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ABSTRACT 

 
ANALYSIS OF ELECTROMECHANICAL BEHAVIOR OF 

PIEZOELECTRIC SMART CURVED BEAMS 

 

In this study, electromechanical behavior of piezoelectric smart curved beam 

with variable radius of curvature is investigated using Finite Element Method. Firstly, a 

background of beam theories is provided as well as a discussion on the history of 

piezoelectric materials and the development of smart beams and smart curved beams. 

The deformations of curved beams, the differential equations for in-plane bending of 

curved beam with and without piezoelectric patch are presented. Finite element 

modeling of smart curved beam is done using ANSYS. The mesh size correctness and 

numerical accuracy is controlled by an equivalent straight cantilever beam having the 

same length, cross-section and loaded from its tip with the same amount of force that 

will be applied to the curved beam model. Tip displacement comparisons are done using 

an analytical and finite elements approach. The model is verified by comparing the 

analytical results of piezoelectric constitutive equations with results of finite elements 

method for a rectangular prism shaped piezoelectric patch. After the verification is 

complete, the consequent tip displacements on x direction and generated electric fields 

are observed after the loads of different magnitudes applied to the tip of piezoelectric 

curved beam. Finally, results are discussed. 
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ÖZET 
 

PIEZOELEKTRIK AKILLI EĞRI ÇUBUKLARIN ELEKTROMEKANIK 

DAVRANIŞ ANALIZLERI 

 

Bu çalışmada, değişken eğrilik yarı çaplı akıllı eğri çubukların elektromekanik 

analizi Sonlu Elemanlar Yöntemi ile incelenmiştir. İlk önce, kiriş teoremleri ve 

piezoelektrik malzemelerin tarihi ele alınmıştır. Ardından piezoelektrik malzemelerin 

tarihi, piezoelektrik akıllı çubuk ve akıllı eğri çubukların gelişimi anlatılmıştır. 

Piezoelektrik eğri çubukların deformasyonu, piezoelektrik bantsız veya bantlı eğri 

çubukların düzlem içi bükülme diferansiyel denklemleri tanıtılmıştır. Akıllı eğri 

çubuğun sonlu eleman modellemesi ANSYS ile yapılmıştır. Eğri çubuk ile aynı 

uzunluğa, keside sahip ve aynı boyutta uç yükle yüklenmiş eş değer düz çubuk ile mesh 

boyutları ve numerik doğruluğu kontrol edilmiştir.Diktörtgenler prizması şeklindeki 

piezoelektrik bant için, temel piezoelektrik denklemlerinden sonuçlar ile sonlu 

elemanlar metodunun sonuçları karşılaştırılarak; model doğrulanmıştır. Doğrulamanın 

ardından farklı büyüklükteki kuvvetlerin piezoelektrik eğri çubuğa uygulanması 

sonucunda, çubuk ucundaki x ekseni yönündeki yer değiştirmeler ve oluşturulan 

elektrik alanlar gözlenmiştir. En sonunda, sonuçlar değerlendirilmiştir. 
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CHAPTER 1 

 

GENERAL INTRODUCTION 

 

1.1. Introduction 

 

A discussion on the background of beam theories, including the discovery of 

piezoelectricity and piezoelectric effects and the pioneers who combined piezoelectric 

effects with beam theories and directly related studies essential to understand the 

subject of this thesis is provided in the following sections.  

 

1.2. Beam Theories 

 

A beam is a 3D structure (Labuschagne et al. 2009) which has one larger 

dimension compared to the remaining two. The axis along the larger dimension 

specifies the beam’s axis. It is assumed that the cross-section normal to the axis 

smoothly changes along the length.  

There are many application sites of beams. In civil engineering, there are 

structures consisting of I, T or square cross-section assembled beams (Bauchau and 

Craig, 2009a). Many machine parts such as jacks and shafts are also beam-like 

structures. Furthermore, it is possible to consider aerospace structures of wings and 

fuselages as thin-walled beams. 

Beam Theory is a common and simplified theory referring to beams in solid 

mechanics. Because of their simplicity in analyzing several structures, they occupy a 

significant place in structural analysis. Beam models provide significant insight into the 

behavior of structures. For this reason, they are frequently used in pre-design stages. 

Their results are also beneficial for validating computational solutions such as finite 

elements method which is a more sophisticated tool for stress analysis. 

Several beam theories were defined based on different assumptions with 

different levels of accuracies. The first theory, Euler-Bernoulli, dates back to the 18th 

century (Han et al. 1999). Jacob Bernoulli found out that the curvature of an elastic 
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beam at any point is proportional to the bending moment of specified point. In later 

years, Leonhard Euler investigated the shape of elastic beams under different loading 

conditions and supported the findings of Jacob Bernoulli's. Therefore, the theory is 

named by joining their surnames. It may also be referred as the Euler beam theory, 

Bernoulli beam theory or the classical beam theory. Overall, the theory has three 

assumptions. The cross-section of the beam is infinitely rigid in its plane which allows 

no deformation. For this reason, in-plane displacement field can be represented by two 

rigid body translation and one rigid body rotation. Moreover; in case of deformation, the 

cross-section is assumed to remain plane and normal to the deformed axis. But, 

experimental results state that these assumptions are only eligible for long, slender 

beams which have material isotropy. Without those specifications, the Euler-Bernoulli 

beam theorem becomes inaccurate. Also, the theory overestimates the natural 

frequencies, especially for higher modes. 

The overestimation of natural frequencies in Euler-Bernoulli theorem was 

attempted to be removed by John William Strutt, 3rd Baron of Rayleigh who added the 

effect of rotation of the cross-section and he established the Rayleigh Beam Theorem on 

1877 (Rayleigh and Lindsay, 1945). While the effect of rotation can be expressed as the 

angular acceleration of beam elements, this theory gives more satisfying results than 

Euler-Bernoulli's. However, natural frequencies are still overestimated. 

The assumption that the cross-section of the beam remains normal to the 

deformed axis makes the transverse shear effect disappear in Euler-Bernoulli's theorem. 

If shear distortion is combined with the bending effect of the Euler-Bernoulli's theorem, 

Shear Beam theory is reached. Thus, the estimation of natural frequencies improves.  

In addition to the theorems mentioned above, Stephen Timoshenko established 

his own beam theorem by combining the effect of shear and rotation to Euler-

Bernoulli's theorem in 1921 and 1922 (Bauchau and Craig, 2009b). Shear or rotary 

effects are not negligible in this model. Thus, analyses of non-slender beams and its 

high-frequency responses are improved.  
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1.3. History of Piezoelectric Materials 

 

After the introduction of beam theories, the foundations of piezoelectric studies 

and their history should be investigated. The word piezoelectric originates from the 

Greek words "piezin" which means "to press" and "electron" which has different 

meanings as “an amber”, “a form of currency”, “a solar divinity” (Olcott, 2013). Before 

expressing the historical background, phenomena of direct and inverse piezo electric 

effects illustrated in Figure 1 should be mentioned. The direct piezoelectric effect is 

generating an electrical charge in proportion to an externally applied force. This effect is 

used as sensor. However, inverse piezoelectric effect is an expansion of the material due 

to electric field applied to material and this effect used as actuator. 

 

 

 

 

 

 

 

 

Figure 1.1. Direct and inverse piezoelectric effects: a) Direct effect, b) Inverse effect 

(Source: Qui 2013) 

 

The Curie brothers, Pierre and Jacques Curie announced direct piezoelectric 

effect on Academie des Sciences in 2 August 1880 (Gautschi, 2002). This 

announcement was based on their systematic studies with the crystal symmetry of 

materials such as zinc blende, sodium chlorate, boracite, tourmaline, cane sugar, 

rochelle salt and observing their effects. Polar electricity developed due to variations in 

pressure as a consequence of their experiments. One year later, the inverse piezoelectric 

effect was predicted by Gabriel Lipmann. He declared that a crystal will deform if an 

electrical voltage is applied to certain opposite faces of the crystal. On the same year the 

prediction of Lipmann was confirmed by Curie brothers with their experiments. During 

their first declaration in 1880, the term piezoelectric was not yet used by Curie brothers. 

Wilhelm Gottlieb Hankel in 1881 was the first one to propose and the name was 

immediately accepted in the field (Dineva et al. 2014). 
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Although the studies by Curie brothers spread to the outside of France and 

famous scientists of this era such as Woldemar Voigt, Eduard Riecke initiated their own 

studies of the newly established topic; piezoelectricity remained an object of curiosity 

instead of practical application for more than 30 years. However, a need for detection of 

submarines during the First World War changed the situation. Paul Langevin used 

inverse piezoelectric effect of quartz to create mechanical vibration to emit ultrasonic 

sound waves underwater. When the created ultrasonic waves were reflected back by 

objects at the bottom of or in the water, those waves could be captured by same quartz 

plates before submarines detected by direct piezoelectric effect. 

 

1.4. Developments of Piezoelectric Materials on Smart Beams 

 

Many applications, literatures and patents appeared combining piezoelectric and 

beam theories after the First World War. But, beam as a word generally represents a line 

of sound or light in earlier studies. Wente (1922) patented “piezo-electrical voltage 

indicator” which contained rigidly supported piezoelectric crystalline blades. Seventeen 

years later, Mason (1939) patented “piezoelectric apparatus and circuits”. He became 

one of the pioneers who used the word beam as a structural member in piezoelectric 

applications. These included structures made of low density material, for example 

aluminum, for weight saving and piezoelectric elements bonded by adhesive material 

such as shellac. Koren (1949) studied metal strips with thin plate of ceramic soldered on 

one or both sides which was an early example of active structures for transducer. A 

combination of piezoelectricity and plate theory was done by Mindlin (1952). Thurston 

(1953) examined corner loaded, uniformly loaded and central loaded bimorph 

transducer by theory of elasticity. 

Between 1960 and 1970, various patents that contained piezoelectric beams such 

as piezoelectric ignition system of Crownowner (1966), 3D accelerometer device of 

Igarashi and Chiku (1967), force transducers of Rogallo (1967) and Norris (1969) were 

designed. Furthermore, Cain et al. (1967) used transducer to measure the heartbeats of 

embryo of poultries. Berry (1972) used the forces generated by bending or twisting of 

piezoelectric material during acceleration and deceleration to design a vehicle speed 

synthesizer which was intended to be used in antilock brake systems in automobiles. 

One of the first biomedical application of piezoelectric beam was studied by Williams 
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and Breger (1975). Rauch and Witter (1976) used a piezoceramic beam for their device 

that wrote with liquid ink. 

The term active structures was established by the 1980’s. Also, aerospace 

applications were initiated. On the other hand, theoretical works appeared. Lee and 

Marcus (1981) worked on a cantilever mounted piezoelectric bimorph and unimorph 

structures. Cucci (1982) patented vibrating beam pressure sensor. Bailey and Hubbard 

(1985) designed and analyzed an active damper for a thin cantilever beam using 

piezoelectric polymers. 

 

 

 

 

 

 

 

Figure 1.2. Active damper model 

(Source: Bailey and Hubbard 1985) 

 

Crawley and De Luis (1987) are the pioneers who used "intelligent structures" 

by defining them as structures with many actuators, sensors and processing networks. 

They tested a cantilever beam made of composite and isotropic materials with 

piezoelectric actuators bonded on them. Tzou (1989) completed various studies such as 

the development of robot end effector using bimorph. Im and Atluri (1989) investigated 

the effect of piezoelectric liners on a deformed beam for the usage of model in space 

structures in which the effect of transverse shear, axial forces and bending moment were 

investigated. 

Tzou and Zhong (1990) simplified the piezoelectric shell to a piezoelectric 

bimorph cantilever beam. The design, experiments and feasibility of piezoelectric 

actuators mounted on helicopter blades were accomplished by Hall and Spangler 

(1990). Lee and Moon (1990) developed modal sensors/actuators for beams and plates. 

Studies consisting of smart materials having classical beam models were 

published during the last decade of 20th century. Inman (1991) finalized his studies 

between 1987 and 1990 by developing the Timoshenko model of layered piezoelectric 

devices. Tzou and Howard (1992) extended the studies on smart structures by adding 
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piezo-thermo elasticity using shell and beam for creating a simplified model. Koconis et 

al. (1994a) calculated the changes of shape under applied voltage for the fiber 

reinforced structural elements such as beam, curved beam, rectangular plate with 

different boundary conditions. Shen (1995) proposed a modeling technique which does 

not require of integration of piezoelectric devices into the governing equation. Lee 

(1996) implemented neural network system on smart structures. Lee et al. (1997) 

concentrated not only on performance of smart material structures, but also their 

reliability by detailed stress analysis and simulation of crack growth. Aldraihem et al. 

(1997) compared the Timoshenko and Euler-Bernoulli beam models for suppressing the 

beam vibration by using piezoelectric sensor and actuator layers. Krommer and Irschik 

(1999) used laminated beams, plates and shells to investigate the effect of electric field 

on free transverse vibrations. The study of Wang et al. (1999) was one of the examples 

which concentrated on sensing capacity of various types of layered beam. 

Furthermore, there are remarkable studies published during the late 90’s and 

early 2000’s about smart materials with finite element method (hereafter FEM) to be 

denoted. Söderkvist (1997) used FEM to cope with the difficulty and cost of the 

experiments of micro-machined structures to obtain the analytical results of 

piezoelectric cantilever beam. Mackerle (1998) listed all the smart material and 

structure studies that employed finite element methods between 1986 and 1997. He 

(2003) expanded his bibliography by adding studies from the same area between 1997 

and 2002. Benjeddou (2000) published his research on the piezoelectric adaptive 

structures modelled by finite elements and concentrating on various specifications such 

as elements types, their shapes, nodal degree of freedoms, formulations, and 

assumptions. He also suggested where further developments should be made. Piefort 

(2001) gave detailed information on his PhD. thesis about history of piezoelectricity, its 

equations, abilities of different designs, background of finite elements and 

implementations in smart materials, as well as possible application areas of sensing or 

actuation capabilities and controlling. 

During the first decade of millennium, the number of studies including 

piezoelectric and beam skyrocketed compared to the previous decade. In fact, there 

were 427 studies between 1990 and 2000, 1540 from 2000 to 2010 and 2910 in last 7 

years from the internet until publishing this thesis. Those values show that the power of 

the topic has not diminished. Therefore, articles having the highest citations present the 

trends and developments on smart materials are discussed in the following paragraphs. 
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As the micro electromechanical systems (hereafter MEMS) became popular, 

usage of “energy harvesting” from piezoelectric systems instead of external batteries 

emerged. One of the earlier example was by Elvin et al. (2001). He used a simply 

supported beam with a strain sensor to generate its power and showed that the 

frequency and applied force affected the measured strain. Glynne-Jones et al. (2001) 

showed the voltage generation using a cantilever beam layered with smart materials and 

carrying mass on tip. The similar study was performed by Lu et al. (2004) using 

numbers of piezoelectric layers and types. duToit et al. (2005) investigated energy 

harvesting from vibrations and detailed them for one dimensional harvester model, mass 

mounted cantilever beam model, harvesting modes and their analytical equations.  

Roundy et al. (2005) published a paper on generating more power with vibration 

based harvesters known as “scavengers” in their research. They concluded that an 

efficient harvester should have maximum piezoelectric response with respect to the 

given input, a smaller stress concentration, and also a simple manufacturing method. 

Moreover, they considered different geometries and boundary conditions, tuning of 

frequency to enlarge bandwidth, thinner piezoelectric structures, and micro-

manufacturing processes which are easily attainable. In the same year, Baker et al 

(2005) accomplished experimental studies using trapezoid beam for energy harvesting 

due to showing superiority of trapezoid beam over rectangular beam. They concluded 

that the output increased 30% and frequency tuning was obtained via bi-stable boundary 

conditions. Shu and Lien (2006) investigated the optimal power generation for a 

rectified piezoelectric device. Challa et al. (2008) presented an approach to enlarge the 

bandwidth of energy harvesting from a cantilever beam that having tip mass between 

the magnets which reduced the original natural frequency of the system. 

 

 

 

 

 

 

 

 

Figure 1.3. Cantilever beam for energy harvesting 

(Source: Challa et al. 2008) 
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In order to correct the past studies, Erturk and Inman (2008) published a new 

mathematical modeling that considered resonance, true form of piezoelectric coupling 

and forced vibration terms, true usage of sensing and actuation equations and dynamic 

deflection patterns. They validated their mathematical model by experimenting a 

cantilever bimorph beam too (2009). Shen et. al (2008) manufactured a beam with 

multilayered piezoelectric materials which was in the form of silica wafer for vibration 

with low frequencies and high amplitudes. Lee et al. (2009) manufactured a composite 

material by spraying powder of PZT on silica wafer in order to obtain high quality thin 

piezoelectric film. 

Cottone et al. (2009) worked on an inverted pendulum under magnetic excitation 

at both its base in lateral direction and tip in axial direction. Thus, they proposed a 

method for stochastic nonlinear oscillators. A similar method was proposed by Ferrari et 

al. (2010). They used a horizontal cantilever beam instead of an inverted pendulum. The 

pendulum was excited from its root mechanically, while the tip of it was under magnetic 

force in the axial direction. Their experimental results showed that the power output 

increased 88% with respect to linear systems. Also, Stanton et al. (2010) studied 

nonlinearity concept analytically and experimentally following the former studies. 

Various bandwidth enlargement techniques were investigated by Tang et al. (2010) 

according to their advantages and disadvantages. Tabesh and Frenchette (2010) 

provided energy-harvesting circuit with low power dissipation that was critical for ac/dc 

voltage conversion. 

Wang (2008) was one of the first researcher on usage of nano wires for energy 

harvesting. The effects of surface stresses of Euler- Bernoulli beam model of nano wires 

was investigated by Wang and Feng (2010). Sun et al. (2010) tested nano wires 

statically with different materials and shapes in order to show which generates power 

the best and generate guideline in future works.  

Akaydin et al. (2010) explored energy harvesting from unsteady turbulent fluid 

flow using piezoelectric generator. On the other hand, Clair et al. (2010) studied an 

energy harvester based on a cantilever beam subjected to air blow.  

Gu and Livermore (2011) presented a double beamed harvester which consisted 

of one resonant beam that carried mass and one piezoelectric layered beam that vibrates 

due to impact of mass of the other one. Thus, the system resulted in better power output 

and increased bandwidth comparing with the conventional one. Zhou et al. (2012) 
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proposed a cantilever beam with two portions as thick and thin form, namely serially 

connected. Both portions had mass at the end of them. 

Masana and Daqaq (2012) focused on energy harvesting in the super harmonic 

frequency region of a twin-well (bistable) oscillator. Harne and Wang (2013) 

concentrated on the mechanical and magnetic bistable systems that generated more 

power comparing with the linear ones in steady state environment. But their potential 

was uncertain across the random conditions. Pellegrini et al. (2013) schematically 

investigated and grouped the bistable harvesters, and summarized nonlinearity, 

dimensionless effectiveness equations. They stated that the harvesters based on linear 

oscillators were more effective comparing with the bistable oscillators because of their 

nonlinear responses despite their high power output capacity.  

Li et al. (2014) not only concentrated on conventional beams, but also cymbal 

type harvesters and curved multilayered harvesters. Zhou et al. (2014) used a model 

consist of cantilever beam carried two magnet masses on tip. Also, another two extra 

magnets had optimum position and angle that positioned at right and left side of the tip 

of the beam. Thus, tri-stability condition was created. Leadenham and Erturk (2014, 

2015) designed and experimented a shallow M-shape structure having two inclined 

bimorph beams as its legs. Those were mounted on two shakers with a proof mass in the 

middle of the structure to analyze nonlinear energy harvesting for very low base 

accelerations: primary and secondary resonances.  

Cao et al. (2015) also studied the tri-stability condition. He showed how 

different angles of rested masses at the right side and left side of the beam affected the 

frequency range and voltage output. Another bi-stable and tri-stable comparison was 

done by Haitao et al. (2016). However, their beam carried just one magnet on tip. 

The daily practical applications of energy harvester became popular due to the 

developments in that field. Mateu and Moll (2005) studied energy harvesting from daily 

walking by using various beam shapes with different boundary conditions and 

alignments. Elvin et al. (2006) focused on civil engineering structures under excitation 

forces such as traffic, earthquake, and wind for vibration which could be used for 

structural monitoring based on piezo harvesters.  

Anton and Inman (2008) designed a radio controlled UAV (Unmanned Aerial 

Vehicles) which powered from solar energy and piezoelectricity. They examined the 

power output of the photovoltaic and piezoelectric devices. Renaud et al. (2009) studied 

piezoelectric energy harvesting system by motion of human limbs.  
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Sirohi and Mahadik (2011) proposed a wind energy-harvesting device as an 

alternate power source. Their system had two parallel cantilever beams with 

piezoelectric sheets which were attached to a common mass body excited by incident 

wind. They (2012) also studied a similar topic using a single cantilever beam. Bryant 

and Garcia (2011) derived a linearized analytical model of a novel piezoelectric energy 

harvester device driven by flutter vibration of flap pinned at the end of a cantilever 

beam with piezoelectric patches. Weinstein et al. (2012) used heating, ventilating and 

air conditioning flow to excite the cantilever beam with piezoelectric energy harvester. 

Bibo et al. (2015) developed and validated a piezoelectric cantilever-type energy 

harvester by combining base excitation and aerodynamic forces in their numerical and 

experimental study. 

Li et al. (2013) introduced an acoustic energy harvester that was a quarter-wave 

length straight-tube acoustic resonator with PVDF piezoelectric cantilever beams placed 

inside. Bowen and Arafa (2014) summarized the tire pressure monitoring system based 

on piezoelectric cantilever beams. Cao et al. (2015) used to test the application of bi-

stable nonlinear cantilever beam with PZT under magnetic field for power generation 

from human motion and showed its superiority comparing with the linear and mono-

stable harvesters. Wang et al. (2015) theoretically studied energy harvesting from 

railway systems. Their model was based on Euler-Bernoulli beam on a Winkler 

foundation. Ansari and Karami (2016) used fan-folded piezoelectric bimorph 

cantilevers to generate more power from heartbeat vibrations for powering leadless 

pacemakers. 

The general aspects of piezoelectric energy harvesters and a comparison of their 

models, explanations, and application examples between 2003 and 2006 were reviewed 

by Anton and Sodano (2007). Another review was published by Khaligh et al. (2010). 

At their review, Kim et al. (2011) offered a brief explanation in theories and models 

behind energy harvesting, summarized recently used materials; presented examples of 

harvesting applications such as usage in shoes, plants and backpacks; explained circuits 

and storage of harvesters; and offered the future improvements. Wang (2012) reviewed 

piezoelectric nanogenerators. 

Other applications of the piezoelectric beams related with sensing and vibration 

suppressing were studied by researchers. Lee et al. (2001) used piezoelectric beam for 

sensing the motion and acceleration in order to investigate the sleep and activity 

patterns of women diseased by HIV/AIDS. Jean-Louis et al. (2001) used a motion 
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sensor mounted on the wrist and took accurate results for sensing whether awake and 

sleeping. 

Narayanan and Balamurugan (2003) developed beam, plate, and shell type finite 

elements for piezoelectric laminates. They also considered the temperature effects in 

their formulations. Maurini et al. (2004) studied on control of beam vibration by using 

piezoelectric networks acting as distributed vibration absorbers. Kumar and Narayanan 

(2008) interested in active vibration control of beams with optimal placement of 

piezoelectric sensor/actuator pairs. 

 

1.5. Developments of Piezoelectric Material on Smart Curved Beams 

 

Curved beams can be seen in various engineering areas, for example, aerospace, 

mechanical, civil, etc. Longitudinal axis of curved beam can be two or three 

dimensional. The simplest planar curve is an arc which has constant radius. However, in 

some cases, it has variable curvature such as Archimedean spiral. 

Two dimensional curved beams can deform in two fashions depending on the 

load action on it. Those deformations are in-plane and out-of-plane deformations. An 

in-plane deformation of curved beam has two coupled simple deformations: bending 

and axial deformation. On the other hand, out-of-plane deformation of curved beam has 

bending and torsion. 

Applications of curved beams and rectangular shaped piezoelectric layers were 

popular between 1960 and 1980’s, such as acoustic transducer modelling and 

experiments of Royster’s (1970), injection pressure measurement device of Heggie 

(1977) and sandwich curved beam vibration experiment of Vaswani et al (1988). 

Designing and modeling semicircular shaped piezoelectric layered curved beams 

emerged as actuators in the 1990’s. The study of Brei and Blechschmidt (1992) was one 

of the early examples. Three years later, Brei (1995) proposed “C-Block actuators” in 

the shape of semicircle to be used in different arrangements such as series, arrays, and 

parallel. He investigated their comparisons with straight beam actuators. Seeley et al 

(1996) continued to study C-block as offered by Brei to find the hybrid usage of C-

blocks in optimum fashion. Moskalik and Brei (1997) presented deflection-voltage 

model and experimental results for polymeric piezoelectric C-block actuators shown in 
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Figure 1.4. They (1999) extended their C-block actuator studies to see the force-

deflection behavior of the system. 

 

 

 

 

 

 

 

 

Figure 1.4. Polymeric piezoelectric C-block actuators 

(Source: Moskalik and Brei 1997) 

 

Lee (2000) compared straight bimorph actuator and C-block actuator 

considering their force and displacement output capacities with respect to same amount 

of given voltage by using finite elements method, and showed that C-Block actuators 

have advantages in output forces, but disadvantages in output displacements. 

Another application area of curved piezoelectric layers is shape controlling. 

Koconis et al. (1994b) published a highly cited paper on the stated topic. Another shape 

control application was the study of Saggere and Kota (1999) which included camber 

shaping of wing structures. Yoon et al. (1998, 2000) examined single and double curved 

antennas with PZT actuators. 

Piezoelectric micro-sensors that embedded on the curved shaped composite 

structures of ship hulls and planes for structural health monitoring were studied by 

Krantz et al. (1998, 1999). 

Application of the pairing of piezoelectricity and curved beam were widened 

after 2000. Lobontiu et al. (2001) designed a piezoelectric-driven inchworm locomotion 

device. Borgen et al. (2003) used two piezoelectric curved beams to design a miniature 

swimming vehicle. Yoon et al. (2005) developed initially curved piezoelectric unimorph 

beams with different dimensions under different forces in order to model the energy 

harvesting from walking. Susanto and Yang (2007) modeled a piezoelectric curved 

beam actuator for meso/micro grasping. Chen et al. (2008) fabricated a helical actuator 

designed in ANSYS. Magoteaux et al. (2008) compared the performance differences 

between UAV without harvester, UAV with curved beam harvester at landing gear, and 
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UAV with straight beam harvester at landing gear. Results showed that the curved beam 

harvesters have better power output in high frequencies. Zhou et al. (2010) developed 

spiral curved beam as a compact energy harvester by using ANSYS. Acoustic energy 

harvesting from piezoelectric curved beams in the cavity of sonic crystal was studied by 

Wang et al. (2010). A. Maha and S.-S. Pang (2012) studied on the shape recovery 

model of a curved beam using piezoelectric actuation. In biomedical area, Kadooka et 

al. (2015) used multiple connected curved beams in order to create artificial muscle. 

Yang et al. (2017) compared three energy harvester structures. Those are (i) curved 

beam in the shape of S connected to straight beam, (ii) C-shaped curved beam 

connected to straight beam, and (iii) full straight beam. They concluded that the S-

shaped curved beam has superiority. 

 

1.6. Aim of the Thesis 

 

In this study, modeling and analyses of curved beams with variable curvature 

and piezoelectric layer as smart material are studied by using a commercial finite 

element package that is ANSYS Mechanical. Modeling and solution procedure are 

coded using APDL (ANSYS Parametric Design Language) in ANSYS. Curved beam is 

modeled with SOLID45 elements while piezoelectric layer is represented by SOLID5 

elements. After validation of the present model, the effects of applied forces to the tip 

displacement and generated electric field are observed by parametric studies. 
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CHAPTER 2 

 

THEORETICAL VIBRATION ANALYSIS 

 

2.1. Introduction 

 

In this chapter, the deformations of curved beams are summarized. Based on this 

section, the differential equations for in-plane bending of the curved beam without piezo 

patch are presented. Next, the differential equations of curved beam with piezo patch 

are discussed. Finally, finite element modeling of smart curved beam by using APDL 

(ANSYS Parametric Design Language) in ANSYS is outlined. 

 

2.2. Geometry of Curved Beams Axis 

 

In order to study a curved beam with variable radius of curvature, an 

Archimedean spiral r=aθ is selected for the neutral axis of the curved beam as shown in 

Figure 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Curved beam with variable radius of curvature 
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2.3. Differential Equations for In-Plane Bending of the Curved Beam 

 

The part of a curved beam with variable radius of curvature and its internal axial 

force T, internal shear force N, and bending moment My about axis y are shown in 

Figure 2.2. The coordinate system and equations are based on Love (1944). 

 

 

 

 

 

 

 

 

Figure 2.2. A curved beam with variable radius of curvature 

 

The deformed curvature 1   in x-z plane is written as 

 

)( 001 w
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d
      (2.1) 

 

where u and w are displacements of any point on curved beam in x and z directions, 

respectively. Also 0   is initial curvature. If a curve is represented by for example r=aθ, 

then curvature is obtained by  
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The axial force T is expressed as 

 

AET        (2.3) 
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where ε is strain in direction of s due to tension and given by 

 

u
ds

dw
0        (2.4) 

 

The internal bending moment My is expressed as 

 

)( 01   BM y      (2.5) 

 

where B is original notation used by Love (1944) and represents bending rigidity of 

curved beam material, which is known as EI. 

Equilibrium equations of curved beam for in-plane deformations are written 

from Love (1944) 

 

01  nqT
ds

dN
      (2.6) 

 

01  tqN
ds

dT
      (2.7) 

 

0 y

y
mN

ds

dM
     (2.8) 

 

where qn, qt are distributed force in normal and tangential directions. Also, my is the 

distributed moment about y axis. 

The boundary conditions can be stated as follows: 

 

Either My=0 (pinned or free), or w”=0(clamped)    (2.9) 

 

Either N=0 (free), or w’=0 (pinned or clamped)     (2.10) 

 

Either My=0 (pinned or free), or w=0 (pinned or clamped)   (2.11) 
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2.4. Constitutive Equations of Piezoelectric Materials 

 

This section is based on the textbook written by Preumont (2002). The notations 

of IEEE standard on piezoelectricity (1988) are used in this section. First, one 

dimensional dielectric medium is presented to discuss the constitutive equation of 

piezoelectric materials. Then, the three dimensional medium is outlined. 

The relationship between the electric field E (V/m) and the electric displacement 

D (Coulomb/m2) for an unstressed dielectric medium is given as 

 

ED        (2.12) 

 

where ε is the dielectric constant or dielectric permittivity (F/m or Coulomb/(Volt×m)) 

of the material. If elastic body has zero electric field, the relationship between the strain 

S (-) and the stress T (N/m2) is written as 

 

TsS        (2.13) 

 

where s inverse of the Young’s modulus of the material which is also called mechanical 

compliance of the material. Mathematically, s=1/c. 

 The constitutive equations of a piezoelectric material are related with the 

mechanical and electrical effects. They are expressed as 

 

EdTsS E        (2.14) 

 

ETdD T      (2.15) 

 

In Equation (2.14), superscript E denotes that the electric field is constant. Also, d (m/V 

or Coulomb/Newton) is the piezoelectric strain coefficient. In Equation (2.15), 

superscript T denotes that the stress is constant. Equations (2.14) and (2.15) can be 

transformed into the following ones 

 

E
s

d
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Moreover, the last two equations usually expressed as 

 

EeScT E        (2.18) 

 

ESeD S       (2.19) 

 

where e (Coulomb/m2) relates the electric displacement with the strain for constant 

electric field or short-circuited electrodes and expresses as 

 

Esde /       (2.20) 

 

and 

 

)1( 2kTS        (2.21) 

 

in which superscript S indicates that the strain is constant and )/(22 TEsdk   is called 

the coupling coefficient of the piezoelectric material. 

The constitutive equations of a three dimensional piezoelectric materials are 

given in matrix form from Equations (2.14) and (2.15) as follows: 

 

}]{[}]{[}{ EdTsS      (2.22) 

 

}]{[}{][}{ ETdD T      (2.23) 

 

where superscript T is used to represent the transpose of the matrix. Equations (2.22) 

and (2.23) are known as actuation and sensing equations of which details are given 

below: 
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The two examples of piezoelectric actuators are shown in Figure 2.3. 

 

 

 

 

 

 

 

 

(a) Stacked design 

 

 

 

 

 

 

 

 

 

(b) Laminar design 

Figure 2.3. The two examples of piezoelectric actuators 

 

The stacked design is related with d33. The change of length due the voltage U 

applied as shown in Figure 2.3.a is given by 

 

UndL 33       (2.31) 

 

where n is the number of disks in the stack and U is the applied voltage. 
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The laminar design is related with d31. The change of length due the voltage U 

applied as shown in Figure 2.3.b is given by 

 

313 dLEL        (2.32) 

 

where 

 

t

U
E 3       (2.33) 

 

in which U is the applied voltage and t is the thickness of the piezoelectric layer. 

 

2.5. Differential Equations for Smart Curved Beam 

 

 The differential equations for in-plane bending of the curved beam with variable 

curvature are given in Section 2.3 for the applied distributed forces qn, qt and distributed 

moment my. If a thin piezoelectric patch is mounted to lateral surface of the curved 

beam as shown in Figure 2.4 by light gray area, it causes distributed forces in tangential 

direction which also generates bending moment along the y axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4. Curved beam with piezoelectric patch 
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Thus, distributed bending moments my can be treated in two parts: an externally 

applied distributed moment denoted by mye and a distributed moment applied by 

piezoelectric patch denoted as mye. The second part can be expressed by using the 

concentrated moment provided by the textbook written by Preumont (2002) as 

 

pppye LUhbdEm /13     (2.34) 

 

where pE , bp and Lp are the Young’s modulus, the width and length of the piezoelectric 

patch. h is the moment arm between the centroidal distance of cross-section of curved 

beam and piezo patch and U is the applied voltage, respectively.  

 

2.6. Finite Element Modeling of Smart Curved Beam 

 

 Equations (2.16) and (2.17) can be written for multidimensional case as follows 

for finite element formulation (Allik and Hughes, 1970): 

 

}]{[}]{[}{ EeScT       (2.35) 

 

}]{[}{][}{ ESeD T      (2.36) 

 

where {T} is stress, {S} is mechanical strain, {E} is electric field, {D} is electric flux 

density vectors. Also, [c], [e], and [ε] denotes the elastic stiffness matrix evaluated at 

constant electric field, the piezoelectric matrix and the dielectric matrix evaluated at 

constant mechanical strain, respectively. 

 The finite element discretization is accomplished by expressing the field 

variables in terms of nodal freedoms vector and element shape functions. Therefore, if 

the nodal displacements vector is denoted by {u}, the displacements vector {uc} which 

has the displacements within element in the x, y, z directions is written as (ANSYS, 

2004) 

 

}{][}{ uNu Tu

c       (2.37) 
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where [Nu] is shape function matrix for displacements and given by 
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where the subscript n represents the node number in the finite element. It is useful to 

express the nodal displacements vector {u} in open form 

 

 Tnnn UZUYUXUZUYUXu 111}{   (2.39) 

 

Similarly, if the nodal electrical potential vector is denoted by {V}, the electrical 

potential Vc within element is written as (ANSYS, 2004) 

 

}{}{ VNV TV

c       (2.40) 

 

where {NV} is shape function vector of electrical potential shape function and given by 

 

 n
TV NNNN 21}{      (2.41) 

 

in which Ni is the shape function for node i. Again, it is useful to express the nodal 

electrical potential vector {V} in open form as 

 

 TnVVVV 21}{      (2.42) 

 

The strain vector {S} is related to the displacement vector {u} as 

 

}]{[}{ uBS u       (2.43) 

 

where [Bu] is written as 
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On the other hand, the electric field vector {E} is related to the electrical 

potential vector {V} as 

 

}]{[}{ VBE V      (2.45) 

 

where [BV] is written as 
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 The coupled finite element matrix equation is obtained using the Equations 

(2.37) to (2.46) in the variational principle available in the paper of Allik and Hughes 

(1970) and expressed for static problem by using the notation in ANSYS (2004) as 
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where [K], ][ dK , and ][ zK  are structural stiffness, dielectric conductivity, and 

piezoelectric coupling matrices, respectively. {F} and {L} are nodal force and nodal 

charge vectors, respectively. They are given in ANSYS (2004) as 
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After finding the nodal displacement and electric potential for an element, 

stresses and electric flux density at any point within the finite element can be obtained 

by substituting Equations (2.43) and (2.45) into Equations (2.35) and (2.36) as 

 

}]{][[}]{][[}{ VBeuBcT Vu     (2.51) 

 

}]{][[}]{[][}{ VBuBeD Vu

T     (2.52) 

 

The finite element model of the smart curved beam with variable curvature is 

generated in ANSYS by using SOLID45 and SOLID5 for beam and piezoelectric patch, 

respectively. A computer code in ANSYS is developed by using APDL (ANSYS 

Parametric Design Language). 
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CHAPTER 3 

 

NUMERICAL RESULTS AND DISCUSSION 

 

3.1. Validation of Model 

 

 The axis of the curved beam with the equation r=4θ, (0o< θ < 90o) is generated 

in ANSYS by using a spline that fits to a series of 50 keypoints. The length of the axis 

is s=476.5 mm. Cross-section of the beam with b=20 mm and h=1.5 mm is dragged 

along the spline in order to form the volume. Fixed-free boundary conditions are used. 

Several numbers of elements to mesh the curved beam are used to have the theoretical 

tip displacement due to the load acting on tip and then element size in axial, tangential 

and radial directions are decided as 5 mm, 4.9635 mm, and 1.5 mm, respectively. 

Details are presented in this section. The meshed curved beam is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 The curved beam and smart patch as meshed 

 

 The piezoelectric layer with bp=20 mm, sp=25 mm, and tp=1 mm is bonded to 

concave surface of the curved beam at the distance dp=10 mm from the root. Its mesh is 

shown in Figure 3.1 by light grey color. 
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The material properties of curved beam and piezoelectric layer given in Tables 

3.1 and 3.2, respectively, are taken from Malgaca (2007). 

 

Table 3.1. Material Properties of curved beam 

 

Material Aluminum 

Young modulus (N/m2) 62 109 

Density (kg/m3) 2676 

Poisson’s ratio 0.32 

 

 

Table 3.2. Material Properties of piezoelectric layer 

 

Material BM532 (PZT-5H) 

c11 (N/m2) 12.6 1010 

c12 (N/m2) 7.95 1010 

c13 (N/m2) 8.41 1010 

c33 (N/m2) 11.7 1010 

c44 (N/m2) 2.33 1010 

e31 (C/m2) -6.5 

e33 (C/m2) 23.3 

e25 (C/m2) 17 

ε11 (F/m) 1.503 10-8 

ε22 (F/m) 1.503 10-8 

ε33 (F/m) 1.3 10-8 

 

The material data given in Table 3.1 and 3.2 are coded in APDL by using the 

following lines: 

 

mp,ex,1,62e9     ! Young modulus of aluminum 

mp,dens,1,2676   ! Density of aluminum 

mp,nuxy,1,0.32   ! Poisson's ratio of aluminum 
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mp,dens,2,7350   ! Density of PZT 

mp,perx,2,15.03e-9   ! epsilon11 

mp,pery,2,15.03e-9   ! epsilon22 

mp,perz,2,13e-9   ! epsilon33 

tb,piez,2     ! Table of e for PZT 

tbdata,3,-6.5    ! e31 

tbdata,6,-6.5    ! e32 

tbdata,9,23.3    ! e33 

tbdata,14,17    ! e25 

tbdata,16,17    ! e16 

tb,anel,2    ! Table of c for PZT 

tbdata,1,126e9,79.5e9,84.1e9  ! c11, c12, c13 

tbdata,7,126e9,84.1e9   ! c22, c23 

tbdata,12,117e9   ! c33 

tbdata,16,23.25e9   ! c44 

tbdata,19,23e9    ! c55 

tbdata,21,23e9    ! c66 

 

 In order to present the correctness and numerical accuracy of the finite element 

model of the beam without piezoelectric layer due to mesh size selection, an equivalent 

straight cantilever beam having the same length and cross-section is loaded from its tip 

by 0.5 N. Then, the tip displacement of the cantilever beam is found from analytical 

method and finite element model. The results are given in Table 3.3. 

 

Table 3.3. Tip displacements of cantilever beam (m) 

 

Analytical 0.0517 

Numerical by FEM 0.0514 

 

 The difference between analytical and numeric result is 0.580271%. Thus, it can 

be concluded from Table 3.3 that the present finite element model gives satisfactory 

result based on the mesh distribution used to model the beam. 
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 The analytical solution for the curved beam with piezoelectric layer in the 

selected geometry is not available in the existing literature. Therefore, the piezoelectric 

layer in the form of thin rectangular prism with lxp=25 mm, lyp=20 mm, and tp=1 mm is 

fixed left hand and loaded from the right hand as shown in Figure 3.2 in order to 

validate finite element model of the laminar form of piezoelectric layer. Although, the 

piezoelectric layer is bonded concave side of curved beam by adopting its curvature, the 

curvature of the piezoelectric layer is neglected in this validation to compare the 

numerical results with analytical results obtained from Equation (2.22). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. The finite element model of piezoelectric layer 

 

 Analytical results are calculated by using E3=-2 105 Volt/m and T1=25 105 N/m2. 

Other data for PZT-5H are s11
E=16.5 10-12 m2/N and d13=-274 10-12 C/N. Thus, 

 

 Strain in x direction due to stress acting in x direction is equal to s11
E T1=0.413 10-4. 

 Strain in x direction due to electric field in z direction is equal to d11
E E3=0.548 10-4. 

 Strain in x direction due to stress acting in x direction and electric field applied in z 

direction is equal to S1=s11
E T1+ d11

E E3=0.961 10-4. 

 

Finite element model results are given in Figures 3.3-3.5 in the same order of the 

analytical results presented above. 
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Figure 3.3. Strain in x direction due to force applied in x direction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Strain in x direction due to voltage applied in z direction 
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Figure 3.5. Strain in x direction due force and voltage 

 

 When the Figures 3.3-3.5 are examined, the following validations can be said: 

 

 Strain in x direction due to stress acting in x direction is generally shown by the 

color of which scale is the fourth part from the right. It has an interval [0.388E-04, 

0.428E-04]. The analytical result 0.413 10-4 is in this interval. 

 Strain in x direction due to electric field in z direction is generally shown by the 

color of which scale is the third part from the right. It has an interval [0.473E-04, 

0.614E-04]. The analytical result 0.548 10-4 is in this interval. 

 Strain in x direction due to stress acting in x direction and electric field applied in z 

direction is generally shown by the color of which scale is the third part from the 

right. It has an interval [0.848E-04, 1.000E-03]. The analytical result 0.961 10-4 is in 

this interval. 

 

Therefore, the finite element model of piezoelectric layer is proven. 
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3.2. Analysis with Present Model 

 

 The curved beam model described Section 3.1 illustrates an electromechanical 

model of curved beam with piezoelectric layer bonded to concave side of the curved 

beam as a patch. The voltage generation of the bonded piezoelectric layer due to the 

load acting on tip of the curved beam is the main topic in this study. The tip load is 

selected as 0.1 N and 0.5 N in the analysis. 

In order to see the in-plane displacements of the curved beam under the tip load 

acting in plane of the neutral axis of the curved beam, deformed and undeformed states 

of the respective system are illustrated in Figure 3.6 and Figure 3.11 for tip load 0.1 N 

and 0.5 N, respectively. Displacements of the tip of the curved beam in x direction can 

be read from aforementioned figures as 0.00562 mm and 0.028101 mm for tip load 0.1 

N and 0.5 N, respectively. Results indicate that displacements are linearly proportional 

to tip load as expected from the linear elasticity. 

 Electrical fields generated by strains in piezoelectric layer due to the tip load 0.1 

N are shown for entire curved beam in Figure 3.7 and for PZT layer in Figure 3.8. Also, 

Figure 3.12 and Figure 3.13 are counterparts of Figures 3.7 and Figure 3.8 for tip load 

0.5 N. Maximum values of electrical field in Figure 3.8 and Figure 3.9 are 10354 V/m 

and 51771 V/m, respectively. They show that electrical field linearly proportional to tip 

load again as expected from the theory. 

 Strains of PZT layer in x direction due to tip load 0.1 N and 0.5 N are shown in 

Figure 3.9 and Figure 3.14, respectively. The reason for selecting direction of x only is 

the 31 operating mode of piezo patch. Maximum strain values in PZT layer in x 

direction which is related with operating mode 31 from related figures are found as 

follows: 0.223E-04 for 0.1 N, 0.111E-03 for 0.5 N. The numerical values are 

proportional to each other. 

 Moreover, in order to check the stress levels of the curved beam due to the tip 

load, stress contours in root region of curved beam and PZT layer are presented in 

Figure 3.10 and Figure 3.15 for tip load 0.1 N and 0.5 N, respectively. Maximum stress 

values in PZT layer in x direction as follows: 0.169E+07 Pa for 0.1 N, 0.845E+07 Pa for 

0.5 N. The numerical values are proportional to each other. 

 The mentioned values can be seen from the figures below, where the numbers 

below the figures increases from left to right. 
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Figure 3.6. Deformed and undeformed states of curved beam under tip load 0.1 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7. Deformed and undeformed states of curved beam under tip load 0.5 N 
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Figure 3.8. Electric field of smart curved beam in z direction due to tip load 0.1 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. Electric field of smart curved beam in z direction due to tip load 0.5 N 
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Figure 3.10. Electric field of PZT layer in z direction due to tip load 0.1 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11. Electric field of PZT layer in z direction due to tip load 0.5 N 
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Figure 3.12. Strains of PZT layer in x direction due to tip load 0.1 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13. Strains of PZT layer in x direction due to tip load 0.5 N 
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Figure 3.14. Stresses of PZT layer in x direction due to tip load 0.1 N 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15. Stresses of PZT layer in x direction due to tip load 0.5 N 
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3.3. Discussion of Numerical Results 

 

 Electromechanical behavior of the curved beam with PZT layer is analyzed in 

Section 3.2. Results that were gathered with respect to the different tip load are given in 

Table 3.4. 

 

Table 3.4. Results comparison for different loadings 

 

 Tip load (N) 

0.1 0.5 

Tip displacement in x direction (mm) 0.00562 0.028101 

Maximum electric field in z direction (V/m) 10354 51771 

Maximum strain of PZT layer in x direction 2.23E-05 1.11E-04 

Maximum stress of PZT layer in x direction (Pa) 1.69E+06 8.45E+06 

 

The following statements can be said: 

 The highest electric fields which are first part from the right, strains which are 

third part from the right and stresses which are third part from the right occurred 

at the middle of piezoelectric patches for both cases. Furthermore, the resultant 

patterns on the figures did not changed when the load was changed. 

 The in-plane displacements of the curved beam under the tip load acting in plane 

of the neutral axis of the curved beam is obtained linearly proportional to tip 

load as expected from the linear elasticity. 

 Electrical field generated by strains in piezoelectric layer due to the tip load is 

linearly proportional to tip load again as expected from the theory 

 Strains of PZT layer in x direction due to tip load are proportional to loading. 

 Stress levels in root region of curved beam and PZT layer are proportional to the 

loading. 
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CHAPTER 4 

 

CONCLUSIONS 

 

In this study, electromechanical behavior of piezoelectric smart curved beam 

with variable radius of curvature is investigated using the Finite Element Method. 

The voltage generation due to the tip load applied to curved beam can be 

estimated by using strain values of piezoelectric patches calculated from piezoelectric 

constitutive equations and mechanics of materials. However, for a curved beam with 

variable curvature, estimation of the voltage generated by piezoelectric patch is not 

possible as a circular curved beam. Therefore, a numerical study is necessary to analyze 

the smart curved beam with variable curvature. 
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