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ABSTRACT   

Confocal fluorescence lifetime imaging microscopy method is used to obtain individual fluorescence intensity and 

lifetime values of aromatic Perylene dye molecules encapsulated into PMMA based nanofibers. Fluorescence spectrum 

of aromatic hydrocarbon dye molecules, like perylene, depends on the concentration of dye molecules and these dye 

molecules display an excimeric emission band besides monomeric emission bands.  Due to the dimension of a nanofiber 

is comparable to the monomer emission wavelength, the presence of nanofibers does not become effective on the decay 

rates of a single perylene molecule and its lifetime remains unchanged. When the concentration of perylene increases, 

molecular motion of the perylene molecule is restricted within nanofibers so that excimer emission arises from the 

partially overlapped conformation. As compared to free excimer emission of perylene, time-resolved experiments show 

that the fluorescence lifetime of excimer emission of perylene, which is encapsulated into NFs, gets shortened 

dramatically. Such a decrease in the lifetime is measured to be almost 50 percent, which indicates that the excimer 

emission of perylene molecules is more sensitive to change in the surrounding environment due to its longer wavelength. 

Fluorescence lifetime measurements are typically used to confirm the presence of excimers and to construct an excimer 

formation map of these dye molecules. 
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1. INTRODUCTION  

The versatility of the fluorescence lifetime method allows its application to diverse areas of study, including but not 

limited to materials science, arts, aeronautics, agriculture, forensics, biology, and medicine. It is known that the presence 

of dielectric interfaces influences the radiative transition frequencies and decay rates. According to the studies on the 

spectroscopic characteristics of an atom surrounding with a cavity, fluorescence lifetime of atom depends on the 

dimensions of the cavity.  If the dimensions of the cavity are larger than or comparable to the radiation wavelength, the 

spontaneous emission rate of the atom changes considerably due to resonant modes (whispering gallery modes) [1]. 

However, in the case of nanocavities, whose dimensions are much smaller than the radiation wavelength, surface 

curvature and quadruple transitions as well as the plasmon resonances become effective on the spontaneous decaying 

rates. It is predicted by Purcell that an atom in a smaller wavelength-size cavity can radiate much faster than in the free 

space [2]. Photonic structures with wavelength-scale dimensions offer interesting opportunities to engineer the 

photophysical properties of embedded emitters such as decay rate, quantum yield and photobleaching rate [3]. It is hard 

to produce a sustainable host with exactly the same dimensions all the time during fabrication to accommodate dye 

molecules for enhancement of spontaneous emission rate. The electrospinning is a straightforward and cost-effective 

method to produce novel fibers with diameters in the range of nano to micrometer [4]. The electrospinning process and 

the resulting fiber morphology depend on the solution properties (e.g., viscosity, conductivity, surface tension, 

permittivity, and boiling point) and operating conditions (e.g., applied voltage, spinneret-to-collector distance, and flow 

rate) [5]. These properties of electrospun nanofibers make them suitable for a wide range of applications such as 

medicine, tissue engineering, drug delivery control, filtration, sensors, energy and environmental protection [6-11]. 

Recently, polymer nanofibers are attracting an increasing interest in nanophotonic applications due to their sub-
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wavelength dimensions. Lots of hybrid light emitter/polymer nanofiber composites are prepared using organic dye 

molecules, rare earth elements and semiconductor quantum dots [12-14]. In the case of the organic dye impregnated 

nanofibers, the nanoconfined organic dyes undergo a charge or energy transfer, resulting in the enhancement of the 

fluorescence signal [13,15]. Additionally, fluorescent nanofibers have potential use in chemical and bio-sensing 

applications [16,17].  

 

Perylene is a brown crystalline polycyclic aromatic hydrocarbon with the chemical formula C20H12. These dye molecules 

form a characteristic excimer in excited state; therefore, they are widely used as fluorescent probe in different research 

fields [18]. Excimer formation processes of perylene molecules have been studied for a long time under various 

conditions; in solution, in crystalline, in thin polymer film, in polymer matrix, in LB film [19-25]. In this work, we 

studied excimer formation of perylene molecules within three-dimensional cylindrical nano-fibers (NFs). The 

modification of the spontaneous emission rate of perylene dye molecules embedded in Polymethyl methacrylate 

(PMMA) based NFs is experimentally demonstrated and excimer formation map of perylene molecules within NFs is 

obtained via confocal fluorescence lifetime imaging microscopy (FLIM) method. 

 
 

2. EXPERIMENT 

 

 
2.1 Polymerization of MMA and Electrospinning of PMMA/perylene nanofibers 

 

Methyl methacrylate (MMA) stabilized with 10 – 20 ppm hydroquinone monomethyl ether is obtained from Fluka. It is 

freshyl distilled under vacuum prior to polymerization. Benzoyl peroxide (BPO) is also provided from Fluka and used as 

initiator. BPO is recrystallized from methanol. Perylene dye is bought from Fluka. Dimethyl formamide (DMF) and 

tetrahydrofurane (THF) are obtained from Riedel Haen and used as they are without further purification. MMA is 

distilled under vacuum. The round bottom flask containning equimolar MMA-DMF mixture is placed into a preheated 

bath at 60 C. BPO is used as radical source. The weight average molecular weight of PMMA was found to be 673±144 

and 420±48 kDa, respectively. The mixture is subjected to freeze-thaw process three times and polymerization is carried 

out under vacuum for 5 h. After then, it is quenched to room temperature and polymerization is stop when the reactor is 

opened. For purification, PMMA is dissolved in THF and the solution is precipitated in methanol. The precipitated 

polymer is dried under vacuum at room temperature. PMMA is dissolved in DMF at a concentration of 2 % (w/w). 

Perylene dye is codissolved in the same solution with different concentrations ranging from 0.1, 0.2, 0.3, 0.4, and 0.5 

%(w/w). The polymer/perylene solutions were subjected to electrospinning using a classical horizontal electrospinning 

set up [26]. As a counter electrode where fibers are collected, continious Al foil or a parallel positioned two metal strips 

with an air gap are used. Depending on geometry of the electrode, different arrangements of fibers are obtained. 

Instrumental parameters in electrospinning are as follows: flow rate: 3 mL/h, applied potential difference: 12 kV, and 

spinning distance: 10-15 cm. Weight average molecular weight of PMMA is obtained by dynamic light scattering (DLS, 

Nano ZS Malvern Worcestershire).  The morphology of the fiber mats (diameter and shape of fibers, arrangement of 

fibers) is studied using scanning electron microscopy (SEM, FEI Quanta 250, Oregon). Average fiber diameter (AFD) is 

obtained from statistical treatment of SEM images by measuring the diameter of typically not less than 50 fibers with the 

help of Image J.  

 

2.2 Time-Resolved Lifetime and Fluorescence Intensity Measurements 

 

Time resolved fluorescence lifetime and fluorescence intensity measurements are performed using a TimeHarp 200 PC-

Board system (Picoquant, GmbH) and a fibre optic spectrometer (USB4000-VIS-NIR Ocean Optics), respectively (see 

Figure 1). The excitation source used in the experiment is an ultraviolet pulsed diode laser head with a wavelength of 405 

nm (LDH-C-D-405 Picoquant, GmbH). In order to obtain a Gaussian beam illumination, a single mode optical fiber is 

used as a waveguide (Thorlabs, S405-HP). The excitation light is focused onto the sample using a microscope objective 
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of 0.55 numerical apertures with a working distance of 10.1 mm (Nikon, ELWD 100X). A pinhole, which has a diameter 

75 μm, is placed to focal plane, in order to increase the resolution of the FLIM images. In the confocal FLIM setup, a xy 

piezo scanner from Piezosystem Jena, which allows a scan range of 100×100 μm2  (NV40-3CLE), and SCX 200 

(Picoquant, GmbH) fluorescence lifetime imaging controller are used for NFs surface scanning. Fluorescence lifetimes 

are calculated pixel-by-pixel using SymPho Time software (Picoquant, GmbH). 

 

 

    

Fig 1. Fluorescence lifetime imaging microscopy setup 

 

3. RESULTS AND CONCLUSION 

 
PMMA/perylene solutions at different concentrations were subjected to electrospining at 1 kV∙cm–1. Figure 2 presents 

overview SEM images of nonwoven perylene-doped PMMA fibers. Average fiber diameter (AFD) range from 0.3 µm to 

0.4 µm. It was found to be independent of perylene concentration in PMMA at least in the concentration range we 

employed in this study. The fibers were also imaged by fluorescence microscope (FM, panel a of Fig. 3) and confocal 

fluorescence lifetime imaging microscope (FLIM, panel b of Fig. 3).  

 

 

 

 

 

Figure 2. SEM images of fibers electrospun from PMMA/perylene dye solutions. Dye content in PMMA is given wt% as the inset of 

each image. 
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Figure 3. Representative FM (a) and FLIM (b) images (12.2×9.0 μm) of perylene doped NFs 

 

Nanofibers shown in Figure 2 are functionalized by aromatic perylene dye molecules. The fluorescence intensity and 

spontaneous emission rate of perylene are studied in the optical setup shown in Figure 1. Perylene molecules are 

uniformly distributed within and along the nanofibers. Fluorescence spectra of perylene in PMMA based nanofiber at 

five different concentrations are shown in Figure 4. The fluorescence emission spectrum of a dilute perylene solution is 

characterized by an ensemble of three major vibronic bands with well defined peaks at 450, 480 and 510 nm, 

respectively. This spectrum is essentially a structured mirror image of the absorption spectrum, as would be expected for 

relaxation from the excited singlet states of isolated molecules. Fluorescence spectrum of aromatic hayrocarbon dye 

molecules, like perylene, depends on the concentration of dye molecules. In many cases, concentration quenching of the 

molecular fluorescence is accompanied by the appearance of a new emission band which is red-shifted compared to the 

fluorescence of the uncomplexed molecules. Excimer is an excited state dimer and results from the interaction between 

an excited singlet state and an unexcited molecule. Excimer emission spectrum is broad and structureless with the peak 

around 580 nm.  Under increasing concentrations of perylene, the fluorescence spectra are red-shifted. Unstructured 

emission is observed at concentrations of 0.3, 0.4 and 0.5 mol % perylene doped nanofibers.   
 

 

 

Figure 4. Fluorescence spectra of perylene in PMMA based nanofiber at different concentrations 

 

The time-resolved fluorescence lifetime of the perylene dye molecule is performed using the PCI-Board system 

(TimeHarp 200, PicoQuant). The measurement of the fluorescence lifetime is based on the time correlated single photon 

counting (TCSPC) method. In this method, the time between the detected single photon of the fluorescence (start signal) 

and the excitation laser pulse (stop signal) is measured. The measured data is plotted as a fluorescence lifetime 
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histogram. For multi-exponential fluorescence decay fitting, FluoFit computer program (Picoquant, GmbH) is used.  The 

fluorescence intensity decays is recovered from the frequency-domain data in terms of a multiexponential model, 

                                                                                                                                                 (1) 

where Ai is the amplitude of each component and τi is its lifetime. The fractional contribution of each component to the 

steady-state intensity is described by 

                                                                                     .                                                                             (2) 

The intensity weighted average lifetime is represented as 

                                                                                                                                                                    (3) 

and the amplitude-weighted lifetime is given by 

                                                                                        .                                                                             (4) 

 

 

 

In order to measure the decay parameters of free perylene dye molecules, they are doped on a microscope slide at two 

different concentrations: highly concentrated and dilute. At high concentration, perylene exhibits excimer formation and 

the intensity weighted fluorescence lifetime of perylene monomer band is measured as 4.133 ns, while that of excimer 

band emission is 12.201 ns as seen in Figure 5. The excited state lifetime of the excimer species is significantly longer 

than that of the monomer, therefore; fluorescence lifetime measurements are typically used to confirm the presence of 

excimers.    

To observe the wavelength dependent photonic interactions between dye molecules and nanofibers, nanofiber diameter is 

specially fabricated fixed around 330 nm. For fiber diameters below ~300 nm, the size is hard to determine due to 

diffraction and the resolution of our confocal microscope is not enough to obtain FLIM images of these types of 

nanofibers. Therefore, we have performed all the time resolved fluorescent lifetime experiments for such nanofibers. 

While the monomer emission is observed at a wavelength about 400 nm for 0.1 and 0.2 mol perylene doped nanofibers, 

the excimer emission appears at a wavelength about 600 nm for concentrated (0.3, 0.4 and 0.5 mol) perylene doped 

nanofibers. Time resolved experiments show that, the average fluorescence lifetime of perylene monomer emission 

remains almost the same for the fiber diameter about 330 nm. The fluorescence lifetime decay curves of perylene 

molecules on PMMA based NFs and microscope slides are given in Figure 5. The perylene monomer fluorescence decay 

curves are also analyzed using Fluo-Fit software and calculated decay parameters are given in Table 1. It is observed that 

the average lifetime values of monomer emission are centered about 4.0-4.3 ns. Because of the fact that the dimension of 

a nanofiber is comparable to the monomer emission wavelength, the presence of nanofibers does not become effective on 

the decay rates of a single perylene molecule. On the other hand, the time resolved experiments reveal a significant 

modification of the decay rate of excimer emission of perylene molecules for diameters (~300 nm) below the wavelength 

of radiation (~600 nm). The fluorescence lifetime of perylene molecules decreases from 12.201 ns to 6.125 ns. In Figure 

5, the fluorescence lifetime decay curves are given and calculated decay parameters are summarized in Table II.  The 

great decrease in the fluorescence lifetime of the concentrated perylene doped NF is likely due to much longer 

wavelength of excimer emission. Particularly, for dimensions below the wavelength of light, the associated strong 

modification of the local photonic density of states alters the photophysical properties of the emitters.  
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Figure 5. Fitting and calculation of decay parameters of Perylene. (─) indicates multi-exponential fitting curve. 

      

 

Table 1. Decay parameters of Perylene dye molecules 

Emission 

Type 

Sample A1 (au) τ1 (ns) A2 (au) τ2(ns)

(ns) 

  
𝝌𝟐 

Monomer 

Emission 

Glass 
7746 4.483 3492 1.182 4.133 3.458 1.147 

NF +0.1 Pery. 
8956 4.302 2820 1.198 4.052 3.559 1.249 

NF +0.2 Pery. 
7857 4.535 2718 1.138 4.264 3.662 1.098 

Excimer 

Emission 

Glass 16100 11.683 -2658 6.285 12.201 12.751 1.527 

NF +0.3 Pery. 8138 6.687 3753 1.619 6.179 5.088 1.113 

NF +0.4 Pery. 8121 6.709 3774 1.627 6.194 5.097 1.112 

NF +0.5 Pery. 8277 6.435 1928 2.159 6.125 5.627 1.127 
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Fluorescence lifetime imaging microscopy (FLIM) is an imaging technique for producing an image based on the 

differences in the exponential decay rate of the fluorescence from a fluorescent sample. FLIM is quite an innovation 

because it allows fluorescence lifetime sensitivities to be monitored in a spatially distinct manner in living cells as well 

as for other chemical processes. Moreover, FLIM can probe the local environments of fluorophores such as the local pH, 

refractive index, ion and oxygen concentration without the need for ratio metric measurements. FLIM can be performed 

with two distinct methods. In the first method, the fluorescence intensity for each pixel is determined after a short time 

interval via time-gated experiments and an intensity map is produced. This method offers the potential to eliminate 

background fluorescence and enhance imaging contrast. The other method is performed by measuring the fluorescence 

lifetime for each pixel and generating a lifetime map of the object. Three-dimensional information can be obtained by 

FLIM technique and FLIM lifetime maps are generally used to monitor the functional changes due to environmental 

factors.  

 

FLIM method is used to obtain individual lifetime values of aromatic Perylene dye molecules encapsulated into PMMA 

based nanofibers and to construct an excimer formation map of these dye molecules. The confocal FLIM images of 

Perylene dye molecules encapsulated into three dimensional polymer based NFs are given in Figure 6. FLIM images are 

displayed using a continuous pseudocolor scale ranging from 3 to 6 ns (from blue to red). In other words, color of the 

images represents fluorescence lifetime of Perylene dye molecules within NFs. Moreover, the size of every FLIM figure 

is 500 × 250 pixel (12.2 × 6.1 μm). Our picosecond time resolved experiments show that the fluorescence lifetime of 

perylene monomer and excimer emission within a confined environment (NFs) are about 4 and 6 ns, respectively. In 

FLIM images, the green color represents monomer emission lifetimes of about 4 ns and the red color excimer emission 

lifetimes of about 6 ns. For dilute perylene concentration, green color is dominant as seen in Figure 6 (a) and (b). When 

the concentration of perylene dye molecules within NFs is increased, excimer formation starts and the color distribution 

in the FLIM image shifts from green to red. The resolution of our home-made and open frame FLIM microscope is about 

200 nm. Therefore, a single nanofiber is clearly observed in dilute perylene dye doped FLIM images. When the dye 

concentration is increased, the adhesion of nanofibers occurs and the resolving power of our FLIM images reduces. In 

Figure 6(e), it is observed that the fluorescence lifetime of perylene excimer emission in a single nanofiber and in the 

adhesive nanofibers have the same value. Consequently, the adhesion of nanofiber is not effective on the fluorescence 

lifetime values. 

 

 
 

 

 

Figure 6. Confocal FLIM images of (a) 0.1 mol (b) 0.2 mol (c) 0.3 mol (d) 0.4 mol (e) 0.5 mol Perylene doped nanofibers 
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The existence of perylene excimer in NFs is confirmed for the first time by observing the difference between the decay 

times of excimer and monomer fluorescence with fluorescence lifetime imaging method. Monomer emission of perylene 

is unaffected by NF which has a diameter of about 330 nm and its lifetime remains unchanged. However, when these 

nanofibers are doped with more concentrated perylene, in addition to monomer excitation, an excimer excitation is 

generated. Thus causes observation of the Purcell effect in the three-dimensional nano-cylindrical photonic fiber 

geometry. This work ensures that the fluorescence characteristics of an excimer can be modified due to the Purcell effect 

and electrospun NFs are such suitable materials for investigating the effects of different local photonic environments.  

Conversely, FLIM technique is used to record high resolution optical images of the electrospun NFs and to obtain 

excimer formation map of perylene molecules within NFs.  
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