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ABSTRACT

AN ANALYSIS OF INFORMATION SPREADING AND PRIVACY ISSUES ON

SOCIAL NETWORKS

With Social Networks (SNs), being populated by a still increasing number of

people, who take advantage of the communication and collaboration capabilities that they

offer, density of the information, spread over SNs is increasing steadily. Furthermore, the

probability of exposure of someone’s personal moments to a wider than expected crowd is

also increasing. Hence, analyzing the spreading area and privacy level of any information

through a SN is an important issue in social network analysis.

By studying the functionalities and characteristics that modern SNs offer, along

with the people’s habits and common behavior in them, it is easy to understand that sev-

eral privacy risks may exist, for many of which people may be unaware of. We address

this issue, focusing on interactions with posts in a SN, using Facebook as the research

domain. As a novelty, we propose an application tool which visualizes the effect of po-

tential privacy risks in Facebook and provides users to control their privacy. The proposed

(and simulated) tool allows a Post Owner to observe the spreading area of his/her post,

depending on the selected privacy settings of this post. Moreover, it provides prelimi-

nary feedback for all the Facebook users that have interacted with this post, to make them

aware of the possible privacy changes, aiming to give them a chance to protect the privacy

of their interaction on this post by deleting it when such a privacy change takes place.
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ÖZET

SOSYAL AĞLARDA BİLGİNİN YAYILIMI VE MAHREMİYET KONULARININ

ANALİZİ

Sosyal Ağlar (SA)’ın insanlara sağladığı haberleşme ve işbirliği yapma avanta-

jları ile birlikte, kullanıcı sayısı ve SA üzerinde yayılan bilginin yoğunluğu da giderek

artmaktadır. Buna ek olarak, bir kimseye ait özel bilgilerin, paylaşmayı beklediği insan

topluluğundan daha büyük bir alanda görülebilme olasılığı da artmaktadır. Bu nedenle,

SA üzerinde bilginin yayılımının ve mahremiyetinin analizi SA’nın analizinde önemli bir

problemdir.

Modern SA’nın sunduğu servisler, insanların alışkanlıkları ve ortak davranışları ile

bir araya geldiğinde, birçok insanın farkında bile olmadığı mahremiyet risklerini oluştura-

bilir. Tez çalışmasında bu problem hedeflenmiştir. Facebook araştırma alanı olarak kulla-

nılmış ve SA’da kullanıcılar ile gönderiler arasındaki etkileşimlere odaklanılmıştır. Ye-

nilik olarak, Facebook’taki potansiyel mahremiyet risklerinin etkisini görselleştiren ve

kullanıcılara mahremiyetlerini kontrol altında tutma olanağı sağlayan bir uygulama aracı

sunulmuştur. Önerilen ve benzetimi yapılan bu araç; gönderi sahibine, seçmiş olduğu

gizlilik ayarlarına göre gönderisinin yayılım alanını gözlemleme şansı vermektedir. Ek

olarak, bu gönderiyi beğenerek ve/veya yorum yaparak iletişime geçmiş olan SA kul-

lanıcılarının mahremiyet konusunda farkındalığını arttıracak ve mahremiyetlerini koruy-

acak bir çözüm sunulmaktadır. Bunu sağlamak için, gönderinin gizlilik ayarı değiştirildi-

ğinde, bu gönderiyi beğenmiş ve/veya yorum yapmış olan kullanıcılara, önerilen araçtan

bir geribildirim iletilebilmekte ve hatta bu tip durumlarda beğenilerinin/yorumlarının oto-

matik olarak silinmesi sağlanabilmektedir.
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CHAPTER 1

INTRODUCTION

1.1. Thesis’ Aim and Objectives

Social Networks (SNs), which provide communication and/or collaboration op-

portunities for people, are getting more popular today. In fact, the total number of SN

users is estimated as 2.7 billion in 2018 [1]. Although SNs ease the communication, they

bring many privacy leakages about the users. In this circumstance, it becomes increas-

ingly difficult for SN users to protect the privacy of their sensitive information. Hence,

SN users need some solutions to feel comfortable and safe. To satisfy this requirement,

we need a real-time monitoring and analysis of the data (information) on SNs to observe

the structure behind the information spreading, and detect existing privacy problems.

While we have this idea in our mind, we started to work on this thesis study by

considering the fundamental theorems, models, and mathematical background of infor-

mation spreading. We realized that there is a strong relation between information spread-

ing and epidemics in literature. Then, we examined the existing models and methods to

comprehend the mechanism of the information spreading. Furthermore, we applied the

well-known information spreading methods on a SN dataset which we used during this

thesis study, and analyzed the test results to see whether they match with the proposed

results or not. While working on these concepts, we noticed that the topology of the net-

work, on which the information will spread, has a crucial effect on information spreading.

In addition to this, we realized that there are many other factors that affect the spreading

of information on SNs today. To comprehend these factors with current approaches to

information spreading, and see the improvements according to existing requirements, we

also did a literature review of recent years.

After completing this preparatory work, we started to examine the existing privacy

risks on SNs stemming from the users’ actions and privacy settings. To perform a case

study, we first searched for the history of Facebook, which is a famous SN, and its privacy

basics. Then, we reviewed the related works that focus on privacy leakages of SNs and

1



propose some solutions to them. After that, we investigated the Facebook as a user and

tried to detect current privacy risks by testing different cases. As a result, we found out

two crucial risks which directly affect Facebook users’ privacy. The critical point of this

thesis study started at this point; we tried to find a user-friendly and valuable solution for

the detected privacy problems. All in all, we proposed and simulated a tool which can be

used either as an external Facebook application or a central service, served by Facebook.

1.2. Organization of Thesis

The thesis is organized as follows. Chapter 2 covers the all performed studies

for the analysis of information spreading. Chapter 3 includes the study of privacy issues

on SNs, by especially highlighting the current privacy issues on Facebook, and points

out the proposed solution for them. Chapter 4 gives the objective and requirements of the

proposed solution, and then provides the experimental works, together with the simulation

and applicability details of the solution. Chapter 5 includes the conclusion of the thesis,

and provide a detailed explanation of the future work.
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CHAPTER 2

AN ANALYSIS OF INFORMATION SPREADING

2.1. Introduction

In recent years, rapidly-growing SNs have started to affect the pattern of informa-

tion spreading among people. Although there is a strong resemblance between the char-

acteristics of epidemics and the information spread in a population, classical approaches

of epidemic models are not enough to model the information spreading on SNs today.

Dynamic structure of SNs requires a people-oriented and more adaptable information

spreading model to represent the real-world activities. This model should analyze both

the characteristics of the networks (i.e. topology) and SN users’ actions (i.e. interaction,

privacy setting, etc.) in depth. Considering this, the analysis of information spreading

should consider some crucial research questions listed below:

• How does a post or personal information spread on SNs?

• Which kind of model reflects the information spreading process on SNs?

• Which method of information spreading is more efficient to use on SNs?

• How the speed of information spreading process is defined and measured on SNs?

• How the topology of SNs affects information spreading?

• Is there a relation between SN users’ behavior and the spreading pattern of their

personal information?

• Do the privacy preferences of SN users affect the information spreading on SNs or

not?

• What are the main factors that directly affect information spreading on SNs?

In fact, to find answer of these questions, first, we should analyze the theoretical

background of information spreading, and then we can combine it with the dynamics
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of today’s SNs, and the privacy effect on information spreading process. Hence, the

main objective of this chapter is to comprehend the concept of information spreading in

literature.

The rest of this chapter is organized as follows. In Section 2.2, fundamentals of

information spreading models are presented including the relation to epidemics. Section

2.3 explains how the topology of network affects information spreading. In Section 2.4,

current approaches to information spreading are provided. Section 2.5 includes the eval-

uation results of information spreading methods on SNAP dataset [2]. In Section 2.6, this

chapter is concluded, and the future objectives, where this theoretical background and

practical results can be applied are presented.

2.2. Epidemics and Information Spreading

Epidemics can be considered as a serious problem in a society. If someone in a

community has a contagious disease, he/she is very likely to infect other people. Assume

that one person in a community catches an infection, then, there is a probability that this

person infects some of the healthy ones, and make them infected. This contagion effect

diminishes in intensity after a while, and the infected ones start to be recovered. Indeed,

this is a general example for the spreading process of epidemics.

In literature, spreading processes of the information and epidemics are likened to

each other [3]. Epidemics spread for a time and then lose their effect; information is also

spread with the same behavior. Size of the area affected by the epidemics depends on

population size. It is obvious that the probability of a disease spreading in a crowded area

is higher than in a deserted area. Hence, population size is an important determinant in the

spreading process of epidemics [4]. The idea is similar in SNs, but instead of considering

the whole network as the population, we can think it as the ego-network of the information

owner. Hence, in SNs, the size of the ego-network is an important effect in information

spreading process. We can say that, a post (information) spreads quickly if the owner of

the post has lots of connections.

Mainly, there are many ways to model the epidemics, but the common point of

them is the existence of “compartments” [5]. Compartments can be defined as the discrete

sets of individuals that constitutes a population. Two most common compartments in

literature are Susceptible (S) , and Infected (I) . Susceptible ones are healthy, which means
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that they are not infected, yet but have a potential to be an Infected. Infected ones have

the disease and they can infect the Susceptible ones. Note that each state (compartment)

refers to the number of people in the related group. The epidemic model SI, which has

only S and I states, is called as Simple Epidemics [3]. This type of epidemics infects the

whole population proportionally to the log of the population size. Let the population size

be n, then epidemics spread with log n.

Figure 2.1 [6] shows the spreading process of SI model. Blue points represent

susceptible ones and green points show the infected ones, respectively. Initially, number

of susceptible ones is equal to the population size, which is 500. After someone gets

infected, the number of susceptible ones starts decreasing, while the number of infected

people starts increasing.

Figure 2.1. Population Size vs Time in SI model

(Blue = Susceptible, Green = Infected)

Yet another epidemic model which can be considered as a two-state model is the

SIS (Susceptible−Infected−Susceptible) model [5, 7]. In this model, Susceptible ones

can randomly pass to Infected state with an infection rate, which can be considered as a

result of the interactions among susceptible and infected ones. In same way, Infected ones

can also pass to Susceptible state with a recovery rate, which is defined as the recovering

from the disease/infection. Figure 2.2 shows the states and transitions of SIS model.

Apart from two-state epidemic models, there are also many models that includes

more states to represent a realistic spreading process. This type of models is referred as

Complex Epidemics [3]. The most common state, added by complex epidemic models

is Removed (R) state. Removed means the individual recovered from the disease and it
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Figure 2.2. States and Transitions of SIS Model

cannot be infected anymore, so it cannot pass to Susceptible state after becoming a Re-

moved. This state can also be considered as vaccinated or immune [5]. One of the oldest

and most famous complex epidemic model is the SIR (Susceptible−Infected−Removed)

model [5, 8, 9]. SIR model depends on two main assumptions: (i) population has a homo-

geneous distribution, i.e. individuals interact with each other with an equal probability,

and (ii) whole individuals in the population is in Susceptible state initially. Time evolution

of a disease in this model can be defined by a threshold theorem, which was proposed by

Kermack−McKendrick [8, 9]. This theorem is the ground truth of the state transitions of

epidemic models. Considering this, transitions between S, I, and R states are determinis-

tically modeled by the equations 2.1, 2.2, and 2.3.

S + I +R = 1. (2.1)

dS

dt
= −SI (2.2)

dI

dt
= +SI − 1

ctr
(1− S)I (2.3)

Equation 2.2 shows that Susceptible ones will be infected according to the product

SI. Equation 2.3 shows an interest loss for the infected individuals in time, so recovery

from disease. As it can be seen from the equation 2.3, a counter value (ctr) is added to

the formula, where 1/ctr shows the probability of interest loss in spreading process of
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epidemics. We can find another equation by considering these two equations, and taking

a ratio, to specify the infection function I(s) as in equation 2.4.

I(S) =
ctr + 1

ctr
(1− S) +

1

ctr
(logS) (2.4)

The function I(s) goes to zero, when the value of S decreases exponentially with

the value of ctr, as seen in Equation 2.5 [3, 10].

S = e−(ctr+1)(1−S) (2.5)

Equation 2.5 shows that if ctr is increased, information reaches a bigger portion

of population, but it requires more rounds to complete the spreading process. Hence, ctr

provides us to control the termination time of spreading process, and the size of spreading

area in a population.

Figure 2.3 shows the states and transitions of SIR model, and Figure 2.4 [6] sim-

ulates the spreading process of it.

Figure 2.3. States and Transitions of SIR Model

As it can be seen from Figure 2.4 [6], initially all individuals in the population

are Susceptible. After an individual gets infected, the number of Infected ones starts

increasing, while the number of Susceptible individuals is decreasing. Meanwhile, some

of the Infected ones starts to recover from the infectious/disease. Hence, transitions from

S to I, and I to R occur according to Equation 2.2 and Equation 2.3, and all individuals

become Removed at the end of spreading process.

To comprehend the mechanism behind epidemic models and information spread-

ing in depth, we should examine them in integrity. As spreading a disease in a population,

we can utilize the information spreading in a network context to keep all the nodes up-

to-date (i.e. each node represents a SN user). Demers et al. [3] define three common

methods for performing this propagation update, respectively:
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Figure 2.4. Population Size vs Time in SIR model

(Blue = Susceptible, Green = Infected, Red = Removed

1. Direct mail method: Each update of a node is mailed/sent to all other nodes in

the network. Although this method is efficient, it is not considered reliable because

mails (sent updates) can be lost before delivery.

2. Anti-entropy method: It is a simple epidemic technique that each node randomly

chooses another node to resolve their differences and, then, exchanges the infor-

mation it holds. There is no difference between Susceptible and Infected nodes in

this method. All nodes perform the exchange action in each round and therefore

the communication cost increases. This method is less efficient from the direct mail

due to the extra processing cost caused by resolving differences. Investigations on

the cost of anti-entropy give rise to three update distribution methods: push, pull,

and push-pull.

• According to push method, each node randomly chooses another node in

each round, if the node has more updated information than the selected node,

it pushes the update.

• Pull method does the reverse; having the more updated information, the se-

lected node pulls the up-to-date information.

• In push-pull method, both push and pull methods are applied. Hence, each

node randomly chooses another node (neighbor) in each round, if the node

has more updated information than the selected node, it pushes the update.

Otherwise, the selected node pulls the up-to-date information from this node.
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3. The rumor mongering method for update propagation adopts complex epidemics

mechanisms. This is the only difference from anti-entropy method. Hence, rumor

mongering method uses the same update distribution mechanisms (push, pull and

push-pull). The method considers all nodes as Susceptible at the beginning. When

a node takes any information, it becomes Infected. Only Infected nodes can spread

information by selecting random nodes in the network until they lose interest in

spreading the information. Hence, there is a fading process, and this process de-

creases the communication cost. However, this method has some issues as stated

below:

• It is hard to decide when to stop spreading (lose interest/fading process),

which is measured by a counter (ctr).

• To measure the effectiveness of this method, we should specify some expec-

tations for the number of Susceptible, Infected, and Removed nodes. When

the spreading process is terminated; the number of Susceptible nodes should

be close to 0. This is measured by the count of uninformed or residue nodes

(rsd).

• The speed of information spreading to all network should be maximized. The

system should converge to an inactive state (a state that there is no infection,

which means spreading is terminated) by the least number of rounds, which is

defined by Sn.

• If ctr value is increased (as mentioned in Equation 2.4), Sn increases. In

this case, rsd value decreases, because number of uninformed nodes becomes

smaller when the number of rounds is increased.

Demers et al. [3] defines some mechanisms of losing interest in information

spreading process, as listed below:

1. Feedback: An infected node loses interest only if the recipient (neighbor that is in

touch with this node) already has the information.

2. Blind: An infected node loses interest with probability 1/ctr,

3. Counter:

(a) Counter with feedback: An infected node loses interest only after commu-

nicating with ctr infected nodes.
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(b) Counter with blind: An infected node loses interest after communicating

with ctr nodes.

Considering all the methods and mechanisms mentioned above, we can summa-

rize the crucial points as below:

• The main performance variables of these models are rsd and Sn; rsd should be

close to 0, and Sn should be optimized.

• The input variables include ctr and the communication traffic (m). Communication

traffic is measured by the number of communication for spreading the up-to-date

information in each round [3].

– The deterministic solutions prove that increasing ctr value with feedback is

an effective way of minimizing the values of rsd and Sn.

– The average value of m for an infected node in each round is formulated as

m =
Total information update count

number of nodes
.

• Sn is proportional to the value of m. Increasing the value of m, on the other hand,

decreases rsd according to rsd = e−m [3].

Anti-entropy and rumor mongering methods both use push, pull and push-pull

methods as mentioned above. But depending on the nature of the network, the advan-

tages, and disadvantages between push and pull methods vary. For instance; if a network

has very frequent multiple information updates simultaneously, then the pull method has

advantages in spreading the information very fast because the probability of having in-

formation by a node which is chosen randomly to pull the up-to-date information is high.

However, if a network has very rare updates, then the pull method creates an unnecessary

traffic and in that case, we can prefer push method.

Karp et al. [11] compared the push and pull methods under the same assumptions

such as similar update rate, under uniform distribution, and a perfect interconnection with-

out failures. Assume that the network contains n nodes. Push method forwards the infor-

mation to nodes, and the set of Infected nodes grows exponentially until reaching to half

of the network (n/2). After this point as shown in Figure 2.5, the set of Susceptible popu-

lations shrinks with a constant factor in each round. This factor is about (1−1/e) since the

fraction of nodes that do not communicate with any node in a round is approximately 1/e.

Thus, this shrinking phase takes θ(lnn) rounds, and the push method sends θ(n) messages

10



(information update). In the implementation of pull method; the Infected node has to wait

for a connection request to start spreading the information. Therefore, propagation time

can be unpredictable for the first round. After the count of Infective nodes reaches to n/2

of the population, as shown in Figure 2.6, pull method has an advantage against the push

method due to the fraction of Susceptible nodes roughly squares from round to round.

The reason behind this is that, in a round starting with ε.n Susceptible nodes, each node

has probability 1 − ε to get the information, so the probability of staying at susceptible

state is ε and ε > 0. At the end of the round, ε.n(1 − ε) ≈ ε2.n Susceptible nodes will

exist. Thus, shrinking phase takes θ(ln ln(n)) rounds, and the spreading process include

θ(n ln ln(n)) messages. ”n” factor in the message count comes from the total number of

nodes, because each node transmits a message in each round.

Figure 2.5. PUSH Method Shrinking Figure 2.6. PULL Method Shrinking

The goal of Karp et al. [11] was to spread the information through all nodes

with minimized number of rounds and update transmission. They impress that mentioned

methods are commonly used for lazy transmission of updates. They investigate that this

large communication overhead is coming from the nature of epidemic algorithms, and it

can be reduced significantly when the information is sent in both directions (i.e. push-pull

method). Note that push method works efficiently until n/2 of the population becomes

Informed, and pull method works efficiently only after n/2 becomes informed. Thus, by

using these two methods at the same time, we can get a more efficient solution. With a

simple push-pull algorithm, spreading any information to whole network requires Sn =

O(lnn) rounds and O(n ln ln(n)) transmissions.
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As an example to the models that use push-pull method and includes a ctr ap-

proach in spreading process, we can think of the random phone call model [11]. This

model includes randomized communication of n players in parallel rounds, so the robust-

ness of information spreading model increases. In each round, a node (u) randomly picks

another node (v). Then, u makes a phone call to v and they exchange the information

they hold. In this model, information can be exchanged in both directions (push-pull) in

a round t. Hence, the number of transmissions can be reduced significantly by using a

simple push-pull algorithm [11]. This model informs all nodes in time with the maximum

number of rounds Snmax = log3 n+O(ln ln(n)), using O(n ln ln(n)) messages.

A critical point in this model is determining the optimal termination time. Addi-

tionally, it is very sensitive to any error among nodes, which affects the spreading process

of information. To improve this model, Karp et al. [11] devise a distribution termination

scheme, which is called as median-counter algorithm. According to this algorithm, infor-

mation is defined as r, and there are four types of states; A, B, C and D. Nodes that has

not taken any information yet belongs to state A. For nodes in state B, algorithm holds a

counter value, which is shown as ctr(v, r), where v denotes the node. Each time a node

in state B takes a new information r, its counter is increased. If ctr(v, r) = x, then node

v is in B-x state. If x is equal to the maximum counter value, state is changed to C. If a

node v in state A receives r only from nodes in state B, then its state is switched to state

B-1. If a node in state A receives r from a node in state C, then its state is switched to

C. For nodes in state C; every node stays in this phase for at most ctrmax = O(ln lnn)

rounds, and then switches to state D which terminates the information spreading. Hence,

the median-counter algorithm uses only Sn = O(lnn) rounds with O(ln lnn) message

transmission. How the rsd value is affected and why median-counter algorithm is used

are explained in the article [11] thoroughly.

All the epidemic models and spreading methods provided in this section can be

considered as an overall background of information spreading. However, the effectiveness

of the applied spreading model also depends on the topology of the network, on which

the information will be spread. Hence, a discussion about the topology effect on the

information spreading process is provided in the following section.
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2.3. Topology Effect on Information Spreading

Karp et al. [11] point out an important matter: whether the topology of a network

affects information spreading or not. Many studies in literature proposes that the topology

of the network is an important parameter to consider while analyzing the information

spreading process [12, 13, 14, 15, 16, 17].

As mentioned in previous section, we can evaluate information spreading as a

network context to keep all the nodes updated [4]. Mihail et al. [13] propose a model,

which considers preferential attachment to create a scale-free network. This model is so

important for our study because social networks generally have scale-free property. The

model focuses on two important criteria: congestion and conductance. Congestion is a

kind of traffic that occurs in a network through some edges that have a bridge property. If

congestion is high in a network, conveyance between nodes becomes slow. Conductance

mostly refers to the conveyance success rate of a network [18]. If the conductance value of

a network is high, then conveyance success rate is also high. Furthermore, it is proposed

that congestion is an important effect for the performance.

Mihail et al. [13] mainly focus on two points: (i) “in constant-degree trees con-

gestion grows as n2 with nodes”, (ii) “in constant-degree expanders this growth is close

to n log n”,which is theoretically minimum. Their model of growth depends on the pref-

erential attachment as mentioned above. According to it, the probability of a node being

selected is proportional to its degree (k), so nodes which have bigger degree have bigger

probability to be selected. Hence, a scale-free network comes out. They show that, “for

k ≥ 2, almost all scale-free graphs in this model have constant conductance.” [13].

Similar to the inferences of Mihail et. al. [13], Lattanzi et al. [12] proposed that if

the conductance of a graph is high enough, then information spreading is fast. They show

that if an n-node connected graph G has conductance φ, then information spreading suc-

cessfully broadcasts a message within Sn = O(
log4 n

φ(G)6
) steps, with high probability, using

the push-pull method. Furthermore, they showed a relationship between the graph sparsi-

fication and information spreading. Spielman and Teng’s spectral sparsification procedure

[14] is given as the reference for this study. According to it; there is a graph G and sam-

pled graph (ST ) of G as ST (G) ⊆ G. ST (G) is constructed with same vertices by doing

random choices from the edges with probability pu,v := min
{
1,

δ

min
{
deg(u), deg(v)

}
}
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where deg(u) denotes the degree of a node u and, δ = Θ
( log2 n

φ4

)
. Then, adjacency ma-

trix of ST (G) is found and eigenvalues are calculated. Finally, eigenvalue spectrum of

ST (G) comes out which is a good approximation of graph G. It is stated that information

spreading stochastically dominates this ST .

As an extension to studies related to graph conductance, Lattanzi et al. [15] ob-

served the convergence time of push-pull method on graphs, which have conductance φ.

Their result shows that any information spreads within Sn = Ō(φ−1. log n) steps, where

n is the number of nodes and the notation Ō(. . .) hides a polylogφ−1 factor, with high

probability by using push-pull strategy. They state that this result is almost tight because

of holding a graph of n nodes, which has conductance φ with diameter Ω(φ−1. log n).

While some researchers focus on conductance on information spreading scope,

some of them consider the effect of “weak conductance”. Hillel et al. [16, 17] explained

the term as follows: “Weak conductance, φc(G), of a graph G, measures connectivity

among subsets of nodes in the graph, whose size depend on the parameter c ≥ 1 ”. The

most important reason of considering weak conductance in the concept of information

spreading is that, we can divide the original graph into its subsets, and then calculate the

spreading area properly by measuring the conductance of these subsets. Hence, spreading

process of any information becomes well-controlled.

Hillel et al. [16] provide an algorithm, which overcomes the bottlenecks between

the nodes of a graph and propose a fast information spreading process among all nodes.

They use the idea of weak conductance, that is independent from the conductance as a

tool in their study. They state that a graph may have small conductance, but large weak

conductance. With the condition of c ≥ 1 and δ ∈ (0,
1

3c
), their algorithm spreads

information to all nodes of a graph in Sn = O
(
c
( log n+ log δ−1

φc(G)
+ c

))
rounds, with at

least the probability of (1− 3cδ).

As we can see from the mentioned studies, topology of a network directly af-

fects information spreading. Hence, we should first analyze the structure of network that

we would like to work on, and then we should determine the algorithm/method we will

implement for the information spreading process.
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2.4. Current Approaches to Information Spreading

Although most current studies consider the SIR model as a baseline and modify it

according to today’s requirements, such as popularity of the information source, content

of the information, etc., some of them also propose new approaches with cascades. In-

formation cascades allow us to predict how well the information will spread [19]. In this

section, we will firstly introduce the studies, which focus on the modified version of SIR

model, and then demonstrate an information spreading model based on cascades.

Bao et al. [20] revises SIR model and divides the Infected state into two: (i) Pos-

itive Infected (nodes that have been infected, and they support the information) and (ii)

Negative Infected (nodes that have been infected, but they oppose the information). Their

model is called as Susceptible−Positive Infected−Negative Infected−Removed (SPNR).

According to this model, when a Susceptible node takes the information from a Posi-

tive/Negative Infected one, it changes its state to Positive/Negative Infected, with some

probability (probabilistic explanations can be found in the original paper [20]). If a Posi-

tive Infected node takes the information from a Negative Infected one, it either becomes a

Negative Infected or keeps its own state with some probability. When a Negative Infected

node takes the information from a Positive Infected, it either becomes a Positive Infected

or remains in the same state with some probability. If a Positive/Negative Infected one

meets a Removed node, it becomes Removed with some probability. They define the case

of turning into removed state with a spreading threshold [20].

Serrano et al. [21] considers an agent-based information spreading model, which

based on four states: (i) Neutral (initial state), (ii) Infected (believe the information), (iii)

Vaccinated (believe the anti-information before being infected) and (iv) Cured (believe

the anti-information after being infected). According to this model, all users are initially

neutral. Then, they assign some of them as Infected. Infected ones start to infect their

neutral neighbors with a given probability. To simulate cured or vaccinated ones, they

define a time, as delay. At that time, a randomly selected Infected user starts to spread anti-

information, which says the opposite of the original information in the network. Hence,

they try to cure or vaccinate their neighbors with a probability of accepting or denying

(probAcceptDeny) [21]. Finally, Cured and Vaccinated ones try to cure or vaccinate

their neighbors with the value of probAcceptDeny.

Cordasco et al. [22] evaluate the Infected state of the SIR model with a different

approach. They propose that a user may not immediately start spreading just after it
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becomes an Infected; they define a new state for this situation: “Aware”. They claim

that there should be a threshold that controls the transition from being aware to start

spreading. This model resembles the Susceptible−Exposed−Infected−Removed (SEIR)

epidemic model [23], which differs from SIR model with the additional “Exposed” state.

This state contains people who had contact with an Infected user but have not yet started

to infect other people. Similarly, Cordasco et al. [22] propose three states: (i) Ignorant,

(ii) Aware and (iii) Spreading. As usual, all users are Ignorant (Susceptible) initially.

When an Ignorant node takes information from a Spreader, it becomes Aware. To be a

Spreading one, any Aware user should take the information from more than a pre-defined

number (threshold value) of Spreading users. This model has no state for Removed, but

they define a termination rule in the original paper [22].

Sumith et. al. [24] claims that the assumptions made in SIR model, which was

mentioned in Section 2.2 fail in real world. They propose that the whole population do

not mix with each other equally, so the distribution is not homogeneous. Moreover, all

individuals are not Susceptible initially, and most of them will restrain themselves from

interactions. With this approach, authors proposed RnSIR model, as an extension to

SIR model. Hence, they added a new state to SIR model, which is called as Rn. Rn state

represents nodes, who restrain themselves from any interaction with other nodes. Authors

claims that, in the context of social networks, individuals who are new to network, do not

interact well. Hence, they can be accepted as restrained. That is why, they assume that

all nodes are in Rn state initially. Transitions of Rn to S, S to I, and I to R, are defined

with parameters α, β, and γ, respectively. The parameter α defines the interaction rate of

nodes, which is calculated by the number of node’s activities on the network. Parameter

β defines the influence strength of neighbor node that tries to infect any node in network.

Parameter γ defines the recovery rate. Experimental results and the rate change equations

of this study can be found in the original article [24].

Tong et al. [25] describes an information cascade model in SNs. First, they pro-

vide an extensive study on cascade scales, the scope of the cascade subgraphs, and topo-

logical attribute of spread tree. Then, based on the evaluation results, they analyze the

spread of the user’s decisions for city-wide activities. Decisions include “want to take

part in the activity” and “be interested in the activity”. This study introduces three mech-

anisms to use for making a decision:

• Equal probability: A node has an equal probability to make any of two decisions.
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• Similarity of nodes: Similarity of nodes is the criteria to make a decision for any

node.

• Popularity of nodes: Popularity of nodes affects their decision.

Experiment results of Tong et al. [25] show that popularity of nodes is an impor-

tant criterion for information spreading. Hence, this study confirms that the information

spreading models should also consider user-specific parameters to adopt today’s SNs.

Overall, the main aspect of the current approaches for modeling the information

spreading on SNs is to propose a realistic model that matches with the complex and dy-

namic mechanism of human behavior. Hence, researchers try to adopt their models with

new parameters, such as popularity of nodes, similarity between them, etc.

2.5. Evaluation of Information Spreading Models on Social

Networks

2.5.1. SNAP Dataset

We performed the experiments on SNAP Facebook dataset [2]. This dataset con-

tains real data from Facebook, including users, profile features, friendship relations, etc.

However, all these data are kept as anonymized to protect user’s privacy. The dataset con-

tains 4039 real Facebook users and 88234 relations between them. We used NetworkX

package [26] to create a graph from this dataset to represent a SN. Hence, the resultant

social graph includes 4039 nodes and 88234 edges as depicted in Figure 2.7. Each node

in this graph represents a real Facebook user, and each edge represents a friendship rela-

tion on Facebook. Nodes and edges may have features, such as gender, age, education,

political view etc. According to an example in SNAP Facebook Dataset Webpage [2], if

a user supports “Democratic Party”, and specify this in his/her profile, then this dataset

keeps a feature for this user, such as “political=anonymized feature 1”. Hence, instead of

showing the real information, it keeps some anonymized values for each feature.
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Figure 2.7. Snap Facebook Dataset Representation

Drawn with Python language, using NetworkX Package

2.5.2. Topology of SNAP Dataset

As highlighted in Section 2.3, topology of a graph (network) that we want to work

on is so important to analyze information spreading. That is why, we examined the topol-

ogy of the graph, created from SNAP Facebook Dataset. It can be seen from Figure 2.7

that some nodes have limited number of neighbors (small degree) while others have many.

This is the main property of a common scale-free network as SNs. In fact, the distribution

of edges refers to a power law distribution. Hence, in the implementation of an infor-

mation spreading algorithm, the probability of a node being selected is proportional to

its degree (k), so nodes which have bigger degree have bigger probability to be selected.

This property was also described in Section 2.3 as following: if degree of nodes in a graph

is equal to or more than 2, then almost all scale-free networks have constant conductance

[13].

2.5.3. Experimental Study on Information Spreading Methods

To observe the spreading of any information through whole dataset, we used SIR

model. For the implementation, we made an assumption as follows: an infected node

becomes removed only if no Susceptible node remains in the network. The reason behind

this assumption is that we wanted to spread information in a fast way, so we should keep

the number of Infected nodes as much as possible during the spreading process. Hence,

we tuned the recovery idea in the SIR model and combined it with the adaptation of update
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distribution methods (push, pull, and push-pull), which were proposed by Karp et al. [11].

Three states exist in the implemented model: (i) Susceptible, (ii) Infected, and (iii)

Removed. All nodes are Susceptible initially. Then, a random node is selected, and the

information is given to that node, so it becomes an Infected, and starts to spread. Each

Susceptible node, that takes the information from an Infected node, becomes an Infected,

and spreads the information until the whole graph becomes Informed. In the end, all

nodes become Removed, and the spreading process terminates. The important point is

that, an Infected node can only infect their neighbors. This is because we assumed that a

user can only get information from their friends on Facebook. This assumption may cause

this algorithm never to terminate, if the graph is not a connected graph. However, this is

not the case for our dataset, because it is a connected graph. What is more, there is no

requirement for a ctr value to define removal times in this model, because the spreading

process terminates when all nodes in graph (all users in the network) receive the informa-

tion. When we adapt the push, pull, and push-pull methods to this scenario, we created

three different algorithms to implement on the dataset. Algorithms for each method are

explained below in detail.

1. Push Method: As shown in PUSH Procedure, two lists are kept, respectively:

(i) susceptibleNodeList, and (ii) infectedNodeList. susceptibleNodeList con-

tains all nodes in the graph and infectedNodeList is empty, initially. First round

starts after a node is randomly selected from susceptibleNodeList, and the infor-

mation is given to that node. The selected node becomes Infected, so it is removed

from susceptibleNodeList, and added to infectedNodeList. One round is com-

pleted when all nodes in infectedNodeList randomly select a node among its

neighbor nodes, and try to push the information (no need to push if the selected

neighbor already has the information). Each new Infected node is removed from

susceptibleNodeList, and added to infectedNodeList, so list sizes changes dy-

namically. Push method runs until the whole nodes in the graph become Infected.

2. Pull method: As shown in PULL Procedure, only one list for Susceptible nodes is

enough for this method. This time, instead of Infected ones, Susceptible nodes ran-

domly selects a neighbor, and try to pull the information. All nodes in the network

are Susceptible at the beginning, so susceptibleNodeList holds the whole network

initially. After randomly selecting a node and giving the information, that node

becomes Infected, and it is removed from susceptibleNodeList. Then, first round
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starts. One round is completed when all nodes in susceptibleNodeList randomly

selects a neighbor node in network, and tries to pull the information (if the selected

neighbor does not have the information, no need for the pull operation). Each new

Infected node is removed from the susceptibleNodeList. Pull method terminates

when whole nodes in the network become Infected.

3. Push-pull method: PUSH-PULL Procedure depicts the steps of this method. Whole

network is kept in a list (nodeList). First round starts after a node is randomly se-

lected and the information is given to that node. One round is completed when all

nodes in the list randomly choose a neighbor node and either push/pull the infor-

mation, or does not perform any operation. If the current node has the information,

but randomly selected neighbor node does not have, current node pushes the infor-

mation to this neighbor. If the current node does not have the information, but the

randomly selected node has, it pulls the information from this neighbor. If both

the current and randomly selected nodes have the information or neither of them

have it, no operation is needed. Push-pull method runs until the whole nodes in the

network become Infected.

1: procedure PUSH(val, network) 	 val is any information, and network is a graph
2: infectedNodeList ← ∅

3: susceptibleNodeList ← network.nodes()
4: randomNode ← random(network.nodes()) 	 a node is randomly selected
5: randomNode.val ← val
6: susceptibleNodeList.remove(randomNode)
7: infectedNodeList.add(randomNode)
8: numberOfRounds ← 0
9: while infectedNodeList.size() �= network.size() do 	 Algorithm is

terminated when whole nodes become Infected
10: for Each node in infectedNodeList do
11: Randomly select a neighborNode
12: if neighborNode.val = ∅ then
13: neighborNode.val ← val
14: susceptibleNodeList.remove(neighborNode)
15: infectedNodeList.add(neighborNode)
16: end if
17: end for
18: numberOfRounds ← numberOfRounds+ 1
19: end while
20: return numberOfRounds
21: end procedure
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1: procedure PULL(val, network) 	 val is any information, and network is a graph
2: susceptibleNodeList ← network.nodes()
3: randomNode ← random(network.nodes()) 	 a node is randomly selected
4: randomNode.val ← val
5: susceptibleNodeList.remove(randomNode)
6: numberOfRounds ← 0
7: infectedNodeCount ← 1
8: while infectedNodeCount �= network.size() do 	 Algorithm is terminated

when whole nodes become Infected
9: currentInfectedNodes ← ∅

10: for Each node in susceptibleNodeList do
11: Randomly select a neighborNode
12: if neighborNode.val = val then
13: node.val ← neighborNode.val
14: currentInfectedNodes.add(node)
15: infectedNodeCount ← infectedNodeCount+ 1
16: end if
17: end for
18: for Each node in currentInfectedNodes do
19: susceptibleNodeList.remove(node)
20: end for
21: numberOfRounds ← numberOfRounds+ 1
22: end while
23: return numberOfRounds
24: end procedure

1: procedure PUSH-PULL(val, network) 	 val is any information, and network is a
graph

2: nodeList ← network.nodes()
3: randomNode ← random(network.nodes()) 	 a node is randomly selected
4: randomNode.val ← val
5: numberOfRounds ← 0
6: infectedNodeCount ← 1
7: while infectedNodeCount �= network.size() do 	 Algorithm is terminated

when whole nodes become Infected
8: for Each node in nodeList do
9: Randomly select a neighborNode

10: if (node.val = val)and(neighborNode.val = ∅) then
11: neighbor.val ← node.val
12: infectedNodeCount ← infectedNodeCount+ 1
13: else if (node.val = ∅)and(neighborNode.val = val) then
14: node.val ← neighbor.val
15: infectedNodeCount ← infectedNodeCount+ 1
16: end if
17: end for
18: numberOfRounds ← numberOfRounds+ 1
19: end while
20: return numberOfRounds
21: end procedure
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Figure 2.8, 2.9, and 2.10 shows the results of the implementation of above three

algorithms on the dataset. Figure 2.8 belongs to the push algorithm, and shows the number

of Infected node in each round. The algorithm takes almost 3500 rounds to terminate,

because after half of the network (red point) becomes informed about the information, it

is hard for an infected node to find a neighbor node, which does not have the information.

It can be seen from the Figure 2.8 that it takes just few rounds to inform half of the

network, but then, the number of rounds exponentially increase. Figure 2.9 shows that,

in pull method, after n/2 of the population (red point) becomes informed, whole network

is informed in a fast way because the probability of a randomly chosen neighbor node

to be an infected is high. Hence, pull algorithm is completed in almost 35 rounds. This

result supports the study of Karp et al. [11], which propose that if the population size is

n (n = 4039 for our case), pull method spreads the information faster than push method

after n/2 of the population being informed (for our case, after the infected count becomes

approximately 2019). Figures 2.8 and 2.9 shows the differences.

Figure 2.8. PUSH Method Figure 2.9. PULL Method

Figure 2.10. PUSH-PULL Method

Figure 2.10 shows that push-pull algorithm over-performs both push and pull algo-

rithms, and spreads the information through all nodes in the fastest way. It approximately

takes 15 rounds to inform 4039 nodes.
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Here, we recall the study of Karp et al. [11], mentioned in Section 2.2. They

proved that push-pull scheme is completed in time Sn = log3 n + O(ln lnn). In the

implementation, they keep a time counter, which represents the age of the information,

and it is incremented in each round. Hence, spreading process continues until this counter

reaches to the proposed Sn value. When we consider our case, this Sn value becomes

approximately 10, and our test results show that 3395 nodes become informed after 10

rounds, so this is actually a vast majority of the network. Then, the remaining 644 nodes

become informed in 5 more rounds, because of the randomized scheme.

2.6. Conclusion

This chapter demonstrated how epidemics and information spreading process re-

sembles each other. Information spreading methods, related mathematical models, and

topology effect on the spreading process were analyzed. Furthermore, the existing state-

of-art methods were implemented to observe information spreading on SNs, especially

on Facebook. Results showed that complex epidemic model can be adapted to social net-

works, and push-pull method is more effective than the other approaches to implement

and observe the actual spreading of information on SNs. Ultimately, it was noted that the

topology of networks directly affects the information spreading.

There are many other implementation and research domains exist in the context of

information spreading. Most of them requires efficient data aggregation algorithms and

modelling for dynamic SNs [27, 28]. However, the analysis phase of this theses study

does not consider the various reserach domains of information spreading. Instead, the

background information provided in this chapter is used to simulate a post dissemination

on Facebook in the following chapters.

The rest of this study includes the analysis of Facebook Privacy based on the users’

post dissemination process. First, it analyzes the history of Facebook Privacy, and the

basics of the Facebook in terms of users’ profiles, privacy preferences, and interactions

among them, etc. Then, the two privacy leakages of Facebook, which were detected

during the mentioned analysis step, are proposed. Finally, the Facebook Privacy Tool,

which is proposed for the solution of detected privacy risks is demonstrated, combining

with the implementation of information spreading process to visualize interactions among

Facebook users.
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CHAPTER 3

PRIVACY ISSUES ON SOCIAL NETWORKS: A CASE

STUDY ON FACEBOOK

3.1. Introduction

In recent years, SNs such as Facebook, Instagram, Twitter, LinkedIn etc. have

become increasingly popular among people of all ages. Especially, Facebook is the most

popularly used SN, having approximately 1.97 billion monthly active users, according to

the outcome of Statista [1], in April 2017. When we consider the popularity levels of

SNs, Facebook is followed by WhatsApp, and Facebook Messenger, respectively. Figure

3.1 demonstrates the number of active users in each month of 2016, and 2017. Results

denote that SNs are used by a significant number of people currently, and this number will

continue to increase.

Figure 3.1. Monthly Active Users of Most Popular Social Networks (in billion)

Most of the SN users regard their SN accounts as a part of their own lives. Like

a common environment, they communicate with their friends, and other people that they

even do not know personally. Moreover, they try to keep track of other people’s lives at

any moment through the instrument of SNs. Hence, many people shape their daily lives to

keep up with social life in SNs. Although SNs provide people to be in touch with others

easily, they may cause many privacy issues for SN users, if they are unconscious about

the possible privacy risks.

SNs have a user-friendly interface, so anyone can create an account, and join the

community easily. After getting an account, a user can connect with his/her friends (or
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with someone, they do not know), and share any post (information) with them. However,

if they do not control the audience of their posts by setting the privacy of them properly,

their posts can be visible beyond their expectation. Hence, privacy risks come out for

SN users. Based on this problem, we analyzed the privacy risks on SNs (especially on

Facebook), and proposed a solution/tool to control SN users’ privacy. As a case study,

we preferred to work on Facebook, because it’s one of the most widely used SN platform

today, as mentioned above.

Researchers proposed many solutions, and developed some applications to protect

SN users’ privacy on Facebook. Some of them were even adapted to the platform by

Facebook. However, there are still privacy issues on Facebook, because it is a dynamic

platform (it grows continuously with each new friend connection, post/comment/share,

etc.). Furthermore, Facebook continuously proposes new updates, especially to solve

privacy problems. However, new privacy leakages may arise anytime, because Facebook

users may change privacy settings of their profiles/posts, etc., whenever they want.

To cope with this situation, we propose a Facebook Privacy Tool, which will track

both the Facebook users’ actions, and whole platform to detect any privacy problem, then

inform users. We use the information spreading basics to simulate post dissemination on

Facebook. Furthermore, as a future work, we propose a new approach for information

spreading models to represent human behavior, and real interactions among Facebook

users.

This chapter is organized as follows. Section 3.2 includes the history of Facebook

Privacy, to explain the domain of this study in detail. Related works on the privacy issues

on SNs are given in Section 3.3. Section 3.4 demonstrates the detected privacy problems

on Facebook. Proposed solution to the detected privacy problems is presented in Section

3.5. Finally, this chapter is concluded in Section 3.6.

3.2. History of Facebook Privacy

Facebook was launched in 2004, as a student network for Harvard University by

Mark Zuckerberg, and his friends. Until 2005, only students from Harvard University

could join Facebook. Then, it started to enhance the availability through some high

schools, and companies [29]. In 2006, Facebook became publicly available, but the

privacy concerns did not change; it was still network-based. Hence, personal data was
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accessible through all network by default (the data was public).

Facebook served its users a privacy concerning message for the first time, in 2009.

They asked them to select a privacy setting for their personal data, and they did not al-

low them to access the application without setting their privacy preferences. Boyd et al.

[29] discusses about this situation, and shows the options for related privacy settings, as

depicted in Figure 3.2. As shown in the figure, Facebook prompts “Everyone” option as

default, so many users accepted those default settings without being aware of the privacy

risks. Therefore, many data became public, and reachable even by search engines.

Figure 3.2. First privacy setting page of Facebook

While the mentioned case sparked many debate about the privacy issues on Face-

book, a statement coming from Mark Zuckerberg on 8th of January 2010 increased the

confusion. He stated that the social norm has been changing in time, since people feel

more comfortable with sharing more, and various information with more people openly

[29].

As a result of many debates, and critics about possible privacy concerns, Face-

book unveiled a new privacy setting page, which is more handy for Facebook users, in

May 2010. There was different levels of privacy setting options on the page, such as “Ev-

eryone”, “Friends of Friends”, “Friends Only”, and “Other” for each data category [29].

However, it could not prevent privacy leakages; many users’ data become publicly avail-

able without their awareness. In 2011, Facebook changed some more privacy settings,

and those changes allowed people to reach some users’ personal data, and profile without

being friends [30]. Hence, the privacy of users’ almost all data gradually became public
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by default settings [31].

Facebook applied a post-based privacy option, which allows users to set specific

privacy preferences for each post [32]. Hence, the old network-based privacy structure

was removed. In this scope, Facebook proposed four options for privacy settings: (i)

Friends : only post owner (PO)’s friends can see it, (ii) Friends of Friends: PO’s friends,

and friends of his/her friends can see it, (iii) Everyone: anyone can see it, even who is not

a Facebook member, and (iv) Custom: PO can create a custom setting by selecting some

specific friends or lists, and excluding some others. Although Facebook improve privacy

control options, it was claimed that many user information is accessible by third-parties.

People were complaining both about privacy problems, and the confusing structure of

privacy settings.

Shore et al. [33] worked on every privacy policy of Facebook from 2005 to 2015,

and ranked them. Their results show that Facebook Privacy Policies became increasingly

incomprehensible, and confusing to understand. They stated that their findings approve

the decreasing transparency, and clarity of Facebook’s privacy policy. Additionally, they

stated that Facebook users have less control over their personal data against third-party

access, because Facebook privacy policy contains fewer options to control them [33].

This study confirms that users need some tools, or applications that offers a user-friendly

interface, and easy setting/tracking of their privacy.

3.3. Related Works on Privacy Problems of Social Networks

Ho et al. [34] highlights three privacy problems in SNs: (i) lack of user awareness,

(ii) lack of flexibility in current privacy tools, and (iii) users do not have a control on what

others see about them. To confirm that these problems exist indeed, they conducted an

online survey on 200 SN users. This survey consists of twenty-eight questions, including

demographic questions (age, gender, etc.), SNs usage questions (friends, profile informa-

tion, purpose of using SNs, etc.), and privacy concern questions (unauthorized data and

intellectual copyrights). Results of this survey confirmed that each of the proposed three

problems can be inferred via actual SN users. Hence, they propose a Privacy Framework

for SNs, which allows SN users to be aware of the possible privacy risks, understand their

own privacy level, and configure this level according to their expectations. This frame-

work classifies SN users with five types: alpha socialisers (who use SNs to flirt, meet new
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people, and have fun), attention seekers (who aims to get attention and comments from

other people), followers (who use SNs to follow their peers), faithfuls (who use SNs to

rekindle old friendships), and functionals (who use SNs for a specific purpose, such as

organizing parties, doing charity works, etc.). Then, they evaluate each class of SN users

according to their data (i.e. identity, demographic, activity, social network, and profile

content), privacy concerns (tendency to share healthy, harmless, harmful, or poisonous

data), and profile viewers (best friends, normal friends, casual friends, or profile visitors).

As a result of this evaluation, the proposed privacy framework assigns a privacy level to

SN users, such as no privacy, soft privacy, hard privacy, or full privacy. Hence, it makes

SN users aware of their privacy level, and gives a chance to tune their privacy levels

considering the evaluated criteria.

Tuunainen et al. [35] performed a study on privacy concerns and risks of social

networking sites, and they especially focused on the factor of privacy awareness. As a

case study, they conducted a survey of 210 users of Facebook to observe Facebook users’

privacy behavior from two aspects: (i) privacy protection and (ii) information disclosing.

The survey consisted of five parts, respectively: (i) users’ (respondents’) background in-

formation, (ii) users’ personal information and friends on Facebook, (iii) users’ privacy

settings, (iv) users’ privacy and security concerns, and (v) users’ awareness of Facebook

Privacy Policy. Results strongly showed that most of the users do disclose a significant

amount of sensitive information of themselves. In addition, they are not sufficiently aware

of the visibility of their information to people, who they do not actually know. Further-

more, many users do not know or understand the Facebook Privacy Policy, and the terms

of use of Facebook. Unfortunately, many of the users even noted they were not aware

that Facebook can share their sensitive information with third parties. Rewardingly, they

remarked as a feedback to this survey that they will pay more attention to protect their

privacy while using social networking sites hereupon.

Talukder et al. [36] claims that SN users may protect their sensitive information by

tuning the privacy settings of them properly, but that information may still be exploited by

adversaries, via prediction techniques. That is why, properly tuning the privacy settings of

sensitive information is not enough to protect its privacy, so SN users need more advanced

solutions.

Talukder et al. [36] proposed “Privometer”, which is a tool, used for measuring the

level of privacy leakage for a specific user, and directs him/her to self-sanitization process

by recommending some options to lessen this privacy leakage in his/her profile. In the
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scope of this tool, they assume that a potentially malicious application has been installed

by some friends of a Facebook user, so it may access those friends’ sensitive information.

However, it cannot directly access to the user’s sensitive information, because he/she did

not install that malicious application. Even so, the malicious application may still access

his/her sensitive information by using an inference algorithm. Considering this situation,

Privometer checks the best-known models [37], that can be used for this inference, and

tries to predict which algorithm is used by the malicious application. To do so, Privometer

selects the model, that infers user’s sensitive information most accurately. After that, it

measures the level of user’s privacy leakage, and demonstrates the result by a friends list,

ranked by the detected threat from each of them. Additionally, it proposes some self-

sanitization choices (recommendation) for the user to decrease the level of his/her privacy

leakage.

Wilson et al. [38, 39] focus on the analysis of real interactions among SN users.

They propose the idea that commonly referred social links does not actually represent real

interactions. If so, SN users who have a social link with a post owner, had to interact with

that post because of the corresponding link between them. However, this is not the case

on SNs, and this study proves that few linked users create an interaction graph with a big

diameter, and small number of super nodes [38, 39]. They used a real dataset, created by

them, which consists of real Facebook user traces, and so includes real interactions from

Facebook users. Hence, they created an interaction graph based on this dataset. This

graph includes same nodes as social link graph, but it only takes a subset of the links.

Some of their findings are listed below [38, 39]:

• “Most users have no interaction with up to 50% of their friends.”

• “For the vast majority of users (∼ 90%), 20% of their friends account for 70% of

all interactions.”

• “Nearly all users can attribute all of their interactions to only 60% of their friends.”

Wilson et al. [38, 39] gives a reasonable background for this thesis study, because

they provide percentage values from real data, which can be used in the experimental

work.

Analysis of interaction among SN users has begun to be a popular topic for re-

searchers in recent years. In this scope, James et al. [40] proposes the idea of “dual

privacy decision” for SN users’ behavior. This idea provide SN users choose what infor-

mation to release (information), and who can view it (interaction). This study includes
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four key motivations as following [40]: (i) seeking information, (ii) socializing, (iii) ex-

pressing oneself to others, and (iv) meeting social expectations or pleasing others. Hence,

they try to handle the privacy concerns on SNs from two aspects: (i) information, and

(ii) interaction, and provide an analysis of privacy management schemes for SNs. These

schemes are classified as “information managers” and “interaction managers”. Informa-

tion managers have many friends, while interaction managers have less. James et al. [40]

performs some tests on these schemes, and show that socialization, self-expression and

pleasing others influence information and interaction behaviors on Facebook, while in-

formation seeking does not influence. Hence, this study confirms that apart from social

links, there are also other factors that affects interactions among SN users.

Dong et al. [41, 42] propose a privacy decision-making tool, which considers the

SN users’ behavioral model. By using a prediction model, this tool gives personal ad-

vices for SN users according to their anticipated preferences to help them in their privacy

decision-making process. The prediction model in this study based on a set of psycholog-

ical and contextual factors [41, 42], such as the trustworthiness of the requester/audience,

the sharing tendency of the user, the sensitivity of the information, the appropriateness of

the request/disclosure, and several traditional contextual factors. To learn the influence

of all these factors, they use a binary classification model. Moreover, they rank them

according to their chi-squared statistics, and information gain. By using the model, pro-

posed in this study, people can handle the tradeoff between the potential benefit, and risk

of information disclosure decisions on SNs.

Aghasian et al. [43] propose a framework to measure the online social network

users’ privacy disclosure scores (PDS), considering multiple SNs. They defined the main

factors that affect users’ privacy as sensitivity and visibility. Based on these two fac-

tors, they proposed a scoring function, which also considers a set of common personal

attributes, either with the form of structured (i.e. username, age, etc.) or unstructured

(i.e. messages, images, etc.) data. After obtaining the framework attributes, they first

compute the sensitivity of each user, using the determined values by Srivastava et al. [44].

Then, they compute the visibility of each user, considering the three factors, respectively:

(i) ease of accessibility, (ii) difficulty of data extraction, and (iii) data reliability. After

calculating the effect of each three factor, they use a set of fuzzy rules to find the overall

visibility score for the attributes of each user. Specifically, they use a fuzzy inference

system, based on the Mamdani fuzzy inference [45]. Hence, they measure the sensitivity

and visibility of each user, and then they combine these results to calculate users’ privacy
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disclosure scores. They stated that, the more this score is, the more likely a user in a pri-

vacy risk and disclosure. Their experiment results showed that users’ privacy disclosure

scores highly depend on the amount of information, disclosed by the users themselves.

3.4. Currently Detected Privacy Problems on Facebook

During our research period for this study, we examined Facebook Privacy Basics

[46], which are announced officially by Facebook, and the whole mechanism behind the

post dissemination process on Facebook. After performing real tests on a small group of

official Facebook users’ profiles (a group of 5 people), we detected two crucial privacy

leakages, which are explained below in detail:

1. Comment Owner (CO)’s interaction may be visible to a bigger area than ex-

pected: Suppose that a Facebook user interacts with a post (so becomes a CO), by

leaving it a comment or like, and the privacy setting of this post is “Friends only”.

After a while, the PO changes this setting, and enhance its audience beyond friends.

In this case, Facebook does not inform the corresponding COs, who have already

interacted with the post. Hence, interactions on this post become visible to more

people than the COs’ expectation. This privacy problem is also mentioned in the

officially announced Facebook Privacy Basics [46], and Facebook does not provide

any solution for it.

2. COs’ interactions may be inaccessible by themselves: Suppose that Facebook

user A, and B are friends, and user C is B’s friend. User A creates a post by setting

its privacy to “Friends only”, then tags user B on this post. Hence, post privacy of

the created post becomes “Friends and B’s friends”. Then, user C interacts with this

post. After a while, user A removes user B’s tag (untagging operation on Facebook).

In this case, user C is not able to reach his/her comment or like anymore, because

the privacy setting of the post became “Friends only” again, and it can be seen

only by A’s friends. In this case, user C even cannot see any record of his/her

interaction on his activity log page. This situation creates a privacy problem for

user C, because he/she cannot see his/her own comment or like on the post, while

some other people can still see it. This privacy problem on Facebook is not covered

in Facebook Privacy Basics [46], and detected during our analysis, and real tests.
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Hence, it is important to present this problem to Facebook users, and make them

aware of the possible risks.

3.5. Solution Proposal to Detected Privacy Problems on Facebook

A novel Facebook Privacy Tool is proposed in this section. This tool is expected

to dynamically track users’ action logs, check the platform for any change in users’ pri-

vacy settings, detect privacy issues, continuously inform users, suggest some solutions

to detected problems, and direct users to protect their privacy. Additionally, it will also

create awareness about possible privacy risks, that Facebook users may face with. Main

facilities of the proposed tool are listed below.

Fa. PO is informed about the spreading area of a specific post, based on its privacy

setting.

Fb. A possible interaction graph of a specific post, that includes users who may

interact with this post, is demonstrated to PO.

Fc. When a PO changes the privacy setting of his/her previously created post,

COs who have already interacted with this post are informed about the change of privacy

setting.

Fd. COs can set some rules via this tool to protect their interactions (com-

ments/likes) on other users’ posts (i.e., “Automatically delete my interaction from a spe-

cific post, if its privacy settings is changed by its owner.”).

3.6. Conclusion

This chapter presented the place and importance of SNs today, and highlighted

that SNs may create some privacy risks for their users. To remark the case study of

this thesis, we provided the history of Facebook Privacy, and then explained the current

privacy issues on Facebook, which were detected during our research period. Finally, we

proposed a solution to those problems, which can be implemented as a real Facebook tool,

and serve as a privacy-checking assistant to Facebook users.

In the remaining part of this theses study, we did not develop this proposed tool

as a real application, since its applicability depends on the Facebook itself, as it will be
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explained in Section 4.5. However, we implemented the required tests on SNAP dataset,

and created a simulation to represent the real tool. Therefore, the following chapter will

first propose our experiments, and then show a possible design, and implementation of

the proposed tool.
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CHAPTER 4

VERIFICATION OF THE PROPOSED SOLUTION FOR

PRIVACY PROBLEMS ON FACEBOOK

4.1. Introduction

This section includes the experimental work of this theses study, and focus on the

implementation, verification, and simulation of the proposed tool. To satisfy the facili-

ties of the tool, mentioned in Section 3.5, we focused on three research questions (RQ),

presented below respectively.

RQ1. Does POs’ popularity level affect the spreading area of their posts, and the

number of interactions they may get from other users?

This research question is related to Fa. and Fb., stated in Section 3.5. We consider

the popularity level of a PO as the number of his/her friends (i.e. the number of directly

connected neighbor on SNAP). To analyze the relation between popularity level of a PO,

and the number of interactions that his/her post may get, we classified the POs according

to their popularities. Hence, we took this classification into account while performing our

experiments.

RQ2. Does any change in privacy setting of a post affect COs’ decision on keeping

their interaction on this post?

This question focuses on the facility Fc., and caused by POs’ privacy preferences.

POs can select one of the following three choice in our experimental setup: (i) Friends:

Only PO’s friends can see the post, (ii) Friends of Friends: PO’s friends, and friends of

the tagged friends can see the post. This choice becomes active when PO performs at least

one tagging. Tagging someone on Facebook means that the PO selects some of his/her

friends, and put a tag for him/her to add his/her friends as audience of the post. Tagging

is performed with a real-time decision by POs. However, to perform the experiments

efficiently with the static data, we assumed that a POs has a small probability to tag any

of his/her friends for their posts. To deal with a reasonable run time in our tests, and define
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a causal value, we decided to select this probability as 20%, based on the study of Wilson

et al. [38, 39] (iii) Public: Anyone can see the post, even someone who is not a Facebook

member. After the PO select one of these choice as the privacy setting of his/her post,

he/she may change this setting whenever he/she wants. In this case, COs may want to

control their interaction on the related post.

RQ3. Do the rules defined by COs for a specific post affect the number of inter-

actions that the post may get?

This research question considers the facility Fd. If COs define some rules while

leaving a comment/like on a post, these rules may help them control their interactions (so

control also their privacy) in a better way. If this is the case, COs may remove or change

their interaction on a specific post, and the number of interactions on a post may vary in

time.

Considering all of these, we tried to develop the proposed tool, and simulate it

according to experiment results. An analysis of the three research questions, and exper-

iments on SNAP dataset are presented in Section 4.2. Section 4.3 demonstrates a simu-

lation of the proposed solution. A possible implementation of the proposed tool is given

in Section 4.4. Section 4.5 discusses the applicability of the proposed tool. Finally, this

chapter is concluded in Section 4.6.

4.2. Experimental Work

This experimental work covers the analysis of whole dataset to search for the

answers of mentioned three research questions. For this purpose, we first tried to discover

the popularity levels of each node in the dataset. We accepted the popularity of a node,

as the number of their neighbors (so degree of the node represents its popularity level).

Hence, we found the degree of each node, and then sort them according to their popularity

levels in descending order, in a list (Lpop). Then, we created ten different popularity class,

and classified the whole nodes in the dataset according to their popularities, as following:

(i) 1st class: first 10% of nodes in Lpop (so this class keeps the most popular 10% nodes in

the dataset), (ii) 2nd class: after first 10% popular nodes, take the next first 10% remaining

in Lpop, etc. Hence, 10th class represents the least popular nodes in dataset. As a result,

we created ten different groups of nodes (Grpop) according to their popularity, and each

group g ∈ Grpop contains approximately 400 nodes, accordingly.
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For each group g, we performed the steps given below:

1. Create a sample (Spop) from g, that contains 100 randomly selected nodes.

2. For each node Nd in Spop:

2.a. Find the Friendship graph (FG) of Nd, and record this graph.

2.b. Find a possible interaction graph (IG) for Friends case, and record it.

2.c. Determine the friends to tag for the Friends of Friends (FoF) case as mentioned

above.

2.d.Create FoF graph of Nd and record it.

2.e. Find a possible IG for FoF case and record it.

Step 2.a. and 2.b. was required to answer our RQ1. We would like to observe the

change in the size of friendship graph and the number of interactions that the related POs

get according to their popularity levels.

In Step 2.a., POs’ friendship graphs were found based on the relations in our

dataset. In this graph, friends were represented as nodes, and friendship relations were

represented as edges.

In step 2.b., size of the possible IG for each Nd was measured. Based on the study

of Wilson et al. [38, 39], the probability of a node to interact with his/her friends’ post

was taken as 0.2. Hence, the possible IG was created by assigning a decision value (i.e.,

decision for interacting with the post) for each node in Friends graph of Nd. Decision

value was calculated by assigning a random value (1 or 0) with probability of 0.2 (pF ) for

yes (1), and 0.8 for no (0). This step was repeated 50 times for each node in the FG of

Nd, and the average number of interactions was calculated. This average value was used

to specify the size of the possible interaction graph. Interaction graph includes the nodes

that have decision value 1, and the edges come from the friendship relation among these

nodes. The number of nodes that the graph include was recorded as the size of this graph.

Step 2.c. was a preparation process to create FoF graph of the related nodes, since

we should first specify some friends of the node to tag. Then, based on the determined

friends, we created the FoF graph of the nodes by extending the FG with them.

In step 2.e., first of all, friends who will remove their interaction when the privacy

setting of the post changes from Friends to FoF was stochastically calculated. Then,

the change in the spreading area of the post was observed, while testing for different
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probability values for a node to remove his/her interaction. A removal decision value was

assigned to each node, based on the probability of withdrawal (pw). The whole process

was repeated for pw values of 10%, 20%, 30%, 40%, and 50%, respectively. In each trial,

IG of Friends was updated, and extended with the addition of new nodes from FoF, after

finding the removal decisions. For the extension operation, a decision value was assigned

to interact with each FoF node (same with pF , so pFoF = 0.2), and the ones with decision

1 were added to IG. Final graph represented the interaction graph of FoF. Hence, the size

of this graph was recorded as the number of interactions (nodes) for FoF case.

Actually, we implemented Step 2.c., 2.d., and 2.e. to answer our RQ2 and RQ3.

We tried to analyze the effect of a privacy change in an existing post to COs’ behaviors

on this post. In addition, We simulated the privacy awareness of a CO with pw values, and

thus observed the change of COs’ behavior in different popularity levels.

Table 4.1 shows the change in number of interactions for each popularity class

for different pw values. Rows in this table start with the most popular nodes (1st class),

and continue through the least popular (10th class). For each row, corresponding columns

represent the followings:

• len(FG): Expected average number of nodes in FG of the corresponding popular-

ity class (from Step 2.a).

• I(F ): Expected average number of interactions for Friends case of the correspond-

ing popularity class (from Step 2.b).

• len(FoFG): Expected average number of nodes in FoF case of the corresponding

popularity class (from Step 2.d).

• I(FoF ): Expected average number of interactions for FoF case (from Step 2.e).

This column was split into six sub-columns; one for the number of interactions

without any removal (pw = 0), and others with removals to observe the change in

different pw values.

Results show the following inferences:

• Considering RQ1, we can say that popularity level of a PO directly affects the size

of his/her FG and FoFG, and the number of interactions that any of his/her post

may get.
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Table 4.1.: Change in number of interactions vs pw

Lpop len(FG) I(F ) len(FoFG)
I(FoF )

pw = 0 pw = 10% pw = 20% pw = 30% pw = 40% pw = 50%
1st 163, 31 32, 67 475, 66 121, 23 85, 10 88, 65 85, 37 80, 49 78, 96
2nd 87, 93 17, 39 354, 91 84, 66 65, 45 67, 44 65, 36 62, 95 62, 15
3rd 58, 56 11, 68 319, 29 72, 94 60, 17 61, 18 60, 18 58, 85 57, 91
4th 41, 92 8, 39 238, 94 54, 21 45, 14 45, 95 45, 33 43, 95 43, 75
5th 30, 55 6, 10 268, 36 58, 30 51, 78 52, 47 51, 74 50, 84 50, 67
6th 22, 57 4, 60 182, 04 39, 78 35, 10 35, 56 35, 19 34, 56 34, 20
7th 16, 91 3, 31 160, 34 34, 24 31, 00 31, 25 31, 12 30, 58 30, 39
8th 14, 43 2, 52 179, 13 37, 40 35, 07 35, 37 35, 04 34, 73 34, 62
9th 7, 83 1, 62 105, 46 22, 05 20, 62 20, 74 20, 74 20, 41 20, 27
10th 3, 94 0, 78 101, 34 20, 54 20, 02 20, 10 20, 04 19, 86 19, 91

• Number of friends who can see the post increases, when we expand privacy setting

of the post from “Friends” to “FoF”, as can be seen from the columns len(FG) and

len(FoFG).

• Effect of the proposed tool can be observed when we consider the case of removals

(pw = {10%, 20%, 30%, 40%, 50%}). Spreading area of the post becomes bigger,

when we change the privacy from “Friends” to “FoF”, so the number of interac-

tions it may get also increases dramatically. However, if COs define some rules

for their interactions, increase rate in number of interactions may be smaller than

PO’s anticipated number. This property helps people take a precaution to protect

their privacy by setting rules for their interactions on others’ posts. For instance, 3rd

row in Table 4.1 shows that although PO’s expected number of interactions for FoF

case is approximately 73, this number decreases to approximately 58 if users set

some rules to protect their privacy with probability of 50% (pw = 50%). This result

gives an acceptable result to our RQ2 and RQ3. The impact of privacy changes in

the existing posts on Facebook users’ behaviors significantly increases, while their

privacy awareness is increasing. Hence, they may start to protect their interactions

on other users’ posts by deleting them in case of any audience expansion.

To observe the inferred results in a better way, we also performed the same exper-

iment on the whole nodes in dataset, instead of taking a sample of the graph. Table 4.2

shows the experiment result in the case of using whole nodes in dataset. As seen from

the table, there is no significant difference but the I(FoF ) values shows a more smooth

decrease against increasing pw values.

All in all, we can say that this experiment has an impact on creating awareness for
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Table 4.2.: Change in number of interactions vs pw (case of using whole nodes)

Lpop len(FG) I(F ) len(FoFG)
I(FoF )

pw = 0 pw = 10% pw = 20% pw = 30% pw = 40% pw = 50%
1st 164, 21 32, 94 458, 78 117, 85 88, 60 85, 32 81, 85 77, 25 75, 47
2nd 88, 88 17, 85 391, 88 92, 50 76, 67 74, 79 73, 18 70, 60 69, 54
3rd 58, 92 11, 79 332, 85 75, 72 65, 42 64, 22 63, 17 61, 26 60, 66
4th 41, 50 8, 34 288, 87 64, 07 57, 02 56, 13 55, 31 54, 15 53, 58
5th 30, 59 6, 11 262, 64 57, 02 51, 85 51, 33 50, 73 49, 77 49, 53
6th 22, 66 4, 54 224, 45 48, 10 44, 41 43, 99 43, 51 42, 85 42, 63
7th 16, 91 3, 39 182, 26 38, 79 36, 13 35, 81 35, 48 34, 91 34, 78
8th 12, 23 2, 46 173, 96 36, 35 34, 53 34, 31 34, 12 33, 78 33, 50
9th 8, 05 1, 61 134, 34 27, 76 26, 66 26, 57 26, 38 26, 12 26, 06
10th 3, 91 0, 78 106, 97 21, 68 21, 33 21, 21 21, 20 21, 04 20, 98

Facebook users by highlighting that the privacy setting of a post and the PO’s popularity

level are so important to estimate its spreading area. Keeping this in mind, Facebook

users can control their interactions on others’ posts by tracking their privacy settings, and

so predicting to whom (or to how many people) their interactions may be visible.

4.3. Simulation of the Proposed Tool

This section presents a basic simulation, which provide a visual representation of

the proposed tool. This simulation tool works with eleven steps on SNAP dataset. Details

of each step is explained below, including the details of a complete run of the tool. The

example run works with an average-popular node as a PO, and the probability values for

pF , pFoF , and pw are accepted as 0.2.

Step 1 - Visualization of dataset: First step covers the visualization of the whole

network (dataset). Figure 4.1 shows this visualization of SNAP Facebook Dataset, which

includes 4039 nodes. This figure also demonstrates the Graphical User Interface (GUI) of

the simulation tool. User clicks the buttons at the bottom of screen, and continue his/her

actions with the following steps.

Step 2 - Selecting a PO: To observe a complete run of the simulation tool, an

average-popular node is selected as the PO (with ID 766 from the 5th popularity class).

Step 3 - Creating a post (Shared with “Friends” as default): A default post is

created.

Step 4 - Spreading the post & visualizing the spreading area (Friends case):

Post is spread through PO’s friends according to push-pull method, and then the spreading
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area is visualized as in Figure 4.2. Resultant size of the friendship graph is 36 (len(FG) =

36).

Figure 4.1. SNAP Facebook

Graph (Shows all nodes in

dataset)

Figure 4.2. Spreading area of

the post (Privacy Setting:

“Friends”)

Figure 4.3. Interaction Graph

of the post (Privacy Setting:

“Friends”)

Step 5 - Creating and visualizing a possible interaction graph (Friends case):

A possible interaction graph is created for the post, based on the method explained in Sec-

tion 4.2. Then, created graph is visualized as shown in Figure 4.3. Number of interactions

for “Friends” case is 5 (I(F ) = 5).

Step 6 - Changing privacy setting of the post from Friends to FoF: Privacy

setting of the post is changed to FoF. That is why, PO expects more number of interactions

on his/her post than the previous case.

Step 7 - Spreading the post & visualizing the spreading area (FoF case): Post

is spread again by using push-pull method, but this time it reaches to PO’s friends, and

friends of the tagged ones with pFoF = 0.2. Then, the updated spreading area is visual-

ized, as in Figure 4.4. Unsurprisingly, number of nodes that can see this post increased as

shown from the difference between Figure 4.2, and Figure 4.4. Size of the spreading area

for FoF case is 48 (len(FoF ) = 48).

Step 8 - Creating and visualizing a possible interaction graph (FoF case): A

new interaction graph is created for FoF case, and visualized as shown in Figure 4.5.

It can be seen from the difference between Figure 4.3, and Figure 4.5 that there is a

noticeable decrease in the number of interactions, when we change the privacy setting

from “Friends” to “FoF”, although the spreading area for FoF case is bigger than the

one in Friends case, as mentioned in Step 7. This situation demonstrates that there is a

possibility of getting less number of interactions when we enhance the audience of a post

(i.e. I(F ) > I(FoF )), even if the spreading area of the post is increased (remember that
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Figure 4.4. Spreading area of the post

(Privacy Setting: “FoF”)

Figure 4.5. Interaction Graph of the post

(Privacy Setting: “FoF”)

the privacy awareness of COs is 0.2 in the experiment, so pw = 0.2). In this case, PO’s

expectation of getting more interactions on his/her post cannot be satisfied. This is not

the case for all simulation scenarios, but it should be remarked that there is a possibility

to meet with a decrease in the number of interactions, if the COs’ privacy awareness is

increased. As a result, number of interactions decrease to 4 in this example (I(FoF ) = 4).

Step 9 - Changing privacy setting of the post to Public: Privacy setting of the

post is changed to “Public”.

Figure 4.6. Spreading area of the post

(Privacy Setting: “Public”)

Figure 4.7. Interaction Graph of the post

(Privacy Setting: “Public”)

Step 10 - Spreading the post & visualizing the spreading area (Public case):

Post is spread through whole network by using push-pull method. Updated spreading area
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of the post for “Public” case is visualized as shown in Figure 4.6. In this case, size of the

spreading area becomes equal to the size of network, so it is 4039.

Step 11 - Creating and visualizing a possible interaction graph (Public case):

A possible interaction graph for the “Public” case is created and visualized as in Figure

4.7. Number of interactions for this case becomes 803.

4.4. Possible Implementation of the Proposed Tool

This section includes a mockup design of the proposed tool, to present how the

tool will work. This mockup was created by using the Proto.io Website [47], and the link

[48] includes a video which shows a complete run of the mockup. The mockup has eight

main screens (please see Appendix A), and the screens represent only dummy values for

the size of spreading area, or the number of interactions, so it does not actually work

with the real data. Work flow of the mockup is presented in Figure 4.8, and the detailed

explanation for each main screen is provided below.

Figure 4.8. Flowchart of the Mockup

1. Welcome (Figure A.1): First main screen welcomes users, and inform them about

the scenario embedded in the mockup, addressed privacy issue, and the content of

images. After that, directs users to follow the flow of mockup, respectively.

2. Create a Post (Figure A.2): Post creation is simulated by using a dummy Facebook

screen. In this screen, post is ready as default, and the PO is expected to proceed

with this default post.
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3. Select a Privacy Setting (Figure A.3): This screen directs the PO to select the

privacy setting of his/her post as “Friends”. According to this setting, spreading

area of this post is visualized via a sub screen, as shown in Figure 4.9. It can be seen

from the figure that dummy numbers for the size of spreading area for each case are

given at the top, with red, orange, and green colors. Furthermore, corresponding

area are represented with circles. In the real application form of this tool, those

number will show the real data for each PO.

Figure 4.9. Mockup Screens for “Select

Privacy Setting” (Friends)

Figure 4.10. Mockup Screen for Privacy

Change to Public

4. View News Feed (Figure A.4): This screen simulates some dummy posts which

were created by PO’s, or CO’s friends. This property is referred as “News Feed” on

Facebook.

5. Put a Comment (Figure A.5): This screen directs the user to interact with a spe-

cific post, by leaving a comment, and so the user becomes a CO. A dummy com-
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ment is already placed in this screen, so the CO just need to proceed to the next

screen.

6. Check Privacy (Figure A.6): When the CO wants to send his/her comment, he/she

is asked to check the privacy of the comment before putting it. Hence, this screen

shows a message on the screen which asks whether the CO prefers to set a rule for

this comment to protect its privacy. If so, the mockup proposes some rule options

for him/her (i.e. “Send me a notification!”, “Delete my comment without notifying

me!”, and “Delete my comment and notify me!”), and he/she can select one of these

rules.

7. Change Privacy Setting of Former Posts (Figure A.7): This screen represents

PO’s previously shared posts. PO is directed to select a specific post which is

created by him/her before, and then try to change the privacy setting of it to public.

Before applying the corresponding change in privacy setting, mockup demonstrates

the newly created spreading area for this change, as shown in Figure 4.10. PO can

see the result of this change in the number of interactions on this post, as percentage

values at the bottom of the screen. These results are affected by the rules created by

COs of the post. Numbers in Figure 4.10 are dummy, that were used for only this

simulation, and they should reflect the real data in the original application.

8. Get Notification from Tool (Figure A.8): This screen demonstrates a notification

that the tool sends to COs in case of a change in any of the post which they inter-

acted with. Thanks to this notification, COs can control the privacy level of their

interactions, affected by the changes in privacy settings.

4.5. Applicability of the Proposed Tool

Applicability of the proposed tool can be considered in two aspects: (i) a centrally

managed approach, and (ii) an application-based approach.

1. Centrally managed approach: In this approach, we can consider the proposed tool

as a service, served by Facebook officially. To do so, Facebook should allow COs

to reach all their personal activity logs, even the ones that is no longer accessible by

the CO. Considering the first research question (RQ1), proposed in the beginning of
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this chapter, Facebook should send a kind of notification to COs, if a privacy change

occurs on a post that they have already interacted. For the case of RQ2 and RQ3,

Facebook should give COs access to their all activity logs although the visibility of

the corresponding posts has been changed. This approach is handy for Facebook

users, but causes an extra work-load, and complexity for Facebook.

2. Application-based approach: This approach considers developing the proposed

tool as a Facebook App. If this happens, we should expect all Facebook users install

this application to their accounts, because we should have access to their all post-

based information to make this application produce realistic results. Otherwise, we

cannot monitor the whole possible privacy risks. If all Facebook users install this

tool as a Facebook application, the tool can inform them about any privacy risk, as

presented in the mockup, in Section 4.4.

4.6. Conclusion

This section covered experimental work for the implementation of the proposed

tool, provided in Chapter 3. The experiments mainly focused on three research questions.

First research question considered the effect of POs’ popularity on the spreading area of

their posts, and the number of interactions they may get. Second one examined how does

any change in the privacy setting of a post affect COs’ decision on whether to still interact

with the corresponding post or not. Last research question was related to the analysis

of the effect of COs’ defined rules on the number of interactions that the corresponding

post gets. To observe these concepts, experiments was performed on Facebook SNAP

Dataset [2]. Results showed that POs’ popularity level directly affects the size of the

spreading area for their posts, and the number of interactions the related posts may get.

Additionally, any change in the privacy setting of a post may affect COs’ decision about

their interactions on this post, and the number of interactions for a post may be affected

by the rules that were defined by COs.

In addition, a simulation which works for any specific node was presented with a

complete run of a node, which has an average popularity. In this simulation, it was proved

that the number of interactions for a specific post may decrease, when we enhance its

audience (although owner of the post expects to get more interaction). This result shows
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that COs can control, and protect the privacy of their interactions, if they are conscious

enough.

Finally, a possible implementation of the tool as a real-world application was

demonstrated as a mockup, to visualize the proposed solution in a better way. Further-

more, the applicability of the tool was discussed to emphasize its feasibility.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1. Conclusion

In this thesis study, an analysis of information spreading and privacy problems on

SNs was performed with a case study on Facebook. It has been increasingly difficult to

observe this analysis, because SNs have a dynamic structure, and density of the infor-

mation exists on SNs continuously increases. In these circumstances, it has been getting

harder to control the privacy of information on SNs. Hence, the main objective of this

study was to examine the spreading process of information on SNs, while controlling the

privacy level of SN users’ sensitive information, and provide some solution to increase

this privacy level by creating awareness about the detected privacy problems.

For this purpose, the first step was analyzing the background of information spread-

ing to comprehend its underlying mechanism, and the state-of-art methods used in the

literature. It was noticed that, the topology of network is an important factor on the

spreading process of information. Considering the topology of SNs, it was pretty certain

that the networks, that this study focus on, have frequent updates, and inherits a dynamic

structure. Hence, push-pull method, provided in Section 2.2, was selected to implement

in the simulation of post dissemination on Facebook, as proposed in Section 4.2 and 4.3.

The study continued with analyzing the privacy on Facebook. First, the history

of Facebook Privacy was examined, and the related works on the privacy issues on SNs

was reviewed. Then, Facebook was investigated to observe users’ privacy levels. It was

detected that there are currently two important privacy leakages on Facebook, which were

stated in Section 3.4. After that, a solution to solve the detected privacy problems was

proposed.

The proposed solution mainly focused on creating awareness for the Facebook

users by providing them to observe the spreading area of their posts, and control their

interactions on other users’ posts. The control mechanism provided users to set some

rules for their specific interactions before posting them. Rules was related to control the
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privacy of a specific interaction by tracking the privacy setting of the post on which this

interaction appears. If the privacy setting of the post is changed by its owner, users who

interacted with this post is informed, or their interactions are automatically deleted from

the post, according to the rule they defined.

Experimental work covered the analysis of whole dataset to observe the spreading

area of a post, and the number of interactions it gets according to different privacy settings.

Results showed that (i) the spreading area of a post is affected by its privacy setting, (ii)

the popularity level of the post owner directly affects the number of interactions that any

of his/her post get, and (iii) if users become aware of the privacy risks and try to protect

the privacy of their posts/interactions using the rules provided by the proposed solution,

they can control their posts/interactions, and increase their privacy level.

Finally, a simulation was demonstrated in Section 4.3 and a mockup was presented

in Section 4.4 to express the proposed solution visually. A complete run of the proposed

solution with a scenario was included in these demonstrations to express it better. Fur-

thermore, applicability of the tool was discussed to highlight that it is a convenient and

feasible solution.

5.2. Future Work

Understanding the underlying structure of the information spreading among SN

users is a crucial matter to protect privacy on SNs. That is why, analyzing the informa-

tion spreading model on SNs is an important issue for us. During this thesis study, we

realized that information spreading process on SNs is mostly affected by SN users’ be-

havior, and the existing information spreading models are not sufficient to represent the

spreading behavior today. To develop a real-world information spreading model, we first

analyzed the requirements, such as the popularity of the information source, strength of

relations among users, content of the information, personal interests, and privacy prefer-

ences, etc. [19]. We believe that all these requirements should be considered as a factor

in the development of an information spreading model that will be proposed.

Some researchers [20, 21, 22, 25] have already proposed the modified versions of

SIR model or new approaches by using information cascades, as stated in Section 2.4,

to make their model more realistic. Bao et al. [20] and Cordasco et al [22] modified

the SIR model to adjust its states to current environment (i.e. adding an aware state, or
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dividing the Infected state into two which represent the people who belived/not believed

in the information). Furthermore, Tong et al. [25] proposed using cascades to model the

information spreading.

Considering all the approaches in the literature, we designed a hybrid information

spreading model, which combines the states proposed by Bao et al. [20] and Cordasco

et al, and focuses on the transitions between these states. Figure 5.1 shows the states and

transitions of the proposed information spreading model [19]. Hence, we propose to use

five states: (i) Ignorant: all users in a SN are assumed to be ignorant initially, (ii) Aware:

a user becomes Aware when he/she gets the information, (iii) Positive Infected: a user

becomes Positive Infected and starts to infect others positively if he/she believes in the

information, (iv) Negative Infected: a user becomes Negative Infected and starts to infect

others negatively if he/she does not believe in the information, and (v) Removed: a user

becomes Removed when he/she stops the spreading. Regarding to transitions between

states, they will represent user-centric threshold values to define a state change. Further

explanation about each transition can be found in the related paper [19].

Figure 5.1. A Hybrid Information Spreading Model

All in all, we propose to consider the idea of information cascades, and the re-

quirements mentioned above to include users’ behavioral effect in all transitions of the

proposed model. Hence, we will measure different threshold values for each user to

perform each transition, so that we can represent the behavioral effect of a user in the

information spreading model.
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[21] Emilio Serrano, Carlos Ángel Iglesias, and Mercedes Garijo. A novel agent-based ru-

mor spreading model in twitter. In Proceedings of the 24th International Confer-

ence on World Wide Web, WWW ’15 Companion, pages 811–814, New York, NY,

USA, 2015. ACM.

[22] Gennaro Cordasco, Luisa Gargano, Adele A. Rescigno, and Ugo Vaccaro. Brief an-

nouncement: Active information spread in networks. In Proceedings of the 2016

ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 435–

437, New York, NY, USA, 2016. ACM.

[23] Juan Zhang, Jianquan Li, and Zhien Ma. Global dynamics of an seir epidemic model

with immigration of different compartments* *this research is supported by the

nnsf of china (19971066). Acta Mathematica Scientia, 26(3):551 – 567, 2006.

[24] Sumith N, Annappa B, and S. Bhattacharya. Rnsir: A new model of information spread

in online social networks. In 2016 IEEE Region 10 Conference (TENCON), pages

2224–2227, Nov 2016.

[25] Chao Tong, Wenbo He, Jianwei Niu, and Zhongyu Xie. A novel information cascade

model in online social networks. Physica A: Statistical Mechanics and its Applica-

tions, 444(Supplement C):297 – 310, 2016.

[26] Networkx package webpage. https://networkx.github.io/.

[27] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggre-

gate information. In Proceedings of the 44th Annual IEEE Symposium on Founda-

52



tions of Computer Science, FOCS ’03, pages 482–, Washington, DC, USA, 2003.

IEEE Computer Society.

[28] Chuang Liu and Zi-Ke Zhang. Information spreading on dynamic social networks.

19:896–904, 04 2014.

[29] Danah Boyd and Eszter Hargittai. Facebook privacy settings: Who cares? 15, 07 2010.

[30] Debarati Gangopadhyay, Saswati; Dhar. Social networking sites and privacy issues

concerning youths. 5:1, June 2014.

[31] Matt McKeon. The evolution of privacy on facebook, 2010.

http://mattmckeon.com/facebook-privacy/.

[32] John Edens. Facebook privacy policy has become less transparent, harder to understand

and control, experts say, March 2017. http://www.stuff.co.nz/technology/social-

networking/89645571/Facebook-privacy-policy-has-become-less-transparent-

harder-to-understand-and-control-experts-say.

[33] Jennifer Shore and Jill Steinman. Did you really agree to that? the evolution of face-

book’s privacy policy, August 2015. https://techscience.org/a/2015081102/.

[34] A. Ho, A. Maiga, and E. Aimeur. Privacy protection issues in social networking sites. In

2009 IEEE/ACS International Conference on Computer Systems and Applications,

pages 271–278, May 2009.

[35] Virpi Tuunainen, Olli Pitkänen, and Marjaana Hovi. Users’ Awareness of Privacy on

Online Social Networking Sites Case Facebook. 2009.

[36] N. Talukder, M. Ouzzani, A. K. Elmagarmid, H. Elmeleegy, and M. Yakout. Privome-

ter: Privacy protection in social networks. In 2010 IEEE 26th International Con-

ference on Data Engineering Workshops (ICDEW 2010), pages 266–269, March

2010.

[37] Elena Zheleva and Lise Getoor. To join or not to join: The illusion of privacy in social

53



networks with mixed public and private user profiles. In Proceedings of the 18th

International Conference on World Wide Web, WWW ’09, pages 531–540, New

York, NY, USA, 2009. ACM.

[38] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P.N. Puttaswamy, and Ben Y.

Zhao. User interactions in social networks and their implications. In Proceedings

of the 4th ACM European Conference on Computer Systems, EuroSys ’09, pages

205–218, New York, NY, USA, 2009. ACM.

[39] Christo Wilson, Alessandra Sala, Krishna P. N. Puttaswamy, and Ben Y. Zhao. Beyond

social graphs: User interactions in online social networks and their implications.

ACM Trans. Web, 6(4):17:1–17:31, November 2012.

[40] Tabitha L. James, Merrill Warkentin, and Stéphane E. Collignon. A dual privacy de-
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APPENDIX A

MAIN SCREENS OF THE MOCKUP

Figure A.1. Main Screen 1 Figure A.2. Main Screen 2
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Figure A.3. Main Screen 3 Figure A.4. Main Screen 4
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Figure A.5. Main Screen 5 Figure A.6. Main Screen 6
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Figure A.7. Main Screen 7 Figure A.8. Main Screen 8
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