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ABSTRACT

THE DIRICHLET PROBLEM FOR THE FRACTIONAL LAPLACIAN

This thesis is an introduction to the fractional Sobolev spaces and the fractional

Laplace operator. We define the fractional Sobolev spaces and give their properties by

comparing them with the classical version of Sobolev spaces. After giving the motivation

that comes from the random walk theory, we define the fractional Laplacian. We focus

on the mean-value property of s-harmonic functions and get into details of extension and

maximum principle of the weak solution of the Dirichlet problem for the fractional Lapla-

cian. Afterall, we explain the regularity of the weak solution of the Dirichlet problem for

the fractional Laplacian inside a domain and up to the boundary, respectively.
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ÖZET

KESİRLİ LAPLASYAN İÇİN DIRICHLET PROBLEMİ

Bu tez kesirli Sobolev uzayları ve kesirli Laplas operatörü için bir tanıtımdır. Ke-

sirli Sobolev uzayları tanımlanmış ve özellikleri, klasik Sobolev uzayları ile kıyaslanarak

verilmiştir. Rassal yürüyüş teorisinden gelen motivasyon ile kesirli Laplasyan tanımlan-

mıştır. S -harmonik fonksiyonların ortalama-değer özelliği üzerinde durulmuş ve kesirli

Laplasyan için Dirichlet probleminin zayıf çözümlerinin genişleme ve maksimum pren-

sipleri detaylıca işlenmiştir. Tüm bu çalışmadan sonra, kesirli Laplasyan için Dirichlet

probleminin zayıf çözümlerinin, sırasıyla tanım kümesinin iç kısmında ve kapanışındaki

düzgünlüğü anlatılmıştır.
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CHAPTER 1

INTRODUCTION

The fractional version of the Laplace operator has become a very popular area in

the partial differential equations recently. It appears in some probabilistic considerations,

integro-differential equations, Levy process, conservation laws, finance, ultra-relativistic

limits of quantum mechanics, multiple scattering, water waves, non-uniformly elliptic

problems, anomalous diffusion, etc. We give an introduction to the fractional Sobolev

spaces and the fractional Laplace operator in this thesis.

We study the fractional version of the Laplace operator by comparing it with the

classical one. So, we start by introducing the properties of the weak solutions of Laplace’s

and Poisson’s equations. We also give the definitions of Sobolev and Hölder spaces to

understand the fractional Sobolev spaces and regularity of s-harmonic functions. We fin-

ish the preliminaries by giving some useful knowledge about real analysis and Fourier

transform that we need when giving some results about the fractional Laplacian and the

fractional Sobolev spaces.

In the next chapter, we start to construct the fractional Sobolev spaces and define

the corresponding semi-norm and norm on a bounded domain respectively. The differ-

ence of the fractional version comes from the non-integer powers. So, when constructing

the fractional Sobolev spaces and the norm we care about to coincide it with the classical

version when the power is integer. After that we extend the space to Rn by using the

similar process in the extension of the Sobolev spaces. Then we give some embedding

and regularity results about the fractional Sobolev spaces. By realizing the magic choice

p = 2 turns the space out to be a Hilbert space, we specialize the fractional Sobolev spaces

as Hs and we continue by considering the functions in Hs as a Fourier transform. Then

we point out that the results that come from the Fourier transform coincide with the basic

definition of the fractional Sobolev spaces.

First aim of this study is constructing the fractional Laplacian and introduce the

properties of the s-harmonic functions by comparing with the harmonic functions. There-

fore, in Chapter 4, we make the fractional Laplacian appear with the Heuristic probabilis-

1



tic motivation. After defining the fractional Laplace operator, we focus on the constant

that appears in the definition and normalizes the integral to get the coincidence with the

integer powers and in fact, to get the coincidence of the fractional and classical Laplace

operators. Then we study the existence of the weak solution to the Dirichlet problem for

the fractional Laplacian. After determining the conditions for the existence of the weak

solution, we compare the results of the maximum and comparison principles, the mean

value properties and Poisson kernel with the harmonic functions. Finally, we introduce

the interior regularity of the weak solution in the given domain and then we extend this

regularity up to the boundary.
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CHAPTER 2

PRELIMINARIES

This chapter consists of some basic tools about the partial differential equations,

Sobolev spaces, functional analysis, Fourier transform and distribution theory that we

should know as a background to understand the given information in this thesis.

2.1. Laplace’s Equation

We define, in this section, Laplace’s and Poisson’s equations and give their proper-

ties which will be compared with the fractional version in the last chapter. When defining

Laplace’s and Poisson’s equations, Ω denotes an open set in Rn, x ∈ Ω and the unknown

function is u : Ω→ R with u = u(x). The function f : Ω→ R is given.

Now we can define Laplace’s equation as

Δu = 0 (2.1)

and Poisson’s equation as

−Δu = f (2.2)

where the Laplacian of u is Δu =
∑n

i=1 uxi xi .

Definition 2.1 A C2 function u satisfying Laplace’s equation (2.1) is called a harmonic

function.

Definition 2.2 The function

Φ(x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −
1

2π
log |x| if n = 2,

1
n(n−2)α(n)

1
|x|n−2 if n ≥ 3,

(2.3)
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defined for x ∈ Rn, x � 0 is the fundamental solution of Laplace’s equation, where α(n)

denotes the volume of the unit ball in Rn.

Theorem 2.1 (Evans, 2010) Define u by the convolution of the fundamental solution Φ

of Laplace’s equation and the given right hand side function f ∈ C2
c (Rn) such that

u(x) =

∫
Rn
Φ(x − y) f (y) dy, (2.4)

then u ∈ C2(Rn) and u solves Poisson’s equation in Rn.

Theorem 2.2 (Evans, 2010)(Mean-value formulas for Laplace’s equation) If u ∈ C2(Ω)

is harmonic, then

u(x) =
1

α(n)rn

∫
B(x,r)

u dy =
1

nα(n)rn−1

∫
∂B(x,r)

u dS (2.5)

for each ball B(x, r) ⊂ Ω.

Theorem 2.3 (Evans, 2010)(Maximum principle) Suppose Ω is an open and bounded

domain in Rn and u ∈ C2(Ω) ∩C(Ω) is harmonic within Ω.

(i) Then

max
Ω

u = max
∂Ω

u (2.6)

(ii) Furthermore, if Ω is connected and there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u (2.7)

then

u is constant within Ω. (2.8)

Assertion (i) is the maximum principle for Laplace’s equation and (ii) is the strong

4



maximum principle. Replacing u by −u, we recover similar assertions with min replacing

max.

Theorem 2.4 (Evans, 2010)(Smoothness) If u ∈ C(Ω) satisfies the mean-value property

(2.5) for each ball B(x, r) ⊂ Ω, then

u ∈ C∞(Ω). (2.9)

Note that u may not be smooth, or even continuous, up to the boundary.

Theorem 2.5 (Evans, 2010)(Harnack’s inequality) For each connected open set V ⊂⊂
Ω, there exists a positive constant C, depending only on V, such that

sup
V

u ≤ C inf
V

u (2.10)

for all nonnegative harmonic functions u in Ω.

Now consider the boundary-value problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩ −Δu = f in Ω

u = g on ∂Ω.
(2.11)

The solution of this boundary-value problem can be characterized as the mini-

mizer of the energy functional

I[w] :=

∫
Ω

1

2
|Dw|2 − w f dx, (2.12)

w belonging to the set

A := {w ∈ C2(Ω) |w = g on ∂Ω}, (2.13)

with Ω is open and bounded and ∂Ω is of class C1.

5



Theorem 2.6 (Evans, 2010)(Uniqueness) There exists at most one solution u ∈ C2(Ω) of

the boundary-value problem (2.11).

Theorem 2.7 (Evans, 2010)(Dirichlet’s principle) Assume u ∈ C2(Ω) solves (2.11).

Then

I[u] = min
w∈A

I[w]. (2.14)

Conversely, if u ∈ A satisfies (2.14), then u solves the boundary-value problem (2.11).

2.2. Hölder Spaces

Hölder spaces play an important role when determining the regularity of the so-

lutions of the partial differential equations. We assume Ω to be an open set in Rn in this

section.

Definition 2.3 Functions u satisfying

|u(x) − u(y)| ≤ C|x − y|γ (2.15)

for some constant C with x, y ∈ Ω, are said to be Hölder continuous with exponent γ ∈
(0, 1].

Definition 2.4 (i) If u : Ω→ R is bounded and continuous, we write

||u||C(Ω) := sup
x∈Ω
|u(x)| (2.16)

(ii) The γth-Hölder seminorm of u : Ω→ R is

[u]C0,γ(Ω) := sup
x,y∈Ω
x�y

{ |u(x) − u(y)|
|x − y|γ

}
, (2.17)
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and the γth-Hölder norm is

||u||C0,γ(Ω) := ||u||C(Ω) + [u]C0,γ(Ω). (2.18)

Definition 2.5 The Hölder space

Ck,γ(Ω) (2.19)

consists of all functions u ∈ Ck(Ω) for which the norm

||u||Ck,γ(Ω) :=
∑
|α|≤k

||Dαu||C(Ω) +
∑
|α|=k

[Dαu]C0,γ(Ω) (2.20)

is finite.

2.3. Sobolev Spaces

Sobolev spaces play an important role in partial differential equations, especially

when the solution is non-regular. In the second chapter, we will compare the following

properties of Sobolev spaces with the fractional version.

2.3.1. Weak derivatives

Assume Ω to be an open set in Rn and remember that we call a function φ that

belongs to C∞c (Ω) a test function.

Definition 2.6 Suppose u, v ∈ L1
loc(Ω) and α is a multiindex. We say that v is the αth-weak

partial derivative of u, written

Dαu = v, (2.21)

7



provided

∫
Ω

uDαφ dx = (−1)|α|
∫
Ω

vφ dx (2.22)

for all test functions φ ∈ C∞c (Ω).

Lemma 2.1 (Evans, 2010) A weak αth-partial derivative of u, if it exists, is uniquely

defined up to a set of measure zero.

2.3.2. Definition of Sobolev Spaces

Fix 1 ≤ p ≤ ∞ and let k ≥ 0 is an integer. Sobolev spaces are defined as certain

function spaces, whose members have weak derivatives of some orders lying in some Lp

spaces.

Definition 2.7 The Sobolev space

Wk,p(Ω) (2.23)

consists of all locally summable functions u : Ω → R such that for each multiindex α

with |α| ≤ k, Dαu exists in the weak sense and belongs to Lp(Ω).

Remark 2.1 (i) If p = 2, we usually write

Hk(Ω) = Wk,2(Ω) (2.24)

Letter H is used since Hk(Ω) is a Hilbert space. Note also that H0(Ω) = L2(Ω).

(ii) We henceforth identify functions in Wk,p(Ω) which agree a.e.

8



Definition 2.8 If u ∈ Wk,p(Ω), we define its norm to be

||u||Wk,p(Ω) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (
∑
|α|≤k

∫
Ω
|Dαu|p dx)1/p if 1 ≤ p < ∞∑

|α|≤k ess supΩ |Dαu| if p = ∞. (2.25)

Definition 2.9 We denote by

Wk,p
0

(Ω) (2.26)

the closure of C∞c (Ω) in Wk,p(Ω).

Remark 2.2 It is customary to write

Hk
0(Ω) = Wk,2

0
(Ω). (2.27)

2.3.3. Extensions

Theorem 2.8 (Evans, 2010)(Extension Theorem) Suppose 1 ≤ p ≤ ∞ and Ω ⊂ Rn is

bounded and of class C1. Select a bounded open domain U such thatΩ ⊂⊂ U. Then there

exists a bounded linear extension operator

E : W1,p(Ω)→ W1,p(Rn) (2.28)

such that for each u ∈ W1,p(Ω),

(i) Eu = u a.e. in Ω,

(ii) Eu has support within U,

(iii) ||Eu||W1,p(Rn) ≤ C||u||W1,p(Ω),

where the constant C depend on p,Ω and U.

9



2.3.4. Traces

Theorem 2.9 (Evans, 2010)(Trace Theorem) Let 1 ≤ p < ∞. Assume Ω is bounded and

∂Ω is of class C1. Then there exists a bounded linear trace operator

T : W1,p(Ω)→ Lp(∂Ω) (2.29)

such that

(i) Tu = u|∂Ω if u ∈ W1,p(Ω) ∩C(Ω),

(ii) ||Tu||Lp(∂Ω) ≤ C||u||W1,p(Ω),

for each u ∈ W1,p(Ω). with the constant C = C(p,Ω).

Theorem 2.10 (Evans, 2010)(Trace-zero functions in W1,p.) Let 1 ≤ p < ∞. Assume Ω

is bounded and ∂Ω is of class C1. Suppose furthermore that u ∈ W1,p(Ω). Then

u ∈ W1,p
0

(Ω) if and only if Tu = 0 on ∂Ω. (2.30)

2.4. Fourier Transform

We define the Fourier transform and the Schwartz class in this section. This

knowledge will be useful in defining Hs spaces in the next chapter.

Definition 2.10 Given a complex-valued function f (x) of a real variable in Rn, define the

Fourier transform of f , denoted F f or f̂ , by

f̂ (ξ) :=

(
1

2π

)n ∫
Rn

f (x)e−ix·ξ dx (2.31)

and the inverse Fourier transform, denoted F −1 f or f̌ , by

f̌ (ξ) :=

∫
Rn

f (x)eix·ξ dx (2.32)

10



Remark 2.3 There is not a general agreement on the constant (2π)−n and the minus sign

in the definition (2.31). In some sources they could be defined in the inverse Fourier

transform.

Theorem 2.11 (Strichartz, 1994)(Plancherel Formula)

∫
Rn
| f (x)|2 dx =

∫
Rn
| f̂ (ξ)|2 dξ. (2.33)

Definition 2.11 We say a function f is rapidly decreasing if there exist constants MN such

that

| f (x)| ≤ MN |x|−N as x→ ∞, (2.34)

for N = 1, 2, ...

In other words, a rapidly decreasing function f (x) still goes to zero after multipli-

cation by any polynomial p(x) as x→ ∞.

Definition 2.12 (Schwartz Class) If a function f ∈ C∞(Rn) and all its partial derivatives

are rapidly decreasing then we say f is of Schwartz class. We denote the Schwartz class

by S(Rn).

2.5. Measure Theory

It is not possible to measure every set, but if a set A in Rn is measurable then the

measure of A need to be a nonnegative real number or∞. We denote the measure of A by

λ(A) or |A|. We call it Lebesque measure of A. Notice that the word "measure" coincides

with the words "length", "area" and "volume" for the spaces R, R2 and R3, respectively.

If some property is valid everywhere except on a set of measure zero, then we say

that this property is valid almost everywhere, abbreviated by a.e.

If f (x) = g(x) in Ω ⊂ Rn a.e. then there can exist a set A ⊂ Ω such that

A = {x : f (x) � g(x) for x ∈ Ω} with λ(A) = 0. (2.35)

11



Hence clearly in the integration theory we can say that if f = g in Ω a.e. then

∫
Ω

f =
∫
Ω

g. (2.36)

We can complete the section by giving the Lebesque Dominated Convergence

Theorem(LDCT).

Theorem 2.12 (Jones, 2001)(LDCT) Assume f1, f2, ... are measurable functions on Rn.

Assume g ≥ 0, g ∈ L1(Rn). Assume

lim
k→∞

fk(x) exists for all x ∈ Rn (2.37)

and

| fk(x)| ≤ g(x) for all x ∈ Rn. (2.38)

Then limk→∞ fk ∈ L1(Rn) and

∫ (
lim
k→∞

fk

)
dλ = lim

k→∞

∫
fk dλ. (2.39)
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CHAPTER 3

THE FRACTIONAL SOBOLEV SPACES

This chapter is a guide to the fractional Sobolev spaces W s,p. One can see this

spaces named as Aronszajn, Gagliardo or Slobodeckij spaces, but we use the most ac-

cepted name of it, i.e, the fractional Sobolev spaces. We give the main definition and

some other versions of definition to make useful explanations in the trace theory. We deal

with the regularity results, embeddings and extension domains by comparing the Sobolev

spaces with the fractional version.

Let Ω be any smooth or non-smooth open set in Rn. We define the fractional

Sobolev space W s,p(Ω) for any 0 < s < 1 and p ∈ [1,∞) as follows:

W s,p(Ω) :=

{
u ∈ Lp(Ω) :

|u(x) − u(y)|
|x − y| np+s

∈ Lp(Ω ×Ω)

}
(3.1)

with the norm

||u||W s,p(Ω) :=

(∫
Ω

|u|p dx +
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp dxdy

)1/p

. (3.2)

W s,p(Ω) is an intermediary Banach space between Lp(Ω) and W1,p(Ω) for s ∈ (0, 1)

and so-called Gagliardo seminorm of u appears in the definition of the norm such that

[u]W s,p(Ω) :=

( ∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp dxdy

)1/p

(3.3)

Now let us consider the case s > 1. First of all one can easily realise that there

is no need to consider the case s = 1, since W1,p(Ω) is the classical Sobolev space. This

is also valid for any s ∈ Z+. So in all our study, we consider s is a non-integer. We can

seperate s > 1 into an integer and non-integer part such that for m ∈ Z+ and s̃ ∈ (0, 1), we

write s = m + s̃. Then using the motivation that comes from the classical Sobolev spaces

we define

W s,p(Ω) :=
{
u ∈ Wm,p(Ω) : Dαu ∈ W s̃,p(Ω) , ∀α s.t |α| = m

}
, (3.4)
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where α is a multiindex of order m.

Note that this is again a Banach space with respect to the norm

||u||W s,p(Ω) :=

⎛⎜⎜⎜⎜⎜⎜⎝||u||pWm,p(Ω)
+

∑
|α|=m

||Dαu||pWs̃,p(Ω)

⎞⎟⎟⎟⎟⎟⎟⎠
1/p

. (3.5)

For s < 0 and p ∈ (1,∞) we define W s,p(Ω) as the dual space of W−s,q
0

(Ω) where

1/p + 1/q = 1. Here, as motivated in the classical Sobolev spaces, W s,p
0

(Ω) denotes the

closure of C∞c (Ω) in the norm || · ||W s,p(Ω).

3.1. Extension to Rn

We can extend any function u ∈ W s,p(Ω) to a function, say ũ ∈ W s,p(Rn). The

scientists have made that happen just by using the similar procedure in the classical one.

Extension results play a remarkable role in some embedding theorems.

Definition 3.1 (Extension domain) For any s ∈ (0, 1) and p ∈ [1,∞), an open set Ω ⊆ Rn

is an extension domain for W s,p if there exists a positive constant C depending on n, s, p

and Ω such that

∀u ∈ W s,p(Ω), ∃ũ ∈ W s,p(Rn) with ũ(x) = u(x) ∀x ∈ Ω (3.6)

and

||ũ||W s,p(Rn) ≤ C||u||W s,p(Ω). (3.7)

We will also show that any open set Ω ⊆ Rn of class C0,1 with bounded boundary

is an extension domain for the fractional Sobolev spaces.

When constructing the extension of a function u, two method is used: when Ω =

Rn
+ and when u ≡ 0 in a neighborhood of ∂Ω.

Lemma 3.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let Ω be an open set in Rn and

u ∈ W s,p(Ω) with s ∈ (0, 1) and p ∈ [1,∞). If there exists a compact subset K ⊂ Ω such
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that u ≡ 0 in Ω/K, then the extension function ũ defined as

ũ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ u(x) x ∈ Ω
0 x ∈ Rn/Ω

(3.8)

belongs to W s,p(Rn) and

||ũ||W s,p(Rn) ≤ C||u||W s,p(Ω), (3.9)

where C is a suitable positive constant depending on n, s, p,K and Ω.

Proof First of all one can easily see that ũ ∈ Lp(Rn). Hence we just need to show that

the Gagliardo semi-norm of ũ in Rn is bounded by the one of u in Ω.

∫
Rn

∫
Rn

|ũ(x) − ũ(y)|p
|x − y|n+sp dxdy =

∫
Ω

∫
Ω

|ũ(x) − ũ(y)|p
|x − y|n+sp dxdy

+

∫
Rn/Ω

∫
Rn/Ω

|ũ(x) − ũ(y)|p
|x − y|n+sp dxdy

+

∫
Rn/Ω

∫
Ω

|ũ(x) − ũ(y)|p
|x − y|n+sp dxdy

+

∫
Ω

∫
Rn/Ω

|ũ(x) − ũ(y)|p
|x − y|n+sp dxdy

=

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp dxdy

+2

∫
Ω

∫
Rn/Ω

|u(x)|p
|x − y|n+sp dydx,

by using the symmetry of the integral with respect to x and y. We know that [u]W s,p(Ω) is

finite. For any y ∈ Rn/K,

|u(x)|p
|x − y|n+sp =

χK(x)|u(x)|p
|x − y|n+sp ≤ χK(x)|u(x)|p sup

x∈K
1

|x − y|n+sp (3.10)

and so

∫
Ω

∫
Rn−Ω

|u(x)|p
|x − y|n+sp dydx ≤ ||u||pLp(Ω)

∫
Rn−Ω

1

dist(y, ∂K)n+sp dy < ∞, (3.11)

since dist(∂Ω, ∂K) > 0 and n + sp > n. Therefore we are done by choosing a constant C

depending on n, s, p and K. �
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Lemma 3.2 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let Ω be an open set in Rn,

symmetric with respect to the coordinate xn, and consider the sets Ω+ = {x ∈ Ω : xn > 0}
and Ω− = {x ∈ Ω : xn ≤ 0}. Let u be a function in W s,p(Ω+), with s ∈ (0, 1) and

p ∈ [1,∞). Define

ũ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ u(x′, xn) xn ≥ 0,

u(x′,−xn) xn < 0.
(3.12)

Then ũ belongs to W s,p(Ω) and

||ũ||W s,p(Ω) ≤ 4||u||W s,p(Ω+). (3.13)

Proof First of all notice that the domain Ω+ is open. Now let us define x̄ = (x′,−xn).

And then we have

||ũ||pLp(Ω)
=

∫
Ω+

|u(x)|p dx +
∫
Ω−
|u(x)|p dx

=

∫
Ω+

|u(x)|p dx +
∫
Ω+

|u(x̄′, x̄n)|p dx̄

= 2||u||pLp(Ω+)
.

Also notice that if x ∈ Rn
+ and x ∈ Rn/Rn

+ then (xn − yn)2 ≥ (xn + yn)2 and hence

[ũ]
p
W s,p(Ω)

=

∫
Ω+

∫
Ω+

|u(x) − u(y)|p
|x − y|n+sp dxdy

+2

∫
Ω+

∫
Ω−

|u(x) − u(y′,−yn)|p
|x − y|n+sp dxdy

+

∫
Ω−

∫
Ω−

|u(x′,−xn) − u(y′,−yn)|p
|x − y|n+sp dxdy

≤ 4||u||pW s,p(Ω+)
.

This conclude the proof. �

Lemma 3.3 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let Ω be an open set in Rn,

s ∈ (0, 1) and p ∈ [1,∞). Let us consider u ∈ W s,p(Ω) and ψ ∈ C0,1(Ω), 0 ≤ ψ ≤ 1. Then

ψu belongs to W s,p(Ω) and

||ψu||W s,p(Ω) ≤ C||u||W s,p(Ω). (3.14)
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where C = C(n, p, s,Ω).

Proof Since |ψ| ≤ 1, we clearly say that ||ψu||Lp(Ω) ≤ ||u||Lp(Ω). Observe that for any

p ≥ 1, we have for any numbers a and b that

|a + b|p ≤ 2p−1(|a|p + |b|p). (3.15)

And by adding and substracting the factor ψ(x)u(y) we get

[ψu]
p
Ws,p(Ω)

≤ 2p−1( ∫
Ω

∫
Ω

|ψ(x)u(x) − ψ(x)u(y)|p
|x − y|n+sp dydx (3.16)

+

∫
Ω

∫
Ω

|ψ(x)u(y) − ψ(y)u(y)|p
|x − y|n+sp dydx

)
≤ 2p−1( ∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp dydx

+

∫
Ω

∫
Ω

|u(x)|p|ψ(x) − ψ(y)|p
|x − y|n+sp dydx

)

Since ψ ∈ C0,1(Ω), we have

∫
Ω

∫
Ω

|u(x)|p|ψ(x) − ψ(y)|p
|x − y|n+sp dydx ≤ CL

∫
Ω

∫
Ω∩|x−y|≤1

|u(x)|p|x − y|p
|x − y|n+sp dydx (3.17)

+

∫
Ω

∫
Ω∩|x−y|≥1

|u(x)|p
|x − y|n+sp dydx

≤ C̃||u||pLp(Ω)
,

where CL denotes the Lipschitz constant of ψ and C̃ > 0 depends on n, p and s. By the

way notice that the kernel |x − y|−n+(1−s)p is integrable with respect to y if |x − y| ≤ 1 since

n+ (s−1)p < n. Notice also that the kernel |x− y|−n−sp is integrable when |x− y| > 1 since

n + sp > n. Therefore the proof is done. �

These lemmas (3.1), (3.2) and (3.3) are the main steps of the proof of the theorem

that states that every open Lipschitz set Ω with bounded boundary is an extension domain

for the fractional Sobolev space.

Theorem 3.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞), s ∈ (0, 1) and

Ω ⊆ Rn be an open set of class C0,1 with bounded boundary. Then W s,p(Ω) is continuously

embedded in W s,p(Rn), namely for any u ∈ W s,p(Ω) there exists ũ ∈ W s,p(Rn) such that
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ũ|Ω = u and

||ũ||W s,p(Rn) ≤ C||u||W s,p(Ω) (3.18)

where C = C(n, s, p,Ω).

Proof We can cover ∂Ω with finitely many balls Bj such that ∂Ω ⊂ ⋃k
j=1 Bj, since

the boundary ∂Ω is compact. So we can write Rn =
⋃k

j=1 Bj ∪ (Rn/∂Ω). Then there

exist a partition of unity related to this covering, i.e. there exist k + 1 smooth functions

ψ0, ψ1, ..., ψk such that suppψ0 ⊂ Rn − ∂Ω, suppψ j ⊂ Bj for any j ∈ {1, 2, ...k}, 0 ≤ ψ j ≤ 1

for any j ∈ {0, 1, ...k} and
∑k

j=0 ψ j = 1. Then first we have

u =
k∑

j=0

ψ ju. (3.19)

By lemma (3.3), we know that ψ0u belongs to W s,p(Ω). Moreover, we can extend it to the

whole of Rn, since ψ0u ≡ 0 near ∂Ω, by setting

˜ψ0u(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ψ0u(x) x ∈ Ω,
0 x ∈ Rn/Ω

and ψ̃0u ∈ W s,p(Rn). And we have

||ψ̃0u||W s,p(Rn) ≤ C||ψ0u||W s,p(Ω) ≤ C||u||Ws,p(Ω), (3.20)

where C = C(n, s, p,Ω) is possibly different for each step.

SinceΩ is of class C0,1, there exists an isomorphism T j : Q→ Bj which is defined

in Appendix part. So for any j ∈ {1, 2, ..., k}, consider u|Bj∩Ω and set

v j(y) := u(T j(y)) ∀y ∈ Q+. (3.21)
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Now by setting x = T j(x̃) we have

∫
Q+

∫
Q+

|v j(x̃) − v j(ỹ)|p
|x̃ − ỹ|n+sp dx̃dỹ =

∫
Q+

∫
Q+

|u(T j(x̃)) − u(T j(ỹ))|p
|x̃ − ỹ|n+sp dx̃dỹ

=

∫
Bj∩Ω

∫
Bj∩Ω

|u(x) − u(y)|p
|T−1

j (x) − T−1
j (y)|n+sp

det(T−1
j )dxdy

≤ C
∫

Bj∩Ω

∫
Bj∩Ω

|u(x) − u(y)|p
|x − y|n+sp dxdy,

since T j is bi-Lipschitz. Moreover by Lemma (3.2) we can extend v j to all Q so that the

extension v j belongs to W s,p(Q) and

||v j||W s,p(Q) ≤ 4||v j||W s,p(Q+). (3.22)

Now set

wj(x) := v j(T−1
j (x)) ∀x ∈ Bj. (3.23)

Since T j is bi-Lipschitz, we similarly get that wj ∈ W s,p(Bj). Also notice that wj ≡ u on

Bj ∩ Ω. By definition ψ jw j has compact support in Bj and therefore we can consider the

extension ψ̃ jw j to all Rn in such a way that ψ̃ jw j ∈ W s,p(Rn). Also using Lemmas (3.1),

(3.2) and (3.3) we get

||ψ̃ jw j||W s,p(Rn) ≤ C||ψ jw j||W s,p(Bj)

≤ C||wj||W s,p(Bj)

≤ C||v j||W s,p(Q)

≤ C||v j||W s,p(Q+)

≤ C||u||W s,p(Ω∩Bj),

where C = C(n, s, p,Ω) and it is possibly different at each step.

Finally, let

ũ = ψ̃0u +
k∑

j=1

ψ̃ jw j (3.24)
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be the extension of u defined on all Rn. By construction, it is clear that ũ|Ω = u and

||ũ||W s,p(Rn) ≤ C||u||W s,p(Ω). (3.25)

�

Corollary 3.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞), s ∈ (0, 1) and

Ω be an open set in Rn of class C0,1 with bounded boundary. Then for any u ∈ W s,p(Ω),

there exists a sequence {un} ∈ C∞c (Rn) such that un → u as n→ ∞ in W s,p(Ω), i.e,

lim
n→∞ ||un − u||W s,p(Ω) = 0. (3.26)

Proof Let ũ be defined as in Theorem (3.1).

||un − u||Ws,p(Ω) ≤ ||un − ũ||W s,p(Ω) + ||ũ − u||W s,p(Ω)

≤ ||un − ũ||W s,p(Rn) + ||ũ − u||W s,p(Ω) → 0 as n→ ∞.

�

3.2. Fractional Sobolev Inequalities and Embeddings

In this section we show that the fractional Sobolev spaces can sometimes contin-

uously, sometimes compactly be embedded in each other. We start with s ∈ (0, 1) and go

into details. All motivation comes from the classical type of Sobolev spaces.

First results point out that W s′,p is continuously embedded in W s,p when s ≤ s′.

Proposition 3.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞) and 0 < s ≤
s′ < 1. Let Ω be an open set in Rn and u : Ω→ R be a measurable function. Then

||u||W s,p(Ω) ≤ C||u||W s′ ,p(Ω) (3.27)
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for some suitable constant C = C(n, s, p) ≥ 1. In particular,

W s′,p(Ω) ⊆ W s,p(Ω). (3.28)

Proof In order to use the fact that the kernel |x − y|−n−sp is integrable when n + sp > n,

we need to seperate the domain.

∫
Ω

∫
Ω∩{|x−y|≥1}

|u(x)|p
|x − y|n+sp dxdy ≤

∫
Ω

(∫
{|z|≥1}

1

|z|n+sp dz
)
|u(x)|pdx ≤ C(n, s, p)||u||pLp(Ω)

.

(3.29)

Hence,

∫
Ω

∫
Ω∩{|x−y|≥1}

|u(x) − u(y)|p
|x − y|n+sp ≤ 2p−1

∫
Ω

∫
Ω∩{|x−y|≥1}

|u(x)|p + |u(y)|p
|x − y|n+sp (3.30)

≤ 2pC(n, s, p)||u||pLp(Ω)
.

On the other hand,

∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+sp dxdy ≤

∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+s′p dxdy (3.31)

Therefore

||u||pW s,p(Ω)
≤ (2pC(n, s, p) + 1)||u||pLp(Ω)

+

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+s′p dxdy (3.32)

≤ C(n, s, p)||u||W s′ ,p(Ω).

�

Now we show that the result in Proposition (3.1) holds also in the limit case, under

some regularity properties of ∂Ω.

Proposition 3.2 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞) and s ∈
(0, 1). Let Ω be an open set in Rn of class C0,1 with bounded boundary and u : Ω→ R be

a measurable function. Then

||u||W s,p(Ω) ≤ C||u||W1,p(Ω) (3.33)

21



for some suitable constant C = C(n, s, p) ≥ 1. In particular,

W1,p(Ω) ⊆ W s,p(Ω). (3.34)

Proof We can extend the function u ∈ W1,p(Ω) to a function ũ : Rn → R such that

ũ ∈ W1,p(Rn) and ||ũ||W1,p(Rn) ≤ C||u||W1,p(Ω) for a suitable constant C. Now by using Hölder

inequality we get

∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+sp dxdy ≤

∫
Ω

∫
B1

|u(x) − u(z + x)|p
|z|n+sp dzdx

=

∫
Ω

∫
B1

|u(x) − u(x + z)|p
|z|p

1

|z|n+(s−1)p dzdx

≤
∫
Ω

∫
B1

(∫ 1

0

|∇u(x + tz)|p
|z| np+s−1

dt
)p

dzdx

≤
∫
Rn

∫
B1

∫ 1

0

|∇ũ(x + tz)|p
|z|n+p(s−1)

dtdzdx

≤
∫

B1

∫ 1

0

||∇ũ||Lp(Rn)

|z|n+p(s−1)
dtdz

≤ C1(n, s, p)||∇ũ||Lp(Rn)

≤ C2(n, s, p)||∇ũ||W1,p(Ω)

Combining this result with the one in (3.30), we finish the proof. �

Similar results in Proposition (3.1) and Proposition (3.2) appear in the case s > 1.

Corollary 3.2 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞) and s′ ≥ s > 1.

Let Ω be an open set in Rn of class C0,1. Then we have

W s′,p(Ω) ⊆ W s,p(Ω). (3.35)

Proof Write s = m + δ and s′ = m′ + δ′ with the integers m,m′ and δ, δ′ ∈ (0, 1). The

proposition (3.1) is enough for the case m = m′, on the other hand if m′ ≥ m + 1, then

using the propositions (3.1) and (3.2) we have

Wm′+δ′,p(Ω) ⊆ Wm′,p(Ω) ⊆ Wm+1,p(Ω) ⊆ Wm+δ,p(Ω). (3.36)

The proof is done. �
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We need some preliminary results for the forthcoming theorems about embed-

dings. Therefore the following lemmas are to be used in constructing the embedding

results. We give them without their proofs since they includes some details but the impor-

tant thing for the main theorem is just the results of these lemmas.

Lemma 3.4 (Di Nezza, & Palatucci, & Valdinoci, 2011) Fix x ∈ Rn. Let p ∈ [1,∞),

s ∈ (0, 1) and E ⊂ Rn be a measurable set with finite measure. Then,

∫
Rn/E

dy
|x − y|n+sp ≥ C|E|−sp/n, (3.37)

for a suitable constant C = C(n, s, p) > 0.

Lemma 3.5 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp < n. Fix T > 1; let N ∈ Z and ak be a bounded, nonnegative, decreasing

sequence with ak = 0 for any k ≥ N. Then,

∑
k∈Z

a(n−sp)/n
k T k ≤ C

∑
k∈Zak�0

ak+1a−sp/n
k T k, (3.38)

for a suitable constant C = C(n, s, p,T ) > 0, independent of N.

Lemma 3.6 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp < n. Let f ∈ L∞(Rn) be compactly supported. For any k ∈ Z let

ak := |{| f | > 2k}|. (3.39)

Then, ∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp dxdy ≥

∑
k∈Zak�0

ak+1a−sp/n
k T k, (3.40)

for a suitable constant C = C(n, s, p) > 0.

Lemma 3.7 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let q ∈ [1,∞) and f : Rn → R

be a measurable function. For any N ∈ N, let

fN(x) := max{min{ f (x),N},−N} ∀x ∈ Rn. (3.41)

23



Then,

lim
N→∞ || fN ||Lq(Rn) = || f ||Lq(Rn). (3.42)

Taking into account these lemmas, we are ready to state and prove some embed-

ding theorems.

Theorem 3.2 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp < n. Then there exists a positive constant C = C(n, p, s) such that, for any

measurable and compactly supported function f : Rn → R, we have

|| f ||p
Lp∗ (Rn)

≤ C
∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp dxdy, (3.43)

where p∗ = p∗(n, s) is the so-called "fractional critical exponent" and it is equal to np/(n−
sp).

Consequently, the space W s,p(Rn) is continuously embedded in Lq(Rn) for any

q ∈ [p, p∗].

Proof Notice first that if the right hand side of (3.43) is unbounded then the proof is

automatically finished. So we may suppose that it is finite. Moreover we can suppose,

without loss of generality, that f ∈ L∞(Rn). Since if the right hand side of (3.43) is

bounded for f then it is also bounded for the function fN , which is described in (3.41).

Therefore by the Dominated Convergence Theorem together with Lemma (3.7) imply

lim
N→∞

∫
Rn

∫
Rn

| fN(x) − fN(y)|p
|x − y|n+sp dxdy =

∫
Rn

∫
Rn

| f (x) − f (y)|p
|x − y|n+sp dxdy. (3.44)

We obtain the estimate (3.43) for the function f . Now define for any integer k,

Ak := {| f | > 2k} (3.45)

and

ak := |Ak|. (3.46)
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Then we have

|| f ||p
Lp∗ (Rn)

=
∑
k∈Z

∫
Ak−Ak+1

| f (x)|p∗dx

≤
∑
k∈Z

∫
Ak−Ak+1

(2k+1)p∗dx

≤
∑
k∈Z

(2(k+1)p∗ak

≤ 2p

⎛⎜⎜⎜⎜⎜⎝∑
k∈Z

2kp∗ak

⎞⎟⎟⎟⎟⎟⎠
p/p∗

≤ 2p
∑
k∈Z

2kpa(n−sp)/n
k .

Then by choosing T = 2p, Lemma (3.5) yields for a suitable constant C = C(n, s, p)

|| f ||p
Lp∗ (Rn)

≤ C
∑
k∈Z
ak�0

2kpak+1a−
sp
n

k . (3.47)

Finally applying Lemma (3.6), we obtain the desired result. Furthermore, the embedding

for q ∈ (p, p∗) follows from Hölder inequality. �

The above theorem does not usually hold for a smaller domain Ω ⊂ Rn, since the

extension function requires some assumptions on the domain.

Theorem 3.3 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp < n. Let Ω ⊆ Rn be an extension domain for W s,p. Then there exists a

positive constant C = C(n, p, s,Ω) such that, for any f ∈ W s,p(Ω), we have

|| f ||Lq(Ω) ≤ C|| f ||W s,p(Ω), (3.48)

for any q ∈ [p, p∗]; i.e, the space W s,p(Ω) is continuously embedded in Lq(Ω) for any

q ∈ [p, p∗].

If, in addition, Ω is bounded, then the space W s,p(Ω) is continuously embedded in

Lq(Ω) for any q ∈ [1, p∗].

Proof Let f ∈ W s,p(Ω). There exists a constant C1(n, s, p,Ω) > 0 with f̃ such that
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f̃ = f in Ω and

|| f̃ ||W s,p(Rn) ≤ C1|| f ||W s,p(Ω), (3.49)

since Ω is an extension domain.

By Theorem (3.2),

|| f̃ ||Lq(Rn) ≤ C2|| f̃ ||W s,p(Rn). (3.50)

Combaining (3.49) and (3.50) we get for C = C1C2 that

|| f ||Lq(Ω) = || f̃ ||Lq(Ω) ≤ || f̃ ||Lq(Rn) ≤ C2|| f̃ ||W s,p(Rn) ≤ C|| f ||W s,p(Ω). (3.51)

If Ω is bounded then the embedding for q ∈ [1, p) follows from Hölder inequailty. �

Note that the critical exponent p∗ → ∞ as sp→ n and so in this case f belongs to

Lq for any q if f ∈ W s,p as stated in the following two theorems.

Theorem 3.4 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp = n. Then there exists a positive constant C = C(n, p, s,Ω) such that, for any

measurable and compactly supported function f : Rn → R, we have

|| f ||Lq(Rn) ≤ C|| f ||W s,p(Rn), (3.52)

for any q ∈ [p,∞); i.e, the space W s,p(Rn) is continuously embedded in Lq(Rn) for any

q ∈ [p,∞).

Theorem 3.5 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1) and p ∈ [1,∞)

such that sp = n. Let Ω ⊆ Rn be an extension domain for W s,p. Then there exists a

positive constant C = C(n, p, s,Ω) such that, for any f ∈ W s,p(Ω), we have

|| f ||Lq(Ω) ≤ C|| f ||W s,p(Ω), (3.53)

for any q ∈ [p,∞); i.e, the space W s,p(Ω) is continuously embedded in Lq(Ω) for any

q ∈ [p,∞).

If, in addition, Ω is bounded, then the space W s,p(Ω) is continuously embedded in

Lq(Ω) for any q ∈ [1,∞).
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We did not give the proofs of Theorems (3.4) and (3.5) since they can easily be

obtained by combaining Theorems (3.2) and (3.3) with Proposition (3.1).

3.3. Hölder Regularity and Its Relation with W s,∞

We show the certain regularity results for functions in W s,p(Ω) under some as-

sumptions on the domain, dimension, fractional power, etc. We start by defining what an

external cusp is. And then we give a lemma which is required to prove the main regularity

theorem. After that we relate this regularity with the definition of W s,∞.

Lemma 3.8 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let p ∈ [1,∞) and sp ∈ (n, n +

p]. Let Ω ⊂ Rn be a domain with no external cusps and f be a function in W s,p(Ω). Then,

for any x0 ∈ Ω and R,R′, with 0 < R′ < R < diam(Ω), we have

|〈 f 〉BR(x0)∩Ω − 〈 f 〉BR′ (x0)∩Ω| ≤ c[ f ]p,sp|BR(x0) ∩Ω|(sp−n)/np (3.54)

where

[ f ]p,sp :=

(
sup

x0∈Ω,ρ>0

ρ−sp
∫

Bρ(x0)∩Ω
| f (x) − 〈 f 〉Bρ(x0)∩Ω|p dx

)1/p

(3.55)

and

〈 f 〉Bρ(x0)∩Ω :=
1

|Bρ(x0) ∩Ω|
∫

Bρ(x0)∩Ω
f (x) dx. (3.56)

We don’t give the proof of this lemma since it requires a detailed technique that

we do not need. The importance of this lemma is being used in the proof of the following

theorem, but one can find the proof in references.

Theorem 3.6 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let Ω ⊆ Rn be an extension

domain for W s,p with no external cusps and let p ∈ [1,∞), s ∈ (0, 1) such that sp > n.

Then, there exists C > 0, depending on n, s, p and Ω, such that

|| f ||C0,α(Ω) ≤ C|| f ||W s,p(Ω), (3.57)

for any f ∈ Lp(Ω), with α := (sp − n)/n.

Proof We use C as suitable positive quantities that can differ in each step. And we

assume || f ||W s,p(Ω) is finite, otherwise the proof is so simple. Let f̃ be the extension of f .
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Then Hölder inequality together with integratin over Br(x0) yields

∫
Br(x0)

| f̃ (x) − 〈 f̃ 〉Br(x0)|p dx ≤ 1

|Br(x0)|
∫

Br(x0)

∫
Br(x0)

| f̃ (x) − f̃ (y)|p dxdy. (3.58)

Since |x − y| ≤ 2r for any x, y ∈ Br x0, we get

∫
Br(x0)

| f̃ (x) − 〈 f̃ 〉Br(x0)|p dx ≤ (2r)n+sp

|Br(x0)|
∫

Br(x0)

∫
Br(x0)

| f̃ (x) − f̃ (y)|p
|x − y|n+sp dxdy

≤ 2n+sprspC|| f ||pW s,p(Ω)

|B1| ,

so

[ f ]p
p,sp ≤ C|| f ||pW s,p(Ω)

. (3.59)

Now, we will show that f is Hölder continuous. Taking into account Lemma 3.8, it

follows that the sequence of functions x→ 〈 f 〉BR(x)∩Ω converges uniformly in x ∈ Ω when

R → 0. Also the limit function g will be continuous and the same holds for f , since by

Lebesgue theorem theorem we have that

lim
R→0

1

|BR(x0) ∩Ω|
∫

BR(x)∩Ω
f (y) dy = f (x) for almost every x ∈ Ω. (3.60)

Now, for any x, y ∈ Ω set R = |x − y|. We have

| f (x) − f (y)| ≤ | f (x) − 〈 f̃ 〉B2R(x)| + |〈 f̃ 〉B2R(x) − 〈 f̃ 〉B2R(y)| + |〈 f̃ 〉B2R(y) − f (y)|. (3.61)

Getting the limit in Lemma 3.8 as R′ → 0 and writing 2R instead of R, we get for any

x ∈ Ω
| f (x) − 〈 f̃ 〉B2R(x)| ≤ c[ f ]p,sp|B2R(x)|(sp−n)/np ≤ C[ f ]p,spR(sp−n)/p, (3.62)

where the constant C = c2(sp−n)/p/|B1|.
We also have

|〈 f̃ 〉B2R(x) − 〈 f̃ 〉B2R(y)| ≤ | f (z) − 〈 f̃ 〉B2R(x)| + | f̃ (z) − 〈 f̃ 〉B2R(y)| (3.63)
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and so by integration on z ∈ B2R(x) ∩ B2R(y), we have

|〈 f̃ 〉B2R(x) − 〈 f̃ 〉B2R(y)| ≤
∫

B2R(x)∩B2R(y)

| f̃ (z) − 〈 f̃ 〉B2R(x)|dz

+

∫
B2R(x)∩B2R(y)

| f̃ (z) − 〈 f̃ 〉B2R(y)|dz

≤
∫

B2R(x)

| f̃ (z) − 〈 f̃ 〉B2R(x)|dz

+

∫
B2R(y)

| f̃ (z) − 〈 f̃ 〉B2R(y)|dz.

Furthermore, since BR(x) ∪ BR(y) ⊂ (B2R(x) ∩ B2R(y)), we have

|BR(x)| ≤ |B2R(x) ∩ B2R(y)| and |BR(y)| ≤ |B2R(x) ∩ B2R(y)| (3.64)

and so

|〈 f̃ 〉B2R(x) − 〈 f̃ 〉B2R(y)| ≤ 1

|BR(x)|
∫

B2R(x)

| f̃ (z) − 〈 f̃ 〉B2R(x)|dz

+
1

|BR(y)|
∫

B2R(y)

| f̃ (z) − 〈 f̃ 〉B2R(y)|dz.

On the other hand Hölder inequailty gives

1

|BR(x)|
∫

B2R(x)

| f̃ (z) − 〈 f̃ 〉B2R(x)|dz ≤ |B2R(x)|(p−1)/p

|BR(x)|
(∫

B2R(x)

| f̃ (z) − 〈 f̃ 〉B2R(x)|pdz
)1/p

≤ |B2R(x)|(p−1)/p

|BR(x)| (2R)s[ f ]p,sp

≤ C[ f ]p,spR(sp−n)/p. (3.65)

And similarly we get

1

|BR(y)|
∫

B2R(y)

| f̃ (z) − 〈 f̃ 〉B2R(y)|dz ≤ C[ f ]p,spR(sp−n)/p. (3.66)
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Combining (3.65) with (3.66), we get

| f (x) − f (y)| ≤ C[ f ]p,sp|x − y|(sp−n)/p, (3.67)

up to relabeling the constant C.

Hence, by taking into account (3.59), we can conclude that for α = (sp − n)/p,

f ∈ C0,α(Ω). Finally taking R0 <diam(Ω) with using Hölder inequality, we have for any

x ∈ Ω,

| f (x)| ≤ |〈 f̃ 〉BR(x)| + | f (x) − 〈 f̃ 〉BR(x)|
≤ C
|BR0

(x)|1/p || f ||Lp(Ω) + c[ f ]p,sp|BR0
(x)|α. (3.68)

Hence, by (3.59), (3.67) and (3.68), we get

|| f ||C0,α(Ω) = || f ||L∞(Ω) + sup
x,y∈Ω
x�y

| f (x) − f (y)|
|x − y|α

≤ C(|| f ||Lp(Ω) + [ f ]p,sp)

≤ C|| f ||Ws,p(Ω).

for a suitable constant C. �

Up to now, we have not defined the fractional Sobolev space for p = ∞, but now

we observe from Theorem (3.6) that W s,∞ could be defined as the space of functions

{
u ∈ L∞(Ω) :

|u(x) − u(y)|
|x − y|s ∈ L∞(Ω ×Ω)

}
, (3.69)

but this space is nothing but C0,s(Ω).

As a result the Hölder space C0,s(Ω) is a characterization for the fractional Sobolev

space W s,∞(Ω).
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3.4. The Specialised Fractional Sobolev Space: Hs

When p = 2, the fractional Sobolev space W s,2(Rn) turns out to be a Hilbert space.

That is why we denote it by Hs(Rn). Similarly we denote W s,2
0

(Rn) by Hs
0
(Rn). We can

also define this special fractional Sobolev space by using the Fourier transform as follows:

Hs(Rn) :=

{
u ∈ L2(Rn),

∫
Rn

(1 + |ξ|2s)|F u(ξ)|2 dξ < ∞
}

(3.70)

for any s > 0, not need to be in (0, 1). And for s < 0,

Hs(Rn) :=

{
u ∈ S′(Rn),

∫
Rn

(1 + |ξ|2)s|F u(ξ)|2 dξ < ∞
}

(3.71)

The two definitions of Hs(Rn), which are via the Gagliardo norm and via Fourier

transform are equivalent.

Proposition 3.3 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1). Then the

fractional Sobolev space Hs(Rn) defined by Fourier transform and the Gagliardo norm

coincide. In particular for any u ∈ Hs(Rn)

[u]2
Hs(Rn) = 2C−1

∫
Rn
|ξ|2s|F u(ξ)|2 dξ. (3.72)

where C = C(n, s) is a constant.
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Proof We use Plancherel Formula in this proof.

[u]2
Hs(Rn) =

∫
Rn

∫
Rn

|u(z + y) − u(y)|2
|z|n+2s dzdy

=

∫
Rn

(∫
Rn

∣∣∣∣∣u(z + y) − u(y)

|z|n/2+s

∣∣∣∣∣2 dy
)

dz

=

∫
Rn

∣∣∣∣∣
∣∣∣∣∣u(z + ·) − u(·)
|z|n/2+s

∣∣∣∣∣
∣∣∣∣∣2
L2(Rn)

dz

=

∫
Rn

∣∣∣∣∣∣
∣∣∣∣∣∣F

(
u(z + ·) − u(·)
|z|n/2+s

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

L2(Rn)

dz

=

∫
Rn

∫
Rn

|eiξ·z − 1|2
|z|n+2s |F u(ξ)|2dξdz

= 2

∫
Rn

∫
Rn

(1 − cos ξ · z)

|z|n+2s |F u(ξ)|2dzdξ

= 2C−1

∫
Rn
|ξ|2s|F u(ξ)|2dξ

�

Remark 3.1 We will see that the constant C in the Propositon (3.3) is nothing but the

normalization constant that will be defined in the definition of the fractional Laplacian

operator.

Remark 3.2 The equivalence of the definitions of Hs relies on Pancherel’s Formula. Un-

less p = q = 2, one cannot go forward and backward between Lp and Lq via Fourier

transform. That is why the general fractional Sobolev space defined via Fourier trans-

form for 1 < p < ∞ does not coincide with the classical definition and this will not be

discussed in this section.

We can analyze the traces of the Sobolev functions by using the definition of

Hs(Rn) via the Fourier transform. Let Ω ⊆ Rn be an open set with continuous boundary

∂Ω. We denote, as T , the trace operator which is the linear operator defined by the uni-

formly continuous extension of the operator of restriction to ∂Ω for the functions in the

space C∞c (Rn) restricted to Ω.

For any x = (x′, xn) ∈ Rn and for any u ∈ S(Rn), we have

v(x′) = u(x′, 0) ∀x′ ∈ Rn−1, (3.73)
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where v ∈ S(Rn−1) is the restriction of u on the hyperplane xn = 0.

Consider now the Fourier transformation of v and the integration of the Fourier

transform of u on the real line, respectively.

F v(ξ′) =
1

(2π)
n−1

2

∫
Rn−1

e−iξ′·x′v(x′) dx′

=
1

(2π)
n−1

2

∫
Rn−1

e−iξ′·x′u(x′, 0) dx′.

On the other hand,

∫
R

F u(ξ′, ξn) dξn =

∫
R

1

(2π)
n
2

∫
Rn

e−i(ξ′,ξn)·(x′,xn)u(x′, xn) dx′dxndξn

=
1

(2π)
n−1

2

∫
Rn−1

e−iξ′·x′
[

1

(2π)
1
2

∫
R

∫
R

e−iξn·xnu(x′, xn) dxndξn

]
dx′

=
1

(2π)
n−1

2

∫
Rn−1

e−iξ′·x′[u(x′, 0)] dx′.

So we see from these two calculations that

F v(ξ′) =
∫
R

F u(ξ′, ξn) dξn ∀ξ′ ∈ Rn−1. (3.74)

We can define the traces of the function in Hs(Rn) as the following proposition.

We do not give the proof of it, since it needs some detailed technique but one can find it

from the reference of it.

Proposition 3.4 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s > 1/2, then any

function u ∈ Hs(Rn) has a trace v on the hyperplane {xn = 0}, such that v ∈ Hs− 1
2 (Rn−1).

Also, the trace operator T is surjective from Hs(Rn) onto Hs− 1
2 (Rn−1).
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CHAPTER 4

FRACTIONAL LAPLACIAN

In this chapter we focus on the fractional Laplacian , i.e, (−Δ)s. We start by giving

the definition of this operator and then continue with the motivation that introduces how

the fractional Laplacian appeared. After all we study on the weak solutions and regularity

properties of these solutions, respectively.

Definition 4.1 The fractional Laplace operator is given by

(−Δ)su(x) := cn,s

∫
Rn

u(x) − u(y)

|x − y|n+2s dy (4.1)

where s ∈ (0, 1) is called the fractional power of the operator and cn,s > 0 is the normal-

ization constant depending on the dimension n and the fractional power s.

First of all, one should notice that (−Δ)s is a non-local operator. So it uses infor-

mation about u far from x.

Notice also that the fractional Laplace operator has a singularity at x = y so that it

requires certain regularity of u in order to remove the singularity and evaluate the integral.

The fractional Laplace operator (−Δ)s differentiates the function u in some sense

because of the singularity at x = y. That is why it is known as an integro-differential

operator.

When s ∈ (0, 1/2) the singularity is removable and the definition of the fractional

Laplacian makes sense. But when s ∈ [1/2, 1), the integral in the definition need to be

understood in the principal value sense such that

(−Δ)su(x) = cn,sP.V.
∫
Rn

u(x) − u(y)

|x − y|n+2s dy = cn,s lim
ε↓0

∫
Rn/Bε (x)

u(x) − u(y)

|x − y|n+2s dy (4.2)

Remark 4.1 In the case 0 < s < 1/2, the integral in the definition of the fractional
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Laplace operator is not really singular near x. Indeed for any u ∈ S, we have

∫
Rn

|u(x) − u(y)|
|x − y|n+2s dy ≤ C

∫
BR

|x − y|
|x − y|n+2s dy + ||u||L∞(Rn)

∫
Rn/BR

1

|x − y|n+2s dy

= C
(∫

BR

1

|x − y|n+2s−1
dy +

∫
Rn/BR

1

|x − y|n+2s dy
)

= C
(∫ R

0

1

|ρ|2s dρ +
∫ ∞

R

1

|ρ|2s+1
dρ

)
< ∞

where C is a positive constant depending only on n and ||u||L∞(Rn).

In the literature, one can see the definition of the fractional Laplacian in some

different ways. For example if we set z = y − x then the singularity appears at the origin

and we get the following definition for the fractional Laplacian:

(−Δ)su(x) = cn,s

∫
Rn

u(x) − u(x + z)

|z|n+2s dz (4.3)

Another option to define (−Δ)s is using the symmetry of |z|−n−2s. By using some

calculation tricks we get the following definition:

(−Δ)su(x) =
1

2
cn,s

∫
Rn

2u(x) − u(x + z) − u(x − z)

|z|n+2s dz (4.4)

The beauty of this option is removing the principal value sense for s ≥ 1/2 too,

when some regularity properties about u is given, since it is a form of a weighted second-

order differential quotient and for any smooth enough u, for example u ∈ C2(Rn)∩L∞(Rn),

a second-order Taylor expansion yields

2u(x) − u(x + z) − u(x − z)

|z|n+2s ≤ ||D
2u||L∞(Rn)

|z|n+2s−2
(4.5)

and clearly we see that the right-hand side is integrable near the origin.

Using this expression one can realise that if u ∈ C2(Rn) ∩ L∞(Rn) then

|(−Δ)su(x)| ≤ C
∫

B1

||D2u||L∞(Rn) dz+C
∫
Rn−B1

4||u||L∞(Rn)

|z|n+2s dz ≤ C(||u||L∞(Rn) + ||D2u||L∞(Rn)).

(4.6)
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4.1. Heuristic Probabilistic Motivation

The purpose of this section is to show the connection of the fractional Laplacian

with the real-world phenomena. In general, singular integrals and nonlocal operators are

now becoming fashionable because of this connection. This section illustrates how the

fractional Laplace operator arises in long jump random walks.

Consider the function K : Rn → [0,∞) which is even, i.e, K(y) = K(−y) for any

y ∈ Rn and satisfying ∑
q∈Zn

K(q) = 1. (4.7)

Give a small h > 0, we consider a random walk on the lattice hZn. After any time

T > 0, a particle jumps from a point of hZn to any other point. K(q− q̃) is the probability

that the particle jumps from the point hq to the other point hq̃. Notice that the particle

may experience arbitrarily long jumps, though with a small probability.

Let Ω be a bounded open set in Rn and g : Rn/Ω→ R be a given payoff function.

We call u(x) the expected payoff that the particle will get if it starts at x ∈ hZn. Notice that

u(x) = g(x) in Rn/Ω. Moreover, if x ∈ Ω, then the expected payoff equals the sum of all

expected payoffs of all possible positions x + hq weighted by the probability of jumping

from x to x + hq,

u(x) =
∑
q∈Zn

K(q)u(x + hq) if x ∈ Ω. (4.8)

Multiplying both sides of (4.8) by (4.7) yields to write the identity

∑
q∈Zn

K(q)[u(x) − u(x + hq)] = 0. (4.9)

For the identity (4.9), the most canonical and simple choice of the kernel is

K(y) = c|y|−n−2s (4.10)

for y � 0 with s ∈ (0, 1), assuming K(0) = 0 to coincide the kernel with the probability

function. Notice that c is chosen to satisfy (4.7).

With this choice of the kernel, the identity (4.9) turns out to be

∑
q∈Zn

u(x) − u(x + hq)

|q|n+2s = 0. (4.11)
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Multiplying by an appropriate factor h2s, we get

hn
∑
q∈Zn

u(x) − u(x + hq)

|hq|n+2s = 0. (4.12)

which is the approximate Riemann sum of

∫
Rn

u(x) − u(x + y)

|y|n+2s dy = 0 for x ∈ Ω. (4.13)

Therefore as h→ 0, the limiting stochastic process will satisfy the following situ-

ation:

The expected payoff function u(x) solves the Dirichlet problem for the fractional Lapla-

cian

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = 0 in Ω

u = g in Rn/Ω.
(4.14)

If we consider running costs or expected exit times in case of local PDEs, we are

led to Dirichlet problems of type

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = f in Ω

u = 0 in Rn/Ω.
(4.15)

Remark 4.2 The boundary conditions are in Rn/Ω instead of ∂Ω as in the classical ver-

sion of the Laplace operator!
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4.2. Fourier Symbol and Asymptotics of The Normalization

Constant

In this section we deal with the normalization constant cn,s which appears in the

definition of the fractional Laplacian. We also look for the Fourier symbol(or multiplier)

of (−Δ)s which is a function S : Rn → R such that

(−Δ)su = F −1(S (F u)). (4.16)

In view of the definition (4.4) we remind for s ∈ (0, 1) that

(−Δ)su(x) =
1

2
cn,s

∫
Rn

2u(x) − u(x + z) − u(x − z)

|z|n+2s dz (4.17)

and let us now define the normalization constant.

cn,s =

(∫
Rn

1 − cos η1

|η|n+2s dη
)−1

(4.18)

Proposition 4.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let s ∈ (0, 1). Then for any

u ∈ S, the Fourier symbol S of (−Δ)s is |ξ|2s for all ξ ∈ Rn.

Proof We want to check that

F [(−Δ)su](ξ) = |ξ|2sF [u](ξ). (4.19)

Indeed, we have

F [(−Δ)su](ξ) = F
[
1

2
cn,s

∫
Rn

2u(x) − u(x + z) − u(x − z)

|z|n+2s dz
]

(4.20)

=
1

2
cn,s

∫
Rn

(2F [u(x)] − F [u(x + z)] − F [u(x − z)])
dz
|z|n+2s (4.21)

=
1

2
cn,s

∫
Rn

(2 − eiξ·z − e−iξ·z)F [u](ξ)
dz
|z|n+2s (4.22)

=

[
cn,s

∫
Rn

(1 − cos(ξ · z))
dz
|z|n+2s

]
F [u](ξ). (4.23)
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Hence, in order to obtain (4.1), it suffices to show that

cn,s

∫
Rn

(1 − cos(ξ · z))
dz
|z|n+2s = |ξ|n+2s. (4.24)

To check this, first observe that

1 − cos η1

|η|n+2s ≤ |η1|2
|η|n+2s ≤

1

|η|n−2+2s (4.25)

near η = 0. Therefore,

∫
Rn

1 − cos η1

|η|n+2s dη is finite and positive. (4.26)

Now, construct the function J : Rn → R as

J(ξ) =

∫
Rn

1 − cos (ξ · z)

|z|n+2s dz. (4.27)

One can easily check that J is rotationally invariant, i.e,

J(ξ) = J(|ξ|e1) (4.28)

where e1 denotes the first direction in Rn. Therefore the substitution η = |ξ|z gives that

J(ξ) = J(|ξ|e1) (4.29)

=

∫
Rn

1 − cos (|ξ|z1)

|z|n+2s dz (4.30)

=
1

|ξ|n
∫
Rn

1 − cos η1

|η/|ξ||n+2s dη (4.31)

= c−1
n,s|ξ|2s. (4.32)

Hence the proof is complete by the choice of cn,s =
(∫

Rn
1−cos η1

|η|n+2s dη
)−1

as in (4.18). �

We consider now the limit case of the fractional Laplacian (−Δ)s when s ↓ 0 and
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s ↑ 1. If the weak solution u is a smooth function then we rightly expect that the operator

behaves just like the function u itself and the classical Laplacian −Δ, respectively. We

start by a corollary, without its proof, which will be used when proving the claimed limit

results.

Corollary 4.1 (Di Nezza, & Palatucci, & Valdinoci, 2011) For any n > 1, let cn,s be

the normalization constant of the fractional Laplacian, defined by (4.18). The following

statements hold:

(i) lims↑1
cn,s

s(1−s)
= 4n

α(n−1)
,

(ii) lims↓0
cn,s

s(1−s)
= 2

α(n−1)
,

where α(n − 1) denotes the (n − 1)-dimensional measure of the unit sphere S n−1.

We are ready to define the limit cases now.

Proposition 4.2 (Di Nezza, & Palatucci, & Valdinoci, 2011) Let n > 1. For any u ∈
C∞0 (Rn) the following statements hold:

(i) lims↑1(−Δ)su = −Δu,

(ii) lims↓0(−Δ)su = u.

Proof Fix x ∈ Rn, R0 > 0 such that suppu ⊆ BR0
and set R = R0 + |x| + 1. First of all,

∣∣∣∣∣∣
∫

BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy

∣∣∣∣∣∣ ≤ ||u||C2(Rn)

∫
BR

|y|2
|y|n+2s dy

≤ α(n − 1)||u||C2(Rn)

∫ R

0

1

|ρ|2s−1
dρ

=
α(n − 1)||u||C2(Rn)R2−2s

2(1 − s)
. (4.33)

Observe also that |x ± y| ≥ |y| − |x| ≥ R − |x| > R0 and u(x ± y) = 0 for |y| ≥ R. Hence,

−1

2

∫
Rn/BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy = u(x)

∫
Rn/BR

1

|y|n+2s dy

= α(n − 1)u(x)

∫ ∞

R

1

|ρ|2s−1
dρ

=
α(n − 1)R−2s

2s
u(x). (4.34)

40



Then by (4.33) and Corollary 4.1, we have

lim
s↓0

[
−cn,s

2

∫
BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy
]
= 0 (4.35)

and so we get

lim
s↓0

(−Δ)su = lim
s↓0

[
−cn,s

2

∫
Rn/BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy
]

= lim
s↓0

[
−cn,sα(n − 1)R−2s

2s
u(x)

]
= u(x),

where the last identity follows from (4.34) and Corollary 4.1. So the first part of the proof

is finished.

Now consider the case s ↑ 1 in a similar fashion.

∣∣∣∣∣∣
∫
Rn/B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy

∣∣∣∣∣∣ ≤ 4||u||L∞(Rn)

∫
Rn/B1

1

|y|n+2s dy

≤ 4α(n − 1)||u||L∞(Rn)

∫ ∞

1

1

|ρ|2s+1
dρ

=
2α(n − 1)

s
||u||L∞(Rn).

Also we have

lim
s↑1

[
−cn,s

2

∫
Rn−B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy
]
= 0 (4.36)

On the other hand, we have

∣∣∣∣∣∣
∫

B1

u(x + y) + u(x − y) − 2u(x) − D2u(x)y · y
|y|n+2s dy

∣∣∣∣∣∣ ≤ ||u||C3(Rn)

∫
B1

|y|3
|y|n+2s dy

≤ α(n − 1)||u||C3(Rn)

∫ 1

0

1

|ρ|2s−2
dρ

=
α(n − 1)||u||C3(Rn)

3 − 2s
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and this implies that

lim
s↑1

[
−cn,s

2

∫
B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy
]
= lim

s↑1

[
−cn,s

2

∫
B1

D2u(x)y · y
|y|n+2s dy

]
. (4.37)

Notice that if i � j then

∫
B1

∂2
i ju(x)yi · y j dy = −

∫
B1

∂2
i ju(x)ỹi · ỹ j dỹ, (4.38)

where ỹk = yk for any k � j and ỹ j = −y j, and thus

∫
B1

∂2
i ju(x)yi · y j dy = 0. (4.39)

Also for any fixed i, we get

∫
B1

∂2
i ju(x)y2

i

|y|n+2s dy = ∂2
i ju(x)

∫
B1

y2
i

|y|n+2s dy

= ∂2
i ju(x)

∫
B1

y2
1

|y|n+2s dy

=
∂2

i ju(x)

n

n∑
j=1

∫
B1

y2
j

|y|n+2s dy

=
∂2

i ju(x)

n

∫
B1

|y|2
|y|n+2s dy

=
∂2

i ju(x)α(n − 1)

2n(1 − s)
. (4.40)
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Finally, combining (4.36), (4.37), (4.39), (4.40) and Corollary 4.1, we conclude that

lim
s↑1

(−Δ)su = lim
s↑1

[
−cn,s

2

∫
B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s dy
]

= lim
s↑1

[
−cn,s

2

∫
B1

D2u(x)y · y
|y|n+2s dy

]

= lim
s↑1

⎡⎢⎢⎢⎢⎢⎣−cn,s

2

n∑
i=1

∫
B1

∂2
i ju(x)y2

i

|y|n+2s dy

⎤⎥⎥⎥⎥⎥⎦
= lim

s↑1

⎡⎢⎢⎢⎢⎢⎣−cn,sα(n − 1)

4n(1 − s)

n∑
i=1

∂2
i ju(x)

⎤⎥⎥⎥⎥⎥⎦
= −Δu(x).

�

4.3. Existence of The Weak Solutions

Definition 4.2 We say that u ∈ Hs(Rn) is a weak solution to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)s = f in Ω

u = g in Rn/Ω,
(4.41)

if ∀ϕ ∈ Hs(Rn) with ϕ ≡ 0 in Rn/Ω,

1

2
cn,s

∫
Rn

∫
Rn

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy =
∫
Ω

fϕ. (4.42)

Notice that if u ∈ C2(Rn) the we can define the weak solution to (4.41) as satisfy-

ing ∫
Ω

(−Δ)suϕ =
∫
Ω

fϕ ∀ϕ ∈ C∞c (Ω), (4.43)
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since

∫
Ω

(−Δ)su(x)ϕ(x) dx =
∫
Ω

[
cn,s

∫
Rn

u(x) − u(y)

|x − y|n+2s dy
]
ϕ(x) dx (4.44)

= cn,s

∫
Rn

∫
Rn

[u(x) − u(y)]ϕ(x)

|x − y|n+2s dydx (4.45)

=
1

2
cn,s

∫
Rn

∫
Rn

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy. (4.46)

Moreover if u, ϕ ∈ Hs(Rn) with ϕ ≡ 0 in Rn/Ω and u ≡ 0 a.e in Rn/Ω, then we

can change the definition as satisfying

∫
Rn

(−Δ)s/2u (−Δ)s/2ϕ dx =
∫
Ω

f ϕ dx. (4.47)

This definition comes from the equality

∫
Rn

(−Δ)suϕ =
∫
Rn
|ξ|2s û ϕ̂ (4.48)

=

∫
Rn

(|ξ|s û) (|ξ|s ϕ̂) (4.49)

=

∫
Rn

(−Δ)s/2u (−Δ)s/2ϕ (4.50)

basically in Fourier side but it can also be derived from the main definition of the fractional

Laplacian.

One should notice now that in all types of definitions that we derived above ϕ ≡ 0

in Rn/Ω. So we have for D := (Rn ×Rn) − (Ωc ×Ωc) the following:

cn,s

2

∫
Rn

∫
Rn

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy =
cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy.

(4.51)

Consequently, it suffices to satisfy that

cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy < ∞ (4.52)

for the weak solution u instead of satisfying u ∈ Hs(Rn). The importance of this change
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appears when g is not regular in Rn/Ω or when it does not vanish at infinity. But if g is

regular outside the domain Ω then the definitions coincide.

We started by the basic definition of the weak solutions and after that we consid-

ered the extra assumptions on u and also we tried to decrease the assumptions to give the

best definition of the weak solution. Now let us define the last and the most general form

of the weak solution of (4.41).

Definition 4.3 We say that u is a weak solution of (4.41) if

cn,s

2

∫ ∫
D

[u(x) − u(y)]2

|x − y|n+2s dxdy < ∞ (4.53)

and
cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy =
∫
Ω

f ϕ (4.54)

for all ϕ ∈ Hs(Rn) with ϕ ≡ 0 in Rn/Ω.

Remember that we use also the energy functionals to find the weak solution to the

classical Laplacian. This motivates that we can use the similar strategy for the fractional

Laplacian. The energy functional associated to the problem (4.41) is

I(u) =
cn,s

4

∫ ∫
D

[u(x) − u(y)]2

|x − y|n+2s dxdy −
∫
Ω

f u (4.55)

for functions u satisfying u = g in Rn/Ω.

When g satisfies

∫
Ωc

∫
Ωc

[g(x) − g(y)]2

|x − y|n+2s dxdy < ∞, (4.56)

then we could take the energy functional as

I(u) =
cn,s

4

∫
Rn

∫
Rn

[u(x) − u(y)]2

|x − y|n+2s dxdy −
∫
Ω

f u (4.57)

since the only difference between two functionals would be a constant.

Proposition 4.3 (Ros-Oton, 2016) If u minimizes the energy functional I(u) among the
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functions u satisfying u = g in Rn/Ω, then it is a weak solution of the problem (4.41).

Proof If u is a minimizer then for all ϕ ∈ Hs(Rn) such that ϕ ≡ 0 in Rn/Ω, we have

I(u + εϕ) ≥ I(u) ∀ε > 0. (4.58)

Thus,
dI(u + εϕ)

dε
|ε=0 = 0. (4.59)

Hence,

0 =
dI(u + εϕ)

dε
|ε=0

=
cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy −
∫
Ω

f ϕ.

This means that u is a weak solution to the problem (4.41). �

We focus on the case g ≡ 0 in Rn/Ω, i.e,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)s = f in Ω

u = 0 in Rn/Ω.
(4.60)

Observe first that if g is not identically zero, but regular enough, then we can

extend u to a nice function ū = u − g and we get the similar Dirichlet problem (4.60) for

the fractional Laplacian with f turning out to be f̄ = f − (−Δ)sg. This means that we will

give the theorem for g ≡ 0 but it also holds for any regular g.

Theorem 4.1 (Ros-Oton, 2016) Given f ∈ L2(Ω), there exists a unique weak solution

u ∈ Hs(Rn) of the Dirichlet problem (4.60) for the fractional Laplacian.

Proof Define the set

X := {u ∈ Hs(Rn) : u ≡ 0 in Rn/Ω} ⊆ Hs(Rn). (4.61)
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By Poincare’ inequality, X is a Hilbert space with the scalar product

(u, v)X =
cn,s

2

∫
Rn

∫
Rn

[u(x) − u(y)][v(x) − v(y)]

|x − y|n+2s dxdy. (4.62)

Then the weak formulation is

(u, ϕ)X =

∫
Ω

f ϕ ∀ϕ ∈ X. (4.63)

The existence and uniqueness of the weak solution follows from Riesz representation

theorem. �

4.4. Some Explicit Solutions

In this section we see some examples of the Dirichlet problem for the fractional

Laplacian and the corresponding explicit solutions.

Example 4.1 For any r > 0 and x0 ∈ Rn,

u(x) =
2−2sΓ(n/2)

Γ(n+2s
2

)Γ(1 + s)
(r2 − |x − x0|2)s in Br(x0) (4.64)

is an explicit solution to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = 1 in Br(x0),

u = 0 in Rn/Br(x0).
(4.65)

Example 4.2 The function

(x+)s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ xs if x > 0

0 if x ≤ 0
(4.66)

satisfies (−Δ)s(x+)s = 0 in (0,∞).

Example 4.3 The function

u0(x) = cs(1 − x2)s
+ (4.67)
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satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su0 = 1 in (−1, 1)

u0 = 0 in (−∞,−1] ∪ [1,∞)
(4.68)

4.5. Maximum and Comparison Principles

Proposition 4.4 (Ros-Oton, 2016)(Maximum Principle) Assume that u ∈ C2(Rn) solves

(−Δ)su = 0 in Ω ⊂ Rn.

Then, u cannot attain a global maximum inside Ω unless u is constant in all of Rn.

In other words,

max
Rn

u = max
Rn/Ω

u. (4.69)

Proof Assume x0 ∈ Ω and u(x0) ≥ u(z) for all z ∈ Rn, then

(−Δ)su(x0) = cn,s

∫
Rn

[u(x0) − u(x0 + y)]
dy
|y|n+2s ≥ 0, (4.70)

with equality if and only if u(xo) = u(z) a.e. in Rn. Hence u is constant in Rn. �

Proposition 4.5 (Ros-Oton, 2016) Assume that u ∈ C2(Rn) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su ≤ 0 in Ω

u ≤ 0 in Rn/Ω
(4.71)

Then,

u ≤ 0 in Ω (4.72)

Proof If u attains a positive value in Ω then it has a maximum element in Ω. So let

xo ∈ Ω be that element. Then u(x0) ≥ u(z) for any z ∈ Rn. Then, we get (4.70) again. So

u is s-harmonic. By the maximum principle, u must contain its maximum in Rn/Ω. Since

u ≤ 0 in Rn/Ω, the proof is completed. �
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Proposition 4.6 (Ros-Oton, 2016) Let u be the weak solution of (4.41). Then,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ f ≥ 0 in Ω

g ≥ 0 in Rn/Ω
(4.73)

implies

u ≥ 0 in Ω (4.74)

Proof Recall that if u solves (4.41) then

cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy =
∫
Ω

f ϕ. (4.75)

for all ϕ ∈ Hs(Rn) with ϕ ≡ 0 in Rn/Ω. Now let u = u+ − u−, where u+ = max{u, 0} and

u− = max{−u, 0}. Take ϕ = u− by assuming u− is not identically zero as the test function.

Then since f , ϕ ≥ 0 we have ∫
Ω

f ϕ ≥ 0. (4.76)

On the other hand,

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy =
∫
Ω

∫
Ω

[u(x) − u(y)][u−(x) − u−(y)]

|x − y|n+2s dxdy

+2

∫
Ω

∫
Rn/Ω

[u(x) − g(y)]u−(x)

|x − y|n+2s dydx

Moreover notice that [u+(x) − u+(y)][u−(x)u−(y)] ≤ 0 and so that

∫
Ω

∫
Ω

[u(x) − u(y)][u−(x) − u−(y)]

|x − y|n+2s dxdy ≤ −
∫
Ω

∫
Ω

[u−(x) − u−(y)]2

|x − y|n+2s dxdy < 0. (4.77)

Note that strict inequality comes from assuming u− � 0 identically.

Also by nonnegativity of g we have

∫
Ω

∫
Rn/Ω

[u(x) − g(y)]u−(x)

|x − y|n+2s dydx = −
∫
Ω

∫
Rn/Ω

[(u−(x))2 − g(y)u−(x)]

|x − y|n+2s dydx ≤ 0 (4.78)
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Hence we get
cn,s

2

∫ ∫
D

[u(x) − u(y)][ϕ(x) − ϕ(y)]

|x − y|n+2s dxdy < 0 (4.79)

and this contradicts with (4.76). �

Corollary 4.2 (Ros-Oton, 2016)(Comparison Principle) Assume that u1 ∈ C2(Rn) and

u1 ∈ C2(Rn) satisfy

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su1 = f1 in Ω

u1 = g1 in Rn/Ω
(4.80)

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su2 = f2 in Ω

u2 = g2 in Rn/Ω
(4.81)

respectively. Then,

f1 ≥ f2 (4.82)

g1 ≥ g2 (4.83)

implies

u1 ≥ u2 (4.84)

Proof Just use Proposition (4.6) with u = u1 − u2. �

4.6. Poisson Kernel and Its Applications

In the view of Laplace operator, Poisson kernel for a ball yields to the mean value

property. Also we know that harmonic functions are infinitely differentiable as an appli-

cation of Poisson kernel. In this section we see what happens for the fractional Laplacian.
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Theorem 4.2 (Ros-Oton, 2016)(Poisson kernel for (−Δ)s in a ball)

Consider the system

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = 0 in B1

u = g in Rn/B1.
(4.85)

Then,

u(x) = c
∫
Rn/B1

g(y)(1 − |x|2)s

(|y|2 − 1)s|x − y|n dy (4.86)

We will not give the proof because it requires very detailed computations. We will

use this argument to show some properties of s-harmonic functions, like analyticity or

mean-value property, etc.

Corollary 4.3 (Ros-Oton, 2016) Assume u is s-harmonic in B1. Then, u is C∞ inside B1.

Proof The dependence on x in the right hand side of the representation (4.86) is only on

the term (1−|x|2)s

|x−y|n and this term is infinitely differentiable inside B1, since |y| ≥ 1. Therefore

we can differentiate under integral infinitely many times. �

Corollary 4.4 (Ros-Oton, 2016) Assume u is s-harmonic in B1. Then,

|Dku(0)| ≤ Ckk! ||u||L∞(Rn). (4.87)

In particular u is analytic.

Proof

|Dku(0)| =
∣∣∣∣∣c

∫
Rn/B1

u(y)

(|y|2 − 1)s Dk

(
(1 − |x|2)s

|x − y|n
)

(0)dy
∣∣∣∣∣

≤ c||u||L∞(Rn)

∫
Rn/B1

1

(|y|2 − 1)s

ckk!

|y|−n dy

≤ ckk!||u||L∞(Rn).

�

Corollary 4.5 (Ros-Oton, 2016) Assume u is s-harmonic in Ω ⊂ Rn. Then, u is C∞

inside Ω.
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Proof For any Br(x0) ⊂ Ω we get u ∈ C∞(Br(x0)) by translating and rotating Corollary

4.3. Since it can be done for any such ball, u ∈ C∞(Ω). �

Remark 4.3 By rescaling the Poisson kernel in B1, we find the Poisson kernel in Br:

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = 0 in Br

u = g in Rn/Br.
(4.88)

Then,

u(x) = c
∫
Rn/Br

g(y)(r2 − |x|2)s

(|y|2 − r2)s|x − y|n dy. (4.89)

Using this Poisson kernel in Br, we find that if u is s-harmonic then

u(0) = c
∫
Rn/Br

u(y)r2s

(|y|2 − r2)s|y|n dy. (4.90)

In particular we have the following proposition which is the analogous of the mean-value

property for harmonic functions.

Proposition 4.7 (Ros-Oton, 2016)(Mean value property for s-harmonic functions)

If u is s-harmonic in Ω then for every Br ⊂ Ω, we have

u(0) = c
∫
Rn/Br

u(y)r2s

(|y|2 − r2)s|y|n dy. (4.91)

Corollary 4.6 (Ros-Oton, 2016) There exists a function ws(y) such that, if u is s-harmonic

in B1 then

u(0) =

∫
Rn

u(y)ws(y) dy. (4.92)

Moreover, the function ws(y) satisfies

C−1

1 + |y|n+2s ≤ ws(y) ≤ C
1 + |y|n+2s . (4.93)
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Proof

u(0) = n
∫ 1

0

rn−1u(0) dr

= c
∫ 1

0

∫
Rn−Br

rn+2s−1u(y)

(|y|2 − r2)s|y|n dydr, by mean value property

= c
∫ 1

0

∫
|y|≥1

rn+2s−1u(y)

(|y|2 − r2)s|y|n dydr︸���������������������������������︷︷���������������������������������︸
I1

+ c
∫
|y|<1

∫ |y|

0

rn+2s−1u(y)

(|y|2 − r2)s|y|n drdy︸���������������������������������︷︷���������������������������������︸
I2

.

We separated u(0) into two integrals as I1 and I2. We can consider each integral respec-

tively now. By changing variable as r = |y|t we have

I1 =

∫
|y|≥1

u(y)

|y|n
(∫ 1

0

rn+2s−1

(|y|2 − r2)s dr
)

dy

=

∫
|y|≥1

u(y)

(∫ 1/|y|

0

tn+2s−1

(1 − t2)s dt
)

dy.

Similarly for I2 with the same change of variable r = |y|t, we have

I2 =

∫
|y|<1

u(y)

|y|n
(∫ |y|

0

rn+2s−1

(|y|2 − r2)s dr
)

dy

=

∫
|y|<1

u(y)

(∫ 1

0

tn+2s−1

(1 − t2)s dt
)

dy.

Hence we have shown that

u(0) =

∫
Rn

u(y)ws(y) dy, (4.94)

for the function ws as

ws(y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫ 1

0

tn+2s−1

(1−t2)s dt, |y| < 1∫ 1/|y|
0

tn+2s−1

(1−t2)s dt, |y| ≥ 1.
(4.95)

Now, we can clearly show that the function ws(y) is comparable with (1 + |y|n+2s)−1, by

using Cauchy-Schwartz inequality and the mean value theorem. �
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Corollary 4.7 (Ros-Oton, 2016)(Harnack inequality) If u ≥ 0 in Rn and u is s-harmonic

in B1, then

sup
B1/2

u ≤ C inf
B1/2

u. (4.96)

Moreover, both quantities supB1/2
u and infB1/2

u are comparable to

∫
Rn

u(y)

1 + |y|n+2s dy. (4.97)

4.7. Interior Regularity

We see what the regularity of u is inside the domain Ω, in this section. We start by

defining Riesz potential and the fundamental solution for the fractional Laplacian. After

giving the definition of the Riesz potential, we continue with the interior regularity of the

weak solution u.

Definition 4.4 (Riesz Potential) For the equation (−Δ)su = f we have

u = (−Δ)−s f (x) = cn,s

∫
Rn

f (y)

|x − y|n−2s dy (4.98)

for n ≥ 2 and it is called the Riesz potential of order 2s. And it is denoted by I2s( f ).

Remark 4.4 The function |z|−n+2s is the fundamental solution of the equation (−Δ)su = f .

Before giving the interior regularity results we need to remember that, the general

embedding theorem for the Riesz potential in Rn yields the following:

Theorem 4.3 (Ros-Oton, 2016) Let u be the weak solution of (−Δ)su = f . Then for

non-integers α and α + 2s we have

||u||C2s+α(Rn) ≤ C
(|| f ||Cα(Rn) + ||u||L∞(Rn)

)
. (4.99)

Now we are ready to consider regularity of the weak solution inside the domain.

We consider the assumptions on the right hand side f , like boundedness or Hölder conti-

nuity.
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Theorem 4.4 (Ros-Oton, 2010) Let u ∈ L∞(Rn) be a solution to (−Δ)su = f in B1. Then,

||u||Cα+2s(B1/2) ≤ C(|| f ||Cα(B1) + ||u||L∞(Rn)), (4.100)

whenever α and α + 2s are not integers.

Proof Let F ∈ Cα(Rn) with supp f ⊆ B2 such that F = f in Ω and

||F||Cα(Rn) ≤ c|| f ||Cα(B1). (4.101)

Let w := I2s(F). By Theorem 4.3 we have

||w||C2s+α(Rn) ≤ C
(||F||Cα(Rn) + ||w||L∞(Rn)

)
. (4.102)

Since F has support in B2, we get

|w(x)| ≤ C
∫

B2

||F||L∞(B2)

|x − y|n−2s dy ≤ c|| f ||L∞(B1), (4.103)

which implies

||w||L∞(Rn) ≤ c|| f ||L∞(B1). (4.104)

Combining (4.101) and (4.104) we find

||w||C2s+α(Rn) ≤ c|| f ||Cα(B1). (4.105)

Define now a s-harmonic function v in B1 such that v = u − w. Notice that

||v||L∞(Rn) ≤ ||u||L∞(Rn) + || f ||L∞(B1). (4.106)
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Therefore v ∈ L∞(Rn) is a s-harmonic function and thus it satisfies

||v||Cβ(B1/2) ≤ C||v||L∞(Rn) (4.107)

for any β > 0. Taking β = α + 2s completes the proof. �

After the main regularity estimate for the fractional Laplacian, now consider what

happens if f is not Cα(B1) but only L∞(B1). In that case the previous argument yields

u ∈ C2s−ε(B1/2) for all ε > 0.

We next consider the case that the weak solution u is not bounded. For this we

denote

||u||L1
w(Rn) :=

∫
Rn

|u(x)|
1 + |x|n+2s dx. (4.108)

Corollary 4.8 (Ros-Oton, 2016) Let u ∈ L1
w(Rn) be a solution to (−Δ)su = f in B1. Then,

||u||Cα+2s(B1/2) ≤ C(|| f ||Cα(B1) + ||u||L∞(B2) + ||u||L1
w(Rn)) (4.109)

provided that α and α + 2s are not integers.

Proof Consider ũ := uχB2
and notice that

(−Δ)sũ = (−Δ)su − (−Δ)s(uχRn/B2
) = f − (−Δ)s(uχRn/B2

) := f − h := f̃ . (4.110)

Our aim is to see that f̃ ∈ Cα(B1) in order to apply the previous theorem. For this, we

need to prove that h ∈ Cα(B1), namely

||h||Cα(B1) ≤ C||u||L1
w(Rn). (4.111)

So take x, x̃ ∈ B1, then

h(x) = cn,s

∫
Rn

(uχRn/B2
)(x) − (uχRn/B2

)(y)

|x − y|n+2s dy = −cn,s

∫
Rn/B2

u(y)

|x − y|n+2s dy (4.112)
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and thus

|h(x) − h(x̃)| ≤ c
∫
Rn/B2

u(y)

(
1

|x − y|n+2s −
1

|x̃ − y|n+2s

)
dy (4.113)

Then we get

|Dkh(x)| = c
∫
Rn/B2

|u(y)|
|x − y|n+2s+k dy ≤ c

∫
Rn/B2

|u(y)|
1 + |y|n+2s+k dy ≤ c||u||L1

w(Rn). (4.114)

In particular, getting

||h||Cα(B1) ≤ C||u||L1
w(Rn) (4.115)

completes the proof. �

Our next aim is to show the boundedness of the weak solution u to the problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = f in Ω

u = g in Rn/Ω.
(4.116)

Proposition 4.8 (Ros-Oton, 2016) Let Ω be any bounded domain and u be the weak

solution of (4.116) with f ∈ L∞(Ω) and g ∈ L∞(Rn). Then,

||u||L∞(Ω) ≤ ||g||L∞(Rn) +C|| f ||L∞(Ω). (4.117)

Proof Let BR be a large ball in Rn such that Ω ⊂ BR and let η ∈ C∞c (BR) be a function

such that 0 ≤ η ≤ 1 and η ≡ 1 in Ω. Then for any x ∈ Ω, η(x) = maxRn η, and therefore

(−Δ)sη(x) = cn,s

∫
Rn

[η(x) − η(y)]
dy

|x − y|n+2s

≥ cn,s

∫
Rn/BR

dy
|x − y|n+2s

= c
∫
Rn/BR(x)

dz
|z|n+2s

≥ c
∫
Rn/B2R

dz
|z|n+2s

= c0 > 0

Hence, η satisfies

(i) (−Δ)sη ≥ c0 > 0 in Ω,
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(ii) η = 1 in Ω,

(iii) η ≥ 0 in Rn.

Let now v(x) = ||g||L∞(Rn) +
1
c0
|| f ||L∞(Ω)η(x). Then,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)sv ≥ || f ||L∞(Ω) in Ω,

v ≥ ||g||L∞(Rn) in Rn/Ω.
(4.118)

In particular,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)sv ≥ (−Δ)su in Ω,

v ≥ u in Rn/Ω.
(4.119)

Hence from Comparison Principle we get v ≥ u. Therefore

||u||L∞(Ω) ≤ ||v||L∞(Ω) ≤ ||g||L∞(Rn) +
1

c0

|| f ||L∞(Ω). (4.120)

�

4.8. Regularity up to the boundary

We focus on the Dirichlet problem for the fractional Laplacian, i.e,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (−Δ)su = g in Ω

u = 0 in Rn/Ω
(4.121)

for some s ∈ (0, 1) and g ∈ L∞(Ω). And our goal is to show that

u ∈ Cs(Rn). (4.122)

Notice that Hölder regularity of the weak solution u is not local. In this section

we assume Ω to be a bounded Lipschitz domain satisfying the exterior ball condition. We
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first analyze that u is Cβ in Ω, for all β ∈ (0, 2s). And then we continue by the help of the

sharp bounds for the corresponding seminorms near the boundary, we reach our goal.

Remember that we have given some different types of definitions of the weak

solution. In here, we use the following one:

Definition 4.5 We say that u is a weak solution of (4.121) if u ∈ Hs(Rn), u ≡ 0 a.e. in

Rn/Ω and ∫
Rn

(−Δ)s/2u (−Δ)s/2v dx =
∫
Ω

g v dx (4.123)

for all v ∈ Hs(Rn) such that v ≡ 0 in Rn/Ω.

Now we give some statements that we will use when proving the regularity of the

weak solution. They are somehow about the interior regularity.

Proposition 4.9 (Ros-Oton, & Serra, 2012) Assume that w ∈ C∞(Rn) solves (−Δ)sw = h

in B1 and that neither β nor β + 2s is an integer. Then,

||w||Cβ+2s(B1/2) ≤ C(||w||Cβ(Rn) + ||h||Cβ(B1)), (4.124)

where C is a constant depending only on n, s and β.

Proposition 4.10 (Ros-Oton, & Serra, 2012) Assume that w ∈ C∞(Rn) solves (−Δ)sw =

h in B1. Then, for every β ∈ (0, 2s),

||w||Cβ(B1/2) ≤ C(||w||L∞(Rn) + ||h||L∞(B1)), (4.125)

where C is a constant depending only on n, s and β.

Corollary 4.9 (Ros-Oton, & Serra, 2012) Assume that w ∈ C∞(Rn) solves (−Δ)sw = h

in B2 and that neither β nor β + 2s is an integer. Then,

||w||Cβ+2s(B1/2) ≤ C(||(1 + |x|)−n−2sw(x)||L1(Rn) + ||w||Cβ(B2) + ||h||Cβ(B2)), (4.126)

where C is a constant depending only on n, s and β.
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Proof Let η ∈ C∞(Rn) be such that η ≡ 0 in Rn/B2 and η ≡ 1 in B3/2. Then w̃ := wη ∈
C∞(Rn) and (−Δ)sw̃ = h̃ := h − (−Δ)s(w(1 − η)). Note that for x ∈ B3/2 we have

(−Δ)s(w(1 − η))(x) = cn,s

∫
Rn/B3/2

−(w(1 − η))(y)

|x − y|n+2s dy. (4.127)

So we have

||(−Δ)s(w(1 − η))||L∞(B1) ≤ C||(1 + |y|)−n−2sw(y)||L1(Rn) (4.128)

and for all γ ∈ (0, β],

[(−Δ)s(w(1 − η))]Cγ(B1) ≤ C||(1 + |y|)−n−2s−γw(y)||L1(Rn)

≤ C||(1 + |y|)−n−2sw(y)||L1(Rn)

for some constant C depending only on n, s, β and η. Therefore

||h̃||Cβ(B1) ≤ C(||h||Cβ(B2) + ||(1 + |x|)−n−2sw(x)||L1(Rn)), (4.129)

while we also have

||w̃||Cβ(Rn) ≤ C||w||Cβ(B2). (4.130)

Now the proof is completed by applying Proposition 4.9 with w replaced by w̃. �

Corollary 4.10 (Ros-Oton, & Serra, 2012) Assume that w ∈ C∞(Rn) solves (−Δ)sw = h

in B2. Then, for every β ∈ (0, 2s),

||w||Cβ(B1/2) ≤ C(||(1 + |x|)−n−2sw(x)||L1(Rn) + ||w||L∞(B2) + ||h||L∞(B2)), (4.131)

where C is a constant depending only on n, s and β.

Proof Analog to the proof of Corollary 4.9. �

Now we will find an explicit upper barrier for |u|. This is the first step to obtain Cs

regularity of the weak solution u to the problem (4.121). We need the following lemma

first to construct this barrier. One can find its proof from the references.
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Lemma 4.1 (Ros-Oton, & Serra, 2012)(Supersolution) There exist C1 > 0 and a radial

continuous function ϕ1 ∈ Hs
loc(R

n) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−Δ)sϕ1 ≥ 1 in B4/B1,

ϕ1 = 0 in B1,

0 ≤ ϕ1 ≤ C1(|x| − 1)s in B4/B1,

1 ≤ ϕ1 ≤ C1 in Rn/B4.

(4.132)

We construct the upper barrier for |u| by scaling and translating the supersolution

from Lemma 4.1.

Lemma 4.2 (Ros-Oton, & Serra, 2012) Let Ω be a bounded domain satisfying the exte-

rior ball condition and let g ∈ L∞(Ω). Let u be the solution of (4.121). Then,

|u(x)| ≤ C||g||L∞(Ω)ds(x) ∀x ∈ Ω, (4.133)

where C is a constant depending only on Ω and s, d =dist(x, ∂Ω).

Proof The domain Ω can be contained in a large ball of radius diamΩ. Then by scaling

the explicit solution for the ball (4.64) we obtain

||u||L∞(Rn) ≤ C(diamΩ)2s||g||L∞(Ω), (4.134)

where u and g is taken from (4.121).

Also there exists ρ0 > 0 such that every point of ∂Ω can be touched from outside

by a ball of radius ρ0. Then by scaling and translating ϕ1, for each of this exterior tangent

balls Bρ0
we find an upper barrier in B2ρ0

/Bρ0
vanishing in Bρ0

. This yields the bound

u ≤ Cds in a ρ0-neighborhood of ∂Ω. By using (4.134) we have the same bound in all of

Ω. Repeating the same argument with −u, we find |u| ≤ C||g||L∞(Ω)ds. �

We give the interior estimates for u now and after that we finish with the main

claim, Cs regularity of the weak solution u to the problem (4.121).

Lemma 4.3 (Ros-Oton, & Serra, 2012) Let Ω be a bounded domain satisfying the exte-

rior ball condition, g ∈ L∞(Ω) and u be the weak solution of (4.121). Then, u ∈ Cβ(Ω)

for all β ∈ (0, 2s) and for all x0 ∈ Ω we have the following semi-norm estimate in
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BR(x0) = Bd(x0)/2(x0):

[u]Cβ(BR(x0)) ≤ CRs−β||g||L∞(Ω), (4.135)

where C = C(s,Ω, β) is a constant.

Proof Without loss of generality we can assume u is smooth. Because if not then by

using the standard mollifier we can regularize u and pass to the limit.

Note that BR(x0) ⊂ B2R(x0) ⊂ Ω. Let ũ = u(x0 + Ry). Then we have

(−Δ)sũ(y) = R2sg(x0 + Ry) in B1. (4.136)

Also using the property |u| ≤ C(||u||L∞(Rn) + ||g||L∞(Ω))ds in Ω we obtain

||ũ||L∞(B1) ≤ C(||u||L∞(Rn) + ||g||L∞(Ω))Rs (4.137)

by Lemma4.2 and observing that |ũ(y)| ≤ C(||u||L∞(Rn) + ||g||L∞(Ω))Rs(1 + |y|s) in all of Rn,

||(1 + |y|)−n−2sũ(y)||L1(Rn) ≤ C(||u||L∞(Rn) + ||g||L∞(Ω))Rs, (4.138)

with C depending only on n and s.

Next using Corollary 4.10 with (4.136), (4.137) and (4.138), we have

||ũ||Cβ(B1/4) ≤ C(||u||L∞(Rn) + ||g||L∞(Ω))Rs (4.139)

for all β ∈ (0, 2s), where C = C(Ω, s, β). Finally we observe that

[u]Cβ(BR/4(x0)) = R−β[ũ]Cβ(B1/4). (4.140)

Hence, by a standard covering argument we can complete the proof. �

Finally, we are ready to prove the Cs regularity of u.

Proposition 4.11 (Ros-Oton, & Serra, 2012) Let Ω be a bounded Lipschitz domain sat-

isfying the exterior ball condition, g ∈ L∞(Ω) and u be the weak solution of (4.121). Then,
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u ∈ Cs(Rn) and

||u||Cs(Rn) ≤ C||g||L∞(Ω), (4.141)

where C is a constant depending only on s and Ω.

Proof By Lemma 4.3, taking β = s we obtain

|u(x) − u(y)|
|x − y|s ≤ C(||u||L∞(Rn) + ||g||L∞(Ω)) (4.142)

for all x, y such that y ∈ BR(x) with R = d(x)/2. Observe also that after a Lipschitz change

of coordinates, the bound (4.142) remains the same except the constant C. Hence we can

flatten the boundary near x0 ∈ ∂Ω to assume that Ω ∩ Bρ0
(x0) = {xn > 0} ∩ B1. Now

(4.142) holds for all x, y satisfying |x − y| ≤ λxn for some λ = λ(Ω) ∈ (0, 1) depending on

the Lipschitz map. Next, let z = (z′, zn) and w = (w′,wn) be two points in {xn > 0} ∩ B1/4,

and r = |z−w|. Let us define z̄ = (z′, zn + r), w̄ = (w′,wn + r) and zk = (1−λk)z+ λkz̄,wk =

λkw + (1 − λk)w̄, k ≥ 0. Then using that bound (4.142) holds whenever |x − y| ≤ λxn, we

have

|u(zk+1) − u(zk)| ≤ C|zk+1 − zk|s = C|λk(z − z̄)(λ − 1)|s ≤ C|z − z̄|s. (4.143)

Moreover, since xn > r in all segment joining z̄ and w̄, splitting this segment into a

bounded number of segments of length less that λr, we obtain

|u(z̄) − u(w̄)| ≤ C|z̄ − w̄|s ≤ Crs. (4.144)

Therefore,

|u(z) − u(w)| ≤ |u(z) − u(z̄)| + |u(z̄) − u(w̄)| + |u(w̄) − u(w)|
≤

∑
k≥0

|u(zk+1) − u(zk)| + |u(z̄) − u(w̄)| +
∑
k≥0

|u(wk+1) − u(wk)|

≤
⎛⎜⎜⎜⎜⎜⎝C ∑

k≥0

(λkr)s +Crs

⎞⎟⎟⎟⎟⎟⎠ (||u||L∞(Rn) + ||g||L∞(Ω))

≤ C(||u||L∞(Rn) + ||g||L∞(Ω))|z − w|s,
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as wanted. �

Note that this Cs regularity is optimal, i.e the weak solution u of the problem

(4.121) is not in general Cα for α > s. This can be seen by looking the solution (4.64) to

the problem (4.65).
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CHAPTER 5

CONCLUSION

We defined the fractional Sobolev spaces and the corresponding norm to consider

the weak solution of the fractional version of Laplace’s equation. We gave the embed-

ding theorems and regularity results in the fractional Sobolev space W s,p. After that we

constructed the extension and trace theorems which are very important in the analysis of

the partial differential equations. We showed that W s,2 = Hs is a Hilbert space and so we

studied the space Hs in the view of Fourier transformation.

We got motivated by the probability theory about the long jump random walk and

defined the fractional Laplacian (−Δ)s. We showed, as expected, that (−Δ)s behaves as

the identity operator and the classical Laplace operator as s ↓ 0 and s ↑ 1, respectively.

We gave the mean-value property of s-harmonic functions. Motivation of the maximum

principle of the harmonic functions provided us to show that a s-harmonic function cannot

attain its maximum inside its domain and this property lead to construct the comparison

principle. Then we gave the explicit solutions of some example to express the topic in

a better way. After all, we gave the interior regularity results of the Dirichlet problem

for the fractional Laplacian. Finally, we extended this regularity up to the boundary and

showed that the weak solution of the Dirichlet problem for the fractional Laplacian has

an optimal Cs regularity in the closure of its domain.

There were a lot of papers about the fractional Laplacian in the literature. So, we

tried to collect all the useful knowledge and prepare a thesis that can be a handbook about

the fractional Laplacian. Our method was comparing the results with the classical ver-

sion. We need to emphasize that one important difference of the Dirichlet problem for the

fractional Laplacian is constructing the problem for the domain and outside the domain.

Remember that in the classical version we work on the domain and on its boundary. It is

also worth-noticing that the fractional Laplacian is a non-local operator, i.e. it needs the

information away from any fixed point. Finally, this operator is constructed to coincide

with the classical version for the integer powers owing to the normalization constant.
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