radiation, rainfall or prediction

studies in finance are also object of interest for RJMCMC based prediction studies.

6.1.4. Non-Gaussian PAR Modeling of Real Data

RJMCMC based estimation procedures for PAR, PMA and PARMA models in

this thesis were constructed using Gaussian excitation sequences. Non-Gaussian polyno-

mial nonlinear model like Stable-PAR are also applicable to various studies such as wind

speed prediction, etc. especially to ones possessing highly nonlinear nature. We believe

that expressing the nonlinear nature of these types of real life measurements with both a

nonlinear model and a non-Gaussian excitation provides advantage especially in predic-

tion studies. In the continuation of our research, we plan to investigate the non-Gaussian

PAR models and their applications on prediction studies.

6.1.5. Nonlinear Channel Equalization

In this thesis, we provided nonlinear channel estimation study for an OFDM com-

munication system with various modulation schemes. Our study was limited to only iden-

tification of the unknown system. However, by taking into consideration the properties of

the Volterra systems, nonlinear channel estimation approach in this thesis can be easily

extended to a Bayesian channel equalization study and the presented procedure turns into

a fully Bayesian equalizer for Volterra based nonlinear channels.
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6.1.6. Kernel Selection and Classification with SVM

Support vector machines (SVMs) are supervised learning procedures in machine

learning which analyse the data for classification or regression. In classification problems,

a training data set including features and real class labels for each sample are given ini-

tially and SVM creates a decision criterion to classify the data according to this criterion.

In SVM, a procedure named as Kernel Trick is used to perform nonlinear classification.

There are various kernels such as polynomial, radial basis, multi-layer perceptron, splines,

etc. Generally, Gaussian radial basis kernel is assumed to be the best kernel for classifi-

cation, however kernel performance changes according to data sets. Thus, selecting the

appropriate kernel is crucial in SVM based classification operations.

The procedure which was presented in this thesis, can be used to select an appro-

priate kernel for a given training data set. Thus, we can use RJMCMC in SVM training

procedure in a complete manner which selects the best kernel and estimates its required

parameters. We also plan to apply our RJMCMC procedure in this thesis to SVM classi-

fication problems.

6.1.7. Selection of Stable Processes with RJMCMC

A Stable process is a type of stochastic process whose finite-dimensional proba-

bility distributions are α-stable. There are various types of stable processes such as linear,

harmonizable, sub-Gaussian, etc. Linear stable processes are AR, MA or ARMA pro-

cesses where the driving noise sequence is i.i.d. α-stable (Swami and Sadler, 1998). An

α-sub-Gaussian process is obtained multiplying a Gaussian process with a positive α/2

stable random variable (Tsihrintzis and Nikias, 1997). Harmonizable stable processes are

an important class of stable processes which do have a spectral representation (Tsihrintzis

et al., 1998) (for details see (Nikias and Shao, 1995).) In the continuation of our research,

it is also of great interest to use RJMCMC in identifying which stable-process a given

stochastic process belongs to.
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APPENDIX A

IMPULSIVE DISTRIBUTION FAMILIES

A.1. Symmetric α-Stable Distribution Family

There is no closed form expression for probability density function (pdf) of SαS

distributions except for the special cases of Cauchy and Gaussian. However, their charac-

teristic function, ϕ(x), can be expressed explicitly as

ϕ(x) = exp( jδx − γ|x|α) (A.1)

where 0 < α ≤ 2 is the characteristic exponent, a.k.a. shape parameter, which controls

the impulsiveness of the distribution. Special cases Cauchy and Gaussian distributions

occur when α = 1 and α = 2, respectively. −∞ < δ < ∞ represents the location

parameter. γ > 0 provides a measure of the dispersion which is the scale parameter

expressing the spread of the distribution around δ.

Absolute FLOM definition of SαS distributions is

E(|x|p) = Cα(p, α)γp/α (A.2)

where

Cα(p, α) =

Γ

(
p + 1

2

)
Γ

(
−p
α

)
α
√
πΓ

(
−p
2

) 2p+1. (A.3)

In Figure A.1, the standard SαS density functions and their tail characteristics are

shown in terms of different shape parameter α. Note that the plot for α = 2 refers to the

standard normal density, and this figure gives us the opportunity to compare Gaussian and
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non-Gaussian stable densities. Stable densities are more peaked than normal for the values

of samples around location parameter δ. Due to having algebraic tails unlike the Gaussian

density tail which is exponential, stable densities have heavier tails than the Gaussian.

Moreover, the smaller α a stable density has, the heavier are the tails (Zolotarev, 1986;

Samorodnitsky and Taqqu, 1994; Nikias and Shao, 1995).

A.2. Generalized Gaussian Distribution Family

The univariate GG pdf can be defined as

f (x) =
α

2γΓ(1/α)
exp

(
−

(
|x − δ|
γ

)α)
(A.4)

where Γ(·) refers to the gamma function, α > 0 is the shape parameter, −∞ < δ < ∞

represents the location parameter and γ > 0 is the scale parameter. GG family has well-

known members such as Laplace, Gauss and uniform distributions for α values of 1, 2

and∞, respectively.

Absolute FLOM definition of GG distributions is

E(|x|p) = CGG(p, α)γp, (A.5)

where

CGG(p, α) =

Γ

(
p + 1
α

)
Γ(1/α)

. (A.6)

In Figure A.2, the standard GG density functions and tail characteristics for dif-

ferent shape parameter α are depicted. Similarly, note that the density with α = 2 cor-

responds to a Gaussian. For samples around the location parameter δ, GG densities with

higher α values are more peaky than the ones with small α, whereas GG densities with
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smaller α have heavier tails (Woods, 2013).

A.3. Student’s t Distribution Family

The univariate symmetric Student’s t distribution family is an impulsive distribu-

tion family with parameters, α > 0 which is the number of degrees of freedom, a.k.a

shape parameter, the location parameter −∞ < δ < ∞ and the scale parameter γ > 0. Its

pdf can be defined as

f (x) =

Γ

(
α + 1

2

)
Γ(α/2)γ

√
πα

1 +
1
α

(
x − δ
γ

)2−((α+1)/2)

. (A.7)

Special members of the symmetric Student’s t distribution family are Cauchy and

Gauss which are obtained for shape parameter values of α = 1 and α = ∞, respectively.

Absolute FLOM definition of Student’s t distributions is

E(|x|p) = Ct(p, α)γp, (A.8)

where

Ct(p, α) =

Γ

(
p + 1

2

)
Γ

(
α − p

2

)
√
πΓ

(
α

2

) αp/2. (A.9)

In Figure A.3, the standard Student’s t density functions and tail characteristics

are given in order to show the differences for varying shape parameters. General charac-

teristics both for densities and tails are similar to GG densities. However t distributions

are much more heavy tailed than GG. Their members with larger α have more peaky den-

sities around the location parameter, but ones with smaller α have heavier tails (Kotz and

Nadarajah, 2004).
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Figure A.1. Density function of SαS for different values of the shape parameter α. (a):
the overall densities (b): the tails of the densities. For all the distribution
families the scale parameter γ = 1 and δ = 0.
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Figure A.2. Density function of GG for different values of the shape parameter α. (a):
the overall densities (b): the tails of the densities. For all the distribution
families the scale parameter γ = 1 and δ = 0.
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Figure A.3. Density function of Student’s t for different values of the shape parameter
α. (a): the overall densities (b): the tails of the densities. For all the
distribution families the scale parameter γ = 1 and δ = 0.
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APPENDIX B

ENVELOPE DISTRIBUTION FAMILIES

B.1. Nakagami Distribution Family

Probability density function of the univariate Nakagami distribution can be defined

as (Nakagami, 1960; Yacoub et al., 1999)

f (x) =
2αα

Γ(α)γα
x2α−1 exp

(
−
α

γ
x2

)
(B.1)

where Γ(·) is the gamma function, α ≥ 0.5 refers to the shape parameter and γ > 0

represents the scale parameter of the Nakagami distribution family. One-sided Gaussian

distribution and Rayleigh distribution are the special members of Nakagami distribution

family for shape parameters of 0.5 and 1, respectively.

The pth order moment definition of the Nakagami distribution is (Yacoub et al.,

1999)

E(xp) = C1(p, α)
(
γ

α

)p/2
, (B.2)

and

C1(p, α) =

Γ

(
α +

p
2

)
Γ(α)

. (B.3)

B.2. K-Distribution Family

K-distribution is a distribution family which arises by compounding two gamma
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distributions. Assume a random variable x is Gamma distributed with mean m and shape

L, the mean m of which is also a Gamma distributed random variable. Thus, x is K-

distributed and K-distribution is a compound process. Additionally, K-distribution is

also a product distribution. Particularly, it is the distribution of a random variable which

is the product of two independent Gamma random variables. The pdf of a univariate

K-distribution can be defined as (Iskander and Zoubir, 1999)

f (x) =
2

γΓ(α + 1)

(
x

2γ

)α+1

Kα

(
x
γ

)
(B.4)

where Kα refers to the modified Bessel function of order α and α and γ represent the shape

and the scale parameters, respectively.

The pth order moment definition ofK-distribution is (Iskander and Zoubir, 1999)

E(xp) = C2(p, α)γp, (B.5)

and

C2(p, α) =

2pΓ

( p
2

+ 1
)
Γ

(
α + 1 +

p
2

)
Γ(α + 1)

. (B.6)

B.3. Weibull Distribution Family

For a univariate Weibull distribution, the pdf can be defined as (Walck, 1996)

f (x) =
α

γ

(
x
γ

)α−1

exp
(
−

(
x
γ

)α)
(B.7)

where α is the shape and γ is the scale parameter. Weibull distribution family has special

members for α = 1 and α = 2 which are the well-known exponential and Rayleigh

distributions, respectively.
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The pth order moment definition of the Weibull distribution is (Walck, 1996)

E(xp) = C3(p, α)γp (B.8)

and

C3(p, α) = Γ

(
1 +

p
α

)
. (B.9)

B.4. Gamma Distribution Family

Univariate gamma distribution pdf can be expressed as (Walck, 1996)

f (x) =
xα−1

γαΓ(α)
exp

(
−

x
γ

)
(B.10)

where α refers to the shape parameter and γ is the scale parameter. The well-known

exponential and chi-squared distributions are special members of the gamma distribution

family.

The pth order moment definition of the Gamma distribution is (Walck, 1996)

E(xp) = C4(p, α)γp (B.11)

and

C4(p, α) =
Γ (α + p)

Γ(α)
. (B.12)
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B.5. Generalized Rayleigh Distribution.

The classical Rayleigh distribution represents the distribution of a random vari-

able which is the magnitude of a 2 dimensional vector, components of which are zero

mean, equal variance Gaussian random variables. Generalized Rayleigh (or heavy tailed)

Rayleigh distribution represents the distribution of a random variable which is again a

2-dimensional vector. However this time, the components of the vector are zero loca-

tion equal dispersion SαS random variables. Generalized Rayleigh distribution has a pdf

expression in integral form as (Kuruoglu and Zerubia, 2004)

f (x) = x
∫ ∞

0
s exp (−γsα) J0(sx)ds (B.13)

where γ > 0 is the scale parameter, 0 < α ≤ 2 is the shape parameter and J0(·) refers to the

zeroth order Bessel function of the first kind. Rayleigh distribution is a special member

of generalized Rayleigh distribution with α = 2.

The pth order moment definition of the generalized Rayleigh distribution is (Ku-

ruoglu and Zerubia, 2004)

E(xp) = C5(p, α)γp/α (B.14)

and

C5(p, α) =

2p+1Γ

( p
2

+ 1
)
Γ

(
−p
α

)
αΓ

(
−p
2

) . (B.15)

In Figures through B.1 and B.5, densities for Nakagami, K , Weibull, Gamma and

generalized Rayleigh distributions are shown, respectively. For Nakagami densities in-

creasing the shape parameter α makes the densities peaky and heavy tailed relative to

the ones with smaller α. Weibull distribution also follows very similar characteristics to

Nakagami distribution. For K and Gamma distributions, decreasing the shape parame-

ter makes both K and Gamma more peaky and heavy tailed than the ones with larger

α. For generalized Rayleigh distributions, tail probabilities increase as order of α values
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increases, whereas peak values are very similar for all α values. Generalized Rayleigh,K

and Gamma distributions are different from Nakagami and Weibull due to having heav-

ier tails. Generally, Nakagami and Weibull distributions are not heavy tailed envelope

distributions and densities diminish towards zero faster than the other distributions.
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Figure B.1. Density function of Nakagami distribution for different values of the shape
parameter α. For all the distribution families the scale parameter γ = 1 and
δ = 0.
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Figure B.2. Density function ofK-distribution for different values of the shape param-
eter α. For all the distribution families the scale parameter γ = 1 and
δ = 0.
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Figure B.3. Density function of Weibull distribution for different values of the shape
parameter α. For all the distribution families the scale parameter γ = 1 and
δ = 0.
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Figure B.4. Density function of Gamma distribution for different values of the shape
parameter α. For all the distribution families the scale parameter γ = 1 and
δ = 0.
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Figure B.5. Density function of generalized Rayleigh distribution for different values
of the shape parameter α. For all the distribution families the scale param-
eter γ = 1 and δ = 0.
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APPENDIX C

STATISTICAL SIGNIFICANCE TESTS

C.1. Kullback-Leibler Divergence

In order to measure the difference between two probability distributions, in proba-

bility and statistics, a well-known approach named Kullback-Leibler divergence or shortly

KL divergence has been commonly used. KL divergence provides a non-symmetric mea-

sure about how different two probability distributions, e.g. p and g are. It is also known

as relative entropy between p and g.

KL divergence between two continuous probability distributions p(x) and g(x) can

be defined as

DKL(p‖q) = E
[
log(p(x)) − log(g(x))

]
(C.1)

where log(·) refers to the natural logarithm and E[·] is the expectation. The most common

way to represent DKL(p‖q) is (Kullback, 1997; Hershey and Olsen, 2007)

DKL(p‖q) =

∫
x

p(x) log
(

p(x)
g(x)

)
. (C.2)

The notation DKL(p‖q) denotes “information lost where g is used to approximate p"

(Burnham and Anderson, 2003).

The KL divergence can also be used to measure the distance between discrete

distributions, such as Poisson, negative binomial, or in cases when comparing two discrete

populations. Discrete KL divergence can be defined as (Burnham and Anderson, 2003)

DKL(p‖q) =

k∑
i=1

p(xi) log
(

p(xi)
g(xi)

)
. (C.3)
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KL divergence satisfies three properties, which are (Hershey and Olsen, 2007)

1. Self-similarity→ DKL(p‖p) = 0,

2. Self-identification→ DKL(p‖q) = 0 only if p = g,

3. Positivity→ DKL(p‖q) ≥ 0 for all p, g.

To understand the information that KL divergence provides clearly, let’s create a

toy example. Assume that a sequence of data, x has been observed and the distribution

of these samples, f (x) will be tested to be uniform or binomial distributions which refer

to f1 and f2, respectively. The equation has been used and KL divergence values are

calculated. Resulting values are, DKL( f ‖ f1) = 0.22 and DKL( f ‖ f 2) = 0.105. Examining

the KL divergence values, we can state that the distribution of observed samples is more

likely to come from uniform distribution, or conversely approximating the distribution

of the observed samples with binomial distribution causes more information loss than

uniform distribution.

C.2. Kolmogorov-Smirnov Test

Kolmogorov-Smirnov test, or simply KS test, can be defined as a non-parametric

test which can be used to test equality of continuous distributions by comparing one sam-

ple with a reference distribution (one-sample KS test) or two samples (two-sample KS

test).

Particularly, suppose that a population has a cumulative distribution function F(x)

(reference distribution) which is clearly specified. There is also an observed population

the empirical cumulative distribution function of which is G(x). One can think that a

measure between these two distributions may provide means about whether the reference

distribution is the correct one or not. KS test quantifies a measure for this purpose as

(Massey Jr, 1951; Goodman, 1954; Wilcox, 2005)

DKS = max
x
|F(x) −G(x)| . (C.4)

If the calculated KS score is large, this provides evidence that the reference distribution

F(x) is not the correct distribution for the observed samples. The measure DKS can be

defined as one-sample KS score (or measure). If we deal with observations from two
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Figure C.1. KS Score calculation example.

populations the empirical cumulative distribution functions of which are F1(x) and F2(x).

Here, KS test will be used to test whether two populations come from the same distribu-

tion or not. Two-sample KS test score is

DKS = max
x
|F1(x) − F2(x)| . (C.5)

KS score has also meaning from a graphical point of view. The largest vertical

distance between two cumulative distribution functions can be defined as KS test score

(Wilcox, 2005). In Figure C.1, an example to KS score is shown.

In addition to the KS test score explained above, KS test also performs a hypothe-

sis testing under the null hypothesis that says “two populations are drawn from the same

underlying continuous population". This hypothesis, H , is rejected providing that any

given significance value, α, is as large as or larger than p-value. In order to calculate p-

value, the limiting forms of Kolmogorov’s distribution should be calculated (Massey Jr,
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1951; Wang et al., 2003; Press, 2007) as

lim
n→∞

Pr(DKS ≤ t) = L(t) = 1 − 2
∞∑

i=1

(−1)i−1 exp(−2i2t2). (C.6)

The corresponding p-value can be computed as (Press, 2007; Tong et al., 2010)

p-value = Pr(DKS > t) = 1 − L(t) = 2
∞∑

i=1

(−1)i−1 exp(−2i2t2). (C.7)

There is still one unknown, t, and it can be obtained approximately as (Stephens, 1970;

Press, 2007)

t = DKS

[
Ne + 0.12 +

0.11
Ne

]
, (C.8)

where Ne refers to the sample size, N, for one-sample KS test and

√
N1N2

N1 + N2
for two-

sample KS test. Substituting t obtained via (C.8) in (C.7) gives p-value.
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APPENDIX D

Q-Q PLOTS

Quantile-Quantile plot, or simply Q-Q plot can be described as a graphical rep-

resentation of the sorted quantiles of a data set against the sorted quantiles of another

data set. Suppose we have two samples with length n, X1, X2, . . . , Xn and Y1,Y2, . . . ,Yn.

In terms of Q-Q plot, these two samples are from the same distribution, as long as their

ordered sequences, X(1), X(2), . . . , X(n) and Y(1),Y(2), . . . ,Y(2), should satisfy, X(i) ≈ Y(i) i =

1, 2, . . . , n.

Q-Q has been used to compare distributions of two populations, or compare dis-

tribution of one population to a reference distribution. Q-Q plot may provide information

about the location, shape and scale parameters comparison between two populations. Q-

Q plots provide different characteristics for erroneous cases whose details are given in

Figure D.1.
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(b) Location Error
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(c) Scale Error
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(d) Shape Error

Figure D.1. Q-Q plots example figures for good match and erroneous cases.
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Karakuş, O., E. E. Kuruoğlu, and M. A. Altınkaya (2017). Bayesian Volterra system

identification using reversible jump MCMC algorithm. Signal Processing, 141, 125–136.
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