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Predicting the best treatment strategy from genomic information 
is a core goal of precision medicine. Here we focus on predicting 
drug response based on a cohort of genomic, epigenomic and 
proteomic profiling data sets measured in human breast cancer 
cell lines. Through a collaborative effort between the National 
Cancer Institute (NCI) and the Dialogue on Reverse Engineering 
Assessment and Methods (DREAM) project, we analyzed a total 
of 44 drug sensitivity prediction algorithms. The top-performing 
approaches modeled nonlinear relationships and incorporated 
biological pathway information. We found that gene expression 
microarrays consistently provided the best predictive power 
of the individual profiling data sets; however, performance 
was increased by including multiple, independent data sets. 
We discuss the innovations underlying the top-performing 
methodology, Bayesian multitask MKL, and we provide detailed 
descriptions of all methods. This study establishes benchmarks 
for drug sensitivity prediction and identifies approaches that can 
be leveraged for the development of new methods.

The success of precision medicine hinges on our ability to effectively 
translate genomic data into actionable, customized prognosis and 
treatment regimens for individual patients. This requires identifying 

a genomic disease signature from a patient, then matching it with the 
most effective therapeutic intervention. As a scientific community, 
we are moving toward this goal, but many questions still remain, 
including, what data are needed to develop these genomic signatures 
and what methods are needed to extract the appropriate information 
from high-dimensional genomic data sets? The first step in addressing 
these challenges is to generate comprehensive drug sensitivity profil-
ing measurements across many drugs, many disease (sub)types, and 
many genomic profiling technologies. Several of these data sets have 
been generated with a focus on cancer biology1–9, and in particular 
breast cancer4,5,10–14. From these data, the bottleneck then becomes 
identifying robust computational approaches that connect genomic 
profiles to drug and disease response.

In the past 20 years, there has been measurable improvement in 
breast cancer outcomes with a steady decrease in mortality15. The 
identification of HER2 amplification and subsequent discovery of 
HER2-targeted therapies (e.g., trastuzumab (Herceptin), lapatinib 
(Tykerb)) demonstrates that the identification of genomic biomark-
ers can be used to effectively guide treatment decisions and improve 
outcomes. However, identification of such biomarkers is complicated  
by substantial genomic and epigenomic heterogeneity in breast  
cancer2,10,16,17, indicating that multiple ‘drivers’ may serve as targets 
for breast cancer treatment. Effective personalized treatments will 
require matching therapeutic interventions to the complex genomic 
context of each patient.

The ideal data set(s) to build predictive models linking genomic con-
text to treatment would be systematically characterized drug sensitivities 
across a large cohort of patients, but these data are time-intensive to 
generate, prohibitively expensive, and limited in the scope of drugs that 
can be tested. Performing such assays in cell culture and focusing on 
breast cancer affords the opportunity to learn the factors that contribute 
to building effective predictive models in a tractable biological system; 
these factors can then be used for the design of marker-based clinical 
trials. Comparisons have shown that cell lines mirror many aspects of 
the ‘omic’ diversity found in primary tumors4,18,19, suggesting that they 
can be used as a proxy for characterizing the response to therapeutic 
interventions. Previous work has characterized relationships between 
genomic profiles and drug response1,3,6,7,20 and several drug sensitivity 
prediction algorithms have been proposed1,3,20–23; however, a thorough 
and unbiased comparison of such methods has not been reported.
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The Dialogue for Reverse Engineering Assessment and Methods 
(DREAM) project (http://www.the-dream-project.org/) is the ideal 
framework to assess predictive models from researchers across the 
world. The DREAM project is organized around a community of 
data scientists, where high-impact data along with challenges are pre-
sented annually, participants submit their best models, and unbiased 
assessment is performed using standardized metrics and blinded gold 
standards. This effort results in a rigorous assessment and perform-
ance ranking of methods, and cultivates a community of scientists 
interested in biomedical research problems.

In collaboration with the NCI, we developed the NCI-DREAM 
drug sensitivity prediction challenge with the goal of identifying and 
benchmarking top-performing methods for predicting therapeutic 
response from genomic, proteomic, and epigenomic profiling data 
(hereafter referred to as profiling data sets) in breast cancer cell lines. 
The scientific community submitted 44 sets of predictions, providing 
a rich sampling of state-of-the-art algorithms. The submissions were 
rigorously scored against an unpublished and hidden gold-standard 
data set. We identify the top-performing methods and discuss the 
details of the top two performers. We relate trends in methodolo-
gies to overall performance, in particular, modeling nonlinearities in 
the data and the benefit of using prior knowledge, often in the form 
of biological pathways. Finally, we provide an analysis of the tested 
therapeutic compounds and cell line profiling data sets.

RESULTS
Summary of data sets and challenge
We assembled a panel of 53 breast cancer cell lines, which have been 
previously profiled for DNA copy-number variation, transcript 
expression, mutations, DNA methylation and protein abundance20. 
In addition, dose-response values of growth inhibition were compiled 
for each cell line exposed to 28 therapeutic compounds (Fig. 1). (See 
Online Methods for a detailed description of the profiling data sets.)

Outlined in Figure 1, participants were supplied with the full set of 
profiling data for all 53 cell lines, and drug response data for 35 cell 
lines for the 28 compounds. The gold-standard evaluation data set, 
which was hidden from the participants, consisted of drug-response 
data for the remaining 18 cell lines. Cell lines were assigned to the train-
ing and test data sets to ensure a balance of breast cancer subtypes.

Participants were challenged to predict a ranked list of the most 
sensitive (to be ranked first) to most resistant (to be ranked last) 
cell lines for each individual drug across all the 18 test cell lines. 
Assessment of predictions was based on participant’s ranking of all 
28 therapeutic compounds across all 18 test cell lines.

Characterizing methods to predict drug sensitivity
Participants submitted 44 sets of predictions that cover a range of 
methodologies. We assigned submissions to one of six categories: 
(i) kernel methods, (ii) nonlinear regression (regression trees),  
(iii) sparse linear regression, (iv) PLS (partial least-squares) or PC 
(principal component) regression, (v) ensemble/model selection 
and (vi) other (those methods not falling cleanly into the previous  
five categories). All methods are listed in Table 1 with a short  
description that covers pre- and postprocessing, along with the  
underlying methodology (expanded team summarizations can be 
found in Supplementary Table 1).

Preprocessing and feature selection are core components of  
building a predictor. In this challenge, features in the profiling  
data sets (P) far outnumber the total samples (N), increasing the risk of 
overfitting. To address this, teams often reduced the number of features 
modeled by correlating the features in the profiling data set to the dose-

response data. Other preprocessing steps included principal component 
analysis, regularized regression (e.g., lasso, ridge or elastic nets) and 
mapping gene-level measurements to biological pathways.

Postprocessing includes summarizing or integrating predictions 
from individual algorithms or data sets into a final set of predic-
tions. For instance, many participants built models for each of the 
six profiling data sets individually, and then integrated these models 
to derive the final cell line response predictions for submission. Most 
frequently, teams computed a weighted average across individual pro-
filing data set predictions. Detailed descriptions of team methods can 
be found in Supplementary Note 1.

Evaluating drug sensitivity predictions
Team predictions were scored using a modified version of the con-
cordance index (c-index)24, the probabilistic c-index (pc-index), where 
variation in the experimentally determined dose-response measure-
ments was directly incorporated into the calculation. We present all 
dose-response values as −log10(GI50), where GI50 is the concentra-
tion that inhibited cell growth by 50% after 72 hours of treatment. 
Raw dose-response measurements can be found in Supplementary 
Table 2. A team’s final score was calculated as the weighted average 
of the pc-index for all 28 tested compounds, which we termed the 
weighted, probabilistic c-index (wpc-index, see Online Methods and 
Supplementary Note 3). Drug weights reflect the statistical signifi-
cance of the gold-standard cell-line ranking compared to a distribution  
of randomly generated predictions. We note that the range of the 
wpc-index will change according to experimental variation in the 
dose-response measurements, thus we also report a scaled version of 
the wpc-index to map the values to the range [0,1]. To verify scoring 
consistency, we also evaluated teams using a resampled Spearman cor-
relation approach (Online Methods). Results from both scoring meth-
ods were consistent (ρ = 0.89; Supplementary Fig. 1); we present the 
wpc-index results in Table 1 and the resampled Spearman correlation 
results in Supplementary Table 3. Additionally, we explored a team’s 
accuracy in predicting sensitive and resistant cell lines irrespective of 
predicted rank order (Supplementary Table 4 and Supplementary 
Fig. 2) and found a tight relationship between this measure of accu-
racy and the wpc-index (ρ = 0.78; Supplementary Fig. 3). For the 
top-performing method, wpc-index = 0.583, which corresponds to 
a balanced accuracy = 0.78. Details of this analysis can be found in 
Supplementary Note 2 with a mapping of the wpc-index to the sensi-
tive and resistant balanced accuracy in Supplementary Table 5.

To evaluate the significance of an individual team score, we  
compared the wpc-index to a null model of randomly predicted  
dose-response values. For 34 of the 44 teams, the null model of  
randomly generated predictions could be rejected (two-sided, t-test, 
false-discovery rate (FDR) < 0.05) (Fig. 2a). These results indicate 
that many diverse methods can be implemented to make drug sensi-
tivity predictions from pretreatment profiling data sets. Consistent 
with previous DREAM challenge results25, we observed that no single  
method category consistently outperformed the others (Fig. 2a  
and Table 1). This suggests that the separation in performance is 
heavily based on factors such as feature selection and method-specific 
implementations. Examples of innovative approaches from the two 
top-performing teams are presented in the following section.

All submissions were subjected to a robustness (resampling) analysis  
by randomly masking 10% of the gold-standard data set, then  
recalculating team scores (Fig. 2b,c). From this analysis, the top  
two teams were reliably ranked the best and second best, both 
when comparing team scores (one-sided, Wilcoxon signed-rank 
test, FDR < 10−10; Fig. 2b) and team ranks (one-sided, Wilcoxon 
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signed-rank test, FDR < 10−10; Fig. 2c). When directly compared, the  
top-ranked team outperformed the second-best team for 91%, and 
the remaining teams, for over 99% of the resampled iterations. The 
second-best team outperformed the remaining teams for over 95% of 
the resampled iterations (Supplementary Fig. 4 and Supplementary 
Table 6); however, the third through fourteenth ranked teams were 
not statistically different (Supplementary Tables 6 and 7).

Of the 44 submissions, 23 used all six profiling data sets to make 
their predictions, 8 used five data sets, 4 used three data sets, 5 used 
two data sets and 4 used one data set. We compared the average rank 
performance of teams that used all six profiling data sets to teams 
using five or fewer data sets, but did not find a significant difference 

in their performance (average rank 22.7 versus 22.3). We explored 
several additional variables (missing values being imputed, outside 
information being used, method category) and found that only the 
inclusion of outside information in the form of annotated biological 
pathways26,27 or published drug response data sets1,3,4 improved the 
average team rank (17.4 versus 24.9; one-sided, Wilcoxon rank-sum 
test, p = 0.03).

The observation that integrating predictions across multiple, 
independent teams produces the most robust score has been previ-
ously made25. For such a ‘wisdom of crowds’ phenomenon to hold, 
individual predictions must provide complementary information 
derived from independent methods. We tested this phenomenon 
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Figure 1 The NCI-DREAM drug sensitivity challenge. (a) Six genomic, epigenomic, and proteomic profiling data sets were generated for 53 breast 
cancer cell lines, which were previously described23. Drug responses as measured by growth inhibition were assessed after treating the 53 cell lines 
with 28 drugs. Participants were supplied with all six profiling data sets and dose-response data for 35 cell lines and all 28 compounds (training set). 
Cell line names were released, but drug names were anonymized. The challenge was to predict the response (ranking from most sensitive to most 
resistant) for the 18 held-out cell lines (test set). The training and test cell lines were balanced for cancer subtype, dynamic range and missing values 
(Supplementary Fig. 11). Submissions were scored on their weighted average performance on ranking the 18 cell lines for 28 compounds. (b) Dose-
response values for the training and test cell lines displayed as heatmaps.
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(continued)

Table 1 NCI-DREAM drug sensitivity prediction methods
Team Synopsis wpc-index (scaled) FDR Data

Kernel method
1 Bayesian multitask MKL (see main text). 0.583(0.629) 2.6 × 10−5 exnmrc OI
2 A predefined number of features were selected using Pearson correlation, training and prediction was done  

using support vector regression (SVR; radial basis).
0.559(0.592) 1.0 × 10−3 enmrc

3 Separate normalizations were applied to each dataset, several support vector machine (SVM) classifiers were 
independently trained (varying kernels and input data), final predictions were made using a weighted average  
of all SVM outputs.

0.553(0.582) 2.7 × 10−3 exnmrc

4 Bidirectional search was used to select features, training and prediction was done using a SVM (radial basis). 0.549(0.575) 4.8 × 10−3 enmrc

Nonlinear regression (regression trees)
1 Features were randomly selected to built an ensemble of unpruned regression trees for each dataset, missing  

values were imputed, weights for the models were calculated, final predictions were made using a weighted  
sum of the individual models.

0.577(0.620) 7.2 × 10−5 enm

2 Features were filtered based on their correlation to dose-response values, random forests were trained for  
each dataset, missing values were imputed, final rankings were based on a composite score from four  
individual dataset models (enrc).

0.569(0.607) 2.9 × 10−4 enrc OI

3 Features were filtered based on their correlation to dose-response values, random forests were trained for  
each dataset, missing values were imputed, final rankings were based on a composite score from five  
individual dataset models (enmrc).

0.565(0.601) 5.1 × 10−4 enmrc OI

4 Features were filtered based on their correlation to dose-response values, random forests were trained for each 
dataset, missing values were imputed, final rankings were based on a composite score from five individual  
dataset models (exnrc).

0.564(0.599) 5.1 × 10−4 exnrc OI

5 Features were filtered based on their correlation to dose-response values, random forests were trained for  
each dataset, missing values were imputed, final rankings were based on a composite score from individual  
dataset models (exnmrc).

0.559(0.591) 1.0 × 10−3 exnmrc OI

6 Gene features were selected using linear regression and maximal information coefficient, pathway information  
was also used to derive features, training and prediction was done using a random forest model.

0.551(0.579) 3.3 × 10−3 exnmrc

7 Random forests were constructed in a stacked approach, an ensemble of regression trees was constructed for  
all drug/dataset pairs, missing values were imputed, predictions were made for individual models and another  
random forest was used to combine the different predictions for the drugs to a final prediction.

0.548(0.575) 5.0 × 10−3 exnmrc

8 Features were ranked according to the absolute value of Spearman’s correlation, the average rank of all  
cell lines was calculated according to the top features.

0.548(0.574) 5.0 × 10−3 exnmrc

9 Features were selected using Pearson correlation and a combination of bagging and gradient boosting,  
prediction was made using selected features and a regression tree.

0.544(0.568) 1.0 × 10−2 exnmrc

10 Features were selected using matrix approximation methods leveraging SVD, training and prediction were  
done using a regression tree models using gradient boosting.

0.538(0.560) 1.9 × 10−2 en

11 Features were selected for individual cell lines by constructing random forests and pruning (recursive  
feature elimination), missing values were imputed, final predictions were made by training a random forest  
using features from all cell lines. In addition to cell line features, bioactivity spectra of the individual  
compounds were included as compound features.

0.524(0.538) 9.2 × 10−2 exnmrc

Sparse linear regression
1 Features were simultaneously selected and a ranking model built for each drug by lasso regression. 0.564(0.600) 5.1 × 10−4 en
2 Features were initially filtered based on linear regression to drug response, training and prediction were done 

using elastic nets.
0.564(0.600) 5.1 × 10−4 exnmrc

3 Gene and pathway features were determined using a one-dimensional factor analysis, training and predictions 
were made with spike and slab multitask regression, drug dose-response values were recalculated from raw  
growth curves.

0.564(0.598) 5.1 × 10−4 exnmrc OI

4 Missing features were imputed, combinations of datasets were enumerated and used to train elastic net  
regression models, for each drug, final predictions were made using the best-performing model.

0.551(0.579) 3.3 × 10−3 exmrc

5 Gene and pathway features were determined using a one-dimension factor analysis, training and predictions  
were made with spike and slab multitask regression, drug dose-response values were recalculated from raw  
growth curves, Heiser et al. data were used to train the model.

0.539(0.560) 1.9 × 10−2 exnmrc OI

6 Features were removed with low dynamic range, missing feature values were imputed, training and predictions 
were made using lasso regression on individual datasets, final predictions were made using the weighted sum  
of regression models.

0.539(0.560) 1.9 × 10−2 exnmrc

7 Statistically significant features were selected using Spearman correlation, training and prediction were done 
using an elastic net.

0.532(0.549) 4.7 × 10−2 e

8 Features were constructed by grouping genes according to GO terms, training and prediction were done using 
relaxed lasso regression.

0.531(0.548) 4.7 × 10−2 en OI

9 Gene and pathway features were determined using a one-dimension factor analysis, training and predictions  
were made with spike and slab multitask regression, GI50 values were used.

0.531(0.547) 4.9 × 10−2 exnmrc OI

10 Features were selected using a regression with log penalty, which bridges the L0 and L1 penalty, missing values 
were imputed, penalized regression models were trained on individual datasets, final predictions were made 
using a weighted average.

0.531(0.547) 4.9 × 10−2 exnrc

11 Features were selected based on elastic nets, missing values were imputed, training and predictions were done 
using ridge regression.

0.527(0.543) 6.7 × 10−2 exnmrc

12 Features were filtered on dataset-specific criteria, missing values were set to random numbers, training and  
predictions were made using the interior point method for L1-regularization.

0.519(0.529) 1.5 × 10−1 enmrc

13 Features were selected using a Gompertz growth model, predictions were made using a lasso regression model. 0.517(0.526) 1.8 × 10−1 exnmrc
14 Putative gene set expression values were calculated from constituent genes, training and predictions were  

made using linear regression.
0.485(0.477) 8.0 × 10−1 e
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Table 1 NCI-DREAM drug sensitivity prediction methods (continued)
Team Synopsis wpc-index (scaled) FDR Data

PLS or PC regression
1 Removed lowly expressed and/or low variance features, features were selected based on correlation to drug 

response, multiple partial least squares regression models were trained and consensus determined for final  
prediction.

0.562(0.597) 5.5 × 10−4 en OI

2 Features were selected by using lasso regression and groups of genes predefined by core signaling pathways,  
predictions were made by linear regression of the reduced feature set to drug response, predictor datasets  
were merged in advance of drug response prediction, and responses were predicted simultaneously sharing  
information among drugs.

0.543(0.567) 1.0 × 10−2 exnmrc OI

3 Training and prediction were done using principal component regression for individual drugs. 0.535(0.554) 3.1 × 10−2 exnmrc
4 Statistically significant features were selected using correlation, models were fit using principal component 

regression, final predictions were made using a weighted average of models.
0.524(0.538) 9.2 × 10−2 en

Ensemble/model selection
1 Features were selected using correlation, dimensionality reduced using principal component analysis, lasso  

and ridge method, several regression models were trained for individual drugs and the top cross-validated  
model was selected to make final predictions for each drug.

0.562(0.597) 5.5 × 10−4 exnmrc

2 Features were selected on outside information, missing values were imputed, predictions were made by  
aggregating results from an ensemble of machine-learning methods.

0.556(0.587) 1.6 × 10−3 exnmrc

3 Features were selected using Spearman’s rank correlation, missing values were imputed, predictions were  
made using the best-performance method (determined by cross-validation on the training set) among an  
ensemble of methods (random forest, support vector machine and linear regression).

0.554(0.583) 2.6 × 10−3 exnmrc

4 Gene and pathway features were compiled using outside data, an ensemble of prediction models were trained, 
final predictions were based on a rank-aggregation of combined prediction models.

0.517(0.527) 1.7 × 10−1 exnmrc OI

5 Features were selected using outside pathway and interaction data, missing values were imputed, individual  
drug predictions were made using the best model selected from an ensemble of methods.

0.506(0.509) 3.7 × 10−1 e OI

Other
1 Features were weighted based on Pearson’s correlation to drug response, predictions were made using the  

correlation of the weighted features.
0.570(0.608) 2.9 × 10−4 enr

2 Gene features showing strong survival from the METABRIC dataset were selected, then hierarchically clustered,  
a linear model was built to fit gene clusters to drug response, predictions were made using a regression model.

0.553(0.582) 2.6 × 10−3 e OI

3 Missing features were imputed, signatures were extracted for each dataset, predictions were made using  
1-nearest-neighbor to training cell lines via Pearson’s correlation between signatures for each data type, final 
predictions are the weighted sum of the individual datasets.

0.553(0.581) 2.7 × 10−3 exnmrc

4 Features were selected using dataset-specific criteria, missing values were imputed, predictions were made 
using KNN.

0.531(0.549) 4.7 × 10−2 exnmrc

5 Features were filtered using dataset-specific criteria, an ensemble of Cox regression models were constructed 
using random sampling from top-performing features, final prediction is the average of all models.

0.528(0.543) 6.5 × 10−2 nmc

6 Features were selected using the concordance index, predictions were made using an integrated voting  
strategy based on each feature’s ability to predict the order of pairs of cell lines.

0.521(0.532) 1.3 × 10−1 enmrc

The 44 team submissions were categorized according to their underlying methodology. The indexing scheme is used in Figures 2 and 5. Team scores (wpc-index) were re-scaled 
setting the gold-standard ranking to 1 and the inverse to 0. Teams leveraged different genomic datasets, coded as (e) gene expression, (x) exome sequencing, (n) RNA seq, (m) 
methylation, (r) RPPA and (c) copy number variation. The use of outside information, often in the form of biological pathway annotation, was found to be a factor that improved 
average team rank and is noted in the Data column as ‘OI’. Additional method characterizations can be found in Supplemental Table 1.

and found that the wisdom of crowds resulted in better performance 
(Supplementary Fig. 5a), along with increasingly robust predictions 
(i.e., greater mean, lower variance), by integrating greater numbers  
of teams (Supplementary Fig. 5b). Furthermore, predictions from  
the aggregation of a random subset of methods were very often better 
than the best of the individual methods in that subset (Supplementary 
Fig. 5c). These results indicate that individual team methods do  
provide complementary sets of predictions.

Top-performing methods exploit nonlinear modeling
The top-performing team from Aalto University and the University  
of Helsinki (co-authors on this manuscript) developed a machine-
learning method that integrates multiple profiling data sets and 
knowledge-enhanced data representations into a nonlinear, proba-
bilistic regression model to learn and predict drug sensitivities for 
all drugs simultaneously (Fig. 3 and Supplementary Note 1; source 
code provided as Supplementary Software). Their Bayesian multitask  
multiple kernel learning (MKL) method leveraged four machine-
learning principles: kernelized regression, multiview learning,  
multitask learning, and Bayesian inference.

The underlying model was kernelized regression, a regression 
approach that computes outputs from similarities between cell lines, 

which is analogous to the usage of kernel methods in classification 
tasks (e.g., support vector machines). In contrast, other regression 
approaches compute outputs directly from the input features. The ker-
nel formulation28,29 has two advantages. First, it reduces the number 
of model parameters to match the number of samples (training cell 
lines) and not the number of features. Second, it captures nonlinear 
relationships between genomic and epigenomic features, and cell-line 
drug sensitivities.

In multiview learning, heterogeneous input data (views) are inte-
grated into a single model. This makes it possible to include not 
only different profiling data sets but also various representations of 
the same data set. For example, gene expression values can be sum-
marized at the pathway level. We use the term ‘view’ to describe 
these representations (analogous to views in a database). Besides 
the original profiling data sets, three types of computed data views 
were considered, including gene set summaries, data combinations, 
and data discretization (Fig. 3a). Sets of related genes, defined in the 
MSigDB27,30 collections C2 (curated gene sets) and CP (canonical 
pathways), were used to calculate aggregated gene set views (average 
value for expression data, otherwise maximum). Data combination 
views were calculated as the product of individual data sets or accord-
ing to the PARADIGM algorithm31. Finally, discretized views were 
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compiled by binarizing continuous measures. A total of 22 views were 
generated. For the kernelized regression, each of the views was con-
verted into a kernel matrix containing pair-wise similarities between 
all cell lines. Gaussian kernels were used for real-valued views and 
Jaccard similarity coefficients for binary-valued views. To integrate 
the views, the team modeled a global similarity matrix as a weighted 
sum of the view-specific kernel matrices. This approach is known as 

multiple kernel learning or MKL32 (Fig. 3b, left). The kernel weights 
reflect the relevance of each view for predicting drug sensitivities; the 
corresponding model parameters are shared across drugs.

The sharing of information between drugs, implying simultaneous 
modeling of drug sensitivities across all the drugs, is called multitask 
learning33 (Fig. 3b, right). Here, the kernel weight parameters were 
shared, providing robustness to the overall model. The second set 

a Original views Bayesian multitask multiple kernel learning
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Model parameters:
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Figure 3 The method implemented by the  
best performing team. (a) In addition to the  
six profiling data sets, three different  
categories of data views were compiled  
using prior biological knowledge, yielding  
in total 22 genomic views of each cell line.  
(b) Bayesian multitask MKL combines nonlinear 
regression, multiview learning, multitask 
learning and Bayesian inference. Nonlinear 
regression: response values were computed 
not directly from the input features but from 
kernels, which define similarity measures 
between cell lines. Each of the K data views  
was converted into an N×N kernel matrix Kk  
(k = 1,…,K), where N is the number of training 
cell lines. Specifically, the Gaussian kernel 
was used for real-valued data, and the Jaccard 
similarity coefficient for binary-valued data. 
Multiview learning: a combined kernel matrix K

*
 was constructed as a weighted sum of the view-specific kernel matrices Kk, k = 1,…,K. The kernel 

weights were obtained by multiple kernel learning. Multitask learning: training was performed for all drugs simultaneously, sharing the kernel weights 
across drugs but allowing for drug-specific regression parameters, which for each drug consisted of a weight vector for the training cell lines and  
an intercept term. Bayesian inference: the model parameters were assumed to be random variables that follow specific probability distributions.  
Instead of learning point estimates for model parameters, the parameters of these distributions were learned using a variational approximation scheme.
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signed-rank test for b and c, FDR << 10−10).
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of model parameters comprises the core parameters of kernelized 
regression, which were drug-specific: for each drug, there was a vec-
tor of weights for the training cell lines and an individual intercept 
term. To handle the uncertainty resulting from the small sample size, 
all model parameters were learned by Bayesian inference, assuming 
for each model parameter a specific probability distribution, where 
parameters were learned using a computationally efficient variational 
approximation scheme (Supplementary Note 1).

After being benchmarked against the Genomics of Drug Sensitivity 
in Cancer (GDSC) data set3, the Bayesian multitask MKL method was 
applied to the NCI-DREAM test cell lines. By training the model with 
all 22 views, predictive performance was improved by 9% over using 
only the six profiling data sets, yielding a final wpc-index = 0.583  
(one-sided, t-test from random predictions, FDR = 2.5 × 10−5; scaled 
wpc-index = 0.629).

The second-best performing team of Qian Wan and Ranadip Pal 
from Texas Tech University leveraged the strengths of random forest 
regression34 to account for nonlinearities in the NCI-DREAM data 
(Supplementary Note 1). First, an ensemble of unpruned regression trees 
with random feature selection was compiled based on a bootstrapped  
sampling of a given profiling data set. For each profiling data set, a 
final model based on averaging of predictions over the collection 
of trees was generated. Each model was then weighted according to 
its least-squares fit to the training drug sensitivity data. The final 
predictions were calculated as the weighted sum of all six profiling 
data set models, yielding a final wpc-index = 0.577 (one-sided, t-test, 
FDR = 7.2 × 10−5; scaled wpc-index = 0.620). For this approach, the 
most informative profiling data sets were gene expression followed 
by methylation.

Profiling data sets provide nonredundant predictive signals
We used the insights provided by participating teams in a post-
challenge comparative analysis between the Bayesian multitask MKL  
method (kernel 1) and an elastic net to characterize the predic-
tive power of the original six profiling data sets. Teams most often 
reported that gene expression microarrays carried the greatest weight 
in their models (Supplementary Note 1). We tested this observa-
tion by performing 50 independent simulations of the NCI-DREAM 
challenge, randomly splitting all data sets into 35 training and 18 test 
cell lines, balanced for breast cancer subtype. To establish a baseline 
performance, we chose an elastic net model because it had been used 
previously1, was widely used by teams (Supplementary Note 1), and 
could be easily applied off-the-shelf (glmnet R package35). Averaged 
across all tested drugs, we found that the RPPA data showed the high-
est performance for the elastic net, followed closely by gene expression 
data (Fig. 4a). The Bayesian multitask MKL performed better than the 
elastic net using the RPPA data (one-sided, Wilcoxon signed-rank test, 
FDR = 1.3 × 10−6), and Bayesian multitask MKL using gene expression 
data significantly outperformed the use of RPPA data (two-sided, 
Wilcoxon signed-rank test, FDR = 1.3 × 10−6). For both methods, the 
performance varied across individual drugs (Supplementary Fig. 6).  
We also examined the effect of profiling data sets on drug classes 
(as defined in Supplementary Table 8) and found that for Bayesian 
multitask MKL, the ‘Signaling growth’ drugs had higher predictive 
scores in general, with gene expression and RPPA data being the data 
sets with the most predictive power (Supplementary Fig. 6).

Between the six profiling data sets, we explored the issue of data 
complementarity and redundancy, specifically, which data set com-
binations provide performance gains over single data sets. For the 
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Bayesian multitask MKL method, we found that exome sequencing 
data best complemented gene expression data, whereas for the elastic 
net, methylation data best complemented gene expression data. For 
both methods, all other data sets were best complemented by gene 
expression, to varying degrees (Supplementary Fig. 7). Additionally, 
by evaluating methods trained with five instead of the full six profiling 
data sets, we identified methylation as the most independent, non-
redundant profiling data set because removing methylation showed the 
largest average drop in performance (Supplementary Figs. 7 and 8).

In addition to the original data sets, we explored the performance 
of computed data views, as defined in the previous section. For both 

methods, gene set views (CP and C2) showed improved perform-
ance for copy number variation (CNV) data compared to the original  
data. In contrast, discretization of RNA-seq data improved the per-
formance only with Bayesian multitask MKL and not with the elastic 
net. Comparing all computed views, the gene set view (CP) of gene 
expression data achieved the best performance for both methods 
(Fig. 4b). Finally, we tested whether all views for a single profiling 
data set (original data set plus computed views) could be integrated 
to improve performance. For the elastic net, we only found a slight 
gain in performance for the RNA-seq and CNV groups, whereas 
the Bayesian multitask MKL method showed performance gains 
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for all groups except for exome sequencing (Fig. 4c), with the top-
performing group coming from gene expression data. Notably, the 
fully integrated model of all 22 data views improved performance 
against the gene expression group (one-sided, Wilcoxon signed-rank 
test, FDR = 7.3 × 10−7; Fig. 4d). Taken together, these results sug-
gest that gene expression data provides the most predictive power 
for any individual profiling data set. Also, predictive power can be 
gained within a data set by generating new computational views that 
integrate across profiling data sets and incorporate prior knowledge. 
Notably, this improvement comes with no additional experimental 
cost (Supplementary Figs. 9 and 10).

A predictive signal can be identified for most drugs
Teams were scored according to their ability to rank cell lines across  
all 28 tested therapeutic compounds. Here, we explored teams’  
abilities to predict individual drug response. Inhibition of cell growth 
was predicted well for some compounds (e.g., bromopyruvate  
(glycolysis), PD184352 (MEK)), whereas for other compounds, 
teams generally performed poorly (e.g., chloroquinine (autophagy), 
FR180304 (ERK)) (Fig. 5a). To characterize factors that influence 
compound predictability, we measured the Pearson correlation 
between the pc-index and a compound’s dynamic range (minimum to 
maximum −log10(GI50) values). A mild positive trend exists (ρ = 0.14), 
though it is not statistically significant (p = 0.49) (Fig. 5b). We found 
that proteasome inhibitors tend to be predicted more accurately than 
other drug classes (as defined in Supplementary Table 8), though 
with a relatively small number of compounds in each class, this analy-
sis is not well-powered. One factor that did confound our assessment  
of individual drug performance was the number of −log10(GI50)  
values measured for a drug (Fig. 5b). That is, missing values and 
multiple cell lines with the same measured response resulted in under-
powered, drug-specific statistics. This observation is the basis for 
weighting drugs to calculate the wpc-index score.

We further assessed the predictability of individual drugs by com-
paring the distribution of team predictions to a random model and 
found that 21/28 drugs performed better than the average null model, 
and 16/28 drugs were significantly better (Kolmogorov-Smirnov test, 
FDR < 0.05; Fig. 5c). This strongly indicates that a predictive signal 
is being identified by a majority of teams for more than half of the 
tested compounds. Further, these observations demonstrate that it is 
possible to identify predictive features for compounds representing 
diverse modes of action. We also quantified the gap in performance 
between team predictions and the best possible ranking (as defined 
by the rank order of the test cell lines). Across 28 compounds, the 
Bayesian multitask MKL method accounted for 73% of the maximum 
possible score, with the second-best performing team accounting  
for 71% of the maximum possible signal. Although promising, this 
indicates that these drug sensitivity predictions could benefit from 
further refinement.

DISCUSSION
Over a period of 5 months, 127 researchers focused their time and 
efforts on addressing the challenge of drug sensitivity prediction. To 
our knowledge, no previous studies have assessed a comprehensive 
benchmarked set of algorithms for predicting therapeutic response 
based on genomic, epigenomic, and proteomic profiles of untreated 
cells. The Bayesian multitask MKL method provides an excellent 
example of how the NCI-DREAM challenge drove innovation in 
algorithm development. Considering all 44 submitted methods,  
the insights gained provide a valuable resource for future algorithm 
development (Supplementary Note 1).

In particular, our analysis of this collection of algorithms revealed 
several insights about predicting drug sensitivity. First, we found that 
modeling nonlinearities in the data was a common component of top-
performing methods. Second, the Bayesian multitask MKL method 
showed improved performance by learning weights for the input data 
sets. Sharing the weights across drugs provided greater robustness of 
the prediction model and resulted in an increased overall perform-
ance, particularly for the drugs with many missing values. Finally, the 
application of prior knowledge, particularly in the form of biological 
pathways, improved drug sensitivity predictions. This was demon-
strated in the Bayesian multitask MKL method through data views, 
though many top-performing teams implemented similar approaches 
to leverage pathway information.

We observed that gene expression was the most informative data 
set in many approaches, which may partly reflect the fact that analysis 
tools for this data type are more abundant and advanced. That is, we 
do not yet know the best approaches to extract predictive informa-
tion from the other large profiling data sets; in particular the sparsity  
of exome sequencing data requires novel analysis methods36. 
However, when combined with expression data, these other data sets 
can enhance prediction performance.

The analysis of individual compounds showed that predictors of 
response could be robustly identified for the majority of compounds 
tested. This suggests a prioritization scheme for identifying compounds 
and their associated signatures with the most promise for validation 
in patient populations. Both targeted and nontargeted compounds, 
as well as those with both high and low dynamic ranges of response 
could be predicted, indicating that predictive features are present in 
the profiling data sets for a diverse array of drug mechanisms.

The −log10(GI50) drug response measurement used in this study 
represents one available metric to quantify drug response. Recent 
studies have demonstrated that dose-response curves can be param-
eterized in many meaningful ways1,37. It is possible that applying the 
algorithms assessed here to other parameters of the curves would yield 
more robust predictions for some of the compounds for which predic-
tions were poor. In addition, the −log10(GI50) reflects the combined 
effect of growth inhibition and apoptosis, two related but distinct 
processes that can be modeled separately, and even targeted sepa-
rately as a cancer treatment strategy38. Expanding the measurements 
to include endpoints that mediate oncogenic behavior of cells39 would 
allow for improved model construction and has recently been shown 
to be experimentally and technologically feasible40.

A limitation of this work is the small number of cell lines and com-
pounds tested. The efforts by NCI-DREAM participants have laid 
the groundwork for the development of improved drug sensitivity 
models that can be applied to newly generated data sets1,3. Another 
consideration is that preclinical work is only a very early step in the 
translation to clinical samples. Now that genomic, epigenomic and/or 
proteomic profiles are frequently a component of clinical trials (e.g., 
I-SPY 2 Trial: http://www.ispy2.org/), these data will be available to 
test and refine models developed from this challenge in human tri-
als. Moreover, participants were not given any information about the 
mode of action, target or chemical structure of the compounds, which 
could be included as additional features for the models23.

The success of precision medicine will depend on our ability to 
translate large compendia of genomic, epigenomic, and proteomic 
data into clinically actionable predictions. Examples such as the 
recent Sage Bionetworks-DREAM breast cancer prognosis challenge41  
and this NCI-DREAM drug sensitivity challenge demonstrate the  
evolution of challenge-based competitions, resulting in rapid  
advancement of robust algorithms and establishment of benchmarked 
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models. Equally important, challenge-based competitions build  
the critical mass of collaborative scientists necessary to address  
fundamental biomedical questions42. The evolution of the DREAM 
project will continue as the challenges in biomedical research expand 
to the genome scale.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. EBI: EGAS00000000059 and EGAS00001000585, 
E-TABM-157 and E-MTAB-181. GEO: GSE48216 and GSE42944.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

ACKNOWLEDGMENTS
The data were kindly provided before publication for this challenge by J.W.G.  
We acknowledge the contributions of all participants in the co-organized NCI 
and DREAM Summit held on April 23, 2012, for the development of the challenge 
(http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/
dream7/dream_participant_list.docx). This work is supported in part by the 
following: MaGNeT grant (5U54CA121852-08); National Institutes of Health, 
National Cancer Institute grant U54 CA 112970; Stand Up To Cancer-American 
Association for Cancer Research Dream Team Translational Cancer Research grant 
SU2C-AACR-DT0409; Prospect Creek Foundation; Howard Hughes Medical 
Institute (HHMI); and The Academy of Finland (Finnish Center of Excellence in 
Computational Inference Research COIN, grant nos. 251170  
and 140057).

We acknowledge the computational resources provided by Aalto Science-IT 
project.

AuTHOR CONTRIBuTIONS
J.C.C., M.P.M., L.M.H., M.B., D.G., D.S., J.S.-R., J.J.C., J.W.G. and G.S. designed  
the challenge. The top-performing approach was designed by E.G., M.G., M.A., 
P.H., S.A.K., J.-P.M., O.K., A.H., T.A., K.W. and S.K. Data analysis for the  
top-performing approach was conducted by E.G., M.G., M.A., P.H., S.A.K. and  
S.K. M.G. and S.K. designed the Bayesian model and M.G. implemented the 
inference algorithm for the top-performing approach. The NCI-DREAM 
Community provided drug sensitivity predictions and Supplementary Note 1.  
descriptions. J.C.C., L.M.H. and M.P.M. performed analysis of challenge 
predictions. J.C.C., L.M.H., E.G., M.P.M., J.S.-R., S.K. and G.S. interpreted the 
results of the challenge and performed follow-up analyses for the manuscript. 
L.M.H., N.J.W. and J.W.G. generated experimental data. J.C.C., L.M.H., E.G.,  
M.G., M.P.M., J.J.C., J.S.-R., S.K., J.W.G. and G.S. wrote the paper. 

COMPETING FINANCIAL INTERESTS
The authors declare no competing financial interests.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html.

1. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling 
of anticancer drug sensitivity. Nature 483, 603–607 (2012).

2. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast 
tumours. Nature 490, 61–70 (2012).

3. Garnett, M.J. et al. Systematic identification of genomic markers of drug sensitivity 
in cancer cells. Nature 483, 570–575 (2012).

4. Heiser, L.M. et al. Subtype and pathway specific responses to anticancer compounds 
in breast cancer. Proc. Natl. Acad. Sci. USA 109, 2724–2729 (2012).

5. International Cancer Genome Consortium. et al. International network of cancer 
genome projects. Nature 464, 993–998 (2010).

6. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect 
small molecules, genes, and disease. Science 313, 1929–1935 (2006).

7. Yang, W. et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for 
therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 41, D955–D961 
(2013).

8. Shoemaker, R.H. The NCI60 human tumour cell line anticancer drug screen.  
Nat. Rev. Cancer 6, 813–823 (2006).

9. Wilson, T.R. et al. Widespread potential for growth-factor-driven resistance to 
anticancer kinase inhibitors. Nature 487, 505–509 (2012).

10. Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast 
tumours reveals novel subgroups. Nature 486, 346–352 (2012).

11. Reis-Filho, J.S. & Pusztai, L. Gene expression profiling in breast cancer: 
classification, prognostication, and prediction. Lancet 378, 1812–1823 (2011).

12. Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor 
subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 
(2001).

13. van ‘t Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast 
cancer. Nature 415, 530–536 (2002).

14. Wu, J. et al. Identification and functional analysis of 9p24 amplified genes in 
human breast cancer. Oncogene 31, 333–341 (2012).

15. Howlader, N. et al. SEER Cancer Statistics Review, 1975–2010 (National Cancer 
Insitute, Bethesda, MD, 2013).

16. Stephens, P.J. et al. The landscape of cancer genes and mutational processes in 
breast cancer. Nature 486, 400–404 (2012).

17. Wood, L.D. et al. The genomic landscapes of human breast and colorectal cancers. 
Science 318, 1108–1113 (2007).

18. Kao, J. et al. Molecular profiling of breast cancer cell lines defines relevant tumor 
models and provides a resource for cancer gene discovery. PLoS ONE 4, e6146 
(2009).

19. Neve, R.M. et al. A collection of breast cancer cell lines for the study of functionally 
distinct cancer subtypes. Cancer Cell 10, 515–527 (2006).

20. Daemen, A. et al. Modeling precision treatment in breast cancer. Genome Biol. 14, 
R110 (2013).

21. Bussey, K.J. et al. Integrating data on DNA copy number with gene expression 
levels and drug sensitivities in the NCI-60 cell line panel. Mol. Cancer Ther. 5, 
853–867 (2006).

22. Masica, D.L. & Karchin, R. Collections of simultaneously altered genes as biomarkers 
of cancer cell drug response. Cancer Res. 73, 1699–1708 (2013).

23. Menden, M.P. et al. Machine learning prediction of cancer cell sensitivity to drugs 
based on genomic and chemical properties. PLoS ONE 8, e61318 (2013).

24. Harrell, F.E. Regression Modeling Strategies (Springer, New York, 2001).
25. Marbach, D. et al. Wisdom of crowds for robust gene network inference.  

Nat. Methods 9, 796–804 (2012).
26. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic 

Acids Res. 28, 27–30 (2000).
27. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach 

for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 
15545–15550 (2005).

28. Schölkopf, B. & Smola, A.J. Learning with Kernels: Support Vector Machines, 
Regularization, Optimization, and Beyond (MIT Press, 2001).

29. Shawe-Taylor, J. & Cristianni, N. Kernel Methods for Pattern Analysis (Cambridge 
University Press, New York, NY, 2004).

30. Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics 27, 
1739–1740 (2011).

31. Vaske, C.J. et al. Inference of patient-specific pathway activities from multi-
dimensional cancer genomics data using PARADIGM. Bioinformatics 26, i237–i245 
(2010).

32. Gönen, M. & Alpaydin, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 
12, 2211–2268 (2011).

33. Caruana, R. Multitask learning. Mach. Learn. 28, 41–75 (1997).
34. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
35. Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear 

models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).
36. Leiserson, M.D., Blokh, D., Sharan, R. & Raphael, B.J. Simultaneous identification 

of multiple driver pathways in cancer. PLoS Comput. Biol. 9, e1003054  
(2013).

37. Fallahi-Sichani, M., Honarnejad, S., Heiser, L.M., Gray, J.W. & Sorger, P.K. 
Comparing drug activity across cell line banks reveals systematic variation in 
properties other than potency. Nat. Chem. Biol. 9, 708–714 (2013).

38. Kwong, L.N. et al. Oncogenic NRAS signaling differentially regulates survival and 
proliferation in melanoma. Nat. Med. 18, 1503–1510 (2012).

39. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 
646–674 (2011).

40. Rantala, L.M., Kwon, S., Korkola, J.E. & Gray, J.W. Expanding the diversity of 
image-based RNAi screen applications using cell spot microarrays. Microarrays 2, 
97–114 (2013).

41. Margolin, A.A. et al. Systematic analysis of challenge-driven improvements in molecular 
prognostic models for breast cancer. Sci. Transl. Med. 5, 181re1 (2013).

42. Costello, J.C. & Stolovitzky, G. Seeking the wisdom of crowds through challenge-based 
competitions in biomedical research. Clin. Pharmacol. Ther. 93, 396–398  
(2013).

np
g

©
 2

01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

http://www.nature.com/doifinder/10.1038/nbt.2877
http://www.nature.com/doifinder/10.1038/nbt.2877
https://www.ebi.ac.uk/ega/studies/EGAS00000000059
https://www.ebi.ac.uk/ega/studies/EGAS00001000585
http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-157/
http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-181/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE48216
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42944
http://www.nature.com/doifinder/10.1038/nbt.2877
http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/dream7/dream_participant_list.docx
http://www.the-dream-project.org/sites/the-dream-project.org/files/documents/dream7/dream_participant_list.docx
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html


1212	 VOLUME 32 NUMBER 12 DECEMBER 2014   nature biotechnology

NCI-DREAM Community

Jean-Paul Abbuehl15, Tero Aittokallio7, Jeffrey Allen16, Russ B Altman17, Muhammad Ammad-ud-din4,  
Shawn Balcome18, Mukesh Bansal6, Alexis Battle19, Andreas Bender20, Bonnie Berger21, Jonathan Bernard15,  
Madhuchhanda Bhattacharjee22,23, Krithika Bhuvaneshwar24, Andrew A Bieberich25, Fred Boehm26,27,  
Andrea Califano6, Christina Chan28–30, Beibei Chen16, Ting-Huei Chen31, Jaejoon Choi32, Luis Pedro Coelho33, 
Thomas Cokelaer5, James C Collins1,2,10, James C Costello1,2,13, Chad J Creighton34, Jike Cui35, Will Dampier36, 
V Jo Davisson25, Bernard De Baets37, Raamesh Deshpande18, Barbara DiCamillo38, Murat Dundar39,  
Zhana Duren40, Adam Ertel41, Haoyang Fan26,27, Hongbin Fang42, Dan Gallahan11, Robinder Gauba24,  
Elisabeth Georgii4, Mehmet Gönen4, Assaf Gottlieb17, Michael Grau43, Joe W Gray3, Yuriy Gusev24,  
Min Jin Ha31, Leng Han44, Michael Harris24, Laura M Heiser3, Nicholas Henderson26,27, Hussein A Hejase45,  
Petteri Hintsanen7, Krisztian Homicsko15, Antti Honkela8, Jack P Hou46, Woochang Hwang32, Adriaan P IJzerman47,  
Olli Kallioniemi7, Bilge Karacali48, Samuel Kaski4,8, Sunduz Keles26,27, Christina Kendziorski26,27,  
Suleiman A Khan4, Junho Kim32, Min Kim16, Youngchul Kim49, David A Knowles19, Daphne Koller19,  
Junehawk Lee32,50, Jae K Lee49, Eelke B Lenselink47, Biao Li51, Bin Li35, Jun Li44,52, Han Liang44,53, Jian Ma46, 
Subha Madhavan24,54, Michael P Menden5, Sean Mooney51, John-Patrick Mpindi7, Chad L Myers18,  
Michael A Newton26,27, John P Overington55, Ranadip Pal56, Jian Peng57, Richard Pestell36, Robert J Prill58,  
Peng Qiu59, Bartek Rajwa60, Anguraj Sadanandam15, Julio Saez-Rodriguez5, Francesco Sambo38, Hyunjin Shin35, 
Dinah Singer11, Jiuzhou Song61, Lei Song24, Arvind Sridhar62, Michiel Stock37, Gustavo Stolovitzky12,  
Wei Sun31, Tram Ta26,27, Mahlet Tadesse63, Ming Tan42, Hao Tang16, Dan Theodorescu64, Gianna Maria Toffolo38,  
Aydin Tozeren36, William Trepicchio35, Nelle Varoquaux65–67, Jean-Philippe Vert65–67, Willem Waegeman37, 
Thomas Walter65–67, Qian Wan56, Difei Wang24,54, Nicholas J Wang3, Wen Wang18, Yong Wang40,  
Zhishi Wang26,27, Joerg K Wegner68, Krister Wennerberg7, Tongtong Wu69, Tian Xia18, Guanghua Xiao16, 
Yang Xie16, Yanxun Xu44,70, Jichen Yang16, Yuan Yuan44,53, Shihua Zhang40, Xiang-Sun Zhang40, Junfei Zhao40, 
Chandler Zuo26,27, Herman W T van Vlijmen68 & Gerard J P van Westen55

15Swiss Institute for Experimental Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. 16Quantitative 
Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA. 17Departments of Genetics and Bioengineering, Stanford 
University, Stanford, California, USA. 18Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA. 19Department 
of Computer Science, Stanford University, Palo Alto, California, USA. 20Unilever Centre, Cambridge University, Cambridge, UK. 21Computer Science and Artificial 
Intelligence Laboratory, MIT, Cambridge, Massachusetts, USA. 22Department of Statistics, University of Pune, Pune, India. 23School of Mathematics and Statistics, 
University of Hyderabad, Hyderabad, India. 24Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC, USA.  
25Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, W. Lafayette, Indiana, USA. 26Department of Statistics, University of 
Wisconsin, Madison, Wisconsin, USA. 27Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin, USA. 28Department of 
Computer Science and Engineering, Michigan State University, East Lansing, Michigan, USA. 29Department of Chemical Engineering and Materials Science, Michigan 
State University, East Lansing, Michigan, USA. 30Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA. 
31Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, USA. 32Korea Advanced Institute of Science and Technology, Daejeon, Korea. 
33Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal. 34Department of Medicine, Dan L. Duncan Center Division 
of Biostatistics, Baylor College of Medicine, Houston, Texas, USA. 35Translational Medicine, Millennium Pharmaceuticals, Cambridge, Massachusetts, USA. 36Center 
for Integrated Bioinformatics, Drexel University, Philadelphia, Pennsylvania, USA. 37Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent 
University, Ghent, Belgium. 38Department of Information Engineering, University of Padova, Padova, Italy. 39Computer and Information Science Department, IUPUI, 
Indianapolis, Indiana, USA. 40National Center for Mathematics and Interdisciplinary Sciences, Academy of Mathematics and Systems Science, Chinese Academy of 
Sciences, Beijing, China. 41Jefferson Kimmel Cancer Center, Drexel University, Philadelphia, Pennsylvania, USA. 42Department of Biostatistics, Bioinformatics and 
Biomathematics, Georgetown University Medical Center, Washington, DC, USA. 43Department of Physics, University of Marburg, Marburg, Germany. 44Department 
of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA. 45Department of Computer Science and 
Engineering, Michigan State University, East Lansing, Michigan, USA. 46Department of Bioengineering and Institute for Genomic Biology, University of Illinois, 
Champaign-Urbana, Illinois, USA. 47Leiden Academic Center for Drug Research, University of Leiden, Leiden, Netherlands. 48Izmir Institute of Technology, Izmir, 
Turkey. 49Division of Biostatistics, University of Virginia School of Medicine, Charlottesville, Virginia, USA. 50Korea Institute of Science and Technology Information, 
Daejeon, Korea. 51Buck Institute, Novato, California, USA. 52CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, 
Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China. 53Graduate Program in Structural and Computational Biology and 
Molecular Biophysics, Baylor College of Medicine, Houston, Texas, USA. 54Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University 
Medical Center, Washington, DC, USA. 55ChEMBL Group, The EMBL-European Bioinformatics Institute, Cambridge, UK. 56Electrical and Computer Engineering, 
Texas Tech University, Lubbock, Texas, USA. 57Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, USA. 58IBM Almaden 
Research Center, IBM Almaden Research Center, San Jose, California, USA. 59Department of Bioinformatics and Computational Biology, University of Texas MD 
Anderson Cancer Center, Houston, Texas, USA. 60Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, USA. 61Department of Animal and Avian 
Science, University of Maryland, College Park, Maryland, USA. 62Embedded Systems Laboratory (ESL), Institute of Electrical Engineering, Swiss Federal Institute of 
Technology Lausanne (EPFL), Lausanne, Switzerland. 63Department of Mathematics and Statistics, Georgetown University, Washington, DC, USA. 64The University 
of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, Colorado, USA. 65Centre for Computational Biology, Mines ParisTech, Fontainebleau, 
France. 66Institut Curie, Paris, France. 67INSERM U900, Paris, France. 68Janssen Pharmaceutica, Beerse, Belgium. 69Department of Biostatistics and Computational 
Biology, Rochester University Medical Center, Rochester, New York, USA. 70Department of Statistics, Rice University, Houston, Texas, USA.

A n A ly s i s
np

g
©

 2
01
4 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.



nature biotechnologydoi:10.1038/nbt.2877

ONLINE METHODS
Challenge data and gold standard. The NCI-DREAM drug sensitivity predic-
tion challenge is outlined in Figure 1. A total of seven data sets were provided 
for 53 breast cancer cell lines, as discussed in detail in two recent publications: 
Heiser et al.4 and Daemen et al.23. The cell lines were selected to represent the 
major, clinically relevant subtypes of breast cancer, including luminal, basal, 
claudin-low, ERBB2-amplified, and nonmalignant. The drugs were selected 
based on data availability (on average, drugs were tested on 80% of the 53 
cell lines) and novelty (drug response data were unpublished, not distrib-
uted throughout the community of participants, and not available from other 
sources (Supplementary Note 4)). Most of the included drugs have not been 
tested clinically in breast cancer, and therefore have the potential to serve as 
novel therapeutics.

A total of six genomic, epigenomic and proteomic profiling data sets were 
collected from untreated cells in growth conditions. Descriptions of each pro-
filing data set can be found in the annotation files associated with each data set 
supplied through the DREAM website (http://www.the-dream-project.org/). 
Not all profiling data were collected for every cell line, and drugs were not 
equally sampled across all of the cell lines.

(1) DNA copy-number variation (CNV). Affymetrix Genome-Wide  
Human SNP6.0 Array. Copy number ratios were estimated relative to a set  
of 20 normal samples, and data were segmented using circular binary  
segmentation (CBS)43;

(2) Transcript expression values. Affymetrix GeneChip Human Gene  
1.0 ST microarrays were processed using the R package aroma.affymetrix44 
(over 18,000 expression values);

(3) Whole exome sequencing (exome seq). Mutation status was obtained 
from exome-capture sequencing (Agilent Sure Select system). Mutations across 
all cell lines were filtered as follows: (i) average sum of the base quality scores 
of all mismatches in the reads containing the mutant allele ≤ 20; (ii) average 
number of other mismatches in the reads ≤ 1.5; (iii) average distance of the 
mutant alleles to the 3′ end of their respective reads between 0.2 and 0.8;  
(iv) mutant allele read support ≥ 4; (v) number of reads per variant  
supporting either the reference or mutant allele < 400 (over 33,000 reported 
mutations);

(4) RNA sequencing data (RNA-seq). RNA-seq libraries were prepared  
using the TruSeq RNA Sample Preparation Kit (Illumina) and Agilent 
Automation NGS system per manufacturers’ instructions. Expression  
analysis was performed with the ALEXA-seq software package45 (just under 
37,000 RNAs);

(5) DNA methylation data. The Illumina Infinium Human Methylation27 
BeadChip Kit was used for the genome-wide detection of 27,578 CpG loci, 
spanning 14,495 genes46. GenomeStudio Methylation Module v1.0 was used to 
express the methylation for each CpG locus as a value between 0 (completely 
unmethylated) and to 1 (completely methylated) (over 27,000 CpGs);

(6) RPPA. An antibody-based method to quantitatively measure pro-
tein abundance. RPPA data were generated and preprocessed as previously 
described47 (131 proteins assayed).

In addition to the profiling data, drug response for each of the 53 cell lines to 
28 drugs was tested. Dose-response curves were generated and the GI50[M] 
was calculated. To estimate the GI50, a series of assays were done, as previ-
ously described48. Briefly, cells were treated for 72 h with a set of nine doses 
of each compound in 1:5 serial dilution. Cell viability was determined using 
the Cell Titer Glo assay. We used nonlinear least-squares to fit the data with a 
Gompertz curve. The fitted curve was transformed into a GI curve using the 
method (http://dtp.nci.nih.gov/branches/btb/ivclsp.html) described in Monks, 
et al.49. In cases where the underlying growth data were of high quality, but 
the GI50 was not reached, the values were set to the highest concentration 
tested. The drug response data were filtered according to previously described 
criteria4. All reported drug response values and calculations for scoring were 
done using −log10(GI50). The complete set of unfiltered raw drug response 
data is in Supplementary Table 2.

Participants were supplied with the full set of profiling data for all of the 
cell lines and drug response data for 35 (of the 53) cell lines for all 28 drugs. 
The gold-standard evaluation data set consisted of drug response data for the 

remaining 18 cell lines, which were hidden from the participants. Cell lines 
were assigned to the training and test data sets to ensure a balanced set of 
breast cancer subtypes.

Participants were challenged to predict a ranked list of the most sensitive (to 
be ranked first) to most resistant (to be ranked last) cell lines for each individ-
ual drug across all the 18 test cell lines. We note that the drug response values, 
−log10(GI50), ranked from highest to lowest values, correspond to a ranking of 
the most-sensitive to the most-resistant cell lines. Assessment of predictions 
was based on participant’s ranking of the 18 test cell lines. Participants supplied 
their final submission as a comma-separated text file with the drugs listed as 
columns and cell lines listed as rows. The cells in the matrix represent ranks 
of each cell line for a given drug.

Team scoring. Drug response measurements, −log10(GI50), are subject to  
noise. To account for these uncertainties, a pooled variance, 
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was calculated for each tested drug individually, d, over n = 53 cell lines, where 
ri and si

2  are the replicate number and variance of the ith cell line, respec-
tively. There were several drugs (bromopyruvate (glycolysis), chloroquine 
(autophagy), GW5074 (RAF1), and QNZ (NFκB)) with low replicate num-
bers; in these instances, the global pooled variance across all drugs and cell 
lines was used. Values used to calculate the pooled variance can be found in 
Supplementary Table 10. The pooled variance was then taken into account 
when scoring team submissions as described in the following section.

The final team submissions were evaluated using two independent  
scoring methods. The first scoring method, a weighted, probabilistic  
concordance-index (wpc-index), was used to report the final team rankings 
of the challenge. The second method, a resampled Spearman correlation,  
was used to verify the consistency between team rankings based on a separate  
scoring method and implementation. Team scores were then subjected to  
a resampled, robustness analysis to ensure team rankings were not affected 
by perturbations to the gold-standard test cell lines. Team scores were based 
on the set of 18 test cell lines.

Weighted probabilistic concordance-index (wpc-index). The concordance 
index (c-index) is a nonparametric scoring method that provides a measure 
of similarity between two lists of measurements or ranks24. For a detailed 
description of the scoring methodology, see Supplementary Note 3.

Resampled Spearman correlation. The key idea motivating this scoring met-
ric is to compare the predicted ranked list for each drug, d, and n cell lines  
(n = 18 for the set of test cell lines), Rd = (r1, r2,…, rn) against an ensemble of  
t different possible realizations of the gold standard, ˆ ( , , , ), , , ,G G G Gd t d d d t= 1 2 … ,  
for the same drug and cell lines, where each realization Gd is defined as  
Gd = (g1, g2,…, gn). Each of the possible t realizations of the gold-standard 
samples a drug’s −log10(GI50) dose in a cell line from the normal distribution, 
N(xd,n, sd) where xd,n is the sample mean of the drug response for d and cell 
line n, and sd is the pooled s.d. for d over all tested cell lines. The ensemble of 
gold standards, ˆ

,Gd t , is then converted into ranked gold-standard cell lines, Rd
* .  

Afterwards we compared these rank gold-standard cell lines to the predicted 
ranks, Rd:

Spearman correlation r( , )
( )( )

(

* , ,
* *

,

R R
R R R R

R
d d

d t d d t dt
n

d

=
− −=∑ 1

tt d d t dt
n

t
n R R R− −== ∑∑ ) ( )

,
,
* *2 2

11  

where Rd
*  and Rd  are the mean gold standard ranks and predicted rank,  

respectively.

Robustness analysis. To ensure team rankings are robust to perturbations in 
the gold-standard data set, a subsampling analysis was performed. A set of  
t = 10,000 evaluation data sets, E G G Gt= ′ ′ ′( , ),1 2…  was generated where 10% of 
the gold-standard data set, G, was randomly masked to create G′. All predic-
tions in E were scored to create an empirical null distribution of wpc-index 
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scores. Individual teams were rescored using G′ and compared to the null 
distributions using a single-sample, two-sided, Student’s t-test. FDRs were 
calculated using the Benjamini-Hochberg correction. In addition to the wpc-
index, on each iteration, submissions were re-ranked to create a distribution of 
team ranks, which were compared using the Wilcoxon signed-rank test.

Data view analysis. Besides the six profiling data sets supplied in the chal-
lenge, additional views were constructed by challenge organizers (discretized 
RNA-seq) and by the top-performing team (discretized exome sequencing, 
gene set summaries for individual data types and genewise combination of 
two or more data sets). The analysis of individual and grouped data views was 
done using the Bayesian multitask MKL method from the top-performing  
team and an elastic net linear regression implemented in the R package, 
glmnet35. A total of 50 simulations of the challenge were run by randomly 
selecting 35 training and 18 test cell lines, keeping the subtypes of cell  
lines balanced.

At each iteration of the challenge simulations, the Bayesian multitask MKL 
method was applied using a single view or a group of views as input data. 
The elastic net was learned using the same training and test cell lines as the 
Bayesian multitask MKL method and modeling each drug separately. For 
each selection of input views and each drug, an elastic net regression model  
was learned, where regularization parameters were selected by fivefold cross-
validation on the training data, using α values from 0 to 1 in increments 
of 0.1 and the default λ sequence. The final prediction model was trained 
on all training cell lines, using the parameters with minimal cross-validation 
error. Elastic net models were first trained using all features in a data set, 
but performance was poor due to the high dimensionality compared to low  
sample size. Thus, for data sets with more than 5,000 features, only the top 10% 
most-variable features were used. For the analysis of multiple grouped views, a 
simple data concatenation approach was first tried, but resulted in decreased 
performance due to an increase in the number of input features. Therefore, a 
fraction of 1K  top-varying features was kept for each view when integrating K 
views. Statistical significance was calculated using the Wilcoxon signed-rank 
test and FDR corrected.

Data deposition. The NCI-DREAM data set is a subset of the data reported in 
Daemen et al.23 Genome copy number data has been deposited at the European 
Genome-Phenome Archive (http://www.ebi.ac.uk/ega/), hosted at the EBI 
(accession numbers EGAS00000000059 and EGAS00001000585). Gene expres-
sion data for the cell lines were derived from Affymetrix GeneChip Human 
Genome U133A and Affymetrix GeneChip Human Exon 1.0 ST arrays. Raw 
data are available in ArrayExpress (http://www.ebi.ac.uk/arrayexpress), hosted 
at the EBI (accession number E-TABM-157 and E-MTAB-181). RNA-seq and 
exome-sequencing data can be accessed at the Gene Expression Omnibus 
(GEO) (http://www.ncbi.nlm.nih.gov/geo/), accession number GSE48216. 
Genome-wide methylation data for the cell lines are also available through 
GEO, accession number GSE42944. Scripts to perform the wpc-index and 
resampled Spearman scoring can be found on the DREAM website (http://
www.the-dream-project.org/). Source code for the Bayesian multitask MKL 
method can be found as Supplementary Software.
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